1/*
2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/codeCache.hpp"
27#include "gc/parallel/adjoiningGenerations.hpp"
28#include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
29#include "gc/parallel/adjoiningVirtualSpaces.hpp"
30#include "gc/parallel/parallelArguments.hpp"
31#include "gc/parallel/gcTaskManager.hpp"
32#include "gc/parallel/objectStartArray.inline.hpp"
33#include "gc/parallel/parallelScavengeHeap.inline.hpp"
34#include "gc/parallel/psAdaptiveSizePolicy.hpp"
35#include "gc/parallel/psMarkSweepProxy.hpp"
36#include "gc/parallel/psMemoryPool.hpp"
37#include "gc/parallel/psParallelCompact.inline.hpp"
38#include "gc/parallel/psPromotionManager.hpp"
39#include "gc/parallel/psScavenge.hpp"
40#include "gc/parallel/psVMOperations.hpp"
41#include "gc/shared/gcHeapSummary.hpp"
42#include "gc/shared/gcLocker.hpp"
43#include "gc/shared/gcWhen.hpp"
44#include "gc/shared/genArguments.hpp"
45#include "gc/shared/scavengableNMethods.hpp"
46#include "logging/log.hpp"
47#include "memory/metaspaceCounters.hpp"
48#include "memory/universe.hpp"
49#include "oops/oop.inline.hpp"
50#include "runtime/handles.inline.hpp"
51#include "runtime/java.hpp"
52#include "runtime/vmThread.hpp"
53#include "services/memoryManager.hpp"
54#include "services/memTracker.hpp"
55#include "utilities/macros.hpp"
56#include "utilities/vmError.hpp"
57
58PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
59PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
60PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
61PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
62GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
63
64jint ParallelScavengeHeap::initialize() {
65 const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes();
66
67 ReservedSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment);
68
69 os::trace_page_sizes("Heap",
70 MinHeapSize,
71 reserved_heap_size,
72 GenAlignment,
73 heap_rs.base(),
74 heap_rs.size());
75
76 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
77
78 PSCardTable* card_table = new PSCardTable(reserved_region());
79 card_table->initialize();
80 CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
81 barrier_set->initialize();
82 BarrierSet::set_barrier_set(barrier_set);
83
84 // Make up the generations
85 // Calculate the maximum size that a generation can grow. This
86 // includes growth into the other generation. Note that the
87 // parameter _max_gen_size is kept as the maximum
88 // size of the generation as the boundaries currently stand.
89 // _max_gen_size is still used as that value.
90 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
91 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
92
93 _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs);
94
95 _old_gen = _gens->old_gen();
96 _young_gen = _gens->young_gen();
97
98 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
99 const size_t old_capacity = _old_gen->capacity_in_bytes();
100 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
101 _size_policy =
102 new PSAdaptiveSizePolicy(eden_capacity,
103 initial_promo_size,
104 young_gen()->to_space()->capacity_in_bytes(),
105 GenAlignment,
106 max_gc_pause_sec,
107 max_gc_minor_pause_sec,
108 GCTimeRatio
109 );
110
111 assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary ||
112 (old_gen()->virtual_space()->high_boundary() ==
113 young_gen()->virtual_space()->low_boundary()),
114 "Boundaries must meet");
115 // initialize the policy counters - 2 collectors, 2 generations
116 _gc_policy_counters =
117 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
118
119 // Set up the GCTaskManager
120 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
121
122 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
123 return JNI_ENOMEM;
124 }
125
126 return JNI_OK;
127}
128
129void ParallelScavengeHeap::initialize_serviceability() {
130
131 _eden_pool = new EdenMutableSpacePool(_young_gen,
132 _young_gen->eden_space(),
133 "PS Eden Space",
134 false /* support_usage_threshold */);
135
136 _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
137 "PS Survivor Space",
138 false /* support_usage_threshold */);
139
140 _old_pool = new PSGenerationPool(_old_gen,
141 "PS Old Gen",
142 true /* support_usage_threshold */);
143
144 _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
145 _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
146
147 _old_manager->add_pool(_eden_pool);
148 _old_manager->add_pool(_survivor_pool);
149 _old_manager->add_pool(_old_pool);
150
151 _young_manager->add_pool(_eden_pool);
152 _young_manager->add_pool(_survivor_pool);
153
154}
155
156class PSIsScavengable : public BoolObjectClosure {
157 bool do_object_b(oop obj) {
158 return ParallelScavengeHeap::heap()->is_in_young(obj);
159 }
160};
161
162static PSIsScavengable _is_scavengable;
163
164void ParallelScavengeHeap::post_initialize() {
165 CollectedHeap::post_initialize();
166 // Need to init the tenuring threshold
167 PSScavenge::initialize();
168 if (UseParallelOldGC) {
169 PSParallelCompact::post_initialize();
170 } else {
171 PSMarkSweepProxy::initialize();
172 }
173 PSPromotionManager::initialize();
174
175 ScavengableNMethods::initialize(&_is_scavengable);
176}
177
178void ParallelScavengeHeap::update_counters() {
179 young_gen()->update_counters();
180 old_gen()->update_counters();
181 MetaspaceCounters::update_performance_counters();
182 CompressedClassSpaceCounters::update_performance_counters();
183}
184
185size_t ParallelScavengeHeap::capacity() const {
186 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
187 return value;
188}
189
190size_t ParallelScavengeHeap::used() const {
191 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
192 return value;
193}
194
195bool ParallelScavengeHeap::is_maximal_no_gc() const {
196 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
197}
198
199
200size_t ParallelScavengeHeap::max_capacity() const {
201 size_t estimated = reserved_region().byte_size();
202 if (UseAdaptiveSizePolicy) {
203 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
204 } else {
205 estimated -= young_gen()->to_space()->capacity_in_bytes();
206 }
207 return MAX2(estimated, capacity());
208}
209
210bool ParallelScavengeHeap::is_in(const void* p) const {
211 return young_gen()->is_in(p) || old_gen()->is_in(p);
212}
213
214bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
215 return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
216}
217
218// There are two levels of allocation policy here.
219//
220// When an allocation request fails, the requesting thread must invoke a VM
221// operation, transfer control to the VM thread, and await the results of a
222// garbage collection. That is quite expensive, and we should avoid doing it
223// multiple times if possible.
224//
225// To accomplish this, we have a basic allocation policy, and also a
226// failed allocation policy.
227//
228// The basic allocation policy controls how you allocate memory without
229// attempting garbage collection. It is okay to grab locks and
230// expand the heap, if that can be done without coming to a safepoint.
231// It is likely that the basic allocation policy will not be very
232// aggressive.
233//
234// The failed allocation policy is invoked from the VM thread after
235// the basic allocation policy is unable to satisfy a mem_allocate
236// request. This policy needs to cover the entire range of collection,
237// heap expansion, and out-of-memory conditions. It should make every
238// attempt to allocate the requested memory.
239
240// Basic allocation policy. Should never be called at a safepoint, or
241// from the VM thread.
242//
243// This method must handle cases where many mem_allocate requests fail
244// simultaneously. When that happens, only one VM operation will succeed,
245// and the rest will not be executed. For that reason, this method loops
246// during failed allocation attempts. If the java heap becomes exhausted,
247// we rely on the size_policy object to force a bail out.
248HeapWord* ParallelScavengeHeap::mem_allocate(
249 size_t size,
250 bool* gc_overhead_limit_was_exceeded) {
251 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
252 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
253 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
254
255 // In general gc_overhead_limit_was_exceeded should be false so
256 // set it so here and reset it to true only if the gc time
257 // limit is being exceeded as checked below.
258 *gc_overhead_limit_was_exceeded = false;
259
260 HeapWord* result = young_gen()->allocate(size);
261
262 uint loop_count = 0;
263 uint gc_count = 0;
264 uint gclocker_stalled_count = 0;
265
266 while (result == NULL) {
267 // We don't want to have multiple collections for a single filled generation.
268 // To prevent this, each thread tracks the total_collections() value, and if
269 // the count has changed, does not do a new collection.
270 //
271 // The collection count must be read only while holding the heap lock. VM
272 // operations also hold the heap lock during collections. There is a lock
273 // contention case where thread A blocks waiting on the Heap_lock, while
274 // thread B is holding it doing a collection. When thread A gets the lock,
275 // the collection count has already changed. To prevent duplicate collections,
276 // The policy MUST attempt allocations during the same period it reads the
277 // total_collections() value!
278 {
279 MutexLocker ml(Heap_lock);
280 gc_count = total_collections();
281
282 result = young_gen()->allocate(size);
283 if (result != NULL) {
284 return result;
285 }
286
287 // If certain conditions hold, try allocating from the old gen.
288 result = mem_allocate_old_gen(size);
289 if (result != NULL) {
290 return result;
291 }
292
293 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
294 return NULL;
295 }
296
297 // Failed to allocate without a gc.
298 if (GCLocker::is_active_and_needs_gc()) {
299 // If this thread is not in a jni critical section, we stall
300 // the requestor until the critical section has cleared and
301 // GC allowed. When the critical section clears, a GC is
302 // initiated by the last thread exiting the critical section; so
303 // we retry the allocation sequence from the beginning of the loop,
304 // rather than causing more, now probably unnecessary, GC attempts.
305 JavaThread* jthr = JavaThread::current();
306 if (!jthr->in_critical()) {
307 MutexUnlocker mul(Heap_lock);
308 GCLocker::stall_until_clear();
309 gclocker_stalled_count += 1;
310 continue;
311 } else {
312 if (CheckJNICalls) {
313 fatal("Possible deadlock due to allocating while"
314 " in jni critical section");
315 }
316 return NULL;
317 }
318 }
319 }
320
321 if (result == NULL) {
322 // Generate a VM operation
323 VM_ParallelGCFailedAllocation op(size, gc_count);
324 VMThread::execute(&op);
325
326 // Did the VM operation execute? If so, return the result directly.
327 // This prevents us from looping until time out on requests that can
328 // not be satisfied.
329 if (op.prologue_succeeded()) {
330 assert(is_in_or_null(op.result()), "result not in heap");
331
332 // If GC was locked out during VM operation then retry allocation
333 // and/or stall as necessary.
334 if (op.gc_locked()) {
335 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
336 continue; // retry and/or stall as necessary
337 }
338
339 // Exit the loop if the gc time limit has been exceeded.
340 // The allocation must have failed above ("result" guarding
341 // this path is NULL) and the most recent collection has exceeded the
342 // gc overhead limit (although enough may have been collected to
343 // satisfy the allocation). Exit the loop so that an out-of-memory
344 // will be thrown (return a NULL ignoring the contents of
345 // op.result()),
346 // but clear gc_overhead_limit_exceeded so that the next collection
347 // starts with a clean slate (i.e., forgets about previous overhead
348 // excesses). Fill op.result() with a filler object so that the
349 // heap remains parsable.
350 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
351 const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
352
353 if (limit_exceeded && softrefs_clear) {
354 *gc_overhead_limit_was_exceeded = true;
355 size_policy()->set_gc_overhead_limit_exceeded(false);
356 log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
357 if (op.result() != NULL) {
358 CollectedHeap::fill_with_object(op.result(), size);
359 }
360 return NULL;
361 }
362
363 return op.result();
364 }
365 }
366
367 // The policy object will prevent us from looping forever. If the
368 // time spent in gc crosses a threshold, we will bail out.
369 loop_count++;
370 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
371 (loop_count % QueuedAllocationWarningCount == 0)) {
372 log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
373 log_warning(gc)("\tsize=" SIZE_FORMAT, size);
374 }
375 }
376
377 return result;
378}
379
380// A "death march" is a series of ultra-slow allocations in which a full gc is
381// done before each allocation, and after the full gc the allocation still
382// cannot be satisfied from the young gen. This routine detects that condition;
383// it should be called after a full gc has been done and the allocation
384// attempted from the young gen. The parameter 'addr' should be the result of
385// that young gen allocation attempt.
386void
387ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
388 if (addr != NULL) {
389 _death_march_count = 0; // death march has ended
390 } else if (_death_march_count == 0) {
391 if (should_alloc_in_eden(size)) {
392 _death_march_count = 1; // death march has started
393 }
394 }
395}
396
397HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
398 if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
399 // Size is too big for eden, or gc is locked out.
400 return old_gen()->allocate(size);
401 }
402
403 // If a "death march" is in progress, allocate from the old gen a limited
404 // number of times before doing a GC.
405 if (_death_march_count > 0) {
406 if (_death_march_count < 64) {
407 ++_death_march_count;
408 return old_gen()->allocate(size);
409 } else {
410 _death_march_count = 0;
411 }
412 }
413 return NULL;
414}
415
416void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
417 if (UseParallelOldGC) {
418 // The do_full_collection() parameter clear_all_soft_refs
419 // is interpreted here as maximum_compaction which will
420 // cause SoftRefs to be cleared.
421 bool maximum_compaction = clear_all_soft_refs;
422 PSParallelCompact::invoke(maximum_compaction);
423 } else {
424 PSMarkSweepProxy::invoke(clear_all_soft_refs);
425 }
426}
427
428// Failed allocation policy. Must be called from the VM thread, and
429// only at a safepoint! Note that this method has policy for allocation
430// flow, and NOT collection policy. So we do not check for gc collection
431// time over limit here, that is the responsibility of the heap specific
432// collection methods. This method decides where to attempt allocations,
433// and when to attempt collections, but no collection specific policy.
434HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
435 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
436 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
437 assert(!is_gc_active(), "not reentrant");
438 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
439
440 // We assume that allocation in eden will fail unless we collect.
441
442 // First level allocation failure, scavenge and allocate in young gen.
443 GCCauseSetter gccs(this, GCCause::_allocation_failure);
444 const bool invoked_full_gc = PSScavenge::invoke();
445 HeapWord* result = young_gen()->allocate(size);
446
447 // Second level allocation failure.
448 // Mark sweep and allocate in young generation.
449 if (result == NULL && !invoked_full_gc) {
450 do_full_collection(false);
451 result = young_gen()->allocate(size);
452 }
453
454 death_march_check(result, size);
455
456 // Third level allocation failure.
457 // After mark sweep and young generation allocation failure,
458 // allocate in old generation.
459 if (result == NULL) {
460 result = old_gen()->allocate(size);
461 }
462
463 // Fourth level allocation failure. We're running out of memory.
464 // More complete mark sweep and allocate in young generation.
465 if (result == NULL) {
466 do_full_collection(true);
467 result = young_gen()->allocate(size);
468 }
469
470 // Fifth level allocation failure.
471 // After more complete mark sweep, allocate in old generation.
472 if (result == NULL) {
473 result = old_gen()->allocate(size);
474 }
475
476 return result;
477}
478
479void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
480 CollectedHeap::ensure_parsability(retire_tlabs);
481 young_gen()->eden_space()->ensure_parsability();
482}
483
484size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
485 return young_gen()->eden_space()->tlab_capacity(thr);
486}
487
488size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
489 return young_gen()->eden_space()->tlab_used(thr);
490}
491
492size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
493 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
494}
495
496HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
497 HeapWord* result = young_gen()->allocate(requested_size);
498 if (result != NULL) {
499 *actual_size = requested_size;
500 }
501
502 return result;
503}
504
505void ParallelScavengeHeap::resize_all_tlabs() {
506 CollectedHeap::resize_all_tlabs();
507}
508
509// This method is used by System.gc() and JVMTI.
510void ParallelScavengeHeap::collect(GCCause::Cause cause) {
511 assert(!Heap_lock->owned_by_self(),
512 "this thread should not own the Heap_lock");
513
514 uint gc_count = 0;
515 uint full_gc_count = 0;
516 {
517 MutexLocker ml(Heap_lock);
518 // This value is guarded by the Heap_lock
519 gc_count = total_collections();
520 full_gc_count = total_full_collections();
521 }
522
523 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
524 VMThread::execute(&op);
525}
526
527void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
528 young_gen()->object_iterate(cl);
529 old_gen()->object_iterate(cl);
530}
531
532
533HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
534 if (young_gen()->is_in_reserved(addr)) {
535 assert(young_gen()->is_in(addr),
536 "addr should be in allocated part of young gen");
537 // called from os::print_location by find or VMError
538 if (Debugging || VMError::fatal_error_in_progress()) return NULL;
539 Unimplemented();
540 } else if (old_gen()->is_in_reserved(addr)) {
541 assert(old_gen()->is_in(addr),
542 "addr should be in allocated part of old gen");
543 return old_gen()->start_array()->object_start((HeapWord*)addr);
544 }
545 return 0;
546}
547
548bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
549 return block_start(addr) == addr;
550}
551
552jlong ParallelScavengeHeap::millis_since_last_gc() {
553 return UseParallelOldGC ?
554 PSParallelCompact::millis_since_last_gc() :
555 PSMarkSweepProxy::millis_since_last_gc();
556}
557
558void ParallelScavengeHeap::prepare_for_verify() {
559 ensure_parsability(false); // no need to retire TLABs for verification
560}
561
562PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
563 PSOldGen* old = old_gen();
564 HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
565 VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
566 SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
567
568 PSYoungGen* young = young_gen();
569 VirtualSpaceSummary young_summary(young->reserved().start(),
570 (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
571
572 MutableSpace* eden = young_gen()->eden_space();
573 SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
574
575 MutableSpace* from = young_gen()->from_space();
576 SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
577
578 MutableSpace* to = young_gen()->to_space();
579 SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
580
581 VirtualSpaceSummary heap_summary = create_heap_space_summary();
582 return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
583}
584
585void ParallelScavengeHeap::print_on(outputStream* st) const {
586 young_gen()->print_on(st);
587 old_gen()->print_on(st);
588 MetaspaceUtils::print_on(st);
589}
590
591void ParallelScavengeHeap::print_on_error(outputStream* st) const {
592 this->CollectedHeap::print_on_error(st);
593
594 if (UseParallelOldGC) {
595 st->cr();
596 PSParallelCompact::print_on_error(st);
597 }
598}
599
600void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
601 PSScavenge::gc_task_manager()->threads_do(tc);
602}
603
604void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
605 PSScavenge::gc_task_manager()->print_threads_on(st);
606}
607
608void ParallelScavengeHeap::print_tracing_info() const {
609 AdaptiveSizePolicyOutput::print();
610 log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
611 log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
612 UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
613}
614
615
616void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
617 // Why do we need the total_collections()-filter below?
618 if (total_collections() > 0) {
619 log_debug(gc, verify)("Tenured");
620 old_gen()->verify();
621
622 log_debug(gc, verify)("Eden");
623 young_gen()->verify();
624 }
625}
626
627void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
628 const PSHeapSummary& heap_summary = create_ps_heap_summary();
629 gc_tracer->report_gc_heap_summary(when, heap_summary);
630
631 const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
632 gc_tracer->report_metaspace_summary(when, metaspace_summary);
633}
634
635ParallelScavengeHeap* ParallelScavengeHeap::heap() {
636 CollectedHeap* heap = Universe::heap();
637 assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
638 assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
639 return (ParallelScavengeHeap*)heap;
640}
641
642CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
643 return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
644}
645
646PSCardTable* ParallelScavengeHeap::card_table() {
647 return static_cast<PSCardTable*>(barrier_set()->card_table());
648}
649
650// Before delegating the resize to the young generation,
651// the reserved space for the young and old generations
652// may be changed to accommodate the desired resize.
653void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
654 size_t survivor_size) {
655 if (UseAdaptiveGCBoundary) {
656 if (size_policy()->bytes_absorbed_from_eden() != 0) {
657 size_policy()->reset_bytes_absorbed_from_eden();
658 return; // The generation changed size already.
659 }
660 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
661 }
662
663 // Delegate the resize to the generation.
664 _young_gen->resize(eden_size, survivor_size);
665}
666
667// Before delegating the resize to the old generation,
668// the reserved space for the young and old generations
669// may be changed to accommodate the desired resize.
670void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
671 if (UseAdaptiveGCBoundary) {
672 if (size_policy()->bytes_absorbed_from_eden() != 0) {
673 size_policy()->reset_bytes_absorbed_from_eden();
674 return; // The generation changed size already.
675 }
676 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
677 }
678
679 // Delegate the resize to the generation.
680 _old_gen->resize(desired_free_space);
681}
682
683ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
684 // nothing particular
685}
686
687ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
688 // nothing particular
689}
690
691#ifndef PRODUCT
692void ParallelScavengeHeap::record_gen_tops_before_GC() {
693 if (ZapUnusedHeapArea) {
694 young_gen()->record_spaces_top();
695 old_gen()->record_spaces_top();
696 }
697}
698
699void ParallelScavengeHeap::gen_mangle_unused_area() {
700 if (ZapUnusedHeapArea) {
701 young_gen()->eden_space()->mangle_unused_area();
702 young_gen()->to_space()->mangle_unused_area();
703 young_gen()->from_space()->mangle_unused_area();
704 old_gen()->object_space()->mangle_unused_area();
705 }
706}
707#endif
708
709void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
710 ScavengableNMethods::register_nmethod(nm);
711}
712
713void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
714 ScavengableNMethods::unregister_nmethod(nm);
715}
716
717void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
718 ScavengableNMethods::verify_nmethod(nm);
719}
720
721void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
722 // nothing particular
723}
724
725void ParallelScavengeHeap::prune_scavengable_nmethods() {
726 ScavengableNMethods::prune_nmethods();
727}
728
729GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
730 GrowableArray<GCMemoryManager*> memory_managers(2);
731 memory_managers.append(_young_manager);
732 memory_managers.append(_old_manager);
733 return memory_managers;
734}
735
736GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
737 GrowableArray<MemoryPool*> memory_pools(3);
738 memory_pools.append(_eden_pool);
739 memory_pools.append(_survivor_pool);
740 memory_pools.append(_old_pool);
741 return memory_pools;
742}
743