1/*
2 * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "gc/shared/c1/barrierSetC1.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "vmreg_x86.inline.hpp"
40
41#ifdef ASSERT
42#define __ gen()->lir(__FILE__, __LINE__)->
43#else
44#define __ gen()->lir()->
45#endif
46
47// Item will be loaded into a byte register; Intel only
48void LIRItem::load_byte_item() {
49 load_item();
50 LIR_Opr res = result();
51
52 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
53 // make sure that it is a byte register
54 assert(!value()->type()->is_float() && !value()->type()->is_double(),
55 "can't load floats in byte register");
56 LIR_Opr reg = _gen->rlock_byte(T_BYTE);
57 __ move(res, reg);
58
59 _result = reg;
60 }
61}
62
63
64void LIRItem::load_nonconstant() {
65 LIR_Opr r = value()->operand();
66 if (r->is_constant()) {
67 _result = r;
68 } else {
69 load_item();
70 }
71}
72
73//--------------------------------------------------------------
74// LIRGenerator
75//--------------------------------------------------------------
76
77
78LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
79LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
80LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
81LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
82LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
83LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
84LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
85LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
86LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
87
88
89LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
90 LIR_Opr opr;
91 switch (type->tag()) {
92 case intTag: opr = FrameMap::rax_opr; break;
93 case objectTag: opr = FrameMap::rax_oop_opr; break;
94 case longTag: opr = FrameMap::long0_opr; break;
95 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
96 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
97
98 case addressTag:
99 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
100 }
101
102 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
103 return opr;
104}
105
106
107LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
108 LIR_Opr reg = new_register(T_INT);
109 set_vreg_flag(reg, LIRGenerator::byte_reg);
110 return reg;
111}
112
113
114//--------- loading items into registers --------------------------------
115
116
117// i486 instructions can inline constants
118bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
119 if (type == T_SHORT || type == T_CHAR) {
120 // there is no immediate move of word values in asembler_i486.?pp
121 return false;
122 }
123 Constant* c = v->as_Constant();
124 if (c && c->state_before() == NULL) {
125 // constants of any type can be stored directly, except for
126 // unloaded object constants.
127 return true;
128 }
129 return false;
130}
131
132
133bool LIRGenerator::can_inline_as_constant(Value v) const {
134 if (v->type()->tag() == longTag) return false;
135 return v->type()->tag() != objectTag ||
136 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
137}
138
139
140bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
141 if (c->type() == T_LONG) return false;
142 return c->type() != T_OBJECT || c->as_jobject() == NULL;
143}
144
145
146LIR_Opr LIRGenerator::safepoint_poll_register() {
147 NOT_LP64( if (SafepointMechanism::uses_thread_local_poll()) { return new_register(T_ADDRESS); } )
148 return LIR_OprFact::illegalOpr;
149}
150
151
152LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
153 int shift, int disp, BasicType type) {
154 assert(base->is_register(), "must be");
155 if (index->is_constant()) {
156 LIR_Const *constant = index->as_constant_ptr();
157#ifdef _LP64
158 jlong c;
159 if (constant->type() == T_INT) {
160 c = (jlong(index->as_jint()) << shift) + disp;
161 } else {
162 assert(constant->type() == T_LONG, "should be");
163 c = (index->as_jlong() << shift) + disp;
164 }
165 if ((jlong)((jint)c) == c) {
166 return new LIR_Address(base, (jint)c, type);
167 } else {
168 LIR_Opr tmp = new_register(T_LONG);
169 __ move(index, tmp);
170 return new LIR_Address(base, tmp, type);
171 }
172#else
173 return new LIR_Address(base,
174 ((intx)(constant->as_jint()) << shift) + disp,
175 type);
176#endif
177 } else {
178 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
179 }
180}
181
182
183LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
184 BasicType type) {
185 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
186
187 LIR_Address* addr;
188 if (index_opr->is_constant()) {
189 int elem_size = type2aelembytes(type);
190 addr = new LIR_Address(array_opr,
191 offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
192 } else {
193#ifdef _LP64
194 if (index_opr->type() == T_INT) {
195 LIR_Opr tmp = new_register(T_LONG);
196 __ convert(Bytecodes::_i2l, index_opr, tmp);
197 index_opr = tmp;
198 }
199#endif // _LP64
200 addr = new LIR_Address(array_opr,
201 index_opr,
202 LIR_Address::scale(type),
203 offset_in_bytes, type);
204 }
205 return addr;
206}
207
208
209LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
210 LIR_Opr r = NULL;
211 if (type == T_LONG) {
212 r = LIR_OprFact::longConst(x);
213 } else if (type == T_INT) {
214 r = LIR_OprFact::intConst(x);
215 } else {
216 ShouldNotReachHere();
217 }
218 return r;
219}
220
221void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
222 LIR_Opr pointer = new_pointer_register();
223 __ move(LIR_OprFact::intptrConst(counter), pointer);
224 LIR_Address* addr = new LIR_Address(pointer, type);
225 increment_counter(addr, step);
226}
227
228
229void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
230 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
231}
232
233void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
234 __ cmp_mem_int(condition, base, disp, c, info);
235}
236
237
238void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
239 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
240}
241
242
243bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
244 if (tmp->is_valid() && c > 0 && c < max_jint) {
245 if (is_power_of_2(c + 1)) {
246 __ move(left, tmp);
247 __ shift_left(left, log2_jint(c + 1), left);
248 __ sub(left, tmp, result);
249 return true;
250 } else if (is_power_of_2(c - 1)) {
251 __ move(left, tmp);
252 __ shift_left(left, log2_jint(c - 1), left);
253 __ add(left, tmp, result);
254 return true;
255 }
256 }
257 return false;
258}
259
260
261void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
262 BasicType type = item->type();
263 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
264}
265
266void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
267 LIR_Opr tmp1 = new_register(objectType);
268 LIR_Opr tmp2 = new_register(objectType);
269 LIR_Opr tmp3 = new_register(objectType);
270 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
271}
272
273//----------------------------------------------------------------------
274// visitor functions
275//----------------------------------------------------------------------
276
277void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
278 assert(x->is_pinned(),"");
279 LIRItem obj(x->obj(), this);
280 obj.load_item();
281
282 set_no_result(x);
283
284 // "lock" stores the address of the monitor stack slot, so this is not an oop
285 LIR_Opr lock = new_register(T_INT);
286 // Need a scratch register for biased locking on x86
287 LIR_Opr scratch = LIR_OprFact::illegalOpr;
288 if (UseBiasedLocking) {
289 scratch = new_register(T_INT);
290 }
291
292 CodeEmitInfo* info_for_exception = NULL;
293 if (x->needs_null_check()) {
294 info_for_exception = state_for(x);
295 }
296 // this CodeEmitInfo must not have the xhandlers because here the
297 // object is already locked (xhandlers expect object to be unlocked)
298 CodeEmitInfo* info = state_for(x, x->state(), true);
299 monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
300 x->monitor_no(), info_for_exception, info);
301}
302
303
304void LIRGenerator::do_MonitorExit(MonitorExit* x) {
305 assert(x->is_pinned(),"");
306
307 LIRItem obj(x->obj(), this);
308 obj.dont_load_item();
309
310 LIR_Opr lock = new_register(T_INT);
311 LIR_Opr obj_temp = new_register(T_INT);
312 set_no_result(x);
313 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
314}
315
316
317// _ineg, _lneg, _fneg, _dneg
318void LIRGenerator::do_NegateOp(NegateOp* x) {
319 LIRItem value(x->x(), this);
320 value.set_destroys_register();
321 value.load_item();
322 LIR_Opr reg = rlock(x);
323
324 LIR_Opr tmp = LIR_OprFact::illegalOpr;
325#ifdef _LP64
326 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
327 if (x->type()->tag() == doubleTag) {
328 tmp = new_register(T_DOUBLE);
329 __ move(LIR_OprFact::doubleConst(-0.0), tmp);
330 }
331 else if (x->type()->tag() == floatTag) {
332 tmp = new_register(T_FLOAT);
333 __ move(LIR_OprFact::floatConst(-0.0), tmp);
334 }
335 }
336#endif
337 __ negate(value.result(), reg, tmp);
338
339 set_result(x, round_item(reg));
340}
341
342
343// for _fadd, _fmul, _fsub, _fdiv, _frem
344// _dadd, _dmul, _dsub, _ddiv, _drem
345void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
346 LIRItem left(x->x(), this);
347 LIRItem right(x->y(), this);
348 LIRItem* left_arg = &left;
349 LIRItem* right_arg = &right;
350 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
351 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
352 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
353 left.load_item();
354 } else {
355 left.dont_load_item();
356 }
357
358 // do not load right operand if it is a constant. only 0 and 1 are
359 // loaded because there are special instructions for loading them
360 // without memory access (not needed for SSE2 instructions)
361 bool must_load_right = false;
362 if (right.is_constant()) {
363 LIR_Const* c = right.result()->as_constant_ptr();
364 assert(c != NULL, "invalid constant");
365 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
366
367 if (c->type() == T_FLOAT) {
368 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
369 } else {
370 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
371 }
372 }
373
374 if (must_load_both) {
375 // frem and drem destroy also right operand, so move it to a new register
376 right.set_destroys_register();
377 right.load_item();
378 } else if (right.is_register() || must_load_right) {
379 right.load_item();
380 } else {
381 right.dont_load_item();
382 }
383 LIR_Opr reg = rlock(x);
384 LIR_Opr tmp = LIR_OprFact::illegalOpr;
385 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
386 tmp = new_register(T_DOUBLE);
387 }
388
389 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
390 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
391 LIR_Opr fpu0, fpu1;
392 if (x->op() == Bytecodes::_frem) {
393 fpu0 = LIR_OprFact::single_fpu(0);
394 fpu1 = LIR_OprFact::single_fpu(1);
395 } else {
396 fpu0 = LIR_OprFact::double_fpu(0);
397 fpu1 = LIR_OprFact::double_fpu(1);
398 }
399 __ move(right.result(), fpu1); // order of left and right operand is important!
400 __ move(left.result(), fpu0);
401 __ rem (fpu0, fpu1, fpu0);
402 __ move(fpu0, reg);
403
404 } else {
405 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
406 }
407
408 set_result(x, round_item(reg));
409}
410
411
412// for _ladd, _lmul, _lsub, _ldiv, _lrem
413void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
414 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
415 // long division is implemented as a direct call into the runtime
416 LIRItem left(x->x(), this);
417 LIRItem right(x->y(), this);
418
419 // the check for division by zero destroys the right operand
420 right.set_destroys_register();
421
422 BasicTypeList signature(2);
423 signature.append(T_LONG);
424 signature.append(T_LONG);
425 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
426
427 // check for division by zero (destroys registers of right operand!)
428 CodeEmitInfo* info = state_for(x);
429
430 const LIR_Opr result_reg = result_register_for(x->type());
431 left.load_item_force(cc->at(1));
432 right.load_item();
433
434 __ move(right.result(), cc->at(0));
435
436 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
437 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
438
439 address entry = NULL;
440 switch (x->op()) {
441 case Bytecodes::_lrem:
442 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
443 break; // check if dividend is 0 is done elsewhere
444 case Bytecodes::_ldiv:
445 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
446 break; // check if dividend is 0 is done elsewhere
447 case Bytecodes::_lmul:
448 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
449 break;
450 default:
451 ShouldNotReachHere();
452 }
453
454 LIR_Opr result = rlock_result(x);
455 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
456 __ move(result_reg, result);
457 } else if (x->op() == Bytecodes::_lmul) {
458 // missing test if instr is commutative and if we should swap
459 LIRItem left(x->x(), this);
460 LIRItem right(x->y(), this);
461
462 // right register is destroyed by the long mul, so it must be
463 // copied to a new register.
464 right.set_destroys_register();
465
466 left.load_item();
467 right.load_item();
468
469 LIR_Opr reg = FrameMap::long0_opr;
470 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
471 LIR_Opr result = rlock_result(x);
472 __ move(reg, result);
473 } else {
474 // missing test if instr is commutative and if we should swap
475 LIRItem left(x->x(), this);
476 LIRItem right(x->y(), this);
477
478 left.load_item();
479 // don't load constants to save register
480 right.load_nonconstant();
481 rlock_result(x);
482 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
483 }
484}
485
486
487
488// for: _iadd, _imul, _isub, _idiv, _irem
489void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
490 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
491 // The requirements for division and modulo
492 // input : rax,: dividend min_int
493 // reg: divisor (may not be rax,/rdx) -1
494 //
495 // output: rax,: quotient (= rax, idiv reg) min_int
496 // rdx: remainder (= rax, irem reg) 0
497
498 // rax, and rdx will be destroyed
499
500 // Note: does this invalidate the spec ???
501 LIRItem right(x->y(), this);
502 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
503
504 // call state_for before load_item_force because state_for may
505 // force the evaluation of other instructions that are needed for
506 // correct debug info. Otherwise the live range of the fix
507 // register might be too long.
508 CodeEmitInfo* info = state_for(x);
509
510 left.load_item_force(divInOpr());
511
512 right.load_item();
513
514 LIR_Opr result = rlock_result(x);
515 LIR_Opr result_reg;
516 if (x->op() == Bytecodes::_idiv) {
517 result_reg = divOutOpr();
518 } else {
519 result_reg = remOutOpr();
520 }
521
522 if (!ImplicitDiv0Checks) {
523 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
524 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
525 // Idiv/irem cannot trap (passing info would generate an assertion).
526 info = NULL;
527 }
528 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
529 if (x->op() == Bytecodes::_irem) {
530 __ irem(left.result(), right.result(), result_reg, tmp, info);
531 } else if (x->op() == Bytecodes::_idiv) {
532 __ idiv(left.result(), right.result(), result_reg, tmp, info);
533 } else {
534 ShouldNotReachHere();
535 }
536
537 __ move(result_reg, result);
538 } else {
539 // missing test if instr is commutative and if we should swap
540 LIRItem left(x->x(), this);
541 LIRItem right(x->y(), this);
542 LIRItem* left_arg = &left;
543 LIRItem* right_arg = &right;
544 if (x->is_commutative() && left.is_stack() && right.is_register()) {
545 // swap them if left is real stack (or cached) and right is real register(not cached)
546 left_arg = &right;
547 right_arg = &left;
548 }
549
550 left_arg->load_item();
551
552 // do not need to load right, as we can handle stack and constants
553 if (x->op() == Bytecodes::_imul ) {
554 // check if we can use shift instead
555 bool use_constant = false;
556 bool use_tmp = false;
557 if (right_arg->is_constant()) {
558 jint iconst = right_arg->get_jint_constant();
559 if (iconst > 0 && iconst < max_jint) {
560 if (is_power_of_2(iconst)) {
561 use_constant = true;
562 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
563 use_constant = true;
564 use_tmp = true;
565 }
566 }
567 }
568 if (use_constant) {
569 right_arg->dont_load_item();
570 } else {
571 right_arg->load_item();
572 }
573 LIR_Opr tmp = LIR_OprFact::illegalOpr;
574 if (use_tmp) {
575 tmp = new_register(T_INT);
576 }
577 rlock_result(x);
578
579 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
580 } else {
581 right_arg->dont_load_item();
582 rlock_result(x);
583 LIR_Opr tmp = LIR_OprFact::illegalOpr;
584 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
585 }
586 }
587}
588
589
590void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
591 // when an operand with use count 1 is the left operand, then it is
592 // likely that no move for 2-operand-LIR-form is necessary
593 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
594 x->swap_operands();
595 }
596
597 ValueTag tag = x->type()->tag();
598 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
599 switch (tag) {
600 case floatTag:
601 case doubleTag: do_ArithmeticOp_FPU(x); return;
602 case longTag: do_ArithmeticOp_Long(x); return;
603 case intTag: do_ArithmeticOp_Int(x); return;
604 default: ShouldNotReachHere(); return;
605 }
606}
607
608
609// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
610void LIRGenerator::do_ShiftOp(ShiftOp* x) {
611 // count must always be in rcx
612 LIRItem value(x->x(), this);
613 LIRItem count(x->y(), this);
614
615 ValueTag elemType = x->type()->tag();
616 bool must_load_count = !count.is_constant() || elemType == longTag;
617 if (must_load_count) {
618 // count for long must be in register
619 count.load_item_force(shiftCountOpr());
620 } else {
621 count.dont_load_item();
622 }
623 value.load_item();
624 LIR_Opr reg = rlock_result(x);
625
626 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
627}
628
629
630// _iand, _land, _ior, _lor, _ixor, _lxor
631void LIRGenerator::do_LogicOp(LogicOp* x) {
632 // when an operand with use count 1 is the left operand, then it is
633 // likely that no move for 2-operand-LIR-form is necessary
634 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
635 x->swap_operands();
636 }
637
638 LIRItem left(x->x(), this);
639 LIRItem right(x->y(), this);
640
641 left.load_item();
642 right.load_nonconstant();
643 LIR_Opr reg = rlock_result(x);
644
645 logic_op(x->op(), reg, left.result(), right.result());
646}
647
648
649
650// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
651void LIRGenerator::do_CompareOp(CompareOp* x) {
652 LIRItem left(x->x(), this);
653 LIRItem right(x->y(), this);
654 ValueTag tag = x->x()->type()->tag();
655 if (tag == longTag) {
656 left.set_destroys_register();
657 }
658 left.load_item();
659 right.load_item();
660 LIR_Opr reg = rlock_result(x);
661
662 if (x->x()->type()->is_float_kind()) {
663 Bytecodes::Code code = x->op();
664 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
665 } else if (x->x()->type()->tag() == longTag) {
666 __ lcmp2int(left.result(), right.result(), reg);
667 } else {
668 Unimplemented();
669 }
670}
671
672LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
673 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
674 if (type == T_OBJECT || type == T_ARRAY) {
675 cmp_value.load_item_force(FrameMap::rax_oop_opr);
676 new_value.load_item();
677 __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
678 } else if (type == T_INT) {
679 cmp_value.load_item_force(FrameMap::rax_opr);
680 new_value.load_item();
681 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
682 } else if (type == T_LONG) {
683 cmp_value.load_item_force(FrameMap::long0_opr);
684 new_value.load_item_force(FrameMap::long1_opr);
685 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
686 } else {
687 Unimplemented();
688 }
689 LIR_Opr result = new_register(T_INT);
690 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
691 result, T_INT);
692 return result;
693}
694
695LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
696 bool is_oop = type == T_OBJECT || type == T_ARRAY;
697 LIR_Opr result = new_register(type);
698 value.load_item();
699 // Because we want a 2-arg form of xchg and xadd
700 __ move(value.result(), result);
701 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
702 __ xchg(addr, result, result, LIR_OprFact::illegalOpr);
703 return result;
704}
705
706LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
707 LIR_Opr result = new_register(type);
708 value.load_item();
709 // Because we want a 2-arg form of xchg and xadd
710 __ move(value.result(), result);
711 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
712 __ xadd(addr, result, result, LIR_OprFact::illegalOpr);
713 return result;
714}
715
716void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
717 assert(x->number_of_arguments() == 3, "wrong type");
718 assert(UseFMA, "Needs FMA instructions support.");
719 LIRItem value(x->argument_at(0), this);
720 LIRItem value1(x->argument_at(1), this);
721 LIRItem value2(x->argument_at(2), this);
722
723 value2.set_destroys_register();
724
725 value.load_item();
726 value1.load_item();
727 value2.load_item();
728
729 LIR_Opr calc_input = value.result();
730 LIR_Opr calc_input1 = value1.result();
731 LIR_Opr calc_input2 = value2.result();
732 LIR_Opr calc_result = rlock_result(x);
733
734 switch (x->id()) {
735 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
736 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
737 default: ShouldNotReachHere();
738 }
739
740}
741
742
743void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
744 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
745
746 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
747 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
748 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
749 x->id() == vmIntrinsics::_dlog10) {
750 do_LibmIntrinsic(x);
751 return;
752 }
753
754 LIRItem value(x->argument_at(0), this);
755
756 bool use_fpu = false;
757 if (UseSSE < 2) {
758 value.set_destroys_register();
759 }
760 value.load_item();
761
762 LIR_Opr calc_input = value.result();
763 LIR_Opr calc_result = rlock_result(x);
764
765 LIR_Opr tmp = LIR_OprFact::illegalOpr;
766#ifdef _LP64
767 if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) &&
768 (x->id() == vmIntrinsics::_dabs)) {
769 tmp = new_register(T_DOUBLE);
770 __ move(LIR_OprFact::doubleConst(-0.0), tmp);
771 }
772#endif
773
774 switch(x->id()) {
775 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break;
776 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
777 default: ShouldNotReachHere();
778 }
779
780 if (use_fpu) {
781 __ move(calc_result, x->operand());
782 }
783}
784
785void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
786 LIRItem value(x->argument_at(0), this);
787 value.set_destroys_register();
788
789 LIR_Opr calc_result = rlock_result(x);
790 LIR_Opr result_reg = result_register_for(x->type());
791
792 CallingConvention* cc = NULL;
793
794 if (x->id() == vmIntrinsics::_dpow) {
795 LIRItem value1(x->argument_at(1), this);
796
797 value1.set_destroys_register();
798
799 BasicTypeList signature(2);
800 signature.append(T_DOUBLE);
801 signature.append(T_DOUBLE);
802 cc = frame_map()->c_calling_convention(&signature);
803 value.load_item_force(cc->at(0));
804 value1.load_item_force(cc->at(1));
805 } else {
806 BasicTypeList signature(1);
807 signature.append(T_DOUBLE);
808 cc = frame_map()->c_calling_convention(&signature);
809 value.load_item_force(cc->at(0));
810 }
811
812#ifndef _LP64
813 LIR_Opr tmp = FrameMap::fpu0_double_opr;
814 result_reg = tmp;
815 switch(x->id()) {
816 case vmIntrinsics::_dexp:
817 if (StubRoutines::dexp() != NULL) {
818 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
819 } else {
820 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
821 }
822 break;
823 case vmIntrinsics::_dlog:
824 if (StubRoutines::dlog() != NULL) {
825 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
826 } else {
827 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
828 }
829 break;
830 case vmIntrinsics::_dlog10:
831 if (StubRoutines::dlog10() != NULL) {
832 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
833 } else {
834 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
835 }
836 break;
837 case vmIntrinsics::_dpow:
838 if (StubRoutines::dpow() != NULL) {
839 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
840 } else {
841 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
842 }
843 break;
844 case vmIntrinsics::_dsin:
845 if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) {
846 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
847 } else {
848 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
849 }
850 break;
851 case vmIntrinsics::_dcos:
852 if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) {
853 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
854 } else {
855 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
856 }
857 break;
858 case vmIntrinsics::_dtan:
859 if (StubRoutines::dtan() != NULL) {
860 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
861 } else {
862 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
863 }
864 break;
865 default: ShouldNotReachHere();
866 }
867#else
868 switch (x->id()) {
869 case vmIntrinsics::_dexp:
870 if (StubRoutines::dexp() != NULL) {
871 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
872 } else {
873 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
874 }
875 break;
876 case vmIntrinsics::_dlog:
877 if (StubRoutines::dlog() != NULL) {
878 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
879 } else {
880 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
881 }
882 break;
883 case vmIntrinsics::_dlog10:
884 if (StubRoutines::dlog10() != NULL) {
885 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
886 } else {
887 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
888 }
889 break;
890 case vmIntrinsics::_dpow:
891 if (StubRoutines::dpow() != NULL) {
892 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
893 } else {
894 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
895 }
896 break;
897 case vmIntrinsics::_dsin:
898 if (StubRoutines::dsin() != NULL) {
899 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
900 } else {
901 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
902 }
903 break;
904 case vmIntrinsics::_dcos:
905 if (StubRoutines::dcos() != NULL) {
906 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
907 } else {
908 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
909 }
910 break;
911 case vmIntrinsics::_dtan:
912 if (StubRoutines::dtan() != NULL) {
913 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
914 } else {
915 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
916 }
917 break;
918 default: ShouldNotReachHere();
919 }
920#endif // _LP64
921 __ move(result_reg, calc_result);
922}
923
924void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
925 assert(x->number_of_arguments() == 5, "wrong type");
926
927 // Make all state_for calls early since they can emit code
928 CodeEmitInfo* info = state_for(x, x->state());
929
930 LIRItem src(x->argument_at(0), this);
931 LIRItem src_pos(x->argument_at(1), this);
932 LIRItem dst(x->argument_at(2), this);
933 LIRItem dst_pos(x->argument_at(3), this);
934 LIRItem length(x->argument_at(4), this);
935
936 // operands for arraycopy must use fixed registers, otherwise
937 // LinearScan will fail allocation (because arraycopy always needs a
938 // call)
939
940#ifndef _LP64
941 src.load_item_force (FrameMap::rcx_oop_opr);
942 src_pos.load_item_force (FrameMap::rdx_opr);
943 dst.load_item_force (FrameMap::rax_oop_opr);
944 dst_pos.load_item_force (FrameMap::rbx_opr);
945 length.load_item_force (FrameMap::rdi_opr);
946 LIR_Opr tmp = (FrameMap::rsi_opr);
947#else
948
949 // The java calling convention will give us enough registers
950 // so that on the stub side the args will be perfect already.
951 // On the other slow/special case side we call C and the arg
952 // positions are not similar enough to pick one as the best.
953 // Also because the java calling convention is a "shifted" version
954 // of the C convention we can process the java args trivially into C
955 // args without worry of overwriting during the xfer
956
957 src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
958 src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
959 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
960 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
961 length.load_item_force (FrameMap::as_opr(j_rarg4));
962
963 LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
964#endif // LP64
965
966 set_no_result(x);
967
968 int flags;
969 ciArrayKlass* expected_type;
970 arraycopy_helper(x, &flags, &expected_type);
971
972 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
973}
974
975void LIRGenerator::do_update_CRC32(Intrinsic* x) {
976 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
977 // Make all state_for calls early since they can emit code
978 LIR_Opr result = rlock_result(x);
979 int flags = 0;
980 switch (x->id()) {
981 case vmIntrinsics::_updateCRC32: {
982 LIRItem crc(x->argument_at(0), this);
983 LIRItem val(x->argument_at(1), this);
984 // val is destroyed by update_crc32
985 val.set_destroys_register();
986 crc.load_item();
987 val.load_item();
988 __ update_crc32(crc.result(), val.result(), result);
989 break;
990 }
991 case vmIntrinsics::_updateBytesCRC32:
992 case vmIntrinsics::_updateByteBufferCRC32: {
993 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
994
995 LIRItem crc(x->argument_at(0), this);
996 LIRItem buf(x->argument_at(1), this);
997 LIRItem off(x->argument_at(2), this);
998 LIRItem len(x->argument_at(3), this);
999 buf.load_item();
1000 off.load_nonconstant();
1001
1002 LIR_Opr index = off.result();
1003 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1004 if(off.result()->is_constant()) {
1005 index = LIR_OprFact::illegalOpr;
1006 offset += off.result()->as_jint();
1007 }
1008 LIR_Opr base_op = buf.result();
1009
1010#ifndef _LP64
1011 if (!is_updateBytes) { // long b raw address
1012 base_op = new_register(T_INT);
1013 __ convert(Bytecodes::_l2i, buf.result(), base_op);
1014 }
1015#else
1016 if (index->is_valid()) {
1017 LIR_Opr tmp = new_register(T_LONG);
1018 __ convert(Bytecodes::_i2l, index, tmp);
1019 index = tmp;
1020 }
1021#endif
1022
1023 if (is_updateBytes) {
1024 base_op = access_resolve(IS_NOT_NULL | ACCESS_READ, base_op);
1025 }
1026
1027 LIR_Address* a = new LIR_Address(base_op,
1028 index,
1029 offset,
1030 T_BYTE);
1031 BasicTypeList signature(3);
1032 signature.append(T_INT);
1033 signature.append(T_ADDRESS);
1034 signature.append(T_INT);
1035 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1036 const LIR_Opr result_reg = result_register_for(x->type());
1037
1038 LIR_Opr addr = new_pointer_register();
1039 __ leal(LIR_OprFact::address(a), addr);
1040
1041 crc.load_item_force(cc->at(0));
1042 __ move(addr, cc->at(1));
1043 len.load_item_force(cc->at(2));
1044
1045 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1046 __ move(result_reg, result);
1047
1048 break;
1049 }
1050 default: {
1051 ShouldNotReachHere();
1052 }
1053 }
1054}
1055
1056void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1057 Unimplemented();
1058}
1059
1060void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1061 assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support");
1062
1063 // Make all state_for calls early since they can emit code
1064 LIR_Opr result = rlock_result(x);
1065
1066 LIRItem a(x->argument_at(0), this); // Object
1067 LIRItem aOffset(x->argument_at(1), this); // long
1068 LIRItem b(x->argument_at(2), this); // Object
1069 LIRItem bOffset(x->argument_at(3), this); // long
1070 LIRItem length(x->argument_at(4), this); // int
1071 LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int
1072
1073 a.load_item();
1074 aOffset.load_nonconstant();
1075 b.load_item();
1076 bOffset.load_nonconstant();
1077
1078 long constant_aOffset = 0;
1079 LIR_Opr result_aOffset = aOffset.result();
1080 if (result_aOffset->is_constant()) {
1081 constant_aOffset = result_aOffset->as_jlong();
1082 result_aOffset = LIR_OprFact::illegalOpr;
1083 }
1084 LIR_Opr result_a = access_resolve(ACCESS_READ, a.result());
1085
1086 long constant_bOffset = 0;
1087 LIR_Opr result_bOffset = bOffset.result();
1088 if (result_bOffset->is_constant()) {
1089 constant_bOffset = result_bOffset->as_jlong();
1090 result_bOffset = LIR_OprFact::illegalOpr;
1091 }
1092 LIR_Opr result_b = access_resolve(ACCESS_READ, b.result());
1093
1094#ifndef _LP64
1095 result_a = new_register(T_INT);
1096 __ convert(Bytecodes::_l2i, a.result(), result_a);
1097 result_b = new_register(T_INT);
1098 __ convert(Bytecodes::_l2i, b.result(), result_b);
1099#endif
1100
1101
1102 LIR_Address* addr_a = new LIR_Address(result_a,
1103 result_aOffset,
1104 constant_aOffset,
1105 T_BYTE);
1106
1107 LIR_Address* addr_b = new LIR_Address(result_b,
1108 result_bOffset,
1109 constant_bOffset,
1110 T_BYTE);
1111
1112 BasicTypeList signature(4);
1113 signature.append(T_ADDRESS);
1114 signature.append(T_ADDRESS);
1115 signature.append(T_INT);
1116 signature.append(T_INT);
1117 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1118 const LIR_Opr result_reg = result_register_for(x->type());
1119
1120 LIR_Opr ptr_addr_a = new_pointer_register();
1121 __ leal(LIR_OprFact::address(addr_a), ptr_addr_a);
1122
1123 LIR_Opr ptr_addr_b = new_pointer_register();
1124 __ leal(LIR_OprFact::address(addr_b), ptr_addr_b);
1125
1126 __ move(ptr_addr_a, cc->at(0));
1127 __ move(ptr_addr_b, cc->at(1));
1128 length.load_item_force(cc->at(2));
1129 log2ArrayIndexScale.load_item_force(cc->at(3));
1130
1131 __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args());
1132 __ move(result_reg, result);
1133}
1134
1135// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1136// _i2b, _i2c, _i2s
1137LIR_Opr fixed_register_for(BasicType type) {
1138 switch (type) {
1139 case T_FLOAT: return FrameMap::fpu0_float_opr;
1140 case T_DOUBLE: return FrameMap::fpu0_double_opr;
1141 case T_INT: return FrameMap::rax_opr;
1142 case T_LONG: return FrameMap::long0_opr;
1143 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1144 }
1145}
1146
1147void LIRGenerator::do_Convert(Convert* x) {
1148 // flags that vary for the different operations and different SSE-settings
1149 bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1150
1151 switch (x->op()) {
1152 case Bytecodes::_i2l: // fall through
1153 case Bytecodes::_l2i: // fall through
1154 case Bytecodes::_i2b: // fall through
1155 case Bytecodes::_i2c: // fall through
1156 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1157
1158 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
1159 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1160 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
1161 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1162 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1163 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1164 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1165 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1166 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1167 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1168 default: ShouldNotReachHere();
1169 }
1170
1171 LIRItem value(x->value(), this);
1172 value.load_item();
1173 LIR_Opr input = value.result();
1174 LIR_Opr result = rlock(x);
1175
1176 // arguments of lir_convert
1177 LIR_Opr conv_input = input;
1178 LIR_Opr conv_result = result;
1179 ConversionStub* stub = NULL;
1180
1181 if (fixed_input) {
1182 conv_input = fixed_register_for(input->type());
1183 __ move(input, conv_input);
1184 }
1185
1186 assert(fixed_result == false || round_result == false, "cannot set both");
1187 if (fixed_result) {
1188 conv_result = fixed_register_for(result->type());
1189 } else if (round_result) {
1190 result = new_register(result->type());
1191 set_vreg_flag(result, must_start_in_memory);
1192 }
1193
1194 if (needs_stub) {
1195 stub = new ConversionStub(x->op(), conv_input, conv_result);
1196 }
1197
1198 __ convert(x->op(), conv_input, conv_result, stub);
1199
1200 if (result != conv_result) {
1201 __ move(conv_result, result);
1202 }
1203
1204 assert(result->is_virtual(), "result must be virtual register");
1205 set_result(x, result);
1206}
1207
1208
1209void LIRGenerator::do_NewInstance(NewInstance* x) {
1210 print_if_not_loaded(x);
1211
1212 CodeEmitInfo* info = state_for(x, x->state());
1213 LIR_Opr reg = result_register_for(x->type());
1214 new_instance(reg, x->klass(), x->is_unresolved(),
1215 FrameMap::rcx_oop_opr,
1216 FrameMap::rdi_oop_opr,
1217 FrameMap::rsi_oop_opr,
1218 LIR_OprFact::illegalOpr,
1219 FrameMap::rdx_metadata_opr, info);
1220 LIR_Opr result = rlock_result(x);
1221 __ move(reg, result);
1222}
1223
1224
1225void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1226 CodeEmitInfo* info = state_for(x, x->state());
1227
1228 LIRItem length(x->length(), this);
1229 length.load_item_force(FrameMap::rbx_opr);
1230
1231 LIR_Opr reg = result_register_for(x->type());
1232 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1233 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1234 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1235 LIR_Opr tmp4 = reg;
1236 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1237 LIR_Opr len = length.result();
1238 BasicType elem_type = x->elt_type();
1239
1240 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1241
1242 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1243 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1244
1245 LIR_Opr result = rlock_result(x);
1246 __ move(reg, result);
1247}
1248
1249
1250void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1251 LIRItem length(x->length(), this);
1252 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1253 // and therefore provide the state before the parameters have been consumed
1254 CodeEmitInfo* patching_info = NULL;
1255 if (!x->klass()->is_loaded() || PatchALot) {
1256 patching_info = state_for(x, x->state_before());
1257 }
1258
1259 CodeEmitInfo* info = state_for(x, x->state());
1260
1261 const LIR_Opr reg = result_register_for(x->type());
1262 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1263 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1264 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1265 LIR_Opr tmp4 = reg;
1266 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1267
1268 length.load_item_force(FrameMap::rbx_opr);
1269 LIR_Opr len = length.result();
1270
1271 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1272 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1273 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1274 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1275 }
1276 klass2reg_with_patching(klass_reg, obj, patching_info);
1277 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1278
1279 LIR_Opr result = rlock_result(x);
1280 __ move(reg, result);
1281}
1282
1283
1284void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1285 Values* dims = x->dims();
1286 int i = dims->length();
1287 LIRItemList* items = new LIRItemList(i, i, NULL);
1288 while (i-- > 0) {
1289 LIRItem* size = new LIRItem(dims->at(i), this);
1290 items->at_put(i, size);
1291 }
1292
1293 // Evaluate state_for early since it may emit code.
1294 CodeEmitInfo* patching_info = NULL;
1295 if (!x->klass()->is_loaded() || PatchALot) {
1296 patching_info = state_for(x, x->state_before());
1297
1298 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1299 // clone all handlers (NOTE: Usually this is handled transparently
1300 // by the CodeEmitInfo cloning logic in CodeStub constructors but
1301 // is done explicitly here because a stub isn't being used).
1302 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1303 }
1304 CodeEmitInfo* info = state_for(x, x->state());
1305
1306 i = dims->length();
1307 while (i-- > 0) {
1308 LIRItem* size = items->at(i);
1309 size->load_nonconstant();
1310
1311 store_stack_parameter(size->result(), in_ByteSize(i*4));
1312 }
1313
1314 LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1315 klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1316
1317 LIR_Opr rank = FrameMap::rbx_opr;
1318 __ move(LIR_OprFact::intConst(x->rank()), rank);
1319 LIR_Opr varargs = FrameMap::rcx_opr;
1320 __ move(FrameMap::rsp_opr, varargs);
1321 LIR_OprList* args = new LIR_OprList(3);
1322 args->append(klass_reg);
1323 args->append(rank);
1324 args->append(varargs);
1325 LIR_Opr reg = result_register_for(x->type());
1326 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1327 LIR_OprFact::illegalOpr,
1328 reg, args, info);
1329
1330 LIR_Opr result = rlock_result(x);
1331 __ move(reg, result);
1332}
1333
1334
1335void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1336 // nothing to do for now
1337}
1338
1339
1340void LIRGenerator::do_CheckCast(CheckCast* x) {
1341 LIRItem obj(x->obj(), this);
1342
1343 CodeEmitInfo* patching_info = NULL;
1344 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1345 // must do this before locking the destination register as an oop register,
1346 // and before the obj is loaded (the latter is for deoptimization)
1347 patching_info = state_for(x, x->state_before());
1348 }
1349 obj.load_item();
1350
1351 // info for exceptions
1352 CodeEmitInfo* info_for_exception =
1353 (x->needs_exception_state() ? state_for(x) :
1354 state_for(x, x->state_before(), true /*ignore_xhandler*/));
1355
1356 CodeStub* stub;
1357 if (x->is_incompatible_class_change_check()) {
1358 assert(patching_info == NULL, "can't patch this");
1359 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1360 } else if (x->is_invokespecial_receiver_check()) {
1361 assert(patching_info == NULL, "can't patch this");
1362 stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none);
1363 } else {
1364 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1365 }
1366 LIR_Opr reg = rlock_result(x);
1367 LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1368 if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1369 tmp3 = new_register(objectType);
1370 }
1371 __ checkcast(reg, obj.result(), x->klass(),
1372 new_register(objectType), new_register(objectType), tmp3,
1373 x->direct_compare(), info_for_exception, patching_info, stub,
1374 x->profiled_method(), x->profiled_bci());
1375}
1376
1377
1378void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1379 LIRItem obj(x->obj(), this);
1380
1381 // result and test object may not be in same register
1382 LIR_Opr reg = rlock_result(x);
1383 CodeEmitInfo* patching_info = NULL;
1384 if ((!x->klass()->is_loaded() || PatchALot)) {
1385 // must do this before locking the destination register as an oop register
1386 patching_info = state_for(x, x->state_before());
1387 }
1388 obj.load_item();
1389 LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1390 if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1391 tmp3 = new_register(objectType);
1392 }
1393 __ instanceof(reg, obj.result(), x->klass(),
1394 new_register(objectType), new_register(objectType), tmp3,
1395 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1396}
1397
1398
1399void LIRGenerator::do_If(If* x) {
1400 assert(x->number_of_sux() == 2, "inconsistency");
1401 ValueTag tag = x->x()->type()->tag();
1402 bool is_safepoint = x->is_safepoint();
1403
1404 If::Condition cond = x->cond();
1405
1406 LIRItem xitem(x->x(), this);
1407 LIRItem yitem(x->y(), this);
1408 LIRItem* xin = &xitem;
1409 LIRItem* yin = &yitem;
1410
1411 if (tag == longTag) {
1412 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1413 // mirror for other conditions
1414 if (cond == If::gtr || cond == If::leq) {
1415 cond = Instruction::mirror(cond);
1416 xin = &yitem;
1417 yin = &xitem;
1418 }
1419 xin->set_destroys_register();
1420 }
1421 xin->load_item();
1422 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1423 // inline long zero
1424 yin->dont_load_item();
1425 } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1426 // longs cannot handle constants at right side
1427 yin->load_item();
1428 } else {
1429 yin->dont_load_item();
1430 }
1431
1432 LIR_Opr left = xin->result();
1433 LIR_Opr right = yin->result();
1434
1435 set_no_result(x);
1436
1437 // add safepoint before generating condition code so it can be recomputed
1438 if (x->is_safepoint()) {
1439 // increment backedge counter if needed
1440 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1441 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1442 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1443 }
1444
1445 __ cmp(lir_cond(cond), left, right);
1446 // Generate branch profiling. Profiling code doesn't kill flags.
1447 profile_branch(x, cond);
1448 move_to_phi(x->state());
1449 if (x->x()->type()->is_float_kind()) {
1450 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1451 } else {
1452 __ branch(lir_cond(cond), right->type(), x->tsux());
1453 }
1454 assert(x->default_sux() == x->fsux(), "wrong destination above");
1455 __ jump(x->default_sux());
1456}
1457
1458
1459LIR_Opr LIRGenerator::getThreadPointer() {
1460#ifdef _LP64
1461 return FrameMap::as_pointer_opr(r15_thread);
1462#else
1463 LIR_Opr result = new_register(T_INT);
1464 __ get_thread(result);
1465 return result;
1466#endif //
1467}
1468
1469void LIRGenerator::trace_block_entry(BlockBegin* block) {
1470 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1471 LIR_OprList* args = new LIR_OprList();
1472 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1473 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1474}
1475
1476
1477void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1478 CodeEmitInfo* info) {
1479 if (address->type() == T_LONG) {
1480 address = new LIR_Address(address->base(),
1481 address->index(), address->scale(),
1482 address->disp(), T_DOUBLE);
1483 // Transfer the value atomically by using FP moves. This means
1484 // the value has to be moved between CPU and FPU registers. It
1485 // always has to be moved through spill slot since there's no
1486 // quick way to pack the value into an SSE register.
1487 LIR_Opr temp_double = new_register(T_DOUBLE);
1488 LIR_Opr spill = new_register(T_LONG);
1489 set_vreg_flag(spill, must_start_in_memory);
1490 __ move(value, spill);
1491 __ volatile_move(spill, temp_double, T_LONG);
1492 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1493 } else {
1494 __ store(value, address, info);
1495 }
1496}
1497
1498void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1499 CodeEmitInfo* info) {
1500 if (address->type() == T_LONG) {
1501 address = new LIR_Address(address->base(),
1502 address->index(), address->scale(),
1503 address->disp(), T_DOUBLE);
1504 // Transfer the value atomically by using FP moves. This means
1505 // the value has to be moved between CPU and FPU registers. In
1506 // SSE0 and SSE1 mode it has to be moved through spill slot but in
1507 // SSE2+ mode it can be moved directly.
1508 LIR_Opr temp_double = new_register(T_DOUBLE);
1509 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1510 __ volatile_move(temp_double, result, T_LONG);
1511 if (UseSSE < 2) {
1512 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1513 set_vreg_flag(result, must_start_in_memory);
1514 }
1515 } else {
1516 __ load(address, result, info);
1517 }
1518}
1519