| 1 | /* |
| 2 | * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Collision/b2Collision.h> |
| 20 | #include <Box2D/Collision/Shapes/b2CircleShape.h> |
| 21 | #include <Box2D/Collision/Shapes/b2EdgeShape.h> |
| 22 | #include <Box2D/Collision/Shapes/b2PolygonShape.h> |
| 23 | |
| 24 | |
| 25 | // Compute contact points for edge versus circle. |
| 26 | // This accounts for edge connectivity. |
| 27 | void b2CollideEdgeAndCircle(b2Manifold* manifold, |
| 28 | const b2EdgeShape* edgeA, const b2Transform& xfA, |
| 29 | const b2CircleShape* circleB, const b2Transform& xfB) |
| 30 | { |
| 31 | manifold->pointCount = 0; |
| 32 | |
| 33 | // Compute circle in frame of edge |
| 34 | b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p)); |
| 35 | |
| 36 | b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2; |
| 37 | b2Vec2 e = B - A; |
| 38 | |
| 39 | // Barycentric coordinates |
| 40 | float32 u = b2Dot(e, B - Q); |
| 41 | float32 v = b2Dot(e, Q - A); |
| 42 | |
| 43 | float32 radius = edgeA->m_radius + circleB->m_radius; |
| 44 | |
| 45 | b2ContactFeature cf; |
| 46 | cf.indexB = 0; |
| 47 | cf.typeB = b2ContactFeature::e_vertex; |
| 48 | |
| 49 | // Region A |
| 50 | if (v <= 0.0f) |
| 51 | { |
| 52 | b2Vec2 P = A; |
| 53 | b2Vec2 d = Q - P; |
| 54 | float32 dd = b2Dot(d, d); |
| 55 | if (dd > radius * radius) |
| 56 | { |
| 57 | return; |
| 58 | } |
| 59 | |
| 60 | // Is there an edge connected to A? |
| 61 | if (edgeA->m_hasVertex0) |
| 62 | { |
| 63 | b2Vec2 A1 = edgeA->m_vertex0; |
| 64 | b2Vec2 B1 = A; |
| 65 | b2Vec2 e1 = B1 - A1; |
| 66 | float32 u1 = b2Dot(e1, B1 - Q); |
| 67 | |
| 68 | // Is the circle in Region AB of the previous edge? |
| 69 | if (u1 > 0.0f) |
| 70 | { |
| 71 | return; |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | cf.indexA = 0; |
| 76 | cf.typeA = b2ContactFeature::e_vertex; |
| 77 | manifold->pointCount = 1; |
| 78 | manifold->type = b2Manifold::e_circles; |
| 79 | manifold->localNormal.SetZero(); |
| 80 | manifold->localPoint = P; |
| 81 | manifold->points[0].id.key = 0; |
| 82 | manifold->points[0].id.cf = cf; |
| 83 | manifold->points[0].localPoint = circleB->m_p; |
| 84 | return; |
| 85 | } |
| 86 | |
| 87 | // Region B |
| 88 | if (u <= 0.0f) |
| 89 | { |
| 90 | b2Vec2 P = B; |
| 91 | b2Vec2 d = Q - P; |
| 92 | float32 dd = b2Dot(d, d); |
| 93 | if (dd > radius * radius) |
| 94 | { |
| 95 | return; |
| 96 | } |
| 97 | |
| 98 | // Is there an edge connected to B? |
| 99 | if (edgeA->m_hasVertex3) |
| 100 | { |
| 101 | b2Vec2 B2 = edgeA->m_vertex3; |
| 102 | b2Vec2 A2 = B; |
| 103 | b2Vec2 e2 = B2 - A2; |
| 104 | float32 v2 = b2Dot(e2, Q - A2); |
| 105 | |
| 106 | // Is the circle in Region AB of the next edge? |
| 107 | if (v2 > 0.0f) |
| 108 | { |
| 109 | return; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | cf.indexA = 1; |
| 114 | cf.typeA = b2ContactFeature::e_vertex; |
| 115 | manifold->pointCount = 1; |
| 116 | manifold->type = b2Manifold::e_circles; |
| 117 | manifold->localNormal.SetZero(); |
| 118 | manifold->localPoint = P; |
| 119 | manifold->points[0].id.key = 0; |
| 120 | manifold->points[0].id.cf = cf; |
| 121 | manifold->points[0].localPoint = circleB->m_p; |
| 122 | return; |
| 123 | } |
| 124 | |
| 125 | // Region AB |
| 126 | float32 den = b2Dot(e, e); |
| 127 | b2Assert(den > 0.0f); |
| 128 | b2Vec2 P = (1.0f / den) * (u * A + v * B); |
| 129 | b2Vec2 d = Q - P; |
| 130 | float32 dd = b2Dot(d, d); |
| 131 | if (dd > radius * radius) |
| 132 | { |
| 133 | return; |
| 134 | } |
| 135 | |
| 136 | b2Vec2 n(-e.y, e.x); |
| 137 | if (b2Dot(n, Q - A) < 0.0f) |
| 138 | { |
| 139 | n.Set(-n.x, -n.y); |
| 140 | } |
| 141 | n.Normalize(); |
| 142 | |
| 143 | cf.indexA = 0; |
| 144 | cf.typeA = b2ContactFeature::e_face; |
| 145 | manifold->pointCount = 1; |
| 146 | manifold->type = b2Manifold::e_faceA; |
| 147 | manifold->localNormal = n; |
| 148 | manifold->localPoint = A; |
| 149 | manifold->points[0].id.key = 0; |
| 150 | manifold->points[0].id.cf = cf; |
| 151 | manifold->points[0].localPoint = circleB->m_p; |
| 152 | } |
| 153 | |
| 154 | // This structure is used to keep track of the best separating axis. |
| 155 | struct b2EPAxis |
| 156 | { |
| 157 | enum Type |
| 158 | { |
| 159 | e_unknown, |
| 160 | e_edgeA, |
| 161 | e_edgeB |
| 162 | }; |
| 163 | |
| 164 | Type type; |
| 165 | int32 index; |
| 166 | float32 separation; |
| 167 | }; |
| 168 | |
| 169 | // This holds polygon B expressed in frame A. |
| 170 | struct b2TempPolygon |
| 171 | { |
| 172 | b2Vec2 vertices[b2_maxPolygonVertices]; |
| 173 | b2Vec2 normals[b2_maxPolygonVertices]; |
| 174 | int32 count; |
| 175 | }; |
| 176 | |
| 177 | // Reference face used for clipping |
| 178 | struct b2ReferenceFace |
| 179 | { |
| 180 | int32 i1, i2; |
| 181 | |
| 182 | b2Vec2 v1, v2; |
| 183 | |
| 184 | b2Vec2 normal; |
| 185 | |
| 186 | b2Vec2 sideNormal1; |
| 187 | float32 sideOffset1; |
| 188 | |
| 189 | b2Vec2 sideNormal2; |
| 190 | float32 sideOffset2; |
| 191 | }; |
| 192 | |
| 193 | // This class collides and edge and a polygon, taking into account edge adjacency. |
| 194 | struct b2EPCollider |
| 195 | { |
| 196 | void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, |
| 197 | const b2PolygonShape* polygonB, const b2Transform& xfB); |
| 198 | b2EPAxis ComputeEdgeSeparation(); |
| 199 | b2EPAxis ComputePolygonSeparation(); |
| 200 | |
| 201 | enum VertexType |
| 202 | { |
| 203 | e_isolated, |
| 204 | e_concave, |
| 205 | e_convex |
| 206 | }; |
| 207 | |
| 208 | b2TempPolygon m_polygonB; |
| 209 | |
| 210 | b2Transform m_xf; |
| 211 | b2Vec2 m_centroidB; |
| 212 | b2Vec2 m_v0, m_v1, m_v2, m_v3; |
| 213 | b2Vec2 m_normal0, m_normal1, m_normal2; |
| 214 | b2Vec2 m_normal; |
| 215 | VertexType m_type1, m_type2; |
| 216 | b2Vec2 m_lowerLimit, m_upperLimit; |
| 217 | float32 m_radius; |
| 218 | bool m_front; |
| 219 | }; |
| 220 | |
| 221 | // Algorithm: |
| 222 | // 1. Classify v1 and v2 |
| 223 | // 2. Classify polygon centroid as front or back |
| 224 | // 3. Flip normal if necessary |
| 225 | // 4. Initialize normal range to [-pi, pi] about face normal |
| 226 | // 5. Adjust normal range according to adjacent edges |
| 227 | // 6. Visit each separating axes, only accept axes within the range |
| 228 | // 7. Return if _any_ axis indicates separation |
| 229 | // 8. Clip |
| 230 | void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA, |
| 231 | const b2PolygonShape* polygonB, const b2Transform& xfB) |
| 232 | { |
| 233 | m_xf = b2MulT(xfA, xfB); |
| 234 | |
| 235 | m_centroidB = b2Mul(m_xf, polygonB->m_centroid); |
| 236 | |
| 237 | m_v0 = edgeA->m_vertex0; |
| 238 | m_v1 = edgeA->m_vertex1; |
| 239 | m_v2 = edgeA->m_vertex2; |
| 240 | m_v3 = edgeA->m_vertex3; |
| 241 | |
| 242 | bool hasVertex0 = edgeA->m_hasVertex0; |
| 243 | bool hasVertex3 = edgeA->m_hasVertex3; |
| 244 | |
| 245 | b2Vec2 edge1 = m_v2 - m_v1; |
| 246 | edge1.Normalize(); |
| 247 | m_normal1.Set(edge1.y, -edge1.x); |
| 248 | float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1); |
| 249 | float32 offset0 = 0.0f, offset2 = 0.0f; |
| 250 | bool convex1 = false, convex2 = false; |
| 251 | |
| 252 | // Is there a preceding edge? |
| 253 | if (hasVertex0) |
| 254 | { |
| 255 | b2Vec2 edge0 = m_v1 - m_v0; |
| 256 | edge0.Normalize(); |
| 257 | m_normal0.Set(edge0.y, -edge0.x); |
| 258 | convex1 = b2Cross(edge0, edge1) >= 0.0f; |
| 259 | offset0 = b2Dot(m_normal0, m_centroidB - m_v0); |
| 260 | } |
| 261 | |
| 262 | // Is there a following edge? |
| 263 | if (hasVertex3) |
| 264 | { |
| 265 | b2Vec2 edge2 = m_v3 - m_v2; |
| 266 | edge2.Normalize(); |
| 267 | m_normal2.Set(edge2.y, -edge2.x); |
| 268 | convex2 = b2Cross(edge1, edge2) > 0.0f; |
| 269 | offset2 = b2Dot(m_normal2, m_centroidB - m_v2); |
| 270 | } |
| 271 | |
| 272 | // Determine front or back collision. Determine collision normal limits. |
| 273 | if (hasVertex0 && hasVertex3) |
| 274 | { |
| 275 | if (convex1 && convex2) |
| 276 | { |
| 277 | m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f; |
| 278 | if (m_front) |
| 279 | { |
| 280 | m_normal = m_normal1; |
| 281 | m_lowerLimit = m_normal0; |
| 282 | m_upperLimit = m_normal2; |
| 283 | } |
| 284 | else |
| 285 | { |
| 286 | m_normal = -m_normal1; |
| 287 | m_lowerLimit = -m_normal1; |
| 288 | m_upperLimit = -m_normal1; |
| 289 | } |
| 290 | } |
| 291 | else if (convex1) |
| 292 | { |
| 293 | m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f); |
| 294 | if (m_front) |
| 295 | { |
| 296 | m_normal = m_normal1; |
| 297 | m_lowerLimit = m_normal0; |
| 298 | m_upperLimit = m_normal1; |
| 299 | } |
| 300 | else |
| 301 | { |
| 302 | m_normal = -m_normal1; |
| 303 | m_lowerLimit = -m_normal2; |
| 304 | m_upperLimit = -m_normal1; |
| 305 | } |
| 306 | } |
| 307 | else if (convex2) |
| 308 | { |
| 309 | m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f); |
| 310 | if (m_front) |
| 311 | { |
| 312 | m_normal = m_normal1; |
| 313 | m_lowerLimit = m_normal1; |
| 314 | m_upperLimit = m_normal2; |
| 315 | } |
| 316 | else |
| 317 | { |
| 318 | m_normal = -m_normal1; |
| 319 | m_lowerLimit = -m_normal1; |
| 320 | m_upperLimit = -m_normal0; |
| 321 | } |
| 322 | } |
| 323 | else |
| 324 | { |
| 325 | m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f; |
| 326 | if (m_front) |
| 327 | { |
| 328 | m_normal = m_normal1; |
| 329 | m_lowerLimit = m_normal1; |
| 330 | m_upperLimit = m_normal1; |
| 331 | } |
| 332 | else |
| 333 | { |
| 334 | m_normal = -m_normal1; |
| 335 | m_lowerLimit = -m_normal2; |
| 336 | m_upperLimit = -m_normal0; |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | else if (hasVertex0) |
| 341 | { |
| 342 | if (convex1) |
| 343 | { |
| 344 | m_front = offset0 >= 0.0f || offset1 >= 0.0f; |
| 345 | if (m_front) |
| 346 | { |
| 347 | m_normal = m_normal1; |
| 348 | m_lowerLimit = m_normal0; |
| 349 | m_upperLimit = -m_normal1; |
| 350 | } |
| 351 | else |
| 352 | { |
| 353 | m_normal = -m_normal1; |
| 354 | m_lowerLimit = m_normal1; |
| 355 | m_upperLimit = -m_normal1; |
| 356 | } |
| 357 | } |
| 358 | else |
| 359 | { |
| 360 | m_front = offset0 >= 0.0f && offset1 >= 0.0f; |
| 361 | if (m_front) |
| 362 | { |
| 363 | m_normal = m_normal1; |
| 364 | m_lowerLimit = m_normal1; |
| 365 | m_upperLimit = -m_normal1; |
| 366 | } |
| 367 | else |
| 368 | { |
| 369 | m_normal = -m_normal1; |
| 370 | m_lowerLimit = m_normal1; |
| 371 | m_upperLimit = -m_normal0; |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | else if (hasVertex3) |
| 376 | { |
| 377 | if (convex2) |
| 378 | { |
| 379 | m_front = offset1 >= 0.0f || offset2 >= 0.0f; |
| 380 | if (m_front) |
| 381 | { |
| 382 | m_normal = m_normal1; |
| 383 | m_lowerLimit = -m_normal1; |
| 384 | m_upperLimit = m_normal2; |
| 385 | } |
| 386 | else |
| 387 | { |
| 388 | m_normal = -m_normal1; |
| 389 | m_lowerLimit = -m_normal1; |
| 390 | m_upperLimit = m_normal1; |
| 391 | } |
| 392 | } |
| 393 | else |
| 394 | { |
| 395 | m_front = offset1 >= 0.0f && offset2 >= 0.0f; |
| 396 | if (m_front) |
| 397 | { |
| 398 | m_normal = m_normal1; |
| 399 | m_lowerLimit = -m_normal1; |
| 400 | m_upperLimit = m_normal1; |
| 401 | } |
| 402 | else |
| 403 | { |
| 404 | m_normal = -m_normal1; |
| 405 | m_lowerLimit = -m_normal2; |
| 406 | m_upperLimit = m_normal1; |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | else |
| 411 | { |
| 412 | m_front = offset1 >= 0.0f; |
| 413 | if (m_front) |
| 414 | { |
| 415 | m_normal = m_normal1; |
| 416 | m_lowerLimit = -m_normal1; |
| 417 | m_upperLimit = -m_normal1; |
| 418 | } |
| 419 | else |
| 420 | { |
| 421 | m_normal = -m_normal1; |
| 422 | m_lowerLimit = m_normal1; |
| 423 | m_upperLimit = m_normal1; |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | // Get polygonB in frameA |
| 428 | m_polygonB.count = polygonB->m_count; |
| 429 | for (int32 i = 0; i < polygonB->m_count; ++i) |
| 430 | { |
| 431 | m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]); |
| 432 | m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]); |
| 433 | } |
| 434 | |
| 435 | m_radius = 2.0f * b2_polygonRadius; |
| 436 | |
| 437 | manifold->pointCount = 0; |
| 438 | |
| 439 | b2EPAxis edgeAxis = ComputeEdgeSeparation(); |
| 440 | |
| 441 | // If no valid normal can be found than this edge should not collide. |
| 442 | if (edgeAxis.type == b2EPAxis::e_unknown) |
| 443 | { |
| 444 | return; |
| 445 | } |
| 446 | |
| 447 | if (edgeAxis.separation > m_radius) |
| 448 | { |
| 449 | return; |
| 450 | } |
| 451 | |
| 452 | b2EPAxis polygonAxis = ComputePolygonSeparation(); |
| 453 | if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius) |
| 454 | { |
| 455 | return; |
| 456 | } |
| 457 | |
| 458 | // Use hysteresis for jitter reduction. |
| 459 | const float32 k_relativeTol = 0.98f; |
| 460 | const float32 k_absoluteTol = 0.001f; |
| 461 | |
| 462 | b2EPAxis primaryAxis; |
| 463 | if (polygonAxis.type == b2EPAxis::e_unknown) |
| 464 | { |
| 465 | primaryAxis = edgeAxis; |
| 466 | } |
| 467 | else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol) |
| 468 | { |
| 469 | primaryAxis = polygonAxis; |
| 470 | } |
| 471 | else |
| 472 | { |
| 473 | primaryAxis = edgeAxis; |
| 474 | } |
| 475 | |
| 476 | b2ClipVertex ie[2]; |
| 477 | b2ReferenceFace rf; |
| 478 | if (primaryAxis.type == b2EPAxis::e_edgeA) |
| 479 | { |
| 480 | manifold->type = b2Manifold::e_faceA; |
| 481 | |
| 482 | // Search for the polygon normal that is most anti-parallel to the edge normal. |
| 483 | int32 bestIndex = 0; |
| 484 | float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]); |
| 485 | for (int32 i = 1; i < m_polygonB.count; ++i) |
| 486 | { |
| 487 | float32 value = b2Dot(m_normal, m_polygonB.normals[i]); |
| 488 | if (value < bestValue) |
| 489 | { |
| 490 | bestValue = value; |
| 491 | bestIndex = i; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | int32 i1 = bestIndex; |
| 496 | int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0; |
| 497 | |
| 498 | ie[0].v = m_polygonB.vertices[i1]; |
| 499 | ie[0].id.cf.indexA = 0; |
| 500 | ie[0].id.cf.indexB = static_cast<uint8>(i1); |
| 501 | ie[0].id.cf.typeA = b2ContactFeature::e_face; |
| 502 | ie[0].id.cf.typeB = b2ContactFeature::e_vertex; |
| 503 | |
| 504 | ie[1].v = m_polygonB.vertices[i2]; |
| 505 | ie[1].id.cf.indexA = 0; |
| 506 | ie[1].id.cf.indexB = static_cast<uint8>(i2); |
| 507 | ie[1].id.cf.typeA = b2ContactFeature::e_face; |
| 508 | ie[1].id.cf.typeB = b2ContactFeature::e_vertex; |
| 509 | |
| 510 | if (m_front) |
| 511 | { |
| 512 | rf.i1 = 0; |
| 513 | rf.i2 = 1; |
| 514 | rf.v1 = m_v1; |
| 515 | rf.v2 = m_v2; |
| 516 | rf.normal = m_normal1; |
| 517 | } |
| 518 | else |
| 519 | { |
| 520 | rf.i1 = 1; |
| 521 | rf.i2 = 0; |
| 522 | rf.v1 = m_v2; |
| 523 | rf.v2 = m_v1; |
| 524 | rf.normal = -m_normal1; |
| 525 | } |
| 526 | } |
| 527 | else |
| 528 | { |
| 529 | manifold->type = b2Manifold::e_faceB; |
| 530 | |
| 531 | ie[0].v = m_v1; |
| 532 | ie[0].id.cf.indexA = 0; |
| 533 | ie[0].id.cf.indexB = static_cast<uint8>(primaryAxis.index); |
| 534 | ie[0].id.cf.typeA = b2ContactFeature::e_vertex; |
| 535 | ie[0].id.cf.typeB = b2ContactFeature::e_face; |
| 536 | |
| 537 | ie[1].v = m_v2; |
| 538 | ie[1].id.cf.indexA = 0; |
| 539 | ie[1].id.cf.indexB = static_cast<uint8>(primaryAxis.index); |
| 540 | ie[1].id.cf.typeA = b2ContactFeature::e_vertex; |
| 541 | ie[1].id.cf.typeB = b2ContactFeature::e_face; |
| 542 | |
| 543 | rf.i1 = primaryAxis.index; |
| 544 | rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0; |
| 545 | rf.v1 = m_polygonB.vertices[rf.i1]; |
| 546 | rf.v2 = m_polygonB.vertices[rf.i2]; |
| 547 | rf.normal = m_polygonB.normals[rf.i1]; |
| 548 | } |
| 549 | |
| 550 | rf.sideNormal1.Set(rf.normal.y, -rf.normal.x); |
| 551 | rf.sideNormal2 = -rf.sideNormal1; |
| 552 | rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1); |
| 553 | rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2); |
| 554 | |
| 555 | // Clip incident edge against extruded edge1 side edges. |
| 556 | b2ClipVertex clipPoints1[2]; |
| 557 | b2ClipVertex clipPoints2[2]; |
| 558 | int32 np; |
| 559 | |
| 560 | // Clip to box side 1 |
| 561 | np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1); |
| 562 | |
| 563 | if (np < b2_maxManifoldPoints) |
| 564 | { |
| 565 | return; |
| 566 | } |
| 567 | |
| 568 | // Clip to negative box side 1 |
| 569 | np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2); |
| 570 | |
| 571 | if (np < b2_maxManifoldPoints) |
| 572 | { |
| 573 | return; |
| 574 | } |
| 575 | |
| 576 | // Now clipPoints2 contains the clipped points. |
| 577 | if (primaryAxis.type == b2EPAxis::e_edgeA) |
| 578 | { |
| 579 | manifold->localNormal = rf.normal; |
| 580 | manifold->localPoint = rf.v1; |
| 581 | } |
| 582 | else |
| 583 | { |
| 584 | manifold->localNormal = polygonB->m_normals[rf.i1]; |
| 585 | manifold->localPoint = polygonB->m_vertices[rf.i1]; |
| 586 | } |
| 587 | |
| 588 | int32 pointCount = 0; |
| 589 | for (int32 i = 0; i < b2_maxManifoldPoints; ++i) |
| 590 | { |
| 591 | float32 separation; |
| 592 | |
| 593 | separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1); |
| 594 | |
| 595 | if (separation <= m_radius) |
| 596 | { |
| 597 | b2ManifoldPoint* cp = manifold->points + pointCount; |
| 598 | |
| 599 | if (primaryAxis.type == b2EPAxis::e_edgeA) |
| 600 | { |
| 601 | cp->localPoint = b2MulT(m_xf, clipPoints2[i].v); |
| 602 | cp->id = clipPoints2[i].id; |
| 603 | } |
| 604 | else |
| 605 | { |
| 606 | cp->localPoint = clipPoints2[i].v; |
| 607 | cp->id.cf.typeA = clipPoints2[i].id.cf.typeB; |
| 608 | cp->id.cf.typeB = clipPoints2[i].id.cf.typeA; |
| 609 | cp->id.cf.indexA = clipPoints2[i].id.cf.indexB; |
| 610 | cp->id.cf.indexB = clipPoints2[i].id.cf.indexA; |
| 611 | } |
| 612 | |
| 613 | ++pointCount; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | manifold->pointCount = pointCount; |
| 618 | } |
| 619 | |
| 620 | b2EPAxis b2EPCollider::ComputeEdgeSeparation() |
| 621 | { |
| 622 | b2EPAxis axis; |
| 623 | axis.type = b2EPAxis::e_edgeA; |
| 624 | axis.index = m_front ? 0 : 1; |
| 625 | axis.separation = FLT_MAX; |
| 626 | |
| 627 | for (int32 i = 0; i < m_polygonB.count; ++i) |
| 628 | { |
| 629 | float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1); |
| 630 | if (s < axis.separation) |
| 631 | { |
| 632 | axis.separation = s; |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | return axis; |
| 637 | } |
| 638 | |
| 639 | b2EPAxis b2EPCollider::ComputePolygonSeparation() |
| 640 | { |
| 641 | b2EPAxis axis; |
| 642 | axis.type = b2EPAxis::e_unknown; |
| 643 | axis.index = -1; |
| 644 | axis.separation = -FLT_MAX; |
| 645 | |
| 646 | b2Vec2 perp(-m_normal.y, m_normal.x); |
| 647 | |
| 648 | for (int32 i = 0; i < m_polygonB.count; ++i) |
| 649 | { |
| 650 | b2Vec2 n = -m_polygonB.normals[i]; |
| 651 | |
| 652 | float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1); |
| 653 | float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2); |
| 654 | float32 s = b2Min(s1, s2); |
| 655 | |
| 656 | if (s > m_radius) |
| 657 | { |
| 658 | // No collision |
| 659 | axis.type = b2EPAxis::e_edgeB; |
| 660 | axis.index = i; |
| 661 | axis.separation = s; |
| 662 | return axis; |
| 663 | } |
| 664 | |
| 665 | // Adjacency |
| 666 | if (b2Dot(n, perp) >= 0.0f) |
| 667 | { |
| 668 | if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop) |
| 669 | { |
| 670 | continue; |
| 671 | } |
| 672 | } |
| 673 | else |
| 674 | { |
| 675 | if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop) |
| 676 | { |
| 677 | continue; |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | if (s > axis.separation) |
| 682 | { |
| 683 | axis.type = b2EPAxis::e_edgeB; |
| 684 | axis.index = i; |
| 685 | axis.separation = s; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | return axis; |
| 690 | } |
| 691 | |
| 692 | void b2CollideEdgeAndPolygon( b2Manifold* manifold, |
| 693 | const b2EdgeShape* edgeA, const b2Transform& xfA, |
| 694 | const b2PolygonShape* polygonB, const b2Transform& xfB) |
| 695 | { |
| 696 | b2EPCollider collider; |
| 697 | collider.Collide(manifold, edgeA, xfA, polygonB, xfB); |
| 698 | } |
| 699 | |