1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/g1/g1BarrierSet.hpp" |
27 | #include "gc/g1/g1BlockOffsetTable.inline.hpp" |
28 | #include "gc/g1/g1CardTable.inline.hpp" |
29 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
30 | #include "gc/g1/g1ConcurrentRefine.hpp" |
31 | #include "gc/g1/g1DirtyCardQueue.hpp" |
32 | #include "gc/g1/g1FromCardCache.hpp" |
33 | #include "gc/g1/g1GCPhaseTimes.hpp" |
34 | #include "gc/g1/g1HotCardCache.hpp" |
35 | #include "gc/g1/g1OopClosures.inline.hpp" |
36 | #include "gc/g1/g1RootClosures.hpp" |
37 | #include "gc/g1/g1RemSet.hpp" |
38 | #include "gc/g1/g1SharedDirtyCardQueue.hpp" |
39 | #include "gc/g1/heapRegion.inline.hpp" |
40 | #include "gc/g1/heapRegionManager.inline.hpp" |
41 | #include "gc/g1/heapRegionRemSet.hpp" |
42 | #include "gc/shared/gcTraceTime.inline.hpp" |
43 | #include "gc/shared/suspendibleThreadSet.hpp" |
44 | #include "jfr/jfrEvents.hpp" |
45 | #include "memory/iterator.hpp" |
46 | #include "memory/resourceArea.hpp" |
47 | #include "oops/access.inline.hpp" |
48 | #include "oops/oop.inline.hpp" |
49 | #include "runtime/os.hpp" |
50 | #include "utilities/align.hpp" |
51 | #include "utilities/globalDefinitions.hpp" |
52 | #include "utilities/stack.inline.hpp" |
53 | #include "utilities/ticks.hpp" |
54 | |
55 | // Collects information about the overall remembered set scan progress during an evacuation. |
56 | class G1RemSetScanState : public CHeapObj<mtGC> { |
57 | private: |
58 | class G1ClearCardTableTask : public AbstractGangTask { |
59 | G1CollectedHeap* _g1h; |
60 | uint* _dirty_region_list; |
61 | size_t _num_dirty_regions; |
62 | size_t _chunk_length; |
63 | |
64 | size_t volatile _cur_dirty_regions; |
65 | public: |
66 | G1ClearCardTableTask(G1CollectedHeap* g1h, |
67 | uint* dirty_region_list, |
68 | size_t num_dirty_regions, |
69 | size_t chunk_length) : |
70 | AbstractGangTask("G1 Clear Card Table Task" ), |
71 | _g1h(g1h), |
72 | _dirty_region_list(dirty_region_list), |
73 | _num_dirty_regions(num_dirty_regions), |
74 | _chunk_length(chunk_length), |
75 | _cur_dirty_regions(0) { |
76 | |
77 | assert(chunk_length > 0, "must be" ); |
78 | } |
79 | |
80 | static size_t chunk_size() { return M; } |
81 | |
82 | void work(uint worker_id) { |
83 | while (_cur_dirty_regions < _num_dirty_regions) { |
84 | size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length; |
85 | size_t max = MIN2(next + _chunk_length, _num_dirty_regions); |
86 | |
87 | for (size_t i = next; i < max; i++) { |
88 | HeapRegion* r = _g1h->region_at(_dirty_region_list[i]); |
89 | if (!r->is_survivor()) { |
90 | r->clear_cardtable(); |
91 | } |
92 | } |
93 | } |
94 | } |
95 | }; |
96 | |
97 | size_t _max_regions; |
98 | |
99 | // Scan progress for the remembered set of a single region. Transitions from |
100 | // Unclaimed -> Claimed -> Complete. |
101 | // At each of the transitions the thread that does the transition needs to perform |
102 | // some special action once. This is the reason for the extra "Claimed" state. |
103 | typedef jint G1RemsetIterState; |
104 | |
105 | static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet. |
106 | static const G1RemsetIterState Claimed = 1; // The remembered set is currently being scanned. |
107 | static const G1RemsetIterState Complete = 2; // The remembered set has been completely scanned. |
108 | |
109 | G1RemsetIterState volatile* _iter_states; |
110 | // The current location where the next thread should continue scanning in a region's |
111 | // remembered set. |
112 | size_t volatile* _iter_claims; |
113 | |
114 | // Temporary buffer holding the regions we used to store remembered set scan duplicate |
115 | // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region) |
116 | uint* _dirty_region_buffer; |
117 | |
118 | // Flag for every region whether it is in the _dirty_region_buffer already |
119 | // to avoid duplicates. |
120 | bool volatile* _in_dirty_region_buffer; |
121 | size_t _cur_dirty_region; |
122 | |
123 | // Creates a snapshot of the current _top values at the start of collection to |
124 | // filter out card marks that we do not want to scan. |
125 | class G1ResetScanTopClosure : public HeapRegionClosure { |
126 | private: |
127 | HeapWord** _scan_top; |
128 | public: |
129 | G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { } |
130 | |
131 | virtual bool do_heap_region(HeapRegion* r) { |
132 | uint hrm_index = r->hrm_index(); |
133 | if (!r->in_collection_set() && r->is_old_or_humongous_or_archive() && !r->is_empty()) { |
134 | _scan_top[hrm_index] = r->top(); |
135 | } else { |
136 | _scan_top[hrm_index] = NULL; |
137 | } |
138 | return false; |
139 | } |
140 | }; |
141 | |
142 | // For each region, contains the maximum top() value to be used during this garbage |
143 | // collection. Subsumes common checks like filtering out everything but old and |
144 | // humongous regions outside the collection set. |
145 | // This is valid because we are not interested in scanning stray remembered set |
146 | // entries from free or archive regions. |
147 | HeapWord** _scan_top; |
148 | public: |
149 | G1RemSetScanState() : |
150 | _max_regions(0), |
151 | _iter_states(NULL), |
152 | _iter_claims(NULL), |
153 | _dirty_region_buffer(NULL), |
154 | _in_dirty_region_buffer(NULL), |
155 | _cur_dirty_region(0), |
156 | _scan_top(NULL) { |
157 | } |
158 | |
159 | ~G1RemSetScanState() { |
160 | if (_iter_states != NULL) { |
161 | FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states); |
162 | } |
163 | if (_iter_claims != NULL) { |
164 | FREE_C_HEAP_ARRAY(size_t, _iter_claims); |
165 | } |
166 | if (_dirty_region_buffer != NULL) { |
167 | FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer); |
168 | } |
169 | if (_in_dirty_region_buffer != NULL) { |
170 | FREE_C_HEAP_ARRAY(bool, _in_dirty_region_buffer); |
171 | } |
172 | if (_scan_top != NULL) { |
173 | FREE_C_HEAP_ARRAY(HeapWord*, _scan_top); |
174 | } |
175 | } |
176 | |
177 | void initialize(uint max_regions) { |
178 | assert(_iter_states == NULL, "Must not be initialized twice" ); |
179 | assert(_iter_claims == NULL, "Must not be initialized twice" ); |
180 | _max_regions = max_regions; |
181 | _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC); |
182 | _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC); |
183 | _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC); |
184 | _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(bool, max_regions, mtGC); |
185 | _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC); |
186 | } |
187 | |
188 | void reset() { |
189 | for (uint i = 0; i < _max_regions; i++) { |
190 | _iter_states[i] = Unclaimed; |
191 | clear_scan_top(i); |
192 | } |
193 | |
194 | G1ResetScanTopClosure cl(_scan_top); |
195 | G1CollectedHeap::heap()->heap_region_iterate(&cl); |
196 | |
197 | memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t)); |
198 | memset((void*)_in_dirty_region_buffer, false, _max_regions * sizeof(bool)); |
199 | _cur_dirty_region = 0; |
200 | } |
201 | |
202 | // Attempt to claim the remembered set of the region for iteration. Returns true |
203 | // if this call caused the transition from Unclaimed to Claimed. |
204 | inline bool claim_iter(uint region) { |
205 | assert(region < _max_regions, "Tried to access invalid region %u" , region); |
206 | if (_iter_states[region] != Unclaimed) { |
207 | return false; |
208 | } |
209 | G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed); |
210 | return (res == Unclaimed); |
211 | } |
212 | |
213 | // Try to atomically sets the iteration state to "complete". Returns true for the |
214 | // thread that caused the transition. |
215 | inline bool set_iter_complete(uint region) { |
216 | if (iter_is_complete(region)) { |
217 | return false; |
218 | } |
219 | G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed); |
220 | return (res == Claimed); |
221 | } |
222 | |
223 | // Returns true if the region's iteration is complete. |
224 | inline bool iter_is_complete(uint region) const { |
225 | assert(region < _max_regions, "Tried to access invalid region %u" , region); |
226 | return _iter_states[region] == Complete; |
227 | } |
228 | |
229 | // The current position within the remembered set of the given region. |
230 | inline size_t iter_claimed(uint region) const { |
231 | assert(region < _max_regions, "Tried to access invalid region %u" , region); |
232 | return _iter_claims[region]; |
233 | } |
234 | |
235 | // Claim the next block of cards within the remembered set of the region with |
236 | // step size. |
237 | inline size_t iter_claimed_next(uint region, size_t step) { |
238 | return Atomic::add(step, &_iter_claims[region]) - step; |
239 | } |
240 | |
241 | void add_dirty_region(uint region) { |
242 | if (_in_dirty_region_buffer[region]) { |
243 | return; |
244 | } |
245 | |
246 | if (!Atomic::cmpxchg(true, &_in_dirty_region_buffer[region], false)) { |
247 | size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1; |
248 | _dirty_region_buffer[allocated] = region; |
249 | } |
250 | } |
251 | |
252 | HeapWord* scan_top(uint region_idx) const { |
253 | return _scan_top[region_idx]; |
254 | } |
255 | |
256 | void clear_scan_top(uint region_idx) { |
257 | _scan_top[region_idx] = NULL; |
258 | } |
259 | |
260 | // Clear the card table of "dirty" regions. |
261 | void clear_card_table(WorkGang* workers) { |
262 | if (_cur_dirty_region == 0) { |
263 | return; |
264 | } |
265 | |
266 | size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size(); |
267 | uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); |
268 | size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion; |
269 | |
270 | // Iterate over the dirty cards region list. |
271 | G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length); |
272 | |
273 | log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " " |
274 | "units of work for " SIZE_FORMAT " regions." , |
275 | cl.name(), num_workers, num_chunks, _cur_dirty_region); |
276 | workers->run_task(&cl, num_workers); |
277 | |
278 | #ifndef PRODUCT |
279 | G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup(); |
280 | #endif |
281 | } |
282 | }; |
283 | |
284 | G1RemSet::G1RemSet(G1CollectedHeap* g1h, |
285 | G1CardTable* ct, |
286 | G1HotCardCache* hot_card_cache) : |
287 | _scan_state(new G1RemSetScanState()), |
288 | _prev_period_summary(), |
289 | _g1h(g1h), |
290 | _num_conc_refined_cards(0), |
291 | _ct(ct), |
292 | _g1p(_g1h->policy()), |
293 | _hot_card_cache(hot_card_cache) { |
294 | } |
295 | |
296 | G1RemSet::~G1RemSet() { |
297 | if (_scan_state != NULL) { |
298 | delete _scan_state; |
299 | } |
300 | } |
301 | |
302 | uint G1RemSet::num_par_rem_sets() { |
303 | return G1DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads); |
304 | } |
305 | |
306 | void G1RemSet::initialize(size_t capacity, uint max_regions) { |
307 | G1FromCardCache::initialize(num_par_rem_sets(), max_regions); |
308 | _scan_state->initialize(max_regions); |
309 | } |
310 | |
311 | class G1ScanRSForRegionClosure : public HeapRegionClosure { |
312 | G1CollectedHeap* _g1h; |
313 | G1CardTable *_ct; |
314 | |
315 | G1ParScanThreadState* _pss; |
316 | G1ScanCardClosure* _scan_objs_on_card_cl; |
317 | |
318 | G1RemSetScanState* _scan_state; |
319 | |
320 | G1GCPhaseTimes::GCParPhases _phase; |
321 | |
322 | uint _worker_i; |
323 | |
324 | size_t _opt_refs_scanned; |
325 | size_t _opt_refs_memory_used; |
326 | |
327 | size_t _cards_scanned; |
328 | size_t _cards_claimed; |
329 | size_t _cards_skipped; |
330 | |
331 | Tickspan _rem_set_root_scan_time; |
332 | Tickspan _rem_set_trim_partially_time; |
333 | |
334 | Tickspan _strong_code_root_scan_time; |
335 | Tickspan _strong_code_trim_partially_time; |
336 | |
337 | void claim_card(size_t card_index, const uint region_idx_for_card) { |
338 | _ct->set_card_claimed(card_index); |
339 | _scan_state->add_dirty_region(region_idx_for_card); |
340 | } |
341 | |
342 | void scan_card(MemRegion mr, uint region_idx_for_card) { |
343 | HeapRegion* const card_region = _g1h->region_at(region_idx_for_card); |
344 | assert(!card_region->is_young(), "Should not scan card in young region %u" , region_idx_for_card); |
345 | card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl); |
346 | _scan_objs_on_card_cl->trim_queue_partially(); |
347 | _cards_scanned++; |
348 | } |
349 | |
350 | void scan_opt_rem_set_roots(HeapRegion* r) { |
351 | EventGCPhaseParallel event; |
352 | |
353 | G1OopStarChunkedList* opt_rem_set_list = _pss->oops_into_optional_region(r); |
354 | |
355 | G1ScanCardClosure scan_cl(_g1h, _pss); |
356 | G1ScanRSForOptionalClosure cl(_g1h, &scan_cl); |
357 | _opt_refs_scanned += opt_rem_set_list->oops_do(&cl, _pss->closures()->raw_strong_oops()); |
358 | _opt_refs_memory_used += opt_rem_set_list->used_memory(); |
359 | |
360 | event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(_phase)); |
361 | } |
362 | |
363 | void scan_rem_set_roots(HeapRegion* r) { |
364 | EventGCPhaseParallel event; |
365 | uint const region_idx = r->hrm_index(); |
366 | |
367 | if (_scan_state->claim_iter(region_idx)) { |
368 | // If we ever free the collection set concurrently, we should also |
369 | // clear the card table concurrently therefore we won't need to |
370 | // add regions of the collection set to the dirty cards region. |
371 | _scan_state->add_dirty_region(region_idx); |
372 | } |
373 | |
374 | if (r->rem_set()->cardset_is_empty()) { |
375 | return; |
376 | } |
377 | |
378 | // We claim cards in blocks so as to reduce the contention. |
379 | size_t const block_size = G1RSetScanBlockSize; |
380 | |
381 | HeapRegionRemSetIterator iter(r->rem_set()); |
382 | size_t card_index; |
383 | |
384 | size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size); |
385 | for (size_t current_card = 0; iter.has_next(card_index); current_card++) { |
386 | if (current_card >= claimed_card_block + block_size) { |
387 | claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size); |
388 | } |
389 | if (current_card < claimed_card_block) { |
390 | _cards_skipped++; |
391 | continue; |
392 | } |
393 | _cards_claimed++; |
394 | |
395 | HeapWord* const card_start = _g1h->bot()->address_for_index_raw(card_index); |
396 | uint const region_idx_for_card = _g1h->addr_to_region(card_start); |
397 | |
398 | #ifdef ASSERT |
399 | HeapRegion* hr = _g1h->region_at_or_null(region_idx_for_card); |
400 | assert(hr == NULL || hr->is_in_reserved(card_start), |
401 | "Card start " PTR_FORMAT " to scan outside of region %u" , p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index()); |
402 | #endif |
403 | HeapWord* const top = _scan_state->scan_top(region_idx_for_card); |
404 | if (card_start >= top) { |
405 | continue; |
406 | } |
407 | |
408 | // If the card is dirty, then G1 will scan it during Update RS. |
409 | if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) { |
410 | continue; |
411 | } |
412 | |
413 | // We claim lazily (so races are possible but they're benign), which reduces the |
414 | // number of duplicate scans (the rsets of the regions in the cset can intersect). |
415 | // Claim the card after checking bounds above: the remembered set may contain |
416 | // random cards into current survivor, and we would then have an incorrectly |
417 | // claimed card in survivor space. Card table clear does not reset the card table |
418 | // of survivor space regions. |
419 | claim_card(card_index, region_idx_for_card); |
420 | |
421 | MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top)); |
422 | |
423 | scan_card(mr, region_idx_for_card); |
424 | } |
425 | event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(_phase)); |
426 | } |
427 | |
428 | void scan_strong_code_roots(HeapRegion* r) { |
429 | EventGCPhaseParallel event; |
430 | // We pass a weak code blobs closure to the remembered set scanning because we want to avoid |
431 | // treating the nmethods visited to act as roots for concurrent marking. |
432 | // We only want to make sure that the oops in the nmethods are adjusted with regard to the |
433 | // objects copied by the current evacuation. |
434 | r->strong_code_roots_do(_pss->closures()->weak_codeblobs()); |
435 | event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::CodeRoots)); |
436 | } |
437 | |
438 | public: |
439 | G1ScanRSForRegionClosure(G1RemSetScanState* scan_state, |
440 | G1ScanCardClosure* scan_obj_on_card, |
441 | G1ParScanThreadState* pss, |
442 | G1GCPhaseTimes::GCParPhases phase, |
443 | uint worker_i) : |
444 | _g1h(G1CollectedHeap::heap()), |
445 | _ct(_g1h->card_table()), |
446 | _pss(pss), |
447 | _scan_objs_on_card_cl(scan_obj_on_card), |
448 | _scan_state(scan_state), |
449 | _phase(phase), |
450 | _worker_i(worker_i), |
451 | _opt_refs_scanned(0), |
452 | _opt_refs_memory_used(0), |
453 | _cards_scanned(0), |
454 | _cards_claimed(0), |
455 | _cards_skipped(0), |
456 | _rem_set_root_scan_time(), |
457 | _rem_set_trim_partially_time(), |
458 | _strong_code_root_scan_time(), |
459 | _strong_code_trim_partially_time() { } |
460 | |
461 | bool do_heap_region(HeapRegion* r) { |
462 | assert(r->in_collection_set(), "Region %u is not in the collection set." , r->hrm_index()); |
463 | uint const region_idx = r->hrm_index(); |
464 | |
465 | // The individual references for the optional remembered set are per-worker, so we |
466 | // always need to scan them. |
467 | if (r->has_index_in_opt_cset()) { |
468 | G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time); |
469 | scan_opt_rem_set_roots(r); |
470 | } |
471 | |
472 | // Do an early out if we know we are complete. |
473 | if (_scan_state->iter_is_complete(region_idx)) { |
474 | return false; |
475 | } |
476 | |
477 | { |
478 | G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time); |
479 | scan_rem_set_roots(r); |
480 | } |
481 | |
482 | if (_scan_state->set_iter_complete(region_idx)) { |
483 | G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time); |
484 | // Scan the strong code root list attached to the current region |
485 | scan_strong_code_roots(r); |
486 | } |
487 | return false; |
488 | } |
489 | |
490 | Tickspan rem_set_root_scan_time() const { return _rem_set_root_scan_time; } |
491 | Tickspan rem_set_trim_partially_time() const { return _rem_set_trim_partially_time; } |
492 | |
493 | Tickspan strong_code_root_scan_time() const { return _strong_code_root_scan_time; } |
494 | Tickspan strong_code_root_trim_partially_time() const { return _strong_code_trim_partially_time; } |
495 | |
496 | size_t cards_scanned() const { return _cards_scanned; } |
497 | size_t cards_claimed() const { return _cards_claimed; } |
498 | size_t cards_skipped() const { return _cards_skipped; } |
499 | |
500 | size_t opt_refs_scanned() const { return _opt_refs_scanned; } |
501 | size_t opt_refs_memory_used() const { return _opt_refs_memory_used; } |
502 | }; |
503 | |
504 | void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, |
505 | uint worker_i, |
506 | G1GCPhaseTimes::GCParPhases scan_phase, |
507 | G1GCPhaseTimes::GCParPhases objcopy_phase, |
508 | G1GCPhaseTimes::GCParPhases coderoots_phase) { |
509 | assert(pss->trim_ticks().value() == 0, "Queues must have been trimmed before entering." ); |
510 | |
511 | G1ScanCardClosure scan_cl(_g1h, pss); |
512 | G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, scan_phase, worker_i); |
513 | _g1h->collection_set_iterate_increment_from(&cl, worker_i); |
514 | |
515 | G1GCPhaseTimes* p = _g1p->phase_times(); |
516 | |
517 | p->record_or_add_time_secs(objcopy_phase, worker_i, cl.rem_set_trim_partially_time().seconds()); |
518 | |
519 | p->record_or_add_time_secs(scan_phase, worker_i, cl.rem_set_root_scan_time().seconds()); |
520 | p->record_or_add_thread_work_item(scan_phase, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards); |
521 | p->record_or_add_thread_work_item(scan_phase, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards); |
522 | p->record_or_add_thread_work_item(scan_phase, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards); |
523 | // At this time we only record some metrics for the optional remembered set. |
524 | if (scan_phase == G1GCPhaseTimes::OptScanRS) { |
525 | p->record_or_add_thread_work_item(scan_phase, worker_i, cl.opt_refs_scanned(), G1GCPhaseTimes::ScanRSScannedOptRefs); |
526 | p->record_or_add_thread_work_item(scan_phase, worker_i, cl.opt_refs_memory_used(), G1GCPhaseTimes::ScanRSUsedMemory); |
527 | } |
528 | |
529 | p->record_or_add_time_secs(coderoots_phase, worker_i, cl.strong_code_root_scan_time().seconds()); |
530 | p->add_time_secs(objcopy_phase, worker_i, cl.strong_code_root_trim_partially_time().seconds()); |
531 | } |
532 | |
533 | // Closure used for updating rem sets. Only called during an evacuation pause. |
534 | class G1RefineCardClosure: public G1CardTableEntryClosure { |
535 | G1RemSet* _g1rs; |
536 | G1ScanCardClosure* _update_rs_cl; |
537 | |
538 | size_t _cards_scanned; |
539 | size_t _cards_skipped; |
540 | public: |
541 | G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanCardClosure* update_rs_cl) : |
542 | _g1rs(g1h->rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0) |
543 | {} |
544 | |
545 | bool do_card_ptr(CardValue* card_ptr, uint worker_i) { |
546 | // The only time we care about recording cards that |
547 | // contain references that point into the collection set |
548 | // is during RSet updating within an evacuation pause. |
549 | // In this case worker_i should be the id of a GC worker thread. |
550 | assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause" ); |
551 | |
552 | bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl); |
553 | |
554 | if (card_scanned) { |
555 | _update_rs_cl->trim_queue_partially(); |
556 | _cards_scanned++; |
557 | } else { |
558 | _cards_skipped++; |
559 | } |
560 | return true; |
561 | } |
562 | |
563 | size_t cards_scanned() const { return _cards_scanned; } |
564 | size_t cards_skipped() const { return _cards_skipped; } |
565 | }; |
566 | |
567 | void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) { |
568 | G1GCPhaseTimes* p = _g1p->phase_times(); |
569 | |
570 | // Apply closure to log entries in the HCC. |
571 | if (G1HotCardCache::default_use_cache()) { |
572 | G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i); |
573 | |
574 | G1ScanCardClosure scan_hcc_cl(_g1h, pss); |
575 | G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl); |
576 | _g1h->iterate_hcc_closure(&refine_card_cl, worker_i); |
577 | } |
578 | |
579 | // Now apply the closure to all remaining log entries. |
580 | { |
581 | G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i); |
582 | |
583 | G1ScanCardClosure update_rs_cl(_g1h, pss); |
584 | G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl); |
585 | _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i); |
586 | |
587 | p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards); |
588 | p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards); |
589 | } |
590 | } |
591 | |
592 | void G1RemSet::prepare_for_scan_rem_set() { |
593 | G1BarrierSet::dirty_card_queue_set().concatenate_logs(); |
594 | _scan_state->reset(); |
595 | } |
596 | |
597 | void G1RemSet::prepare_for_scan_rem_set(uint region_idx) { |
598 | _scan_state->clear_scan_top(region_idx); |
599 | } |
600 | |
601 | void G1RemSet::cleanup_after_scan_rem_set() { |
602 | G1GCPhaseTimes* phase_times = _g1h->phase_times(); |
603 | |
604 | // Set all cards back to clean. |
605 | double start = os::elapsedTime(); |
606 | _scan_state->clear_card_table(_g1h->workers()); |
607 | phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0); |
608 | } |
609 | |
610 | inline void check_card_ptr(CardTable::CardValue* card_ptr, G1CardTable* ct) { |
611 | #ifdef ASSERT |
612 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
613 | assert(g1h->is_in_exact(ct->addr_for(card_ptr)), |
614 | "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap" , |
615 | p2i(card_ptr), |
616 | ct->index_for(ct->addr_for(card_ptr)), |
617 | p2i(ct->addr_for(card_ptr)), |
618 | g1h->addr_to_region(ct->addr_for(card_ptr))); |
619 | #endif |
620 | } |
621 | |
622 | void G1RemSet::refine_card_concurrently(CardValue* card_ptr, |
623 | uint worker_i) { |
624 | assert(!_g1h->is_gc_active(), "Only call concurrently" ); |
625 | |
626 | // Construct the region representing the card. |
627 | HeapWord* start = _ct->addr_for(card_ptr); |
628 | // And find the region containing it. |
629 | HeapRegion* r = _g1h->heap_region_containing_or_null(start); |
630 | |
631 | // If this is a (stale) card into an uncommitted region, exit. |
632 | if (r == NULL) { |
633 | return; |
634 | } |
635 | |
636 | check_card_ptr(card_ptr, _ct); |
637 | |
638 | // If the card is no longer dirty, nothing to do. |
639 | if (*card_ptr != G1CardTable::dirty_card_val()) { |
640 | return; |
641 | } |
642 | |
643 | // This check is needed for some uncommon cases where we should |
644 | // ignore the card. |
645 | // |
646 | // The region could be young. Cards for young regions are |
647 | // distinctly marked (set to g1_young_gen), so the post-barrier will |
648 | // filter them out. However, that marking is performed |
649 | // concurrently. A write to a young object could occur before the |
650 | // card has been marked young, slipping past the filter. |
651 | // |
652 | // The card could be stale, because the region has been freed since |
653 | // the card was recorded. In this case the region type could be |
654 | // anything. If (still) free or (reallocated) young, just ignore |
655 | // it. If (reallocated) old or humongous, the later card trimming |
656 | // and additional checks in iteration may detect staleness. At |
657 | // worst, we end up processing a stale card unnecessarily. |
658 | // |
659 | // In the normal (non-stale) case, the synchronization between the |
660 | // enqueueing of the card and processing it here will have ensured |
661 | // we see the up-to-date region type here. |
662 | if (!r->is_old_or_humongous_or_archive()) { |
663 | return; |
664 | } |
665 | |
666 | // The result from the hot card cache insert call is either: |
667 | // * pointer to the current card |
668 | // (implying that the current card is not 'hot'), |
669 | // * null |
670 | // (meaning we had inserted the card ptr into the "hot" card cache, |
671 | // which had some headroom), |
672 | // * a pointer to a "hot" card that was evicted from the "hot" cache. |
673 | // |
674 | |
675 | if (_hot_card_cache->use_cache()) { |
676 | assert(!SafepointSynchronize::is_at_safepoint(), "sanity" ); |
677 | |
678 | const CardValue* orig_card_ptr = card_ptr; |
679 | card_ptr = _hot_card_cache->insert(card_ptr); |
680 | if (card_ptr == NULL) { |
681 | // There was no eviction. Nothing to do. |
682 | return; |
683 | } else if (card_ptr != orig_card_ptr) { |
684 | // Original card was inserted and an old card was evicted. |
685 | start = _ct->addr_for(card_ptr); |
686 | r = _g1h->heap_region_containing(start); |
687 | |
688 | // Check whether the region formerly in the cache should be |
689 | // ignored, as discussed earlier for the original card. The |
690 | // region could have been freed while in the cache. |
691 | if (!r->is_old_or_humongous_or_archive()) { |
692 | return; |
693 | } |
694 | } // Else we still have the original card. |
695 | } |
696 | |
697 | // Trim the region designated by the card to what's been allocated |
698 | // in the region. The card could be stale, or the card could cover |
699 | // (part of) an object at the end of the allocated space and extend |
700 | // beyond the end of allocation. |
701 | |
702 | // Non-humongous objects are only allocated in the old-gen during |
703 | // GC, so if region is old then top is stable. Humongous object |
704 | // allocation sets top last; if top has not yet been set, this is |
705 | // a stale card and we'll end up with an empty intersection. If |
706 | // this is not a stale card, the synchronization between the |
707 | // enqueuing of the card and processing it here will have ensured |
708 | // we see the up-to-date top here. |
709 | HeapWord* scan_limit = r->top(); |
710 | |
711 | if (scan_limit <= start) { |
712 | // If the trimmed region is empty, the card must be stale. |
713 | return; |
714 | } |
715 | |
716 | // Okay to clean and process the card now. There are still some |
717 | // stale card cases that may be detected by iteration and dealt with |
718 | // as iteration failure. |
719 | *const_cast<volatile CardValue*>(card_ptr) = G1CardTable::clean_card_val(); |
720 | |
721 | // This fence serves two purposes. First, the card must be cleaned |
722 | // before processing the contents. Second, we can't proceed with |
723 | // processing until after the read of top, for synchronization with |
724 | // possibly concurrent humongous object allocation. It's okay that |
725 | // reading top and reading type were racy wrto each other. We need |
726 | // both set, in any order, to proceed. |
727 | OrderAccess::fence(); |
728 | |
729 | // Don't use addr_for(card_ptr + 1) which can ask for |
730 | // a card beyond the heap. |
731 | HeapWord* end = start + G1CardTable::card_size_in_words; |
732 | MemRegion dirty_region(start, MIN2(scan_limit, end)); |
733 | assert(!dirty_region.is_empty(), "sanity" ); |
734 | |
735 | G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i); |
736 | if (r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl)) { |
737 | _num_conc_refined_cards++; // Unsynchronized update, only used for logging. |
738 | return; |
739 | } |
740 | |
741 | // If unable to process the card then we encountered an unparsable |
742 | // part of the heap (e.g. a partially allocated object, so only |
743 | // temporarily a problem) while processing a stale card. Despite |
744 | // the card being stale, we can't simply ignore it, because we've |
745 | // already marked the card cleaned, so taken responsibility for |
746 | // ensuring the card gets scanned. |
747 | // |
748 | // However, the card might have gotten re-dirtied and re-enqueued |
749 | // while we worked. (In fact, it's pretty likely.) |
750 | if (*card_ptr == G1CardTable::dirty_card_val()) { |
751 | return; |
752 | } |
753 | |
754 | // Re-dirty the card and enqueue in the *shared* queue. Can't use |
755 | // the thread-local queue, because that might be the queue that is |
756 | // being processed by us; we could be a Java thread conscripted to |
757 | // perform refinement on our queue's current buffer. |
758 | *card_ptr = G1CardTable::dirty_card_val(); |
759 | G1BarrierSet::shared_dirty_card_queue().enqueue(card_ptr); |
760 | } |
761 | |
762 | bool G1RemSet::refine_card_during_gc(CardValue* card_ptr, |
763 | G1ScanCardClosure* update_rs_cl) { |
764 | assert(_g1h->is_gc_active(), "Only call during GC" ); |
765 | |
766 | // Construct the region representing the card. |
767 | HeapWord* card_start = _ct->addr_for(card_ptr); |
768 | // And find the region containing it. |
769 | uint const card_region_idx = _g1h->addr_to_region(card_start); |
770 | |
771 | HeapWord* scan_limit = _scan_state->scan_top(card_region_idx); |
772 | if (scan_limit == NULL) { |
773 | // This is a card into an uncommitted region. We need to bail out early as we |
774 | // should not access the corresponding card table entry. |
775 | return false; |
776 | } |
777 | |
778 | check_card_ptr(card_ptr, _ct); |
779 | |
780 | // If the card is no longer dirty, nothing to do. This covers cards that were already |
781 | // scanned as parts of the remembered sets. |
782 | if (*card_ptr != G1CardTable::dirty_card_val()) { |
783 | return false; |
784 | } |
785 | |
786 | // We claim lazily (so races are possible but they're benign), which reduces the |
787 | // number of potential duplicate scans (multiple threads may enqueue the same card twice). |
788 | *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val(); |
789 | |
790 | _scan_state->add_dirty_region(card_region_idx); |
791 | if (scan_limit <= card_start) { |
792 | // If the card starts above the area in the region containing objects to scan, skip it. |
793 | return false; |
794 | } |
795 | |
796 | // Don't use addr_for(card_ptr + 1) which can ask for |
797 | // a card beyond the heap. |
798 | HeapWord* card_end = card_start + G1CardTable::card_size_in_words; |
799 | MemRegion dirty_region(card_start, MIN2(scan_limit, card_end)); |
800 | assert(!dirty_region.is_empty(), "sanity" ); |
801 | |
802 | HeapRegion* const card_region = _g1h->region_at(card_region_idx); |
803 | assert(!card_region->is_young(), "Should not scan card in young region %u" , card_region_idx); |
804 | bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl); |
805 | assert(card_processed, "must be" ); |
806 | return true; |
807 | } |
808 | |
809 | void G1RemSet::print_periodic_summary_info(const char* , uint period_count) { |
810 | if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) && |
811 | (period_count % G1SummarizeRSetStatsPeriod == 0)) { |
812 | |
813 | G1RemSetSummary current(this); |
814 | _prev_period_summary.subtract_from(¤t); |
815 | |
816 | Log(gc, remset) log; |
817 | log.trace("%s" , header); |
818 | ResourceMark rm; |
819 | LogStream ls(log.trace()); |
820 | _prev_period_summary.print_on(&ls); |
821 | |
822 | _prev_period_summary.set(¤t); |
823 | } |
824 | } |
825 | |
826 | void G1RemSet::print_summary_info() { |
827 | Log(gc, remset, exit) log; |
828 | if (log.is_trace()) { |
829 | log.trace(" Cumulative RS summary" ); |
830 | G1RemSetSummary current(this); |
831 | ResourceMark rm; |
832 | LogStream ls(log.trace()); |
833 | current.print_on(&ls); |
834 | } |
835 | } |
836 | |
837 | class G1RebuildRemSetTask: public AbstractGangTask { |
838 | // Aggregate the counting data that was constructed concurrently |
839 | // with marking. |
840 | class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure { |
841 | G1ConcurrentMark* _cm; |
842 | G1RebuildRemSetClosure _update_cl; |
843 | |
844 | // Applies _update_cl to the references of the given object, limiting objArrays |
845 | // to the given MemRegion. Returns the amount of words actually scanned. |
846 | size_t scan_for_references(oop const obj, MemRegion mr) { |
847 | size_t const obj_size = obj->size(); |
848 | // All non-objArrays and objArrays completely within the mr |
849 | // can be scanned without passing the mr. |
850 | if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) { |
851 | obj->oop_iterate(&_update_cl); |
852 | return obj_size; |
853 | } |
854 | // This path is for objArrays crossing the given MemRegion. Only scan the |
855 | // area within the MemRegion. |
856 | obj->oop_iterate(&_update_cl, mr); |
857 | return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size(); |
858 | } |
859 | |
860 | // A humongous object is live (with respect to the scanning) either |
861 | // a) it is marked on the bitmap as such |
862 | // b) its TARS is larger than TAMS, i.e. has been allocated during marking. |
863 | bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const { |
864 | return bitmap->is_marked(humongous_obj) || (tars > tams); |
865 | } |
866 | |
867 | // Iterator over the live objects within the given MemRegion. |
868 | class LiveObjIterator : public StackObj { |
869 | const G1CMBitMap* const _bitmap; |
870 | const HeapWord* _tams; |
871 | const MemRegion _mr; |
872 | HeapWord* _current; |
873 | |
874 | bool is_below_tams() const { |
875 | return _current < _tams; |
876 | } |
877 | |
878 | bool is_live(HeapWord* obj) const { |
879 | return !is_below_tams() || _bitmap->is_marked(obj); |
880 | } |
881 | |
882 | HeapWord* bitmap_limit() const { |
883 | return MIN2(const_cast<HeapWord*>(_tams), _mr.end()); |
884 | } |
885 | |
886 | void move_if_below_tams() { |
887 | if (is_below_tams() && has_next()) { |
888 | _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); |
889 | } |
890 | } |
891 | public: |
892 | LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) : |
893 | _bitmap(bitmap), |
894 | _tams(tams), |
895 | _mr(mr), |
896 | _current(first_oop_into_mr) { |
897 | |
898 | assert(_current <= _mr.start(), |
899 | "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")" , |
900 | p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end())); |
901 | |
902 | // Step to the next live object within the MemRegion if needed. |
903 | if (is_live(_current)) { |
904 | // Non-objArrays were scanned by the previous part of that region. |
905 | if (_current < mr.start() && !oop(_current)->is_objArray()) { |
906 | _current += oop(_current)->size(); |
907 | // We might have positioned _current on a non-live object. Reposition to the next |
908 | // live one if needed. |
909 | move_if_below_tams(); |
910 | } |
911 | } else { |
912 | // The object at _current can only be dead if below TAMS, so we can use the bitmap. |
913 | // immediately. |
914 | _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); |
915 | assert(_current == _mr.end() || is_live(_current), |
916 | "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")" , |
917 | p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end())); |
918 | } |
919 | } |
920 | |
921 | void move_to_next() { |
922 | _current += next()->size(); |
923 | move_if_below_tams(); |
924 | } |
925 | |
926 | oop next() const { |
927 | oop result = oop(_current); |
928 | assert(is_live(_current), |
929 | "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d" , |
930 | p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result)); |
931 | return result; |
932 | } |
933 | |
934 | bool has_next() const { |
935 | return _current < _mr.end(); |
936 | } |
937 | }; |
938 | |
939 | // Rebuild remembered sets in the part of the region specified by mr and hr. |
940 | // Objects between the bottom of the region and the TAMS are checked for liveness |
941 | // using the given bitmap. Objects between TAMS and TARS are assumed to be live. |
942 | // Returns the number of live words between bottom and TAMS. |
943 | size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap, |
944 | HeapWord* const top_at_mark_start, |
945 | HeapWord* const top_at_rebuild_start, |
946 | HeapRegion* hr, |
947 | MemRegion mr) { |
948 | size_t marked_words = 0; |
949 | |
950 | if (hr->is_humongous()) { |
951 | oop const humongous_obj = oop(hr->humongous_start_region()->bottom()); |
952 | if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) { |
953 | // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start); |
954 | // however in case of humongous objects it is sufficient to scan the encompassing |
955 | // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the |
956 | // two areas will be zero sized. I.e. TAMS is either |
957 | // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different |
958 | // value: this would mean that TAMS points somewhere into the object. |
959 | assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start, |
960 | "More than one object in the humongous region?" ); |
961 | humongous_obj->oop_iterate(&_update_cl, mr); |
962 | return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0; |
963 | } else { |
964 | return 0; |
965 | } |
966 | } |
967 | |
968 | for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) { |
969 | oop obj = it.next(); |
970 | size_t scanned_size = scan_for_references(obj, mr); |
971 | if ((HeapWord*)obj < top_at_mark_start) { |
972 | marked_words += scanned_size; |
973 | } |
974 | } |
975 | |
976 | return marked_words * HeapWordSize; |
977 | } |
978 | public: |
979 | G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h, |
980 | G1ConcurrentMark* cm, |
981 | uint worker_id) : |
982 | HeapRegionClosure(), |
983 | _cm(cm), |
984 | _update_cl(g1h, worker_id) { } |
985 | |
986 | bool do_heap_region(HeapRegion* hr) { |
987 | if (_cm->has_aborted()) { |
988 | return true; |
989 | } |
990 | |
991 | uint const region_idx = hr->hrm_index(); |
992 | DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);) |
993 | assert(top_at_rebuild_start_check == NULL || |
994 | top_at_rebuild_start_check > hr->bottom(), |
995 | "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)" , |
996 | p2i(top_at_rebuild_start_check), p2i(hr->bottom()), region_idx, hr->get_type_str()); |
997 | |
998 | size_t total_marked_bytes = 0; |
999 | size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize; |
1000 | |
1001 | HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start(); |
1002 | |
1003 | HeapWord* cur = hr->bottom(); |
1004 | while (cur < hr->end()) { |
1005 | // After every iteration (yield point) we need to check whether the region's |
1006 | // TARS changed due to e.g. eager reclaim. |
1007 | HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx); |
1008 | if (top_at_rebuild_start == NULL) { |
1009 | return false; |
1010 | } |
1011 | |
1012 | MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words)); |
1013 | if (next_chunk.is_empty()) { |
1014 | break; |
1015 | } |
1016 | |
1017 | const Ticks start = Ticks::now(); |
1018 | size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(), |
1019 | top_at_mark_start, |
1020 | top_at_rebuild_start, |
1021 | hr, |
1022 | next_chunk); |
1023 | Tickspan time = Ticks::now() - start; |
1024 | |
1025 | log_trace(gc, remset, tracking)("Rebuilt region %u " |
1026 | "live " SIZE_FORMAT " " |
1027 | "time %.3fms " |
1028 | "marked bytes " SIZE_FORMAT " " |
1029 | "bot " PTR_FORMAT " " |
1030 | "TAMS " PTR_FORMAT " " |
1031 | "TARS " PTR_FORMAT, |
1032 | region_idx, |
1033 | _cm->liveness(region_idx) * HeapWordSize, |
1034 | time.seconds() * 1000.0, |
1035 | marked_bytes, |
1036 | p2i(hr->bottom()), |
1037 | p2i(top_at_mark_start), |
1038 | p2i(top_at_rebuild_start)); |
1039 | |
1040 | if (marked_bytes > 0) { |
1041 | total_marked_bytes += marked_bytes; |
1042 | } |
1043 | cur += chunk_size_in_words; |
1044 | |
1045 | _cm->do_yield_check(); |
1046 | if (_cm->has_aborted()) { |
1047 | return true; |
1048 | } |
1049 | } |
1050 | // In the final iteration of the loop the region might have been eagerly reclaimed. |
1051 | // Simply filter out those regions. We can not just use region type because there |
1052 | // might have already been new allocations into these regions. |
1053 | DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);) |
1054 | assert(top_at_rebuild_start == NULL || |
1055 | total_marked_bytes == hr->marked_bytes(), |
1056 | "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " " |
1057 | "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")" , |
1058 | total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(), |
1059 | p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start)); |
1060 | // Abort state may have changed after the yield check. |
1061 | return _cm->has_aborted(); |
1062 | } |
1063 | }; |
1064 | |
1065 | HeapRegionClaimer _hr_claimer; |
1066 | G1ConcurrentMark* _cm; |
1067 | |
1068 | uint _worker_id_offset; |
1069 | public: |
1070 | G1RebuildRemSetTask(G1ConcurrentMark* cm, |
1071 | uint n_workers, |
1072 | uint worker_id_offset) : |
1073 | AbstractGangTask("G1 Rebuild Remembered Set" ), |
1074 | _hr_claimer(n_workers), |
1075 | _cm(cm), |
1076 | _worker_id_offset(worker_id_offset) { |
1077 | } |
1078 | |
1079 | void work(uint worker_id) { |
1080 | SuspendibleThreadSetJoiner sts_join; |
1081 | |
1082 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
1083 | |
1084 | G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id); |
1085 | g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id); |
1086 | } |
1087 | }; |
1088 | |
1089 | void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm, |
1090 | WorkGang* workers, |
1091 | uint worker_id_offset) { |
1092 | uint num_workers = workers->active_workers(); |
1093 | |
1094 | G1RebuildRemSetTask cl(cm, |
1095 | num_workers, |
1096 | worker_id_offset); |
1097 | workers->run_task(&cl, num_workers); |
1098 | } |
1099 | |