1 | /* |
2 | * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "c1/c1_Compilation.hpp" |
27 | #include "c1/c1_FrameMap.hpp" |
28 | #include "c1/c1_Instruction.hpp" |
29 | #include "c1/c1_LIRAssembler.hpp" |
30 | #include "c1/c1_LIRGenerator.hpp" |
31 | #include "c1/c1_Runtime1.hpp" |
32 | #include "c1/c1_ValueStack.hpp" |
33 | #include "ci/ciArray.hpp" |
34 | #include "ci/ciObjArrayKlass.hpp" |
35 | #include "ci/ciTypeArrayKlass.hpp" |
36 | #include "gc/shared/c1/barrierSetC1.hpp" |
37 | #include "runtime/sharedRuntime.hpp" |
38 | #include "runtime/stubRoutines.hpp" |
39 | #include "vmreg_x86.inline.hpp" |
40 | |
41 | #ifdef ASSERT |
42 | #define __ gen()->lir(__FILE__, __LINE__)-> |
43 | #else |
44 | #define __ gen()->lir()-> |
45 | #endif |
46 | |
47 | // Item will be loaded into a byte register; Intel only |
48 | void LIRItem::load_byte_item() { |
49 | load_item(); |
50 | LIR_Opr res = result(); |
51 | |
52 | if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { |
53 | // make sure that it is a byte register |
54 | assert(!value()->type()->is_float() && !value()->type()->is_double(), |
55 | "can't load floats in byte register" ); |
56 | LIR_Opr reg = _gen->rlock_byte(T_BYTE); |
57 | __ move(res, reg); |
58 | |
59 | _result = reg; |
60 | } |
61 | } |
62 | |
63 | |
64 | void LIRItem::load_nonconstant() { |
65 | LIR_Opr r = value()->operand(); |
66 | if (r->is_constant()) { |
67 | _result = r; |
68 | } else { |
69 | load_item(); |
70 | } |
71 | } |
72 | |
73 | //-------------------------------------------------------------- |
74 | // LIRGenerator |
75 | //-------------------------------------------------------------- |
76 | |
77 | |
78 | LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } |
79 | LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } |
80 | LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } |
81 | LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } |
82 | LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } |
83 | LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } |
84 | LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } |
85 | LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } |
86 | LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } |
87 | |
88 | |
89 | LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { |
90 | LIR_Opr opr; |
91 | switch (type->tag()) { |
92 | case intTag: opr = FrameMap::rax_opr; break; |
93 | case objectTag: opr = FrameMap::rax_oop_opr; break; |
94 | case longTag: opr = FrameMap::long0_opr; break; |
95 | case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; |
96 | case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; |
97 | |
98 | case addressTag: |
99 | default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; |
100 | } |
101 | |
102 | assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch" ); |
103 | return opr; |
104 | } |
105 | |
106 | |
107 | LIR_Opr LIRGenerator::rlock_byte(BasicType type) { |
108 | LIR_Opr reg = new_register(T_INT); |
109 | set_vreg_flag(reg, LIRGenerator::byte_reg); |
110 | return reg; |
111 | } |
112 | |
113 | |
114 | //--------- loading items into registers -------------------------------- |
115 | |
116 | |
117 | // i486 instructions can inline constants |
118 | bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { |
119 | if (type == T_SHORT || type == T_CHAR) { |
120 | // there is no immediate move of word values in asembler_i486.?pp |
121 | return false; |
122 | } |
123 | Constant* c = v->as_Constant(); |
124 | if (c && c->state_before() == NULL) { |
125 | // constants of any type can be stored directly, except for |
126 | // unloaded object constants. |
127 | return true; |
128 | } |
129 | return false; |
130 | } |
131 | |
132 | |
133 | bool LIRGenerator::can_inline_as_constant(Value v) const { |
134 | if (v->type()->tag() == longTag) return false; |
135 | return v->type()->tag() != objectTag || |
136 | (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); |
137 | } |
138 | |
139 | |
140 | bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { |
141 | if (c->type() == T_LONG) return false; |
142 | return c->type() != T_OBJECT || c->as_jobject() == NULL; |
143 | } |
144 | |
145 | |
146 | LIR_Opr LIRGenerator::safepoint_poll_register() { |
147 | NOT_LP64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } ) |
148 | return LIR_OprFact::illegalOpr; |
149 | } |
150 | |
151 | |
152 | LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, |
153 | int shift, int disp, BasicType type) { |
154 | assert(base->is_register(), "must be" ); |
155 | if (index->is_constant()) { |
156 | LIR_Const *constant = index->as_constant_ptr(); |
157 | #ifdef _LP64 |
158 | jlong c; |
159 | if (constant->type() == T_INT) { |
160 | c = (jlong(index->as_jint()) << shift) + disp; |
161 | } else { |
162 | assert(constant->type() == T_LONG, "should be" ); |
163 | c = (index->as_jlong() << shift) + disp; |
164 | } |
165 | if ((jlong)((jint)c) == c) { |
166 | return new LIR_Address(base, (jint)c, type); |
167 | } else { |
168 | LIR_Opr tmp = new_register(T_LONG); |
169 | __ move(index, tmp); |
170 | return new LIR_Address(base, tmp, type); |
171 | } |
172 | #else |
173 | return new LIR_Address(base, |
174 | ((intx)(constant->as_jint()) << shift) + disp, |
175 | type); |
176 | #endif |
177 | } else { |
178 | return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); |
179 | } |
180 | } |
181 | |
182 | |
183 | LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, |
184 | BasicType type) { |
185 | int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); |
186 | |
187 | LIR_Address* addr; |
188 | if (index_opr->is_constant()) { |
189 | int elem_size = type2aelembytes(type); |
190 | addr = new LIR_Address(array_opr, |
191 | offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); |
192 | } else { |
193 | #ifdef _LP64 |
194 | if (index_opr->type() == T_INT) { |
195 | LIR_Opr tmp = new_register(T_LONG); |
196 | __ convert(Bytecodes::_i2l, index_opr, tmp); |
197 | index_opr = tmp; |
198 | } |
199 | #endif // _LP64 |
200 | addr = new LIR_Address(array_opr, |
201 | index_opr, |
202 | LIR_Address::scale(type), |
203 | offset_in_bytes, type); |
204 | } |
205 | return addr; |
206 | } |
207 | |
208 | |
209 | LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { |
210 | LIR_Opr r = NULL; |
211 | if (type == T_LONG) { |
212 | r = LIR_OprFact::longConst(x); |
213 | } else if (type == T_INT) { |
214 | r = LIR_OprFact::intConst(x); |
215 | } else { |
216 | ShouldNotReachHere(); |
217 | } |
218 | return r; |
219 | } |
220 | |
221 | void LIRGenerator::increment_counter(address counter, BasicType type, int step) { |
222 | LIR_Opr pointer = new_pointer_register(); |
223 | __ move(LIR_OprFact::intptrConst(counter), pointer); |
224 | LIR_Address* addr = new LIR_Address(pointer, type); |
225 | increment_counter(addr, step); |
226 | } |
227 | |
228 | |
229 | void LIRGenerator::increment_counter(LIR_Address* addr, int step) { |
230 | __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); |
231 | } |
232 | |
233 | void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { |
234 | __ cmp_mem_int(condition, base, disp, c, info); |
235 | } |
236 | |
237 | |
238 | void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { |
239 | __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); |
240 | } |
241 | |
242 | |
243 | bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { |
244 | if (tmp->is_valid() && c > 0 && c < max_jint) { |
245 | if (is_power_of_2(c + 1)) { |
246 | __ move(left, tmp); |
247 | __ shift_left(left, log2_jint(c + 1), left); |
248 | __ sub(left, tmp, result); |
249 | return true; |
250 | } else if (is_power_of_2(c - 1)) { |
251 | __ move(left, tmp); |
252 | __ shift_left(left, log2_jint(c - 1), left); |
253 | __ add(left, tmp, result); |
254 | return true; |
255 | } |
256 | } |
257 | return false; |
258 | } |
259 | |
260 | |
261 | void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { |
262 | BasicType type = item->type(); |
263 | __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); |
264 | } |
265 | |
266 | void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { |
267 | LIR_Opr tmp1 = new_register(objectType); |
268 | LIR_Opr tmp2 = new_register(objectType); |
269 | LIR_Opr tmp3 = new_register(objectType); |
270 | __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); |
271 | } |
272 | |
273 | //---------------------------------------------------------------------- |
274 | // visitor functions |
275 | //---------------------------------------------------------------------- |
276 | |
277 | void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { |
278 | assert(x->is_pinned(),"" ); |
279 | LIRItem obj(x->obj(), this); |
280 | obj.load_item(); |
281 | |
282 | set_no_result(x); |
283 | |
284 | // "lock" stores the address of the monitor stack slot, so this is not an oop |
285 | LIR_Opr lock = new_register(T_INT); |
286 | // Need a scratch register for biased locking on x86 |
287 | LIR_Opr scratch = LIR_OprFact::illegalOpr; |
288 | if (UseBiasedLocking) { |
289 | scratch = new_register(T_INT); |
290 | } |
291 | |
292 | CodeEmitInfo* info_for_exception = NULL; |
293 | if (x->needs_null_check()) { |
294 | info_for_exception = state_for(x); |
295 | } |
296 | // this CodeEmitInfo must not have the xhandlers because here the |
297 | // object is already locked (xhandlers expect object to be unlocked) |
298 | CodeEmitInfo* info = state_for(x, x->state(), true); |
299 | monitor_enter(obj.result(), lock, syncTempOpr(), scratch, |
300 | x->monitor_no(), info_for_exception, info); |
301 | } |
302 | |
303 | |
304 | void LIRGenerator::do_MonitorExit(MonitorExit* x) { |
305 | assert(x->is_pinned(),"" ); |
306 | |
307 | LIRItem obj(x->obj(), this); |
308 | obj.dont_load_item(); |
309 | |
310 | LIR_Opr lock = new_register(T_INT); |
311 | LIR_Opr obj_temp = new_register(T_INT); |
312 | set_no_result(x); |
313 | monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); |
314 | } |
315 | |
316 | |
317 | // _ineg, _lneg, _fneg, _dneg |
318 | void LIRGenerator::do_NegateOp(NegateOp* x) { |
319 | LIRItem value(x->x(), this); |
320 | value.set_destroys_register(); |
321 | value.load_item(); |
322 | LIR_Opr reg = rlock(x); |
323 | |
324 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
325 | #ifdef _LP64 |
326 | if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { |
327 | if (x->type()->tag() == doubleTag) { |
328 | tmp = new_register(T_DOUBLE); |
329 | __ move(LIR_OprFact::doubleConst(-0.0), tmp); |
330 | } |
331 | else if (x->type()->tag() == floatTag) { |
332 | tmp = new_register(T_FLOAT); |
333 | __ move(LIR_OprFact::floatConst(-0.0), tmp); |
334 | } |
335 | } |
336 | #endif |
337 | __ negate(value.result(), reg, tmp); |
338 | |
339 | set_result(x, round_item(reg)); |
340 | } |
341 | |
342 | |
343 | // for _fadd, _fmul, _fsub, _fdiv, _frem |
344 | // _dadd, _dmul, _dsub, _ddiv, _drem |
345 | void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { |
346 | LIRItem left(x->x(), this); |
347 | LIRItem right(x->y(), this); |
348 | LIRItem* left_arg = &left; |
349 | LIRItem* right_arg = &right; |
350 | assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands" ); |
351 | bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); |
352 | if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { |
353 | left.load_item(); |
354 | } else { |
355 | left.dont_load_item(); |
356 | } |
357 | |
358 | // do not load right operand if it is a constant. only 0 and 1 are |
359 | // loaded because there are special instructions for loading them |
360 | // without memory access (not needed for SSE2 instructions) |
361 | bool must_load_right = false; |
362 | if (right.is_constant()) { |
363 | LIR_Const* c = right.result()->as_constant_ptr(); |
364 | assert(c != NULL, "invalid constant" ); |
365 | assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type" ); |
366 | |
367 | if (c->type() == T_FLOAT) { |
368 | must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); |
369 | } else { |
370 | must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); |
371 | } |
372 | } |
373 | |
374 | if (must_load_both) { |
375 | // frem and drem destroy also right operand, so move it to a new register |
376 | right.set_destroys_register(); |
377 | right.load_item(); |
378 | } else if (right.is_register() || must_load_right) { |
379 | right.load_item(); |
380 | } else { |
381 | right.dont_load_item(); |
382 | } |
383 | LIR_Opr reg = rlock(x); |
384 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
385 | if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { |
386 | tmp = new_register(T_DOUBLE); |
387 | } |
388 | |
389 | if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { |
390 | // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots |
391 | LIR_Opr fpu0, fpu1; |
392 | if (x->op() == Bytecodes::_frem) { |
393 | fpu0 = LIR_OprFact::single_fpu(0); |
394 | fpu1 = LIR_OprFact::single_fpu(1); |
395 | } else { |
396 | fpu0 = LIR_OprFact::double_fpu(0); |
397 | fpu1 = LIR_OprFact::double_fpu(1); |
398 | } |
399 | __ move(right.result(), fpu1); // order of left and right operand is important! |
400 | __ move(left.result(), fpu0); |
401 | __ rem (fpu0, fpu1, fpu0); |
402 | __ move(fpu0, reg); |
403 | |
404 | } else { |
405 | arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); |
406 | } |
407 | |
408 | set_result(x, round_item(reg)); |
409 | } |
410 | |
411 | |
412 | // for _ladd, _lmul, _lsub, _ldiv, _lrem |
413 | void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { |
414 | if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { |
415 | // long division is implemented as a direct call into the runtime |
416 | LIRItem left(x->x(), this); |
417 | LIRItem right(x->y(), this); |
418 | |
419 | // the check for division by zero destroys the right operand |
420 | right.set_destroys_register(); |
421 | |
422 | BasicTypeList signature(2); |
423 | signature.append(T_LONG); |
424 | signature.append(T_LONG); |
425 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
426 | |
427 | // check for division by zero (destroys registers of right operand!) |
428 | CodeEmitInfo* info = state_for(x); |
429 | |
430 | const LIR_Opr result_reg = result_register_for(x->type()); |
431 | left.load_item_force(cc->at(1)); |
432 | right.load_item(); |
433 | |
434 | __ move(right.result(), cc->at(0)); |
435 | |
436 | __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); |
437 | __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); |
438 | |
439 | address entry = NULL; |
440 | switch (x->op()) { |
441 | case Bytecodes::_lrem: |
442 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); |
443 | break; // check if dividend is 0 is done elsewhere |
444 | case Bytecodes::_ldiv: |
445 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); |
446 | break; // check if dividend is 0 is done elsewhere |
447 | case Bytecodes::_lmul: |
448 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); |
449 | break; |
450 | default: |
451 | ShouldNotReachHere(); |
452 | } |
453 | |
454 | LIR_Opr result = rlock_result(x); |
455 | __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); |
456 | __ move(result_reg, result); |
457 | } else if (x->op() == Bytecodes::_lmul) { |
458 | // missing test if instr is commutative and if we should swap |
459 | LIRItem left(x->x(), this); |
460 | LIRItem right(x->y(), this); |
461 | |
462 | // right register is destroyed by the long mul, so it must be |
463 | // copied to a new register. |
464 | right.set_destroys_register(); |
465 | |
466 | left.load_item(); |
467 | right.load_item(); |
468 | |
469 | LIR_Opr reg = FrameMap::long0_opr; |
470 | arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); |
471 | LIR_Opr result = rlock_result(x); |
472 | __ move(reg, result); |
473 | } else { |
474 | // missing test if instr is commutative and if we should swap |
475 | LIRItem left(x->x(), this); |
476 | LIRItem right(x->y(), this); |
477 | |
478 | left.load_item(); |
479 | // don't load constants to save register |
480 | right.load_nonconstant(); |
481 | rlock_result(x); |
482 | arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); |
483 | } |
484 | } |
485 | |
486 | |
487 | |
488 | // for: _iadd, _imul, _isub, _idiv, _irem |
489 | void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { |
490 | if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { |
491 | // The requirements for division and modulo |
492 | // input : rax,: dividend min_int |
493 | // reg: divisor (may not be rax,/rdx) -1 |
494 | // |
495 | // output: rax,: quotient (= rax, idiv reg) min_int |
496 | // rdx: remainder (= rax, irem reg) 0 |
497 | |
498 | // rax, and rdx will be destroyed |
499 | |
500 | // Note: does this invalidate the spec ??? |
501 | LIRItem right(x->y(), this); |
502 | LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid |
503 | |
504 | // call state_for before load_item_force because state_for may |
505 | // force the evaluation of other instructions that are needed for |
506 | // correct debug info. Otherwise the live range of the fix |
507 | // register might be too long. |
508 | CodeEmitInfo* info = state_for(x); |
509 | |
510 | left.load_item_force(divInOpr()); |
511 | |
512 | right.load_item(); |
513 | |
514 | LIR_Opr result = rlock_result(x); |
515 | LIR_Opr result_reg; |
516 | if (x->op() == Bytecodes::_idiv) { |
517 | result_reg = divOutOpr(); |
518 | } else { |
519 | result_reg = remOutOpr(); |
520 | } |
521 | |
522 | if (!ImplicitDiv0Checks) { |
523 | __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); |
524 | __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); |
525 | // Idiv/irem cannot trap (passing info would generate an assertion). |
526 | info = NULL; |
527 | } |
528 | LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation |
529 | if (x->op() == Bytecodes::_irem) { |
530 | __ irem(left.result(), right.result(), result_reg, tmp, info); |
531 | } else if (x->op() == Bytecodes::_idiv) { |
532 | __ idiv(left.result(), right.result(), result_reg, tmp, info); |
533 | } else { |
534 | ShouldNotReachHere(); |
535 | } |
536 | |
537 | __ move(result_reg, result); |
538 | } else { |
539 | // missing test if instr is commutative and if we should swap |
540 | LIRItem left(x->x(), this); |
541 | LIRItem right(x->y(), this); |
542 | LIRItem* left_arg = &left; |
543 | LIRItem* right_arg = &right; |
544 | if (x->is_commutative() && left.is_stack() && right.is_register()) { |
545 | // swap them if left is real stack (or cached) and right is real register(not cached) |
546 | left_arg = &right; |
547 | right_arg = &left; |
548 | } |
549 | |
550 | left_arg->load_item(); |
551 | |
552 | // do not need to load right, as we can handle stack and constants |
553 | if (x->op() == Bytecodes::_imul ) { |
554 | // check if we can use shift instead |
555 | bool use_constant = false; |
556 | bool use_tmp = false; |
557 | if (right_arg->is_constant()) { |
558 | jint iconst = right_arg->get_jint_constant(); |
559 | if (iconst > 0 && iconst < max_jint) { |
560 | if (is_power_of_2(iconst)) { |
561 | use_constant = true; |
562 | } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { |
563 | use_constant = true; |
564 | use_tmp = true; |
565 | } |
566 | } |
567 | } |
568 | if (use_constant) { |
569 | right_arg->dont_load_item(); |
570 | } else { |
571 | right_arg->load_item(); |
572 | } |
573 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
574 | if (use_tmp) { |
575 | tmp = new_register(T_INT); |
576 | } |
577 | rlock_result(x); |
578 | |
579 | arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); |
580 | } else { |
581 | right_arg->dont_load_item(); |
582 | rlock_result(x); |
583 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
584 | arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); |
585 | } |
586 | } |
587 | } |
588 | |
589 | |
590 | void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { |
591 | // when an operand with use count 1 is the left operand, then it is |
592 | // likely that no move for 2-operand-LIR-form is necessary |
593 | if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { |
594 | x->swap_operands(); |
595 | } |
596 | |
597 | ValueTag tag = x->type()->tag(); |
598 | assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters" ); |
599 | switch (tag) { |
600 | case floatTag: |
601 | case doubleTag: do_ArithmeticOp_FPU(x); return; |
602 | case longTag: do_ArithmeticOp_Long(x); return; |
603 | case intTag: do_ArithmeticOp_Int(x); return; |
604 | default: ShouldNotReachHere(); return; |
605 | } |
606 | } |
607 | |
608 | |
609 | // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr |
610 | void LIRGenerator::do_ShiftOp(ShiftOp* x) { |
611 | // count must always be in rcx |
612 | LIRItem value(x->x(), this); |
613 | LIRItem count(x->y(), this); |
614 | |
615 | ValueTag elemType = x->type()->tag(); |
616 | bool must_load_count = !count.is_constant() || elemType == longTag; |
617 | if (must_load_count) { |
618 | // count for long must be in register |
619 | count.load_item_force(shiftCountOpr()); |
620 | } else { |
621 | count.dont_load_item(); |
622 | } |
623 | value.load_item(); |
624 | LIR_Opr reg = rlock_result(x); |
625 | |
626 | shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); |
627 | } |
628 | |
629 | |
630 | // _iand, _land, _ior, _lor, _ixor, _lxor |
631 | void LIRGenerator::do_LogicOp(LogicOp* x) { |
632 | // when an operand with use count 1 is the left operand, then it is |
633 | // likely that no move for 2-operand-LIR-form is necessary |
634 | if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { |
635 | x->swap_operands(); |
636 | } |
637 | |
638 | LIRItem left(x->x(), this); |
639 | LIRItem right(x->y(), this); |
640 | |
641 | left.load_item(); |
642 | right.load_nonconstant(); |
643 | LIR_Opr reg = rlock_result(x); |
644 | |
645 | logic_op(x->op(), reg, left.result(), right.result()); |
646 | } |
647 | |
648 | |
649 | |
650 | // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg |
651 | void LIRGenerator::do_CompareOp(CompareOp* x) { |
652 | LIRItem left(x->x(), this); |
653 | LIRItem right(x->y(), this); |
654 | ValueTag tag = x->x()->type()->tag(); |
655 | if (tag == longTag) { |
656 | left.set_destroys_register(); |
657 | } |
658 | left.load_item(); |
659 | right.load_item(); |
660 | LIR_Opr reg = rlock_result(x); |
661 | |
662 | if (x->x()->type()->is_float_kind()) { |
663 | Bytecodes::Code code = x->op(); |
664 | __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); |
665 | } else if (x->x()->type()->tag() == longTag) { |
666 | __ lcmp2int(left.result(), right.result(), reg); |
667 | } else { |
668 | Unimplemented(); |
669 | } |
670 | } |
671 | |
672 | LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { |
673 | LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience |
674 | if (type == T_OBJECT || type == T_ARRAY) { |
675 | cmp_value.load_item_force(FrameMap::rax_oop_opr); |
676 | new_value.load_item(); |
677 | __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
678 | } else if (type == T_INT) { |
679 | cmp_value.load_item_force(FrameMap::rax_opr); |
680 | new_value.load_item(); |
681 | __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
682 | } else if (type == T_LONG) { |
683 | cmp_value.load_item_force(FrameMap::long0_opr); |
684 | new_value.load_item_force(FrameMap::long1_opr); |
685 | __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
686 | } else { |
687 | Unimplemented(); |
688 | } |
689 | LIR_Opr result = new_register(T_INT); |
690 | __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), |
691 | result, T_INT); |
692 | return result; |
693 | } |
694 | |
695 | LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { |
696 | bool is_oop = type == T_OBJECT || type == T_ARRAY; |
697 | LIR_Opr result = new_register(type); |
698 | value.load_item(); |
699 | // Because we want a 2-arg form of xchg and xadd |
700 | __ move(value.result(), result); |
701 | assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type" ); |
702 | __ xchg(addr, result, result, LIR_OprFact::illegalOpr); |
703 | return result; |
704 | } |
705 | |
706 | LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { |
707 | LIR_Opr result = new_register(type); |
708 | value.load_item(); |
709 | // Because we want a 2-arg form of xchg and xadd |
710 | __ move(value.result(), result); |
711 | assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type" ); |
712 | __ xadd(addr, result, result, LIR_OprFact::illegalOpr); |
713 | return result; |
714 | } |
715 | |
716 | void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { |
717 | assert(x->number_of_arguments() == 3, "wrong type" ); |
718 | assert(UseFMA, "Needs FMA instructions support." ); |
719 | LIRItem value(x->argument_at(0), this); |
720 | LIRItem value1(x->argument_at(1), this); |
721 | LIRItem value2(x->argument_at(2), this); |
722 | |
723 | value2.set_destroys_register(); |
724 | |
725 | value.load_item(); |
726 | value1.load_item(); |
727 | value2.load_item(); |
728 | |
729 | LIR_Opr calc_input = value.result(); |
730 | LIR_Opr calc_input1 = value1.result(); |
731 | LIR_Opr calc_input2 = value2.result(); |
732 | LIR_Opr calc_result = rlock_result(x); |
733 | |
734 | switch (x->id()) { |
735 | case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; |
736 | case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; |
737 | default: ShouldNotReachHere(); |
738 | } |
739 | |
740 | } |
741 | |
742 | |
743 | void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { |
744 | assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type" ); |
745 | |
746 | if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || |
747 | x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || |
748 | x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || |
749 | x->id() == vmIntrinsics::_dlog10) { |
750 | do_LibmIntrinsic(x); |
751 | return; |
752 | } |
753 | |
754 | LIRItem value(x->argument_at(0), this); |
755 | |
756 | bool use_fpu = false; |
757 | if (UseSSE < 2) { |
758 | value.set_destroys_register(); |
759 | } |
760 | value.load_item(); |
761 | |
762 | LIR_Opr calc_input = value.result(); |
763 | LIR_Opr calc_result = rlock_result(x); |
764 | |
765 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
766 | #ifdef _LP64 |
767 | if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) && |
768 | (x->id() == vmIntrinsics::_dabs)) { |
769 | tmp = new_register(T_DOUBLE); |
770 | __ move(LIR_OprFact::doubleConst(-0.0), tmp); |
771 | } |
772 | #endif |
773 | |
774 | switch(x->id()) { |
775 | case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break; |
776 | case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; |
777 | default: ShouldNotReachHere(); |
778 | } |
779 | |
780 | if (use_fpu) { |
781 | __ move(calc_result, x->operand()); |
782 | } |
783 | } |
784 | |
785 | void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { |
786 | LIRItem value(x->argument_at(0), this); |
787 | value.set_destroys_register(); |
788 | |
789 | LIR_Opr calc_result = rlock_result(x); |
790 | LIR_Opr result_reg = result_register_for(x->type()); |
791 | |
792 | CallingConvention* cc = NULL; |
793 | |
794 | if (x->id() == vmIntrinsics::_dpow) { |
795 | LIRItem value1(x->argument_at(1), this); |
796 | |
797 | value1.set_destroys_register(); |
798 | |
799 | BasicTypeList signature(2); |
800 | signature.append(T_DOUBLE); |
801 | signature.append(T_DOUBLE); |
802 | cc = frame_map()->c_calling_convention(&signature); |
803 | value.load_item_force(cc->at(0)); |
804 | value1.load_item_force(cc->at(1)); |
805 | } else { |
806 | BasicTypeList signature(1); |
807 | signature.append(T_DOUBLE); |
808 | cc = frame_map()->c_calling_convention(&signature); |
809 | value.load_item_force(cc->at(0)); |
810 | } |
811 | |
812 | #ifndef _LP64 |
813 | LIR_Opr tmp = FrameMap::fpu0_double_opr; |
814 | result_reg = tmp; |
815 | switch(x->id()) { |
816 | case vmIntrinsics::_dexp: |
817 | if (StubRoutines::dexp() != NULL) { |
818 | __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); |
819 | } else { |
820 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); |
821 | } |
822 | break; |
823 | case vmIntrinsics::_dlog: |
824 | if (StubRoutines::dlog() != NULL) { |
825 | __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); |
826 | } else { |
827 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); |
828 | } |
829 | break; |
830 | case vmIntrinsics::_dlog10: |
831 | if (StubRoutines::dlog10() != NULL) { |
832 | __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); |
833 | } else { |
834 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); |
835 | } |
836 | break; |
837 | case vmIntrinsics::_dpow: |
838 | if (StubRoutines::dpow() != NULL) { |
839 | __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); |
840 | } else { |
841 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); |
842 | } |
843 | break; |
844 | case vmIntrinsics::_dsin: |
845 | if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) { |
846 | __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); |
847 | } else { |
848 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); |
849 | } |
850 | break; |
851 | case vmIntrinsics::_dcos: |
852 | if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) { |
853 | __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); |
854 | } else { |
855 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); |
856 | } |
857 | break; |
858 | case vmIntrinsics::_dtan: |
859 | if (StubRoutines::dtan() != NULL) { |
860 | __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); |
861 | } else { |
862 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); |
863 | } |
864 | break; |
865 | default: ShouldNotReachHere(); |
866 | } |
867 | #else |
868 | switch (x->id()) { |
869 | case vmIntrinsics::_dexp: |
870 | if (StubRoutines::dexp() != NULL) { |
871 | __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); |
872 | } else { |
873 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); |
874 | } |
875 | break; |
876 | case vmIntrinsics::_dlog: |
877 | if (StubRoutines::dlog() != NULL) { |
878 | __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); |
879 | } else { |
880 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); |
881 | } |
882 | break; |
883 | case vmIntrinsics::_dlog10: |
884 | if (StubRoutines::dlog10() != NULL) { |
885 | __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); |
886 | } else { |
887 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); |
888 | } |
889 | break; |
890 | case vmIntrinsics::_dpow: |
891 | if (StubRoutines::dpow() != NULL) { |
892 | __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); |
893 | } else { |
894 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); |
895 | } |
896 | break; |
897 | case vmIntrinsics::_dsin: |
898 | if (StubRoutines::dsin() != NULL) { |
899 | __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); |
900 | } else { |
901 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); |
902 | } |
903 | break; |
904 | case vmIntrinsics::_dcos: |
905 | if (StubRoutines::dcos() != NULL) { |
906 | __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); |
907 | } else { |
908 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); |
909 | } |
910 | break; |
911 | case vmIntrinsics::_dtan: |
912 | if (StubRoutines::dtan() != NULL) { |
913 | __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); |
914 | } else { |
915 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); |
916 | } |
917 | break; |
918 | default: ShouldNotReachHere(); |
919 | } |
920 | #endif // _LP64 |
921 | __ move(result_reg, calc_result); |
922 | } |
923 | |
924 | void LIRGenerator::do_ArrayCopy(Intrinsic* x) { |
925 | assert(x->number_of_arguments() == 5, "wrong type" ); |
926 | |
927 | // Make all state_for calls early since they can emit code |
928 | CodeEmitInfo* info = state_for(x, x->state()); |
929 | |
930 | LIRItem src(x->argument_at(0), this); |
931 | LIRItem src_pos(x->argument_at(1), this); |
932 | LIRItem dst(x->argument_at(2), this); |
933 | LIRItem dst_pos(x->argument_at(3), this); |
934 | LIRItem length(x->argument_at(4), this); |
935 | |
936 | // operands for arraycopy must use fixed registers, otherwise |
937 | // LinearScan will fail allocation (because arraycopy always needs a |
938 | // call) |
939 | |
940 | #ifndef _LP64 |
941 | src.load_item_force (FrameMap::rcx_oop_opr); |
942 | src_pos.load_item_force (FrameMap::rdx_opr); |
943 | dst.load_item_force (FrameMap::rax_oop_opr); |
944 | dst_pos.load_item_force (FrameMap::rbx_opr); |
945 | length.load_item_force (FrameMap::rdi_opr); |
946 | LIR_Opr tmp = (FrameMap::rsi_opr); |
947 | #else |
948 | |
949 | // The java calling convention will give us enough registers |
950 | // so that on the stub side the args will be perfect already. |
951 | // On the other slow/special case side we call C and the arg |
952 | // positions are not similar enough to pick one as the best. |
953 | // Also because the java calling convention is a "shifted" version |
954 | // of the C convention we can process the java args trivially into C |
955 | // args without worry of overwriting during the xfer |
956 | |
957 | src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); |
958 | src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); |
959 | dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); |
960 | dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); |
961 | length.load_item_force (FrameMap::as_opr(j_rarg4)); |
962 | |
963 | LIR_Opr tmp = FrameMap::as_opr(j_rarg5); |
964 | #endif // LP64 |
965 | |
966 | set_no_result(x); |
967 | |
968 | int flags; |
969 | ciArrayKlass* expected_type; |
970 | arraycopy_helper(x, &flags, &expected_type); |
971 | |
972 | __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint |
973 | } |
974 | |
975 | void LIRGenerator::do_update_CRC32(Intrinsic* x) { |
976 | assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support" ); |
977 | // Make all state_for calls early since they can emit code |
978 | LIR_Opr result = rlock_result(x); |
979 | int flags = 0; |
980 | switch (x->id()) { |
981 | case vmIntrinsics::_updateCRC32: { |
982 | LIRItem crc(x->argument_at(0), this); |
983 | LIRItem val(x->argument_at(1), this); |
984 | // val is destroyed by update_crc32 |
985 | val.set_destroys_register(); |
986 | crc.load_item(); |
987 | val.load_item(); |
988 | __ update_crc32(crc.result(), val.result(), result); |
989 | break; |
990 | } |
991 | case vmIntrinsics::_updateBytesCRC32: |
992 | case vmIntrinsics::_updateByteBufferCRC32: { |
993 | bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); |
994 | |
995 | LIRItem crc(x->argument_at(0), this); |
996 | LIRItem buf(x->argument_at(1), this); |
997 | LIRItem off(x->argument_at(2), this); |
998 | LIRItem len(x->argument_at(3), this); |
999 | buf.load_item(); |
1000 | off.load_nonconstant(); |
1001 | |
1002 | LIR_Opr index = off.result(); |
1003 | int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; |
1004 | if(off.result()->is_constant()) { |
1005 | index = LIR_OprFact::illegalOpr; |
1006 | offset += off.result()->as_jint(); |
1007 | } |
1008 | LIR_Opr base_op = buf.result(); |
1009 | |
1010 | #ifndef _LP64 |
1011 | if (!is_updateBytes) { // long b raw address |
1012 | base_op = new_register(T_INT); |
1013 | __ convert(Bytecodes::_l2i, buf.result(), base_op); |
1014 | } |
1015 | #else |
1016 | if (index->is_valid()) { |
1017 | LIR_Opr tmp = new_register(T_LONG); |
1018 | __ convert(Bytecodes::_i2l, index, tmp); |
1019 | index = tmp; |
1020 | } |
1021 | #endif |
1022 | |
1023 | if (is_updateBytes) { |
1024 | base_op = access_resolve(IS_NOT_NULL | ACCESS_READ, base_op); |
1025 | } |
1026 | |
1027 | LIR_Address* a = new LIR_Address(base_op, |
1028 | index, |
1029 | offset, |
1030 | T_BYTE); |
1031 | BasicTypeList signature(3); |
1032 | signature.append(T_INT); |
1033 | signature.append(T_ADDRESS); |
1034 | signature.append(T_INT); |
1035 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
1036 | const LIR_Opr result_reg = result_register_for(x->type()); |
1037 | |
1038 | LIR_Opr addr = new_pointer_register(); |
1039 | __ leal(LIR_OprFact::address(a), addr); |
1040 | |
1041 | crc.load_item_force(cc->at(0)); |
1042 | __ move(addr, cc->at(1)); |
1043 | len.load_item_force(cc->at(2)); |
1044 | |
1045 | __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); |
1046 | __ move(result_reg, result); |
1047 | |
1048 | break; |
1049 | } |
1050 | default: { |
1051 | ShouldNotReachHere(); |
1052 | } |
1053 | } |
1054 | } |
1055 | |
1056 | void LIRGenerator::do_update_CRC32C(Intrinsic* x) { |
1057 | Unimplemented(); |
1058 | } |
1059 | |
1060 | void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { |
1061 | assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support" ); |
1062 | |
1063 | // Make all state_for calls early since they can emit code |
1064 | LIR_Opr result = rlock_result(x); |
1065 | |
1066 | LIRItem a(x->argument_at(0), this); // Object |
1067 | LIRItem aOffset(x->argument_at(1), this); // long |
1068 | LIRItem b(x->argument_at(2), this); // Object |
1069 | LIRItem bOffset(x->argument_at(3), this); // long |
1070 | LIRItem length(x->argument_at(4), this); // int |
1071 | LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int |
1072 | |
1073 | a.load_item(); |
1074 | aOffset.load_nonconstant(); |
1075 | b.load_item(); |
1076 | bOffset.load_nonconstant(); |
1077 | |
1078 | long constant_aOffset = 0; |
1079 | LIR_Opr result_aOffset = aOffset.result(); |
1080 | if (result_aOffset->is_constant()) { |
1081 | constant_aOffset = result_aOffset->as_jlong(); |
1082 | result_aOffset = LIR_OprFact::illegalOpr; |
1083 | } |
1084 | LIR_Opr result_a = access_resolve(ACCESS_READ, a.result()); |
1085 | |
1086 | long constant_bOffset = 0; |
1087 | LIR_Opr result_bOffset = bOffset.result(); |
1088 | if (result_bOffset->is_constant()) { |
1089 | constant_bOffset = result_bOffset->as_jlong(); |
1090 | result_bOffset = LIR_OprFact::illegalOpr; |
1091 | } |
1092 | LIR_Opr result_b = access_resolve(ACCESS_READ, b.result()); |
1093 | |
1094 | #ifndef _LP64 |
1095 | result_a = new_register(T_INT); |
1096 | __ convert(Bytecodes::_l2i, a.result(), result_a); |
1097 | result_b = new_register(T_INT); |
1098 | __ convert(Bytecodes::_l2i, b.result(), result_b); |
1099 | #endif |
1100 | |
1101 | |
1102 | LIR_Address* addr_a = new LIR_Address(result_a, |
1103 | result_aOffset, |
1104 | constant_aOffset, |
1105 | T_BYTE); |
1106 | |
1107 | LIR_Address* addr_b = new LIR_Address(result_b, |
1108 | result_bOffset, |
1109 | constant_bOffset, |
1110 | T_BYTE); |
1111 | |
1112 | BasicTypeList signature(4); |
1113 | signature.append(T_ADDRESS); |
1114 | signature.append(T_ADDRESS); |
1115 | signature.append(T_INT); |
1116 | signature.append(T_INT); |
1117 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
1118 | const LIR_Opr result_reg = result_register_for(x->type()); |
1119 | |
1120 | LIR_Opr ptr_addr_a = new_pointer_register(); |
1121 | __ leal(LIR_OprFact::address(addr_a), ptr_addr_a); |
1122 | |
1123 | LIR_Opr ptr_addr_b = new_pointer_register(); |
1124 | __ leal(LIR_OprFact::address(addr_b), ptr_addr_b); |
1125 | |
1126 | __ move(ptr_addr_a, cc->at(0)); |
1127 | __ move(ptr_addr_b, cc->at(1)); |
1128 | length.load_item_force(cc->at(2)); |
1129 | log2ArrayIndexScale.load_item_force(cc->at(3)); |
1130 | |
1131 | __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args()); |
1132 | __ move(result_reg, result); |
1133 | } |
1134 | |
1135 | // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f |
1136 | // _i2b, _i2c, _i2s |
1137 | LIR_Opr fixed_register_for(BasicType type) { |
1138 | switch (type) { |
1139 | case T_FLOAT: return FrameMap::fpu0_float_opr; |
1140 | case T_DOUBLE: return FrameMap::fpu0_double_opr; |
1141 | case T_INT: return FrameMap::rax_opr; |
1142 | case T_LONG: return FrameMap::long0_opr; |
1143 | default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; |
1144 | } |
1145 | } |
1146 | |
1147 | void LIRGenerator::do_Convert(Convert* x) { |
1148 | // flags that vary for the different operations and different SSE-settings |
1149 | bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; |
1150 | |
1151 | switch (x->op()) { |
1152 | case Bytecodes::_i2l: // fall through |
1153 | case Bytecodes::_l2i: // fall through |
1154 | case Bytecodes::_i2b: // fall through |
1155 | case Bytecodes::_i2c: // fall through |
1156 | case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; |
1157 | |
1158 | case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; |
1159 | case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; |
1160 | case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; |
1161 | case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; |
1162 | case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; |
1163 | case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; |
1164 | case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; |
1165 | case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; |
1166 | case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; |
1167 | case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; |
1168 | default: ShouldNotReachHere(); |
1169 | } |
1170 | |
1171 | LIRItem value(x->value(), this); |
1172 | value.load_item(); |
1173 | LIR_Opr input = value.result(); |
1174 | LIR_Opr result = rlock(x); |
1175 | |
1176 | // arguments of lir_convert |
1177 | LIR_Opr conv_input = input; |
1178 | LIR_Opr conv_result = result; |
1179 | ConversionStub* stub = NULL; |
1180 | |
1181 | if (fixed_input) { |
1182 | conv_input = fixed_register_for(input->type()); |
1183 | __ move(input, conv_input); |
1184 | } |
1185 | |
1186 | assert(fixed_result == false || round_result == false, "cannot set both" ); |
1187 | if (fixed_result) { |
1188 | conv_result = fixed_register_for(result->type()); |
1189 | } else if (round_result) { |
1190 | result = new_register(result->type()); |
1191 | set_vreg_flag(result, must_start_in_memory); |
1192 | } |
1193 | |
1194 | if (needs_stub) { |
1195 | stub = new ConversionStub(x->op(), conv_input, conv_result); |
1196 | } |
1197 | |
1198 | __ convert(x->op(), conv_input, conv_result, stub); |
1199 | |
1200 | if (result != conv_result) { |
1201 | __ move(conv_result, result); |
1202 | } |
1203 | |
1204 | assert(result->is_virtual(), "result must be virtual register" ); |
1205 | set_result(x, result); |
1206 | } |
1207 | |
1208 | |
1209 | void LIRGenerator::do_NewInstance(NewInstance* x) { |
1210 | print_if_not_loaded(x); |
1211 | |
1212 | CodeEmitInfo* info = state_for(x, x->state()); |
1213 | LIR_Opr reg = result_register_for(x->type()); |
1214 | new_instance(reg, x->klass(), x->is_unresolved(), |
1215 | FrameMap::rcx_oop_opr, |
1216 | FrameMap::rdi_oop_opr, |
1217 | FrameMap::rsi_oop_opr, |
1218 | LIR_OprFact::illegalOpr, |
1219 | FrameMap::rdx_metadata_opr, info); |
1220 | LIR_Opr result = rlock_result(x); |
1221 | __ move(reg, result); |
1222 | } |
1223 | |
1224 | |
1225 | void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { |
1226 | CodeEmitInfo* info = state_for(x, x->state()); |
1227 | |
1228 | LIRItem length(x->length(), this); |
1229 | length.load_item_force(FrameMap::rbx_opr); |
1230 | |
1231 | LIR_Opr reg = result_register_for(x->type()); |
1232 | LIR_Opr tmp1 = FrameMap::rcx_oop_opr; |
1233 | LIR_Opr tmp2 = FrameMap::rsi_oop_opr; |
1234 | LIR_Opr tmp3 = FrameMap::rdi_oop_opr; |
1235 | LIR_Opr tmp4 = reg; |
1236 | LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; |
1237 | LIR_Opr len = length.result(); |
1238 | BasicType elem_type = x->elt_type(); |
1239 | |
1240 | __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); |
1241 | |
1242 | CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); |
1243 | __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); |
1244 | |
1245 | LIR_Opr result = rlock_result(x); |
1246 | __ move(reg, result); |
1247 | } |
1248 | |
1249 | |
1250 | void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { |
1251 | LIRItem length(x->length(), this); |
1252 | // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction |
1253 | // and therefore provide the state before the parameters have been consumed |
1254 | CodeEmitInfo* patching_info = NULL; |
1255 | if (!x->klass()->is_loaded() || PatchALot) { |
1256 | patching_info = state_for(x, x->state_before()); |
1257 | } |
1258 | |
1259 | CodeEmitInfo* info = state_for(x, x->state()); |
1260 | |
1261 | const LIR_Opr reg = result_register_for(x->type()); |
1262 | LIR_Opr tmp1 = FrameMap::rcx_oop_opr; |
1263 | LIR_Opr tmp2 = FrameMap::rsi_oop_opr; |
1264 | LIR_Opr tmp3 = FrameMap::rdi_oop_opr; |
1265 | LIR_Opr tmp4 = reg; |
1266 | LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; |
1267 | |
1268 | length.load_item_force(FrameMap::rbx_opr); |
1269 | LIR_Opr len = length.result(); |
1270 | |
1271 | CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); |
1272 | ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); |
1273 | if (obj == ciEnv::unloaded_ciobjarrayklass()) { |
1274 | BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error" ); |
1275 | } |
1276 | klass2reg_with_patching(klass_reg, obj, patching_info); |
1277 | __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); |
1278 | |
1279 | LIR_Opr result = rlock_result(x); |
1280 | __ move(reg, result); |
1281 | } |
1282 | |
1283 | |
1284 | void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { |
1285 | Values* dims = x->dims(); |
1286 | int i = dims->length(); |
1287 | LIRItemList* items = new LIRItemList(i, i, NULL); |
1288 | while (i-- > 0) { |
1289 | LIRItem* size = new LIRItem(dims->at(i), this); |
1290 | items->at_put(i, size); |
1291 | } |
1292 | |
1293 | // Evaluate state_for early since it may emit code. |
1294 | CodeEmitInfo* patching_info = NULL; |
1295 | if (!x->klass()->is_loaded() || PatchALot) { |
1296 | patching_info = state_for(x, x->state_before()); |
1297 | |
1298 | // Cannot re-use same xhandlers for multiple CodeEmitInfos, so |
1299 | // clone all handlers (NOTE: Usually this is handled transparently |
1300 | // by the CodeEmitInfo cloning logic in CodeStub constructors but |
1301 | // is done explicitly here because a stub isn't being used). |
1302 | x->set_exception_handlers(new XHandlers(x->exception_handlers())); |
1303 | } |
1304 | CodeEmitInfo* info = state_for(x, x->state()); |
1305 | |
1306 | i = dims->length(); |
1307 | while (i-- > 0) { |
1308 | LIRItem* size = items->at(i); |
1309 | size->load_nonconstant(); |
1310 | |
1311 | store_stack_parameter(size->result(), in_ByteSize(i*4)); |
1312 | } |
1313 | |
1314 | LIR_Opr klass_reg = FrameMap::rax_metadata_opr; |
1315 | klass2reg_with_patching(klass_reg, x->klass(), patching_info); |
1316 | |
1317 | LIR_Opr rank = FrameMap::rbx_opr; |
1318 | __ move(LIR_OprFact::intConst(x->rank()), rank); |
1319 | LIR_Opr varargs = FrameMap::rcx_opr; |
1320 | __ move(FrameMap::rsp_opr, varargs); |
1321 | LIR_OprList* args = new LIR_OprList(3); |
1322 | args->append(klass_reg); |
1323 | args->append(rank); |
1324 | args->append(varargs); |
1325 | LIR_Opr reg = result_register_for(x->type()); |
1326 | __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), |
1327 | LIR_OprFact::illegalOpr, |
1328 | reg, args, info); |
1329 | |
1330 | LIR_Opr result = rlock_result(x); |
1331 | __ move(reg, result); |
1332 | } |
1333 | |
1334 | |
1335 | void LIRGenerator::do_BlockBegin(BlockBegin* x) { |
1336 | // nothing to do for now |
1337 | } |
1338 | |
1339 | |
1340 | void LIRGenerator::do_CheckCast(CheckCast* x) { |
1341 | LIRItem obj(x->obj(), this); |
1342 | |
1343 | CodeEmitInfo* patching_info = NULL; |
1344 | if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { |
1345 | // must do this before locking the destination register as an oop register, |
1346 | // and before the obj is loaded (the latter is for deoptimization) |
1347 | patching_info = state_for(x, x->state_before()); |
1348 | } |
1349 | obj.load_item(); |
1350 | |
1351 | // info for exceptions |
1352 | CodeEmitInfo* info_for_exception = |
1353 | (x->needs_exception_state() ? state_for(x) : |
1354 | state_for(x, x->state_before(), true /*ignore_xhandler*/)); |
1355 | |
1356 | CodeStub* stub; |
1357 | if (x->is_incompatible_class_change_check()) { |
1358 | assert(patching_info == NULL, "can't patch this" ); |
1359 | stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); |
1360 | } else if (x->is_invokespecial_receiver_check()) { |
1361 | assert(patching_info == NULL, "can't patch this" ); |
1362 | stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); |
1363 | } else { |
1364 | stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); |
1365 | } |
1366 | LIR_Opr reg = rlock_result(x); |
1367 | LIR_Opr tmp3 = LIR_OprFact::illegalOpr; |
1368 | if (!x->klass()->is_loaded() || UseCompressedClassPointers) { |
1369 | tmp3 = new_register(objectType); |
1370 | } |
1371 | __ checkcast(reg, obj.result(), x->klass(), |
1372 | new_register(objectType), new_register(objectType), tmp3, |
1373 | x->direct_compare(), info_for_exception, patching_info, stub, |
1374 | x->profiled_method(), x->profiled_bci()); |
1375 | } |
1376 | |
1377 | |
1378 | void LIRGenerator::do_InstanceOf(InstanceOf* x) { |
1379 | LIRItem obj(x->obj(), this); |
1380 | |
1381 | // result and test object may not be in same register |
1382 | LIR_Opr reg = rlock_result(x); |
1383 | CodeEmitInfo* patching_info = NULL; |
1384 | if ((!x->klass()->is_loaded() || PatchALot)) { |
1385 | // must do this before locking the destination register as an oop register |
1386 | patching_info = state_for(x, x->state_before()); |
1387 | } |
1388 | obj.load_item(); |
1389 | LIR_Opr tmp3 = LIR_OprFact::illegalOpr; |
1390 | if (!x->klass()->is_loaded() || UseCompressedClassPointers) { |
1391 | tmp3 = new_register(objectType); |
1392 | } |
1393 | __ instanceof(reg, obj.result(), x->klass(), |
1394 | new_register(objectType), new_register(objectType), tmp3, |
1395 | x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); |
1396 | } |
1397 | |
1398 | |
1399 | void LIRGenerator::do_If(If* x) { |
1400 | assert(x->number_of_sux() == 2, "inconsistency" ); |
1401 | ValueTag tag = x->x()->type()->tag(); |
1402 | bool is_safepoint = x->is_safepoint(); |
1403 | |
1404 | If::Condition cond = x->cond(); |
1405 | |
1406 | LIRItem xitem(x->x(), this); |
1407 | LIRItem yitem(x->y(), this); |
1408 | LIRItem* xin = &xitem; |
1409 | LIRItem* yin = &yitem; |
1410 | |
1411 | if (tag == longTag) { |
1412 | // for longs, only conditions "eql", "neq", "lss", "geq" are valid; |
1413 | // mirror for other conditions |
1414 | if (cond == If::gtr || cond == If::leq) { |
1415 | cond = Instruction::mirror(cond); |
1416 | xin = &yitem; |
1417 | yin = &xitem; |
1418 | } |
1419 | xin->set_destroys_register(); |
1420 | } |
1421 | xin->load_item(); |
1422 | if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { |
1423 | // inline long zero |
1424 | yin->dont_load_item(); |
1425 | } else if (tag == longTag || tag == floatTag || tag == doubleTag) { |
1426 | // longs cannot handle constants at right side |
1427 | yin->load_item(); |
1428 | } else { |
1429 | yin->dont_load_item(); |
1430 | } |
1431 | |
1432 | LIR_Opr left = xin->result(); |
1433 | LIR_Opr right = yin->result(); |
1434 | |
1435 | set_no_result(x); |
1436 | |
1437 | // add safepoint before generating condition code so it can be recomputed |
1438 | if (x->is_safepoint()) { |
1439 | // increment backedge counter if needed |
1440 | increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), |
1441 | x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); |
1442 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
1443 | } |
1444 | |
1445 | __ cmp(lir_cond(cond), left, right); |
1446 | // Generate branch profiling. Profiling code doesn't kill flags. |
1447 | profile_branch(x, cond); |
1448 | move_to_phi(x->state()); |
1449 | if (x->x()->type()->is_float_kind()) { |
1450 | __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); |
1451 | } else { |
1452 | __ branch(lir_cond(cond), right->type(), x->tsux()); |
1453 | } |
1454 | assert(x->default_sux() == x->fsux(), "wrong destination above" ); |
1455 | __ jump(x->default_sux()); |
1456 | } |
1457 | |
1458 | |
1459 | LIR_Opr LIRGenerator::getThreadPointer() { |
1460 | #ifdef _LP64 |
1461 | return FrameMap::as_pointer_opr(r15_thread); |
1462 | #else |
1463 | LIR_Opr result = new_register(T_INT); |
1464 | __ get_thread(result); |
1465 | return result; |
1466 | #endif // |
1467 | } |
1468 | |
1469 | void LIRGenerator::trace_block_entry(BlockBegin* block) { |
1470 | store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); |
1471 | LIR_OprList* args = new LIR_OprList(); |
1472 | address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); |
1473 | __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); |
1474 | } |
1475 | |
1476 | |
1477 | void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, |
1478 | CodeEmitInfo* info) { |
1479 | if (address->type() == T_LONG) { |
1480 | address = new LIR_Address(address->base(), |
1481 | address->index(), address->scale(), |
1482 | address->disp(), T_DOUBLE); |
1483 | // Transfer the value atomically by using FP moves. This means |
1484 | // the value has to be moved between CPU and FPU registers. It |
1485 | // always has to be moved through spill slot since there's no |
1486 | // quick way to pack the value into an SSE register. |
1487 | LIR_Opr temp_double = new_register(T_DOUBLE); |
1488 | LIR_Opr spill = new_register(T_LONG); |
1489 | set_vreg_flag(spill, must_start_in_memory); |
1490 | __ move(value, spill); |
1491 | __ volatile_move(spill, temp_double, T_LONG); |
1492 | __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); |
1493 | } else { |
1494 | __ store(value, address, info); |
1495 | } |
1496 | } |
1497 | |
1498 | void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, |
1499 | CodeEmitInfo* info) { |
1500 | if (address->type() == T_LONG) { |
1501 | address = new LIR_Address(address->base(), |
1502 | address->index(), address->scale(), |
1503 | address->disp(), T_DOUBLE); |
1504 | // Transfer the value atomically by using FP moves. This means |
1505 | // the value has to be moved between CPU and FPU registers. In |
1506 | // SSE0 and SSE1 mode it has to be moved through spill slot but in |
1507 | // SSE2+ mode it can be moved directly. |
1508 | LIR_Opr temp_double = new_register(T_DOUBLE); |
1509 | __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); |
1510 | __ volatile_move(temp_double, result, T_LONG); |
1511 | if (UseSSE < 2) { |
1512 | // no spill slot needed in SSE2 mode because xmm->cpu register move is possible |
1513 | set_vreg_flag(result, must_start_in_memory); |
1514 | } |
1515 | } else { |
1516 | __ load(address, result, info); |
1517 | } |
1518 | } |
1519 | |