1 | /* |
2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "code/codeCache.hpp" |
27 | #include "gc/parallel/adjoiningGenerations.hpp" |
28 | #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp" |
29 | #include "gc/parallel/adjoiningVirtualSpaces.hpp" |
30 | #include "gc/parallel/parallelArguments.hpp" |
31 | #include "gc/parallel/gcTaskManager.hpp" |
32 | #include "gc/parallel/objectStartArray.inline.hpp" |
33 | #include "gc/parallel/parallelScavengeHeap.inline.hpp" |
34 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
35 | #include "gc/parallel/psMarkSweepProxy.hpp" |
36 | #include "gc/parallel/psMemoryPool.hpp" |
37 | #include "gc/parallel/psParallelCompact.inline.hpp" |
38 | #include "gc/parallel/psPromotionManager.hpp" |
39 | #include "gc/parallel/psScavenge.hpp" |
40 | #include "gc/parallel/psVMOperations.hpp" |
41 | #include "gc/shared/gcHeapSummary.hpp" |
42 | #include "gc/shared/gcLocker.hpp" |
43 | #include "gc/shared/gcWhen.hpp" |
44 | #include "gc/shared/genArguments.hpp" |
45 | #include "gc/shared/scavengableNMethods.hpp" |
46 | #include "logging/log.hpp" |
47 | #include "memory/metaspaceCounters.hpp" |
48 | #include "memory/universe.hpp" |
49 | #include "oops/oop.inline.hpp" |
50 | #include "runtime/handles.inline.hpp" |
51 | #include "runtime/java.hpp" |
52 | #include "runtime/vmThread.hpp" |
53 | #include "services/memoryManager.hpp" |
54 | #include "services/memTracker.hpp" |
55 | #include "utilities/macros.hpp" |
56 | #include "utilities/vmError.hpp" |
57 | |
58 | PSYoungGen* ParallelScavengeHeap::_young_gen = NULL; |
59 | PSOldGen* ParallelScavengeHeap::_old_gen = NULL; |
60 | PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL; |
61 | PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL; |
62 | GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL; |
63 | |
64 | jint ParallelScavengeHeap::initialize() { |
65 | const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes(); |
66 | |
67 | ReservedSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment); |
68 | |
69 | os::trace_page_sizes("Heap" , |
70 | MinHeapSize, |
71 | reserved_heap_size, |
72 | GenAlignment, |
73 | heap_rs.base(), |
74 | heap_rs.size()); |
75 | |
76 | initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); |
77 | |
78 | PSCardTable* card_table = new PSCardTable(reserved_region()); |
79 | card_table->initialize(); |
80 | CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table); |
81 | barrier_set->initialize(); |
82 | BarrierSet::set_barrier_set(barrier_set); |
83 | |
84 | // Make up the generations |
85 | // Calculate the maximum size that a generation can grow. This |
86 | // includes growth into the other generation. Note that the |
87 | // parameter _max_gen_size is kept as the maximum |
88 | // size of the generation as the boundaries currently stand. |
89 | // _max_gen_size is still used as that value. |
90 | double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0; |
91 | double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0; |
92 | |
93 | _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs); |
94 | |
95 | _old_gen = _gens->old_gen(); |
96 | _young_gen = _gens->young_gen(); |
97 | |
98 | const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes(); |
99 | const size_t old_capacity = _old_gen->capacity_in_bytes(); |
100 | const size_t initial_promo_size = MIN2(eden_capacity, old_capacity); |
101 | _size_policy = |
102 | new PSAdaptiveSizePolicy(eden_capacity, |
103 | initial_promo_size, |
104 | young_gen()->to_space()->capacity_in_bytes(), |
105 | GenAlignment, |
106 | max_gc_pause_sec, |
107 | max_gc_minor_pause_sec, |
108 | GCTimeRatio |
109 | ); |
110 | |
111 | assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary || |
112 | (old_gen()->virtual_space()->high_boundary() == |
113 | young_gen()->virtual_space()->low_boundary()), |
114 | "Boundaries must meet" ); |
115 | // initialize the policy counters - 2 collectors, 2 generations |
116 | _gc_policy_counters = |
117 | new PSGCAdaptivePolicyCounters("ParScav:MSC" , 2, 2, _size_policy); |
118 | |
119 | // Set up the GCTaskManager |
120 | _gc_task_manager = GCTaskManager::create(ParallelGCThreads); |
121 | |
122 | if (UseParallelOldGC && !PSParallelCompact::initialize()) { |
123 | return JNI_ENOMEM; |
124 | } |
125 | |
126 | return JNI_OK; |
127 | } |
128 | |
129 | void ParallelScavengeHeap::initialize_serviceability() { |
130 | |
131 | _eden_pool = new EdenMutableSpacePool(_young_gen, |
132 | _young_gen->eden_space(), |
133 | "PS Eden Space" , |
134 | false /* support_usage_threshold */); |
135 | |
136 | _survivor_pool = new SurvivorMutableSpacePool(_young_gen, |
137 | "PS Survivor Space" , |
138 | false /* support_usage_threshold */); |
139 | |
140 | _old_pool = new PSGenerationPool(_old_gen, |
141 | "PS Old Gen" , |
142 | true /* support_usage_threshold */); |
143 | |
144 | _young_manager = new GCMemoryManager("PS Scavenge" , "end of minor GC" ); |
145 | _old_manager = new GCMemoryManager("PS MarkSweep" , "end of major GC" ); |
146 | |
147 | _old_manager->add_pool(_eden_pool); |
148 | _old_manager->add_pool(_survivor_pool); |
149 | _old_manager->add_pool(_old_pool); |
150 | |
151 | _young_manager->add_pool(_eden_pool); |
152 | _young_manager->add_pool(_survivor_pool); |
153 | |
154 | } |
155 | |
156 | class PSIsScavengable : public BoolObjectClosure { |
157 | bool do_object_b(oop obj) { |
158 | return ParallelScavengeHeap::heap()->is_in_young(obj); |
159 | } |
160 | }; |
161 | |
162 | static PSIsScavengable _is_scavengable; |
163 | |
164 | void ParallelScavengeHeap::post_initialize() { |
165 | CollectedHeap::post_initialize(); |
166 | // Need to init the tenuring threshold |
167 | PSScavenge::initialize(); |
168 | if (UseParallelOldGC) { |
169 | PSParallelCompact::post_initialize(); |
170 | } else { |
171 | PSMarkSweepProxy::initialize(); |
172 | } |
173 | PSPromotionManager::initialize(); |
174 | |
175 | ScavengableNMethods::initialize(&_is_scavengable); |
176 | } |
177 | |
178 | void ParallelScavengeHeap::update_counters() { |
179 | young_gen()->update_counters(); |
180 | old_gen()->update_counters(); |
181 | MetaspaceCounters::update_performance_counters(); |
182 | CompressedClassSpaceCounters::update_performance_counters(); |
183 | } |
184 | |
185 | size_t ParallelScavengeHeap::capacity() const { |
186 | size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes(); |
187 | return value; |
188 | } |
189 | |
190 | size_t ParallelScavengeHeap::used() const { |
191 | size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes(); |
192 | return value; |
193 | } |
194 | |
195 | bool ParallelScavengeHeap::is_maximal_no_gc() const { |
196 | return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc(); |
197 | } |
198 | |
199 | |
200 | size_t ParallelScavengeHeap::max_capacity() const { |
201 | size_t estimated = reserved_region().byte_size(); |
202 | if (UseAdaptiveSizePolicy) { |
203 | estimated -= _size_policy->max_survivor_size(young_gen()->max_size()); |
204 | } else { |
205 | estimated -= young_gen()->to_space()->capacity_in_bytes(); |
206 | } |
207 | return MAX2(estimated, capacity()); |
208 | } |
209 | |
210 | bool ParallelScavengeHeap::is_in(const void* p) const { |
211 | return young_gen()->is_in(p) || old_gen()->is_in(p); |
212 | } |
213 | |
214 | bool ParallelScavengeHeap::is_in_reserved(const void* p) const { |
215 | return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p); |
216 | } |
217 | |
218 | // There are two levels of allocation policy here. |
219 | // |
220 | // When an allocation request fails, the requesting thread must invoke a VM |
221 | // operation, transfer control to the VM thread, and await the results of a |
222 | // garbage collection. That is quite expensive, and we should avoid doing it |
223 | // multiple times if possible. |
224 | // |
225 | // To accomplish this, we have a basic allocation policy, and also a |
226 | // failed allocation policy. |
227 | // |
228 | // The basic allocation policy controls how you allocate memory without |
229 | // attempting garbage collection. It is okay to grab locks and |
230 | // expand the heap, if that can be done without coming to a safepoint. |
231 | // It is likely that the basic allocation policy will not be very |
232 | // aggressive. |
233 | // |
234 | // The failed allocation policy is invoked from the VM thread after |
235 | // the basic allocation policy is unable to satisfy a mem_allocate |
236 | // request. This policy needs to cover the entire range of collection, |
237 | // heap expansion, and out-of-memory conditions. It should make every |
238 | // attempt to allocate the requested memory. |
239 | |
240 | // Basic allocation policy. Should never be called at a safepoint, or |
241 | // from the VM thread. |
242 | // |
243 | // This method must handle cases where many mem_allocate requests fail |
244 | // simultaneously. When that happens, only one VM operation will succeed, |
245 | // and the rest will not be executed. For that reason, this method loops |
246 | // during failed allocation attempts. If the java heap becomes exhausted, |
247 | // we rely on the size_policy object to force a bail out. |
248 | HeapWord* ParallelScavengeHeap::mem_allocate( |
249 | size_t size, |
250 | bool* gc_overhead_limit_was_exceeded) { |
251 | assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint" ); |
252 | assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread" ); |
253 | assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock" ); |
254 | |
255 | // In general gc_overhead_limit_was_exceeded should be false so |
256 | // set it so here and reset it to true only if the gc time |
257 | // limit is being exceeded as checked below. |
258 | *gc_overhead_limit_was_exceeded = false; |
259 | |
260 | HeapWord* result = young_gen()->allocate(size); |
261 | |
262 | uint loop_count = 0; |
263 | uint gc_count = 0; |
264 | uint gclocker_stalled_count = 0; |
265 | |
266 | while (result == NULL) { |
267 | // We don't want to have multiple collections for a single filled generation. |
268 | // To prevent this, each thread tracks the total_collections() value, and if |
269 | // the count has changed, does not do a new collection. |
270 | // |
271 | // The collection count must be read only while holding the heap lock. VM |
272 | // operations also hold the heap lock during collections. There is a lock |
273 | // contention case where thread A blocks waiting on the Heap_lock, while |
274 | // thread B is holding it doing a collection. When thread A gets the lock, |
275 | // the collection count has already changed. To prevent duplicate collections, |
276 | // The policy MUST attempt allocations during the same period it reads the |
277 | // total_collections() value! |
278 | { |
279 | MutexLocker ml(Heap_lock); |
280 | gc_count = total_collections(); |
281 | |
282 | result = young_gen()->allocate(size); |
283 | if (result != NULL) { |
284 | return result; |
285 | } |
286 | |
287 | // If certain conditions hold, try allocating from the old gen. |
288 | result = mem_allocate_old_gen(size); |
289 | if (result != NULL) { |
290 | return result; |
291 | } |
292 | |
293 | if (gclocker_stalled_count > GCLockerRetryAllocationCount) { |
294 | return NULL; |
295 | } |
296 | |
297 | // Failed to allocate without a gc. |
298 | if (GCLocker::is_active_and_needs_gc()) { |
299 | // If this thread is not in a jni critical section, we stall |
300 | // the requestor until the critical section has cleared and |
301 | // GC allowed. When the critical section clears, a GC is |
302 | // initiated by the last thread exiting the critical section; so |
303 | // we retry the allocation sequence from the beginning of the loop, |
304 | // rather than causing more, now probably unnecessary, GC attempts. |
305 | JavaThread* jthr = JavaThread::current(); |
306 | if (!jthr->in_critical()) { |
307 | MutexUnlocker mul(Heap_lock); |
308 | GCLocker::stall_until_clear(); |
309 | gclocker_stalled_count += 1; |
310 | continue; |
311 | } else { |
312 | if (CheckJNICalls) { |
313 | fatal("Possible deadlock due to allocating while" |
314 | " in jni critical section" ); |
315 | } |
316 | return NULL; |
317 | } |
318 | } |
319 | } |
320 | |
321 | if (result == NULL) { |
322 | // Generate a VM operation |
323 | VM_ParallelGCFailedAllocation op(size, gc_count); |
324 | VMThread::execute(&op); |
325 | |
326 | // Did the VM operation execute? If so, return the result directly. |
327 | // This prevents us from looping until time out on requests that can |
328 | // not be satisfied. |
329 | if (op.prologue_succeeded()) { |
330 | assert(is_in_or_null(op.result()), "result not in heap" ); |
331 | |
332 | // If GC was locked out during VM operation then retry allocation |
333 | // and/or stall as necessary. |
334 | if (op.gc_locked()) { |
335 | assert(op.result() == NULL, "must be NULL if gc_locked() is true" ); |
336 | continue; // retry and/or stall as necessary |
337 | } |
338 | |
339 | // Exit the loop if the gc time limit has been exceeded. |
340 | // The allocation must have failed above ("result" guarding |
341 | // this path is NULL) and the most recent collection has exceeded the |
342 | // gc overhead limit (although enough may have been collected to |
343 | // satisfy the allocation). Exit the loop so that an out-of-memory |
344 | // will be thrown (return a NULL ignoring the contents of |
345 | // op.result()), |
346 | // but clear gc_overhead_limit_exceeded so that the next collection |
347 | // starts with a clean slate (i.e., forgets about previous overhead |
348 | // excesses). Fill op.result() with a filler object so that the |
349 | // heap remains parsable. |
350 | const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded(); |
351 | const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear(); |
352 | |
353 | if (limit_exceeded && softrefs_clear) { |
354 | *gc_overhead_limit_was_exceeded = true; |
355 | size_policy()->set_gc_overhead_limit_exceeded(false); |
356 | log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set" ); |
357 | if (op.result() != NULL) { |
358 | CollectedHeap::fill_with_object(op.result(), size); |
359 | } |
360 | return NULL; |
361 | } |
362 | |
363 | return op.result(); |
364 | } |
365 | } |
366 | |
367 | // The policy object will prevent us from looping forever. If the |
368 | // time spent in gc crosses a threshold, we will bail out. |
369 | loop_count++; |
370 | if ((result == NULL) && (QueuedAllocationWarningCount > 0) && |
371 | (loop_count % QueuedAllocationWarningCount == 0)) { |
372 | log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times" , loop_count); |
373 | log_warning(gc)("\tsize=" SIZE_FORMAT, size); |
374 | } |
375 | } |
376 | |
377 | return result; |
378 | } |
379 | |
380 | // A "death march" is a series of ultra-slow allocations in which a full gc is |
381 | // done before each allocation, and after the full gc the allocation still |
382 | // cannot be satisfied from the young gen. This routine detects that condition; |
383 | // it should be called after a full gc has been done and the allocation |
384 | // attempted from the young gen. The parameter 'addr' should be the result of |
385 | // that young gen allocation attempt. |
386 | void |
387 | ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) { |
388 | if (addr != NULL) { |
389 | _death_march_count = 0; // death march has ended |
390 | } else if (_death_march_count == 0) { |
391 | if (should_alloc_in_eden(size)) { |
392 | _death_march_count = 1; // death march has started |
393 | } |
394 | } |
395 | } |
396 | |
397 | HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) { |
398 | if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) { |
399 | // Size is too big for eden, or gc is locked out. |
400 | return old_gen()->allocate(size); |
401 | } |
402 | |
403 | // If a "death march" is in progress, allocate from the old gen a limited |
404 | // number of times before doing a GC. |
405 | if (_death_march_count > 0) { |
406 | if (_death_march_count < 64) { |
407 | ++_death_march_count; |
408 | return old_gen()->allocate(size); |
409 | } else { |
410 | _death_march_count = 0; |
411 | } |
412 | } |
413 | return NULL; |
414 | } |
415 | |
416 | void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) { |
417 | if (UseParallelOldGC) { |
418 | // The do_full_collection() parameter clear_all_soft_refs |
419 | // is interpreted here as maximum_compaction which will |
420 | // cause SoftRefs to be cleared. |
421 | bool maximum_compaction = clear_all_soft_refs; |
422 | PSParallelCompact::invoke(maximum_compaction); |
423 | } else { |
424 | PSMarkSweepProxy::invoke(clear_all_soft_refs); |
425 | } |
426 | } |
427 | |
428 | // Failed allocation policy. Must be called from the VM thread, and |
429 | // only at a safepoint! Note that this method has policy for allocation |
430 | // flow, and NOT collection policy. So we do not check for gc collection |
431 | // time over limit here, that is the responsibility of the heap specific |
432 | // collection methods. This method decides where to attempt allocations, |
433 | // and when to attempt collections, but no collection specific policy. |
434 | HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) { |
435 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
436 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread" ); |
437 | assert(!is_gc_active(), "not reentrant" ); |
438 | assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock" ); |
439 | |
440 | // We assume that allocation in eden will fail unless we collect. |
441 | |
442 | // First level allocation failure, scavenge and allocate in young gen. |
443 | GCCauseSetter gccs(this, GCCause::_allocation_failure); |
444 | const bool invoked_full_gc = PSScavenge::invoke(); |
445 | HeapWord* result = young_gen()->allocate(size); |
446 | |
447 | // Second level allocation failure. |
448 | // Mark sweep and allocate in young generation. |
449 | if (result == NULL && !invoked_full_gc) { |
450 | do_full_collection(false); |
451 | result = young_gen()->allocate(size); |
452 | } |
453 | |
454 | death_march_check(result, size); |
455 | |
456 | // Third level allocation failure. |
457 | // After mark sweep and young generation allocation failure, |
458 | // allocate in old generation. |
459 | if (result == NULL) { |
460 | result = old_gen()->allocate(size); |
461 | } |
462 | |
463 | // Fourth level allocation failure. We're running out of memory. |
464 | // More complete mark sweep and allocate in young generation. |
465 | if (result == NULL) { |
466 | do_full_collection(true); |
467 | result = young_gen()->allocate(size); |
468 | } |
469 | |
470 | // Fifth level allocation failure. |
471 | // After more complete mark sweep, allocate in old generation. |
472 | if (result == NULL) { |
473 | result = old_gen()->allocate(size); |
474 | } |
475 | |
476 | return result; |
477 | } |
478 | |
479 | void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) { |
480 | CollectedHeap::ensure_parsability(retire_tlabs); |
481 | young_gen()->eden_space()->ensure_parsability(); |
482 | } |
483 | |
484 | size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const { |
485 | return young_gen()->eden_space()->tlab_capacity(thr); |
486 | } |
487 | |
488 | size_t ParallelScavengeHeap::tlab_used(Thread* thr) const { |
489 | return young_gen()->eden_space()->tlab_used(thr); |
490 | } |
491 | |
492 | size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const { |
493 | return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr); |
494 | } |
495 | |
496 | HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { |
497 | HeapWord* result = young_gen()->allocate(requested_size); |
498 | if (result != NULL) { |
499 | *actual_size = requested_size; |
500 | } |
501 | |
502 | return result; |
503 | } |
504 | |
505 | void ParallelScavengeHeap::resize_all_tlabs() { |
506 | CollectedHeap::resize_all_tlabs(); |
507 | } |
508 | |
509 | // This method is used by System.gc() and JVMTI. |
510 | void ParallelScavengeHeap::collect(GCCause::Cause cause) { |
511 | assert(!Heap_lock->owned_by_self(), |
512 | "this thread should not own the Heap_lock" ); |
513 | |
514 | uint gc_count = 0; |
515 | uint full_gc_count = 0; |
516 | { |
517 | MutexLocker ml(Heap_lock); |
518 | // This value is guarded by the Heap_lock |
519 | gc_count = total_collections(); |
520 | full_gc_count = total_full_collections(); |
521 | } |
522 | |
523 | VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause); |
524 | VMThread::execute(&op); |
525 | } |
526 | |
527 | void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) { |
528 | young_gen()->object_iterate(cl); |
529 | old_gen()->object_iterate(cl); |
530 | } |
531 | |
532 | |
533 | HeapWord* ParallelScavengeHeap::block_start(const void* addr) const { |
534 | if (young_gen()->is_in_reserved(addr)) { |
535 | assert(young_gen()->is_in(addr), |
536 | "addr should be in allocated part of young gen" ); |
537 | // called from os::print_location by find or VMError |
538 | if (Debugging || VMError::fatal_error_in_progress()) return NULL; |
539 | Unimplemented(); |
540 | } else if (old_gen()->is_in_reserved(addr)) { |
541 | assert(old_gen()->is_in(addr), |
542 | "addr should be in allocated part of old gen" ); |
543 | return old_gen()->start_array()->object_start((HeapWord*)addr); |
544 | } |
545 | return 0; |
546 | } |
547 | |
548 | bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const { |
549 | return block_start(addr) == addr; |
550 | } |
551 | |
552 | jlong ParallelScavengeHeap::millis_since_last_gc() { |
553 | return UseParallelOldGC ? |
554 | PSParallelCompact::millis_since_last_gc() : |
555 | PSMarkSweepProxy::millis_since_last_gc(); |
556 | } |
557 | |
558 | void ParallelScavengeHeap::prepare_for_verify() { |
559 | ensure_parsability(false); // no need to retire TLABs for verification |
560 | } |
561 | |
562 | PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() { |
563 | PSOldGen* old = old_gen(); |
564 | HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr(); |
565 | VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end()); |
566 | SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes()); |
567 | |
568 | PSYoungGen* young = young_gen(); |
569 | VirtualSpaceSummary young_summary(young->reserved().start(), |
570 | (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end()); |
571 | |
572 | MutableSpace* eden = young_gen()->eden_space(); |
573 | SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes()); |
574 | |
575 | MutableSpace* from = young_gen()->from_space(); |
576 | SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes()); |
577 | |
578 | MutableSpace* to = young_gen()->to_space(); |
579 | SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes()); |
580 | |
581 | VirtualSpaceSummary heap_summary = create_heap_space_summary(); |
582 | return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space); |
583 | } |
584 | |
585 | void ParallelScavengeHeap::print_on(outputStream* st) const { |
586 | young_gen()->print_on(st); |
587 | old_gen()->print_on(st); |
588 | MetaspaceUtils::print_on(st); |
589 | } |
590 | |
591 | void ParallelScavengeHeap::print_on_error(outputStream* st) const { |
592 | this->CollectedHeap::print_on_error(st); |
593 | |
594 | if (UseParallelOldGC) { |
595 | st->cr(); |
596 | PSParallelCompact::print_on_error(st); |
597 | } |
598 | } |
599 | |
600 | void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const { |
601 | PSScavenge::gc_task_manager()->threads_do(tc); |
602 | } |
603 | |
604 | void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const { |
605 | PSScavenge::gc_task_manager()->print_threads_on(st); |
606 | } |
607 | |
608 | void ParallelScavengeHeap::print_tracing_info() const { |
609 | AdaptiveSizePolicyOutput::print(); |
610 | log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs" , PSScavenge::accumulated_time()->seconds()); |
611 | log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs" , |
612 | UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds()); |
613 | } |
614 | |
615 | |
616 | void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) { |
617 | // Why do we need the total_collections()-filter below? |
618 | if (total_collections() > 0) { |
619 | log_debug(gc, verify)("Tenured" ); |
620 | old_gen()->verify(); |
621 | |
622 | log_debug(gc, verify)("Eden" ); |
623 | young_gen()->verify(); |
624 | } |
625 | } |
626 | |
627 | void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { |
628 | const PSHeapSummary& heap_summary = create_ps_heap_summary(); |
629 | gc_tracer->report_gc_heap_summary(when, heap_summary); |
630 | |
631 | const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); |
632 | gc_tracer->report_metaspace_summary(when, metaspace_summary); |
633 | } |
634 | |
635 | ParallelScavengeHeap* ParallelScavengeHeap::heap() { |
636 | CollectedHeap* heap = Universe::heap(); |
637 | assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()" ); |
638 | assert(heap->kind() == CollectedHeap::Parallel, "Invalid name" ); |
639 | return (ParallelScavengeHeap*)heap; |
640 | } |
641 | |
642 | CardTableBarrierSet* ParallelScavengeHeap::barrier_set() { |
643 | return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set()); |
644 | } |
645 | |
646 | PSCardTable* ParallelScavengeHeap::card_table() { |
647 | return static_cast<PSCardTable*>(barrier_set()->card_table()); |
648 | } |
649 | |
650 | // Before delegating the resize to the young generation, |
651 | // the reserved space for the young and old generations |
652 | // may be changed to accommodate the desired resize. |
653 | void ParallelScavengeHeap::resize_young_gen(size_t eden_size, |
654 | size_t survivor_size) { |
655 | if (UseAdaptiveGCBoundary) { |
656 | if (size_policy()->bytes_absorbed_from_eden() != 0) { |
657 | size_policy()->reset_bytes_absorbed_from_eden(); |
658 | return; // The generation changed size already. |
659 | } |
660 | gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size); |
661 | } |
662 | |
663 | // Delegate the resize to the generation. |
664 | _young_gen->resize(eden_size, survivor_size); |
665 | } |
666 | |
667 | // Before delegating the resize to the old generation, |
668 | // the reserved space for the young and old generations |
669 | // may be changed to accommodate the desired resize. |
670 | void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) { |
671 | if (UseAdaptiveGCBoundary) { |
672 | if (size_policy()->bytes_absorbed_from_eden() != 0) { |
673 | size_policy()->reset_bytes_absorbed_from_eden(); |
674 | return; // The generation changed size already. |
675 | } |
676 | gens()->adjust_boundary_for_old_gen_needs(desired_free_space); |
677 | } |
678 | |
679 | // Delegate the resize to the generation. |
680 | _old_gen->resize(desired_free_space); |
681 | } |
682 | |
683 | ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() { |
684 | // nothing particular |
685 | } |
686 | |
687 | ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() { |
688 | // nothing particular |
689 | } |
690 | |
691 | #ifndef PRODUCT |
692 | void ParallelScavengeHeap::record_gen_tops_before_GC() { |
693 | if (ZapUnusedHeapArea) { |
694 | young_gen()->record_spaces_top(); |
695 | old_gen()->record_spaces_top(); |
696 | } |
697 | } |
698 | |
699 | void ParallelScavengeHeap::gen_mangle_unused_area() { |
700 | if (ZapUnusedHeapArea) { |
701 | young_gen()->eden_space()->mangle_unused_area(); |
702 | young_gen()->to_space()->mangle_unused_area(); |
703 | young_gen()->from_space()->mangle_unused_area(); |
704 | old_gen()->object_space()->mangle_unused_area(); |
705 | } |
706 | } |
707 | #endif |
708 | |
709 | void ParallelScavengeHeap::register_nmethod(nmethod* nm) { |
710 | ScavengableNMethods::register_nmethod(nm); |
711 | } |
712 | |
713 | void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) { |
714 | ScavengableNMethods::unregister_nmethod(nm); |
715 | } |
716 | |
717 | void ParallelScavengeHeap::verify_nmethod(nmethod* nm) { |
718 | ScavengableNMethods::verify_nmethod(nm); |
719 | } |
720 | |
721 | void ParallelScavengeHeap::flush_nmethod(nmethod* nm) { |
722 | // nothing particular |
723 | } |
724 | |
725 | void ParallelScavengeHeap::prune_scavengable_nmethods() { |
726 | ScavengableNMethods::prune_nmethods(); |
727 | } |
728 | |
729 | GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() { |
730 | GrowableArray<GCMemoryManager*> memory_managers(2); |
731 | memory_managers.append(_young_manager); |
732 | memory_managers.append(_old_manager); |
733 | return memory_managers; |
734 | } |
735 | |
736 | GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() { |
737 | GrowableArray<MemoryPool*> memory_pools(3); |
738 | memory_pools.append(_eden_pool); |
739 | memory_pools.append(_survivor_pool); |
740 | memory_pools.append(_old_pool); |
741 | return memory_pools; |
742 | } |
743 | |