| 1 | /* |
| 2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "code/codeCache.hpp" |
| 27 | #include "gc/parallel/adjoiningGenerations.hpp" |
| 28 | #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp" |
| 29 | #include "gc/parallel/adjoiningVirtualSpaces.hpp" |
| 30 | #include "gc/parallel/parallelArguments.hpp" |
| 31 | #include "gc/parallel/gcTaskManager.hpp" |
| 32 | #include "gc/parallel/objectStartArray.inline.hpp" |
| 33 | #include "gc/parallel/parallelScavengeHeap.inline.hpp" |
| 34 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
| 35 | #include "gc/parallel/psMarkSweepProxy.hpp" |
| 36 | #include "gc/parallel/psMemoryPool.hpp" |
| 37 | #include "gc/parallel/psParallelCompact.inline.hpp" |
| 38 | #include "gc/parallel/psPromotionManager.hpp" |
| 39 | #include "gc/parallel/psScavenge.hpp" |
| 40 | #include "gc/parallel/psVMOperations.hpp" |
| 41 | #include "gc/shared/gcHeapSummary.hpp" |
| 42 | #include "gc/shared/gcLocker.hpp" |
| 43 | #include "gc/shared/gcWhen.hpp" |
| 44 | #include "gc/shared/genArguments.hpp" |
| 45 | #include "gc/shared/scavengableNMethods.hpp" |
| 46 | #include "logging/log.hpp" |
| 47 | #include "memory/metaspaceCounters.hpp" |
| 48 | #include "memory/universe.hpp" |
| 49 | #include "oops/oop.inline.hpp" |
| 50 | #include "runtime/handles.inline.hpp" |
| 51 | #include "runtime/java.hpp" |
| 52 | #include "runtime/vmThread.hpp" |
| 53 | #include "services/memoryManager.hpp" |
| 54 | #include "services/memTracker.hpp" |
| 55 | #include "utilities/macros.hpp" |
| 56 | #include "utilities/vmError.hpp" |
| 57 | |
| 58 | PSYoungGen* ParallelScavengeHeap::_young_gen = NULL; |
| 59 | PSOldGen* ParallelScavengeHeap::_old_gen = NULL; |
| 60 | PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL; |
| 61 | PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL; |
| 62 | GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL; |
| 63 | |
| 64 | jint ParallelScavengeHeap::initialize() { |
| 65 | const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes(); |
| 66 | |
| 67 | ReservedSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment); |
| 68 | |
| 69 | os::trace_page_sizes("Heap" , |
| 70 | MinHeapSize, |
| 71 | reserved_heap_size, |
| 72 | GenAlignment, |
| 73 | heap_rs.base(), |
| 74 | heap_rs.size()); |
| 75 | |
| 76 | initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); |
| 77 | |
| 78 | PSCardTable* card_table = new PSCardTable(reserved_region()); |
| 79 | card_table->initialize(); |
| 80 | CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table); |
| 81 | barrier_set->initialize(); |
| 82 | BarrierSet::set_barrier_set(barrier_set); |
| 83 | |
| 84 | // Make up the generations |
| 85 | // Calculate the maximum size that a generation can grow. This |
| 86 | // includes growth into the other generation. Note that the |
| 87 | // parameter _max_gen_size is kept as the maximum |
| 88 | // size of the generation as the boundaries currently stand. |
| 89 | // _max_gen_size is still used as that value. |
| 90 | double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0; |
| 91 | double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0; |
| 92 | |
| 93 | _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs); |
| 94 | |
| 95 | _old_gen = _gens->old_gen(); |
| 96 | _young_gen = _gens->young_gen(); |
| 97 | |
| 98 | const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes(); |
| 99 | const size_t old_capacity = _old_gen->capacity_in_bytes(); |
| 100 | const size_t initial_promo_size = MIN2(eden_capacity, old_capacity); |
| 101 | _size_policy = |
| 102 | new PSAdaptiveSizePolicy(eden_capacity, |
| 103 | initial_promo_size, |
| 104 | young_gen()->to_space()->capacity_in_bytes(), |
| 105 | GenAlignment, |
| 106 | max_gc_pause_sec, |
| 107 | max_gc_minor_pause_sec, |
| 108 | GCTimeRatio |
| 109 | ); |
| 110 | |
| 111 | assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary || |
| 112 | (old_gen()->virtual_space()->high_boundary() == |
| 113 | young_gen()->virtual_space()->low_boundary()), |
| 114 | "Boundaries must meet" ); |
| 115 | // initialize the policy counters - 2 collectors, 2 generations |
| 116 | _gc_policy_counters = |
| 117 | new PSGCAdaptivePolicyCounters("ParScav:MSC" , 2, 2, _size_policy); |
| 118 | |
| 119 | // Set up the GCTaskManager |
| 120 | _gc_task_manager = GCTaskManager::create(ParallelGCThreads); |
| 121 | |
| 122 | if (UseParallelOldGC && !PSParallelCompact::initialize()) { |
| 123 | return JNI_ENOMEM; |
| 124 | } |
| 125 | |
| 126 | return JNI_OK; |
| 127 | } |
| 128 | |
| 129 | void ParallelScavengeHeap::initialize_serviceability() { |
| 130 | |
| 131 | _eden_pool = new EdenMutableSpacePool(_young_gen, |
| 132 | _young_gen->eden_space(), |
| 133 | "PS Eden Space" , |
| 134 | false /* support_usage_threshold */); |
| 135 | |
| 136 | _survivor_pool = new SurvivorMutableSpacePool(_young_gen, |
| 137 | "PS Survivor Space" , |
| 138 | false /* support_usage_threshold */); |
| 139 | |
| 140 | _old_pool = new PSGenerationPool(_old_gen, |
| 141 | "PS Old Gen" , |
| 142 | true /* support_usage_threshold */); |
| 143 | |
| 144 | _young_manager = new GCMemoryManager("PS Scavenge" , "end of minor GC" ); |
| 145 | _old_manager = new GCMemoryManager("PS MarkSweep" , "end of major GC" ); |
| 146 | |
| 147 | _old_manager->add_pool(_eden_pool); |
| 148 | _old_manager->add_pool(_survivor_pool); |
| 149 | _old_manager->add_pool(_old_pool); |
| 150 | |
| 151 | _young_manager->add_pool(_eden_pool); |
| 152 | _young_manager->add_pool(_survivor_pool); |
| 153 | |
| 154 | } |
| 155 | |
| 156 | class PSIsScavengable : public BoolObjectClosure { |
| 157 | bool do_object_b(oop obj) { |
| 158 | return ParallelScavengeHeap::heap()->is_in_young(obj); |
| 159 | } |
| 160 | }; |
| 161 | |
| 162 | static PSIsScavengable _is_scavengable; |
| 163 | |
| 164 | void ParallelScavengeHeap::post_initialize() { |
| 165 | CollectedHeap::post_initialize(); |
| 166 | // Need to init the tenuring threshold |
| 167 | PSScavenge::initialize(); |
| 168 | if (UseParallelOldGC) { |
| 169 | PSParallelCompact::post_initialize(); |
| 170 | } else { |
| 171 | PSMarkSweepProxy::initialize(); |
| 172 | } |
| 173 | PSPromotionManager::initialize(); |
| 174 | |
| 175 | ScavengableNMethods::initialize(&_is_scavengable); |
| 176 | } |
| 177 | |
| 178 | void ParallelScavengeHeap::update_counters() { |
| 179 | young_gen()->update_counters(); |
| 180 | old_gen()->update_counters(); |
| 181 | MetaspaceCounters::update_performance_counters(); |
| 182 | CompressedClassSpaceCounters::update_performance_counters(); |
| 183 | } |
| 184 | |
| 185 | size_t ParallelScavengeHeap::capacity() const { |
| 186 | size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes(); |
| 187 | return value; |
| 188 | } |
| 189 | |
| 190 | size_t ParallelScavengeHeap::used() const { |
| 191 | size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes(); |
| 192 | return value; |
| 193 | } |
| 194 | |
| 195 | bool ParallelScavengeHeap::is_maximal_no_gc() const { |
| 196 | return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc(); |
| 197 | } |
| 198 | |
| 199 | |
| 200 | size_t ParallelScavengeHeap::max_capacity() const { |
| 201 | size_t estimated = reserved_region().byte_size(); |
| 202 | if (UseAdaptiveSizePolicy) { |
| 203 | estimated -= _size_policy->max_survivor_size(young_gen()->max_size()); |
| 204 | } else { |
| 205 | estimated -= young_gen()->to_space()->capacity_in_bytes(); |
| 206 | } |
| 207 | return MAX2(estimated, capacity()); |
| 208 | } |
| 209 | |
| 210 | bool ParallelScavengeHeap::is_in(const void* p) const { |
| 211 | return young_gen()->is_in(p) || old_gen()->is_in(p); |
| 212 | } |
| 213 | |
| 214 | bool ParallelScavengeHeap::is_in_reserved(const void* p) const { |
| 215 | return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p); |
| 216 | } |
| 217 | |
| 218 | // There are two levels of allocation policy here. |
| 219 | // |
| 220 | // When an allocation request fails, the requesting thread must invoke a VM |
| 221 | // operation, transfer control to the VM thread, and await the results of a |
| 222 | // garbage collection. That is quite expensive, and we should avoid doing it |
| 223 | // multiple times if possible. |
| 224 | // |
| 225 | // To accomplish this, we have a basic allocation policy, and also a |
| 226 | // failed allocation policy. |
| 227 | // |
| 228 | // The basic allocation policy controls how you allocate memory without |
| 229 | // attempting garbage collection. It is okay to grab locks and |
| 230 | // expand the heap, if that can be done without coming to a safepoint. |
| 231 | // It is likely that the basic allocation policy will not be very |
| 232 | // aggressive. |
| 233 | // |
| 234 | // The failed allocation policy is invoked from the VM thread after |
| 235 | // the basic allocation policy is unable to satisfy a mem_allocate |
| 236 | // request. This policy needs to cover the entire range of collection, |
| 237 | // heap expansion, and out-of-memory conditions. It should make every |
| 238 | // attempt to allocate the requested memory. |
| 239 | |
| 240 | // Basic allocation policy. Should never be called at a safepoint, or |
| 241 | // from the VM thread. |
| 242 | // |
| 243 | // This method must handle cases where many mem_allocate requests fail |
| 244 | // simultaneously. When that happens, only one VM operation will succeed, |
| 245 | // and the rest will not be executed. For that reason, this method loops |
| 246 | // during failed allocation attempts. If the java heap becomes exhausted, |
| 247 | // we rely on the size_policy object to force a bail out. |
| 248 | HeapWord* ParallelScavengeHeap::mem_allocate( |
| 249 | size_t size, |
| 250 | bool* gc_overhead_limit_was_exceeded) { |
| 251 | assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint" ); |
| 252 | assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread" ); |
| 253 | assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock" ); |
| 254 | |
| 255 | // In general gc_overhead_limit_was_exceeded should be false so |
| 256 | // set it so here and reset it to true only if the gc time |
| 257 | // limit is being exceeded as checked below. |
| 258 | *gc_overhead_limit_was_exceeded = false; |
| 259 | |
| 260 | HeapWord* result = young_gen()->allocate(size); |
| 261 | |
| 262 | uint loop_count = 0; |
| 263 | uint gc_count = 0; |
| 264 | uint gclocker_stalled_count = 0; |
| 265 | |
| 266 | while (result == NULL) { |
| 267 | // We don't want to have multiple collections for a single filled generation. |
| 268 | // To prevent this, each thread tracks the total_collections() value, and if |
| 269 | // the count has changed, does not do a new collection. |
| 270 | // |
| 271 | // The collection count must be read only while holding the heap lock. VM |
| 272 | // operations also hold the heap lock during collections. There is a lock |
| 273 | // contention case where thread A blocks waiting on the Heap_lock, while |
| 274 | // thread B is holding it doing a collection. When thread A gets the lock, |
| 275 | // the collection count has already changed. To prevent duplicate collections, |
| 276 | // The policy MUST attempt allocations during the same period it reads the |
| 277 | // total_collections() value! |
| 278 | { |
| 279 | MutexLocker ml(Heap_lock); |
| 280 | gc_count = total_collections(); |
| 281 | |
| 282 | result = young_gen()->allocate(size); |
| 283 | if (result != NULL) { |
| 284 | return result; |
| 285 | } |
| 286 | |
| 287 | // If certain conditions hold, try allocating from the old gen. |
| 288 | result = mem_allocate_old_gen(size); |
| 289 | if (result != NULL) { |
| 290 | return result; |
| 291 | } |
| 292 | |
| 293 | if (gclocker_stalled_count > GCLockerRetryAllocationCount) { |
| 294 | return NULL; |
| 295 | } |
| 296 | |
| 297 | // Failed to allocate without a gc. |
| 298 | if (GCLocker::is_active_and_needs_gc()) { |
| 299 | // If this thread is not in a jni critical section, we stall |
| 300 | // the requestor until the critical section has cleared and |
| 301 | // GC allowed. When the critical section clears, a GC is |
| 302 | // initiated by the last thread exiting the critical section; so |
| 303 | // we retry the allocation sequence from the beginning of the loop, |
| 304 | // rather than causing more, now probably unnecessary, GC attempts. |
| 305 | JavaThread* jthr = JavaThread::current(); |
| 306 | if (!jthr->in_critical()) { |
| 307 | MutexUnlocker mul(Heap_lock); |
| 308 | GCLocker::stall_until_clear(); |
| 309 | gclocker_stalled_count += 1; |
| 310 | continue; |
| 311 | } else { |
| 312 | if (CheckJNICalls) { |
| 313 | fatal("Possible deadlock due to allocating while" |
| 314 | " in jni critical section" ); |
| 315 | } |
| 316 | return NULL; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | if (result == NULL) { |
| 322 | // Generate a VM operation |
| 323 | VM_ParallelGCFailedAllocation op(size, gc_count); |
| 324 | VMThread::execute(&op); |
| 325 | |
| 326 | // Did the VM operation execute? If so, return the result directly. |
| 327 | // This prevents us from looping until time out on requests that can |
| 328 | // not be satisfied. |
| 329 | if (op.prologue_succeeded()) { |
| 330 | assert(is_in_or_null(op.result()), "result not in heap" ); |
| 331 | |
| 332 | // If GC was locked out during VM operation then retry allocation |
| 333 | // and/or stall as necessary. |
| 334 | if (op.gc_locked()) { |
| 335 | assert(op.result() == NULL, "must be NULL if gc_locked() is true" ); |
| 336 | continue; // retry and/or stall as necessary |
| 337 | } |
| 338 | |
| 339 | // Exit the loop if the gc time limit has been exceeded. |
| 340 | // The allocation must have failed above ("result" guarding |
| 341 | // this path is NULL) and the most recent collection has exceeded the |
| 342 | // gc overhead limit (although enough may have been collected to |
| 343 | // satisfy the allocation). Exit the loop so that an out-of-memory |
| 344 | // will be thrown (return a NULL ignoring the contents of |
| 345 | // op.result()), |
| 346 | // but clear gc_overhead_limit_exceeded so that the next collection |
| 347 | // starts with a clean slate (i.e., forgets about previous overhead |
| 348 | // excesses). Fill op.result() with a filler object so that the |
| 349 | // heap remains parsable. |
| 350 | const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded(); |
| 351 | const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear(); |
| 352 | |
| 353 | if (limit_exceeded && softrefs_clear) { |
| 354 | *gc_overhead_limit_was_exceeded = true; |
| 355 | size_policy()->set_gc_overhead_limit_exceeded(false); |
| 356 | log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set" ); |
| 357 | if (op.result() != NULL) { |
| 358 | CollectedHeap::fill_with_object(op.result(), size); |
| 359 | } |
| 360 | return NULL; |
| 361 | } |
| 362 | |
| 363 | return op.result(); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // The policy object will prevent us from looping forever. If the |
| 368 | // time spent in gc crosses a threshold, we will bail out. |
| 369 | loop_count++; |
| 370 | if ((result == NULL) && (QueuedAllocationWarningCount > 0) && |
| 371 | (loop_count % QueuedAllocationWarningCount == 0)) { |
| 372 | log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times" , loop_count); |
| 373 | log_warning(gc)("\tsize=" SIZE_FORMAT, size); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | return result; |
| 378 | } |
| 379 | |
| 380 | // A "death march" is a series of ultra-slow allocations in which a full gc is |
| 381 | // done before each allocation, and after the full gc the allocation still |
| 382 | // cannot be satisfied from the young gen. This routine detects that condition; |
| 383 | // it should be called after a full gc has been done and the allocation |
| 384 | // attempted from the young gen. The parameter 'addr' should be the result of |
| 385 | // that young gen allocation attempt. |
| 386 | void |
| 387 | ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) { |
| 388 | if (addr != NULL) { |
| 389 | _death_march_count = 0; // death march has ended |
| 390 | } else if (_death_march_count == 0) { |
| 391 | if (should_alloc_in_eden(size)) { |
| 392 | _death_march_count = 1; // death march has started |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) { |
| 398 | if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) { |
| 399 | // Size is too big for eden, or gc is locked out. |
| 400 | return old_gen()->allocate(size); |
| 401 | } |
| 402 | |
| 403 | // If a "death march" is in progress, allocate from the old gen a limited |
| 404 | // number of times before doing a GC. |
| 405 | if (_death_march_count > 0) { |
| 406 | if (_death_march_count < 64) { |
| 407 | ++_death_march_count; |
| 408 | return old_gen()->allocate(size); |
| 409 | } else { |
| 410 | _death_march_count = 0; |
| 411 | } |
| 412 | } |
| 413 | return NULL; |
| 414 | } |
| 415 | |
| 416 | void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) { |
| 417 | if (UseParallelOldGC) { |
| 418 | // The do_full_collection() parameter clear_all_soft_refs |
| 419 | // is interpreted here as maximum_compaction which will |
| 420 | // cause SoftRefs to be cleared. |
| 421 | bool maximum_compaction = clear_all_soft_refs; |
| 422 | PSParallelCompact::invoke(maximum_compaction); |
| 423 | } else { |
| 424 | PSMarkSweepProxy::invoke(clear_all_soft_refs); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | // Failed allocation policy. Must be called from the VM thread, and |
| 429 | // only at a safepoint! Note that this method has policy for allocation |
| 430 | // flow, and NOT collection policy. So we do not check for gc collection |
| 431 | // time over limit here, that is the responsibility of the heap specific |
| 432 | // collection methods. This method decides where to attempt allocations, |
| 433 | // and when to attempt collections, but no collection specific policy. |
| 434 | HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) { |
| 435 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
| 436 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread" ); |
| 437 | assert(!is_gc_active(), "not reentrant" ); |
| 438 | assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock" ); |
| 439 | |
| 440 | // We assume that allocation in eden will fail unless we collect. |
| 441 | |
| 442 | // First level allocation failure, scavenge and allocate in young gen. |
| 443 | GCCauseSetter gccs(this, GCCause::_allocation_failure); |
| 444 | const bool invoked_full_gc = PSScavenge::invoke(); |
| 445 | HeapWord* result = young_gen()->allocate(size); |
| 446 | |
| 447 | // Second level allocation failure. |
| 448 | // Mark sweep and allocate in young generation. |
| 449 | if (result == NULL && !invoked_full_gc) { |
| 450 | do_full_collection(false); |
| 451 | result = young_gen()->allocate(size); |
| 452 | } |
| 453 | |
| 454 | death_march_check(result, size); |
| 455 | |
| 456 | // Third level allocation failure. |
| 457 | // After mark sweep and young generation allocation failure, |
| 458 | // allocate in old generation. |
| 459 | if (result == NULL) { |
| 460 | result = old_gen()->allocate(size); |
| 461 | } |
| 462 | |
| 463 | // Fourth level allocation failure. We're running out of memory. |
| 464 | // More complete mark sweep and allocate in young generation. |
| 465 | if (result == NULL) { |
| 466 | do_full_collection(true); |
| 467 | result = young_gen()->allocate(size); |
| 468 | } |
| 469 | |
| 470 | // Fifth level allocation failure. |
| 471 | // After more complete mark sweep, allocate in old generation. |
| 472 | if (result == NULL) { |
| 473 | result = old_gen()->allocate(size); |
| 474 | } |
| 475 | |
| 476 | return result; |
| 477 | } |
| 478 | |
| 479 | void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) { |
| 480 | CollectedHeap::ensure_parsability(retire_tlabs); |
| 481 | young_gen()->eden_space()->ensure_parsability(); |
| 482 | } |
| 483 | |
| 484 | size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const { |
| 485 | return young_gen()->eden_space()->tlab_capacity(thr); |
| 486 | } |
| 487 | |
| 488 | size_t ParallelScavengeHeap::tlab_used(Thread* thr) const { |
| 489 | return young_gen()->eden_space()->tlab_used(thr); |
| 490 | } |
| 491 | |
| 492 | size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const { |
| 493 | return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr); |
| 494 | } |
| 495 | |
| 496 | HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { |
| 497 | HeapWord* result = young_gen()->allocate(requested_size); |
| 498 | if (result != NULL) { |
| 499 | *actual_size = requested_size; |
| 500 | } |
| 501 | |
| 502 | return result; |
| 503 | } |
| 504 | |
| 505 | void ParallelScavengeHeap::resize_all_tlabs() { |
| 506 | CollectedHeap::resize_all_tlabs(); |
| 507 | } |
| 508 | |
| 509 | // This method is used by System.gc() and JVMTI. |
| 510 | void ParallelScavengeHeap::collect(GCCause::Cause cause) { |
| 511 | assert(!Heap_lock->owned_by_self(), |
| 512 | "this thread should not own the Heap_lock" ); |
| 513 | |
| 514 | uint gc_count = 0; |
| 515 | uint full_gc_count = 0; |
| 516 | { |
| 517 | MutexLocker ml(Heap_lock); |
| 518 | // This value is guarded by the Heap_lock |
| 519 | gc_count = total_collections(); |
| 520 | full_gc_count = total_full_collections(); |
| 521 | } |
| 522 | |
| 523 | VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause); |
| 524 | VMThread::execute(&op); |
| 525 | } |
| 526 | |
| 527 | void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) { |
| 528 | young_gen()->object_iterate(cl); |
| 529 | old_gen()->object_iterate(cl); |
| 530 | } |
| 531 | |
| 532 | |
| 533 | HeapWord* ParallelScavengeHeap::block_start(const void* addr) const { |
| 534 | if (young_gen()->is_in_reserved(addr)) { |
| 535 | assert(young_gen()->is_in(addr), |
| 536 | "addr should be in allocated part of young gen" ); |
| 537 | // called from os::print_location by find or VMError |
| 538 | if (Debugging || VMError::fatal_error_in_progress()) return NULL; |
| 539 | Unimplemented(); |
| 540 | } else if (old_gen()->is_in_reserved(addr)) { |
| 541 | assert(old_gen()->is_in(addr), |
| 542 | "addr should be in allocated part of old gen" ); |
| 543 | return old_gen()->start_array()->object_start((HeapWord*)addr); |
| 544 | } |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const { |
| 549 | return block_start(addr) == addr; |
| 550 | } |
| 551 | |
| 552 | jlong ParallelScavengeHeap::millis_since_last_gc() { |
| 553 | return UseParallelOldGC ? |
| 554 | PSParallelCompact::millis_since_last_gc() : |
| 555 | PSMarkSweepProxy::millis_since_last_gc(); |
| 556 | } |
| 557 | |
| 558 | void ParallelScavengeHeap::prepare_for_verify() { |
| 559 | ensure_parsability(false); // no need to retire TLABs for verification |
| 560 | } |
| 561 | |
| 562 | PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() { |
| 563 | PSOldGen* old = old_gen(); |
| 564 | HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr(); |
| 565 | VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end()); |
| 566 | SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes()); |
| 567 | |
| 568 | PSYoungGen* young = young_gen(); |
| 569 | VirtualSpaceSummary young_summary(young->reserved().start(), |
| 570 | (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end()); |
| 571 | |
| 572 | MutableSpace* eden = young_gen()->eden_space(); |
| 573 | SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes()); |
| 574 | |
| 575 | MutableSpace* from = young_gen()->from_space(); |
| 576 | SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes()); |
| 577 | |
| 578 | MutableSpace* to = young_gen()->to_space(); |
| 579 | SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes()); |
| 580 | |
| 581 | VirtualSpaceSummary heap_summary = create_heap_space_summary(); |
| 582 | return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space); |
| 583 | } |
| 584 | |
| 585 | void ParallelScavengeHeap::print_on(outputStream* st) const { |
| 586 | young_gen()->print_on(st); |
| 587 | old_gen()->print_on(st); |
| 588 | MetaspaceUtils::print_on(st); |
| 589 | } |
| 590 | |
| 591 | void ParallelScavengeHeap::print_on_error(outputStream* st) const { |
| 592 | this->CollectedHeap::print_on_error(st); |
| 593 | |
| 594 | if (UseParallelOldGC) { |
| 595 | st->cr(); |
| 596 | PSParallelCompact::print_on_error(st); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const { |
| 601 | PSScavenge::gc_task_manager()->threads_do(tc); |
| 602 | } |
| 603 | |
| 604 | void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const { |
| 605 | PSScavenge::gc_task_manager()->print_threads_on(st); |
| 606 | } |
| 607 | |
| 608 | void ParallelScavengeHeap::print_tracing_info() const { |
| 609 | AdaptiveSizePolicyOutput::print(); |
| 610 | log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs" , PSScavenge::accumulated_time()->seconds()); |
| 611 | log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs" , |
| 612 | UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds()); |
| 613 | } |
| 614 | |
| 615 | |
| 616 | void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) { |
| 617 | // Why do we need the total_collections()-filter below? |
| 618 | if (total_collections() > 0) { |
| 619 | log_debug(gc, verify)("Tenured" ); |
| 620 | old_gen()->verify(); |
| 621 | |
| 622 | log_debug(gc, verify)("Eden" ); |
| 623 | young_gen()->verify(); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { |
| 628 | const PSHeapSummary& heap_summary = create_ps_heap_summary(); |
| 629 | gc_tracer->report_gc_heap_summary(when, heap_summary); |
| 630 | |
| 631 | const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); |
| 632 | gc_tracer->report_metaspace_summary(when, metaspace_summary); |
| 633 | } |
| 634 | |
| 635 | ParallelScavengeHeap* ParallelScavengeHeap::heap() { |
| 636 | CollectedHeap* heap = Universe::heap(); |
| 637 | assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()" ); |
| 638 | assert(heap->kind() == CollectedHeap::Parallel, "Invalid name" ); |
| 639 | return (ParallelScavengeHeap*)heap; |
| 640 | } |
| 641 | |
| 642 | CardTableBarrierSet* ParallelScavengeHeap::barrier_set() { |
| 643 | return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set()); |
| 644 | } |
| 645 | |
| 646 | PSCardTable* ParallelScavengeHeap::card_table() { |
| 647 | return static_cast<PSCardTable*>(barrier_set()->card_table()); |
| 648 | } |
| 649 | |
| 650 | // Before delegating the resize to the young generation, |
| 651 | // the reserved space for the young and old generations |
| 652 | // may be changed to accommodate the desired resize. |
| 653 | void ParallelScavengeHeap::resize_young_gen(size_t eden_size, |
| 654 | size_t survivor_size) { |
| 655 | if (UseAdaptiveGCBoundary) { |
| 656 | if (size_policy()->bytes_absorbed_from_eden() != 0) { |
| 657 | size_policy()->reset_bytes_absorbed_from_eden(); |
| 658 | return; // The generation changed size already. |
| 659 | } |
| 660 | gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size); |
| 661 | } |
| 662 | |
| 663 | // Delegate the resize to the generation. |
| 664 | _young_gen->resize(eden_size, survivor_size); |
| 665 | } |
| 666 | |
| 667 | // Before delegating the resize to the old generation, |
| 668 | // the reserved space for the young and old generations |
| 669 | // may be changed to accommodate the desired resize. |
| 670 | void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) { |
| 671 | if (UseAdaptiveGCBoundary) { |
| 672 | if (size_policy()->bytes_absorbed_from_eden() != 0) { |
| 673 | size_policy()->reset_bytes_absorbed_from_eden(); |
| 674 | return; // The generation changed size already. |
| 675 | } |
| 676 | gens()->adjust_boundary_for_old_gen_needs(desired_free_space); |
| 677 | } |
| 678 | |
| 679 | // Delegate the resize to the generation. |
| 680 | _old_gen->resize(desired_free_space); |
| 681 | } |
| 682 | |
| 683 | ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() { |
| 684 | // nothing particular |
| 685 | } |
| 686 | |
| 687 | ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() { |
| 688 | // nothing particular |
| 689 | } |
| 690 | |
| 691 | #ifndef PRODUCT |
| 692 | void ParallelScavengeHeap::record_gen_tops_before_GC() { |
| 693 | if (ZapUnusedHeapArea) { |
| 694 | young_gen()->record_spaces_top(); |
| 695 | old_gen()->record_spaces_top(); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | void ParallelScavengeHeap::gen_mangle_unused_area() { |
| 700 | if (ZapUnusedHeapArea) { |
| 701 | young_gen()->eden_space()->mangle_unused_area(); |
| 702 | young_gen()->to_space()->mangle_unused_area(); |
| 703 | young_gen()->from_space()->mangle_unused_area(); |
| 704 | old_gen()->object_space()->mangle_unused_area(); |
| 705 | } |
| 706 | } |
| 707 | #endif |
| 708 | |
| 709 | void ParallelScavengeHeap::register_nmethod(nmethod* nm) { |
| 710 | ScavengableNMethods::register_nmethod(nm); |
| 711 | } |
| 712 | |
| 713 | void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) { |
| 714 | ScavengableNMethods::unregister_nmethod(nm); |
| 715 | } |
| 716 | |
| 717 | void ParallelScavengeHeap::verify_nmethod(nmethod* nm) { |
| 718 | ScavengableNMethods::verify_nmethod(nm); |
| 719 | } |
| 720 | |
| 721 | void ParallelScavengeHeap::flush_nmethod(nmethod* nm) { |
| 722 | // nothing particular |
| 723 | } |
| 724 | |
| 725 | void ParallelScavengeHeap::prune_scavengable_nmethods() { |
| 726 | ScavengableNMethods::prune_nmethods(); |
| 727 | } |
| 728 | |
| 729 | GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() { |
| 730 | GrowableArray<GCMemoryManager*> memory_managers(2); |
| 731 | memory_managers.append(_young_manager); |
| 732 | memory_managers.append(_old_manager); |
| 733 | return memory_managers; |
| 734 | } |
| 735 | |
| 736 | GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() { |
| 737 | GrowableArray<MemoryPool*> memory_pools(3); |
| 738 | memory_pools.append(_eden_pool); |
| 739 | memory_pools.append(_survivor_pool); |
| 740 | memory_pools.append(_old_pool); |
| 741 | return memory_pools; |
| 742 | } |
| 743 | |