| 1 | /* |
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "c1/c1_CFGPrinter.hpp" |
| 27 | #include "c1/c1_CodeStubs.hpp" |
| 28 | #include "c1/c1_Compilation.hpp" |
| 29 | #include "c1/c1_FrameMap.hpp" |
| 30 | #include "c1/c1_IR.hpp" |
| 31 | #include "c1/c1_LIRGenerator.hpp" |
| 32 | #include "c1/c1_LinearScan.hpp" |
| 33 | #include "c1/c1_ValueStack.hpp" |
| 34 | #include "code/vmreg.inline.hpp" |
| 35 | #include "runtime/timerTrace.hpp" |
| 36 | #include "utilities/bitMap.inline.hpp" |
| 37 | |
| 38 | #ifndef PRODUCT |
| 39 | |
| 40 | static LinearScanStatistic _stat_before_alloc; |
| 41 | static LinearScanStatistic _stat_after_asign; |
| 42 | static LinearScanStatistic _stat_final; |
| 43 | |
| 44 | static LinearScanTimers _total_timer; |
| 45 | |
| 46 | // helper macro for short definition of timer |
| 47 | #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose); |
| 48 | |
| 49 | // helper macro for short definition of trace-output inside code |
| 50 | #define TRACE_LINEAR_SCAN(level, code) \ |
| 51 | if (TraceLinearScanLevel >= level) { \ |
| 52 | code; \ |
| 53 | } |
| 54 | |
| 55 | #else |
| 56 | |
| 57 | #define TIME_LINEAR_SCAN(timer_name) |
| 58 | #define TRACE_LINEAR_SCAN(level, code) |
| 59 | |
| 60 | #endif |
| 61 | |
| 62 | // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words |
| 63 | #ifdef _LP64 |
| 64 | static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2, 1, 2, 1, -1}; |
| 65 | #else |
| 66 | static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1}; |
| 67 | #endif |
| 68 | |
| 69 | |
| 70 | // Implementation of LinearScan |
| 71 | |
| 72 | LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map) |
| 73 | : _compilation(ir->compilation()) |
| 74 | , _ir(ir) |
| 75 | , _gen(gen) |
| 76 | , _frame_map(frame_map) |
| 77 | , _cached_blocks(*ir->linear_scan_order()) |
| 78 | , _num_virtual_regs(gen->max_virtual_register_number()) |
| 79 | , _has_fpu_registers(false) |
| 80 | , _num_calls(-1) |
| 81 | , _max_spills(0) |
| 82 | , _unused_spill_slot(-1) |
| 83 | , _intervals(0) // initialized later with correct length |
| 84 | , _new_intervals_from_allocation(NULL) |
| 85 | , _sorted_intervals(NULL) |
| 86 | , _needs_full_resort(false) |
| 87 | , _lir_ops(0) // initialized later with correct length |
| 88 | , _block_of_op(0) // initialized later with correct length |
| 89 | , _has_info(0) |
| 90 | , _has_call(0) |
| 91 | , _interval_in_loop(0) // initialized later with correct length |
| 92 | , _scope_value_cache(0) // initialized later with correct length |
| 93 | #ifdef X86 |
| 94 | , _fpu_stack_allocator(NULL) |
| 95 | #endif |
| 96 | { |
| 97 | assert(this->ir() != NULL, "check if valid" ); |
| 98 | assert(this->compilation() != NULL, "check if valid" ); |
| 99 | assert(this->gen() != NULL, "check if valid" ); |
| 100 | assert(this->frame_map() != NULL, "check if valid" ); |
| 101 | } |
| 102 | |
| 103 | |
| 104 | // ********** functions for converting LIR-Operands to register numbers |
| 105 | // |
| 106 | // Emulate a flat register file comprising physical integer registers, |
| 107 | // physical floating-point registers and virtual registers, in that order. |
| 108 | // Virtual registers already have appropriate numbers, since V0 is |
| 109 | // the number of physical registers. |
| 110 | // Returns -1 for hi word if opr is a single word operand. |
| 111 | // |
| 112 | // Note: the inverse operation (calculating an operand for register numbers) |
| 113 | // is done in calc_operand_for_interval() |
| 114 | |
| 115 | int LinearScan::reg_num(LIR_Opr opr) { |
| 116 | assert(opr->is_register(), "should not call this otherwise" ); |
| 117 | |
| 118 | if (opr->is_virtual_register()) { |
| 119 | assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number" ); |
| 120 | return opr->vreg_number(); |
| 121 | } else if (opr->is_single_cpu()) { |
| 122 | return opr->cpu_regnr(); |
| 123 | } else if (opr->is_double_cpu()) { |
| 124 | return opr->cpu_regnrLo(); |
| 125 | #ifdef X86 |
| 126 | } else if (opr->is_single_xmm()) { |
| 127 | return opr->fpu_regnr() + pd_first_xmm_reg; |
| 128 | } else if (opr->is_double_xmm()) { |
| 129 | return opr->fpu_regnrLo() + pd_first_xmm_reg; |
| 130 | #endif |
| 131 | } else if (opr->is_single_fpu()) { |
| 132 | return opr->fpu_regnr() + pd_first_fpu_reg; |
| 133 | } else if (opr->is_double_fpu()) { |
| 134 | return opr->fpu_regnrLo() + pd_first_fpu_reg; |
| 135 | } else { |
| 136 | ShouldNotReachHere(); |
| 137 | return -1; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | int LinearScan::reg_numHi(LIR_Opr opr) { |
| 142 | assert(opr->is_register(), "should not call this otherwise" ); |
| 143 | |
| 144 | if (opr->is_virtual_register()) { |
| 145 | return -1; |
| 146 | } else if (opr->is_single_cpu()) { |
| 147 | return -1; |
| 148 | } else if (opr->is_double_cpu()) { |
| 149 | return opr->cpu_regnrHi(); |
| 150 | #ifdef X86 |
| 151 | } else if (opr->is_single_xmm()) { |
| 152 | return -1; |
| 153 | } else if (opr->is_double_xmm()) { |
| 154 | return -1; |
| 155 | #endif |
| 156 | } else if (opr->is_single_fpu()) { |
| 157 | return -1; |
| 158 | } else if (opr->is_double_fpu()) { |
| 159 | return opr->fpu_regnrHi() + pd_first_fpu_reg; |
| 160 | } else { |
| 161 | ShouldNotReachHere(); |
| 162 | return -1; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | |
| 167 | // ********** functions for classification of intervals |
| 168 | |
| 169 | bool LinearScan::is_precolored_interval(const Interval* i) { |
| 170 | return i->reg_num() < LinearScan::nof_regs; |
| 171 | } |
| 172 | |
| 173 | bool LinearScan::is_virtual_interval(const Interval* i) { |
| 174 | return i->reg_num() >= LIR_OprDesc::vreg_base; |
| 175 | } |
| 176 | |
| 177 | bool LinearScan::is_precolored_cpu_interval(const Interval* i) { |
| 178 | return i->reg_num() < LinearScan::nof_cpu_regs; |
| 179 | } |
| 180 | |
| 181 | bool LinearScan::is_virtual_cpu_interval(const Interval* i) { |
| 182 | #if defined(__SOFTFP__) || defined(E500V2) |
| 183 | return i->reg_num() >= LIR_OprDesc::vreg_base; |
| 184 | #else |
| 185 | return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE); |
| 186 | #endif // __SOFTFP__ or E500V2 |
| 187 | } |
| 188 | |
| 189 | bool LinearScan::is_precolored_fpu_interval(const Interval* i) { |
| 190 | return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs; |
| 191 | } |
| 192 | |
| 193 | bool LinearScan::is_virtual_fpu_interval(const Interval* i) { |
| 194 | #if defined(__SOFTFP__) || defined(E500V2) |
| 195 | return false; |
| 196 | #else |
| 197 | return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE); |
| 198 | #endif // __SOFTFP__ or E500V2 |
| 199 | } |
| 200 | |
| 201 | bool LinearScan::is_in_fpu_register(const Interval* i) { |
| 202 | // fixed intervals not needed for FPU stack allocation |
| 203 | return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg; |
| 204 | } |
| 205 | |
| 206 | bool LinearScan::is_oop_interval(const Interval* i) { |
| 207 | // fixed intervals never contain oops |
| 208 | return i->reg_num() >= nof_regs && i->type() == T_OBJECT; |
| 209 | } |
| 210 | |
| 211 | |
| 212 | // ********** General helper functions |
| 213 | |
| 214 | // compute next unused stack index that can be used for spilling |
| 215 | int LinearScan::allocate_spill_slot(bool double_word) { |
| 216 | int spill_slot; |
| 217 | if (double_word) { |
| 218 | if ((_max_spills & 1) == 1) { |
| 219 | // alignment of double-word values |
| 220 | // the hole because of the alignment is filled with the next single-word value |
| 221 | assert(_unused_spill_slot == -1, "wasting a spill slot" ); |
| 222 | _unused_spill_slot = _max_spills; |
| 223 | _max_spills++; |
| 224 | } |
| 225 | spill_slot = _max_spills; |
| 226 | _max_spills += 2; |
| 227 | |
| 228 | } else if (_unused_spill_slot != -1) { |
| 229 | // re-use hole that was the result of a previous double-word alignment |
| 230 | spill_slot = _unused_spill_slot; |
| 231 | _unused_spill_slot = -1; |
| 232 | |
| 233 | } else { |
| 234 | spill_slot = _max_spills; |
| 235 | _max_spills++; |
| 236 | } |
| 237 | |
| 238 | int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount(); |
| 239 | |
| 240 | // the class OopMapValue uses only 11 bits for storing the name of the |
| 241 | // oop location. So a stack slot bigger than 2^11 leads to an overflow |
| 242 | // that is not reported in product builds. Prevent this by checking the |
| 243 | // spill slot here (altough this value and the later used location name |
| 244 | // are slightly different) |
| 245 | if (result > 2000) { |
| 246 | bailout("too many stack slots used" ); |
| 247 | } |
| 248 | |
| 249 | return result; |
| 250 | } |
| 251 | |
| 252 | void LinearScan::assign_spill_slot(Interval* it) { |
| 253 | // assign the canonical spill slot of the parent (if a part of the interval |
| 254 | // is already spilled) or allocate a new spill slot |
| 255 | if (it->canonical_spill_slot() >= 0) { |
| 256 | it->assign_reg(it->canonical_spill_slot()); |
| 257 | } else { |
| 258 | int spill = allocate_spill_slot(type2spill_size[it->type()] == 2); |
| 259 | it->set_canonical_spill_slot(spill); |
| 260 | it->assign_reg(spill); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | void LinearScan::propagate_spill_slots() { |
| 265 | if (!frame_map()->finalize_frame(max_spills())) { |
| 266 | bailout("frame too large" ); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | // create a new interval with a predefined reg_num |
| 271 | // (only used for parent intervals that are created during the building phase) |
| 272 | Interval* LinearScan::create_interval(int reg_num) { |
| 273 | assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval" ); |
| 274 | |
| 275 | Interval* interval = new Interval(reg_num); |
| 276 | _intervals.at_put(reg_num, interval); |
| 277 | |
| 278 | // assign register number for precolored intervals |
| 279 | if (reg_num < LIR_OprDesc::vreg_base) { |
| 280 | interval->assign_reg(reg_num); |
| 281 | } |
| 282 | return interval; |
| 283 | } |
| 284 | |
| 285 | // assign a new reg_num to the interval and append it to the list of intervals |
| 286 | // (only used for child intervals that are created during register allocation) |
| 287 | void LinearScan::append_interval(Interval* it) { |
| 288 | it->set_reg_num(_intervals.length()); |
| 289 | _intervals.append(it); |
| 290 | IntervalList* new_intervals = _new_intervals_from_allocation; |
| 291 | if (new_intervals == NULL) { |
| 292 | new_intervals = _new_intervals_from_allocation = new IntervalList(); |
| 293 | } |
| 294 | new_intervals->append(it); |
| 295 | } |
| 296 | |
| 297 | // copy the vreg-flags if an interval is split |
| 298 | void LinearScan::copy_register_flags(Interval* from, Interval* to) { |
| 299 | if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) { |
| 300 | gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg); |
| 301 | } |
| 302 | if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) { |
| 303 | gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved); |
| 304 | } |
| 305 | |
| 306 | // Note: do not copy the must_start_in_memory flag because it is not necessary for child |
| 307 | // intervals (only the very beginning of the interval must be in memory) |
| 308 | } |
| 309 | |
| 310 | |
| 311 | // ********** spill move optimization |
| 312 | // eliminate moves from register to stack if stack slot is known to be correct |
| 313 | |
| 314 | // called during building of intervals |
| 315 | void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) { |
| 316 | assert(interval->is_split_parent(), "can only be called for split parents" ); |
| 317 | |
| 318 | switch (interval->spill_state()) { |
| 319 | case noDefinitionFound: |
| 320 | assert(interval->spill_definition_pos() == -1, "must no be set before" ); |
| 321 | interval->set_spill_definition_pos(def_pos); |
| 322 | interval->set_spill_state(oneDefinitionFound); |
| 323 | break; |
| 324 | |
| 325 | case oneDefinitionFound: |
| 326 | assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created" ); |
| 327 | if (def_pos < interval->spill_definition_pos() - 2) { |
| 328 | // second definition found, so no spill optimization possible for this interval |
| 329 | interval->set_spill_state(noOptimization); |
| 330 | } else { |
| 331 | // two consecutive definitions (because of two-operand LIR form) |
| 332 | assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal" ); |
| 333 | } |
| 334 | break; |
| 335 | |
| 336 | case noOptimization: |
| 337 | // nothing to do |
| 338 | break; |
| 339 | |
| 340 | default: |
| 341 | assert(false, "other states not allowed at this time" ); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | // called during register allocation |
| 346 | void LinearScan::change_spill_state(Interval* interval, int spill_pos) { |
| 347 | switch (interval->spill_state()) { |
| 348 | case oneDefinitionFound: { |
| 349 | int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth(); |
| 350 | int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth(); |
| 351 | |
| 352 | if (def_loop_depth < spill_loop_depth) { |
| 353 | // the loop depth of the spilling position is higher then the loop depth |
| 354 | // at the definition of the interval -> move write to memory out of loop |
| 355 | // by storing at definitin of the interval |
| 356 | interval->set_spill_state(storeAtDefinition); |
| 357 | } else { |
| 358 | // the interval is currently spilled only once, so for now there is no |
| 359 | // reason to store the interval at the definition |
| 360 | interval->set_spill_state(oneMoveInserted); |
| 361 | } |
| 362 | break; |
| 363 | } |
| 364 | |
| 365 | case oneMoveInserted: { |
| 366 | // the interval is spilled more then once, so it is better to store it to |
| 367 | // memory at the definition |
| 368 | interval->set_spill_state(storeAtDefinition); |
| 369 | break; |
| 370 | } |
| 371 | |
| 372 | case storeAtDefinition: |
| 373 | case startInMemory: |
| 374 | case noOptimization: |
| 375 | case noDefinitionFound: |
| 376 | // nothing to do |
| 377 | break; |
| 378 | |
| 379 | default: |
| 380 | assert(false, "other states not allowed at this time" ); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | |
| 385 | bool LinearScan::must_store_at_definition(const Interval* i) { |
| 386 | return i->is_split_parent() && i->spill_state() == storeAtDefinition; |
| 387 | } |
| 388 | |
| 389 | // called once before asignment of register numbers |
| 390 | void LinearScan::eliminate_spill_moves() { |
| 391 | TIME_LINEAR_SCAN(timer_eliminate_spill_moves); |
| 392 | TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves" )); |
| 393 | |
| 394 | // collect all intervals that must be stored after their definion. |
| 395 | // the list is sorted by Interval::spill_definition_pos |
| 396 | Interval* interval; |
| 397 | Interval* temp_list; |
| 398 | create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL); |
| 399 | |
| 400 | #ifdef ASSERT |
| 401 | Interval* prev = NULL; |
| 402 | Interval* temp = interval; |
| 403 | while (temp != Interval::end()) { |
| 404 | assert(temp->spill_definition_pos() > 0, "invalid spill definition pos" ); |
| 405 | if (prev != NULL) { |
| 406 | assert(temp->from() >= prev->from(), "intervals not sorted" ); |
| 407 | assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos" ); |
| 408 | } |
| 409 | |
| 410 | assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned" ); |
| 411 | assert(temp->spill_definition_pos() >= temp->from(), "invalid order" ); |
| 412 | assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized" ); |
| 413 | |
| 414 | TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d" , temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos())); |
| 415 | |
| 416 | temp = temp->next(); |
| 417 | } |
| 418 | #endif |
| 419 | |
| 420 | LIR_InsertionBuffer insertion_buffer; |
| 421 | int num_blocks = block_count(); |
| 422 | for (int i = 0; i < num_blocks; i++) { |
| 423 | BlockBegin* block = block_at(i); |
| 424 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 425 | int num_inst = instructions->length(); |
| 426 | bool has_new = false; |
| 427 | |
| 428 | // iterate all instructions of the block. skip the first because it is always a label |
| 429 | for (int j = 1; j < num_inst; j++) { |
| 430 | LIR_Op* op = instructions->at(j); |
| 431 | int op_id = op->id(); |
| 432 | |
| 433 | if (op_id == -1) { |
| 434 | // remove move from register to stack if the stack slot is guaranteed to be correct. |
| 435 | // only moves that have been inserted by LinearScan can be removed. |
| 436 | assert(op->code() == lir_move, "only moves can have a op_id of -1" ); |
| 437 | assert(op->as_Op1() != NULL, "move must be LIR_Op1" ); |
| 438 | assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers" ); |
| 439 | |
| 440 | LIR_Op1* op1 = (LIR_Op1*)op; |
| 441 | Interval* interval = interval_at(op1->result_opr()->vreg_number()); |
| 442 | |
| 443 | if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) { |
| 444 | // move target is a stack slot that is always correct, so eliminate instruction |
| 445 | TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d" , op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number())); |
| 446 | instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num |
| 447 | } |
| 448 | |
| 449 | } else { |
| 450 | // insert move from register to stack just after the beginning of the interval |
| 451 | assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order" ); |
| 452 | assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval" ); |
| 453 | |
| 454 | while (interval != Interval::end() && interval->spill_definition_pos() == op_id) { |
| 455 | if (!has_new) { |
| 456 | // prepare insertion buffer (appended when all instructions of the block are processed) |
| 457 | insertion_buffer.init(block->lir()); |
| 458 | has_new = true; |
| 459 | } |
| 460 | |
| 461 | LIR_Opr from_opr = operand_for_interval(interval); |
| 462 | LIR_Opr to_opr = canonical_spill_opr(interval); |
| 463 | assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register" ); |
| 464 | assert(to_opr->is_stack(), "to operand must be a stack slot" ); |
| 465 | |
| 466 | insertion_buffer.move(j, from_opr, to_opr); |
| 467 | TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d" , interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id)); |
| 468 | |
| 469 | interval = interval->next(); |
| 470 | } |
| 471 | } |
| 472 | } // end of instruction iteration |
| 473 | |
| 474 | if (has_new) { |
| 475 | block->lir()->append(&insertion_buffer); |
| 476 | } |
| 477 | } // end of block iteration |
| 478 | |
| 479 | assert(interval == Interval::end(), "missed an interval" ); |
| 480 | } |
| 481 | |
| 482 | |
| 483 | // ********** Phase 1: number all instructions in all blocks |
| 484 | // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan. |
| 485 | |
| 486 | void LinearScan::number_instructions() { |
| 487 | { |
| 488 | // dummy-timer to measure the cost of the timer itself |
| 489 | // (this time is then subtracted from all other timers to get the real value) |
| 490 | TIME_LINEAR_SCAN(timer_do_nothing); |
| 491 | } |
| 492 | TIME_LINEAR_SCAN(timer_number_instructions); |
| 493 | |
| 494 | // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node. |
| 495 | int num_blocks = block_count(); |
| 496 | int num_instructions = 0; |
| 497 | int i; |
| 498 | for (i = 0; i < num_blocks; i++) { |
| 499 | num_instructions += block_at(i)->lir()->instructions_list()->length(); |
| 500 | } |
| 501 | |
| 502 | // initialize with correct length |
| 503 | _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL); |
| 504 | _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL); |
| 505 | |
| 506 | int op_id = 0; |
| 507 | int idx = 0; |
| 508 | |
| 509 | for (i = 0; i < num_blocks; i++) { |
| 510 | BlockBegin* block = block_at(i); |
| 511 | block->set_first_lir_instruction_id(op_id); |
| 512 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 513 | |
| 514 | int num_inst = instructions->length(); |
| 515 | for (int j = 0; j < num_inst; j++) { |
| 516 | LIR_Op* op = instructions->at(j); |
| 517 | op->set_id(op_id); |
| 518 | |
| 519 | _lir_ops.at_put(idx, op); |
| 520 | _block_of_op.at_put(idx, block); |
| 521 | assert(lir_op_with_id(op_id) == op, "must match" ); |
| 522 | |
| 523 | idx++; |
| 524 | op_id += 2; // numbering of lir_ops by two |
| 525 | } |
| 526 | block->set_last_lir_instruction_id(op_id - 2); |
| 527 | } |
| 528 | assert(idx == num_instructions, "must match" ); |
| 529 | assert(idx * 2 == op_id, "must match" ); |
| 530 | |
| 531 | _has_call.initialize(num_instructions); |
| 532 | _has_info.initialize(num_instructions); |
| 533 | } |
| 534 | |
| 535 | |
| 536 | // ********** Phase 2: compute local live sets separately for each block |
| 537 | // (sets live_gen and live_kill for each block) |
| 538 | |
| 539 | void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) { |
| 540 | LIR_Opr opr = value->operand(); |
| 541 | Constant* con = value->as_Constant(); |
| 542 | |
| 543 | // check some asumptions about debug information |
| 544 | assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type" ); |
| 545 | assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands" ); |
| 546 | assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands" ); |
| 547 | |
| 548 | if ((con == NULL || con->is_pinned()) && opr->is_register()) { |
| 549 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 550 | int reg = opr->vreg_number(); |
| 551 | if (!live_kill.at(reg)) { |
| 552 | live_gen.set_bit(reg); |
| 553 | TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d" , value->type()->tchar(), value->id(), op->id(), reg)); |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | |
| 559 | void LinearScan::compute_local_live_sets() { |
| 560 | TIME_LINEAR_SCAN(timer_compute_local_live_sets); |
| 561 | |
| 562 | int num_blocks = block_count(); |
| 563 | int live_size = live_set_size(); |
| 564 | bool local_has_fpu_registers = false; |
| 565 | int local_num_calls = 0; |
| 566 | LIR_OpVisitState visitor; |
| 567 | |
| 568 | BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops()); |
| 569 | |
| 570 | // iterate all blocks |
| 571 | for (int i = 0; i < num_blocks; i++) { |
| 572 | BlockBegin* block = block_at(i); |
| 573 | |
| 574 | ResourceBitMap live_gen(live_size); |
| 575 | ResourceBitMap live_kill(live_size); |
| 576 | |
| 577 | if (block->is_set(BlockBegin::exception_entry_flag)) { |
| 578 | // Phi functions at the begin of an exception handler are |
| 579 | // implicitly defined (= killed) at the beginning of the block. |
| 580 | for_each_phi_fun(block, phi, |
| 581 | if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); } |
| 582 | ); |
| 583 | } |
| 584 | |
| 585 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 586 | int num_inst = instructions->length(); |
| 587 | |
| 588 | // iterate all instructions of the block. skip the first because it is always a label |
| 589 | assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label" ); |
| 590 | for (int j = 1; j < num_inst; j++) { |
| 591 | LIR_Op* op = instructions->at(j); |
| 592 | |
| 593 | // visit operation to collect all operands |
| 594 | visitor.visit(op); |
| 595 | |
| 596 | if (visitor.has_call()) { |
| 597 | _has_call.set_bit(op->id() >> 1); |
| 598 | local_num_calls++; |
| 599 | } |
| 600 | if (visitor.info_count() > 0) { |
| 601 | _has_info.set_bit(op->id() >> 1); |
| 602 | } |
| 603 | |
| 604 | // iterate input operands of instruction |
| 605 | int k, n, reg; |
| 606 | n = visitor.opr_count(LIR_OpVisitState::inputMode); |
| 607 | for (k = 0; k < n; k++) { |
| 608 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); |
| 609 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 610 | |
| 611 | if (opr->is_virtual_register()) { |
| 612 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 613 | reg = opr->vreg_number(); |
| 614 | if (!live_kill.at(reg)) { |
| 615 | live_gen.set_bit(reg); |
| 616 | TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d" , reg, op->id())); |
| 617 | } |
| 618 | if (block->loop_index() >= 0) { |
| 619 | local_interval_in_loop.set_bit(reg, block->loop_index()); |
| 620 | } |
| 621 | local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); |
| 622 | } |
| 623 | |
| 624 | #ifdef ASSERT |
| 625 | // fixed intervals are never live at block boundaries, so |
| 626 | // they need not be processed in live sets. |
| 627 | // this is checked by these assertions to be sure about it. |
| 628 | // the entry block may have incoming values in registers, which is ok. |
| 629 | if (!opr->is_virtual_register() && block != ir()->start()) { |
| 630 | reg = reg_num(opr); |
| 631 | if (is_processed_reg_num(reg)) { |
| 632 | assert(live_kill.at(reg), "using fixed register that is not defined in this block" ); |
| 633 | } |
| 634 | reg = reg_numHi(opr); |
| 635 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 636 | assert(live_kill.at(reg), "using fixed register that is not defined in this block" ); |
| 637 | } |
| 638 | } |
| 639 | #endif |
| 640 | } |
| 641 | |
| 642 | // Add uses of live locals from interpreter's point of view for proper debug information generation |
| 643 | n = visitor.info_count(); |
| 644 | for (k = 0; k < n; k++) { |
| 645 | CodeEmitInfo* info = visitor.info_at(k); |
| 646 | ValueStack* stack = info->stack(); |
| 647 | for_each_state_value(stack, value, |
| 648 | set_live_gen_kill(value, op, live_gen, live_kill) |
| 649 | ); |
| 650 | } |
| 651 | |
| 652 | // iterate temp operands of instruction |
| 653 | n = visitor.opr_count(LIR_OpVisitState::tempMode); |
| 654 | for (k = 0; k < n; k++) { |
| 655 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); |
| 656 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 657 | |
| 658 | if (opr->is_virtual_register()) { |
| 659 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 660 | reg = opr->vreg_number(); |
| 661 | live_kill.set_bit(reg); |
| 662 | if (block->loop_index() >= 0) { |
| 663 | local_interval_in_loop.set_bit(reg, block->loop_index()); |
| 664 | } |
| 665 | local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); |
| 666 | } |
| 667 | |
| 668 | #ifdef ASSERT |
| 669 | // fixed intervals are never live at block boundaries, so |
| 670 | // they need not be processed in live sets |
| 671 | // process them only in debug mode so that this can be checked |
| 672 | if (!opr->is_virtual_register()) { |
| 673 | reg = reg_num(opr); |
| 674 | if (is_processed_reg_num(reg)) { |
| 675 | live_kill.set_bit(reg_num(opr)); |
| 676 | } |
| 677 | reg = reg_numHi(opr); |
| 678 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 679 | live_kill.set_bit(reg); |
| 680 | } |
| 681 | } |
| 682 | #endif |
| 683 | } |
| 684 | |
| 685 | // iterate output operands of instruction |
| 686 | n = visitor.opr_count(LIR_OpVisitState::outputMode); |
| 687 | for (k = 0; k < n; k++) { |
| 688 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); |
| 689 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 690 | |
| 691 | if (opr->is_virtual_register()) { |
| 692 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 693 | reg = opr->vreg_number(); |
| 694 | live_kill.set_bit(reg); |
| 695 | if (block->loop_index() >= 0) { |
| 696 | local_interval_in_loop.set_bit(reg, block->loop_index()); |
| 697 | } |
| 698 | local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); |
| 699 | } |
| 700 | |
| 701 | #ifdef ASSERT |
| 702 | // fixed intervals are never live at block boundaries, so |
| 703 | // they need not be processed in live sets |
| 704 | // process them only in debug mode so that this can be checked |
| 705 | if (!opr->is_virtual_register()) { |
| 706 | reg = reg_num(opr); |
| 707 | if (is_processed_reg_num(reg)) { |
| 708 | live_kill.set_bit(reg_num(opr)); |
| 709 | } |
| 710 | reg = reg_numHi(opr); |
| 711 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 712 | live_kill.set_bit(reg); |
| 713 | } |
| 714 | } |
| 715 | #endif |
| 716 | } |
| 717 | } // end of instruction iteration |
| 718 | |
| 719 | block->set_live_gen (live_gen); |
| 720 | block->set_live_kill(live_kill); |
| 721 | block->set_live_in (ResourceBitMap(live_size)); |
| 722 | block->set_live_out (ResourceBitMap(live_size)); |
| 723 | |
| 724 | TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d " , block->block_id()); print_bitmap(block->live_gen())); |
| 725 | TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d " , block->block_id()); print_bitmap(block->live_kill())); |
| 726 | } // end of block iteration |
| 727 | |
| 728 | // propagate local calculated information into LinearScan object |
| 729 | _has_fpu_registers = local_has_fpu_registers; |
| 730 | compilation()->set_has_fpu_code(local_has_fpu_registers); |
| 731 | |
| 732 | _num_calls = local_num_calls; |
| 733 | _interval_in_loop = local_interval_in_loop; |
| 734 | } |
| 735 | |
| 736 | |
| 737 | // ********** Phase 3: perform a backward dataflow analysis to compute global live sets |
| 738 | // (sets live_in and live_out for each block) |
| 739 | |
| 740 | void LinearScan::compute_global_live_sets() { |
| 741 | TIME_LINEAR_SCAN(timer_compute_global_live_sets); |
| 742 | |
| 743 | int num_blocks = block_count(); |
| 744 | bool change_occurred; |
| 745 | bool change_occurred_in_block; |
| 746 | int iteration_count = 0; |
| 747 | ResourceBitMap live_out(live_set_size()); // scratch set for calculations |
| 748 | |
| 749 | // Perform a backward dataflow analysis to compute live_out and live_in for each block. |
| 750 | // The loop is executed until a fixpoint is reached (no changes in an iteration) |
| 751 | // Exception handlers must be processed because not all live values are |
| 752 | // present in the state array, e.g. because of global value numbering |
| 753 | do { |
| 754 | change_occurred = false; |
| 755 | |
| 756 | // iterate all blocks in reverse order |
| 757 | for (int i = num_blocks - 1; i >= 0; i--) { |
| 758 | BlockBegin* block = block_at(i); |
| 759 | |
| 760 | change_occurred_in_block = false; |
| 761 | |
| 762 | // live_out(block) is the union of live_in(sux), for successors sux of block |
| 763 | int n = block->number_of_sux(); |
| 764 | int e = block->number_of_exception_handlers(); |
| 765 | if (n + e > 0) { |
| 766 | // block has successors |
| 767 | if (n > 0) { |
| 768 | live_out.set_from(block->sux_at(0)->live_in()); |
| 769 | for (int j = 1; j < n; j++) { |
| 770 | live_out.set_union(block->sux_at(j)->live_in()); |
| 771 | } |
| 772 | } else { |
| 773 | live_out.clear(); |
| 774 | } |
| 775 | for (int j = 0; j < e; j++) { |
| 776 | live_out.set_union(block->exception_handler_at(j)->live_in()); |
| 777 | } |
| 778 | |
| 779 | if (!block->live_out().is_same(live_out)) { |
| 780 | // A change occurred. Swap the old and new live out sets to avoid copying. |
| 781 | ResourceBitMap temp = block->live_out(); |
| 782 | block->set_live_out(live_out); |
| 783 | live_out = temp; |
| 784 | |
| 785 | change_occurred = true; |
| 786 | change_occurred_in_block = true; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (iteration_count == 0 || change_occurred_in_block) { |
| 791 | // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block)) |
| 792 | // note: live_in has to be computed only in first iteration or if live_out has changed! |
| 793 | ResourceBitMap live_in = block->live_in(); |
| 794 | live_in.set_from(block->live_out()); |
| 795 | live_in.set_difference(block->live_kill()); |
| 796 | live_in.set_union(block->live_gen()); |
| 797 | } |
| 798 | |
| 799 | #ifndef PRODUCT |
| 800 | if (TraceLinearScanLevel >= 4) { |
| 801 | char c = ' '; |
| 802 | if (iteration_count == 0 || change_occurred_in_block) { |
| 803 | c = '*'; |
| 804 | } |
| 805 | tty->print("(%d) live_in%c B%d " , iteration_count, c, block->block_id()); print_bitmap(block->live_in()); |
| 806 | tty->print("(%d) live_out%c B%d " , iteration_count, c, block->block_id()); print_bitmap(block->live_out()); |
| 807 | } |
| 808 | #endif |
| 809 | } |
| 810 | iteration_count++; |
| 811 | |
| 812 | if (change_occurred && iteration_count > 50) { |
| 813 | BAILOUT("too many iterations in compute_global_live_sets" ); |
| 814 | } |
| 815 | } while (change_occurred); |
| 816 | |
| 817 | |
| 818 | #ifdef ASSERT |
| 819 | // check that fixed intervals are not live at block boundaries |
| 820 | // (live set must be empty at fixed intervals) |
| 821 | for (int i = 0; i < num_blocks; i++) { |
| 822 | BlockBegin* block = block_at(i); |
| 823 | for (int j = 0; j < LIR_OprDesc::vreg_base; j++) { |
| 824 | assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty" ); |
| 825 | assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty" ); |
| 826 | assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty" ); |
| 827 | } |
| 828 | } |
| 829 | #endif |
| 830 | |
| 831 | // check that the live_in set of the first block is empty |
| 832 | ResourceBitMap live_in_args(ir()->start()->live_in().size()); |
| 833 | if (!ir()->start()->live_in().is_same(live_in_args)) { |
| 834 | #ifdef ASSERT |
| 835 | tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)" ); |
| 836 | tty->print_cr("affected registers:" ); |
| 837 | print_bitmap(ir()->start()->live_in()); |
| 838 | |
| 839 | // print some additional information to simplify debugging |
| 840 | for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) { |
| 841 | if (ir()->start()->live_in().at(i)) { |
| 842 | Instruction* instr = gen()->instruction_for_vreg(i); |
| 843 | tty->print_cr("* vreg %d (HIR instruction %c%d)" , i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id()); |
| 844 | |
| 845 | for (int j = 0; j < num_blocks; j++) { |
| 846 | BlockBegin* block = block_at(j); |
| 847 | if (block->live_gen().at(i)) { |
| 848 | tty->print_cr(" used in block B%d" , block->block_id()); |
| 849 | } |
| 850 | if (block->live_kill().at(i)) { |
| 851 | tty->print_cr(" defined in block B%d" , block->block_id()); |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | #endif |
| 858 | // when this fails, virtual registers are used before they are defined. |
| 859 | assert(false, "live_in set of first block must be empty" ); |
| 860 | // bailout of if this occurs in product mode. |
| 861 | bailout("live_in set of first block not empty" ); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | |
| 866 | // ********** Phase 4: build intervals |
| 867 | // (fills the list _intervals) |
| 868 | |
| 869 | void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) { |
| 870 | assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type" ); |
| 871 | LIR_Opr opr = value->operand(); |
| 872 | Constant* con = value->as_Constant(); |
| 873 | |
| 874 | if ((con == NULL || con->is_pinned()) && opr->is_register()) { |
| 875 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 876 | add_use(opr, from, to, use_kind); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | |
| 881 | void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) { |
| 882 | TRACE_LINEAR_SCAN(2, tty->print(" def " ); opr->print(tty); tty->print_cr(" def_pos %d (%d)" , def_pos, use_kind)); |
| 883 | assert(opr->is_register(), "should not be called otherwise" ); |
| 884 | |
| 885 | if (opr->is_virtual_register()) { |
| 886 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 887 | add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register()); |
| 888 | |
| 889 | } else { |
| 890 | int reg = reg_num(opr); |
| 891 | if (is_processed_reg_num(reg)) { |
| 892 | add_def(reg, def_pos, use_kind, opr->type_register()); |
| 893 | } |
| 894 | reg = reg_numHi(opr); |
| 895 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 896 | add_def(reg, def_pos, use_kind, opr->type_register()); |
| 897 | } |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) { |
| 902 | TRACE_LINEAR_SCAN(2, tty->print(" use " ); opr->print(tty); tty->print_cr(" from %d to %d (%d)" , from, to, use_kind)); |
| 903 | assert(opr->is_register(), "should not be called otherwise" ); |
| 904 | |
| 905 | if (opr->is_virtual_register()) { |
| 906 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 907 | add_use(opr->vreg_number(), from, to, use_kind, opr->type_register()); |
| 908 | |
| 909 | } else { |
| 910 | int reg = reg_num(opr); |
| 911 | if (is_processed_reg_num(reg)) { |
| 912 | add_use(reg, from, to, use_kind, opr->type_register()); |
| 913 | } |
| 914 | reg = reg_numHi(opr); |
| 915 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 916 | add_use(reg, from, to, use_kind, opr->type_register()); |
| 917 | } |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) { |
| 922 | TRACE_LINEAR_SCAN(2, tty->print(" temp " ); opr->print(tty); tty->print_cr(" temp_pos %d (%d)" , temp_pos, use_kind)); |
| 923 | assert(opr->is_register(), "should not be called otherwise" ); |
| 924 | |
| 925 | if (opr->is_virtual_register()) { |
| 926 | assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below" ); |
| 927 | add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register()); |
| 928 | |
| 929 | } else { |
| 930 | int reg = reg_num(opr); |
| 931 | if (is_processed_reg_num(reg)) { |
| 932 | add_temp(reg, temp_pos, use_kind, opr->type_register()); |
| 933 | } |
| 934 | reg = reg_numHi(opr); |
| 935 | if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { |
| 936 | add_temp(reg, temp_pos, use_kind, opr->type_register()); |
| 937 | } |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | |
| 942 | void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) { |
| 943 | Interval* interval = interval_at(reg_num); |
| 944 | if (interval != NULL) { |
| 945 | assert(interval->reg_num() == reg_num, "wrong interval" ); |
| 946 | |
| 947 | if (type != T_ILLEGAL) { |
| 948 | interval->set_type(type); |
| 949 | } |
| 950 | |
| 951 | Range* r = interval->first(); |
| 952 | if (r->from() <= def_pos) { |
| 953 | // Update the starting point (when a range is first created for a use, its |
| 954 | // start is the beginning of the current block until a def is encountered.) |
| 955 | r->set_from(def_pos); |
| 956 | interval->add_use_pos(def_pos, use_kind); |
| 957 | |
| 958 | } else { |
| 959 | // Dead value - make vacuous interval |
| 960 | // also add use_kind for dead intervals |
| 961 | interval->add_range(def_pos, def_pos + 1); |
| 962 | interval->add_use_pos(def_pos, use_kind); |
| 963 | TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use" , reg_num, def_pos)); |
| 964 | } |
| 965 | |
| 966 | } else { |
| 967 | // Dead value - make vacuous interval |
| 968 | // also add use_kind for dead intervals |
| 969 | interval = create_interval(reg_num); |
| 970 | if (type != T_ILLEGAL) { |
| 971 | interval->set_type(type); |
| 972 | } |
| 973 | |
| 974 | interval->add_range(def_pos, def_pos + 1); |
| 975 | interval->add_use_pos(def_pos, use_kind); |
| 976 | TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals" , reg_num, def_pos)); |
| 977 | } |
| 978 | |
| 979 | change_spill_definition_pos(interval, def_pos); |
| 980 | if (use_kind == noUse && interval->spill_state() <= startInMemory) { |
| 981 | // detection of method-parameters and roundfp-results |
| 982 | // TODO: move this directly to position where use-kind is computed |
| 983 | interval->set_spill_state(startInMemory); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) { |
| 988 | Interval* interval = interval_at(reg_num); |
| 989 | if (interval == NULL) { |
| 990 | interval = create_interval(reg_num); |
| 991 | } |
| 992 | assert(interval->reg_num() == reg_num, "wrong interval" ); |
| 993 | |
| 994 | if (type != T_ILLEGAL) { |
| 995 | interval->set_type(type); |
| 996 | } |
| 997 | |
| 998 | interval->add_range(from, to); |
| 999 | interval->add_use_pos(to, use_kind); |
| 1000 | } |
| 1001 | |
| 1002 | void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) { |
| 1003 | Interval* interval = interval_at(reg_num); |
| 1004 | if (interval == NULL) { |
| 1005 | interval = create_interval(reg_num); |
| 1006 | } |
| 1007 | assert(interval->reg_num() == reg_num, "wrong interval" ); |
| 1008 | |
| 1009 | if (type != T_ILLEGAL) { |
| 1010 | interval->set_type(type); |
| 1011 | } |
| 1012 | |
| 1013 | interval->add_range(temp_pos, temp_pos + 1); |
| 1014 | interval->add_use_pos(temp_pos, use_kind); |
| 1015 | } |
| 1016 | |
| 1017 | |
| 1018 | // the results of this functions are used for optimizing spilling and reloading |
| 1019 | // if the functions return shouldHaveRegister and the interval is spilled, |
| 1020 | // it is not reloaded to a register. |
| 1021 | IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) { |
| 1022 | if (op->code() == lir_move) { |
| 1023 | assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1" ); |
| 1024 | LIR_Op1* move = (LIR_Op1*)op; |
| 1025 | LIR_Opr res = move->result_opr(); |
| 1026 | bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); |
| 1027 | |
| 1028 | if (result_in_memory) { |
| 1029 | // Begin of an interval with must_start_in_memory set. |
| 1030 | // This interval will always get a stack slot first, so return noUse. |
| 1031 | return noUse; |
| 1032 | |
| 1033 | } else if (move->in_opr()->is_stack()) { |
| 1034 | // method argument (condition must be equal to handle_method_arguments) |
| 1035 | return noUse; |
| 1036 | |
| 1037 | } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { |
| 1038 | // Move from register to register |
| 1039 | if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { |
| 1040 | // special handling of phi-function moves inside osr-entry blocks |
| 1041 | // input operand must have a register instead of output operand (leads to better register allocation) |
| 1042 | return shouldHaveRegister; |
| 1043 | } |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if (opr->is_virtual() && |
| 1048 | gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) { |
| 1049 | // result is a stack-slot, so prevent immediate reloading |
| 1050 | return noUse; |
| 1051 | } |
| 1052 | |
| 1053 | // all other operands require a register |
| 1054 | return mustHaveRegister; |
| 1055 | } |
| 1056 | |
| 1057 | IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) { |
| 1058 | if (op->code() == lir_move) { |
| 1059 | assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1" ); |
| 1060 | LIR_Op1* move = (LIR_Op1*)op; |
| 1061 | LIR_Opr res = move->result_opr(); |
| 1062 | bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); |
| 1063 | |
| 1064 | if (result_in_memory) { |
| 1065 | // Move to an interval with must_start_in_memory set. |
| 1066 | // To avoid moves from stack to stack (not allowed) force the input operand to a register |
| 1067 | return mustHaveRegister; |
| 1068 | |
| 1069 | } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { |
| 1070 | // Move from register to register |
| 1071 | if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { |
| 1072 | // special handling of phi-function moves inside osr-entry blocks |
| 1073 | // input operand must have a register instead of output operand (leads to better register allocation) |
| 1074 | return mustHaveRegister; |
| 1075 | } |
| 1076 | |
| 1077 | // The input operand is not forced to a register (moves from stack to register are allowed), |
| 1078 | // but it is faster if the input operand is in a register |
| 1079 | return shouldHaveRegister; |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | |
| 1084 | #if defined(X86) || defined(S390) |
| 1085 | if (op->code() == lir_cmove) { |
| 1086 | // conditional moves can handle stack operands |
| 1087 | assert(op->result_opr()->is_register(), "result must always be in a register" ); |
| 1088 | return shouldHaveRegister; |
| 1089 | } |
| 1090 | |
| 1091 | // optimizations for second input operand of arithmehtic operations on Intel |
| 1092 | // this operand is allowed to be on the stack in some cases |
| 1093 | BasicType opr_type = opr->type_register(); |
| 1094 | if (opr_type == T_FLOAT || opr_type == T_DOUBLE) { |
| 1095 | if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 S390_ONLY(|| true)) { |
| 1096 | // SSE float instruction (T_DOUBLE only supported with SSE2) |
| 1097 | switch (op->code()) { |
| 1098 | case lir_cmp: |
| 1099 | case lir_add: |
| 1100 | case lir_sub: |
| 1101 | case lir_mul: |
| 1102 | case lir_div: |
| 1103 | { |
| 1104 | assert(op->as_Op2() != NULL, "must be LIR_Op2" ); |
| 1105 | LIR_Op2* op2 = (LIR_Op2*)op; |
| 1106 | if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { |
| 1107 | assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register" ); |
| 1108 | return shouldHaveRegister; |
| 1109 | } |
| 1110 | } |
| 1111 | default: |
| 1112 | break; |
| 1113 | } |
| 1114 | } else { |
| 1115 | // FPU stack float instruction |
| 1116 | switch (op->code()) { |
| 1117 | case lir_add: |
| 1118 | case lir_sub: |
| 1119 | case lir_mul: |
| 1120 | case lir_div: |
| 1121 | { |
| 1122 | assert(op->as_Op2() != NULL, "must be LIR_Op2" ); |
| 1123 | LIR_Op2* op2 = (LIR_Op2*)op; |
| 1124 | if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { |
| 1125 | assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register" ); |
| 1126 | return shouldHaveRegister; |
| 1127 | } |
| 1128 | } |
| 1129 | default: |
| 1130 | break; |
| 1131 | } |
| 1132 | } |
| 1133 | // We want to sometimes use logical operations on pointers, in particular in GC barriers. |
| 1134 | // Since 64bit logical operations do not current support operands on stack, we have to make sure |
| 1135 | // T_OBJECT doesn't get spilled along with T_LONG. |
| 1136 | } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) { |
| 1137 | // integer instruction (note: long operands must always be in register) |
| 1138 | switch (op->code()) { |
| 1139 | case lir_cmp: |
| 1140 | case lir_add: |
| 1141 | case lir_sub: |
| 1142 | case lir_logic_and: |
| 1143 | case lir_logic_or: |
| 1144 | case lir_logic_xor: |
| 1145 | { |
| 1146 | assert(op->as_Op2() != NULL, "must be LIR_Op2" ); |
| 1147 | LIR_Op2* op2 = (LIR_Op2*)op; |
| 1148 | if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { |
| 1149 | assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register" ); |
| 1150 | return shouldHaveRegister; |
| 1151 | } |
| 1152 | } |
| 1153 | default: |
| 1154 | break; |
| 1155 | } |
| 1156 | } |
| 1157 | #endif // X86 S390 |
| 1158 | |
| 1159 | // all other operands require a register |
| 1160 | return mustHaveRegister; |
| 1161 | } |
| 1162 | |
| 1163 | |
| 1164 | void LinearScan::handle_method_arguments(LIR_Op* op) { |
| 1165 | // special handling for method arguments (moves from stack to virtual register): |
| 1166 | // the interval gets no register assigned, but the stack slot. |
| 1167 | // it is split before the first use by the register allocator. |
| 1168 | |
| 1169 | if (op->code() == lir_move) { |
| 1170 | assert(op->as_Op1() != NULL, "must be LIR_Op1" ); |
| 1171 | LIR_Op1* move = (LIR_Op1*)op; |
| 1172 | |
| 1173 | if (move->in_opr()->is_stack()) { |
| 1174 | #ifdef ASSERT |
| 1175 | int arg_size = compilation()->method()->arg_size(); |
| 1176 | LIR_Opr o = move->in_opr(); |
| 1177 | if (o->is_single_stack()) { |
| 1178 | assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range" ); |
| 1179 | } else if (o->is_double_stack()) { |
| 1180 | assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range" ); |
| 1181 | } else { |
| 1182 | ShouldNotReachHere(); |
| 1183 | } |
| 1184 | |
| 1185 | assert(move->id() > 0, "invalid id" ); |
| 1186 | assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block" ); |
| 1187 | assert(move->result_opr()->is_virtual(), "result of move must be a virtual register" ); |
| 1188 | |
| 1189 | TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d" , o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr()))); |
| 1190 | #endif |
| 1191 | |
| 1192 | Interval* interval = interval_at(reg_num(move->result_opr())); |
| 1193 | |
| 1194 | int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix()); |
| 1195 | interval->set_canonical_spill_slot(stack_slot); |
| 1196 | interval->assign_reg(stack_slot); |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | void LinearScan::handle_doubleword_moves(LIR_Op* op) { |
| 1202 | // special handling for doubleword move from memory to register: |
| 1203 | // in this case the registers of the input address and the result |
| 1204 | // registers must not overlap -> add a temp range for the input registers |
| 1205 | if (op->code() == lir_move) { |
| 1206 | assert(op->as_Op1() != NULL, "must be LIR_Op1" ); |
| 1207 | LIR_Op1* move = (LIR_Op1*)op; |
| 1208 | |
| 1209 | if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) { |
| 1210 | LIR_Address* address = move->in_opr()->as_address_ptr(); |
| 1211 | if (address != NULL) { |
| 1212 | if (address->base()->is_valid()) { |
| 1213 | add_temp(address->base(), op->id(), noUse); |
| 1214 | } |
| 1215 | if (address->index()->is_valid()) { |
| 1216 | add_temp(address->index(), op->id(), noUse); |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | void LinearScan::add_register_hints(LIR_Op* op) { |
| 1224 | switch (op->code()) { |
| 1225 | case lir_move: // fall through |
| 1226 | case lir_convert: { |
| 1227 | assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1" ); |
| 1228 | LIR_Op1* move = (LIR_Op1*)op; |
| 1229 | |
| 1230 | LIR_Opr move_from = move->in_opr(); |
| 1231 | LIR_Opr move_to = move->result_opr(); |
| 1232 | |
| 1233 | if (move_to->is_register() && move_from->is_register()) { |
| 1234 | Interval* from = interval_at(reg_num(move_from)); |
| 1235 | Interval* to = interval_at(reg_num(move_to)); |
| 1236 | if (from != NULL && to != NULL) { |
| 1237 | to->set_register_hint(from); |
| 1238 | TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d" , move->id(), from->reg_num(), to->reg_num())); |
| 1239 | } |
| 1240 | } |
| 1241 | break; |
| 1242 | } |
| 1243 | case lir_cmove: { |
| 1244 | assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2" ); |
| 1245 | LIR_Op2* cmove = (LIR_Op2*)op; |
| 1246 | |
| 1247 | LIR_Opr move_from = cmove->in_opr1(); |
| 1248 | LIR_Opr move_to = cmove->result_opr(); |
| 1249 | |
| 1250 | if (move_to->is_register() && move_from->is_register()) { |
| 1251 | Interval* from = interval_at(reg_num(move_from)); |
| 1252 | Interval* to = interval_at(reg_num(move_to)); |
| 1253 | if (from != NULL && to != NULL) { |
| 1254 | to->set_register_hint(from); |
| 1255 | TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d" , cmove->id(), from->reg_num(), to->reg_num())); |
| 1256 | } |
| 1257 | } |
| 1258 | break; |
| 1259 | } |
| 1260 | default: |
| 1261 | break; |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | void LinearScan::build_intervals() { |
| 1267 | TIME_LINEAR_SCAN(timer_build_intervals); |
| 1268 | |
| 1269 | // initialize interval list with expected number of intervals |
| 1270 | // (32 is added to have some space for split children without having to resize the list) |
| 1271 | _intervals = IntervalList(num_virtual_regs() + 32); |
| 1272 | // initialize all slots that are used by build_intervals |
| 1273 | _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL); |
| 1274 | |
| 1275 | // create a list with all caller-save registers (cpu, fpu, xmm) |
| 1276 | // when an instruction is a call, a temp range is created for all these registers |
| 1277 | int num_caller_save_registers = 0; |
| 1278 | int caller_save_registers[LinearScan::nof_regs]; |
| 1279 | |
| 1280 | int i; |
| 1281 | for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) { |
| 1282 | LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i); |
| 1283 | assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands" ); |
| 1284 | assert(reg_numHi(opr) == -1, "missing addition of range for hi-register" ); |
| 1285 | caller_save_registers[num_caller_save_registers++] = reg_num(opr); |
| 1286 | } |
| 1287 | |
| 1288 | // temp ranges for fpu registers are only created when the method has |
| 1289 | // virtual fpu operands. Otherwise no allocation for fpu registers is |
| 1290 | // performed and so the temp ranges would be useless |
| 1291 | if (has_fpu_registers()) { |
| 1292 | #ifdef X86 |
| 1293 | if (UseSSE < 2) { |
| 1294 | #endif |
| 1295 | for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) { |
| 1296 | LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i); |
| 1297 | assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands" ); |
| 1298 | assert(reg_numHi(opr) == -1, "missing addition of range for hi-register" ); |
| 1299 | caller_save_registers[num_caller_save_registers++] = reg_num(opr); |
| 1300 | } |
| 1301 | #ifdef X86 |
| 1302 | } |
| 1303 | if (UseSSE > 0) { |
| 1304 | int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); |
| 1305 | for (i = 0; i < num_caller_save_xmm_regs; i ++) { |
| 1306 | LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i); |
| 1307 | assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands" ); |
| 1308 | assert(reg_numHi(opr) == -1, "missing addition of range for hi-register" ); |
| 1309 | caller_save_registers[num_caller_save_registers++] = reg_num(opr); |
| 1310 | } |
| 1311 | } |
| 1312 | #endif |
| 1313 | } |
| 1314 | assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds" ); |
| 1315 | |
| 1316 | |
| 1317 | LIR_OpVisitState visitor; |
| 1318 | |
| 1319 | // iterate all blocks in reverse order |
| 1320 | for (i = block_count() - 1; i >= 0; i--) { |
| 1321 | BlockBegin* block = block_at(i); |
| 1322 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 1323 | int block_from = block->first_lir_instruction_id(); |
| 1324 | int block_to = block->last_lir_instruction_id(); |
| 1325 | |
| 1326 | assert(block_from == instructions->at(0)->id(), "must be" ); |
| 1327 | assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be" ); |
| 1328 | |
| 1329 | // Update intervals for registers live at the end of this block; |
| 1330 | ResourceBitMap live = block->live_out(); |
| 1331 | int size = (int)live.size(); |
| 1332 | for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) { |
| 1333 | assert(live.at(number), "should not stop here otherwise" ); |
| 1334 | assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds" ); |
| 1335 | TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d" , number, block_to + 2)); |
| 1336 | |
| 1337 | add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL); |
| 1338 | |
| 1339 | // add special use positions for loop-end blocks when the |
| 1340 | // interval is used anywhere inside this loop. It's possible |
| 1341 | // that the block was part of a non-natural loop, so it might |
| 1342 | // have an invalid loop index. |
| 1343 | if (block->is_set(BlockBegin::linear_scan_loop_end_flag) && |
| 1344 | block->loop_index() != -1 && |
| 1345 | is_interval_in_loop(number, block->loop_index())) { |
| 1346 | interval_at(number)->add_use_pos(block_to + 1, loopEndMarker); |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | // iterate all instructions of the block in reverse order. |
| 1351 | // skip the first instruction because it is always a label |
| 1352 | // definitions of intervals are processed before uses |
| 1353 | assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label" ); |
| 1354 | for (int j = instructions->length() - 1; j >= 1; j--) { |
| 1355 | LIR_Op* op = instructions->at(j); |
| 1356 | int op_id = op->id(); |
| 1357 | |
| 1358 | // visit operation to collect all operands |
| 1359 | visitor.visit(op); |
| 1360 | |
| 1361 | // add a temp range for each register if operation destroys caller-save registers |
| 1362 | if (visitor.has_call()) { |
| 1363 | for (int k = 0; k < num_caller_save_registers; k++) { |
| 1364 | add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL); |
| 1365 | } |
| 1366 | TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers" )); |
| 1367 | } |
| 1368 | |
| 1369 | // Add any platform dependent temps |
| 1370 | pd_add_temps(op); |
| 1371 | |
| 1372 | // visit definitions (output and temp operands) |
| 1373 | int k, n; |
| 1374 | n = visitor.opr_count(LIR_OpVisitState::outputMode); |
| 1375 | for (k = 0; k < n; k++) { |
| 1376 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); |
| 1377 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 1378 | add_def(opr, op_id, use_kind_of_output_operand(op, opr)); |
| 1379 | } |
| 1380 | |
| 1381 | n = visitor.opr_count(LIR_OpVisitState::tempMode); |
| 1382 | for (k = 0; k < n; k++) { |
| 1383 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); |
| 1384 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 1385 | add_temp(opr, op_id, mustHaveRegister); |
| 1386 | } |
| 1387 | |
| 1388 | // visit uses (input operands) |
| 1389 | n = visitor.opr_count(LIR_OpVisitState::inputMode); |
| 1390 | for (k = 0; k < n; k++) { |
| 1391 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); |
| 1392 | assert(opr->is_register(), "visitor should only return register operands" ); |
| 1393 | add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr)); |
| 1394 | } |
| 1395 | |
| 1396 | // Add uses of live locals from interpreter's point of view for proper |
| 1397 | // debug information generation |
| 1398 | // Treat these operands as temp values (if the life range is extended |
| 1399 | // to a call site, the value would be in a register at the call otherwise) |
| 1400 | n = visitor.info_count(); |
| 1401 | for (k = 0; k < n; k++) { |
| 1402 | CodeEmitInfo* info = visitor.info_at(k); |
| 1403 | ValueStack* stack = info->stack(); |
| 1404 | for_each_state_value(stack, value, |
| 1405 | add_use(value, block_from, op_id + 1, noUse); |
| 1406 | ); |
| 1407 | } |
| 1408 | |
| 1409 | // special steps for some instructions (especially moves) |
| 1410 | handle_method_arguments(op); |
| 1411 | handle_doubleword_moves(op); |
| 1412 | add_register_hints(op); |
| 1413 | |
| 1414 | } // end of instruction iteration |
| 1415 | } // end of block iteration |
| 1416 | |
| 1417 | |
| 1418 | // add the range [0, 1[ to all fixed intervals |
| 1419 | // -> the register allocator need not handle unhandled fixed intervals |
| 1420 | for (int n = 0; n < LinearScan::nof_regs; n++) { |
| 1421 | Interval* interval = interval_at(n); |
| 1422 | if (interval != NULL) { |
| 1423 | interval->add_range(0, 1); |
| 1424 | } |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | |
| 1429 | // ********** Phase 5: actual register allocation |
| 1430 | |
| 1431 | int LinearScan::interval_cmp(Interval** a, Interval** b) { |
| 1432 | if (*a != NULL) { |
| 1433 | if (*b != NULL) { |
| 1434 | return (*a)->from() - (*b)->from(); |
| 1435 | } else { |
| 1436 | return -1; |
| 1437 | } |
| 1438 | } else { |
| 1439 | if (*b != NULL) { |
| 1440 | return 1; |
| 1441 | } else { |
| 1442 | return 0; |
| 1443 | } |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | #ifndef PRODUCT |
| 1448 | int interval_cmp(Interval* const& l, Interval* const& r) { |
| 1449 | return l->from() - r->from(); |
| 1450 | } |
| 1451 | |
| 1452 | bool find_interval(Interval* interval, IntervalArray* intervals) { |
| 1453 | bool found; |
| 1454 | int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found); |
| 1455 | |
| 1456 | if (!found) { |
| 1457 | return false; |
| 1458 | } |
| 1459 | |
| 1460 | int from = interval->from(); |
| 1461 | |
| 1462 | // The index we've found using binary search is pointing to an interval |
| 1463 | // that is defined in the same place as the interval we were looking for. |
| 1464 | // So now we have to look around that index and find exact interval. |
| 1465 | for (int i = idx; i >= 0; i--) { |
| 1466 | if (intervals->at(i) == interval) { |
| 1467 | return true; |
| 1468 | } |
| 1469 | if (intervals->at(i)->from() != from) { |
| 1470 | break; |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | for (int i = idx + 1; i < intervals->length(); i++) { |
| 1475 | if (intervals->at(i) == interval) { |
| 1476 | return true; |
| 1477 | } |
| 1478 | if (intervals->at(i)->from() != from) { |
| 1479 | break; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | return false; |
| 1484 | } |
| 1485 | |
| 1486 | bool LinearScan::is_sorted(IntervalArray* intervals) { |
| 1487 | int from = -1; |
| 1488 | int null_count = 0; |
| 1489 | |
| 1490 | for (int i = 0; i < intervals->length(); i++) { |
| 1491 | Interval* it = intervals->at(i); |
| 1492 | if (it != NULL) { |
| 1493 | assert(from <= it->from(), "Intervals are unordered" ); |
| 1494 | from = it->from(); |
| 1495 | } else { |
| 1496 | null_count++; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | assert(null_count == 0, "Sorted intervals should not contain nulls" ); |
| 1501 | |
| 1502 | null_count = 0; |
| 1503 | |
| 1504 | for (int i = 0; i < interval_count(); i++) { |
| 1505 | Interval* interval = interval_at(i); |
| 1506 | if (interval != NULL) { |
| 1507 | assert(find_interval(interval, intervals), "Lists do not contain same intervals" ); |
| 1508 | } else { |
| 1509 | null_count++; |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | assert(interval_count() - null_count == intervals->length(), |
| 1514 | "Sorted list should contain the same amount of non-NULL intervals as unsorted list" ); |
| 1515 | |
| 1516 | return true; |
| 1517 | } |
| 1518 | #endif |
| 1519 | |
| 1520 | void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) { |
| 1521 | if (*prev != NULL) { |
| 1522 | (*prev)->set_next(interval); |
| 1523 | } else { |
| 1524 | *first = interval; |
| 1525 | } |
| 1526 | *prev = interval; |
| 1527 | } |
| 1528 | |
| 1529 | void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) { |
| 1530 | assert(is_sorted(_sorted_intervals), "interval list is not sorted" ); |
| 1531 | |
| 1532 | *list1 = *list2 = Interval::end(); |
| 1533 | |
| 1534 | Interval* list1_prev = NULL; |
| 1535 | Interval* list2_prev = NULL; |
| 1536 | Interval* v; |
| 1537 | |
| 1538 | const int n = _sorted_intervals->length(); |
| 1539 | for (int i = 0; i < n; i++) { |
| 1540 | v = _sorted_intervals->at(i); |
| 1541 | if (v == NULL) continue; |
| 1542 | |
| 1543 | if (is_list1(v)) { |
| 1544 | add_to_list(list1, &list1_prev, v); |
| 1545 | } else if (is_list2 == NULL || is_list2(v)) { |
| 1546 | add_to_list(list2, &list2_prev, v); |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | if (list1_prev != NULL) list1_prev->set_next(Interval::end()); |
| 1551 | if (list2_prev != NULL) list2_prev->set_next(Interval::end()); |
| 1552 | |
| 1553 | assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel" ); |
| 1554 | assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel" ); |
| 1555 | } |
| 1556 | |
| 1557 | |
| 1558 | void LinearScan::sort_intervals_before_allocation() { |
| 1559 | TIME_LINEAR_SCAN(timer_sort_intervals_before); |
| 1560 | |
| 1561 | if (_needs_full_resort) { |
| 1562 | // There is no known reason why this should occur but just in case... |
| 1563 | assert(false, "should never occur" ); |
| 1564 | // Re-sort existing interval list because an Interval::from() has changed |
| 1565 | _sorted_intervals->sort(interval_cmp); |
| 1566 | _needs_full_resort = false; |
| 1567 | } |
| 1568 | |
| 1569 | IntervalList* unsorted_list = &_intervals; |
| 1570 | int unsorted_len = unsorted_list->length(); |
| 1571 | int sorted_len = 0; |
| 1572 | int unsorted_idx; |
| 1573 | int sorted_idx = 0; |
| 1574 | int sorted_from_max = -1; |
| 1575 | |
| 1576 | // calc number of items for sorted list (sorted list must not contain NULL values) |
| 1577 | for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { |
| 1578 | if (unsorted_list->at(unsorted_idx) != NULL) { |
| 1579 | sorted_len++; |
| 1580 | } |
| 1581 | } |
| 1582 | IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL); |
| 1583 | |
| 1584 | // special sorting algorithm: the original interval-list is almost sorted, |
| 1585 | // only some intervals are swapped. So this is much faster than a complete QuickSort |
| 1586 | for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { |
| 1587 | Interval* cur_interval = unsorted_list->at(unsorted_idx); |
| 1588 | |
| 1589 | if (cur_interval != NULL) { |
| 1590 | int cur_from = cur_interval->from(); |
| 1591 | |
| 1592 | if (sorted_from_max <= cur_from) { |
| 1593 | sorted_list->at_put(sorted_idx++, cur_interval); |
| 1594 | sorted_from_max = cur_interval->from(); |
| 1595 | } else { |
| 1596 | // the asumption that the intervals are already sorted failed, |
| 1597 | // so this interval must be sorted in manually |
| 1598 | int j; |
| 1599 | for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) { |
| 1600 | sorted_list->at_put(j + 1, sorted_list->at(j)); |
| 1601 | } |
| 1602 | sorted_list->at_put(j + 1, cur_interval); |
| 1603 | sorted_idx++; |
| 1604 | } |
| 1605 | } |
| 1606 | } |
| 1607 | _sorted_intervals = sorted_list; |
| 1608 | assert(is_sorted(_sorted_intervals), "intervals unsorted" ); |
| 1609 | } |
| 1610 | |
| 1611 | void LinearScan::sort_intervals_after_allocation() { |
| 1612 | TIME_LINEAR_SCAN(timer_sort_intervals_after); |
| 1613 | |
| 1614 | if (_needs_full_resort) { |
| 1615 | // Re-sort existing interval list because an Interval::from() has changed |
| 1616 | _sorted_intervals->sort(interval_cmp); |
| 1617 | _needs_full_resort = false; |
| 1618 | } |
| 1619 | |
| 1620 | IntervalArray* old_list = _sorted_intervals; |
| 1621 | IntervalList* new_list = _new_intervals_from_allocation; |
| 1622 | int old_len = old_list->length(); |
| 1623 | int new_len = new_list == NULL ? 0 : new_list->length(); |
| 1624 | |
| 1625 | if (new_len == 0) { |
| 1626 | // no intervals have been added during allocation, so sorted list is already up to date |
| 1627 | assert(is_sorted(_sorted_intervals), "intervals unsorted" ); |
| 1628 | return; |
| 1629 | } |
| 1630 | |
| 1631 | // conventional sort-algorithm for new intervals |
| 1632 | new_list->sort(interval_cmp); |
| 1633 | |
| 1634 | // merge old and new list (both already sorted) into one combined list |
| 1635 | int combined_list_len = old_len + new_len; |
| 1636 | IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL); |
| 1637 | int old_idx = 0; |
| 1638 | int new_idx = 0; |
| 1639 | |
| 1640 | while (old_idx + new_idx < old_len + new_len) { |
| 1641 | if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) { |
| 1642 | combined_list->at_put(old_idx + new_idx, old_list->at(old_idx)); |
| 1643 | old_idx++; |
| 1644 | } else { |
| 1645 | combined_list->at_put(old_idx + new_idx, new_list->at(new_idx)); |
| 1646 | new_idx++; |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | _sorted_intervals = combined_list; |
| 1651 | assert(is_sorted(_sorted_intervals), "intervals unsorted" ); |
| 1652 | } |
| 1653 | |
| 1654 | |
| 1655 | void LinearScan::allocate_registers() { |
| 1656 | TIME_LINEAR_SCAN(timer_allocate_registers); |
| 1657 | |
| 1658 | Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals; |
| 1659 | Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals; |
| 1660 | |
| 1661 | // allocate cpu registers |
| 1662 | create_unhandled_lists(&precolored_cpu_intervals, ¬_precolored_cpu_intervals, |
| 1663 | is_precolored_cpu_interval, is_virtual_cpu_interval); |
| 1664 | |
| 1665 | // allocate fpu registers |
| 1666 | create_unhandled_lists(&precolored_fpu_intervals, ¬_precolored_fpu_intervals, |
| 1667 | is_precolored_fpu_interval, is_virtual_fpu_interval); |
| 1668 | |
| 1669 | // the fpu interval allocation cannot be moved down below with the fpu section as |
| 1670 | // the cpu_lsw.walk() changes interval positions. |
| 1671 | |
| 1672 | LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals); |
| 1673 | cpu_lsw.walk(); |
| 1674 | cpu_lsw.finish_allocation(); |
| 1675 | |
| 1676 | if (has_fpu_registers()) { |
| 1677 | LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals); |
| 1678 | fpu_lsw.walk(); |
| 1679 | fpu_lsw.finish_allocation(); |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | |
| 1684 | // ********** Phase 6: resolve data flow |
| 1685 | // (insert moves at edges between blocks if intervals have been split) |
| 1686 | |
| 1687 | // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode |
| 1688 | // instead of returning NULL |
| 1689 | Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) { |
| 1690 | Interval* result = interval->split_child_at_op_id(op_id, mode); |
| 1691 | if (result != NULL) { |
| 1692 | return result; |
| 1693 | } |
| 1694 | |
| 1695 | assert(false, "must find an interval, but do a clean bailout in product mode" ); |
| 1696 | result = new Interval(LIR_OprDesc::vreg_base); |
| 1697 | result->assign_reg(0); |
| 1698 | result->set_type(T_INT); |
| 1699 | BAILOUT_("LinearScan: interval is NULL" , result); |
| 1700 | } |
| 1701 | |
| 1702 | |
| 1703 | Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) { |
| 1704 | assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds" ); |
| 1705 | assert(interval_at(reg_num) != NULL, "no interval found" ); |
| 1706 | |
| 1707 | return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode); |
| 1708 | } |
| 1709 | |
| 1710 | Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) { |
| 1711 | assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds" ); |
| 1712 | assert(interval_at(reg_num) != NULL, "no interval found" ); |
| 1713 | |
| 1714 | return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode); |
| 1715 | } |
| 1716 | |
| 1717 | Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) { |
| 1718 | assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds" ); |
| 1719 | assert(interval_at(reg_num) != NULL, "no interval found" ); |
| 1720 | |
| 1721 | return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode); |
| 1722 | } |
| 1723 | |
| 1724 | |
| 1725 | void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { |
| 1726 | DEBUG_ONLY(move_resolver.check_empty()); |
| 1727 | |
| 1728 | const int size = live_set_size(); |
| 1729 | const ResourceBitMap live_at_edge = to_block->live_in(); |
| 1730 | |
| 1731 | // visit all registers where the live_at_edge bit is set |
| 1732 | for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { |
| 1733 | assert(r < num_virtual_regs(), "live information set for not exisiting interval" ); |
| 1734 | assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge" ); |
| 1735 | |
| 1736 | Interval* from_interval = interval_at_block_end(from_block, r); |
| 1737 | Interval* to_interval = interval_at_block_begin(to_block, r); |
| 1738 | |
| 1739 | if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) { |
| 1740 | // need to insert move instruction |
| 1741 | move_resolver.add_mapping(from_interval, to_interval); |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | |
| 1747 | void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { |
| 1748 | if (from_block->number_of_sux() <= 1) { |
| 1749 | TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d" , from_block->block_id())); |
| 1750 | |
| 1751 | LIR_OpList* instructions = from_block->lir()->instructions_list(); |
| 1752 | LIR_OpBranch* branch = instructions->last()->as_OpBranch(); |
| 1753 | if (branch != NULL) { |
| 1754 | // insert moves before branch |
| 1755 | assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump" ); |
| 1756 | move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2); |
| 1757 | } else { |
| 1758 | move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1); |
| 1759 | } |
| 1760 | |
| 1761 | } else { |
| 1762 | TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d" , to_block->block_id())); |
| 1763 | #ifdef ASSERT |
| 1764 | assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label" ); |
| 1765 | |
| 1766 | // because the number of predecessor edges matches the number of |
| 1767 | // successor edges, blocks which are reached by switch statements |
| 1768 | // may have be more than one predecessor but it will be guaranteed |
| 1769 | // that all predecessors will be the same. |
| 1770 | for (int i = 0; i < to_block->number_of_preds(); i++) { |
| 1771 | assert(from_block == to_block->pred_at(i), "all critical edges must be broken" ); |
| 1772 | } |
| 1773 | #endif |
| 1774 | |
| 1775 | move_resolver.set_insert_position(to_block->lir(), 0); |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | |
| 1780 | // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split |
| 1781 | void LinearScan::resolve_data_flow() { |
| 1782 | TIME_LINEAR_SCAN(timer_resolve_data_flow); |
| 1783 | |
| 1784 | int num_blocks = block_count(); |
| 1785 | MoveResolver move_resolver(this); |
| 1786 | ResourceBitMap block_completed(num_blocks); |
| 1787 | ResourceBitMap already_resolved(num_blocks); |
| 1788 | |
| 1789 | int i; |
| 1790 | for (i = 0; i < num_blocks; i++) { |
| 1791 | BlockBegin* block = block_at(i); |
| 1792 | |
| 1793 | // check if block has only one predecessor and only one successor |
| 1794 | if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) { |
| 1795 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 1796 | assert(instructions->at(0)->code() == lir_label, "block must start with label" ); |
| 1797 | assert(instructions->last()->code() == lir_branch, "block with successors must end with branch" ); |
| 1798 | assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch" ); |
| 1799 | |
| 1800 | // check if block is empty (only label and branch) |
| 1801 | if (instructions->length() == 2) { |
| 1802 | BlockBegin* pred = block->pred_at(0); |
| 1803 | BlockBegin* sux = block->sux_at(0); |
| 1804 | |
| 1805 | // prevent optimization of two consecutive blocks |
| 1806 | if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) { |
| 1807 | TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)" , block->block_id(), pred->block_id(), sux->block_id())); |
| 1808 | block_completed.set_bit(block->linear_scan_number()); |
| 1809 | |
| 1810 | // directly resolve between pred and sux (without looking at the empty block between) |
| 1811 | resolve_collect_mappings(pred, sux, move_resolver); |
| 1812 | if (move_resolver.has_mappings()) { |
| 1813 | move_resolver.set_insert_position(block->lir(), 0); |
| 1814 | move_resolver.resolve_and_append_moves(); |
| 1815 | } |
| 1816 | } |
| 1817 | } |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | |
| 1822 | for (i = 0; i < num_blocks; i++) { |
| 1823 | if (!block_completed.at(i)) { |
| 1824 | BlockBegin* from_block = block_at(i); |
| 1825 | already_resolved.set_from(block_completed); |
| 1826 | |
| 1827 | int num_sux = from_block->number_of_sux(); |
| 1828 | for (int s = 0; s < num_sux; s++) { |
| 1829 | BlockBegin* to_block = from_block->sux_at(s); |
| 1830 | |
| 1831 | // check for duplicate edges between the same blocks (can happen with switch blocks) |
| 1832 | if (!already_resolved.at(to_block->linear_scan_number())) { |
| 1833 | TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d" , from_block->block_id(), to_block->block_id())); |
| 1834 | already_resolved.set_bit(to_block->linear_scan_number()); |
| 1835 | |
| 1836 | // collect all intervals that have been split between from_block and to_block |
| 1837 | resolve_collect_mappings(from_block, to_block, move_resolver); |
| 1838 | if (move_resolver.has_mappings()) { |
| 1839 | resolve_find_insert_pos(from_block, to_block, move_resolver); |
| 1840 | move_resolver.resolve_and_append_moves(); |
| 1841 | } |
| 1842 | } |
| 1843 | } |
| 1844 | } |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | |
| 1849 | void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) { |
| 1850 | if (interval_at(reg_num) == NULL) { |
| 1851 | // if a phi function is never used, no interval is created -> ignore this |
| 1852 | return; |
| 1853 | } |
| 1854 | |
| 1855 | Interval* interval = interval_at_block_begin(block, reg_num); |
| 1856 | int reg = interval->assigned_reg(); |
| 1857 | int regHi = interval->assigned_regHi(); |
| 1858 | |
| 1859 | if ((reg < nof_regs && interval->always_in_memory()) || |
| 1860 | (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) { |
| 1861 | // the interval is split to get a short range that is located on the stack |
| 1862 | // in the following two cases: |
| 1863 | // * the interval started in memory (e.g. method parameter), but is currently in a register |
| 1864 | // this is an optimization for exception handling that reduces the number of moves that |
| 1865 | // are necessary for resolving the states when an exception uses this exception handler |
| 1866 | // * the interval would be on the fpu stack at the begin of the exception handler |
| 1867 | // this is not allowed because of the complicated fpu stack handling on Intel |
| 1868 | |
| 1869 | // range that will be spilled to memory |
| 1870 | int from_op_id = block->first_lir_instruction_id(); |
| 1871 | int to_op_id = from_op_id + 1; // short live range of length 1 |
| 1872 | assert(interval->from() <= from_op_id && interval->to() >= to_op_id, |
| 1873 | "no split allowed between exception entry and first instruction" ); |
| 1874 | |
| 1875 | if (interval->from() != from_op_id) { |
| 1876 | // the part before from_op_id is unchanged |
| 1877 | interval = interval->split(from_op_id); |
| 1878 | interval->assign_reg(reg, regHi); |
| 1879 | append_interval(interval); |
| 1880 | } else { |
| 1881 | _needs_full_resort = true; |
| 1882 | } |
| 1883 | assert(interval->from() == from_op_id, "must be true now" ); |
| 1884 | |
| 1885 | Interval* spilled_part = interval; |
| 1886 | if (interval->to() != to_op_id) { |
| 1887 | // the part after to_op_id is unchanged |
| 1888 | spilled_part = interval->split_from_start(to_op_id); |
| 1889 | append_interval(spilled_part); |
| 1890 | move_resolver.add_mapping(spilled_part, interval); |
| 1891 | } |
| 1892 | assign_spill_slot(spilled_part); |
| 1893 | |
| 1894 | assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking" ); |
| 1895 | } |
| 1896 | } |
| 1897 | |
| 1898 | void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) { |
| 1899 | assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise" ); |
| 1900 | DEBUG_ONLY(move_resolver.check_empty()); |
| 1901 | |
| 1902 | // visit all registers where the live_in bit is set |
| 1903 | int size = live_set_size(); |
| 1904 | for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { |
| 1905 | resolve_exception_entry(block, r, move_resolver); |
| 1906 | } |
| 1907 | |
| 1908 | // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately |
| 1909 | for_each_phi_fun(block, phi, |
| 1910 | if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); } |
| 1911 | ); |
| 1912 | |
| 1913 | if (move_resolver.has_mappings()) { |
| 1914 | // insert moves after first instruction |
| 1915 | move_resolver.set_insert_position(block->lir(), 0); |
| 1916 | move_resolver.resolve_and_append_moves(); |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | |
| 1921 | void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) { |
| 1922 | if (interval_at(reg_num) == NULL) { |
| 1923 | // if a phi function is never used, no interval is created -> ignore this |
| 1924 | return; |
| 1925 | } |
| 1926 | |
| 1927 | // the computation of to_interval is equal to resolve_collect_mappings, |
| 1928 | // but from_interval is more complicated because of phi functions |
| 1929 | BlockBegin* to_block = handler->entry_block(); |
| 1930 | Interval* to_interval = interval_at_block_begin(to_block, reg_num); |
| 1931 | |
| 1932 | if (phi != NULL) { |
| 1933 | // phi function of the exception entry block |
| 1934 | // no moves are created for this phi function in the LIR_Generator, so the |
| 1935 | // interval at the throwing instruction must be searched using the operands |
| 1936 | // of the phi function |
| 1937 | Value from_value = phi->operand_at(handler->phi_operand()); |
| 1938 | |
| 1939 | // with phi functions it can happen that the same from_value is used in |
| 1940 | // multiple mappings, so notify move-resolver that this is allowed |
| 1941 | move_resolver.set_multiple_reads_allowed(); |
| 1942 | |
| 1943 | Constant* con = from_value->as_Constant(); |
| 1944 | if (con != NULL && !con->is_pinned()) { |
| 1945 | // unpinned constants may have no register, so add mapping from constant to interval |
| 1946 | move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval); |
| 1947 | } else { |
| 1948 | // search split child at the throwing op_id |
| 1949 | Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id); |
| 1950 | move_resolver.add_mapping(from_interval, to_interval); |
| 1951 | } |
| 1952 | |
| 1953 | } else { |
| 1954 | // no phi function, so use reg_num also for from_interval |
| 1955 | // search split child at the throwing op_id |
| 1956 | Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id); |
| 1957 | if (from_interval != to_interval) { |
| 1958 | // optimization to reduce number of moves: when to_interval is on stack and |
| 1959 | // the stack slot is known to be always correct, then no move is necessary |
| 1960 | if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) { |
| 1961 | move_resolver.add_mapping(from_interval, to_interval); |
| 1962 | } |
| 1963 | } |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) { |
| 1968 | TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d" , handler->entry_block()->block_id(), throwing_op_id)); |
| 1969 | |
| 1970 | DEBUG_ONLY(move_resolver.check_empty()); |
| 1971 | assert(handler->lir_op_id() == -1, "already processed this xhandler" ); |
| 1972 | DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id)); |
| 1973 | assert(handler->entry_code() == NULL, "code already present" ); |
| 1974 | |
| 1975 | // visit all registers where the live_in bit is set |
| 1976 | BlockBegin* block = handler->entry_block(); |
| 1977 | int size = live_set_size(); |
| 1978 | for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { |
| 1979 | resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver); |
| 1980 | } |
| 1981 | |
| 1982 | // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately |
| 1983 | for_each_phi_fun(block, phi, |
| 1984 | if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); } |
| 1985 | ); |
| 1986 | |
| 1987 | if (move_resolver.has_mappings()) { |
| 1988 | LIR_List* entry_code = new LIR_List(compilation()); |
| 1989 | move_resolver.set_insert_position(entry_code, 0); |
| 1990 | move_resolver.resolve_and_append_moves(); |
| 1991 | |
| 1992 | entry_code->jump(handler->entry_block()); |
| 1993 | handler->set_entry_code(entry_code); |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | |
| 1998 | void LinearScan::resolve_exception_handlers() { |
| 1999 | MoveResolver move_resolver(this); |
| 2000 | LIR_OpVisitState visitor; |
| 2001 | int num_blocks = block_count(); |
| 2002 | |
| 2003 | int i; |
| 2004 | for (i = 0; i < num_blocks; i++) { |
| 2005 | BlockBegin* block = block_at(i); |
| 2006 | if (block->is_set(BlockBegin::exception_entry_flag)) { |
| 2007 | resolve_exception_entry(block, move_resolver); |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | for (i = 0; i < num_blocks; i++) { |
| 2012 | BlockBegin* block = block_at(i); |
| 2013 | LIR_List* ops = block->lir(); |
| 2014 | int num_ops = ops->length(); |
| 2015 | |
| 2016 | // iterate all instructions of the block. skip the first because it is always a label |
| 2017 | assert(visitor.no_operands(ops->at(0)), "first operation must always be a label" ); |
| 2018 | for (int j = 1; j < num_ops; j++) { |
| 2019 | LIR_Op* op = ops->at(j); |
| 2020 | int op_id = op->id(); |
| 2021 | |
| 2022 | if (op_id != -1 && has_info(op_id)) { |
| 2023 | // visit operation to collect all operands |
| 2024 | visitor.visit(op); |
| 2025 | assert(visitor.info_count() > 0, "should not visit otherwise" ); |
| 2026 | |
| 2027 | XHandlers* xhandlers = visitor.all_xhandler(); |
| 2028 | int n = xhandlers->length(); |
| 2029 | for (int k = 0; k < n; k++) { |
| 2030 | resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver); |
| 2031 | } |
| 2032 | |
| 2033 | #ifdef ASSERT |
| 2034 | } else { |
| 2035 | visitor.visit(op); |
| 2036 | assert(visitor.all_xhandler()->length() == 0, "missed exception handler" ); |
| 2037 | #endif |
| 2038 | } |
| 2039 | } |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | |
| 2044 | // ********** Phase 7: assign register numbers back to LIR |
| 2045 | // (includes computation of debug information and oop maps) |
| 2046 | |
| 2047 | VMReg LinearScan::vm_reg_for_interval(Interval* interval) { |
| 2048 | VMReg reg = interval->cached_vm_reg(); |
| 2049 | if (!reg->is_valid() ) { |
| 2050 | reg = vm_reg_for_operand(operand_for_interval(interval)); |
| 2051 | interval->set_cached_vm_reg(reg); |
| 2052 | } |
| 2053 | assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value" ); |
| 2054 | return reg; |
| 2055 | } |
| 2056 | |
| 2057 | VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) { |
| 2058 | assert(opr->is_oop(), "currently only implemented for oop operands" ); |
| 2059 | return frame_map()->regname(opr); |
| 2060 | } |
| 2061 | |
| 2062 | |
| 2063 | LIR_Opr LinearScan::operand_for_interval(Interval* interval) { |
| 2064 | LIR_Opr opr = interval->cached_opr(); |
| 2065 | if (opr->is_illegal()) { |
| 2066 | opr = calc_operand_for_interval(interval); |
| 2067 | interval->set_cached_opr(opr); |
| 2068 | } |
| 2069 | |
| 2070 | assert(opr == calc_operand_for_interval(interval), "wrong cached value" ); |
| 2071 | return opr; |
| 2072 | } |
| 2073 | |
| 2074 | LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) { |
| 2075 | int assigned_reg = interval->assigned_reg(); |
| 2076 | BasicType type = interval->type(); |
| 2077 | |
| 2078 | if (assigned_reg >= nof_regs) { |
| 2079 | // stack slot |
| 2080 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2081 | return LIR_OprFact::stack(assigned_reg - nof_regs, type); |
| 2082 | |
| 2083 | } else { |
| 2084 | // register |
| 2085 | switch (type) { |
| 2086 | case T_OBJECT: { |
| 2087 | assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register" ); |
| 2088 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2089 | return LIR_OprFact::single_cpu_oop(assigned_reg); |
| 2090 | } |
| 2091 | |
| 2092 | case T_ADDRESS: { |
| 2093 | assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register" ); |
| 2094 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2095 | return LIR_OprFact::single_cpu_address(assigned_reg); |
| 2096 | } |
| 2097 | |
| 2098 | case T_METADATA: { |
| 2099 | assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register" ); |
| 2100 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2101 | return LIR_OprFact::single_cpu_metadata(assigned_reg); |
| 2102 | } |
| 2103 | |
| 2104 | #ifdef __SOFTFP__ |
| 2105 | case T_FLOAT: // fall through |
| 2106 | #endif // __SOFTFP__ |
| 2107 | case T_INT: { |
| 2108 | assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register" ); |
| 2109 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2110 | return LIR_OprFact::single_cpu(assigned_reg); |
| 2111 | } |
| 2112 | |
| 2113 | #ifdef __SOFTFP__ |
| 2114 | case T_DOUBLE: // fall through |
| 2115 | #endif // __SOFTFP__ |
| 2116 | case T_LONG: { |
| 2117 | int assigned_regHi = interval->assigned_regHi(); |
| 2118 | assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register" ); |
| 2119 | assert(num_physical_regs(T_LONG) == 1 || |
| 2120 | (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register" ); |
| 2121 | |
| 2122 | assert(assigned_reg != assigned_regHi, "invalid allocation" ); |
| 2123 | assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi, |
| 2124 | "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)" ); |
| 2125 | assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match" ); |
| 2126 | if (requires_adjacent_regs(T_LONG)) { |
| 2127 | assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even" ); |
| 2128 | } |
| 2129 | |
| 2130 | #ifdef _LP64 |
| 2131 | return LIR_OprFact::double_cpu(assigned_reg, assigned_reg); |
| 2132 | #else |
| 2133 | #if defined(SPARC) || defined(PPC32) |
| 2134 | return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg); |
| 2135 | #else |
| 2136 | return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi); |
| 2137 | #endif // SPARC |
| 2138 | #endif // LP64 |
| 2139 | } |
| 2140 | |
| 2141 | #ifndef __SOFTFP__ |
| 2142 | case T_FLOAT: { |
| 2143 | #ifdef X86 |
| 2144 | if (UseSSE >= 1) { |
| 2145 | int last_xmm_reg = pd_last_xmm_reg; |
| 2146 | #ifdef _LP64 |
| 2147 | if (UseAVX < 3) { |
| 2148 | last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; |
| 2149 | } |
| 2150 | #endif |
| 2151 | assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register" ); |
| 2152 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2153 | return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg); |
| 2154 | } |
| 2155 | #endif |
| 2156 | |
| 2157 | assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register" ); |
| 2158 | assert(interval->assigned_regHi() == any_reg, "must not have hi register" ); |
| 2159 | return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg); |
| 2160 | } |
| 2161 | |
| 2162 | case T_DOUBLE: { |
| 2163 | #ifdef X86 |
| 2164 | if (UseSSE >= 2) { |
| 2165 | int last_xmm_reg = pd_last_xmm_reg; |
| 2166 | #ifdef _LP64 |
| 2167 | if (UseAVX < 3) { |
| 2168 | last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; |
| 2169 | } |
| 2170 | #endif |
| 2171 | assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register" ); |
| 2172 | assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)" ); |
| 2173 | return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg); |
| 2174 | } |
| 2175 | #endif |
| 2176 | |
| 2177 | #ifdef SPARC |
| 2178 | assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register" ); |
| 2179 | assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register" ); |
| 2180 | assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even" ); |
| 2181 | LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg); |
| 2182 | #elif defined(ARM32) |
| 2183 | assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register" ); |
| 2184 | assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register" ); |
| 2185 | assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even" ); |
| 2186 | LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg); |
| 2187 | #else |
| 2188 | assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register" ); |
| 2189 | assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)" ); |
| 2190 | LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg); |
| 2191 | #endif |
| 2192 | return result; |
| 2193 | } |
| 2194 | #endif // __SOFTFP__ |
| 2195 | |
| 2196 | default: { |
| 2197 | ShouldNotReachHere(); |
| 2198 | return LIR_OprFact::illegalOpr; |
| 2199 | } |
| 2200 | } |
| 2201 | } |
| 2202 | } |
| 2203 | |
| 2204 | LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) { |
| 2205 | assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set" ); |
| 2206 | return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type()); |
| 2207 | } |
| 2208 | |
| 2209 | LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) { |
| 2210 | assert(opr->is_virtual(), "should not call this otherwise" ); |
| 2211 | |
| 2212 | Interval* interval = interval_at(opr->vreg_number()); |
| 2213 | assert(interval != NULL, "interval must exist" ); |
| 2214 | |
| 2215 | if (op_id != -1) { |
| 2216 | #ifdef ASSERT |
| 2217 | BlockBegin* block = block_of_op_with_id(op_id); |
| 2218 | if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) { |
| 2219 | // check if spill moves could have been appended at the end of this block, but |
| 2220 | // before the branch instruction. So the split child information for this branch would |
| 2221 | // be incorrect. |
| 2222 | LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch(); |
| 2223 | if (branch != NULL) { |
| 2224 | if (block->live_out().at(opr->vreg_number())) { |
| 2225 | assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump" ); |
| 2226 | assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)" ); |
| 2227 | } |
| 2228 | } |
| 2229 | } |
| 2230 | #endif |
| 2231 | |
| 2232 | // operands are not changed when an interval is split during allocation, |
| 2233 | // so search the right interval here |
| 2234 | interval = split_child_at_op_id(interval, op_id, mode); |
| 2235 | } |
| 2236 | |
| 2237 | LIR_Opr res = operand_for_interval(interval); |
| 2238 | |
| 2239 | #ifdef X86 |
| 2240 | // new semantic for is_last_use: not only set on definite end of interval, |
| 2241 | // but also before hole |
| 2242 | // This may still miss some cases (e.g. for dead values), but it is not necessary that the |
| 2243 | // last use information is completely correct |
| 2244 | // information is only needed for fpu stack allocation |
| 2245 | if (res->is_fpu_register()) { |
| 2246 | if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) { |
| 2247 | assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow" ); |
| 2248 | res = res->make_last_use(); |
| 2249 | } |
| 2250 | } |
| 2251 | #endif |
| 2252 | |
| 2253 | assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation" ); |
| 2254 | |
| 2255 | return res; |
| 2256 | } |
| 2257 | |
| 2258 | |
| 2259 | #ifdef ASSERT |
| 2260 | // some methods used to check correctness of debug information |
| 2261 | |
| 2262 | void assert_no_register_values(GrowableArray<ScopeValue*>* values) { |
| 2263 | if (values == NULL) { |
| 2264 | return; |
| 2265 | } |
| 2266 | |
| 2267 | for (int i = 0; i < values->length(); i++) { |
| 2268 | ScopeValue* value = values->at(i); |
| 2269 | |
| 2270 | if (value->is_location()) { |
| 2271 | Location location = ((LocationValue*)value)->location(); |
| 2272 | assert(location.where() == Location::on_stack, "value is in register" ); |
| 2273 | } |
| 2274 | } |
| 2275 | } |
| 2276 | |
| 2277 | void assert_no_register_values(GrowableArray<MonitorValue*>* values) { |
| 2278 | if (values == NULL) { |
| 2279 | return; |
| 2280 | } |
| 2281 | |
| 2282 | for (int i = 0; i < values->length(); i++) { |
| 2283 | MonitorValue* value = values->at(i); |
| 2284 | |
| 2285 | if (value->owner()->is_location()) { |
| 2286 | Location location = ((LocationValue*)value->owner())->location(); |
| 2287 | assert(location.where() == Location::on_stack, "owner is in register" ); |
| 2288 | } |
| 2289 | assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register" ); |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | void assert_equal(Location l1, Location l2) { |
| 2294 | assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "" ); |
| 2295 | } |
| 2296 | |
| 2297 | void assert_equal(ScopeValue* v1, ScopeValue* v2) { |
| 2298 | if (v1->is_location()) { |
| 2299 | assert(v2->is_location(), "" ); |
| 2300 | assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location()); |
| 2301 | } else if (v1->is_constant_int()) { |
| 2302 | assert(v2->is_constant_int(), "" ); |
| 2303 | assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "" ); |
| 2304 | } else if (v1->is_constant_double()) { |
| 2305 | assert(v2->is_constant_double(), "" ); |
| 2306 | assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "" ); |
| 2307 | } else if (v1->is_constant_long()) { |
| 2308 | assert(v2->is_constant_long(), "" ); |
| 2309 | assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "" ); |
| 2310 | } else if (v1->is_constant_oop()) { |
| 2311 | assert(v2->is_constant_oop(), "" ); |
| 2312 | assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "" ); |
| 2313 | } else { |
| 2314 | ShouldNotReachHere(); |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | void assert_equal(MonitorValue* m1, MonitorValue* m2) { |
| 2319 | assert_equal(m1->owner(), m2->owner()); |
| 2320 | assert_equal(m1->basic_lock(), m2->basic_lock()); |
| 2321 | } |
| 2322 | |
| 2323 | void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) { |
| 2324 | assert(d1->scope() == d2->scope(), "not equal" ); |
| 2325 | assert(d1->bci() == d2->bci(), "not equal" ); |
| 2326 | |
| 2327 | if (d1->locals() != NULL) { |
| 2328 | assert(d1->locals() != NULL && d2->locals() != NULL, "not equal" ); |
| 2329 | assert(d1->locals()->length() == d2->locals()->length(), "not equal" ); |
| 2330 | for (int i = 0; i < d1->locals()->length(); i++) { |
| 2331 | assert_equal(d1->locals()->at(i), d2->locals()->at(i)); |
| 2332 | } |
| 2333 | } else { |
| 2334 | assert(d1->locals() == NULL && d2->locals() == NULL, "not equal" ); |
| 2335 | } |
| 2336 | |
| 2337 | if (d1->expressions() != NULL) { |
| 2338 | assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal" ); |
| 2339 | assert(d1->expressions()->length() == d2->expressions()->length(), "not equal" ); |
| 2340 | for (int i = 0; i < d1->expressions()->length(); i++) { |
| 2341 | assert_equal(d1->expressions()->at(i), d2->expressions()->at(i)); |
| 2342 | } |
| 2343 | } else { |
| 2344 | assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal" ); |
| 2345 | } |
| 2346 | |
| 2347 | if (d1->monitors() != NULL) { |
| 2348 | assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal" ); |
| 2349 | assert(d1->monitors()->length() == d2->monitors()->length(), "not equal" ); |
| 2350 | for (int i = 0; i < d1->monitors()->length(); i++) { |
| 2351 | assert_equal(d1->monitors()->at(i), d2->monitors()->at(i)); |
| 2352 | } |
| 2353 | } else { |
| 2354 | assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal" ); |
| 2355 | } |
| 2356 | |
| 2357 | if (d1->caller() != NULL) { |
| 2358 | assert(d1->caller() != NULL && d2->caller() != NULL, "not equal" ); |
| 2359 | assert_equal(d1->caller(), d2->caller()); |
| 2360 | } else { |
| 2361 | assert(d1->caller() == NULL && d2->caller() == NULL, "not equal" ); |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | void check_stack_depth(CodeEmitInfo* info, int stack_end) { |
| 2366 | if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) { |
| 2367 | Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci()); |
| 2368 | switch (code) { |
| 2369 | case Bytecodes::_ifnull : // fall through |
| 2370 | case Bytecodes::_ifnonnull : // fall through |
| 2371 | case Bytecodes::_ifeq : // fall through |
| 2372 | case Bytecodes::_ifne : // fall through |
| 2373 | case Bytecodes::_iflt : // fall through |
| 2374 | case Bytecodes::_ifge : // fall through |
| 2375 | case Bytecodes::_ifgt : // fall through |
| 2376 | case Bytecodes::_ifle : // fall through |
| 2377 | case Bytecodes::_if_icmpeq : // fall through |
| 2378 | case Bytecodes::_if_icmpne : // fall through |
| 2379 | case Bytecodes::_if_icmplt : // fall through |
| 2380 | case Bytecodes::_if_icmpge : // fall through |
| 2381 | case Bytecodes::_if_icmpgt : // fall through |
| 2382 | case Bytecodes::_if_icmple : // fall through |
| 2383 | case Bytecodes::_if_acmpeq : // fall through |
| 2384 | case Bytecodes::_if_acmpne : |
| 2385 | assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode" ); |
| 2386 | break; |
| 2387 | default: |
| 2388 | break; |
| 2389 | } |
| 2390 | } |
| 2391 | } |
| 2392 | |
| 2393 | #endif // ASSERT |
| 2394 | |
| 2395 | |
| 2396 | IntervalWalker* LinearScan::init_compute_oop_maps() { |
| 2397 | // setup lists of potential oops for walking |
| 2398 | Interval* oop_intervals; |
| 2399 | Interval* non_oop_intervals; |
| 2400 | |
| 2401 | create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL); |
| 2402 | |
| 2403 | // intervals that have no oops inside need not to be processed |
| 2404 | // to ensure a walking until the last instruction id, add a dummy interval |
| 2405 | // with a high operation id |
| 2406 | non_oop_intervals = new Interval(any_reg); |
| 2407 | non_oop_intervals->add_range(max_jint - 2, max_jint - 1); |
| 2408 | |
| 2409 | return new IntervalWalker(this, oop_intervals, non_oop_intervals); |
| 2410 | } |
| 2411 | |
| 2412 | |
| 2413 | OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) { |
| 2414 | TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d" , op->id())); |
| 2415 | |
| 2416 | // walk before the current operation -> intervals that start at |
| 2417 | // the operation (= output operands of the operation) are not |
| 2418 | // included in the oop map |
| 2419 | iw->walk_before(op->id()); |
| 2420 | |
| 2421 | int frame_size = frame_map()->framesize(); |
| 2422 | int arg_count = frame_map()->oop_map_arg_count(); |
| 2423 | OopMap* map = new OopMap(frame_size, arg_count); |
| 2424 | |
| 2425 | // Iterate through active intervals |
| 2426 | for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) { |
| 2427 | int assigned_reg = interval->assigned_reg(); |
| 2428 | |
| 2429 | assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise" ); |
| 2430 | assert(interval->assigned_regHi() == any_reg, "oop must be single word" ); |
| 2431 | assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found" ); |
| 2432 | |
| 2433 | // Check if this range covers the instruction. Intervals that |
| 2434 | // start or end at the current operation are not included in the |
| 2435 | // oop map, except in the case of patching moves. For patching |
| 2436 | // moves, any intervals which end at this instruction are included |
| 2437 | // in the oop map since we may safepoint while doing the patch |
| 2438 | // before we've consumed the inputs. |
| 2439 | if (op->is_patching() || op->id() < interval->current_to()) { |
| 2440 | |
| 2441 | // caller-save registers must not be included into oop-maps at calls |
| 2442 | assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten" ); |
| 2443 | |
| 2444 | VMReg name = vm_reg_for_interval(interval); |
| 2445 | set_oop(map, name); |
| 2446 | |
| 2447 | // Spill optimization: when the stack value is guaranteed to be always correct, |
| 2448 | // then it must be added to the oop map even if the interval is currently in a register |
| 2449 | if (interval->always_in_memory() && |
| 2450 | op->id() > interval->spill_definition_pos() && |
| 2451 | interval->assigned_reg() != interval->canonical_spill_slot()) { |
| 2452 | assert(interval->spill_definition_pos() > 0, "position not set correctly" ); |
| 2453 | assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned" ); |
| 2454 | assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice" ); |
| 2455 | |
| 2456 | set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs)); |
| 2457 | } |
| 2458 | } |
| 2459 | } |
| 2460 | |
| 2461 | // add oops from lock stack |
| 2462 | assert(info->stack() != NULL, "CodeEmitInfo must always have a stack" ); |
| 2463 | int locks_count = info->stack()->total_locks_size(); |
| 2464 | for (int i = 0; i < locks_count; i++) { |
| 2465 | set_oop(map, frame_map()->monitor_object_regname(i)); |
| 2466 | } |
| 2467 | |
| 2468 | return map; |
| 2469 | } |
| 2470 | |
| 2471 | |
| 2472 | void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) { |
| 2473 | assert(visitor.info_count() > 0, "no oop map needed" ); |
| 2474 | |
| 2475 | // compute oop_map only for first CodeEmitInfo |
| 2476 | // because it is (in most cases) equal for all other infos of the same operation |
| 2477 | CodeEmitInfo* first_info = visitor.info_at(0); |
| 2478 | OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call()); |
| 2479 | |
| 2480 | for (int i = 0; i < visitor.info_count(); i++) { |
| 2481 | CodeEmitInfo* info = visitor.info_at(i); |
| 2482 | OopMap* oop_map = first_oop_map; |
| 2483 | |
| 2484 | // compute worst case interpreter size in case of a deoptimization |
| 2485 | _compilation->update_interpreter_frame_size(info->interpreter_frame_size()); |
| 2486 | |
| 2487 | if (info->stack()->locks_size() != first_info->stack()->locks_size()) { |
| 2488 | // this info has a different number of locks then the precomputed oop map |
| 2489 | // (possible for lock and unlock instructions) -> compute oop map with |
| 2490 | // correct lock information |
| 2491 | oop_map = compute_oop_map(iw, op, info, visitor.has_call()); |
| 2492 | } |
| 2493 | |
| 2494 | if (info->_oop_map == NULL) { |
| 2495 | info->_oop_map = oop_map; |
| 2496 | } else { |
| 2497 | // a CodeEmitInfo can not be shared between different LIR-instructions |
| 2498 | // because interval splitting can occur anywhere between two instructions |
| 2499 | // and so the oop maps must be different |
| 2500 | // -> check if the already set oop_map is exactly the one calculated for this operation |
| 2501 | assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions" ); |
| 2502 | } |
| 2503 | } |
| 2504 | } |
| 2505 | |
| 2506 | |
| 2507 | // frequently used constants |
| 2508 | // Allocate them with new so they are never destroyed (otherwise, a |
| 2509 | // forced exit could destroy these objects while they are still in |
| 2510 | // use). |
| 2511 | ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL); |
| 2512 | ConstantIntValue* LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1); |
| 2513 | ConstantIntValue* LinearScan::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0); |
| 2514 | ConstantIntValue* LinearScan::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1); |
| 2515 | ConstantIntValue* LinearScan::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2); |
| 2516 | LocationValue* _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location()); |
| 2517 | |
| 2518 | void LinearScan::init_compute_debug_info() { |
| 2519 | // cache for frequently used scope values |
| 2520 | // (cpu registers and stack slots) |
| 2521 | int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2; |
| 2522 | _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL); |
| 2523 | } |
| 2524 | |
| 2525 | MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) { |
| 2526 | Location loc; |
| 2527 | if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) { |
| 2528 | bailout("too large frame" ); |
| 2529 | } |
| 2530 | ScopeValue* object_scope_value = new LocationValue(loc); |
| 2531 | |
| 2532 | if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) { |
| 2533 | bailout("too large frame" ); |
| 2534 | } |
| 2535 | return new MonitorValue(object_scope_value, loc); |
| 2536 | } |
| 2537 | |
| 2538 | LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) { |
| 2539 | Location loc; |
| 2540 | if (!frame_map()->locations_for_slot(name, loc_type, &loc)) { |
| 2541 | bailout("too large frame" ); |
| 2542 | } |
| 2543 | return new LocationValue(loc); |
| 2544 | } |
| 2545 | |
| 2546 | |
| 2547 | int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { |
| 2548 | assert(opr->is_constant(), "should not be called otherwise" ); |
| 2549 | |
| 2550 | LIR_Const* c = opr->as_constant_ptr(); |
| 2551 | BasicType t = c->type(); |
| 2552 | switch (t) { |
| 2553 | case T_OBJECT: { |
| 2554 | jobject value = c->as_jobject(); |
| 2555 | if (value == NULL) { |
| 2556 | scope_values->append(_oop_null_scope_value); |
| 2557 | } else { |
| 2558 | scope_values->append(new ConstantOopWriteValue(c->as_jobject())); |
| 2559 | } |
| 2560 | return 1; |
| 2561 | } |
| 2562 | |
| 2563 | case T_INT: // fall through |
| 2564 | case T_FLOAT: { |
| 2565 | int value = c->as_jint_bits(); |
| 2566 | switch (value) { |
| 2567 | case -1: scope_values->append(_int_m1_scope_value); break; |
| 2568 | case 0: scope_values->append(_int_0_scope_value); break; |
| 2569 | case 1: scope_values->append(_int_1_scope_value); break; |
| 2570 | case 2: scope_values->append(_int_2_scope_value); break; |
| 2571 | default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break; |
| 2572 | } |
| 2573 | return 1; |
| 2574 | } |
| 2575 | |
| 2576 | case T_LONG: // fall through |
| 2577 | case T_DOUBLE: { |
| 2578 | #ifdef _LP64 |
| 2579 | scope_values->append(_int_0_scope_value); |
| 2580 | scope_values->append(new ConstantLongValue(c->as_jlong_bits())); |
| 2581 | #else |
| 2582 | if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) { |
| 2583 | scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); |
| 2584 | scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); |
| 2585 | } else { |
| 2586 | scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); |
| 2587 | scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); |
| 2588 | } |
| 2589 | #endif |
| 2590 | return 2; |
| 2591 | } |
| 2592 | |
| 2593 | case T_ADDRESS: { |
| 2594 | #ifdef _LP64 |
| 2595 | scope_values->append(new ConstantLongValue(c->as_jint())); |
| 2596 | #else |
| 2597 | scope_values->append(new ConstantIntValue(c->as_jint())); |
| 2598 | #endif |
| 2599 | return 1; |
| 2600 | } |
| 2601 | |
| 2602 | default: |
| 2603 | ShouldNotReachHere(); |
| 2604 | return -1; |
| 2605 | } |
| 2606 | } |
| 2607 | |
| 2608 | int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { |
| 2609 | if (opr->is_single_stack()) { |
| 2610 | int stack_idx = opr->single_stack_ix(); |
| 2611 | bool is_oop = opr->is_oop_register(); |
| 2612 | int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0); |
| 2613 | |
| 2614 | ScopeValue* sv = _scope_value_cache.at(cache_idx); |
| 2615 | if (sv == NULL) { |
| 2616 | Location::Type loc_type = is_oop ? Location::oop : Location::normal; |
| 2617 | sv = location_for_name(stack_idx, loc_type); |
| 2618 | _scope_value_cache.at_put(cache_idx, sv); |
| 2619 | } |
| 2620 | |
| 2621 | // check if cached value is correct |
| 2622 | DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal))); |
| 2623 | |
| 2624 | scope_values->append(sv); |
| 2625 | return 1; |
| 2626 | |
| 2627 | } else if (opr->is_single_cpu()) { |
| 2628 | bool is_oop = opr->is_oop_register(); |
| 2629 | int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0); |
| 2630 | Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long); |
| 2631 | |
| 2632 | ScopeValue* sv = _scope_value_cache.at(cache_idx); |
| 2633 | if (sv == NULL) { |
| 2634 | Location::Type loc_type = is_oop ? Location::oop : int_loc_type; |
| 2635 | VMReg rname = frame_map()->regname(opr); |
| 2636 | sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); |
| 2637 | _scope_value_cache.at_put(cache_idx, sv); |
| 2638 | } |
| 2639 | |
| 2640 | // check if cached value is correct |
| 2641 | DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr))))); |
| 2642 | |
| 2643 | scope_values->append(sv); |
| 2644 | return 1; |
| 2645 | |
| 2646 | #ifdef X86 |
| 2647 | } else if (opr->is_single_xmm()) { |
| 2648 | VMReg rname = opr->as_xmm_float_reg()->as_VMReg(); |
| 2649 | LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname)); |
| 2650 | |
| 2651 | scope_values->append(sv); |
| 2652 | return 1; |
| 2653 | #endif |
| 2654 | |
| 2655 | } else if (opr->is_single_fpu()) { |
| 2656 | #ifdef X86 |
| 2657 | // the exact location of fpu stack values is only known |
| 2658 | // during fpu stack allocation, so the stack allocator object |
| 2659 | // must be present |
| 2660 | assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)" ); |
| 2661 | assert(_fpu_stack_allocator != NULL, "must be present" ); |
| 2662 | opr = _fpu_stack_allocator->to_fpu_stack(opr); |
| 2663 | #endif |
| 2664 | |
| 2665 | Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal; |
| 2666 | VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr()); |
| 2667 | #ifndef __SOFTFP__ |
| 2668 | #ifndef VM_LITTLE_ENDIAN |
| 2669 | // On S390 a (single precision) float value occupies only the high |
| 2670 | // word of the full double register. So when the double register is |
| 2671 | // stored to memory (e.g. by the RegisterSaver), then the float value |
| 2672 | // is found at offset 0. I.e. the code below is not needed on S390. |
| 2673 | #ifndef S390 |
| 2674 | if (! float_saved_as_double) { |
| 2675 | // On big endian system, we may have an issue if float registers use only |
| 2676 | // the low half of the (same) double registers. |
| 2677 | // Both the float and the double could have the same regnr but would correspond |
| 2678 | // to two different addresses once saved. |
| 2679 | |
| 2680 | // get next safely (no assertion checks) |
| 2681 | VMReg next = VMRegImpl::as_VMReg(1+rname->value()); |
| 2682 | if (next->is_reg() && |
| 2683 | (next->as_FloatRegister() == rname->as_FloatRegister())) { |
| 2684 | // the back-end does use the same numbering for the double and the float |
| 2685 | rname = next; // VMReg for the low bits, e.g. the real VMReg for the float |
| 2686 | } |
| 2687 | } |
| 2688 | #endif // !S390 |
| 2689 | #endif |
| 2690 | #endif |
| 2691 | LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); |
| 2692 | |
| 2693 | scope_values->append(sv); |
| 2694 | return 1; |
| 2695 | |
| 2696 | } else { |
| 2697 | // double-size operands |
| 2698 | |
| 2699 | ScopeValue* first; |
| 2700 | ScopeValue* second; |
| 2701 | |
| 2702 | if (opr->is_double_stack()) { |
| 2703 | #ifdef _LP64 |
| 2704 | Location loc1; |
| 2705 | Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl; |
| 2706 | if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) { |
| 2707 | bailout("too large frame" ); |
| 2708 | } |
| 2709 | // Does this reverse on x86 vs. sparc? |
| 2710 | first = new LocationValue(loc1); |
| 2711 | second = _int_0_scope_value; |
| 2712 | #else |
| 2713 | Location loc1, loc2; |
| 2714 | if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) { |
| 2715 | bailout("too large frame" ); |
| 2716 | } |
| 2717 | first = new LocationValue(loc1); |
| 2718 | second = new LocationValue(loc2); |
| 2719 | #endif // _LP64 |
| 2720 | |
| 2721 | } else if (opr->is_double_cpu()) { |
| 2722 | #ifdef _LP64 |
| 2723 | VMReg rname_first = opr->as_register_lo()->as_VMReg(); |
| 2724 | first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first)); |
| 2725 | second = _int_0_scope_value; |
| 2726 | #else |
| 2727 | VMReg rname_first = opr->as_register_lo()->as_VMReg(); |
| 2728 | VMReg rname_second = opr->as_register_hi()->as_VMReg(); |
| 2729 | |
| 2730 | if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) { |
| 2731 | // lo/hi and swapped relative to first and second, so swap them |
| 2732 | VMReg tmp = rname_first; |
| 2733 | rname_first = rname_second; |
| 2734 | rname_second = tmp; |
| 2735 | } |
| 2736 | |
| 2737 | first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); |
| 2738 | second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); |
| 2739 | #endif //_LP64 |
| 2740 | |
| 2741 | |
| 2742 | #ifdef X86 |
| 2743 | } else if (opr->is_double_xmm()) { |
| 2744 | assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation" ); |
| 2745 | VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg(); |
| 2746 | # ifdef _LP64 |
| 2747 | first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); |
| 2748 | second = _int_0_scope_value; |
| 2749 | # else |
| 2750 | first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); |
| 2751 | // %%% This is probably a waste but we'll keep things as they were for now |
| 2752 | if (true) { |
| 2753 | VMReg rname_second = rname_first->next(); |
| 2754 | second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); |
| 2755 | } |
| 2756 | # endif |
| 2757 | #endif |
| 2758 | |
| 2759 | } else if (opr->is_double_fpu()) { |
| 2760 | // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of |
| 2761 | // the double as float registers in the native ordering. On X86, |
| 2762 | // fpu_regnrLo is a FPU stack slot whose VMReg represents |
| 2763 | // the low-order word of the double and fpu_regnrLo + 1 is the |
| 2764 | // name for the other half. *first and *second must represent the |
| 2765 | // least and most significant words, respectively. |
| 2766 | |
| 2767 | #ifdef X86 |
| 2768 | // the exact location of fpu stack values is only known |
| 2769 | // during fpu stack allocation, so the stack allocator object |
| 2770 | // must be present |
| 2771 | assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)" ); |
| 2772 | assert(_fpu_stack_allocator != NULL, "must be present" ); |
| 2773 | opr = _fpu_stack_allocator->to_fpu_stack(opr); |
| 2774 | |
| 2775 | assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)" ); |
| 2776 | #endif |
| 2777 | #ifdef SPARC |
| 2778 | assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)" ); |
| 2779 | #endif |
| 2780 | #ifdef ARM32 |
| 2781 | assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)" ); |
| 2782 | #endif |
| 2783 | #ifdef PPC32 |
| 2784 | assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)" ); |
| 2785 | #endif |
| 2786 | |
| 2787 | #ifdef VM_LITTLE_ENDIAN |
| 2788 | VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo()); |
| 2789 | #else |
| 2790 | VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi()); |
| 2791 | #endif |
| 2792 | |
| 2793 | #ifdef _LP64 |
| 2794 | first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); |
| 2795 | second = _int_0_scope_value; |
| 2796 | #else |
| 2797 | first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); |
| 2798 | // %%% This is probably a waste but we'll keep things as they were for now |
| 2799 | if (true) { |
| 2800 | VMReg rname_second = rname_first->next(); |
| 2801 | second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); |
| 2802 | } |
| 2803 | #endif |
| 2804 | |
| 2805 | } else { |
| 2806 | ShouldNotReachHere(); |
| 2807 | first = NULL; |
| 2808 | second = NULL; |
| 2809 | } |
| 2810 | |
| 2811 | assert(first != NULL && second != NULL, "must be set" ); |
| 2812 | // The convention the interpreter uses is that the second local |
| 2813 | // holds the first raw word of the native double representation. |
| 2814 | // This is actually reasonable, since locals and stack arrays |
| 2815 | // grow downwards in all implementations. |
| 2816 | // (If, on some machine, the interpreter's Java locals or stack |
| 2817 | // were to grow upwards, the embedded doubles would be word-swapped.) |
| 2818 | scope_values->append(second); |
| 2819 | scope_values->append(first); |
| 2820 | return 2; |
| 2821 | } |
| 2822 | } |
| 2823 | |
| 2824 | |
| 2825 | int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) { |
| 2826 | if (value != NULL) { |
| 2827 | LIR_Opr opr = value->operand(); |
| 2828 | Constant* con = value->as_Constant(); |
| 2829 | |
| 2830 | assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)" ); |
| 2831 | assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands" ); |
| 2832 | |
| 2833 | if (con != NULL && !con->is_pinned() && !opr->is_constant()) { |
| 2834 | // Unpinned constants may have a virtual operand for a part of the lifetime |
| 2835 | // or may be illegal when it was optimized away, |
| 2836 | // so always use a constant operand |
| 2837 | opr = LIR_OprFact::value_type(con->type()); |
| 2838 | } |
| 2839 | assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here" ); |
| 2840 | |
| 2841 | if (opr->is_virtual()) { |
| 2842 | LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode; |
| 2843 | |
| 2844 | BlockBegin* block = block_of_op_with_id(op_id); |
| 2845 | if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) { |
| 2846 | // generating debug information for the last instruction of a block. |
| 2847 | // if this instruction is a branch, spill moves are inserted before this branch |
| 2848 | // and so the wrong operand would be returned (spill moves at block boundaries are not |
| 2849 | // considered in the live ranges of intervals) |
| 2850 | // Solution: use the first op_id of the branch target block instead. |
| 2851 | if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) { |
| 2852 | if (block->live_out().at(opr->vreg_number())) { |
| 2853 | op_id = block->sux_at(0)->first_lir_instruction_id(); |
| 2854 | mode = LIR_OpVisitState::outputMode; |
| 2855 | } |
| 2856 | } |
| 2857 | } |
| 2858 | |
| 2859 | // Get current location of operand |
| 2860 | // The operand must be live because debug information is considered when building the intervals |
| 2861 | // if the interval is not live, color_lir_opr will cause an assertion failure |
| 2862 | opr = color_lir_opr(opr, op_id, mode); |
| 2863 | assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls" ); |
| 2864 | |
| 2865 | // Append to ScopeValue array |
| 2866 | return append_scope_value_for_operand(opr, scope_values); |
| 2867 | |
| 2868 | } else { |
| 2869 | assert(value->as_Constant() != NULL, "all other instructions have only virtual operands" ); |
| 2870 | assert(opr->is_constant(), "operand must be constant" ); |
| 2871 | |
| 2872 | return append_scope_value_for_constant(opr, scope_values); |
| 2873 | } |
| 2874 | } else { |
| 2875 | // append a dummy value because real value not needed |
| 2876 | scope_values->append(_illegal_value); |
| 2877 | return 1; |
| 2878 | } |
| 2879 | } |
| 2880 | |
| 2881 | |
| 2882 | IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) { |
| 2883 | IRScopeDebugInfo* caller_debug_info = NULL; |
| 2884 | |
| 2885 | ValueStack* caller_state = cur_state->caller_state(); |
| 2886 | if (caller_state != NULL) { |
| 2887 | // process recursively to compute outermost scope first |
| 2888 | caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state); |
| 2889 | } |
| 2890 | |
| 2891 | // initialize these to null. |
| 2892 | // If we don't need deopt info or there are no locals, expressions or monitors, |
| 2893 | // then these get recorded as no information and avoids the allocation of 0 length arrays. |
| 2894 | GrowableArray<ScopeValue*>* locals = NULL; |
| 2895 | GrowableArray<ScopeValue*>* expressions = NULL; |
| 2896 | GrowableArray<MonitorValue*>* monitors = NULL; |
| 2897 | |
| 2898 | // describe local variable values |
| 2899 | int nof_locals = cur_state->locals_size(); |
| 2900 | if (nof_locals > 0) { |
| 2901 | locals = new GrowableArray<ScopeValue*>(nof_locals); |
| 2902 | |
| 2903 | int pos = 0; |
| 2904 | while (pos < nof_locals) { |
| 2905 | assert(pos < cur_state->locals_size(), "why not?" ); |
| 2906 | |
| 2907 | Value local = cur_state->local_at(pos); |
| 2908 | pos += append_scope_value(op_id, local, locals); |
| 2909 | |
| 2910 | assert(locals->length() == pos, "must match" ); |
| 2911 | } |
| 2912 | assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals" ); |
| 2913 | assert(locals->length() == cur_state->locals_size(), "wrong number of locals" ); |
| 2914 | } else if (cur_scope->method()->max_locals() > 0) { |
| 2915 | assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be" ); |
| 2916 | nof_locals = cur_scope->method()->max_locals(); |
| 2917 | locals = new GrowableArray<ScopeValue*>(nof_locals); |
| 2918 | for(int i = 0; i < nof_locals; i++) { |
| 2919 | locals->append(_illegal_value); |
| 2920 | } |
| 2921 | } |
| 2922 | |
| 2923 | // describe expression stack |
| 2924 | int nof_stack = cur_state->stack_size(); |
| 2925 | if (nof_stack > 0) { |
| 2926 | expressions = new GrowableArray<ScopeValue*>(nof_stack); |
| 2927 | |
| 2928 | int pos = 0; |
| 2929 | while (pos < nof_stack) { |
| 2930 | Value expression = cur_state->stack_at_inc(pos); |
| 2931 | append_scope_value(op_id, expression, expressions); |
| 2932 | |
| 2933 | assert(expressions->length() == pos, "must match" ); |
| 2934 | } |
| 2935 | assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries" ); |
| 2936 | } |
| 2937 | |
| 2938 | // describe monitors |
| 2939 | int nof_locks = cur_state->locks_size(); |
| 2940 | if (nof_locks > 0) { |
| 2941 | int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0; |
| 2942 | monitors = new GrowableArray<MonitorValue*>(nof_locks); |
| 2943 | for (int i = 0; i < nof_locks; i++) { |
| 2944 | monitors->append(location_for_monitor_index(lock_offset + i)); |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info); |
| 2949 | } |
| 2950 | |
| 2951 | |
| 2952 | void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) { |
| 2953 | TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d" , op_id)); |
| 2954 | |
| 2955 | IRScope* innermost_scope = info->scope(); |
| 2956 | ValueStack* innermost_state = info->stack(); |
| 2957 | |
| 2958 | assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?" ); |
| 2959 | |
| 2960 | DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size())); |
| 2961 | |
| 2962 | if (info->_scope_debug_info == NULL) { |
| 2963 | // compute debug information |
| 2964 | info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state); |
| 2965 | } else { |
| 2966 | // debug information already set. Check that it is correct from the current point of view |
| 2967 | DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state))); |
| 2968 | } |
| 2969 | } |
| 2970 | |
| 2971 | |
| 2972 | void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) { |
| 2973 | LIR_OpVisitState visitor; |
| 2974 | int num_inst = instructions->length(); |
| 2975 | bool has_dead = false; |
| 2976 | |
| 2977 | for (int j = 0; j < num_inst; j++) { |
| 2978 | LIR_Op* op = instructions->at(j); |
| 2979 | if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves |
| 2980 | has_dead = true; |
| 2981 | continue; |
| 2982 | } |
| 2983 | int op_id = op->id(); |
| 2984 | |
| 2985 | // visit instruction to get list of operands |
| 2986 | visitor.visit(op); |
| 2987 | |
| 2988 | // iterate all modes of the visitor and process all virtual operands |
| 2989 | for_each_visitor_mode(mode) { |
| 2990 | int n = visitor.opr_count(mode); |
| 2991 | for (int k = 0; k < n; k++) { |
| 2992 | LIR_Opr opr = visitor.opr_at(mode, k); |
| 2993 | if (opr->is_virtual_register()) { |
| 2994 | visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode)); |
| 2995 | } |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | if (visitor.info_count() > 0) { |
| 3000 | // exception handling |
| 3001 | if (compilation()->has_exception_handlers()) { |
| 3002 | XHandlers* xhandlers = visitor.all_xhandler(); |
| 3003 | int n = xhandlers->length(); |
| 3004 | for (int k = 0; k < n; k++) { |
| 3005 | XHandler* handler = xhandlers->handler_at(k); |
| 3006 | if (handler->entry_code() != NULL) { |
| 3007 | assign_reg_num(handler->entry_code()->instructions_list(), NULL); |
| 3008 | } |
| 3009 | } |
| 3010 | } else { |
| 3011 | assert(visitor.all_xhandler()->length() == 0, "missed exception handler" ); |
| 3012 | } |
| 3013 | |
| 3014 | // compute oop map |
| 3015 | assert(iw != NULL, "needed for compute_oop_map" ); |
| 3016 | compute_oop_map(iw, visitor, op); |
| 3017 | |
| 3018 | // compute debug information |
| 3019 | if (!use_fpu_stack_allocation()) { |
| 3020 | // compute debug information if fpu stack allocation is not needed. |
| 3021 | // when fpu stack allocation is needed, the debug information can not |
| 3022 | // be computed here because the exact location of fpu operands is not known |
| 3023 | // -> debug information is created inside the fpu stack allocator |
| 3024 | int n = visitor.info_count(); |
| 3025 | for (int k = 0; k < n; k++) { |
| 3026 | compute_debug_info(visitor.info_at(k), op_id); |
| 3027 | } |
| 3028 | } |
| 3029 | } |
| 3030 | |
| 3031 | #ifdef ASSERT |
| 3032 | // make sure we haven't made the op invalid. |
| 3033 | op->verify(); |
| 3034 | #endif |
| 3035 | |
| 3036 | // remove useless moves |
| 3037 | if (op->code() == lir_move) { |
| 3038 | assert(op->as_Op1() != NULL, "move must be LIR_Op1" ); |
| 3039 | LIR_Op1* move = (LIR_Op1*)op; |
| 3040 | LIR_Opr src = move->in_opr(); |
| 3041 | LIR_Opr dst = move->result_opr(); |
| 3042 | if (dst == src || |
| 3043 | (!dst->is_pointer() && !src->is_pointer() && |
| 3044 | src->is_same_register(dst))) { |
| 3045 | instructions->at_put(j, NULL); |
| 3046 | has_dead = true; |
| 3047 | } |
| 3048 | } |
| 3049 | } |
| 3050 | |
| 3051 | if (has_dead) { |
| 3052 | // iterate all instructions of the block and remove all null-values. |
| 3053 | int insert_point = 0; |
| 3054 | for (int j = 0; j < num_inst; j++) { |
| 3055 | LIR_Op* op = instructions->at(j); |
| 3056 | if (op != NULL) { |
| 3057 | if (insert_point != j) { |
| 3058 | instructions->at_put(insert_point, op); |
| 3059 | } |
| 3060 | insert_point++; |
| 3061 | } |
| 3062 | } |
| 3063 | instructions->trunc_to(insert_point); |
| 3064 | } |
| 3065 | } |
| 3066 | |
| 3067 | void LinearScan::assign_reg_num() { |
| 3068 | TIME_LINEAR_SCAN(timer_assign_reg_num); |
| 3069 | |
| 3070 | init_compute_debug_info(); |
| 3071 | IntervalWalker* iw = init_compute_oop_maps(); |
| 3072 | |
| 3073 | int num_blocks = block_count(); |
| 3074 | for (int i = 0; i < num_blocks; i++) { |
| 3075 | BlockBegin* block = block_at(i); |
| 3076 | assign_reg_num(block->lir()->instructions_list(), iw); |
| 3077 | } |
| 3078 | } |
| 3079 | |
| 3080 | |
| 3081 | void LinearScan::do_linear_scan() { |
| 3082 | NOT_PRODUCT(_total_timer.begin_method()); |
| 3083 | |
| 3084 | number_instructions(); |
| 3085 | |
| 3086 | NOT_PRODUCT(print_lir(1, "Before Register Allocation" )); |
| 3087 | |
| 3088 | compute_local_live_sets(); |
| 3089 | compute_global_live_sets(); |
| 3090 | CHECK_BAILOUT(); |
| 3091 | |
| 3092 | build_intervals(); |
| 3093 | CHECK_BAILOUT(); |
| 3094 | sort_intervals_before_allocation(); |
| 3095 | |
| 3096 | NOT_PRODUCT(print_intervals("Before Register Allocation" )); |
| 3097 | NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc)); |
| 3098 | |
| 3099 | allocate_registers(); |
| 3100 | CHECK_BAILOUT(); |
| 3101 | |
| 3102 | resolve_data_flow(); |
| 3103 | if (compilation()->has_exception_handlers()) { |
| 3104 | resolve_exception_handlers(); |
| 3105 | } |
| 3106 | // fill in number of spill slots into frame_map |
| 3107 | propagate_spill_slots(); |
| 3108 | CHECK_BAILOUT(); |
| 3109 | |
| 3110 | NOT_PRODUCT(print_intervals("After Register Allocation" )); |
| 3111 | NOT_PRODUCT(print_lir(2, "LIR after register allocation:" )); |
| 3112 | |
| 3113 | sort_intervals_after_allocation(); |
| 3114 | |
| 3115 | DEBUG_ONLY(verify()); |
| 3116 | |
| 3117 | eliminate_spill_moves(); |
| 3118 | assign_reg_num(); |
| 3119 | CHECK_BAILOUT(); |
| 3120 | |
| 3121 | NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:" )); |
| 3122 | NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign)); |
| 3123 | |
| 3124 | { TIME_LINEAR_SCAN(timer_allocate_fpu_stack); |
| 3125 | |
| 3126 | if (use_fpu_stack_allocation()) { |
| 3127 | allocate_fpu_stack(); // Only has effect on Intel |
| 3128 | NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:" )); |
| 3129 | } |
| 3130 | } |
| 3131 | |
| 3132 | { TIME_LINEAR_SCAN(timer_optimize_lir); |
| 3133 | |
| 3134 | EdgeMoveOptimizer::optimize(ir()->code()); |
| 3135 | ControlFlowOptimizer::optimize(ir()->code()); |
| 3136 | // check that cfg is still correct after optimizations |
| 3137 | ir()->verify(); |
| 3138 | } |
| 3139 | |
| 3140 | NOT_PRODUCT(print_lir(1, "Before Code Generation" , false)); |
| 3141 | NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final)); |
| 3142 | NOT_PRODUCT(_total_timer.end_method(this)); |
| 3143 | } |
| 3144 | |
| 3145 | |
| 3146 | // ********** Printing functions |
| 3147 | |
| 3148 | #ifndef PRODUCT |
| 3149 | |
| 3150 | void LinearScan::print_timers(double total) { |
| 3151 | _total_timer.print(total); |
| 3152 | } |
| 3153 | |
| 3154 | void LinearScan::print_statistics() { |
| 3155 | _stat_before_alloc.print("before allocation" ); |
| 3156 | _stat_after_asign.print("after assignment of register" ); |
| 3157 | _stat_final.print("after optimization" ); |
| 3158 | } |
| 3159 | |
| 3160 | void LinearScan::print_bitmap(BitMap& b) { |
| 3161 | for (unsigned int i = 0; i < b.size(); i++) { |
| 3162 | if (b.at(i)) tty->print("%d " , i); |
| 3163 | } |
| 3164 | tty->cr(); |
| 3165 | } |
| 3166 | |
| 3167 | void LinearScan::print_intervals(const char* label) { |
| 3168 | if (TraceLinearScanLevel >= 1) { |
| 3169 | int i; |
| 3170 | tty->cr(); |
| 3171 | tty->print_cr("%s" , label); |
| 3172 | |
| 3173 | for (i = 0; i < interval_count(); i++) { |
| 3174 | Interval* interval = interval_at(i); |
| 3175 | if (interval != NULL) { |
| 3176 | interval->print(); |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | tty->cr(); |
| 3181 | tty->print_cr("--- Basic Blocks ---" ); |
| 3182 | for (i = 0; i < block_count(); i++) { |
| 3183 | BlockBegin* block = block_at(i); |
| 3184 | tty->print("B%d [%d, %d, %d, %d] " , block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth()); |
| 3185 | } |
| 3186 | tty->cr(); |
| 3187 | tty->cr(); |
| 3188 | } |
| 3189 | |
| 3190 | if (PrintCFGToFile) { |
| 3191 | CFGPrinter::print_intervals(&_intervals, label); |
| 3192 | } |
| 3193 | } |
| 3194 | |
| 3195 | void LinearScan::print_lir(int level, const char* label, bool hir_valid) { |
| 3196 | if (TraceLinearScanLevel >= level) { |
| 3197 | tty->cr(); |
| 3198 | tty->print_cr("%s" , label); |
| 3199 | print_LIR(ir()->linear_scan_order()); |
| 3200 | tty->cr(); |
| 3201 | } |
| 3202 | |
| 3203 | if (level == 1 && PrintCFGToFile) { |
| 3204 | CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true); |
| 3205 | } |
| 3206 | } |
| 3207 | |
| 3208 | #endif //PRODUCT |
| 3209 | |
| 3210 | |
| 3211 | // ********** verification functions for allocation |
| 3212 | // (check that all intervals have a correct register and that no registers are overwritten) |
| 3213 | #ifdef ASSERT |
| 3214 | |
| 3215 | void LinearScan::verify() { |
| 3216 | TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************" )); |
| 3217 | verify_intervals(); |
| 3218 | |
| 3219 | TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************" )); |
| 3220 | verify_no_oops_in_fixed_intervals(); |
| 3221 | |
| 3222 | TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries" )); |
| 3223 | verify_constants(); |
| 3224 | |
| 3225 | TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************" )); |
| 3226 | verify_registers(); |
| 3227 | |
| 3228 | TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************" )); |
| 3229 | } |
| 3230 | |
| 3231 | void LinearScan::verify_intervals() { |
| 3232 | int len = interval_count(); |
| 3233 | bool has_error = false; |
| 3234 | |
| 3235 | for (int i = 0; i < len; i++) { |
| 3236 | Interval* i1 = interval_at(i); |
| 3237 | if (i1 == NULL) continue; |
| 3238 | |
| 3239 | i1->check_split_children(); |
| 3240 | |
| 3241 | if (i1->reg_num() != i) { |
| 3242 | tty->print_cr("Interval %d is on position %d in list" , i1->reg_num(), i); i1->print(); tty->cr(); |
| 3243 | has_error = true; |
| 3244 | } |
| 3245 | |
| 3246 | if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) { |
| 3247 | tty->print_cr("Interval %d has no type assigned" , i1->reg_num()); i1->print(); tty->cr(); |
| 3248 | has_error = true; |
| 3249 | } |
| 3250 | |
| 3251 | if (i1->assigned_reg() == any_reg) { |
| 3252 | tty->print_cr("Interval %d has no register assigned" , i1->reg_num()); i1->print(); tty->cr(); |
| 3253 | has_error = true; |
| 3254 | } |
| 3255 | |
| 3256 | if (i1->assigned_reg() == i1->assigned_regHi()) { |
| 3257 | tty->print_cr("Interval %d: low and high register equal" , i1->reg_num()); i1->print(); tty->cr(); |
| 3258 | has_error = true; |
| 3259 | } |
| 3260 | |
| 3261 | if (!is_processed_reg_num(i1->assigned_reg())) { |
| 3262 | tty->print_cr("Can not have an Interval for an ignored register" ); i1->print(); tty->cr(); |
| 3263 | has_error = true; |
| 3264 | } |
| 3265 | |
| 3266 | // special intervals that are created in MoveResolver |
| 3267 | // -> ignore them because the range information has no meaning there |
| 3268 | if (i1->from() == 1 && i1->to() == 2) continue; |
| 3269 | |
| 3270 | if (i1->first() == Range::end()) { |
| 3271 | tty->print_cr("Interval %d has no Range" , i1->reg_num()); i1->print(); tty->cr(); |
| 3272 | has_error = true; |
| 3273 | } |
| 3274 | |
| 3275 | for (Range* r = i1->first(); r != Range::end(); r = r->next()) { |
| 3276 | if (r->from() >= r->to()) { |
| 3277 | tty->print_cr("Interval %d has zero length range" , i1->reg_num()); i1->print(); tty->cr(); |
| 3278 | has_error = true; |
| 3279 | } |
| 3280 | } |
| 3281 | |
| 3282 | for (int j = i + 1; j < len; j++) { |
| 3283 | Interval* i2 = interval_at(j); |
| 3284 | if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue; |
| 3285 | |
| 3286 | int r1 = i1->assigned_reg(); |
| 3287 | int r1Hi = i1->assigned_regHi(); |
| 3288 | int r2 = i2->assigned_reg(); |
| 3289 | int r2Hi = i2->assigned_regHi(); |
| 3290 | if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) { |
| 3291 | tty->print_cr("Intervals %d and %d overlap and have the same register assigned" , i1->reg_num(), i2->reg_num()); |
| 3292 | i1->print(); tty->cr(); |
| 3293 | i2->print(); tty->cr(); |
| 3294 | has_error = true; |
| 3295 | } |
| 3296 | } |
| 3297 | } |
| 3298 | |
| 3299 | assert(has_error == false, "register allocation invalid" ); |
| 3300 | } |
| 3301 | |
| 3302 | |
| 3303 | void LinearScan::verify_no_oops_in_fixed_intervals() { |
| 3304 | Interval* fixed_intervals; |
| 3305 | Interval* other_intervals; |
| 3306 | create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL); |
| 3307 | |
| 3308 | // to ensure a walking until the last instruction id, add a dummy interval |
| 3309 | // with a high operation id |
| 3310 | other_intervals = new Interval(any_reg); |
| 3311 | other_intervals->add_range(max_jint - 2, max_jint - 1); |
| 3312 | IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals); |
| 3313 | |
| 3314 | LIR_OpVisitState visitor; |
| 3315 | for (int i = 0; i < block_count(); i++) { |
| 3316 | BlockBegin* block = block_at(i); |
| 3317 | |
| 3318 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 3319 | |
| 3320 | for (int j = 0; j < instructions->length(); j++) { |
| 3321 | LIR_Op* op = instructions->at(j); |
| 3322 | int op_id = op->id(); |
| 3323 | |
| 3324 | visitor.visit(op); |
| 3325 | |
| 3326 | if (visitor.info_count() > 0) { |
| 3327 | iw->walk_before(op->id()); |
| 3328 | bool check_live = true; |
| 3329 | if (op->code() == lir_move) { |
| 3330 | LIR_Op1* move = (LIR_Op1*)op; |
| 3331 | check_live = (move->patch_code() == lir_patch_none); |
| 3332 | } |
| 3333 | LIR_OpBranch* branch = op->as_OpBranch(); |
| 3334 | if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) { |
| 3335 | // Don't bother checking the stub in this case since the |
| 3336 | // exception stub will never return to normal control flow. |
| 3337 | check_live = false; |
| 3338 | } |
| 3339 | |
| 3340 | // Make sure none of the fixed registers is live across an |
| 3341 | // oopmap since we can't handle that correctly. |
| 3342 | if (check_live) { |
| 3343 | for (Interval* interval = iw->active_first(fixedKind); |
| 3344 | interval != Interval::end(); |
| 3345 | interval = interval->next()) { |
| 3346 | if (interval->current_to() > op->id() + 1) { |
| 3347 | // This interval is live out of this op so make sure |
| 3348 | // that this interval represents some value that's |
| 3349 | // referenced by this op either as an input or output. |
| 3350 | bool ok = false; |
| 3351 | for_each_visitor_mode(mode) { |
| 3352 | int n = visitor.opr_count(mode); |
| 3353 | for (int k = 0; k < n; k++) { |
| 3354 | LIR_Opr opr = visitor.opr_at(mode, k); |
| 3355 | if (opr->is_fixed_cpu()) { |
| 3356 | if (interval_at(reg_num(opr)) == interval) { |
| 3357 | ok = true; |
| 3358 | break; |
| 3359 | } |
| 3360 | int hi = reg_numHi(opr); |
| 3361 | if (hi != -1 && interval_at(hi) == interval) { |
| 3362 | ok = true; |
| 3363 | break; |
| 3364 | } |
| 3365 | } |
| 3366 | } |
| 3367 | } |
| 3368 | assert(ok, "fixed intervals should never be live across an oopmap point" ); |
| 3369 | } |
| 3370 | } |
| 3371 | } |
| 3372 | } |
| 3373 | |
| 3374 | // oop-maps at calls do not contain registers, so check is not needed |
| 3375 | if (!visitor.has_call()) { |
| 3376 | |
| 3377 | for_each_visitor_mode(mode) { |
| 3378 | int n = visitor.opr_count(mode); |
| 3379 | for (int k = 0; k < n; k++) { |
| 3380 | LIR_Opr opr = visitor.opr_at(mode, k); |
| 3381 | |
| 3382 | if (opr->is_fixed_cpu() && opr->is_oop()) { |
| 3383 | // operand is a non-virtual cpu register and contains an oop |
| 3384 | TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand " ); opr->print(); tty->cr()); |
| 3385 | |
| 3386 | Interval* interval = interval_at(reg_num(opr)); |
| 3387 | assert(interval != NULL, "no interval" ); |
| 3388 | |
| 3389 | if (mode == LIR_OpVisitState::inputMode) { |
| 3390 | if (interval->to() >= op_id + 1) { |
| 3391 | assert(interval->to() < op_id + 2 || |
| 3392 | interval->has_hole_between(op_id, op_id + 2), |
| 3393 | "oop input operand live after instruction" ); |
| 3394 | } |
| 3395 | } else if (mode == LIR_OpVisitState::outputMode) { |
| 3396 | if (interval->from() <= op_id - 1) { |
| 3397 | assert(interval->has_hole_between(op_id - 1, op_id), |
| 3398 | "oop input operand live after instruction" ); |
| 3399 | } |
| 3400 | } |
| 3401 | } |
| 3402 | } |
| 3403 | } |
| 3404 | } |
| 3405 | } |
| 3406 | } |
| 3407 | } |
| 3408 | |
| 3409 | |
| 3410 | void LinearScan::verify_constants() { |
| 3411 | int num_regs = num_virtual_regs(); |
| 3412 | int size = live_set_size(); |
| 3413 | int num_blocks = block_count(); |
| 3414 | |
| 3415 | for (int i = 0; i < num_blocks; i++) { |
| 3416 | BlockBegin* block = block_at(i); |
| 3417 | ResourceBitMap live_at_edge = block->live_in(); |
| 3418 | |
| 3419 | // visit all registers where the live_at_edge bit is set |
| 3420 | for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { |
| 3421 | TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d" , r, block->block_id())); |
| 3422 | |
| 3423 | Value value = gen()->instruction_for_vreg(r); |
| 3424 | |
| 3425 | assert(value != NULL, "all intervals live across block boundaries must have Value" ); |
| 3426 | assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand" ); |
| 3427 | assert(value->operand()->vreg_number() == r, "register number must match" ); |
| 3428 | // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries"); |
| 3429 | } |
| 3430 | } |
| 3431 | } |
| 3432 | |
| 3433 | |
| 3434 | class RegisterVerifier: public StackObj { |
| 3435 | private: |
| 3436 | LinearScan* _allocator; |
| 3437 | BlockList _work_list; // all blocks that must be processed |
| 3438 | IntervalsList _saved_states; // saved information of previous check |
| 3439 | |
| 3440 | // simplified access to methods of LinearScan |
| 3441 | Compilation* compilation() const { return _allocator->compilation(); } |
| 3442 | Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); } |
| 3443 | int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); } |
| 3444 | |
| 3445 | // currently, only registers are processed |
| 3446 | int state_size() { return LinearScan::nof_regs; } |
| 3447 | |
| 3448 | // accessors |
| 3449 | IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); } |
| 3450 | void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); } |
| 3451 | void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); } |
| 3452 | |
| 3453 | // helper functions |
| 3454 | IntervalList* copy(IntervalList* input_state); |
| 3455 | void state_put(IntervalList* input_state, int reg, Interval* interval); |
| 3456 | bool check_state(IntervalList* input_state, int reg, Interval* interval); |
| 3457 | |
| 3458 | void process_block(BlockBegin* block); |
| 3459 | void process_xhandler(XHandler* xhandler, IntervalList* input_state); |
| 3460 | void process_successor(BlockBegin* block, IntervalList* input_state); |
| 3461 | void process_operations(LIR_List* ops, IntervalList* input_state); |
| 3462 | |
| 3463 | public: |
| 3464 | RegisterVerifier(LinearScan* allocator) |
| 3465 | : _allocator(allocator) |
| 3466 | , _work_list(16) |
| 3467 | , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL) |
| 3468 | { } |
| 3469 | |
| 3470 | void verify(BlockBegin* start); |
| 3471 | }; |
| 3472 | |
| 3473 | |
| 3474 | // entry function from LinearScan that starts the verification |
| 3475 | void LinearScan::verify_registers() { |
| 3476 | RegisterVerifier verifier(this); |
| 3477 | verifier.verify(block_at(0)); |
| 3478 | } |
| 3479 | |
| 3480 | |
| 3481 | void RegisterVerifier::verify(BlockBegin* start) { |
| 3482 | // setup input registers (method arguments) for first block |
| 3483 | int input_state_len = state_size(); |
| 3484 | IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL); |
| 3485 | CallingConvention* args = compilation()->frame_map()->incoming_arguments(); |
| 3486 | for (int n = 0; n < args->length(); n++) { |
| 3487 | LIR_Opr opr = args->at(n); |
| 3488 | if (opr->is_register()) { |
| 3489 | Interval* interval = interval_at(reg_num(opr)); |
| 3490 | |
| 3491 | if (interval->assigned_reg() < state_size()) { |
| 3492 | input_state->at_put(interval->assigned_reg(), interval); |
| 3493 | } |
| 3494 | if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) { |
| 3495 | input_state->at_put(interval->assigned_regHi(), interval); |
| 3496 | } |
| 3497 | } |
| 3498 | } |
| 3499 | |
| 3500 | set_state_for_block(start, input_state); |
| 3501 | add_to_work_list(start); |
| 3502 | |
| 3503 | // main loop for verification |
| 3504 | do { |
| 3505 | BlockBegin* block = _work_list.at(0); |
| 3506 | _work_list.remove_at(0); |
| 3507 | |
| 3508 | process_block(block); |
| 3509 | } while (!_work_list.is_empty()); |
| 3510 | } |
| 3511 | |
| 3512 | void RegisterVerifier::process_block(BlockBegin* block) { |
| 3513 | TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d" , block->block_id())); |
| 3514 | |
| 3515 | // must copy state because it is modified |
| 3516 | IntervalList* input_state = copy(state_for_block(block)); |
| 3517 | |
| 3518 | if (TraceLinearScanLevel >= 4) { |
| 3519 | tty->print_cr("Input-State of intervals:" ); |
| 3520 | tty->print(" " ); |
| 3521 | for (int i = 0; i < state_size(); i++) { |
| 3522 | if (input_state->at(i) != NULL) { |
| 3523 | tty->print(" %4d" , input_state->at(i)->reg_num()); |
| 3524 | } else { |
| 3525 | tty->print(" __" ); |
| 3526 | } |
| 3527 | } |
| 3528 | tty->cr(); |
| 3529 | tty->cr(); |
| 3530 | } |
| 3531 | |
| 3532 | // process all operations of the block |
| 3533 | process_operations(block->lir(), input_state); |
| 3534 | |
| 3535 | // iterate all successors |
| 3536 | for (int i = 0; i < block->number_of_sux(); i++) { |
| 3537 | process_successor(block->sux_at(i), input_state); |
| 3538 | } |
| 3539 | } |
| 3540 | |
| 3541 | void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) { |
| 3542 | TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d" , xhandler->entry_block()->block_id())); |
| 3543 | |
| 3544 | // must copy state because it is modified |
| 3545 | input_state = copy(input_state); |
| 3546 | |
| 3547 | if (xhandler->entry_code() != NULL) { |
| 3548 | process_operations(xhandler->entry_code(), input_state); |
| 3549 | } |
| 3550 | process_successor(xhandler->entry_block(), input_state); |
| 3551 | } |
| 3552 | |
| 3553 | void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) { |
| 3554 | IntervalList* saved_state = state_for_block(block); |
| 3555 | |
| 3556 | if (saved_state != NULL) { |
| 3557 | // this block was already processed before. |
| 3558 | // check if new input_state is consistent with saved_state |
| 3559 | |
| 3560 | bool saved_state_correct = true; |
| 3561 | for (int i = 0; i < state_size(); i++) { |
| 3562 | if (input_state->at(i) != saved_state->at(i)) { |
| 3563 | // current input_state and previous saved_state assume a different |
| 3564 | // interval in this register -> assume that this register is invalid |
| 3565 | if (saved_state->at(i) != NULL) { |
| 3566 | // invalidate old calculation only if it assumed that |
| 3567 | // register was valid. when the register was already invalid, |
| 3568 | // then the old calculation was correct. |
| 3569 | saved_state_correct = false; |
| 3570 | saved_state->at_put(i, NULL); |
| 3571 | |
| 3572 | TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d" , block->block_id(), i)); |
| 3573 | } |
| 3574 | } |
| 3575 | } |
| 3576 | |
| 3577 | if (saved_state_correct) { |
| 3578 | // already processed block with correct input_state |
| 3579 | TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct" , block->block_id())); |
| 3580 | } else { |
| 3581 | // must re-visit this block |
| 3582 | TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed" , block->block_id())); |
| 3583 | add_to_work_list(block); |
| 3584 | } |
| 3585 | |
| 3586 | } else { |
| 3587 | // block was not processed before, so set initial input_state |
| 3588 | TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit" , block->block_id())); |
| 3589 | |
| 3590 | set_state_for_block(block, copy(input_state)); |
| 3591 | add_to_work_list(block); |
| 3592 | } |
| 3593 | } |
| 3594 | |
| 3595 | |
| 3596 | IntervalList* RegisterVerifier::copy(IntervalList* input_state) { |
| 3597 | IntervalList* copy_state = new IntervalList(input_state->length()); |
| 3598 | copy_state->appendAll(input_state); |
| 3599 | return copy_state; |
| 3600 | } |
| 3601 | |
| 3602 | void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) { |
| 3603 | if (reg != LinearScan::any_reg && reg < state_size()) { |
| 3604 | if (interval != NULL) { |
| 3605 | TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d" , reg, interval->reg_num())); |
| 3606 | } else if (input_state->at(reg) != NULL) { |
| 3607 | TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL" , reg)); |
| 3608 | } |
| 3609 | |
| 3610 | input_state->at_put(reg, interval); |
| 3611 | } |
| 3612 | } |
| 3613 | |
| 3614 | bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) { |
| 3615 | if (reg != LinearScan::any_reg && reg < state_size()) { |
| 3616 | if (input_state->at(reg) != interval) { |
| 3617 | tty->print_cr("!! Error in register allocation: register %d does not contain interval %d" , reg, interval->reg_num()); |
| 3618 | return true; |
| 3619 | } |
| 3620 | } |
| 3621 | return false; |
| 3622 | } |
| 3623 | |
| 3624 | void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) { |
| 3625 | // visit all instructions of the block |
| 3626 | LIR_OpVisitState visitor; |
| 3627 | bool has_error = false; |
| 3628 | |
| 3629 | for (int i = 0; i < ops->length(); i++) { |
| 3630 | LIR_Op* op = ops->at(i); |
| 3631 | visitor.visit(op); |
| 3632 | |
| 3633 | TRACE_LINEAR_SCAN(4, op->print_on(tty)); |
| 3634 | |
| 3635 | // check if input operands are correct |
| 3636 | int j; |
| 3637 | int n = visitor.opr_count(LIR_OpVisitState::inputMode); |
| 3638 | for (j = 0; j < n; j++) { |
| 3639 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j); |
| 3640 | if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { |
| 3641 | Interval* interval = interval_at(reg_num(opr)); |
| 3642 | if (op->id() != -1) { |
| 3643 | interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode); |
| 3644 | } |
| 3645 | |
| 3646 | has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent()); |
| 3647 | has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent()); |
| 3648 | |
| 3649 | // When an operand is marked with is_last_use, then the fpu stack allocator |
| 3650 | // removes the register from the fpu stack -> the register contains no value |
| 3651 | if (opr->is_last_use()) { |
| 3652 | state_put(input_state, interval->assigned_reg(), NULL); |
| 3653 | state_put(input_state, interval->assigned_regHi(), NULL); |
| 3654 | } |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | // invalidate all caller save registers at calls |
| 3659 | if (visitor.has_call()) { |
| 3660 | for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) { |
| 3661 | state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL); |
| 3662 | } |
| 3663 | for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) { |
| 3664 | state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL); |
| 3665 | } |
| 3666 | |
| 3667 | #ifdef X86 |
| 3668 | int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); |
| 3669 | for (j = 0; j < num_caller_save_xmm_regs; j++) { |
| 3670 | state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL); |
| 3671 | } |
| 3672 | #endif |
| 3673 | } |
| 3674 | |
| 3675 | // process xhandler before output and temp operands |
| 3676 | XHandlers* xhandlers = visitor.all_xhandler(); |
| 3677 | n = xhandlers->length(); |
| 3678 | for (int k = 0; k < n; k++) { |
| 3679 | process_xhandler(xhandlers->handler_at(k), input_state); |
| 3680 | } |
| 3681 | |
| 3682 | // set temp operands (some operations use temp operands also as output operands, so can't set them NULL) |
| 3683 | n = visitor.opr_count(LIR_OpVisitState::tempMode); |
| 3684 | for (j = 0; j < n; j++) { |
| 3685 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j); |
| 3686 | if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { |
| 3687 | Interval* interval = interval_at(reg_num(opr)); |
| 3688 | if (op->id() != -1) { |
| 3689 | interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode); |
| 3690 | } |
| 3691 | |
| 3692 | state_put(input_state, interval->assigned_reg(), interval->split_parent()); |
| 3693 | state_put(input_state, interval->assigned_regHi(), interval->split_parent()); |
| 3694 | } |
| 3695 | } |
| 3696 | |
| 3697 | // set output operands |
| 3698 | n = visitor.opr_count(LIR_OpVisitState::outputMode); |
| 3699 | for (j = 0; j < n; j++) { |
| 3700 | LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j); |
| 3701 | if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { |
| 3702 | Interval* interval = interval_at(reg_num(opr)); |
| 3703 | if (op->id() != -1) { |
| 3704 | interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode); |
| 3705 | } |
| 3706 | |
| 3707 | state_put(input_state, interval->assigned_reg(), interval->split_parent()); |
| 3708 | state_put(input_state, interval->assigned_regHi(), interval->split_parent()); |
| 3709 | } |
| 3710 | } |
| 3711 | } |
| 3712 | assert(has_error == false, "Error in register allocation" ); |
| 3713 | } |
| 3714 | |
| 3715 | #endif // ASSERT |
| 3716 | |
| 3717 | |
| 3718 | |
| 3719 | // **** Implementation of MoveResolver ****************************** |
| 3720 | |
| 3721 | MoveResolver::MoveResolver(LinearScan* allocator) : |
| 3722 | _allocator(allocator), |
| 3723 | _insert_list(NULL), |
| 3724 | _insert_idx(-1), |
| 3725 | _insertion_buffer(), |
| 3726 | _mapping_from(8), |
| 3727 | _mapping_from_opr(8), |
| 3728 | _mapping_to(8), |
| 3729 | _multiple_reads_allowed(false) |
| 3730 | { |
| 3731 | for (int i = 0; i < LinearScan::nof_regs; i++) { |
| 3732 | _register_blocked[i] = 0; |
| 3733 | } |
| 3734 | DEBUG_ONLY(check_empty()); |
| 3735 | } |
| 3736 | |
| 3737 | |
| 3738 | #ifdef ASSERT |
| 3739 | |
| 3740 | void MoveResolver::check_empty() { |
| 3741 | assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing" ); |
| 3742 | for (int i = 0; i < LinearScan::nof_regs; i++) { |
| 3743 | assert(register_blocked(i) == 0, "register map must be empty before and after processing" ); |
| 3744 | } |
| 3745 | assert(_multiple_reads_allowed == false, "must have default value" ); |
| 3746 | } |
| 3747 | |
| 3748 | void MoveResolver::verify_before_resolve() { |
| 3749 | assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal" ); |
| 3750 | assert(_mapping_from.length() == _mapping_to.length(), "length must be equal" ); |
| 3751 | assert(_insert_list != NULL && _insert_idx != -1, "insert position not set" ); |
| 3752 | |
| 3753 | int i, j; |
| 3754 | if (!_multiple_reads_allowed) { |
| 3755 | for (i = 0; i < _mapping_from.length(); i++) { |
| 3756 | for (j = i + 1; j < _mapping_from.length(); j++) { |
| 3757 | assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice" ); |
| 3758 | } |
| 3759 | } |
| 3760 | } |
| 3761 | |
| 3762 | for (i = 0; i < _mapping_to.length(); i++) { |
| 3763 | for (j = i + 1; j < _mapping_to.length(); j++) { |
| 3764 | assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice" ); |
| 3765 | } |
| 3766 | } |
| 3767 | |
| 3768 | |
| 3769 | ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills()); |
| 3770 | if (!_multiple_reads_allowed) { |
| 3771 | for (i = 0; i < _mapping_from.length(); i++) { |
| 3772 | Interval* it = _mapping_from.at(i); |
| 3773 | if (it != NULL) { |
| 3774 | assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice" ); |
| 3775 | used_regs.set_bit(it->assigned_reg()); |
| 3776 | |
| 3777 | if (it->assigned_regHi() != LinearScan::any_reg) { |
| 3778 | assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice" ); |
| 3779 | used_regs.set_bit(it->assigned_regHi()); |
| 3780 | } |
| 3781 | } |
| 3782 | } |
| 3783 | } |
| 3784 | |
| 3785 | used_regs.clear(); |
| 3786 | for (i = 0; i < _mapping_to.length(); i++) { |
| 3787 | Interval* it = _mapping_to.at(i); |
| 3788 | assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice" ); |
| 3789 | used_regs.set_bit(it->assigned_reg()); |
| 3790 | |
| 3791 | if (it->assigned_regHi() != LinearScan::any_reg) { |
| 3792 | assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice" ); |
| 3793 | used_regs.set_bit(it->assigned_regHi()); |
| 3794 | } |
| 3795 | } |
| 3796 | |
| 3797 | used_regs.clear(); |
| 3798 | for (i = 0; i < _mapping_from.length(); i++) { |
| 3799 | Interval* it = _mapping_from.at(i); |
| 3800 | if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) { |
| 3801 | used_regs.set_bit(it->assigned_reg()); |
| 3802 | } |
| 3803 | } |
| 3804 | for (i = 0; i < _mapping_to.length(); i++) { |
| 3805 | Interval* it = _mapping_to.at(i); |
| 3806 | assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to" ); |
| 3807 | } |
| 3808 | } |
| 3809 | |
| 3810 | #endif // ASSERT |
| 3811 | |
| 3812 | |
| 3813 | // mark assigned_reg and assigned_regHi of the interval as blocked |
| 3814 | void MoveResolver::block_registers(Interval* it) { |
| 3815 | int reg = it->assigned_reg(); |
| 3816 | if (reg < LinearScan::nof_regs) { |
| 3817 | assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used" ); |
| 3818 | set_register_blocked(reg, 1); |
| 3819 | } |
| 3820 | reg = it->assigned_regHi(); |
| 3821 | if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { |
| 3822 | assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used" ); |
| 3823 | set_register_blocked(reg, 1); |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | // mark assigned_reg and assigned_regHi of the interval as unblocked |
| 3828 | void MoveResolver::unblock_registers(Interval* it) { |
| 3829 | int reg = it->assigned_reg(); |
| 3830 | if (reg < LinearScan::nof_regs) { |
| 3831 | assert(register_blocked(reg) > 0, "register already marked as unused" ); |
| 3832 | set_register_blocked(reg, -1); |
| 3833 | } |
| 3834 | reg = it->assigned_regHi(); |
| 3835 | if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { |
| 3836 | assert(register_blocked(reg) > 0, "register already marked as unused" ); |
| 3837 | set_register_blocked(reg, -1); |
| 3838 | } |
| 3839 | } |
| 3840 | |
| 3841 | // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from) |
| 3842 | bool MoveResolver::save_to_process_move(Interval* from, Interval* to) { |
| 3843 | int from_reg = -1; |
| 3844 | int from_regHi = -1; |
| 3845 | if (from != NULL) { |
| 3846 | from_reg = from->assigned_reg(); |
| 3847 | from_regHi = from->assigned_regHi(); |
| 3848 | } |
| 3849 | |
| 3850 | int reg = to->assigned_reg(); |
| 3851 | if (reg < LinearScan::nof_regs) { |
| 3852 | if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { |
| 3853 | return false; |
| 3854 | } |
| 3855 | } |
| 3856 | reg = to->assigned_regHi(); |
| 3857 | if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { |
| 3858 | if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { |
| 3859 | return false; |
| 3860 | } |
| 3861 | } |
| 3862 | |
| 3863 | return true; |
| 3864 | } |
| 3865 | |
| 3866 | |
| 3867 | void MoveResolver::create_insertion_buffer(LIR_List* list) { |
| 3868 | assert(!_insertion_buffer.initialized(), "overwriting existing buffer" ); |
| 3869 | _insertion_buffer.init(list); |
| 3870 | } |
| 3871 | |
| 3872 | void MoveResolver::append_insertion_buffer() { |
| 3873 | if (_insertion_buffer.initialized()) { |
| 3874 | _insertion_buffer.lir_list()->append(&_insertion_buffer); |
| 3875 | } |
| 3876 | assert(!_insertion_buffer.initialized(), "must be uninitialized now" ); |
| 3877 | |
| 3878 | _insert_list = NULL; |
| 3879 | _insert_idx = -1; |
| 3880 | } |
| 3881 | |
| 3882 | void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) { |
| 3883 | assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal" ); |
| 3884 | assert(from_interval->type() == to_interval->type(), "move between different types" ); |
| 3885 | assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first" ); |
| 3886 | assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer" ); |
| 3887 | |
| 3888 | LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type()); |
| 3889 | LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type()); |
| 3890 | |
| 3891 | if (!_multiple_reads_allowed) { |
| 3892 | // the last_use flag is an optimization for FPU stack allocation. When the same |
| 3893 | // input interval is used in more than one move, then it is too difficult to determine |
| 3894 | // if this move is really the last use. |
| 3895 | from_opr = from_opr->make_last_use(); |
| 3896 | } |
| 3897 | _insertion_buffer.move(_insert_idx, from_opr, to_opr); |
| 3898 | |
| 3899 | TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)" , from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); |
| 3900 | } |
| 3901 | |
| 3902 | void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) { |
| 3903 | assert(from_opr->type() == to_interval->type(), "move between different types" ); |
| 3904 | assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first" ); |
| 3905 | assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer" ); |
| 3906 | |
| 3907 | LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type()); |
| 3908 | _insertion_buffer.move(_insert_idx, from_opr, to_opr); |
| 3909 | |
| 3910 | TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant " ); from_opr->print(); tty->print_cr(" to %d (%d, %d)" , to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); |
| 3911 | } |
| 3912 | |
| 3913 | |
| 3914 | void MoveResolver::resolve_mappings() { |
| 3915 | TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d" , _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx)); |
| 3916 | DEBUG_ONLY(verify_before_resolve()); |
| 3917 | |
| 3918 | // Block all registers that are used as input operands of a move. |
| 3919 | // When a register is blocked, no move to this register is emitted. |
| 3920 | // This is necessary for detecting cycles in moves. |
| 3921 | int i; |
| 3922 | for (i = _mapping_from.length() - 1; i >= 0; i--) { |
| 3923 | Interval* from_interval = _mapping_from.at(i); |
| 3924 | if (from_interval != NULL) { |
| 3925 | block_registers(from_interval); |
| 3926 | } |
| 3927 | } |
| 3928 | |
| 3929 | int spill_candidate = -1; |
| 3930 | while (_mapping_from.length() > 0) { |
| 3931 | bool processed_interval = false; |
| 3932 | |
| 3933 | for (i = _mapping_from.length() - 1; i >= 0; i--) { |
| 3934 | Interval* from_interval = _mapping_from.at(i); |
| 3935 | Interval* to_interval = _mapping_to.at(i); |
| 3936 | |
| 3937 | if (save_to_process_move(from_interval, to_interval)) { |
| 3938 | // this inverval can be processed because target is free |
| 3939 | if (from_interval != NULL) { |
| 3940 | insert_move(from_interval, to_interval); |
| 3941 | unblock_registers(from_interval); |
| 3942 | } else { |
| 3943 | insert_move(_mapping_from_opr.at(i), to_interval); |
| 3944 | } |
| 3945 | _mapping_from.remove_at(i); |
| 3946 | _mapping_from_opr.remove_at(i); |
| 3947 | _mapping_to.remove_at(i); |
| 3948 | |
| 3949 | processed_interval = true; |
| 3950 | } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) { |
| 3951 | // this interval cannot be processed now because target is not free |
| 3952 | // it starts in a register, so it is a possible candidate for spilling |
| 3953 | spill_candidate = i; |
| 3954 | } |
| 3955 | } |
| 3956 | |
| 3957 | if (!processed_interval) { |
| 3958 | // no move could be processed because there is a cycle in the move list |
| 3959 | // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory |
| 3960 | guarantee(spill_candidate != -1, "no interval in register for spilling found" ); |
| 3961 | |
| 3962 | // create a new spill interval and assign a stack slot to it |
| 3963 | Interval* from_interval = _mapping_from.at(spill_candidate); |
| 3964 | Interval* spill_interval = new Interval(-1); |
| 3965 | spill_interval->set_type(from_interval->type()); |
| 3966 | |
| 3967 | // add a dummy range because real position is difficult to calculate |
| 3968 | // Note: this range is a special case when the integrity of the allocation is checked |
| 3969 | spill_interval->add_range(1, 2); |
| 3970 | |
| 3971 | // do not allocate a new spill slot for temporary interval, but |
| 3972 | // use spill slot assigned to from_interval. Otherwise moves from |
| 3973 | // one stack slot to another can happen (not allowed by LIR_Assembler |
| 3974 | int spill_slot = from_interval->canonical_spill_slot(); |
| 3975 | if (spill_slot < 0) { |
| 3976 | spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2); |
| 3977 | from_interval->set_canonical_spill_slot(spill_slot); |
| 3978 | } |
| 3979 | spill_interval->assign_reg(spill_slot); |
| 3980 | allocator()->append_interval(spill_interval); |
| 3981 | |
| 3982 | TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling" , spill_interval->reg_num())); |
| 3983 | |
| 3984 | // insert a move from register to stack and update the mapping |
| 3985 | insert_move(from_interval, spill_interval); |
| 3986 | _mapping_from.at_put(spill_candidate, spill_interval); |
| 3987 | unblock_registers(from_interval); |
| 3988 | } |
| 3989 | } |
| 3990 | |
| 3991 | // reset to default value |
| 3992 | _multiple_reads_allowed = false; |
| 3993 | |
| 3994 | // check that all intervals have been processed |
| 3995 | DEBUG_ONLY(check_empty()); |
| 3996 | } |
| 3997 | |
| 3998 | |
| 3999 | void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) { |
| 4000 | TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d" , insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); |
| 4001 | assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set" ); |
| 4002 | |
| 4003 | create_insertion_buffer(insert_list); |
| 4004 | _insert_list = insert_list; |
| 4005 | _insert_idx = insert_idx; |
| 4006 | } |
| 4007 | |
| 4008 | void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) { |
| 4009 | TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d" , insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); |
| 4010 | |
| 4011 | if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) { |
| 4012 | // insert position changed -> resolve current mappings |
| 4013 | resolve_mappings(); |
| 4014 | } |
| 4015 | |
| 4016 | if (insert_list != _insert_list) { |
| 4017 | // block changed -> append insertion_buffer because it is |
| 4018 | // bound to a specific block and create a new insertion_buffer |
| 4019 | append_insertion_buffer(); |
| 4020 | create_insertion_buffer(insert_list); |
| 4021 | } |
| 4022 | |
| 4023 | _insert_list = insert_list; |
| 4024 | _insert_idx = insert_idx; |
| 4025 | } |
| 4026 | |
| 4027 | void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) { |
| 4028 | TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)" , from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); |
| 4029 | |
| 4030 | _mapping_from.append(from_interval); |
| 4031 | _mapping_from_opr.append(LIR_OprFact::illegalOpr); |
| 4032 | _mapping_to.append(to_interval); |
| 4033 | } |
| 4034 | |
| 4035 | |
| 4036 | void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) { |
| 4037 | TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from " ); from_opr->print(); tty->print_cr(" to %d (%d, %d)" , to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); |
| 4038 | assert(from_opr->is_constant(), "only for constants" ); |
| 4039 | |
| 4040 | _mapping_from.append(NULL); |
| 4041 | _mapping_from_opr.append(from_opr); |
| 4042 | _mapping_to.append(to_interval); |
| 4043 | } |
| 4044 | |
| 4045 | void MoveResolver::resolve_and_append_moves() { |
| 4046 | if (has_mappings()) { |
| 4047 | resolve_mappings(); |
| 4048 | } |
| 4049 | append_insertion_buffer(); |
| 4050 | } |
| 4051 | |
| 4052 | |
| 4053 | |
| 4054 | // **** Implementation of Range ************************************* |
| 4055 | |
| 4056 | Range::Range(int from, int to, Range* next) : |
| 4057 | _from(from), |
| 4058 | _to(to), |
| 4059 | _next(next) |
| 4060 | { |
| 4061 | } |
| 4062 | |
| 4063 | // initialize sentinel |
| 4064 | Range* Range::_end = NULL; |
| 4065 | void Range::initialize(Arena* arena) { |
| 4066 | _end = new (arena) Range(max_jint, max_jint, NULL); |
| 4067 | } |
| 4068 | |
| 4069 | int Range::intersects_at(Range* r2) const { |
| 4070 | const Range* r1 = this; |
| 4071 | |
| 4072 | assert(r1 != NULL && r2 != NULL, "null ranges not allowed" ); |
| 4073 | assert(r1 != _end && r2 != _end, "empty ranges not allowed" ); |
| 4074 | |
| 4075 | do { |
| 4076 | if (r1->from() < r2->from()) { |
| 4077 | if (r1->to() <= r2->from()) { |
| 4078 | r1 = r1->next(); if (r1 == _end) return -1; |
| 4079 | } else { |
| 4080 | return r2->from(); |
| 4081 | } |
| 4082 | } else if (r2->from() < r1->from()) { |
| 4083 | if (r2->to() <= r1->from()) { |
| 4084 | r2 = r2->next(); if (r2 == _end) return -1; |
| 4085 | } else { |
| 4086 | return r1->from(); |
| 4087 | } |
| 4088 | } else { // r1->from() == r2->from() |
| 4089 | if (r1->from() == r1->to()) { |
| 4090 | r1 = r1->next(); if (r1 == _end) return -1; |
| 4091 | } else if (r2->from() == r2->to()) { |
| 4092 | r2 = r2->next(); if (r2 == _end) return -1; |
| 4093 | } else { |
| 4094 | return r1->from(); |
| 4095 | } |
| 4096 | } |
| 4097 | } while (true); |
| 4098 | } |
| 4099 | |
| 4100 | #ifndef PRODUCT |
| 4101 | void Range::print(outputStream* out) const { |
| 4102 | out->print("[%d, %d[ " , _from, _to); |
| 4103 | } |
| 4104 | #endif |
| 4105 | |
| 4106 | |
| 4107 | |
| 4108 | // **** Implementation of Interval ********************************** |
| 4109 | |
| 4110 | // initialize sentinel |
| 4111 | Interval* Interval::_end = NULL; |
| 4112 | void Interval::initialize(Arena* arena) { |
| 4113 | Range::initialize(arena); |
| 4114 | _end = new (arena) Interval(-1); |
| 4115 | } |
| 4116 | |
| 4117 | Interval::Interval(int reg_num) : |
| 4118 | _reg_num(reg_num), |
| 4119 | _type(T_ILLEGAL), |
| 4120 | _first(Range::end()), |
| 4121 | _use_pos_and_kinds(12), |
| 4122 | _current(Range::end()), |
| 4123 | _next(_end), |
| 4124 | _state(invalidState), |
| 4125 | _assigned_reg(LinearScan::any_reg), |
| 4126 | _assigned_regHi(LinearScan::any_reg), |
| 4127 | _cached_to(-1), |
| 4128 | _cached_opr(LIR_OprFact::illegalOpr), |
| 4129 | _cached_vm_reg(VMRegImpl::Bad()), |
| 4130 | _split_children(NULL), |
| 4131 | _canonical_spill_slot(-1), |
| 4132 | _insert_move_when_activated(false), |
| 4133 | _spill_state(noDefinitionFound), |
| 4134 | _spill_definition_pos(-1), |
| 4135 | _register_hint(NULL) |
| 4136 | { |
| 4137 | _split_parent = this; |
| 4138 | _current_split_child = this; |
| 4139 | } |
| 4140 | |
| 4141 | int Interval::calc_to() { |
| 4142 | assert(_first != Range::end(), "interval has no range" ); |
| 4143 | |
| 4144 | Range* r = _first; |
| 4145 | while (r->next() != Range::end()) { |
| 4146 | r = r->next(); |
| 4147 | } |
| 4148 | return r->to(); |
| 4149 | } |
| 4150 | |
| 4151 | |
| 4152 | #ifdef ASSERT |
| 4153 | // consistency check of split-children |
| 4154 | void Interval::check_split_children() { |
| 4155 | if (_split_children != NULL && _split_children->length() > 0) { |
| 4156 | assert(is_split_parent(), "only split parents can have children" ); |
| 4157 | |
| 4158 | for (int i = 0; i < _split_children->length(); i++) { |
| 4159 | Interval* i1 = _split_children->at(i); |
| 4160 | |
| 4161 | assert(i1->split_parent() == this, "not a split child of this interval" ); |
| 4162 | assert(i1->type() == type(), "must be equal for all split children" ); |
| 4163 | assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children" ); |
| 4164 | |
| 4165 | for (int j = i + 1; j < _split_children->length(); j++) { |
| 4166 | Interval* i2 = _split_children->at(j); |
| 4167 | |
| 4168 | assert(i1->reg_num() != i2->reg_num(), "same register number" ); |
| 4169 | |
| 4170 | if (i1->from() < i2->from()) { |
| 4171 | assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping" ); |
| 4172 | } else { |
| 4173 | assert(i2->from() < i1->from(), "intervals start at same op_id" ); |
| 4174 | assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping" ); |
| 4175 | } |
| 4176 | } |
| 4177 | } |
| 4178 | } |
| 4179 | } |
| 4180 | #endif // ASSERT |
| 4181 | |
| 4182 | Interval* Interval::register_hint(bool search_split_child) const { |
| 4183 | if (!search_split_child) { |
| 4184 | return _register_hint; |
| 4185 | } |
| 4186 | |
| 4187 | if (_register_hint != NULL) { |
| 4188 | assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers" ); |
| 4189 | |
| 4190 | if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) { |
| 4191 | return _register_hint; |
| 4192 | |
| 4193 | } else if (_register_hint->_split_children != NULL && _register_hint->_split_children->length() > 0) { |
| 4194 | // search the first split child that has a register assigned |
| 4195 | int len = _register_hint->_split_children->length(); |
| 4196 | for (int i = 0; i < len; i++) { |
| 4197 | Interval* cur = _register_hint->_split_children->at(i); |
| 4198 | |
| 4199 | if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) { |
| 4200 | return cur; |
| 4201 | } |
| 4202 | } |
| 4203 | } |
| 4204 | } |
| 4205 | |
| 4206 | // no hint interval found that has a register assigned |
| 4207 | return NULL; |
| 4208 | } |
| 4209 | |
| 4210 | |
| 4211 | Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) { |
| 4212 | assert(is_split_parent(), "can only be called for split parents" ); |
| 4213 | assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)" ); |
| 4214 | |
| 4215 | Interval* result; |
| 4216 | if (_split_children == NULL || _split_children->length() == 0) { |
| 4217 | result = this; |
| 4218 | } else { |
| 4219 | result = NULL; |
| 4220 | int len = _split_children->length(); |
| 4221 | |
| 4222 | // in outputMode, the end of the interval (op_id == cur->to()) is not valid |
| 4223 | int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1); |
| 4224 | |
| 4225 | int i; |
| 4226 | for (i = 0; i < len; i++) { |
| 4227 | Interval* cur = _split_children->at(i); |
| 4228 | if (cur->from() <= op_id && op_id < cur->to() + to_offset) { |
| 4229 | if (i > 0) { |
| 4230 | // exchange current split child to start of list (faster access for next call) |
| 4231 | _split_children->at_put(i, _split_children->at(0)); |
| 4232 | _split_children->at_put(0, cur); |
| 4233 | } |
| 4234 | |
| 4235 | // interval found |
| 4236 | result = cur; |
| 4237 | break; |
| 4238 | } |
| 4239 | } |
| 4240 | |
| 4241 | #ifdef ASSERT |
| 4242 | for (i = 0; i < len; i++) { |
| 4243 | Interval* tmp = _split_children->at(i); |
| 4244 | if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) { |
| 4245 | tty->print_cr("two valid result intervals found for op_id %d: %d and %d" , op_id, result->reg_num(), tmp->reg_num()); |
| 4246 | result->print(); |
| 4247 | tmp->print(); |
| 4248 | assert(false, "two valid result intervals found" ); |
| 4249 | } |
| 4250 | } |
| 4251 | #endif |
| 4252 | } |
| 4253 | |
| 4254 | assert(result != NULL, "no matching interval found" ); |
| 4255 | assert(result->covers(op_id, mode), "op_id not covered by interval" ); |
| 4256 | |
| 4257 | return result; |
| 4258 | } |
| 4259 | |
| 4260 | |
| 4261 | // returns the last split child that ends before the given op_id |
| 4262 | Interval* Interval::split_child_before_op_id(int op_id) { |
| 4263 | assert(op_id >= 0, "invalid op_id" ); |
| 4264 | |
| 4265 | Interval* parent = split_parent(); |
| 4266 | Interval* result = NULL; |
| 4267 | |
| 4268 | assert(parent->_split_children != NULL, "no split children available" ); |
| 4269 | int len = parent->_split_children->length(); |
| 4270 | assert(len > 0, "no split children available" ); |
| 4271 | |
| 4272 | for (int i = len - 1; i >= 0; i--) { |
| 4273 | Interval* cur = parent->_split_children->at(i); |
| 4274 | if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) { |
| 4275 | result = cur; |
| 4276 | } |
| 4277 | } |
| 4278 | |
| 4279 | assert(result != NULL, "no split child found" ); |
| 4280 | return result; |
| 4281 | } |
| 4282 | |
| 4283 | |
| 4284 | // Note: use positions are sorted descending -> first use has highest index |
| 4285 | int Interval::first_usage(IntervalUseKind min_use_kind) const { |
| 4286 | assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals" ); |
| 4287 | |
| 4288 | for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { |
| 4289 | if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { |
| 4290 | return _use_pos_and_kinds.at(i); |
| 4291 | } |
| 4292 | } |
| 4293 | return max_jint; |
| 4294 | } |
| 4295 | |
| 4296 | int Interval::next_usage(IntervalUseKind min_use_kind, int from) const { |
| 4297 | assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals" ); |
| 4298 | |
| 4299 | for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { |
| 4300 | if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) { |
| 4301 | return _use_pos_and_kinds.at(i); |
| 4302 | } |
| 4303 | } |
| 4304 | return max_jint; |
| 4305 | } |
| 4306 | |
| 4307 | int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const { |
| 4308 | assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals" ); |
| 4309 | |
| 4310 | for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { |
| 4311 | if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) { |
| 4312 | return _use_pos_and_kinds.at(i); |
| 4313 | } |
| 4314 | } |
| 4315 | return max_jint; |
| 4316 | } |
| 4317 | |
| 4318 | int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const { |
| 4319 | assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals" ); |
| 4320 | |
| 4321 | int prev = 0; |
| 4322 | for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { |
| 4323 | if (_use_pos_and_kinds.at(i) > from) { |
| 4324 | return prev; |
| 4325 | } |
| 4326 | if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { |
| 4327 | prev = _use_pos_and_kinds.at(i); |
| 4328 | } |
| 4329 | } |
| 4330 | return prev; |
| 4331 | } |
| 4332 | |
| 4333 | void Interval::add_use_pos(int pos, IntervalUseKind use_kind) { |
| 4334 | assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range" ); |
| 4335 | |
| 4336 | // do not add use positions for precolored intervals because |
| 4337 | // they are never used |
| 4338 | if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) { |
| 4339 | #ifdef ASSERT |
| 4340 | assert(_use_pos_and_kinds.length() % 2 == 0, "must be" ); |
| 4341 | for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) { |
| 4342 | assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position" ); |
| 4343 | assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind" ); |
| 4344 | if (i > 0) { |
| 4345 | assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending" ); |
| 4346 | } |
| 4347 | } |
| 4348 | #endif |
| 4349 | |
| 4350 | // Note: add_use is called in descending order, so list gets sorted |
| 4351 | // automatically by just appending new use positions |
| 4352 | int len = _use_pos_and_kinds.length(); |
| 4353 | if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) { |
| 4354 | _use_pos_and_kinds.append(pos); |
| 4355 | _use_pos_and_kinds.append(use_kind); |
| 4356 | } else if (_use_pos_and_kinds.at(len - 1) < use_kind) { |
| 4357 | assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly" ); |
| 4358 | _use_pos_and_kinds.at_put(len - 1, use_kind); |
| 4359 | } |
| 4360 | } |
| 4361 | } |
| 4362 | |
| 4363 | void Interval::add_range(int from, int to) { |
| 4364 | assert(from < to, "invalid range" ); |
| 4365 | assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval" ); |
| 4366 | assert(from <= first()->to(), "not inserting at begin of interval" ); |
| 4367 | |
| 4368 | if (first()->from() <= to) { |
| 4369 | // join intersecting ranges |
| 4370 | first()->set_from(MIN2(from, first()->from())); |
| 4371 | first()->set_to (MAX2(to, first()->to())); |
| 4372 | } else { |
| 4373 | // insert new range |
| 4374 | _first = new Range(from, to, first()); |
| 4375 | } |
| 4376 | } |
| 4377 | |
| 4378 | Interval* Interval::new_split_child() { |
| 4379 | // allocate new interval |
| 4380 | Interval* result = new Interval(-1); |
| 4381 | result->set_type(type()); |
| 4382 | |
| 4383 | Interval* parent = split_parent(); |
| 4384 | result->_split_parent = parent; |
| 4385 | result->set_register_hint(parent); |
| 4386 | |
| 4387 | // insert new interval in children-list of parent |
| 4388 | if (parent->_split_children == NULL) { |
| 4389 | assert(is_split_parent(), "list must be initialized at first split" ); |
| 4390 | |
| 4391 | parent->_split_children = new IntervalList(4); |
| 4392 | parent->_split_children->append(this); |
| 4393 | } |
| 4394 | parent->_split_children->append(result); |
| 4395 | |
| 4396 | return result; |
| 4397 | } |
| 4398 | |
| 4399 | // split this interval at the specified position and return |
| 4400 | // the remainder as a new interval. |
| 4401 | // |
| 4402 | // when an interval is split, a bi-directional link is established between the original interval |
| 4403 | // (the split parent) and the intervals that are split off this interval (the split children) |
| 4404 | // When a split child is split again, the new created interval is also a direct child |
| 4405 | // of the original parent (there is no tree of split children stored, but a flat list) |
| 4406 | // All split children are spilled to the same stack slot (stored in _canonical_spill_slot) |
| 4407 | // |
| 4408 | // Note: The new interval has no valid reg_num |
| 4409 | Interval* Interval::split(int split_pos) { |
| 4410 | assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals" ); |
| 4411 | |
| 4412 | // allocate new interval |
| 4413 | Interval* result = new_split_child(); |
| 4414 | |
| 4415 | // split the ranges |
| 4416 | Range* prev = NULL; |
| 4417 | Range* cur = _first; |
| 4418 | while (cur != Range::end() && cur->to() <= split_pos) { |
| 4419 | prev = cur; |
| 4420 | cur = cur->next(); |
| 4421 | } |
| 4422 | assert(cur != Range::end(), "split interval after end of last range" ); |
| 4423 | |
| 4424 | if (cur->from() < split_pos) { |
| 4425 | result->_first = new Range(split_pos, cur->to(), cur->next()); |
| 4426 | cur->set_to(split_pos); |
| 4427 | cur->set_next(Range::end()); |
| 4428 | |
| 4429 | } else { |
| 4430 | assert(prev != NULL, "split before start of first range" ); |
| 4431 | result->_first = cur; |
| 4432 | prev->set_next(Range::end()); |
| 4433 | } |
| 4434 | result->_current = result->_first; |
| 4435 | _cached_to = -1; // clear cached value |
| 4436 | |
| 4437 | // split list of use positions |
| 4438 | int total_len = _use_pos_and_kinds.length(); |
| 4439 | int start_idx = total_len - 2; |
| 4440 | while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) { |
| 4441 | start_idx -= 2; |
| 4442 | } |
| 4443 | |
| 4444 | intStack new_use_pos_and_kinds(total_len - start_idx); |
| 4445 | int i; |
| 4446 | for (i = start_idx + 2; i < total_len; i++) { |
| 4447 | new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i)); |
| 4448 | } |
| 4449 | |
| 4450 | _use_pos_and_kinds.trunc_to(start_idx + 2); |
| 4451 | result->_use_pos_and_kinds = _use_pos_and_kinds; |
| 4452 | _use_pos_and_kinds = new_use_pos_and_kinds; |
| 4453 | |
| 4454 | #ifdef ASSERT |
| 4455 | assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos" ); |
| 4456 | assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos" ); |
| 4457 | assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries" ); |
| 4458 | |
| 4459 | for (i = 0; i < _use_pos_and_kinds.length(); i += 2) { |
| 4460 | assert(_use_pos_and_kinds.at(i) < split_pos, "must be" ); |
| 4461 | assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind" ); |
| 4462 | } |
| 4463 | for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) { |
| 4464 | assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be" ); |
| 4465 | assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind" ); |
| 4466 | } |
| 4467 | #endif |
| 4468 | |
| 4469 | return result; |
| 4470 | } |
| 4471 | |
| 4472 | // split this interval at the specified position and return |
| 4473 | // the head as a new interval (the original interval is the tail) |
| 4474 | // |
| 4475 | // Currently, only the first range can be split, and the new interval |
| 4476 | // must not have split positions |
| 4477 | Interval* Interval::split_from_start(int split_pos) { |
| 4478 | assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals" ); |
| 4479 | assert(split_pos > from() && split_pos < to(), "can only split inside interval" ); |
| 4480 | assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range" ); |
| 4481 | assert(first_usage(noUse) > split_pos, "can not split when use positions are present" ); |
| 4482 | |
| 4483 | // allocate new interval |
| 4484 | Interval* result = new_split_child(); |
| 4485 | |
| 4486 | // the new created interval has only one range (checked by assertion above), |
| 4487 | // so the splitting of the ranges is very simple |
| 4488 | result->add_range(_first->from(), split_pos); |
| 4489 | |
| 4490 | if (split_pos == _first->to()) { |
| 4491 | assert(_first->next() != Range::end(), "must not be at end" ); |
| 4492 | _first = _first->next(); |
| 4493 | } else { |
| 4494 | _first->set_from(split_pos); |
| 4495 | } |
| 4496 | |
| 4497 | return result; |
| 4498 | } |
| 4499 | |
| 4500 | |
| 4501 | // returns true if the op_id is inside the interval |
| 4502 | bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const { |
| 4503 | Range* cur = _first; |
| 4504 | |
| 4505 | while (cur != Range::end() && cur->to() < op_id) { |
| 4506 | cur = cur->next(); |
| 4507 | } |
| 4508 | if (cur != Range::end()) { |
| 4509 | assert(cur->to() != cur->next()->from(), "ranges not separated" ); |
| 4510 | |
| 4511 | if (mode == LIR_OpVisitState::outputMode) { |
| 4512 | return cur->from() <= op_id && op_id < cur->to(); |
| 4513 | } else { |
| 4514 | return cur->from() <= op_id && op_id <= cur->to(); |
| 4515 | } |
| 4516 | } |
| 4517 | return false; |
| 4518 | } |
| 4519 | |
| 4520 | // returns true if the interval has any hole between hole_from and hole_to |
| 4521 | // (even if the hole has only the length 1) |
| 4522 | bool Interval::has_hole_between(int hole_from, int hole_to) { |
| 4523 | assert(hole_from < hole_to, "check" ); |
| 4524 | assert(from() <= hole_from && hole_to <= to(), "index out of interval" ); |
| 4525 | |
| 4526 | Range* cur = _first; |
| 4527 | while (cur != Range::end()) { |
| 4528 | assert(cur->to() < cur->next()->from(), "no space between ranges" ); |
| 4529 | |
| 4530 | // hole-range starts before this range -> hole |
| 4531 | if (hole_from < cur->from()) { |
| 4532 | return true; |
| 4533 | |
| 4534 | // hole-range completely inside this range -> no hole |
| 4535 | } else if (hole_to <= cur->to()) { |
| 4536 | return false; |
| 4537 | |
| 4538 | // overlapping of hole-range with this range -> hole |
| 4539 | } else if (hole_from <= cur->to()) { |
| 4540 | return true; |
| 4541 | } |
| 4542 | |
| 4543 | cur = cur->next(); |
| 4544 | } |
| 4545 | |
| 4546 | return false; |
| 4547 | } |
| 4548 | |
| 4549 | |
| 4550 | #ifndef PRODUCT |
| 4551 | void Interval::print(outputStream* out) const { |
| 4552 | const char* SpillState2Name[] = { "no definition" , "no spill store" , "one spill store" , "store at definition" , "start in memory" , "no optimization" }; |
| 4553 | const char* UseKind2Name[] = { "N" , "L" , "S" , "M" }; |
| 4554 | |
| 4555 | const char* type_name; |
| 4556 | LIR_Opr opr = LIR_OprFact::illegal(); |
| 4557 | if (reg_num() < LIR_OprDesc::vreg_base) { |
| 4558 | type_name = "fixed" ; |
| 4559 | // need a temporary operand for fixed intervals because type() cannot be called |
| 4560 | #ifdef X86 |
| 4561 | int last_xmm_reg = pd_last_xmm_reg; |
| 4562 | #ifdef _LP64 |
| 4563 | if (UseAVX < 3) { |
| 4564 | last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; |
| 4565 | } |
| 4566 | #endif |
| 4567 | #endif |
| 4568 | if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) { |
| 4569 | opr = LIR_OprFact::single_cpu(assigned_reg()); |
| 4570 | } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) { |
| 4571 | opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg); |
| 4572 | #ifdef X86 |
| 4573 | } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) { |
| 4574 | opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg); |
| 4575 | #endif |
| 4576 | } else { |
| 4577 | ShouldNotReachHere(); |
| 4578 | } |
| 4579 | } else { |
| 4580 | type_name = type2name(type()); |
| 4581 | if (assigned_reg() != -1 && |
| 4582 | (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) { |
| 4583 | opr = LinearScan::calc_operand_for_interval(this); |
| 4584 | } |
| 4585 | } |
| 4586 | |
| 4587 | out->print("%d %s " , reg_num(), type_name); |
| 4588 | if (opr->is_valid()) { |
| 4589 | out->print("\"" ); |
| 4590 | opr->print(out); |
| 4591 | out->print("\" " ); |
| 4592 | } |
| 4593 | out->print("%d %d " , split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1)); |
| 4594 | |
| 4595 | // print ranges |
| 4596 | Range* cur = _first; |
| 4597 | while (cur != Range::end()) { |
| 4598 | cur->print(out); |
| 4599 | cur = cur->next(); |
| 4600 | assert(cur != NULL, "range list not closed with range sentinel" ); |
| 4601 | } |
| 4602 | |
| 4603 | // print use positions |
| 4604 | int prev = 0; |
| 4605 | assert(_use_pos_and_kinds.length() % 2 == 0, "must be" ); |
| 4606 | for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { |
| 4607 | assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind" ); |
| 4608 | assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted" ); |
| 4609 | |
| 4610 | out->print("%d %s " , _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]); |
| 4611 | prev = _use_pos_and_kinds.at(i); |
| 4612 | } |
| 4613 | |
| 4614 | out->print(" \"%s\"" , SpillState2Name[spill_state()]); |
| 4615 | out->cr(); |
| 4616 | } |
| 4617 | #endif |
| 4618 | |
| 4619 | |
| 4620 | |
| 4621 | // **** Implementation of IntervalWalker **************************** |
| 4622 | |
| 4623 | IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) |
| 4624 | : _compilation(allocator->compilation()) |
| 4625 | , _allocator(allocator) |
| 4626 | { |
| 4627 | _unhandled_first[fixedKind] = unhandled_fixed_first; |
| 4628 | _unhandled_first[anyKind] = unhandled_any_first; |
| 4629 | _active_first[fixedKind] = Interval::end(); |
| 4630 | _inactive_first[fixedKind] = Interval::end(); |
| 4631 | _active_first[anyKind] = Interval::end(); |
| 4632 | _inactive_first[anyKind] = Interval::end(); |
| 4633 | _current_position = -1; |
| 4634 | _current = NULL; |
| 4635 | next_interval(); |
| 4636 | } |
| 4637 | |
| 4638 | |
| 4639 | // append interval in order of current range from() |
| 4640 | void IntervalWalker::append_sorted(Interval** list, Interval* interval) { |
| 4641 | Interval* prev = NULL; |
| 4642 | Interval* cur = *list; |
| 4643 | while (cur->current_from() < interval->current_from()) { |
| 4644 | prev = cur; cur = cur->next(); |
| 4645 | } |
| 4646 | if (prev == NULL) { |
| 4647 | *list = interval; |
| 4648 | } else { |
| 4649 | prev->set_next(interval); |
| 4650 | } |
| 4651 | interval->set_next(cur); |
| 4652 | } |
| 4653 | |
| 4654 | void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) { |
| 4655 | assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position" ); |
| 4656 | |
| 4657 | Interval* prev = NULL; |
| 4658 | Interval* cur = *list; |
| 4659 | while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) { |
| 4660 | prev = cur; cur = cur->next(); |
| 4661 | } |
| 4662 | if (prev == NULL) { |
| 4663 | *list = interval; |
| 4664 | } else { |
| 4665 | prev->set_next(interval); |
| 4666 | } |
| 4667 | interval->set_next(cur); |
| 4668 | } |
| 4669 | |
| 4670 | |
| 4671 | inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) { |
| 4672 | while (*list != Interval::end() && *list != i) { |
| 4673 | list = (*list)->next_addr(); |
| 4674 | } |
| 4675 | if (*list != Interval::end()) { |
| 4676 | assert(*list == i, "check" ); |
| 4677 | *list = (*list)->next(); |
| 4678 | return true; |
| 4679 | } else { |
| 4680 | return false; |
| 4681 | } |
| 4682 | } |
| 4683 | |
| 4684 | void IntervalWalker::remove_from_list(Interval* i) { |
| 4685 | bool deleted; |
| 4686 | |
| 4687 | if (i->state() == activeState) { |
| 4688 | deleted = remove_from_list(active_first_addr(anyKind), i); |
| 4689 | } else { |
| 4690 | assert(i->state() == inactiveState, "invalid state" ); |
| 4691 | deleted = remove_from_list(inactive_first_addr(anyKind), i); |
| 4692 | } |
| 4693 | |
| 4694 | assert(deleted, "interval has not been found in list" ); |
| 4695 | } |
| 4696 | |
| 4697 | |
| 4698 | void IntervalWalker::walk_to(IntervalState state, int from) { |
| 4699 | assert (state == activeState || state == inactiveState, "wrong state" ); |
| 4700 | for_each_interval_kind(kind) { |
| 4701 | Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind); |
| 4702 | Interval* next = *prev; |
| 4703 | while (next->current_from() <= from) { |
| 4704 | Interval* cur = next; |
| 4705 | next = cur->next(); |
| 4706 | |
| 4707 | bool range_has_changed = false; |
| 4708 | while (cur->current_to() <= from) { |
| 4709 | cur->next_range(); |
| 4710 | range_has_changed = true; |
| 4711 | } |
| 4712 | |
| 4713 | // also handle move from inactive list to active list |
| 4714 | range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from); |
| 4715 | |
| 4716 | if (range_has_changed) { |
| 4717 | // remove cur from list |
| 4718 | *prev = next; |
| 4719 | if (cur->current_at_end()) { |
| 4720 | // move to handled state (not maintained as a list) |
| 4721 | cur->set_state(handledState); |
| 4722 | interval_moved(cur, kind, state, handledState); |
| 4723 | } else if (cur->current_from() <= from){ |
| 4724 | // sort into active list |
| 4725 | append_sorted(active_first_addr(kind), cur); |
| 4726 | cur->set_state(activeState); |
| 4727 | if (*prev == cur) { |
| 4728 | assert(state == activeState, "check" ); |
| 4729 | prev = cur->next_addr(); |
| 4730 | } |
| 4731 | interval_moved(cur, kind, state, activeState); |
| 4732 | } else { |
| 4733 | // sort into inactive list |
| 4734 | append_sorted(inactive_first_addr(kind), cur); |
| 4735 | cur->set_state(inactiveState); |
| 4736 | if (*prev == cur) { |
| 4737 | assert(state == inactiveState, "check" ); |
| 4738 | prev = cur->next_addr(); |
| 4739 | } |
| 4740 | interval_moved(cur, kind, state, inactiveState); |
| 4741 | } |
| 4742 | } else { |
| 4743 | prev = cur->next_addr(); |
| 4744 | continue; |
| 4745 | } |
| 4746 | } |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | |
| 4751 | void IntervalWalker::next_interval() { |
| 4752 | IntervalKind kind; |
| 4753 | Interval* any = _unhandled_first[anyKind]; |
| 4754 | Interval* fixed = _unhandled_first[fixedKind]; |
| 4755 | |
| 4756 | if (any != Interval::end()) { |
| 4757 | // intervals may start at same position -> prefer fixed interval |
| 4758 | kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind; |
| 4759 | |
| 4760 | assert (kind == fixedKind && fixed->from() <= any->from() || |
| 4761 | kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!" ); |
| 4762 | assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first" ); |
| 4763 | |
| 4764 | } else if (fixed != Interval::end()) { |
| 4765 | kind = fixedKind; |
| 4766 | } else { |
| 4767 | _current = NULL; return; |
| 4768 | } |
| 4769 | _current_kind = kind; |
| 4770 | _current = _unhandled_first[kind]; |
| 4771 | _unhandled_first[kind] = _current->next(); |
| 4772 | _current->set_next(Interval::end()); |
| 4773 | _current->rewind_range(); |
| 4774 | } |
| 4775 | |
| 4776 | |
| 4777 | void IntervalWalker::walk_to(int lir_op_id) { |
| 4778 | assert(_current_position <= lir_op_id, "can not walk backwards" ); |
| 4779 | while (current() != NULL) { |
| 4780 | bool is_active = current()->from() <= lir_op_id; |
| 4781 | int id = is_active ? current()->from() : lir_op_id; |
| 4782 | |
| 4783 | TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************" , id); }) |
| 4784 | |
| 4785 | // set _current_position prior to call of walk_to |
| 4786 | _current_position = id; |
| 4787 | |
| 4788 | // call walk_to even if _current_position == id |
| 4789 | walk_to(activeState, id); |
| 4790 | walk_to(inactiveState, id); |
| 4791 | |
| 4792 | if (is_active) { |
| 4793 | current()->set_state(activeState); |
| 4794 | if (activate_current()) { |
| 4795 | append_sorted(active_first_addr(current_kind()), current()); |
| 4796 | interval_moved(current(), current_kind(), unhandledState, activeState); |
| 4797 | } |
| 4798 | |
| 4799 | next_interval(); |
| 4800 | } else { |
| 4801 | return; |
| 4802 | } |
| 4803 | } |
| 4804 | } |
| 4805 | |
| 4806 | void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) { |
| 4807 | #ifndef PRODUCT |
| 4808 | if (TraceLinearScanLevel >= 4) { |
| 4809 | #define print_state(state) \ |
| 4810 | switch(state) {\ |
| 4811 | case unhandledState: tty->print("unhandled"); break;\ |
| 4812 | case activeState: tty->print("active"); break;\ |
| 4813 | case inactiveState: tty->print("inactive"); break;\ |
| 4814 | case handledState: tty->print("handled"); break;\ |
| 4815 | default: ShouldNotReachHere(); \ |
| 4816 | } |
| 4817 | |
| 4818 | print_state(from); tty->print(" to " ); print_state(to); |
| 4819 | tty->fill_to(23); |
| 4820 | interval->print(); |
| 4821 | |
| 4822 | #undef print_state |
| 4823 | } |
| 4824 | #endif |
| 4825 | } |
| 4826 | |
| 4827 | |
| 4828 | |
| 4829 | // **** Implementation of LinearScanWalker ************************** |
| 4830 | |
| 4831 | LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) |
| 4832 | : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first) |
| 4833 | , _move_resolver(allocator) |
| 4834 | { |
| 4835 | for (int i = 0; i < LinearScan::nof_regs; i++) { |
| 4836 | _spill_intervals[i] = new IntervalList(2); |
| 4837 | } |
| 4838 | } |
| 4839 | |
| 4840 | |
| 4841 | inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) { |
| 4842 | for (int i = _first_reg; i <= _last_reg; i++) { |
| 4843 | _use_pos[i] = max_jint; |
| 4844 | |
| 4845 | if (!only_process_use_pos) { |
| 4846 | _block_pos[i] = max_jint; |
| 4847 | _spill_intervals[i]->clear(); |
| 4848 | } |
| 4849 | } |
| 4850 | } |
| 4851 | |
| 4852 | inline void LinearScanWalker::exclude_from_use(int reg) { |
| 4853 | assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)" ); |
| 4854 | if (reg >= _first_reg && reg <= _last_reg) { |
| 4855 | _use_pos[reg] = 0; |
| 4856 | } |
| 4857 | } |
| 4858 | inline void LinearScanWalker::exclude_from_use(Interval* i) { |
| 4859 | assert(i->assigned_reg() != any_reg, "interval has no register assigned" ); |
| 4860 | |
| 4861 | exclude_from_use(i->assigned_reg()); |
| 4862 | exclude_from_use(i->assigned_regHi()); |
| 4863 | } |
| 4864 | |
| 4865 | inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) { |
| 4866 | assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0" ); |
| 4867 | |
| 4868 | if (reg >= _first_reg && reg <= _last_reg) { |
| 4869 | if (_use_pos[reg] > use_pos) { |
| 4870 | _use_pos[reg] = use_pos; |
| 4871 | } |
| 4872 | if (!only_process_use_pos) { |
| 4873 | _spill_intervals[reg]->append(i); |
| 4874 | } |
| 4875 | } |
| 4876 | } |
| 4877 | inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) { |
| 4878 | assert(i->assigned_reg() != any_reg, "interval has no register assigned" ); |
| 4879 | if (use_pos != -1) { |
| 4880 | set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos); |
| 4881 | set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos); |
| 4882 | } |
| 4883 | } |
| 4884 | |
| 4885 | inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) { |
| 4886 | if (reg >= _first_reg && reg <= _last_reg) { |
| 4887 | if (_block_pos[reg] > block_pos) { |
| 4888 | _block_pos[reg] = block_pos; |
| 4889 | } |
| 4890 | if (_use_pos[reg] > block_pos) { |
| 4891 | _use_pos[reg] = block_pos; |
| 4892 | } |
| 4893 | } |
| 4894 | } |
| 4895 | inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) { |
| 4896 | assert(i->assigned_reg() != any_reg, "interval has no register assigned" ); |
| 4897 | if (block_pos != -1) { |
| 4898 | set_block_pos(i->assigned_reg(), i, block_pos); |
| 4899 | set_block_pos(i->assigned_regHi(), i, block_pos); |
| 4900 | } |
| 4901 | } |
| 4902 | |
| 4903 | |
| 4904 | void LinearScanWalker::free_exclude_active_fixed() { |
| 4905 | Interval* list = active_first(fixedKind); |
| 4906 | while (list != Interval::end()) { |
| 4907 | assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned" ); |
| 4908 | exclude_from_use(list); |
| 4909 | list = list->next(); |
| 4910 | } |
| 4911 | } |
| 4912 | |
| 4913 | void LinearScanWalker::free_exclude_active_any() { |
| 4914 | Interval* list = active_first(anyKind); |
| 4915 | while (list != Interval::end()) { |
| 4916 | exclude_from_use(list); |
| 4917 | list = list->next(); |
| 4918 | } |
| 4919 | } |
| 4920 | |
| 4921 | void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) { |
| 4922 | Interval* list = inactive_first(fixedKind); |
| 4923 | while (list != Interval::end()) { |
| 4924 | if (cur->to() <= list->current_from()) { |
| 4925 | assert(list->current_intersects_at(cur) == -1, "must not intersect" ); |
| 4926 | set_use_pos(list, list->current_from(), true); |
| 4927 | } else { |
| 4928 | set_use_pos(list, list->current_intersects_at(cur), true); |
| 4929 | } |
| 4930 | list = list->next(); |
| 4931 | } |
| 4932 | } |
| 4933 | |
| 4934 | void LinearScanWalker::free_collect_inactive_any(Interval* cur) { |
| 4935 | Interval* list = inactive_first(anyKind); |
| 4936 | while (list != Interval::end()) { |
| 4937 | set_use_pos(list, list->current_intersects_at(cur), true); |
| 4938 | list = list->next(); |
| 4939 | } |
| 4940 | } |
| 4941 | |
| 4942 | void LinearScanWalker::spill_exclude_active_fixed() { |
| 4943 | Interval* list = active_first(fixedKind); |
| 4944 | while (list != Interval::end()) { |
| 4945 | exclude_from_use(list); |
| 4946 | list = list->next(); |
| 4947 | } |
| 4948 | } |
| 4949 | |
| 4950 | void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) { |
| 4951 | Interval* list = inactive_first(fixedKind); |
| 4952 | while (list != Interval::end()) { |
| 4953 | if (cur->to() > list->current_from()) { |
| 4954 | set_block_pos(list, list->current_intersects_at(cur)); |
| 4955 | } else { |
| 4956 | assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect" ); |
| 4957 | } |
| 4958 | |
| 4959 | list = list->next(); |
| 4960 | } |
| 4961 | } |
| 4962 | |
| 4963 | void LinearScanWalker::spill_collect_active_any() { |
| 4964 | Interval* list = active_first(anyKind); |
| 4965 | while (list != Interval::end()) { |
| 4966 | set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); |
| 4967 | list = list->next(); |
| 4968 | } |
| 4969 | } |
| 4970 | |
| 4971 | void LinearScanWalker::spill_collect_inactive_any(Interval* cur) { |
| 4972 | Interval* list = inactive_first(anyKind); |
| 4973 | while (list != Interval::end()) { |
| 4974 | if (list->current_intersects(cur)) { |
| 4975 | set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); |
| 4976 | } |
| 4977 | list = list->next(); |
| 4978 | } |
| 4979 | } |
| 4980 | |
| 4981 | |
| 4982 | void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) { |
| 4983 | // output all moves here. When source and target are equal, the move is |
| 4984 | // optimized away later in assign_reg_nums |
| 4985 | |
| 4986 | op_id = (op_id + 1) & ~1; |
| 4987 | BlockBegin* op_block = allocator()->block_of_op_with_id(op_id); |
| 4988 | assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary" ); |
| 4989 | |
| 4990 | // calculate index of instruction inside instruction list of current block |
| 4991 | // the minimal index (for a block with no spill moves) can be calculated because the |
| 4992 | // numbering of instructions is known. |
| 4993 | // When the block already contains spill moves, the index must be increased until the |
| 4994 | // correct index is reached. |
| 4995 | LIR_OpList* list = op_block->lir()->instructions_list(); |
| 4996 | int index = (op_id - list->at(0)->id()) / 2; |
| 4997 | assert(list->at(index)->id() <= op_id, "error in calculation" ); |
| 4998 | |
| 4999 | while (list->at(index)->id() != op_id) { |
| 5000 | index++; |
| 5001 | assert(0 <= index && index < list->length(), "index out of bounds" ); |
| 5002 | } |
| 5003 | assert(1 <= index && index < list->length(), "index out of bounds" ); |
| 5004 | assert(list->at(index)->id() == op_id, "error in calculation" ); |
| 5005 | |
| 5006 | // insert new instruction before instruction at position index |
| 5007 | _move_resolver.move_insert_position(op_block->lir(), index - 1); |
| 5008 | _move_resolver.add_mapping(src_it, dst_it); |
| 5009 | } |
| 5010 | |
| 5011 | |
| 5012 | int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) { |
| 5013 | int from_block_nr = min_block->linear_scan_number(); |
| 5014 | int to_block_nr = max_block->linear_scan_number(); |
| 5015 | |
| 5016 | assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range" ); |
| 5017 | assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range" ); |
| 5018 | assert(from_block_nr < to_block_nr, "must cross block boundary" ); |
| 5019 | |
| 5020 | // Try to split at end of max_block. If this would be after |
| 5021 | // max_split_pos, then use the begin of max_block |
| 5022 | int optimal_split_pos = max_block->last_lir_instruction_id() + 2; |
| 5023 | if (optimal_split_pos > max_split_pos) { |
| 5024 | optimal_split_pos = max_block->first_lir_instruction_id(); |
| 5025 | } |
| 5026 | |
| 5027 | int min_loop_depth = max_block->loop_depth(); |
| 5028 | for (int i = to_block_nr - 1; i >= from_block_nr; i--) { |
| 5029 | BlockBegin* cur = block_at(i); |
| 5030 | |
| 5031 | if (cur->loop_depth() < min_loop_depth) { |
| 5032 | // block with lower loop-depth found -> split at the end of this block |
| 5033 | min_loop_depth = cur->loop_depth(); |
| 5034 | optimal_split_pos = cur->last_lir_instruction_id() + 2; |
| 5035 | } |
| 5036 | } |
| 5037 | assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary" ); |
| 5038 | |
| 5039 | return optimal_split_pos; |
| 5040 | } |
| 5041 | |
| 5042 | |
| 5043 | int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) { |
| 5044 | int optimal_split_pos = -1; |
| 5045 | if (min_split_pos == max_split_pos) { |
| 5046 | // trivial case, no optimization of split position possible |
| 5047 | TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible" )); |
| 5048 | optimal_split_pos = min_split_pos; |
| 5049 | |
| 5050 | } else { |
| 5051 | assert(min_split_pos < max_split_pos, "must be true then" ); |
| 5052 | assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise" ); |
| 5053 | |
| 5054 | // reason for using min_split_pos - 1: when the minimal split pos is exactly at the |
| 5055 | // beginning of a block, then min_split_pos is also a possible split position. |
| 5056 | // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos |
| 5057 | BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1); |
| 5058 | |
| 5059 | // reason for using max_split_pos - 1: otherwise there would be an assertion failure |
| 5060 | // when an interval ends at the end of the last block of the method |
| 5061 | // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no |
| 5062 | // block at this op_id) |
| 5063 | BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1); |
| 5064 | |
| 5065 | assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order" ); |
| 5066 | if (min_block == max_block) { |
| 5067 | // split position cannot be moved to block boundary, so split as late as possible |
| 5068 | TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block" )); |
| 5069 | optimal_split_pos = max_split_pos; |
| 5070 | |
| 5071 | } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) { |
| 5072 | // Do not move split position if the interval has a hole before max_split_pos. |
| 5073 | // Intervals resulting from Phi-Functions have more than one definition (marked |
| 5074 | // as mustHaveRegister) with a hole before each definition. When the register is needed |
| 5075 | // for the second definition, an earlier reloading is unnecessary. |
| 5076 | TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos" )); |
| 5077 | optimal_split_pos = max_split_pos; |
| 5078 | |
| 5079 | } else { |
| 5080 | // seach optimal block boundary between min_split_pos and max_split_pos |
| 5081 | TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d" , min_block->block_id(), max_block->block_id())); |
| 5082 | |
| 5083 | if (do_loop_optimization) { |
| 5084 | // Loop optimization: if a loop-end marker is found between min- and max-position, |
| 5085 | // then split before this loop |
| 5086 | int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2); |
| 5087 | TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d" , loop_end_pos)); |
| 5088 | |
| 5089 | assert(loop_end_pos > min_split_pos, "invalid order" ); |
| 5090 | if (loop_end_pos < max_split_pos) { |
| 5091 | // loop-end marker found between min- and max-position |
| 5092 | // if it is not the end marker for the same loop as the min-position, then move |
| 5093 | // the max-position to this loop block. |
| 5094 | // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading |
| 5095 | // of the interval (normally, only mustHaveRegister causes a reloading) |
| 5096 | BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos); |
| 5097 | |
| 5098 | TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d" , loop_block->block_id(), max_block->block_id(), loop_block->block_id())); |
| 5099 | assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between" ); |
| 5100 | |
| 5101 | optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2); |
| 5102 | if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) { |
| 5103 | optimal_split_pos = -1; |
| 5104 | TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary" )); |
| 5105 | } else { |
| 5106 | TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful" )); |
| 5107 | } |
| 5108 | } |
| 5109 | } |
| 5110 | |
| 5111 | if (optimal_split_pos == -1) { |
| 5112 | // not calculated by loop optimization |
| 5113 | optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos); |
| 5114 | } |
| 5115 | } |
| 5116 | } |
| 5117 | TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d" , optimal_split_pos)); |
| 5118 | |
| 5119 | return optimal_split_pos; |
| 5120 | } |
| 5121 | |
| 5122 | |
| 5123 | /* |
| 5124 | split an interval at the optimal position between min_split_pos and |
| 5125 | max_split_pos in two parts: |
| 5126 | 1) the left part has already a location assigned |
| 5127 | 2) the right part is sorted into to the unhandled-list |
| 5128 | */ |
| 5129 | void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) { |
| 5130 | TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: " ); it->print()); |
| 5131 | TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d" , min_split_pos, max_split_pos)); |
| 5132 | |
| 5133 | assert(it->from() < min_split_pos, "cannot split at start of interval" ); |
| 5134 | assert(current_position() < min_split_pos, "cannot split before current position" ); |
| 5135 | assert(min_split_pos <= max_split_pos, "invalid order" ); |
| 5136 | assert(max_split_pos <= it->to(), "cannot split after end of interval" ); |
| 5137 | |
| 5138 | int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true); |
| 5139 | |
| 5140 | assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range" ); |
| 5141 | assert(optimal_split_pos <= it->to(), "cannot split after end of interval" ); |
| 5142 | assert(optimal_split_pos > it->from(), "cannot split at start of interval" ); |
| 5143 | |
| 5144 | if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) { |
| 5145 | // the split position would be just before the end of the interval |
| 5146 | // -> no split at all necessary |
| 5147 | TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval" )); |
| 5148 | return; |
| 5149 | } |
| 5150 | |
| 5151 | // must calculate this before the actual split is performed and before split position is moved to odd op_id |
| 5152 | bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos); |
| 5153 | |
| 5154 | if (!allocator()->is_block_begin(optimal_split_pos)) { |
| 5155 | // move position before actual instruction (odd op_id) |
| 5156 | optimal_split_pos = (optimal_split_pos - 1) | 1; |
| 5157 | } |
| 5158 | |
| 5159 | TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d" , optimal_split_pos)); |
| 5160 | assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary" ); |
| 5161 | assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary" ); |
| 5162 | |
| 5163 | Interval* split_part = it->split(optimal_split_pos); |
| 5164 | |
| 5165 | allocator()->append_interval(split_part); |
| 5166 | allocator()->copy_register_flags(it, split_part); |
| 5167 | split_part->set_insert_move_when_activated(move_necessary); |
| 5168 | append_to_unhandled(unhandled_first_addr(anyKind), split_part); |
| 5169 | |
| 5170 | TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)" , move_necessary)); |
| 5171 | TRACE_LINEAR_SCAN(2, tty->print (" " ); it->print()); |
| 5172 | TRACE_LINEAR_SCAN(2, tty->print (" " ); split_part->print()); |
| 5173 | } |
| 5174 | |
| 5175 | /* |
| 5176 | split an interval at the optimal position between min_split_pos and |
| 5177 | max_split_pos in two parts: |
| 5178 | 1) the left part has already a location assigned |
| 5179 | 2) the right part is always on the stack and therefore ignored in further processing |
| 5180 | */ |
| 5181 | void LinearScanWalker::split_for_spilling(Interval* it) { |
| 5182 | // calculate allowed range of splitting position |
| 5183 | int max_split_pos = current_position(); |
| 5184 | int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from()); |
| 5185 | |
| 5186 | TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: " ); it->print()); |
| 5187 | TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d" , min_split_pos, max_split_pos)); |
| 5188 | |
| 5189 | assert(it->state() == activeState, "why spill interval that is not active?" ); |
| 5190 | assert(it->from() <= min_split_pos, "cannot split before start of interval" ); |
| 5191 | assert(min_split_pos <= max_split_pos, "invalid order" ); |
| 5192 | assert(max_split_pos < it->to(), "cannot split at end end of interval" ); |
| 5193 | assert(current_position() < it->to(), "interval must not end before current position" ); |
| 5194 | |
| 5195 | if (min_split_pos == it->from()) { |
| 5196 | // the whole interval is never used, so spill it entirely to memory |
| 5197 | TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval" )); |
| 5198 | assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position" ); |
| 5199 | |
| 5200 | allocator()->assign_spill_slot(it); |
| 5201 | allocator()->change_spill_state(it, min_split_pos); |
| 5202 | |
| 5203 | // Also kick parent intervals out of register to memory when they have no use |
| 5204 | // position. This avoids short interval in register surrounded by intervals in |
| 5205 | // memory -> avoid useless moves from memory to register and back |
| 5206 | Interval* parent = it; |
| 5207 | while (parent != NULL && parent->is_split_child()) { |
| 5208 | parent = parent->split_child_before_op_id(parent->from()); |
| 5209 | |
| 5210 | if (parent->assigned_reg() < LinearScan::nof_regs) { |
| 5211 | if (parent->first_usage(shouldHaveRegister) == max_jint) { |
| 5212 | // parent is never used, so kick it out of its assigned register |
| 5213 | TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used" , parent->reg_num())); |
| 5214 | allocator()->assign_spill_slot(parent); |
| 5215 | } else { |
| 5216 | // do not go further back because the register is actually used by the interval |
| 5217 | parent = NULL; |
| 5218 | } |
| 5219 | } |
| 5220 | } |
| 5221 | |
| 5222 | } else { |
| 5223 | // search optimal split pos, split interval and spill only the right hand part |
| 5224 | int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false); |
| 5225 | |
| 5226 | assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range" ); |
| 5227 | assert(optimal_split_pos < it->to(), "cannot split at end of interval" ); |
| 5228 | assert(optimal_split_pos >= it->from(), "cannot split before start of interval" ); |
| 5229 | |
| 5230 | if (!allocator()->is_block_begin(optimal_split_pos)) { |
| 5231 | // move position before actual instruction (odd op_id) |
| 5232 | optimal_split_pos = (optimal_split_pos - 1) | 1; |
| 5233 | } |
| 5234 | |
| 5235 | TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d" , optimal_split_pos)); |
| 5236 | assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary" ); |
| 5237 | assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary" ); |
| 5238 | |
| 5239 | Interval* spilled_part = it->split(optimal_split_pos); |
| 5240 | allocator()->append_interval(spilled_part); |
| 5241 | allocator()->assign_spill_slot(spilled_part); |
| 5242 | allocator()->change_spill_state(spilled_part, optimal_split_pos); |
| 5243 | |
| 5244 | if (!allocator()->is_block_begin(optimal_split_pos)) { |
| 5245 | TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d" , it->reg_num(), spilled_part->reg_num())); |
| 5246 | insert_move(optimal_split_pos, it, spilled_part); |
| 5247 | } |
| 5248 | |
| 5249 | // the current_split_child is needed later when moves are inserted for reloading |
| 5250 | assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child" ); |
| 5251 | spilled_part->make_current_split_child(); |
| 5252 | |
| 5253 | TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts" )); |
| 5254 | TRACE_LINEAR_SCAN(2, tty->print (" " ); it->print()); |
| 5255 | TRACE_LINEAR_SCAN(2, tty->print (" " ); spilled_part->print()); |
| 5256 | } |
| 5257 | } |
| 5258 | |
| 5259 | |
| 5260 | void LinearScanWalker::split_stack_interval(Interval* it) { |
| 5261 | int min_split_pos = current_position() + 1; |
| 5262 | int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to()); |
| 5263 | |
| 5264 | split_before_usage(it, min_split_pos, max_split_pos); |
| 5265 | } |
| 5266 | |
| 5267 | void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) { |
| 5268 | int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1); |
| 5269 | int max_split_pos = register_available_until; |
| 5270 | |
| 5271 | split_before_usage(it, min_split_pos, max_split_pos); |
| 5272 | } |
| 5273 | |
| 5274 | void LinearScanWalker::split_and_spill_interval(Interval* it) { |
| 5275 | assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed" ); |
| 5276 | |
| 5277 | int current_pos = current_position(); |
| 5278 | if (it->state() == inactiveState) { |
| 5279 | // the interval is currently inactive, so no spill slot is needed for now. |
| 5280 | // when the split part is activated, the interval has a new chance to get a register, |
| 5281 | // so in the best case no stack slot is necessary |
| 5282 | assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise" ); |
| 5283 | split_before_usage(it, current_pos + 1, current_pos + 1); |
| 5284 | |
| 5285 | } else { |
| 5286 | // search the position where the interval must have a register and split |
| 5287 | // at the optimal position before. |
| 5288 | // The new created part is added to the unhandled list and will get a register |
| 5289 | // when it is activated |
| 5290 | int min_split_pos = current_pos + 1; |
| 5291 | int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to()); |
| 5292 | |
| 5293 | split_before_usage(it, min_split_pos, max_split_pos); |
| 5294 | |
| 5295 | assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register" ); |
| 5296 | split_for_spilling(it); |
| 5297 | } |
| 5298 | } |
| 5299 | |
| 5300 | |
| 5301 | int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) { |
| 5302 | int min_full_reg = any_reg; |
| 5303 | int max_partial_reg = any_reg; |
| 5304 | |
| 5305 | for (int i = _first_reg; i <= _last_reg; i++) { |
| 5306 | if (i == ignore_reg) { |
| 5307 | // this register must be ignored |
| 5308 | |
| 5309 | } else if (_use_pos[i] >= interval_to) { |
| 5310 | // this register is free for the full interval |
| 5311 | if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { |
| 5312 | min_full_reg = i; |
| 5313 | } |
| 5314 | } else if (_use_pos[i] > reg_needed_until) { |
| 5315 | // this register is at least free until reg_needed_until |
| 5316 | if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { |
| 5317 | max_partial_reg = i; |
| 5318 | } |
| 5319 | } |
| 5320 | } |
| 5321 | |
| 5322 | if (min_full_reg != any_reg) { |
| 5323 | return min_full_reg; |
| 5324 | } else if (max_partial_reg != any_reg) { |
| 5325 | *need_split = true; |
| 5326 | return max_partial_reg; |
| 5327 | } else { |
| 5328 | return any_reg; |
| 5329 | } |
| 5330 | } |
| 5331 | |
| 5332 | int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) { |
| 5333 | assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm" ); |
| 5334 | |
| 5335 | int min_full_reg = any_reg; |
| 5336 | int max_partial_reg = any_reg; |
| 5337 | |
| 5338 | for (int i = _first_reg; i < _last_reg; i+=2) { |
| 5339 | if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) { |
| 5340 | // this register is free for the full interval |
| 5341 | if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { |
| 5342 | min_full_reg = i; |
| 5343 | } |
| 5344 | } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { |
| 5345 | // this register is at least free until reg_needed_until |
| 5346 | if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { |
| 5347 | max_partial_reg = i; |
| 5348 | } |
| 5349 | } |
| 5350 | } |
| 5351 | |
| 5352 | if (min_full_reg != any_reg) { |
| 5353 | return min_full_reg; |
| 5354 | } else if (max_partial_reg != any_reg) { |
| 5355 | *need_split = true; |
| 5356 | return max_partial_reg; |
| 5357 | } else { |
| 5358 | return any_reg; |
| 5359 | } |
| 5360 | } |
| 5361 | |
| 5362 | |
| 5363 | bool LinearScanWalker::alloc_free_reg(Interval* cur) { |
| 5364 | TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for " ); cur->print()); |
| 5365 | |
| 5366 | init_use_lists(true); |
| 5367 | free_exclude_active_fixed(); |
| 5368 | free_exclude_active_any(); |
| 5369 | free_collect_inactive_fixed(cur); |
| 5370 | free_collect_inactive_any(cur); |
| 5371 | assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0" ); |
| 5372 | |
| 5373 | // _use_pos contains the start of the next interval that has this register assigned |
| 5374 | // (either as a fixed register or a normal allocated register in the past) |
| 5375 | // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely |
| 5376 | TRACE_LINEAR_SCAN(4, tty->print_cr(" state of registers:" )); |
| 5377 | TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr(" reg %d: use_pos: %d" , i, _use_pos[i])); |
| 5378 | |
| 5379 | int hint_reg, hint_regHi; |
| 5380 | Interval* register_hint = cur->register_hint(); |
| 5381 | if (register_hint != NULL) { |
| 5382 | hint_reg = register_hint->assigned_reg(); |
| 5383 | hint_regHi = register_hint->assigned_regHi(); |
| 5384 | |
| 5385 | if (allocator()->is_precolored_cpu_interval(register_hint)) { |
| 5386 | assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals" ); |
| 5387 | hint_regHi = hint_reg + 1; // connect e.g. eax-edx |
| 5388 | } |
| 5389 | TRACE_LINEAR_SCAN(4, tty->print(" hint registers %d, %d from interval " , hint_reg, hint_regHi); register_hint->print()); |
| 5390 | |
| 5391 | } else { |
| 5392 | hint_reg = any_reg; |
| 5393 | hint_regHi = any_reg; |
| 5394 | } |
| 5395 | assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal" ); |
| 5396 | assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval" ); |
| 5397 | |
| 5398 | // the register must be free at least until this position |
| 5399 | int reg_needed_until = cur->from() + 1; |
| 5400 | int interval_to = cur->to(); |
| 5401 | |
| 5402 | bool need_split = false; |
| 5403 | int split_pos; |
| 5404 | int reg; |
| 5405 | int regHi = any_reg; |
| 5406 | |
| 5407 | if (_adjacent_regs) { |
| 5408 | reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split); |
| 5409 | regHi = reg + 1; |
| 5410 | if (reg == any_reg) { |
| 5411 | return false; |
| 5412 | } |
| 5413 | split_pos = MIN2(_use_pos[reg], _use_pos[regHi]); |
| 5414 | |
| 5415 | } else { |
| 5416 | reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split); |
| 5417 | if (reg == any_reg) { |
| 5418 | return false; |
| 5419 | } |
| 5420 | split_pos = _use_pos[reg]; |
| 5421 | |
| 5422 | if (_num_phys_regs == 2) { |
| 5423 | regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split); |
| 5424 | |
| 5425 | if (_use_pos[reg] < interval_to && regHi == any_reg) { |
| 5426 | // do not split interval if only one register can be assigned until the split pos |
| 5427 | // (when one register is found for the whole interval, split&spill is only |
| 5428 | // performed for the hi register) |
| 5429 | return false; |
| 5430 | |
| 5431 | } else if (regHi != any_reg) { |
| 5432 | split_pos = MIN2(split_pos, _use_pos[regHi]); |
| 5433 | |
| 5434 | // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax |
| 5435 | if (reg > regHi) { |
| 5436 | int temp = reg; |
| 5437 | reg = regHi; |
| 5438 | regHi = temp; |
| 5439 | } |
| 5440 | } |
| 5441 | } |
| 5442 | } |
| 5443 | |
| 5444 | cur->assign_reg(reg, regHi); |
| 5445 | TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d" , reg, regHi)); |
| 5446 | |
| 5447 | assert(split_pos > 0, "invalid split_pos" ); |
| 5448 | if (need_split) { |
| 5449 | // register not available for full interval, so split it |
| 5450 | split_when_partial_register_available(cur, split_pos); |
| 5451 | } |
| 5452 | |
| 5453 | // only return true if interval is completely assigned |
| 5454 | return _num_phys_regs == 1 || regHi != any_reg; |
| 5455 | } |
| 5456 | |
| 5457 | |
| 5458 | int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) { |
| 5459 | int max_reg = any_reg; |
| 5460 | |
| 5461 | for (int i = _first_reg; i <= _last_reg; i++) { |
| 5462 | if (i == ignore_reg) { |
| 5463 | // this register must be ignored |
| 5464 | |
| 5465 | } else if (_use_pos[i] > reg_needed_until) { |
| 5466 | if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { |
| 5467 | max_reg = i; |
| 5468 | } |
| 5469 | } |
| 5470 | } |
| 5471 | |
| 5472 | if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) { |
| 5473 | *need_split = true; |
| 5474 | } |
| 5475 | |
| 5476 | return max_reg; |
| 5477 | } |
| 5478 | |
| 5479 | int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) { |
| 5480 | assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm" ); |
| 5481 | |
| 5482 | int max_reg = any_reg; |
| 5483 | |
| 5484 | for (int i = _first_reg; i < _last_reg; i+=2) { |
| 5485 | if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { |
| 5486 | if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { |
| 5487 | max_reg = i; |
| 5488 | } |
| 5489 | } |
| 5490 | } |
| 5491 | |
| 5492 | if (max_reg != any_reg && |
| 5493 | (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) { |
| 5494 | *need_split = true; |
| 5495 | } |
| 5496 | |
| 5497 | return max_reg; |
| 5498 | } |
| 5499 | |
| 5500 | void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) { |
| 5501 | assert(reg != any_reg, "no register assigned" ); |
| 5502 | |
| 5503 | for (int i = 0; i < _spill_intervals[reg]->length(); i++) { |
| 5504 | Interval* it = _spill_intervals[reg]->at(i); |
| 5505 | remove_from_list(it); |
| 5506 | split_and_spill_interval(it); |
| 5507 | } |
| 5508 | |
| 5509 | if (regHi != any_reg) { |
| 5510 | IntervalList* processed = _spill_intervals[reg]; |
| 5511 | for (int i = 0; i < _spill_intervals[regHi]->length(); i++) { |
| 5512 | Interval* it = _spill_intervals[regHi]->at(i); |
| 5513 | if (processed->find(it) == -1) { |
| 5514 | remove_from_list(it); |
| 5515 | split_and_spill_interval(it); |
| 5516 | } |
| 5517 | } |
| 5518 | } |
| 5519 | } |
| 5520 | |
| 5521 | |
| 5522 | // Split an Interval and spill it to memory so that cur can be placed in a register |
| 5523 | void LinearScanWalker::alloc_locked_reg(Interval* cur) { |
| 5524 | TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for " ); cur->print()); |
| 5525 | |
| 5526 | // collect current usage of registers |
| 5527 | init_use_lists(false); |
| 5528 | spill_exclude_active_fixed(); |
| 5529 | assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0" ); |
| 5530 | spill_block_inactive_fixed(cur); |
| 5531 | spill_collect_active_any(); |
| 5532 | spill_collect_inactive_any(cur); |
| 5533 | |
| 5534 | #ifndef PRODUCT |
| 5535 | if (TraceLinearScanLevel >= 4) { |
| 5536 | tty->print_cr(" state of registers:" ); |
| 5537 | for (int i = _first_reg; i <= _last_reg; i++) { |
| 5538 | tty->print(" reg %d: use_pos: %d, block_pos: %d, intervals: " , i, _use_pos[i], _block_pos[i]); |
| 5539 | for (int j = 0; j < _spill_intervals[i]->length(); j++) { |
| 5540 | tty->print("%d " , _spill_intervals[i]->at(j)->reg_num()); |
| 5541 | } |
| 5542 | tty->cr(); |
| 5543 | } |
| 5544 | } |
| 5545 | #endif |
| 5546 | |
| 5547 | // the register must be free at least until this position |
| 5548 | int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1); |
| 5549 | int interval_to = cur->to(); |
| 5550 | assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use" ); |
| 5551 | |
| 5552 | int split_pos = 0; |
| 5553 | int use_pos = 0; |
| 5554 | bool need_split = false; |
| 5555 | int reg, regHi; |
| 5556 | |
| 5557 | if (_adjacent_regs) { |
| 5558 | reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split); |
| 5559 | regHi = reg + 1; |
| 5560 | |
| 5561 | if (reg != any_reg) { |
| 5562 | use_pos = MIN2(_use_pos[reg], _use_pos[regHi]); |
| 5563 | split_pos = MIN2(_block_pos[reg], _block_pos[regHi]); |
| 5564 | } |
| 5565 | } else { |
| 5566 | reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split); |
| 5567 | regHi = any_reg; |
| 5568 | |
| 5569 | if (reg != any_reg) { |
| 5570 | use_pos = _use_pos[reg]; |
| 5571 | split_pos = _block_pos[reg]; |
| 5572 | |
| 5573 | if (_num_phys_regs == 2) { |
| 5574 | if (cur->assigned_reg() != any_reg) { |
| 5575 | regHi = reg; |
| 5576 | reg = cur->assigned_reg(); |
| 5577 | } else { |
| 5578 | regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split); |
| 5579 | if (regHi != any_reg) { |
| 5580 | use_pos = MIN2(use_pos, _use_pos[regHi]); |
| 5581 | split_pos = MIN2(split_pos, _block_pos[regHi]); |
| 5582 | } |
| 5583 | } |
| 5584 | |
| 5585 | if (regHi != any_reg && reg > regHi) { |
| 5586 | // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax |
| 5587 | int temp = reg; |
| 5588 | reg = regHi; |
| 5589 | regHi = temp; |
| 5590 | } |
| 5591 | } |
| 5592 | } |
| 5593 | } |
| 5594 | |
| 5595 | if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) { |
| 5596 | // the first use of cur is later than the spilling position -> spill cur |
| 5597 | TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d" , cur->first_usage(mustHaveRegister), use_pos)); |
| 5598 | |
| 5599 | if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) { |
| 5600 | assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)" ); |
| 5601 | // assign a reasonable register and do a bailout in product mode to avoid errors |
| 5602 | allocator()->assign_spill_slot(cur); |
| 5603 | BAILOUT("LinearScan: no register found" ); |
| 5604 | } |
| 5605 | |
| 5606 | split_and_spill_interval(cur); |
| 5607 | } else { |
| 5608 | TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d" , reg, regHi)); |
| 5609 | assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found" ); |
| 5610 | assert(split_pos > 0, "invalid split_pos" ); |
| 5611 | assert(need_split == false || split_pos > cur->from(), "splitting interval at from" ); |
| 5612 | |
| 5613 | cur->assign_reg(reg, regHi); |
| 5614 | if (need_split) { |
| 5615 | // register not available for full interval, so split it |
| 5616 | split_when_partial_register_available(cur, split_pos); |
| 5617 | } |
| 5618 | |
| 5619 | // perform splitting and spilling for all affected intervalls |
| 5620 | split_and_spill_intersecting_intervals(reg, regHi); |
| 5621 | } |
| 5622 | } |
| 5623 | |
| 5624 | bool LinearScanWalker::no_allocation_possible(Interval* cur) { |
| 5625 | #ifdef X86 |
| 5626 | // fast calculation of intervals that can never get a register because the |
| 5627 | // the next instruction is a call that blocks all registers |
| 5628 | // Note: this does not work if callee-saved registers are available (e.g. on Sparc) |
| 5629 | |
| 5630 | // check if this interval is the result of a split operation |
| 5631 | // (an interval got a register until this position) |
| 5632 | int pos = cur->from(); |
| 5633 | if ((pos & 1) == 1) { |
| 5634 | // the current instruction is a call that blocks all registers |
| 5635 | if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) { |
| 5636 | TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call" )); |
| 5637 | |
| 5638 | // safety check that there is really no register available |
| 5639 | assert(alloc_free_reg(cur) == false, "found a register for this interval" ); |
| 5640 | return true; |
| 5641 | } |
| 5642 | |
| 5643 | } |
| 5644 | #endif |
| 5645 | return false; |
| 5646 | } |
| 5647 | |
| 5648 | void LinearScanWalker::init_vars_for_alloc(Interval* cur) { |
| 5649 | BasicType type = cur->type(); |
| 5650 | _num_phys_regs = LinearScan::num_physical_regs(type); |
| 5651 | _adjacent_regs = LinearScan::requires_adjacent_regs(type); |
| 5652 | |
| 5653 | if (pd_init_regs_for_alloc(cur)) { |
| 5654 | // the appropriate register range was selected. |
| 5655 | } else if (type == T_FLOAT || type == T_DOUBLE) { |
| 5656 | _first_reg = pd_first_fpu_reg; |
| 5657 | _last_reg = pd_last_fpu_reg; |
| 5658 | } else { |
| 5659 | _first_reg = pd_first_cpu_reg; |
| 5660 | _last_reg = FrameMap::last_cpu_reg(); |
| 5661 | } |
| 5662 | |
| 5663 | assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range" ); |
| 5664 | assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range" ); |
| 5665 | } |
| 5666 | |
| 5667 | |
| 5668 | bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) { |
| 5669 | if (op->code() != lir_move) { |
| 5670 | return false; |
| 5671 | } |
| 5672 | assert(op->as_Op1() != NULL, "move must be LIR_Op1" ); |
| 5673 | |
| 5674 | LIR_Opr in = ((LIR_Op1*)op)->in_opr(); |
| 5675 | LIR_Opr res = ((LIR_Op1*)op)->result_opr(); |
| 5676 | return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num(); |
| 5677 | } |
| 5678 | |
| 5679 | // optimization (especially for phi functions of nested loops): |
| 5680 | // assign same spill slot to non-intersecting intervals |
| 5681 | void LinearScanWalker::combine_spilled_intervals(Interval* cur) { |
| 5682 | if (cur->is_split_child()) { |
| 5683 | // optimization is only suitable for split parents |
| 5684 | return; |
| 5685 | } |
| 5686 | |
| 5687 | Interval* register_hint = cur->register_hint(false); |
| 5688 | if (register_hint == NULL) { |
| 5689 | // cur is not the target of a move, otherwise register_hint would be set |
| 5690 | return; |
| 5691 | } |
| 5692 | assert(register_hint->is_split_parent(), "register hint must be split parent" ); |
| 5693 | |
| 5694 | if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) { |
| 5695 | // combining the stack slots for intervals where spill move optimization is applied |
| 5696 | // is not benefitial and would cause problems |
| 5697 | return; |
| 5698 | } |
| 5699 | |
| 5700 | int begin_pos = cur->from(); |
| 5701 | int end_pos = cur->to(); |
| 5702 | if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) { |
| 5703 | // safety check that lir_op_with_id is allowed |
| 5704 | return; |
| 5705 | } |
| 5706 | |
| 5707 | if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) { |
| 5708 | // cur and register_hint are not connected with two moves |
| 5709 | return; |
| 5710 | } |
| 5711 | |
| 5712 | Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode); |
| 5713 | Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode); |
| 5714 | if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) { |
| 5715 | // register_hint must be split, otherwise the re-writing of use positions does not work |
| 5716 | return; |
| 5717 | } |
| 5718 | |
| 5719 | assert(begin_hint->assigned_reg() != any_reg, "must have register assigned" ); |
| 5720 | assert(end_hint->assigned_reg() == any_reg, "must not have register assigned" ); |
| 5721 | assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move" ); |
| 5722 | assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move" ); |
| 5723 | |
| 5724 | if (begin_hint->assigned_reg() < LinearScan::nof_regs) { |
| 5725 | // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur |
| 5726 | return; |
| 5727 | } |
| 5728 | assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled" ); |
| 5729 | |
| 5730 | // modify intervals such that cur gets the same stack slot as register_hint |
| 5731 | // delete use positions to prevent the intervals to get a register at beginning |
| 5732 | cur->set_canonical_spill_slot(register_hint->canonical_spill_slot()); |
| 5733 | cur->remove_first_use_pos(); |
| 5734 | end_hint->remove_first_use_pos(); |
| 5735 | } |
| 5736 | |
| 5737 | |
| 5738 | // allocate a physical register or memory location to an interval |
| 5739 | bool LinearScanWalker::activate_current() { |
| 5740 | Interval* cur = current(); |
| 5741 | bool result = true; |
| 5742 | |
| 5743 | TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval " ); cur->print()); |
| 5744 | TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d" , cur->split_parent()->reg_num(), cur->insert_move_when_activated())); |
| 5745 | |
| 5746 | if (cur->assigned_reg() >= LinearScan::nof_regs) { |
| 5747 | // activating an interval that has a stack slot assigned -> split it at first use position |
| 5748 | // used for method parameters |
| 5749 | TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use" )); |
| 5750 | |
| 5751 | split_stack_interval(cur); |
| 5752 | result = false; |
| 5753 | |
| 5754 | } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) { |
| 5755 | // activating an interval that must start in a stack slot, but may get a register later |
| 5756 | // used for lir_roundfp: rounding is done by store to stack and reload later |
| 5757 | TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use" )); |
| 5758 | assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned" ); |
| 5759 | |
| 5760 | allocator()->assign_spill_slot(cur); |
| 5761 | split_stack_interval(cur); |
| 5762 | result = false; |
| 5763 | |
| 5764 | } else if (cur->assigned_reg() == any_reg) { |
| 5765 | // interval has not assigned register -> normal allocation |
| 5766 | // (this is the normal case for most intervals) |
| 5767 | TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register" )); |
| 5768 | |
| 5769 | // assign same spill slot to non-intersecting intervals |
| 5770 | combine_spilled_intervals(cur); |
| 5771 | |
| 5772 | init_vars_for_alloc(cur); |
| 5773 | if (no_allocation_possible(cur) || !alloc_free_reg(cur)) { |
| 5774 | // no empty register available. |
| 5775 | // split and spill another interval so that this interval gets a register |
| 5776 | alloc_locked_reg(cur); |
| 5777 | } |
| 5778 | |
| 5779 | // spilled intervals need not be move to active-list |
| 5780 | if (cur->assigned_reg() >= LinearScan::nof_regs) { |
| 5781 | result = false; |
| 5782 | } |
| 5783 | } |
| 5784 | |
| 5785 | // load spilled values that become active from stack slot to register |
| 5786 | if (cur->insert_move_when_activated()) { |
| 5787 | assert(cur->is_split_child(), "must be" ); |
| 5788 | assert(cur->current_split_child() != NULL, "must be" ); |
| 5789 | assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval" ); |
| 5790 | TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set" , cur->current_split_child()->reg_num(), cur->reg_num())); |
| 5791 | |
| 5792 | insert_move(cur->from(), cur->current_split_child(), cur); |
| 5793 | } |
| 5794 | cur->make_current_split_child(); |
| 5795 | |
| 5796 | return result; // true = interval is moved to active list |
| 5797 | } |
| 5798 | |
| 5799 | |
| 5800 | // Implementation of EdgeMoveOptimizer |
| 5801 | |
| 5802 | EdgeMoveOptimizer::EdgeMoveOptimizer() : |
| 5803 | _edge_instructions(4), |
| 5804 | _edge_instructions_idx(4) |
| 5805 | { |
| 5806 | } |
| 5807 | |
| 5808 | void EdgeMoveOptimizer::optimize(BlockList* code) { |
| 5809 | EdgeMoveOptimizer optimizer = EdgeMoveOptimizer(); |
| 5810 | |
| 5811 | // ignore the first block in the list (index 0 is not processed) |
| 5812 | for (int i = code->length() - 1; i >= 1; i--) { |
| 5813 | BlockBegin* block = code->at(i); |
| 5814 | |
| 5815 | if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) { |
| 5816 | optimizer.optimize_moves_at_block_end(block); |
| 5817 | } |
| 5818 | if (block->number_of_sux() == 2) { |
| 5819 | optimizer.optimize_moves_at_block_begin(block); |
| 5820 | } |
| 5821 | } |
| 5822 | } |
| 5823 | |
| 5824 | |
| 5825 | // clear all internal data structures |
| 5826 | void EdgeMoveOptimizer::init_instructions() { |
| 5827 | _edge_instructions.clear(); |
| 5828 | _edge_instructions_idx.clear(); |
| 5829 | } |
| 5830 | |
| 5831 | // append a lir-instruction-list and the index of the current operation in to the list |
| 5832 | void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) { |
| 5833 | _edge_instructions.append(instructions); |
| 5834 | _edge_instructions_idx.append(instructions_idx); |
| 5835 | } |
| 5836 | |
| 5837 | // return the current operation of the given edge (predecessor or successor) |
| 5838 | LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) { |
| 5839 | LIR_OpList* instructions = _edge_instructions.at(edge); |
| 5840 | int idx = _edge_instructions_idx.at(edge); |
| 5841 | |
| 5842 | if (idx < instructions->length()) { |
| 5843 | return instructions->at(idx); |
| 5844 | } else { |
| 5845 | return NULL; |
| 5846 | } |
| 5847 | } |
| 5848 | |
| 5849 | // removes the current operation of the given edge (predecessor or successor) |
| 5850 | void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) { |
| 5851 | LIR_OpList* instructions = _edge_instructions.at(edge); |
| 5852 | int idx = _edge_instructions_idx.at(edge); |
| 5853 | instructions->remove_at(idx); |
| 5854 | |
| 5855 | if (decrement_index) { |
| 5856 | _edge_instructions_idx.at_put(edge, idx - 1); |
| 5857 | } |
| 5858 | } |
| 5859 | |
| 5860 | |
| 5861 | bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) { |
| 5862 | if (op1 == NULL || op2 == NULL) { |
| 5863 | // at least one block is already empty -> no optimization possible |
| 5864 | return true; |
| 5865 | } |
| 5866 | |
| 5867 | if (op1->code() == lir_move && op2->code() == lir_move) { |
| 5868 | assert(op1->as_Op1() != NULL, "move must be LIR_Op1" ); |
| 5869 | assert(op2->as_Op1() != NULL, "move must be LIR_Op1" ); |
| 5870 | LIR_Op1* move1 = (LIR_Op1*)op1; |
| 5871 | LIR_Op1* move2 = (LIR_Op1*)op2; |
| 5872 | if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) { |
| 5873 | // these moves are exactly equal and can be optimized |
| 5874 | return false; |
| 5875 | } |
| 5876 | |
| 5877 | } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) { |
| 5878 | assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1" ); |
| 5879 | assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1" ); |
| 5880 | LIR_Op1* fxch1 = (LIR_Op1*)op1; |
| 5881 | LIR_Op1* fxch2 = (LIR_Op1*)op2; |
| 5882 | if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) { |
| 5883 | // equal FPU stack operations can be optimized |
| 5884 | return false; |
| 5885 | } |
| 5886 | |
| 5887 | } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) { |
| 5888 | // equal FPU stack operations can be optimized |
| 5889 | return false; |
| 5890 | } |
| 5891 | |
| 5892 | // no optimization possible |
| 5893 | return true; |
| 5894 | } |
| 5895 | |
| 5896 | void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) { |
| 5897 | TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d" , block->block_id())); |
| 5898 | |
| 5899 | if (block->is_predecessor(block)) { |
| 5900 | // currently we can't handle this correctly. |
| 5901 | return; |
| 5902 | } |
| 5903 | |
| 5904 | init_instructions(); |
| 5905 | int num_preds = block->number_of_preds(); |
| 5906 | assert(num_preds > 1, "do not call otherwise" ); |
| 5907 | assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed" ); |
| 5908 | |
| 5909 | // setup a list with the lir-instructions of all predecessors |
| 5910 | int i; |
| 5911 | for (i = 0; i < num_preds; i++) { |
| 5912 | BlockBegin* pred = block->pred_at(i); |
| 5913 | LIR_OpList* pred_instructions = pred->lir()->instructions_list(); |
| 5914 | |
| 5915 | if (pred->number_of_sux() != 1) { |
| 5916 | // this can happen with switch-statements where multiple edges are between |
| 5917 | // the same blocks. |
| 5918 | return; |
| 5919 | } |
| 5920 | |
| 5921 | assert(pred->number_of_sux() == 1, "can handle only one successor" ); |
| 5922 | assert(pred->sux_at(0) == block, "invalid control flow" ); |
| 5923 | assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch" ); |
| 5924 | assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch" ); |
| 5925 | assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch" ); |
| 5926 | |
| 5927 | if (pred_instructions->last()->info() != NULL) { |
| 5928 | // can not optimize instructions when debug info is needed |
| 5929 | return; |
| 5930 | } |
| 5931 | |
| 5932 | // ignore the unconditional branch at the end of the block |
| 5933 | append_instructions(pred_instructions, pred_instructions->length() - 2); |
| 5934 | } |
| 5935 | |
| 5936 | |
| 5937 | // process lir-instructions while all predecessors end with the same instruction |
| 5938 | while (true) { |
| 5939 | LIR_Op* op = instruction_at(0); |
| 5940 | for (i = 1; i < num_preds; i++) { |
| 5941 | if (operations_different(op, instruction_at(i))) { |
| 5942 | // these instructions are different and cannot be optimized -> |
| 5943 | // no further optimization possible |
| 5944 | return; |
| 5945 | } |
| 5946 | } |
| 5947 | |
| 5948 | TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: " , num_preds); op->print()); |
| 5949 | |
| 5950 | // insert the instruction at the beginning of the current block |
| 5951 | block->lir()->insert_before(1, op); |
| 5952 | |
| 5953 | // delete the instruction at the end of all predecessors |
| 5954 | for (i = 0; i < num_preds; i++) { |
| 5955 | remove_cur_instruction(i, true); |
| 5956 | } |
| 5957 | } |
| 5958 | } |
| 5959 | |
| 5960 | |
| 5961 | void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) { |
| 5962 | TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d" , block->block_id())); |
| 5963 | |
| 5964 | init_instructions(); |
| 5965 | int num_sux = block->number_of_sux(); |
| 5966 | |
| 5967 | LIR_OpList* cur_instructions = block->lir()->instructions_list(); |
| 5968 | |
| 5969 | assert(num_sux == 2, "method should not be called otherwise" ); |
| 5970 | assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch" ); |
| 5971 | assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch" ); |
| 5972 | assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch" ); |
| 5973 | |
| 5974 | if (cur_instructions->last()->info() != NULL) { |
| 5975 | // can no optimize instructions when debug info is needed |
| 5976 | return; |
| 5977 | } |
| 5978 | |
| 5979 | LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2); |
| 5980 | if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) { |
| 5981 | // not a valid case for optimization |
| 5982 | // currently, only blocks that end with two branches (conditional branch followed |
| 5983 | // by unconditional branch) are optimized |
| 5984 | return; |
| 5985 | } |
| 5986 | |
| 5987 | // now it is guaranteed that the block ends with two branch instructions. |
| 5988 | // the instructions are inserted at the end of the block before these two branches |
| 5989 | int insert_idx = cur_instructions->length() - 2; |
| 5990 | |
| 5991 | int i; |
| 5992 | #ifdef ASSERT |
| 5993 | for (i = insert_idx - 1; i >= 0; i--) { |
| 5994 | LIR_Op* op = cur_instructions->at(i); |
| 5995 | if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) { |
| 5996 | assert(false, "block with two successors can have only two branch instructions" ); |
| 5997 | } |
| 5998 | } |
| 5999 | #endif |
| 6000 | |
| 6001 | // setup a list with the lir-instructions of all successors |
| 6002 | for (i = 0; i < num_sux; i++) { |
| 6003 | BlockBegin* sux = block->sux_at(i); |
| 6004 | LIR_OpList* sux_instructions = sux->lir()->instructions_list(); |
| 6005 | |
| 6006 | assert(sux_instructions->at(0)->code() == lir_label, "block must start with label" ); |
| 6007 | |
| 6008 | if (sux->number_of_preds() != 1) { |
| 6009 | // this can happen with switch-statements where multiple edges are between |
| 6010 | // the same blocks. |
| 6011 | return; |
| 6012 | } |
| 6013 | assert(sux->pred_at(0) == block, "invalid control flow" ); |
| 6014 | assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed" ); |
| 6015 | |
| 6016 | // ignore the label at the beginning of the block |
| 6017 | append_instructions(sux_instructions, 1); |
| 6018 | } |
| 6019 | |
| 6020 | // process lir-instructions while all successors begin with the same instruction |
| 6021 | while (true) { |
| 6022 | LIR_Op* op = instruction_at(0); |
| 6023 | for (i = 1; i < num_sux; i++) { |
| 6024 | if (operations_different(op, instruction_at(i))) { |
| 6025 | // these instructions are different and cannot be optimized -> |
| 6026 | // no further optimization possible |
| 6027 | return; |
| 6028 | } |
| 6029 | } |
| 6030 | |
| 6031 | TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: " , num_sux); op->print()); |
| 6032 | |
| 6033 | // insert instruction at end of current block |
| 6034 | block->lir()->insert_before(insert_idx, op); |
| 6035 | insert_idx++; |
| 6036 | |
| 6037 | // delete the instructions at the beginning of all successors |
| 6038 | for (i = 0; i < num_sux; i++) { |
| 6039 | remove_cur_instruction(i, false); |
| 6040 | } |
| 6041 | } |
| 6042 | } |
| 6043 | |
| 6044 | |
| 6045 | // Implementation of ControlFlowOptimizer |
| 6046 | |
| 6047 | ControlFlowOptimizer::ControlFlowOptimizer() : |
| 6048 | _original_preds(4) |
| 6049 | { |
| 6050 | } |
| 6051 | |
| 6052 | void ControlFlowOptimizer::optimize(BlockList* code) { |
| 6053 | ControlFlowOptimizer optimizer = ControlFlowOptimizer(); |
| 6054 | |
| 6055 | // push the OSR entry block to the end so that we're not jumping over it. |
| 6056 | BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry(); |
| 6057 | if (osr_entry) { |
| 6058 | int index = osr_entry->linear_scan_number(); |
| 6059 | assert(code->at(index) == osr_entry, "wrong index" ); |
| 6060 | code->remove_at(index); |
| 6061 | code->append(osr_entry); |
| 6062 | } |
| 6063 | |
| 6064 | optimizer.reorder_short_loops(code); |
| 6065 | optimizer.delete_empty_blocks(code); |
| 6066 | optimizer.delete_unnecessary_jumps(code); |
| 6067 | optimizer.delete_jumps_to_return(code); |
| 6068 | } |
| 6069 | |
| 6070 | void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* , int ) { |
| 6071 | int i = header_idx + 1; |
| 6072 | int max_end = MIN2(header_idx + ShortLoopSize, code->length()); |
| 6073 | while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) { |
| 6074 | i++; |
| 6075 | } |
| 6076 | |
| 6077 | if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) { |
| 6078 | int end_idx = i - 1; |
| 6079 | BlockBegin* end_block = code->at(end_idx); |
| 6080 | |
| 6081 | if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) { |
| 6082 | // short loop from header_idx to end_idx found -> reorder blocks such that |
| 6083 | // the header_block is the last block instead of the first block of the loop |
| 6084 | TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d" , |
| 6085 | end_idx - header_idx + 1, |
| 6086 | header_block->block_id(), end_block->block_id())); |
| 6087 | |
| 6088 | for (int j = header_idx; j < end_idx; j++) { |
| 6089 | code->at_put(j, code->at(j + 1)); |
| 6090 | } |
| 6091 | code->at_put(end_idx, header_block); |
| 6092 | |
| 6093 | // correct the flags so that any loop alignment occurs in the right place. |
| 6094 | assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target" ); |
| 6095 | code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag); |
| 6096 | code->at(header_idx)->set(BlockBegin::backward_branch_target_flag); |
| 6097 | } |
| 6098 | } |
| 6099 | } |
| 6100 | |
| 6101 | void ControlFlowOptimizer::reorder_short_loops(BlockList* code) { |
| 6102 | for (int i = code->length() - 1; i >= 0; i--) { |
| 6103 | BlockBegin* block = code->at(i); |
| 6104 | |
| 6105 | if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) { |
| 6106 | reorder_short_loop(code, block, i); |
| 6107 | } |
| 6108 | } |
| 6109 | |
| 6110 | DEBUG_ONLY(verify(code)); |
| 6111 | } |
| 6112 | |
| 6113 | // only blocks with exactly one successor can be deleted. Such blocks |
| 6114 | // must always end with an unconditional branch to this successor |
| 6115 | bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) { |
| 6116 | if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) { |
| 6117 | return false; |
| 6118 | } |
| 6119 | |
| 6120 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 6121 | |
| 6122 | assert(instructions->length() >= 2, "block must have label and branch" ); |
| 6123 | assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label" ); |
| 6124 | assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch" ); |
| 6125 | assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional" ); |
| 6126 | assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor" ); |
| 6127 | |
| 6128 | // block must have exactly one successor |
| 6129 | |
| 6130 | if (instructions->length() == 2 && instructions->last()->info() == NULL) { |
| 6131 | return true; |
| 6132 | } |
| 6133 | return false; |
| 6134 | } |
| 6135 | |
| 6136 | // substitute branch targets in all branch-instructions of this blocks |
| 6137 | void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) { |
| 6138 | TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d" , target_from->block_id(), target_to->block_id(), block->block_id())); |
| 6139 | |
| 6140 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 6141 | |
| 6142 | assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label" ); |
| 6143 | for (int i = instructions->length() - 1; i >= 1; i--) { |
| 6144 | LIR_Op* op = instructions->at(i); |
| 6145 | |
| 6146 | if (op->code() == lir_branch || op->code() == lir_cond_float_branch) { |
| 6147 | assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch" ); |
| 6148 | LIR_OpBranch* branch = (LIR_OpBranch*)op; |
| 6149 | |
| 6150 | if (branch->block() == target_from) { |
| 6151 | branch->change_block(target_to); |
| 6152 | } |
| 6153 | if (branch->ublock() == target_from) { |
| 6154 | branch->change_ublock(target_to); |
| 6155 | } |
| 6156 | } |
| 6157 | } |
| 6158 | } |
| 6159 | |
| 6160 | void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) { |
| 6161 | int old_pos = 0; |
| 6162 | int new_pos = 0; |
| 6163 | int num_blocks = code->length(); |
| 6164 | |
| 6165 | while (old_pos < num_blocks) { |
| 6166 | BlockBegin* block = code->at(old_pos); |
| 6167 | |
| 6168 | if (can_delete_block(block)) { |
| 6169 | BlockBegin* new_target = block->sux_at(0); |
| 6170 | |
| 6171 | // propagate backward branch target flag for correct code alignment |
| 6172 | if (block->is_set(BlockBegin::backward_branch_target_flag)) { |
| 6173 | new_target->set(BlockBegin::backward_branch_target_flag); |
| 6174 | } |
| 6175 | |
| 6176 | // collect a list with all predecessors that contains each predecessor only once |
| 6177 | // the predecessors of cur are changed during the substitution, so a copy of the |
| 6178 | // predecessor list is necessary |
| 6179 | int j; |
| 6180 | _original_preds.clear(); |
| 6181 | for (j = block->number_of_preds() - 1; j >= 0; j--) { |
| 6182 | BlockBegin* pred = block->pred_at(j); |
| 6183 | if (_original_preds.find(pred) == -1) { |
| 6184 | _original_preds.append(pred); |
| 6185 | } |
| 6186 | } |
| 6187 | |
| 6188 | for (j = _original_preds.length() - 1; j >= 0; j--) { |
| 6189 | BlockBegin* pred = _original_preds.at(j); |
| 6190 | substitute_branch_target(pred, block, new_target); |
| 6191 | pred->substitute_sux(block, new_target); |
| 6192 | } |
| 6193 | } else { |
| 6194 | // adjust position of this block in the block list if blocks before |
| 6195 | // have been deleted |
| 6196 | if (new_pos != old_pos) { |
| 6197 | code->at_put(new_pos, code->at(old_pos)); |
| 6198 | } |
| 6199 | new_pos++; |
| 6200 | } |
| 6201 | old_pos++; |
| 6202 | } |
| 6203 | code->trunc_to(new_pos); |
| 6204 | |
| 6205 | DEBUG_ONLY(verify(code)); |
| 6206 | } |
| 6207 | |
| 6208 | void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) { |
| 6209 | // skip the last block because there a branch is always necessary |
| 6210 | for (int i = code->length() - 2; i >= 0; i--) { |
| 6211 | BlockBegin* block = code->at(i); |
| 6212 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 6213 | |
| 6214 | LIR_Op* last_op = instructions->last(); |
| 6215 | if (last_op->code() == lir_branch) { |
| 6216 | assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch" ); |
| 6217 | LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op; |
| 6218 | |
| 6219 | assert(last_branch->block() != NULL, "last branch must always have a block as target" ); |
| 6220 | assert(last_branch->label() == last_branch->block()->label(), "must be equal" ); |
| 6221 | |
| 6222 | if (last_branch->info() == NULL) { |
| 6223 | if (last_branch->block() == code->at(i + 1)) { |
| 6224 | |
| 6225 | TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d" , block->block_id())); |
| 6226 | |
| 6227 | // delete last branch instruction |
| 6228 | instructions->trunc_to(instructions->length() - 1); |
| 6229 | |
| 6230 | } else { |
| 6231 | LIR_Op* prev_op = instructions->at(instructions->length() - 2); |
| 6232 | if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) { |
| 6233 | assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch" ); |
| 6234 | LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op; |
| 6235 | |
| 6236 | if (prev_branch->stub() == NULL) { |
| 6237 | |
| 6238 | LIR_Op2* prev_cmp = NULL; |
| 6239 | // There might be a cmove inserted for profiling which depends on the same |
| 6240 | // compare. If we change the condition of the respective compare, we have |
| 6241 | // to take care of this cmove as well. |
| 6242 | LIR_Op2* prev_cmove = NULL; |
| 6243 | |
| 6244 | for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) { |
| 6245 | prev_op = instructions->at(j); |
| 6246 | // check for the cmove |
| 6247 | if (prev_op->code() == lir_cmove) { |
| 6248 | assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2" ); |
| 6249 | prev_cmove = (LIR_Op2*)prev_op; |
| 6250 | assert(prev_branch->cond() == prev_cmove->condition(), "should be the same" ); |
| 6251 | } |
| 6252 | if (prev_op->code() == lir_cmp) { |
| 6253 | assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2" ); |
| 6254 | prev_cmp = (LIR_Op2*)prev_op; |
| 6255 | assert(prev_branch->cond() == prev_cmp->condition(), "should be the same" ); |
| 6256 | } |
| 6257 | } |
| 6258 | // Guarantee because it is dereferenced below. |
| 6259 | guarantee(prev_cmp != NULL, "should have found comp instruction for branch" ); |
| 6260 | if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) { |
| 6261 | |
| 6262 | TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d" , block->block_id())); |
| 6263 | |
| 6264 | // eliminate a conditional branch to the immediate successor |
| 6265 | prev_branch->change_block(last_branch->block()); |
| 6266 | prev_branch->negate_cond(); |
| 6267 | prev_cmp->set_condition(prev_branch->cond()); |
| 6268 | instructions->trunc_to(instructions->length() - 1); |
| 6269 | // if we do change the condition, we have to change the cmove as well |
| 6270 | if (prev_cmove != NULL) { |
| 6271 | prev_cmove->set_condition(prev_branch->cond()); |
| 6272 | LIR_Opr t = prev_cmove->in_opr1(); |
| 6273 | prev_cmove->set_in_opr1(prev_cmove->in_opr2()); |
| 6274 | prev_cmove->set_in_opr2(t); |
| 6275 | } |
| 6276 | } |
| 6277 | } |
| 6278 | } |
| 6279 | } |
| 6280 | } |
| 6281 | } |
| 6282 | } |
| 6283 | |
| 6284 | DEBUG_ONLY(verify(code)); |
| 6285 | } |
| 6286 | |
| 6287 | void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) { |
| 6288 | #ifdef ASSERT |
| 6289 | ResourceBitMap return_converted(BlockBegin::number_of_blocks()); |
| 6290 | #endif |
| 6291 | |
| 6292 | for (int i = code->length() - 1; i >= 0; i--) { |
| 6293 | BlockBegin* block = code->at(i); |
| 6294 | LIR_OpList* cur_instructions = block->lir()->instructions_list(); |
| 6295 | LIR_Op* cur_last_op = cur_instructions->last(); |
| 6296 | |
| 6297 | assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label" ); |
| 6298 | if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) { |
| 6299 | // the block contains only a label and a return |
| 6300 | // if a predecessor ends with an unconditional jump to this block, then the jump |
| 6301 | // can be replaced with a return instruction |
| 6302 | // |
| 6303 | // Note: the original block with only a return statement cannot be deleted completely |
| 6304 | // because the predecessors might have other (conditional) jumps to this block |
| 6305 | // -> this may lead to unnecesary return instructions in the final code |
| 6306 | |
| 6307 | assert(cur_last_op->info() == NULL, "return instructions do not have debug information" ); |
| 6308 | assert(block->number_of_sux() == 0 || |
| 6309 | (return_converted.at(block->block_id()) && block->number_of_sux() == 1), |
| 6310 | "blocks that end with return must not have successors" ); |
| 6311 | |
| 6312 | assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1" ); |
| 6313 | LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr(); |
| 6314 | |
| 6315 | for (int j = block->number_of_preds() - 1; j >= 0; j--) { |
| 6316 | BlockBegin* pred = block->pred_at(j); |
| 6317 | LIR_OpList* pred_instructions = pred->lir()->instructions_list(); |
| 6318 | LIR_Op* pred_last_op = pred_instructions->last(); |
| 6319 | |
| 6320 | if (pred_last_op->code() == lir_branch) { |
| 6321 | assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch" ); |
| 6322 | LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op; |
| 6323 | |
| 6324 | if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) { |
| 6325 | // replace the jump to a return with a direct return |
| 6326 | // Note: currently the edge between the blocks is not deleted |
| 6327 | pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr)); |
| 6328 | #ifdef ASSERT |
| 6329 | return_converted.set_bit(pred->block_id()); |
| 6330 | #endif |
| 6331 | } |
| 6332 | } |
| 6333 | } |
| 6334 | } |
| 6335 | } |
| 6336 | } |
| 6337 | |
| 6338 | |
| 6339 | #ifdef ASSERT |
| 6340 | void ControlFlowOptimizer::verify(BlockList* code) { |
| 6341 | for (int i = 0; i < code->length(); i++) { |
| 6342 | BlockBegin* block = code->at(i); |
| 6343 | LIR_OpList* instructions = block->lir()->instructions_list(); |
| 6344 | |
| 6345 | int j; |
| 6346 | for (j = 0; j < instructions->length(); j++) { |
| 6347 | LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch(); |
| 6348 | |
| 6349 | if (op_branch != NULL) { |
| 6350 | assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid" ); |
| 6351 | assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid" ); |
| 6352 | } |
| 6353 | } |
| 6354 | |
| 6355 | for (j = 0; j < block->number_of_sux() - 1; j++) { |
| 6356 | BlockBegin* sux = block->sux_at(j); |
| 6357 | assert(code->find(sux) != -1, "successor not valid" ); |
| 6358 | } |
| 6359 | |
| 6360 | for (j = 0; j < block->number_of_preds() - 1; j++) { |
| 6361 | BlockBegin* pred = block->pred_at(j); |
| 6362 | assert(code->find(pred) != -1, "successor not valid" ); |
| 6363 | } |
| 6364 | } |
| 6365 | } |
| 6366 | #endif |
| 6367 | |
| 6368 | |
| 6369 | #ifndef PRODUCT |
| 6370 | |
| 6371 | // Implementation of LinearStatistic |
| 6372 | |
| 6373 | const char* LinearScanStatistic::counter_name(int counter_idx) { |
| 6374 | switch (counter_idx) { |
| 6375 | case counter_method: return "compiled methods" ; |
| 6376 | case counter_fpu_method: return "methods using fpu" ; |
| 6377 | case counter_loop_method: return "methods with loops" ; |
| 6378 | case counter_exception_method:return "methods with xhandler" ; |
| 6379 | |
| 6380 | case counter_loop: return "loops" ; |
| 6381 | case counter_block: return "blocks" ; |
| 6382 | case counter_loop_block: return "blocks inside loop" ; |
| 6383 | case counter_exception_block: return "exception handler entries" ; |
| 6384 | case counter_interval: return "intervals" ; |
| 6385 | case counter_fixed_interval: return "fixed intervals" ; |
| 6386 | case counter_range: return "ranges" ; |
| 6387 | case counter_fixed_range: return "fixed ranges" ; |
| 6388 | case counter_use_pos: return "use positions" ; |
| 6389 | case counter_fixed_use_pos: return "fixed use positions" ; |
| 6390 | case counter_spill_slots: return "spill slots" ; |
| 6391 | |
| 6392 | // counter for classes of lir instructions |
| 6393 | case counter_instruction: return "total instructions" ; |
| 6394 | case counter_label: return "labels" ; |
| 6395 | case counter_entry: return "method entries" ; |
| 6396 | case counter_return: return "method returns" ; |
| 6397 | case counter_call: return "method calls" ; |
| 6398 | case counter_move: return "moves" ; |
| 6399 | case counter_cmp: return "compare" ; |
| 6400 | case counter_cond_branch: return "conditional branches" ; |
| 6401 | case counter_uncond_branch: return "unconditional branches" ; |
| 6402 | case counter_stub_branch: return "branches to stub" ; |
| 6403 | case counter_alu: return "artithmetic + logic" ; |
| 6404 | case counter_alloc: return "allocations" ; |
| 6405 | case counter_sync: return "synchronisation" ; |
| 6406 | case counter_throw: return "throw" ; |
| 6407 | case counter_unwind: return "unwind" ; |
| 6408 | case counter_typecheck: return "type+null-checks" ; |
| 6409 | case counter_fpu_stack: return "fpu-stack" ; |
| 6410 | case counter_misc_inst: return "other instructions" ; |
| 6411 | case counter_other_inst: return "misc. instructions" ; |
| 6412 | |
| 6413 | // counter for different types of moves |
| 6414 | case counter_move_total: return "total moves" ; |
| 6415 | case counter_move_reg_reg: return "register->register" ; |
| 6416 | case counter_move_reg_stack: return "register->stack" ; |
| 6417 | case counter_move_stack_reg: return "stack->register" ; |
| 6418 | case counter_move_stack_stack:return "stack->stack" ; |
| 6419 | case counter_move_reg_mem: return "register->memory" ; |
| 6420 | case counter_move_mem_reg: return "memory->register" ; |
| 6421 | case counter_move_const_any: return "constant->any" ; |
| 6422 | |
| 6423 | case blank_line_1: return "" ; |
| 6424 | case blank_line_2: return "" ; |
| 6425 | |
| 6426 | default: ShouldNotReachHere(); return "" ; |
| 6427 | } |
| 6428 | } |
| 6429 | |
| 6430 | LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) { |
| 6431 | if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) { |
| 6432 | return counter_method; |
| 6433 | } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) { |
| 6434 | return counter_block; |
| 6435 | } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) { |
| 6436 | return counter_instruction; |
| 6437 | } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) { |
| 6438 | return counter_move_total; |
| 6439 | } |
| 6440 | return invalid_counter; |
| 6441 | } |
| 6442 | |
| 6443 | LinearScanStatistic::LinearScanStatistic() { |
| 6444 | for (int i = 0; i < number_of_counters; i++) { |
| 6445 | _counters_sum[i] = 0; |
| 6446 | _counters_max[i] = -1; |
| 6447 | } |
| 6448 | |
| 6449 | } |
| 6450 | |
| 6451 | // add the method-local numbers to the total sum |
| 6452 | void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) { |
| 6453 | for (int i = 0; i < number_of_counters; i++) { |
| 6454 | _counters_sum[i] += method_statistic._counters_sum[i]; |
| 6455 | _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]); |
| 6456 | } |
| 6457 | } |
| 6458 | |
| 6459 | void LinearScanStatistic::print(const char* title) { |
| 6460 | if (CountLinearScan || TraceLinearScanLevel > 0) { |
| 6461 | tty->cr(); |
| 6462 | tty->print_cr("***** LinearScan statistic - %s *****" , title); |
| 6463 | |
| 6464 | for (int i = 0; i < number_of_counters; i++) { |
| 6465 | if (_counters_sum[i] > 0 || _counters_max[i] >= 0) { |
| 6466 | tty->print("%25s: %8d" , counter_name(i), _counters_sum[i]); |
| 6467 | |
| 6468 | LinearScanStatistic::Counter cntr = base_counter(i); |
| 6469 | if (cntr != invalid_counter) { |
| 6470 | tty->print(" (%5.1f%%) " , _counters_sum[i] * 100.0 / _counters_sum[cntr]); |
| 6471 | } else { |
| 6472 | tty->print(" " ); |
| 6473 | } |
| 6474 | |
| 6475 | if (_counters_max[i] >= 0) { |
| 6476 | tty->print("%8d" , _counters_max[i]); |
| 6477 | } |
| 6478 | } |
| 6479 | tty->cr(); |
| 6480 | } |
| 6481 | } |
| 6482 | } |
| 6483 | |
| 6484 | void LinearScanStatistic::collect(LinearScan* allocator) { |
| 6485 | inc_counter(counter_method); |
| 6486 | if (allocator->has_fpu_registers()) { |
| 6487 | inc_counter(counter_fpu_method); |
| 6488 | } |
| 6489 | if (allocator->num_loops() > 0) { |
| 6490 | inc_counter(counter_loop_method); |
| 6491 | } |
| 6492 | inc_counter(counter_loop, allocator->num_loops()); |
| 6493 | inc_counter(counter_spill_slots, allocator->max_spills()); |
| 6494 | |
| 6495 | int i; |
| 6496 | for (i = 0; i < allocator->interval_count(); i++) { |
| 6497 | Interval* cur = allocator->interval_at(i); |
| 6498 | |
| 6499 | if (cur != NULL) { |
| 6500 | inc_counter(counter_interval); |
| 6501 | inc_counter(counter_use_pos, cur->num_use_positions()); |
| 6502 | if (LinearScan::is_precolored_interval(cur)) { |
| 6503 | inc_counter(counter_fixed_interval); |
| 6504 | inc_counter(counter_fixed_use_pos, cur->num_use_positions()); |
| 6505 | } |
| 6506 | |
| 6507 | Range* range = cur->first(); |
| 6508 | while (range != Range::end()) { |
| 6509 | inc_counter(counter_range); |
| 6510 | if (LinearScan::is_precolored_interval(cur)) { |
| 6511 | inc_counter(counter_fixed_range); |
| 6512 | } |
| 6513 | range = range->next(); |
| 6514 | } |
| 6515 | } |
| 6516 | } |
| 6517 | |
| 6518 | bool has_xhandlers = false; |
| 6519 | // Note: only count blocks that are in code-emit order |
| 6520 | for (i = 0; i < allocator->ir()->code()->length(); i++) { |
| 6521 | BlockBegin* cur = allocator->ir()->code()->at(i); |
| 6522 | |
| 6523 | inc_counter(counter_block); |
| 6524 | if (cur->loop_depth() > 0) { |
| 6525 | inc_counter(counter_loop_block); |
| 6526 | } |
| 6527 | if (cur->is_set(BlockBegin::exception_entry_flag)) { |
| 6528 | inc_counter(counter_exception_block); |
| 6529 | has_xhandlers = true; |
| 6530 | } |
| 6531 | |
| 6532 | LIR_OpList* instructions = cur->lir()->instructions_list(); |
| 6533 | for (int j = 0; j < instructions->length(); j++) { |
| 6534 | LIR_Op* op = instructions->at(j); |
| 6535 | |
| 6536 | inc_counter(counter_instruction); |
| 6537 | |
| 6538 | switch (op->code()) { |
| 6539 | case lir_label: inc_counter(counter_label); break; |
| 6540 | case lir_std_entry: |
| 6541 | case lir_osr_entry: inc_counter(counter_entry); break; |
| 6542 | case lir_return: inc_counter(counter_return); break; |
| 6543 | |
| 6544 | case lir_rtcall: |
| 6545 | case lir_static_call: |
| 6546 | case lir_optvirtual_call: |
| 6547 | case lir_virtual_call: inc_counter(counter_call); break; |
| 6548 | |
| 6549 | case lir_move: { |
| 6550 | inc_counter(counter_move); |
| 6551 | inc_counter(counter_move_total); |
| 6552 | |
| 6553 | LIR_Opr in = op->as_Op1()->in_opr(); |
| 6554 | LIR_Opr res = op->as_Op1()->result_opr(); |
| 6555 | if (in->is_register()) { |
| 6556 | if (res->is_register()) { |
| 6557 | inc_counter(counter_move_reg_reg); |
| 6558 | } else if (res->is_stack()) { |
| 6559 | inc_counter(counter_move_reg_stack); |
| 6560 | } else if (res->is_address()) { |
| 6561 | inc_counter(counter_move_reg_mem); |
| 6562 | } else { |
| 6563 | ShouldNotReachHere(); |
| 6564 | } |
| 6565 | } else if (in->is_stack()) { |
| 6566 | if (res->is_register()) { |
| 6567 | inc_counter(counter_move_stack_reg); |
| 6568 | } else { |
| 6569 | inc_counter(counter_move_stack_stack); |
| 6570 | } |
| 6571 | } else if (in->is_address()) { |
| 6572 | assert(res->is_register(), "must be" ); |
| 6573 | inc_counter(counter_move_mem_reg); |
| 6574 | } else if (in->is_constant()) { |
| 6575 | inc_counter(counter_move_const_any); |
| 6576 | } else { |
| 6577 | ShouldNotReachHere(); |
| 6578 | } |
| 6579 | break; |
| 6580 | } |
| 6581 | |
| 6582 | case lir_cmp: inc_counter(counter_cmp); break; |
| 6583 | |
| 6584 | case lir_branch: |
| 6585 | case lir_cond_float_branch: { |
| 6586 | LIR_OpBranch* branch = op->as_OpBranch(); |
| 6587 | if (branch->block() == NULL) { |
| 6588 | inc_counter(counter_stub_branch); |
| 6589 | } else if (branch->cond() == lir_cond_always) { |
| 6590 | inc_counter(counter_uncond_branch); |
| 6591 | } else { |
| 6592 | inc_counter(counter_cond_branch); |
| 6593 | } |
| 6594 | break; |
| 6595 | } |
| 6596 | |
| 6597 | case lir_neg: |
| 6598 | case lir_add: |
| 6599 | case lir_sub: |
| 6600 | case lir_mul: |
| 6601 | case lir_mul_strictfp: |
| 6602 | case lir_div: |
| 6603 | case lir_div_strictfp: |
| 6604 | case lir_rem: |
| 6605 | case lir_sqrt: |
| 6606 | case lir_abs: |
| 6607 | case lir_log10: |
| 6608 | case lir_logic_and: |
| 6609 | case lir_logic_or: |
| 6610 | case lir_logic_xor: |
| 6611 | case lir_shl: |
| 6612 | case lir_shr: |
| 6613 | case lir_ushr: inc_counter(counter_alu); break; |
| 6614 | |
| 6615 | case lir_alloc_object: |
| 6616 | case lir_alloc_array: inc_counter(counter_alloc); break; |
| 6617 | |
| 6618 | case lir_monaddr: |
| 6619 | case lir_lock: |
| 6620 | case lir_unlock: inc_counter(counter_sync); break; |
| 6621 | |
| 6622 | case lir_throw: inc_counter(counter_throw); break; |
| 6623 | |
| 6624 | case lir_unwind: inc_counter(counter_unwind); break; |
| 6625 | |
| 6626 | case lir_null_check: |
| 6627 | case lir_leal: |
| 6628 | case lir_instanceof: |
| 6629 | case lir_checkcast: |
| 6630 | case lir_store_check: inc_counter(counter_typecheck); break; |
| 6631 | |
| 6632 | case lir_fpop_raw: |
| 6633 | case lir_fxch: |
| 6634 | case lir_fld: inc_counter(counter_fpu_stack); break; |
| 6635 | |
| 6636 | case lir_nop: |
| 6637 | case lir_push: |
| 6638 | case lir_pop: |
| 6639 | case lir_convert: |
| 6640 | case lir_roundfp: |
| 6641 | case lir_cmove: inc_counter(counter_misc_inst); break; |
| 6642 | |
| 6643 | default: inc_counter(counter_other_inst); break; |
| 6644 | } |
| 6645 | } |
| 6646 | } |
| 6647 | |
| 6648 | if (has_xhandlers) { |
| 6649 | inc_counter(counter_exception_method); |
| 6650 | } |
| 6651 | } |
| 6652 | |
| 6653 | void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) { |
| 6654 | if (CountLinearScan || TraceLinearScanLevel > 0) { |
| 6655 | |
| 6656 | LinearScanStatistic local_statistic = LinearScanStatistic(); |
| 6657 | |
| 6658 | local_statistic.collect(allocator); |
| 6659 | global_statistic.sum_up(local_statistic); |
| 6660 | |
| 6661 | if (TraceLinearScanLevel > 2) { |
| 6662 | local_statistic.print("current local statistic" ); |
| 6663 | } |
| 6664 | } |
| 6665 | } |
| 6666 | |
| 6667 | |
| 6668 | // Implementation of LinearTimers |
| 6669 | |
| 6670 | LinearScanTimers::LinearScanTimers() { |
| 6671 | for (int i = 0; i < number_of_timers; i++) { |
| 6672 | timer(i)->reset(); |
| 6673 | } |
| 6674 | } |
| 6675 | |
| 6676 | const char* LinearScanTimers::timer_name(int idx) { |
| 6677 | switch (idx) { |
| 6678 | case timer_do_nothing: return "Nothing (Time Check)" ; |
| 6679 | case timer_number_instructions: return "Number Instructions" ; |
| 6680 | case timer_compute_local_live_sets: return "Local Live Sets" ; |
| 6681 | case timer_compute_global_live_sets: return "Global Live Sets" ; |
| 6682 | case timer_build_intervals: return "Build Intervals" ; |
| 6683 | case timer_sort_intervals_before: return "Sort Intervals Before" ; |
| 6684 | case timer_allocate_registers: return "Allocate Registers" ; |
| 6685 | case timer_resolve_data_flow: return "Resolve Data Flow" ; |
| 6686 | case timer_sort_intervals_after: return "Sort Intervals After" ; |
| 6687 | case timer_eliminate_spill_moves: return "Spill optimization" ; |
| 6688 | case timer_assign_reg_num: return "Assign Reg Num" ; |
| 6689 | case timer_allocate_fpu_stack: return "Allocate FPU Stack" ; |
| 6690 | case timer_optimize_lir: return "Optimize LIR" ; |
| 6691 | default: ShouldNotReachHere(); return "" ; |
| 6692 | } |
| 6693 | } |
| 6694 | |
| 6695 | void LinearScanTimers::begin_method() { |
| 6696 | if (TimeEachLinearScan) { |
| 6697 | // reset all timers to measure only current method |
| 6698 | for (int i = 0; i < number_of_timers; i++) { |
| 6699 | timer(i)->reset(); |
| 6700 | } |
| 6701 | } |
| 6702 | } |
| 6703 | |
| 6704 | void LinearScanTimers::end_method(LinearScan* allocator) { |
| 6705 | if (TimeEachLinearScan) { |
| 6706 | |
| 6707 | double c = timer(timer_do_nothing)->seconds(); |
| 6708 | double total = 0; |
| 6709 | for (int i = 1; i < number_of_timers; i++) { |
| 6710 | total += timer(i)->seconds() - c; |
| 6711 | } |
| 6712 | |
| 6713 | if (total >= 0.0005) { |
| 6714 | // print all information in one line for automatic processing |
| 6715 | tty->print("@" ); allocator->compilation()->method()->print_name(); |
| 6716 | |
| 6717 | tty->print("@ %d " , allocator->compilation()->method()->code_size()); |
| 6718 | tty->print("@ %d " , allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2); |
| 6719 | tty->print("@ %d " , allocator->block_count()); |
| 6720 | tty->print("@ %d " , allocator->num_virtual_regs()); |
| 6721 | tty->print("@ %d " , allocator->interval_count()); |
| 6722 | tty->print("@ %d " , allocator->_num_calls); |
| 6723 | tty->print("@ %d " , allocator->num_loops()); |
| 6724 | |
| 6725 | tty->print("@ %6.6f " , total); |
| 6726 | for (int i = 1; i < number_of_timers; i++) { |
| 6727 | tty->print("@ %4.1f " , ((timer(i)->seconds() - c) / total) * 100); |
| 6728 | } |
| 6729 | tty->cr(); |
| 6730 | } |
| 6731 | } |
| 6732 | } |
| 6733 | |
| 6734 | void LinearScanTimers::print(double total_time) { |
| 6735 | if (TimeLinearScan) { |
| 6736 | // correction value: sum of dummy-timer that only measures the time that |
| 6737 | // is necesary to start and stop itself |
| 6738 | double c = timer(timer_do_nothing)->seconds(); |
| 6739 | |
| 6740 | for (int i = 0; i < number_of_timers; i++) { |
| 6741 | double t = timer(i)->seconds(); |
| 6742 | tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)" , timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100); |
| 6743 | } |
| 6744 | } |
| 6745 | } |
| 6746 | |
| 6747 | #endif // #ifndef PRODUCT |
| 6748 | |