| 1 | /* |
| 2 | * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "c1/c1_Compilation.hpp" |
| 27 | #include "c1/c1_FrameMap.hpp" |
| 28 | #include "c1/c1_Instruction.hpp" |
| 29 | #include "c1/c1_LIRAssembler.hpp" |
| 30 | #include "c1/c1_LIRGenerator.hpp" |
| 31 | #include "c1/c1_Runtime1.hpp" |
| 32 | #include "c1/c1_ValueStack.hpp" |
| 33 | #include "ci/ciArray.hpp" |
| 34 | #include "ci/ciObjArrayKlass.hpp" |
| 35 | #include "ci/ciTypeArrayKlass.hpp" |
| 36 | #include "gc/shared/c1/barrierSetC1.hpp" |
| 37 | #include "runtime/sharedRuntime.hpp" |
| 38 | #include "runtime/stubRoutines.hpp" |
| 39 | #include "vmreg_x86.inline.hpp" |
| 40 | |
| 41 | #ifdef ASSERT |
| 42 | #define __ gen()->lir(__FILE__, __LINE__)-> |
| 43 | #else |
| 44 | #define __ gen()->lir()-> |
| 45 | #endif |
| 46 | |
| 47 | // Item will be loaded into a byte register; Intel only |
| 48 | void LIRItem::load_byte_item() { |
| 49 | load_item(); |
| 50 | LIR_Opr res = result(); |
| 51 | |
| 52 | if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { |
| 53 | // make sure that it is a byte register |
| 54 | assert(!value()->type()->is_float() && !value()->type()->is_double(), |
| 55 | "can't load floats in byte register" ); |
| 56 | LIR_Opr reg = _gen->rlock_byte(T_BYTE); |
| 57 | __ move(res, reg); |
| 58 | |
| 59 | _result = reg; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | |
| 64 | void LIRItem::load_nonconstant() { |
| 65 | LIR_Opr r = value()->operand(); |
| 66 | if (r->is_constant()) { |
| 67 | _result = r; |
| 68 | } else { |
| 69 | load_item(); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | //-------------------------------------------------------------- |
| 74 | // LIRGenerator |
| 75 | //-------------------------------------------------------------- |
| 76 | |
| 77 | |
| 78 | LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } |
| 79 | LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } |
| 80 | LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } |
| 81 | LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } |
| 82 | LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } |
| 83 | LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } |
| 84 | LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } |
| 85 | LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } |
| 86 | LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } |
| 87 | |
| 88 | |
| 89 | LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { |
| 90 | LIR_Opr opr; |
| 91 | switch (type->tag()) { |
| 92 | case intTag: opr = FrameMap::rax_opr; break; |
| 93 | case objectTag: opr = FrameMap::rax_oop_opr; break; |
| 94 | case longTag: opr = FrameMap::long0_opr; break; |
| 95 | case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; |
| 96 | case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; |
| 97 | |
| 98 | case addressTag: |
| 99 | default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; |
| 100 | } |
| 101 | |
| 102 | assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch" ); |
| 103 | return opr; |
| 104 | } |
| 105 | |
| 106 | |
| 107 | LIR_Opr LIRGenerator::rlock_byte(BasicType type) { |
| 108 | LIR_Opr reg = new_register(T_INT); |
| 109 | set_vreg_flag(reg, LIRGenerator::byte_reg); |
| 110 | return reg; |
| 111 | } |
| 112 | |
| 113 | |
| 114 | //--------- loading items into registers -------------------------------- |
| 115 | |
| 116 | |
| 117 | // i486 instructions can inline constants |
| 118 | bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { |
| 119 | if (type == T_SHORT || type == T_CHAR) { |
| 120 | // there is no immediate move of word values in asembler_i486.?pp |
| 121 | return false; |
| 122 | } |
| 123 | Constant* c = v->as_Constant(); |
| 124 | if (c && c->state_before() == NULL) { |
| 125 | // constants of any type can be stored directly, except for |
| 126 | // unloaded object constants. |
| 127 | return true; |
| 128 | } |
| 129 | return false; |
| 130 | } |
| 131 | |
| 132 | |
| 133 | bool LIRGenerator::can_inline_as_constant(Value v) const { |
| 134 | if (v->type()->tag() == longTag) return false; |
| 135 | return v->type()->tag() != objectTag || |
| 136 | (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); |
| 137 | } |
| 138 | |
| 139 | |
| 140 | bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { |
| 141 | if (c->type() == T_LONG) return false; |
| 142 | return c->type() != T_OBJECT || c->as_jobject() == NULL; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | LIR_Opr LIRGenerator::safepoint_poll_register() { |
| 147 | NOT_LP64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } ) |
| 148 | return LIR_OprFact::illegalOpr; |
| 149 | } |
| 150 | |
| 151 | |
| 152 | LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, |
| 153 | int shift, int disp, BasicType type) { |
| 154 | assert(base->is_register(), "must be" ); |
| 155 | if (index->is_constant()) { |
| 156 | LIR_Const *constant = index->as_constant_ptr(); |
| 157 | #ifdef _LP64 |
| 158 | jlong c; |
| 159 | if (constant->type() == T_INT) { |
| 160 | c = (jlong(index->as_jint()) << shift) + disp; |
| 161 | } else { |
| 162 | assert(constant->type() == T_LONG, "should be" ); |
| 163 | c = (index->as_jlong() << shift) + disp; |
| 164 | } |
| 165 | if ((jlong)((jint)c) == c) { |
| 166 | return new LIR_Address(base, (jint)c, type); |
| 167 | } else { |
| 168 | LIR_Opr tmp = new_register(T_LONG); |
| 169 | __ move(index, tmp); |
| 170 | return new LIR_Address(base, tmp, type); |
| 171 | } |
| 172 | #else |
| 173 | return new LIR_Address(base, |
| 174 | ((intx)(constant->as_jint()) << shift) + disp, |
| 175 | type); |
| 176 | #endif |
| 177 | } else { |
| 178 | return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | |
| 183 | LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, |
| 184 | BasicType type) { |
| 185 | int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); |
| 186 | |
| 187 | LIR_Address* addr; |
| 188 | if (index_opr->is_constant()) { |
| 189 | int elem_size = type2aelembytes(type); |
| 190 | addr = new LIR_Address(array_opr, |
| 191 | offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); |
| 192 | } else { |
| 193 | #ifdef _LP64 |
| 194 | if (index_opr->type() == T_INT) { |
| 195 | LIR_Opr tmp = new_register(T_LONG); |
| 196 | __ convert(Bytecodes::_i2l, index_opr, tmp); |
| 197 | index_opr = tmp; |
| 198 | } |
| 199 | #endif // _LP64 |
| 200 | addr = new LIR_Address(array_opr, |
| 201 | index_opr, |
| 202 | LIR_Address::scale(type), |
| 203 | offset_in_bytes, type); |
| 204 | } |
| 205 | return addr; |
| 206 | } |
| 207 | |
| 208 | |
| 209 | LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { |
| 210 | LIR_Opr r = NULL; |
| 211 | if (type == T_LONG) { |
| 212 | r = LIR_OprFact::longConst(x); |
| 213 | } else if (type == T_INT) { |
| 214 | r = LIR_OprFact::intConst(x); |
| 215 | } else { |
| 216 | ShouldNotReachHere(); |
| 217 | } |
| 218 | return r; |
| 219 | } |
| 220 | |
| 221 | void LIRGenerator::increment_counter(address counter, BasicType type, int step) { |
| 222 | LIR_Opr pointer = new_pointer_register(); |
| 223 | __ move(LIR_OprFact::intptrConst(counter), pointer); |
| 224 | LIR_Address* addr = new LIR_Address(pointer, type); |
| 225 | increment_counter(addr, step); |
| 226 | } |
| 227 | |
| 228 | |
| 229 | void LIRGenerator::increment_counter(LIR_Address* addr, int step) { |
| 230 | __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); |
| 231 | } |
| 232 | |
| 233 | void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { |
| 234 | __ cmp_mem_int(condition, base, disp, c, info); |
| 235 | } |
| 236 | |
| 237 | |
| 238 | void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { |
| 239 | __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); |
| 240 | } |
| 241 | |
| 242 | |
| 243 | bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { |
| 244 | if (tmp->is_valid() && c > 0 && c < max_jint) { |
| 245 | if (is_power_of_2(c + 1)) { |
| 246 | __ move(left, tmp); |
| 247 | __ shift_left(left, log2_jint(c + 1), left); |
| 248 | __ sub(left, tmp, result); |
| 249 | return true; |
| 250 | } else if (is_power_of_2(c - 1)) { |
| 251 | __ move(left, tmp); |
| 252 | __ shift_left(left, log2_jint(c - 1), left); |
| 253 | __ add(left, tmp, result); |
| 254 | return true; |
| 255 | } |
| 256 | } |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | |
| 261 | void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { |
| 262 | BasicType type = item->type(); |
| 263 | __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); |
| 264 | } |
| 265 | |
| 266 | void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { |
| 267 | LIR_Opr tmp1 = new_register(objectType); |
| 268 | LIR_Opr tmp2 = new_register(objectType); |
| 269 | LIR_Opr tmp3 = new_register(objectType); |
| 270 | __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); |
| 271 | } |
| 272 | |
| 273 | //---------------------------------------------------------------------- |
| 274 | // visitor functions |
| 275 | //---------------------------------------------------------------------- |
| 276 | |
| 277 | void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { |
| 278 | assert(x->is_pinned(),"" ); |
| 279 | LIRItem obj(x->obj(), this); |
| 280 | obj.load_item(); |
| 281 | |
| 282 | set_no_result(x); |
| 283 | |
| 284 | // "lock" stores the address of the monitor stack slot, so this is not an oop |
| 285 | LIR_Opr lock = new_register(T_INT); |
| 286 | // Need a scratch register for biased locking on x86 |
| 287 | LIR_Opr scratch = LIR_OprFact::illegalOpr; |
| 288 | if (UseBiasedLocking) { |
| 289 | scratch = new_register(T_INT); |
| 290 | } |
| 291 | |
| 292 | CodeEmitInfo* info_for_exception = NULL; |
| 293 | if (x->needs_null_check()) { |
| 294 | info_for_exception = state_for(x); |
| 295 | } |
| 296 | // this CodeEmitInfo must not have the xhandlers because here the |
| 297 | // object is already locked (xhandlers expect object to be unlocked) |
| 298 | CodeEmitInfo* info = state_for(x, x->state(), true); |
| 299 | monitor_enter(obj.result(), lock, syncTempOpr(), scratch, |
| 300 | x->monitor_no(), info_for_exception, info); |
| 301 | } |
| 302 | |
| 303 | |
| 304 | void LIRGenerator::do_MonitorExit(MonitorExit* x) { |
| 305 | assert(x->is_pinned(),"" ); |
| 306 | |
| 307 | LIRItem obj(x->obj(), this); |
| 308 | obj.dont_load_item(); |
| 309 | |
| 310 | LIR_Opr lock = new_register(T_INT); |
| 311 | LIR_Opr obj_temp = new_register(T_INT); |
| 312 | set_no_result(x); |
| 313 | monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | // _ineg, _lneg, _fneg, _dneg |
| 318 | void LIRGenerator::do_NegateOp(NegateOp* x) { |
| 319 | LIRItem value(x->x(), this); |
| 320 | value.set_destroys_register(); |
| 321 | value.load_item(); |
| 322 | LIR_Opr reg = rlock(x); |
| 323 | |
| 324 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
| 325 | #ifdef _LP64 |
| 326 | if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { |
| 327 | if (x->type()->tag() == doubleTag) { |
| 328 | tmp = new_register(T_DOUBLE); |
| 329 | __ move(LIR_OprFact::doubleConst(-0.0), tmp); |
| 330 | } |
| 331 | else if (x->type()->tag() == floatTag) { |
| 332 | tmp = new_register(T_FLOAT); |
| 333 | __ move(LIR_OprFact::floatConst(-0.0), tmp); |
| 334 | } |
| 335 | } |
| 336 | #endif |
| 337 | __ negate(value.result(), reg, tmp); |
| 338 | |
| 339 | set_result(x, round_item(reg)); |
| 340 | } |
| 341 | |
| 342 | |
| 343 | // for _fadd, _fmul, _fsub, _fdiv, _frem |
| 344 | // _dadd, _dmul, _dsub, _ddiv, _drem |
| 345 | void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { |
| 346 | LIRItem left(x->x(), this); |
| 347 | LIRItem right(x->y(), this); |
| 348 | LIRItem* left_arg = &left; |
| 349 | LIRItem* right_arg = &right; |
| 350 | assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands" ); |
| 351 | bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); |
| 352 | if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { |
| 353 | left.load_item(); |
| 354 | } else { |
| 355 | left.dont_load_item(); |
| 356 | } |
| 357 | |
| 358 | // do not load right operand if it is a constant. only 0 and 1 are |
| 359 | // loaded because there are special instructions for loading them |
| 360 | // without memory access (not needed for SSE2 instructions) |
| 361 | bool must_load_right = false; |
| 362 | if (right.is_constant()) { |
| 363 | LIR_Const* c = right.result()->as_constant_ptr(); |
| 364 | assert(c != NULL, "invalid constant" ); |
| 365 | assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type" ); |
| 366 | |
| 367 | if (c->type() == T_FLOAT) { |
| 368 | must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); |
| 369 | } else { |
| 370 | must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | if (must_load_both) { |
| 375 | // frem and drem destroy also right operand, so move it to a new register |
| 376 | right.set_destroys_register(); |
| 377 | right.load_item(); |
| 378 | } else if (right.is_register() || must_load_right) { |
| 379 | right.load_item(); |
| 380 | } else { |
| 381 | right.dont_load_item(); |
| 382 | } |
| 383 | LIR_Opr reg = rlock(x); |
| 384 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
| 385 | if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { |
| 386 | tmp = new_register(T_DOUBLE); |
| 387 | } |
| 388 | |
| 389 | if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { |
| 390 | // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots |
| 391 | LIR_Opr fpu0, fpu1; |
| 392 | if (x->op() == Bytecodes::_frem) { |
| 393 | fpu0 = LIR_OprFact::single_fpu(0); |
| 394 | fpu1 = LIR_OprFact::single_fpu(1); |
| 395 | } else { |
| 396 | fpu0 = LIR_OprFact::double_fpu(0); |
| 397 | fpu1 = LIR_OprFact::double_fpu(1); |
| 398 | } |
| 399 | __ move(right.result(), fpu1); // order of left and right operand is important! |
| 400 | __ move(left.result(), fpu0); |
| 401 | __ rem (fpu0, fpu1, fpu0); |
| 402 | __ move(fpu0, reg); |
| 403 | |
| 404 | } else { |
| 405 | arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); |
| 406 | } |
| 407 | |
| 408 | set_result(x, round_item(reg)); |
| 409 | } |
| 410 | |
| 411 | |
| 412 | // for _ladd, _lmul, _lsub, _ldiv, _lrem |
| 413 | void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { |
| 414 | if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { |
| 415 | // long division is implemented as a direct call into the runtime |
| 416 | LIRItem left(x->x(), this); |
| 417 | LIRItem right(x->y(), this); |
| 418 | |
| 419 | // the check for division by zero destroys the right operand |
| 420 | right.set_destroys_register(); |
| 421 | |
| 422 | BasicTypeList signature(2); |
| 423 | signature.append(T_LONG); |
| 424 | signature.append(T_LONG); |
| 425 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
| 426 | |
| 427 | // check for division by zero (destroys registers of right operand!) |
| 428 | CodeEmitInfo* info = state_for(x); |
| 429 | |
| 430 | const LIR_Opr result_reg = result_register_for(x->type()); |
| 431 | left.load_item_force(cc->at(1)); |
| 432 | right.load_item(); |
| 433 | |
| 434 | __ move(right.result(), cc->at(0)); |
| 435 | |
| 436 | __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); |
| 437 | __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); |
| 438 | |
| 439 | address entry = NULL; |
| 440 | switch (x->op()) { |
| 441 | case Bytecodes::_lrem: |
| 442 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); |
| 443 | break; // check if dividend is 0 is done elsewhere |
| 444 | case Bytecodes::_ldiv: |
| 445 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); |
| 446 | break; // check if dividend is 0 is done elsewhere |
| 447 | case Bytecodes::_lmul: |
| 448 | entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); |
| 449 | break; |
| 450 | default: |
| 451 | ShouldNotReachHere(); |
| 452 | } |
| 453 | |
| 454 | LIR_Opr result = rlock_result(x); |
| 455 | __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); |
| 456 | __ move(result_reg, result); |
| 457 | } else if (x->op() == Bytecodes::_lmul) { |
| 458 | // missing test if instr is commutative and if we should swap |
| 459 | LIRItem left(x->x(), this); |
| 460 | LIRItem right(x->y(), this); |
| 461 | |
| 462 | // right register is destroyed by the long mul, so it must be |
| 463 | // copied to a new register. |
| 464 | right.set_destroys_register(); |
| 465 | |
| 466 | left.load_item(); |
| 467 | right.load_item(); |
| 468 | |
| 469 | LIR_Opr reg = FrameMap::long0_opr; |
| 470 | arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); |
| 471 | LIR_Opr result = rlock_result(x); |
| 472 | __ move(reg, result); |
| 473 | } else { |
| 474 | // missing test if instr is commutative and if we should swap |
| 475 | LIRItem left(x->x(), this); |
| 476 | LIRItem right(x->y(), this); |
| 477 | |
| 478 | left.load_item(); |
| 479 | // don't load constants to save register |
| 480 | right.load_nonconstant(); |
| 481 | rlock_result(x); |
| 482 | arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | |
| 487 | |
| 488 | // for: _iadd, _imul, _isub, _idiv, _irem |
| 489 | void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { |
| 490 | if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { |
| 491 | // The requirements for division and modulo |
| 492 | // input : rax,: dividend min_int |
| 493 | // reg: divisor (may not be rax,/rdx) -1 |
| 494 | // |
| 495 | // output: rax,: quotient (= rax, idiv reg) min_int |
| 496 | // rdx: remainder (= rax, irem reg) 0 |
| 497 | |
| 498 | // rax, and rdx will be destroyed |
| 499 | |
| 500 | // Note: does this invalidate the spec ??? |
| 501 | LIRItem right(x->y(), this); |
| 502 | LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid |
| 503 | |
| 504 | // call state_for before load_item_force because state_for may |
| 505 | // force the evaluation of other instructions that are needed for |
| 506 | // correct debug info. Otherwise the live range of the fix |
| 507 | // register might be too long. |
| 508 | CodeEmitInfo* info = state_for(x); |
| 509 | |
| 510 | left.load_item_force(divInOpr()); |
| 511 | |
| 512 | right.load_item(); |
| 513 | |
| 514 | LIR_Opr result = rlock_result(x); |
| 515 | LIR_Opr result_reg; |
| 516 | if (x->op() == Bytecodes::_idiv) { |
| 517 | result_reg = divOutOpr(); |
| 518 | } else { |
| 519 | result_reg = remOutOpr(); |
| 520 | } |
| 521 | |
| 522 | if (!ImplicitDiv0Checks) { |
| 523 | __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); |
| 524 | __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); |
| 525 | // Idiv/irem cannot trap (passing info would generate an assertion). |
| 526 | info = NULL; |
| 527 | } |
| 528 | LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation |
| 529 | if (x->op() == Bytecodes::_irem) { |
| 530 | __ irem(left.result(), right.result(), result_reg, tmp, info); |
| 531 | } else if (x->op() == Bytecodes::_idiv) { |
| 532 | __ idiv(left.result(), right.result(), result_reg, tmp, info); |
| 533 | } else { |
| 534 | ShouldNotReachHere(); |
| 535 | } |
| 536 | |
| 537 | __ move(result_reg, result); |
| 538 | } else { |
| 539 | // missing test if instr is commutative and if we should swap |
| 540 | LIRItem left(x->x(), this); |
| 541 | LIRItem right(x->y(), this); |
| 542 | LIRItem* left_arg = &left; |
| 543 | LIRItem* right_arg = &right; |
| 544 | if (x->is_commutative() && left.is_stack() && right.is_register()) { |
| 545 | // swap them if left is real stack (or cached) and right is real register(not cached) |
| 546 | left_arg = &right; |
| 547 | right_arg = &left; |
| 548 | } |
| 549 | |
| 550 | left_arg->load_item(); |
| 551 | |
| 552 | // do not need to load right, as we can handle stack and constants |
| 553 | if (x->op() == Bytecodes::_imul ) { |
| 554 | // check if we can use shift instead |
| 555 | bool use_constant = false; |
| 556 | bool use_tmp = false; |
| 557 | if (right_arg->is_constant()) { |
| 558 | jint iconst = right_arg->get_jint_constant(); |
| 559 | if (iconst > 0 && iconst < max_jint) { |
| 560 | if (is_power_of_2(iconst)) { |
| 561 | use_constant = true; |
| 562 | } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { |
| 563 | use_constant = true; |
| 564 | use_tmp = true; |
| 565 | } |
| 566 | } |
| 567 | } |
| 568 | if (use_constant) { |
| 569 | right_arg->dont_load_item(); |
| 570 | } else { |
| 571 | right_arg->load_item(); |
| 572 | } |
| 573 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
| 574 | if (use_tmp) { |
| 575 | tmp = new_register(T_INT); |
| 576 | } |
| 577 | rlock_result(x); |
| 578 | |
| 579 | arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); |
| 580 | } else { |
| 581 | right_arg->dont_load_item(); |
| 582 | rlock_result(x); |
| 583 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
| 584 | arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | |
| 590 | void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { |
| 591 | // when an operand with use count 1 is the left operand, then it is |
| 592 | // likely that no move for 2-operand-LIR-form is necessary |
| 593 | if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { |
| 594 | x->swap_operands(); |
| 595 | } |
| 596 | |
| 597 | ValueTag tag = x->type()->tag(); |
| 598 | assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters" ); |
| 599 | switch (tag) { |
| 600 | case floatTag: |
| 601 | case doubleTag: do_ArithmeticOp_FPU(x); return; |
| 602 | case longTag: do_ArithmeticOp_Long(x); return; |
| 603 | case intTag: do_ArithmeticOp_Int(x); return; |
| 604 | default: ShouldNotReachHere(); return; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | |
| 609 | // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr |
| 610 | void LIRGenerator::do_ShiftOp(ShiftOp* x) { |
| 611 | // count must always be in rcx |
| 612 | LIRItem value(x->x(), this); |
| 613 | LIRItem count(x->y(), this); |
| 614 | |
| 615 | ValueTag elemType = x->type()->tag(); |
| 616 | bool must_load_count = !count.is_constant() || elemType == longTag; |
| 617 | if (must_load_count) { |
| 618 | // count for long must be in register |
| 619 | count.load_item_force(shiftCountOpr()); |
| 620 | } else { |
| 621 | count.dont_load_item(); |
| 622 | } |
| 623 | value.load_item(); |
| 624 | LIR_Opr reg = rlock_result(x); |
| 625 | |
| 626 | shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); |
| 627 | } |
| 628 | |
| 629 | |
| 630 | // _iand, _land, _ior, _lor, _ixor, _lxor |
| 631 | void LIRGenerator::do_LogicOp(LogicOp* x) { |
| 632 | // when an operand with use count 1 is the left operand, then it is |
| 633 | // likely that no move for 2-operand-LIR-form is necessary |
| 634 | if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { |
| 635 | x->swap_operands(); |
| 636 | } |
| 637 | |
| 638 | LIRItem left(x->x(), this); |
| 639 | LIRItem right(x->y(), this); |
| 640 | |
| 641 | left.load_item(); |
| 642 | right.load_nonconstant(); |
| 643 | LIR_Opr reg = rlock_result(x); |
| 644 | |
| 645 | logic_op(x->op(), reg, left.result(), right.result()); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | |
| 650 | // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg |
| 651 | void LIRGenerator::do_CompareOp(CompareOp* x) { |
| 652 | LIRItem left(x->x(), this); |
| 653 | LIRItem right(x->y(), this); |
| 654 | ValueTag tag = x->x()->type()->tag(); |
| 655 | if (tag == longTag) { |
| 656 | left.set_destroys_register(); |
| 657 | } |
| 658 | left.load_item(); |
| 659 | right.load_item(); |
| 660 | LIR_Opr reg = rlock_result(x); |
| 661 | |
| 662 | if (x->x()->type()->is_float_kind()) { |
| 663 | Bytecodes::Code code = x->op(); |
| 664 | __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); |
| 665 | } else if (x->x()->type()->tag() == longTag) { |
| 666 | __ lcmp2int(left.result(), right.result(), reg); |
| 667 | } else { |
| 668 | Unimplemented(); |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { |
| 673 | LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience |
| 674 | if (type == T_OBJECT || type == T_ARRAY) { |
| 675 | cmp_value.load_item_force(FrameMap::rax_oop_opr); |
| 676 | new_value.load_item(); |
| 677 | __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
| 678 | } else if (type == T_INT) { |
| 679 | cmp_value.load_item_force(FrameMap::rax_opr); |
| 680 | new_value.load_item(); |
| 681 | __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
| 682 | } else if (type == T_LONG) { |
| 683 | cmp_value.load_item_force(FrameMap::long0_opr); |
| 684 | new_value.load_item_force(FrameMap::long1_opr); |
| 685 | __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); |
| 686 | } else { |
| 687 | Unimplemented(); |
| 688 | } |
| 689 | LIR_Opr result = new_register(T_INT); |
| 690 | __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), |
| 691 | result, T_INT); |
| 692 | return result; |
| 693 | } |
| 694 | |
| 695 | LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { |
| 696 | bool is_oop = type == T_OBJECT || type == T_ARRAY; |
| 697 | LIR_Opr result = new_register(type); |
| 698 | value.load_item(); |
| 699 | // Because we want a 2-arg form of xchg and xadd |
| 700 | __ move(value.result(), result); |
| 701 | assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type" ); |
| 702 | __ xchg(addr, result, result, LIR_OprFact::illegalOpr); |
| 703 | return result; |
| 704 | } |
| 705 | |
| 706 | LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { |
| 707 | LIR_Opr result = new_register(type); |
| 708 | value.load_item(); |
| 709 | // Because we want a 2-arg form of xchg and xadd |
| 710 | __ move(value.result(), result); |
| 711 | assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type" ); |
| 712 | __ xadd(addr, result, result, LIR_OprFact::illegalOpr); |
| 713 | return result; |
| 714 | } |
| 715 | |
| 716 | void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { |
| 717 | assert(x->number_of_arguments() == 3, "wrong type" ); |
| 718 | assert(UseFMA, "Needs FMA instructions support." ); |
| 719 | LIRItem value(x->argument_at(0), this); |
| 720 | LIRItem value1(x->argument_at(1), this); |
| 721 | LIRItem value2(x->argument_at(2), this); |
| 722 | |
| 723 | value2.set_destroys_register(); |
| 724 | |
| 725 | value.load_item(); |
| 726 | value1.load_item(); |
| 727 | value2.load_item(); |
| 728 | |
| 729 | LIR_Opr calc_input = value.result(); |
| 730 | LIR_Opr calc_input1 = value1.result(); |
| 731 | LIR_Opr calc_input2 = value2.result(); |
| 732 | LIR_Opr calc_result = rlock_result(x); |
| 733 | |
| 734 | switch (x->id()) { |
| 735 | case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; |
| 736 | case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; |
| 737 | default: ShouldNotReachHere(); |
| 738 | } |
| 739 | |
| 740 | } |
| 741 | |
| 742 | |
| 743 | void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { |
| 744 | assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type" ); |
| 745 | |
| 746 | if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || |
| 747 | x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || |
| 748 | x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || |
| 749 | x->id() == vmIntrinsics::_dlog10) { |
| 750 | do_LibmIntrinsic(x); |
| 751 | return; |
| 752 | } |
| 753 | |
| 754 | LIRItem value(x->argument_at(0), this); |
| 755 | |
| 756 | bool use_fpu = false; |
| 757 | if (UseSSE < 2) { |
| 758 | value.set_destroys_register(); |
| 759 | } |
| 760 | value.load_item(); |
| 761 | |
| 762 | LIR_Opr calc_input = value.result(); |
| 763 | LIR_Opr calc_result = rlock_result(x); |
| 764 | |
| 765 | LIR_Opr tmp = LIR_OprFact::illegalOpr; |
| 766 | #ifdef _LP64 |
| 767 | if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) && |
| 768 | (x->id() == vmIntrinsics::_dabs)) { |
| 769 | tmp = new_register(T_DOUBLE); |
| 770 | __ move(LIR_OprFact::doubleConst(-0.0), tmp); |
| 771 | } |
| 772 | #endif |
| 773 | |
| 774 | switch(x->id()) { |
| 775 | case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break; |
| 776 | case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; |
| 777 | default: ShouldNotReachHere(); |
| 778 | } |
| 779 | |
| 780 | if (use_fpu) { |
| 781 | __ move(calc_result, x->operand()); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { |
| 786 | LIRItem value(x->argument_at(0), this); |
| 787 | value.set_destroys_register(); |
| 788 | |
| 789 | LIR_Opr calc_result = rlock_result(x); |
| 790 | LIR_Opr result_reg = result_register_for(x->type()); |
| 791 | |
| 792 | CallingConvention* cc = NULL; |
| 793 | |
| 794 | if (x->id() == vmIntrinsics::_dpow) { |
| 795 | LIRItem value1(x->argument_at(1), this); |
| 796 | |
| 797 | value1.set_destroys_register(); |
| 798 | |
| 799 | BasicTypeList signature(2); |
| 800 | signature.append(T_DOUBLE); |
| 801 | signature.append(T_DOUBLE); |
| 802 | cc = frame_map()->c_calling_convention(&signature); |
| 803 | value.load_item_force(cc->at(0)); |
| 804 | value1.load_item_force(cc->at(1)); |
| 805 | } else { |
| 806 | BasicTypeList signature(1); |
| 807 | signature.append(T_DOUBLE); |
| 808 | cc = frame_map()->c_calling_convention(&signature); |
| 809 | value.load_item_force(cc->at(0)); |
| 810 | } |
| 811 | |
| 812 | #ifndef _LP64 |
| 813 | LIR_Opr tmp = FrameMap::fpu0_double_opr; |
| 814 | result_reg = tmp; |
| 815 | switch(x->id()) { |
| 816 | case vmIntrinsics::_dexp: |
| 817 | if (StubRoutines::dexp() != NULL) { |
| 818 | __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); |
| 819 | } else { |
| 820 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); |
| 821 | } |
| 822 | break; |
| 823 | case vmIntrinsics::_dlog: |
| 824 | if (StubRoutines::dlog() != NULL) { |
| 825 | __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); |
| 826 | } else { |
| 827 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); |
| 828 | } |
| 829 | break; |
| 830 | case vmIntrinsics::_dlog10: |
| 831 | if (StubRoutines::dlog10() != NULL) { |
| 832 | __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); |
| 833 | } else { |
| 834 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); |
| 835 | } |
| 836 | break; |
| 837 | case vmIntrinsics::_dpow: |
| 838 | if (StubRoutines::dpow() != NULL) { |
| 839 | __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); |
| 840 | } else { |
| 841 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); |
| 842 | } |
| 843 | break; |
| 844 | case vmIntrinsics::_dsin: |
| 845 | if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) { |
| 846 | __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); |
| 847 | } else { |
| 848 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); |
| 849 | } |
| 850 | break; |
| 851 | case vmIntrinsics::_dcos: |
| 852 | if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) { |
| 853 | __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); |
| 854 | } else { |
| 855 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); |
| 856 | } |
| 857 | break; |
| 858 | case vmIntrinsics::_dtan: |
| 859 | if (StubRoutines::dtan() != NULL) { |
| 860 | __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); |
| 861 | } else { |
| 862 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); |
| 863 | } |
| 864 | break; |
| 865 | default: ShouldNotReachHere(); |
| 866 | } |
| 867 | #else |
| 868 | switch (x->id()) { |
| 869 | case vmIntrinsics::_dexp: |
| 870 | if (StubRoutines::dexp() != NULL) { |
| 871 | __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); |
| 872 | } else { |
| 873 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); |
| 874 | } |
| 875 | break; |
| 876 | case vmIntrinsics::_dlog: |
| 877 | if (StubRoutines::dlog() != NULL) { |
| 878 | __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); |
| 879 | } else { |
| 880 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); |
| 881 | } |
| 882 | break; |
| 883 | case vmIntrinsics::_dlog10: |
| 884 | if (StubRoutines::dlog10() != NULL) { |
| 885 | __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); |
| 886 | } else { |
| 887 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); |
| 888 | } |
| 889 | break; |
| 890 | case vmIntrinsics::_dpow: |
| 891 | if (StubRoutines::dpow() != NULL) { |
| 892 | __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); |
| 893 | } else { |
| 894 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); |
| 895 | } |
| 896 | break; |
| 897 | case vmIntrinsics::_dsin: |
| 898 | if (StubRoutines::dsin() != NULL) { |
| 899 | __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); |
| 900 | } else { |
| 901 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); |
| 902 | } |
| 903 | break; |
| 904 | case vmIntrinsics::_dcos: |
| 905 | if (StubRoutines::dcos() != NULL) { |
| 906 | __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); |
| 907 | } else { |
| 908 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); |
| 909 | } |
| 910 | break; |
| 911 | case vmIntrinsics::_dtan: |
| 912 | if (StubRoutines::dtan() != NULL) { |
| 913 | __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); |
| 914 | } else { |
| 915 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); |
| 916 | } |
| 917 | break; |
| 918 | default: ShouldNotReachHere(); |
| 919 | } |
| 920 | #endif // _LP64 |
| 921 | __ move(result_reg, calc_result); |
| 922 | } |
| 923 | |
| 924 | void LIRGenerator::do_ArrayCopy(Intrinsic* x) { |
| 925 | assert(x->number_of_arguments() == 5, "wrong type" ); |
| 926 | |
| 927 | // Make all state_for calls early since they can emit code |
| 928 | CodeEmitInfo* info = state_for(x, x->state()); |
| 929 | |
| 930 | LIRItem src(x->argument_at(0), this); |
| 931 | LIRItem src_pos(x->argument_at(1), this); |
| 932 | LIRItem dst(x->argument_at(2), this); |
| 933 | LIRItem dst_pos(x->argument_at(3), this); |
| 934 | LIRItem length(x->argument_at(4), this); |
| 935 | |
| 936 | // operands for arraycopy must use fixed registers, otherwise |
| 937 | // LinearScan will fail allocation (because arraycopy always needs a |
| 938 | // call) |
| 939 | |
| 940 | #ifndef _LP64 |
| 941 | src.load_item_force (FrameMap::rcx_oop_opr); |
| 942 | src_pos.load_item_force (FrameMap::rdx_opr); |
| 943 | dst.load_item_force (FrameMap::rax_oop_opr); |
| 944 | dst_pos.load_item_force (FrameMap::rbx_opr); |
| 945 | length.load_item_force (FrameMap::rdi_opr); |
| 946 | LIR_Opr tmp = (FrameMap::rsi_opr); |
| 947 | #else |
| 948 | |
| 949 | // The java calling convention will give us enough registers |
| 950 | // so that on the stub side the args will be perfect already. |
| 951 | // On the other slow/special case side we call C and the arg |
| 952 | // positions are not similar enough to pick one as the best. |
| 953 | // Also because the java calling convention is a "shifted" version |
| 954 | // of the C convention we can process the java args trivially into C |
| 955 | // args without worry of overwriting during the xfer |
| 956 | |
| 957 | src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); |
| 958 | src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); |
| 959 | dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); |
| 960 | dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); |
| 961 | length.load_item_force (FrameMap::as_opr(j_rarg4)); |
| 962 | |
| 963 | LIR_Opr tmp = FrameMap::as_opr(j_rarg5); |
| 964 | #endif // LP64 |
| 965 | |
| 966 | set_no_result(x); |
| 967 | |
| 968 | int flags; |
| 969 | ciArrayKlass* expected_type; |
| 970 | arraycopy_helper(x, &flags, &expected_type); |
| 971 | |
| 972 | __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint |
| 973 | } |
| 974 | |
| 975 | void LIRGenerator::do_update_CRC32(Intrinsic* x) { |
| 976 | assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support" ); |
| 977 | // Make all state_for calls early since they can emit code |
| 978 | LIR_Opr result = rlock_result(x); |
| 979 | int flags = 0; |
| 980 | switch (x->id()) { |
| 981 | case vmIntrinsics::_updateCRC32: { |
| 982 | LIRItem crc(x->argument_at(0), this); |
| 983 | LIRItem val(x->argument_at(1), this); |
| 984 | // val is destroyed by update_crc32 |
| 985 | val.set_destroys_register(); |
| 986 | crc.load_item(); |
| 987 | val.load_item(); |
| 988 | __ update_crc32(crc.result(), val.result(), result); |
| 989 | break; |
| 990 | } |
| 991 | case vmIntrinsics::_updateBytesCRC32: |
| 992 | case vmIntrinsics::_updateByteBufferCRC32: { |
| 993 | bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); |
| 994 | |
| 995 | LIRItem crc(x->argument_at(0), this); |
| 996 | LIRItem buf(x->argument_at(1), this); |
| 997 | LIRItem off(x->argument_at(2), this); |
| 998 | LIRItem len(x->argument_at(3), this); |
| 999 | buf.load_item(); |
| 1000 | off.load_nonconstant(); |
| 1001 | |
| 1002 | LIR_Opr index = off.result(); |
| 1003 | int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; |
| 1004 | if(off.result()->is_constant()) { |
| 1005 | index = LIR_OprFact::illegalOpr; |
| 1006 | offset += off.result()->as_jint(); |
| 1007 | } |
| 1008 | LIR_Opr base_op = buf.result(); |
| 1009 | |
| 1010 | #ifndef _LP64 |
| 1011 | if (!is_updateBytes) { // long b raw address |
| 1012 | base_op = new_register(T_INT); |
| 1013 | __ convert(Bytecodes::_l2i, buf.result(), base_op); |
| 1014 | } |
| 1015 | #else |
| 1016 | if (index->is_valid()) { |
| 1017 | LIR_Opr tmp = new_register(T_LONG); |
| 1018 | __ convert(Bytecodes::_i2l, index, tmp); |
| 1019 | index = tmp; |
| 1020 | } |
| 1021 | #endif |
| 1022 | |
| 1023 | if (is_updateBytes) { |
| 1024 | base_op = access_resolve(IS_NOT_NULL | ACCESS_READ, base_op); |
| 1025 | } |
| 1026 | |
| 1027 | LIR_Address* a = new LIR_Address(base_op, |
| 1028 | index, |
| 1029 | offset, |
| 1030 | T_BYTE); |
| 1031 | BasicTypeList signature(3); |
| 1032 | signature.append(T_INT); |
| 1033 | signature.append(T_ADDRESS); |
| 1034 | signature.append(T_INT); |
| 1035 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
| 1036 | const LIR_Opr result_reg = result_register_for(x->type()); |
| 1037 | |
| 1038 | LIR_Opr addr = new_pointer_register(); |
| 1039 | __ leal(LIR_OprFact::address(a), addr); |
| 1040 | |
| 1041 | crc.load_item_force(cc->at(0)); |
| 1042 | __ move(addr, cc->at(1)); |
| 1043 | len.load_item_force(cc->at(2)); |
| 1044 | |
| 1045 | __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); |
| 1046 | __ move(result_reg, result); |
| 1047 | |
| 1048 | break; |
| 1049 | } |
| 1050 | default: { |
| 1051 | ShouldNotReachHere(); |
| 1052 | } |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | void LIRGenerator::do_update_CRC32C(Intrinsic* x) { |
| 1057 | Unimplemented(); |
| 1058 | } |
| 1059 | |
| 1060 | void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { |
| 1061 | assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support" ); |
| 1062 | |
| 1063 | // Make all state_for calls early since they can emit code |
| 1064 | LIR_Opr result = rlock_result(x); |
| 1065 | |
| 1066 | LIRItem a(x->argument_at(0), this); // Object |
| 1067 | LIRItem aOffset(x->argument_at(1), this); // long |
| 1068 | LIRItem b(x->argument_at(2), this); // Object |
| 1069 | LIRItem bOffset(x->argument_at(3), this); // long |
| 1070 | LIRItem length(x->argument_at(4), this); // int |
| 1071 | LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int |
| 1072 | |
| 1073 | a.load_item(); |
| 1074 | aOffset.load_nonconstant(); |
| 1075 | b.load_item(); |
| 1076 | bOffset.load_nonconstant(); |
| 1077 | |
| 1078 | long constant_aOffset = 0; |
| 1079 | LIR_Opr result_aOffset = aOffset.result(); |
| 1080 | if (result_aOffset->is_constant()) { |
| 1081 | constant_aOffset = result_aOffset->as_jlong(); |
| 1082 | result_aOffset = LIR_OprFact::illegalOpr; |
| 1083 | } |
| 1084 | LIR_Opr result_a = access_resolve(ACCESS_READ, a.result()); |
| 1085 | |
| 1086 | long constant_bOffset = 0; |
| 1087 | LIR_Opr result_bOffset = bOffset.result(); |
| 1088 | if (result_bOffset->is_constant()) { |
| 1089 | constant_bOffset = result_bOffset->as_jlong(); |
| 1090 | result_bOffset = LIR_OprFact::illegalOpr; |
| 1091 | } |
| 1092 | LIR_Opr result_b = access_resolve(ACCESS_READ, b.result()); |
| 1093 | |
| 1094 | #ifndef _LP64 |
| 1095 | result_a = new_register(T_INT); |
| 1096 | __ convert(Bytecodes::_l2i, a.result(), result_a); |
| 1097 | result_b = new_register(T_INT); |
| 1098 | __ convert(Bytecodes::_l2i, b.result(), result_b); |
| 1099 | #endif |
| 1100 | |
| 1101 | |
| 1102 | LIR_Address* addr_a = new LIR_Address(result_a, |
| 1103 | result_aOffset, |
| 1104 | constant_aOffset, |
| 1105 | T_BYTE); |
| 1106 | |
| 1107 | LIR_Address* addr_b = new LIR_Address(result_b, |
| 1108 | result_bOffset, |
| 1109 | constant_bOffset, |
| 1110 | T_BYTE); |
| 1111 | |
| 1112 | BasicTypeList signature(4); |
| 1113 | signature.append(T_ADDRESS); |
| 1114 | signature.append(T_ADDRESS); |
| 1115 | signature.append(T_INT); |
| 1116 | signature.append(T_INT); |
| 1117 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
| 1118 | const LIR_Opr result_reg = result_register_for(x->type()); |
| 1119 | |
| 1120 | LIR_Opr ptr_addr_a = new_pointer_register(); |
| 1121 | __ leal(LIR_OprFact::address(addr_a), ptr_addr_a); |
| 1122 | |
| 1123 | LIR_Opr ptr_addr_b = new_pointer_register(); |
| 1124 | __ leal(LIR_OprFact::address(addr_b), ptr_addr_b); |
| 1125 | |
| 1126 | __ move(ptr_addr_a, cc->at(0)); |
| 1127 | __ move(ptr_addr_b, cc->at(1)); |
| 1128 | length.load_item_force(cc->at(2)); |
| 1129 | log2ArrayIndexScale.load_item_force(cc->at(3)); |
| 1130 | |
| 1131 | __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args()); |
| 1132 | __ move(result_reg, result); |
| 1133 | } |
| 1134 | |
| 1135 | // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f |
| 1136 | // _i2b, _i2c, _i2s |
| 1137 | LIR_Opr fixed_register_for(BasicType type) { |
| 1138 | switch (type) { |
| 1139 | case T_FLOAT: return FrameMap::fpu0_float_opr; |
| 1140 | case T_DOUBLE: return FrameMap::fpu0_double_opr; |
| 1141 | case T_INT: return FrameMap::rax_opr; |
| 1142 | case T_LONG: return FrameMap::long0_opr; |
| 1143 | default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | void LIRGenerator::do_Convert(Convert* x) { |
| 1148 | // flags that vary for the different operations and different SSE-settings |
| 1149 | bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; |
| 1150 | |
| 1151 | switch (x->op()) { |
| 1152 | case Bytecodes::_i2l: // fall through |
| 1153 | case Bytecodes::_l2i: // fall through |
| 1154 | case Bytecodes::_i2b: // fall through |
| 1155 | case Bytecodes::_i2c: // fall through |
| 1156 | case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; |
| 1157 | |
| 1158 | case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; |
| 1159 | case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; |
| 1160 | case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; |
| 1161 | case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; |
| 1162 | case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; |
| 1163 | case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; |
| 1164 | case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; |
| 1165 | case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; |
| 1166 | case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; |
| 1167 | case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; |
| 1168 | default: ShouldNotReachHere(); |
| 1169 | } |
| 1170 | |
| 1171 | LIRItem value(x->value(), this); |
| 1172 | value.load_item(); |
| 1173 | LIR_Opr input = value.result(); |
| 1174 | LIR_Opr result = rlock(x); |
| 1175 | |
| 1176 | // arguments of lir_convert |
| 1177 | LIR_Opr conv_input = input; |
| 1178 | LIR_Opr conv_result = result; |
| 1179 | ConversionStub* stub = NULL; |
| 1180 | |
| 1181 | if (fixed_input) { |
| 1182 | conv_input = fixed_register_for(input->type()); |
| 1183 | __ move(input, conv_input); |
| 1184 | } |
| 1185 | |
| 1186 | assert(fixed_result == false || round_result == false, "cannot set both" ); |
| 1187 | if (fixed_result) { |
| 1188 | conv_result = fixed_register_for(result->type()); |
| 1189 | } else if (round_result) { |
| 1190 | result = new_register(result->type()); |
| 1191 | set_vreg_flag(result, must_start_in_memory); |
| 1192 | } |
| 1193 | |
| 1194 | if (needs_stub) { |
| 1195 | stub = new ConversionStub(x->op(), conv_input, conv_result); |
| 1196 | } |
| 1197 | |
| 1198 | __ convert(x->op(), conv_input, conv_result, stub); |
| 1199 | |
| 1200 | if (result != conv_result) { |
| 1201 | __ move(conv_result, result); |
| 1202 | } |
| 1203 | |
| 1204 | assert(result->is_virtual(), "result must be virtual register" ); |
| 1205 | set_result(x, result); |
| 1206 | } |
| 1207 | |
| 1208 | |
| 1209 | void LIRGenerator::do_NewInstance(NewInstance* x) { |
| 1210 | print_if_not_loaded(x); |
| 1211 | |
| 1212 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1213 | LIR_Opr reg = result_register_for(x->type()); |
| 1214 | new_instance(reg, x->klass(), x->is_unresolved(), |
| 1215 | FrameMap::rcx_oop_opr, |
| 1216 | FrameMap::rdi_oop_opr, |
| 1217 | FrameMap::rsi_oop_opr, |
| 1218 | LIR_OprFact::illegalOpr, |
| 1219 | FrameMap::rdx_metadata_opr, info); |
| 1220 | LIR_Opr result = rlock_result(x); |
| 1221 | __ move(reg, result); |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { |
| 1226 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1227 | |
| 1228 | LIRItem length(x->length(), this); |
| 1229 | length.load_item_force(FrameMap::rbx_opr); |
| 1230 | |
| 1231 | LIR_Opr reg = result_register_for(x->type()); |
| 1232 | LIR_Opr tmp1 = FrameMap::rcx_oop_opr; |
| 1233 | LIR_Opr tmp2 = FrameMap::rsi_oop_opr; |
| 1234 | LIR_Opr tmp3 = FrameMap::rdi_oop_opr; |
| 1235 | LIR_Opr tmp4 = reg; |
| 1236 | LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; |
| 1237 | LIR_Opr len = length.result(); |
| 1238 | BasicType elem_type = x->elt_type(); |
| 1239 | |
| 1240 | __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); |
| 1241 | |
| 1242 | CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); |
| 1243 | __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); |
| 1244 | |
| 1245 | LIR_Opr result = rlock_result(x); |
| 1246 | __ move(reg, result); |
| 1247 | } |
| 1248 | |
| 1249 | |
| 1250 | void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { |
| 1251 | LIRItem length(x->length(), this); |
| 1252 | // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction |
| 1253 | // and therefore provide the state before the parameters have been consumed |
| 1254 | CodeEmitInfo* patching_info = NULL; |
| 1255 | if (!x->klass()->is_loaded() || PatchALot) { |
| 1256 | patching_info = state_for(x, x->state_before()); |
| 1257 | } |
| 1258 | |
| 1259 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1260 | |
| 1261 | const LIR_Opr reg = result_register_for(x->type()); |
| 1262 | LIR_Opr tmp1 = FrameMap::rcx_oop_opr; |
| 1263 | LIR_Opr tmp2 = FrameMap::rsi_oop_opr; |
| 1264 | LIR_Opr tmp3 = FrameMap::rdi_oop_opr; |
| 1265 | LIR_Opr tmp4 = reg; |
| 1266 | LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; |
| 1267 | |
| 1268 | length.load_item_force(FrameMap::rbx_opr); |
| 1269 | LIR_Opr len = length.result(); |
| 1270 | |
| 1271 | CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); |
| 1272 | ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); |
| 1273 | if (obj == ciEnv::unloaded_ciobjarrayklass()) { |
| 1274 | BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error" ); |
| 1275 | } |
| 1276 | klass2reg_with_patching(klass_reg, obj, patching_info); |
| 1277 | __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); |
| 1278 | |
| 1279 | LIR_Opr result = rlock_result(x); |
| 1280 | __ move(reg, result); |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { |
| 1285 | Values* dims = x->dims(); |
| 1286 | int i = dims->length(); |
| 1287 | LIRItemList* items = new LIRItemList(i, i, NULL); |
| 1288 | while (i-- > 0) { |
| 1289 | LIRItem* size = new LIRItem(dims->at(i), this); |
| 1290 | items->at_put(i, size); |
| 1291 | } |
| 1292 | |
| 1293 | // Evaluate state_for early since it may emit code. |
| 1294 | CodeEmitInfo* patching_info = NULL; |
| 1295 | if (!x->klass()->is_loaded() || PatchALot) { |
| 1296 | patching_info = state_for(x, x->state_before()); |
| 1297 | |
| 1298 | // Cannot re-use same xhandlers for multiple CodeEmitInfos, so |
| 1299 | // clone all handlers (NOTE: Usually this is handled transparently |
| 1300 | // by the CodeEmitInfo cloning logic in CodeStub constructors but |
| 1301 | // is done explicitly here because a stub isn't being used). |
| 1302 | x->set_exception_handlers(new XHandlers(x->exception_handlers())); |
| 1303 | } |
| 1304 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1305 | |
| 1306 | i = dims->length(); |
| 1307 | while (i-- > 0) { |
| 1308 | LIRItem* size = items->at(i); |
| 1309 | size->load_nonconstant(); |
| 1310 | |
| 1311 | store_stack_parameter(size->result(), in_ByteSize(i*4)); |
| 1312 | } |
| 1313 | |
| 1314 | LIR_Opr klass_reg = FrameMap::rax_metadata_opr; |
| 1315 | klass2reg_with_patching(klass_reg, x->klass(), patching_info); |
| 1316 | |
| 1317 | LIR_Opr rank = FrameMap::rbx_opr; |
| 1318 | __ move(LIR_OprFact::intConst(x->rank()), rank); |
| 1319 | LIR_Opr varargs = FrameMap::rcx_opr; |
| 1320 | __ move(FrameMap::rsp_opr, varargs); |
| 1321 | LIR_OprList* args = new LIR_OprList(3); |
| 1322 | args->append(klass_reg); |
| 1323 | args->append(rank); |
| 1324 | args->append(varargs); |
| 1325 | LIR_Opr reg = result_register_for(x->type()); |
| 1326 | __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), |
| 1327 | LIR_OprFact::illegalOpr, |
| 1328 | reg, args, info); |
| 1329 | |
| 1330 | LIR_Opr result = rlock_result(x); |
| 1331 | __ move(reg, result); |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | void LIRGenerator::do_BlockBegin(BlockBegin* x) { |
| 1336 | // nothing to do for now |
| 1337 | } |
| 1338 | |
| 1339 | |
| 1340 | void LIRGenerator::do_CheckCast(CheckCast* x) { |
| 1341 | LIRItem obj(x->obj(), this); |
| 1342 | |
| 1343 | CodeEmitInfo* patching_info = NULL; |
| 1344 | if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { |
| 1345 | // must do this before locking the destination register as an oop register, |
| 1346 | // and before the obj is loaded (the latter is for deoptimization) |
| 1347 | patching_info = state_for(x, x->state_before()); |
| 1348 | } |
| 1349 | obj.load_item(); |
| 1350 | |
| 1351 | // info for exceptions |
| 1352 | CodeEmitInfo* info_for_exception = |
| 1353 | (x->needs_exception_state() ? state_for(x) : |
| 1354 | state_for(x, x->state_before(), true /*ignore_xhandler*/)); |
| 1355 | |
| 1356 | CodeStub* stub; |
| 1357 | if (x->is_incompatible_class_change_check()) { |
| 1358 | assert(patching_info == NULL, "can't patch this" ); |
| 1359 | stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); |
| 1360 | } else if (x->is_invokespecial_receiver_check()) { |
| 1361 | assert(patching_info == NULL, "can't patch this" ); |
| 1362 | stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); |
| 1363 | } else { |
| 1364 | stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); |
| 1365 | } |
| 1366 | LIR_Opr reg = rlock_result(x); |
| 1367 | LIR_Opr tmp3 = LIR_OprFact::illegalOpr; |
| 1368 | if (!x->klass()->is_loaded() || UseCompressedClassPointers) { |
| 1369 | tmp3 = new_register(objectType); |
| 1370 | } |
| 1371 | __ checkcast(reg, obj.result(), x->klass(), |
| 1372 | new_register(objectType), new_register(objectType), tmp3, |
| 1373 | x->direct_compare(), info_for_exception, patching_info, stub, |
| 1374 | x->profiled_method(), x->profiled_bci()); |
| 1375 | } |
| 1376 | |
| 1377 | |
| 1378 | void LIRGenerator::do_InstanceOf(InstanceOf* x) { |
| 1379 | LIRItem obj(x->obj(), this); |
| 1380 | |
| 1381 | // result and test object may not be in same register |
| 1382 | LIR_Opr reg = rlock_result(x); |
| 1383 | CodeEmitInfo* patching_info = NULL; |
| 1384 | if ((!x->klass()->is_loaded() || PatchALot)) { |
| 1385 | // must do this before locking the destination register as an oop register |
| 1386 | patching_info = state_for(x, x->state_before()); |
| 1387 | } |
| 1388 | obj.load_item(); |
| 1389 | LIR_Opr tmp3 = LIR_OprFact::illegalOpr; |
| 1390 | if (!x->klass()->is_loaded() || UseCompressedClassPointers) { |
| 1391 | tmp3 = new_register(objectType); |
| 1392 | } |
| 1393 | __ instanceof(reg, obj.result(), x->klass(), |
| 1394 | new_register(objectType), new_register(objectType), tmp3, |
| 1395 | x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); |
| 1396 | } |
| 1397 | |
| 1398 | |
| 1399 | void LIRGenerator::do_If(If* x) { |
| 1400 | assert(x->number_of_sux() == 2, "inconsistency" ); |
| 1401 | ValueTag tag = x->x()->type()->tag(); |
| 1402 | bool is_safepoint = x->is_safepoint(); |
| 1403 | |
| 1404 | If::Condition cond = x->cond(); |
| 1405 | |
| 1406 | LIRItem xitem(x->x(), this); |
| 1407 | LIRItem yitem(x->y(), this); |
| 1408 | LIRItem* xin = &xitem; |
| 1409 | LIRItem* yin = &yitem; |
| 1410 | |
| 1411 | if (tag == longTag) { |
| 1412 | // for longs, only conditions "eql", "neq", "lss", "geq" are valid; |
| 1413 | // mirror for other conditions |
| 1414 | if (cond == If::gtr || cond == If::leq) { |
| 1415 | cond = Instruction::mirror(cond); |
| 1416 | xin = &yitem; |
| 1417 | yin = &xitem; |
| 1418 | } |
| 1419 | xin->set_destroys_register(); |
| 1420 | } |
| 1421 | xin->load_item(); |
| 1422 | if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { |
| 1423 | // inline long zero |
| 1424 | yin->dont_load_item(); |
| 1425 | } else if (tag == longTag || tag == floatTag || tag == doubleTag) { |
| 1426 | // longs cannot handle constants at right side |
| 1427 | yin->load_item(); |
| 1428 | } else { |
| 1429 | yin->dont_load_item(); |
| 1430 | } |
| 1431 | |
| 1432 | LIR_Opr left = xin->result(); |
| 1433 | LIR_Opr right = yin->result(); |
| 1434 | |
| 1435 | set_no_result(x); |
| 1436 | |
| 1437 | // add safepoint before generating condition code so it can be recomputed |
| 1438 | if (x->is_safepoint()) { |
| 1439 | // increment backedge counter if needed |
| 1440 | increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), |
| 1441 | x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); |
| 1442 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
| 1443 | } |
| 1444 | |
| 1445 | __ cmp(lir_cond(cond), left, right); |
| 1446 | // Generate branch profiling. Profiling code doesn't kill flags. |
| 1447 | profile_branch(x, cond); |
| 1448 | move_to_phi(x->state()); |
| 1449 | if (x->x()->type()->is_float_kind()) { |
| 1450 | __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); |
| 1451 | } else { |
| 1452 | __ branch(lir_cond(cond), right->type(), x->tsux()); |
| 1453 | } |
| 1454 | assert(x->default_sux() == x->fsux(), "wrong destination above" ); |
| 1455 | __ jump(x->default_sux()); |
| 1456 | } |
| 1457 | |
| 1458 | |
| 1459 | LIR_Opr LIRGenerator::getThreadPointer() { |
| 1460 | #ifdef _LP64 |
| 1461 | return FrameMap::as_pointer_opr(r15_thread); |
| 1462 | #else |
| 1463 | LIR_Opr result = new_register(T_INT); |
| 1464 | __ get_thread(result); |
| 1465 | return result; |
| 1466 | #endif // |
| 1467 | } |
| 1468 | |
| 1469 | void LIRGenerator::trace_block_entry(BlockBegin* block) { |
| 1470 | store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); |
| 1471 | LIR_OprList* args = new LIR_OprList(); |
| 1472 | address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); |
| 1473 | __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); |
| 1474 | } |
| 1475 | |
| 1476 | |
| 1477 | void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, |
| 1478 | CodeEmitInfo* info) { |
| 1479 | if (address->type() == T_LONG) { |
| 1480 | address = new LIR_Address(address->base(), |
| 1481 | address->index(), address->scale(), |
| 1482 | address->disp(), T_DOUBLE); |
| 1483 | // Transfer the value atomically by using FP moves. This means |
| 1484 | // the value has to be moved between CPU and FPU registers. It |
| 1485 | // always has to be moved through spill slot since there's no |
| 1486 | // quick way to pack the value into an SSE register. |
| 1487 | LIR_Opr temp_double = new_register(T_DOUBLE); |
| 1488 | LIR_Opr spill = new_register(T_LONG); |
| 1489 | set_vreg_flag(spill, must_start_in_memory); |
| 1490 | __ move(value, spill); |
| 1491 | __ volatile_move(spill, temp_double, T_LONG); |
| 1492 | __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); |
| 1493 | } else { |
| 1494 | __ store(value, address, info); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, |
| 1499 | CodeEmitInfo* info) { |
| 1500 | if (address->type() == T_LONG) { |
| 1501 | address = new LIR_Address(address->base(), |
| 1502 | address->index(), address->scale(), |
| 1503 | address->disp(), T_DOUBLE); |
| 1504 | // Transfer the value atomically by using FP moves. This means |
| 1505 | // the value has to be moved between CPU and FPU registers. In |
| 1506 | // SSE0 and SSE1 mode it has to be moved through spill slot but in |
| 1507 | // SSE2+ mode it can be moved directly. |
| 1508 | LIR_Opr temp_double = new_register(T_DOUBLE); |
| 1509 | __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); |
| 1510 | __ volatile_move(temp_double, result, T_LONG); |
| 1511 | if (UseSSE < 2) { |
| 1512 | // no spill slot needed in SSE2 mode because xmm->cpu register move is possible |
| 1513 | set_vreg_flag(result, must_start_in_memory); |
| 1514 | } |
| 1515 | } else { |
| 1516 | __ load(address, result, info); |
| 1517 | } |
| 1518 | } |
| 1519 | |