| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "aot/aotLoader.hpp" |
| 27 | #include "classfile/classLoaderDataGraph.hpp" |
| 28 | #include "classfile/stringTable.hpp" |
| 29 | #include "classfile/symbolTable.hpp" |
| 30 | #include "classfile/systemDictionary.hpp" |
| 31 | #include "code/codeCache.hpp" |
| 32 | #include "gc/parallel/parallelScavengeHeap.hpp" |
| 33 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
| 34 | #include "gc/parallel/psMarkSweep.hpp" |
| 35 | #include "gc/parallel/psMarkSweepDecorator.hpp" |
| 36 | #include "gc/parallel/psOldGen.hpp" |
| 37 | #include "gc/parallel/psScavenge.hpp" |
| 38 | #include "gc/parallel/psYoungGen.hpp" |
| 39 | #include "gc/serial/markSweep.hpp" |
| 40 | #include "gc/shared/gcCause.hpp" |
| 41 | #include "gc/shared/gcHeapSummary.hpp" |
| 42 | #include "gc/shared/gcId.hpp" |
| 43 | #include "gc/shared/gcLocker.hpp" |
| 44 | #include "gc/shared/gcTimer.hpp" |
| 45 | #include "gc/shared/gcTrace.hpp" |
| 46 | #include "gc/shared/gcTraceTime.inline.hpp" |
| 47 | #include "gc/shared/isGCActiveMark.hpp" |
| 48 | #include "gc/shared/referencePolicy.hpp" |
| 49 | #include "gc/shared/referenceProcessor.hpp" |
| 50 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
| 51 | #include "gc/shared/spaceDecorator.hpp" |
| 52 | #include "gc/shared/weakProcessor.hpp" |
| 53 | #include "memory/universe.hpp" |
| 54 | #include "logging/log.hpp" |
| 55 | #include "oops/oop.inline.hpp" |
| 56 | #include "runtime/biasedLocking.hpp" |
| 57 | #include "runtime/flags/flagSetting.hpp" |
| 58 | #include "runtime/handles.inline.hpp" |
| 59 | #include "runtime/safepoint.hpp" |
| 60 | #include "runtime/vmThread.hpp" |
| 61 | #include "services/management.hpp" |
| 62 | #include "services/memoryService.hpp" |
| 63 | #include "utilities/align.hpp" |
| 64 | #include "utilities/events.hpp" |
| 65 | #include "utilities/stack.inline.hpp" |
| 66 | #if INCLUDE_JVMCI |
| 67 | #include "jvmci/jvmci.hpp" |
| 68 | #endif |
| 69 | |
| 70 | elapsedTimer PSMarkSweep::_accumulated_time; |
| 71 | jlong PSMarkSweep::_time_of_last_gc = 0; |
| 72 | CollectorCounters* PSMarkSweep::_counters = NULL; |
| 73 | |
| 74 | SpanSubjectToDiscoveryClosure PSMarkSweep::_span_based_discoverer; |
| 75 | |
| 76 | void PSMarkSweep::initialize() { |
| 77 | _span_based_discoverer.set_span(ParallelScavengeHeap::heap()->reserved_region()); |
| 78 | set_ref_processor(new ReferenceProcessor(&_span_based_discoverer)); // a vanilla ref proc |
| 79 | _counters = new CollectorCounters("Serial full collection pauses" , 1); |
| 80 | MarkSweep::initialize(); |
| 81 | } |
| 82 | |
| 83 | // This method contains all heap specific policy for invoking mark sweep. |
| 84 | // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact |
| 85 | // the heap. It will do nothing further. If we need to bail out for policy |
| 86 | // reasons, scavenge before full gc, or any other specialized behavior, it |
| 87 | // needs to be added here. |
| 88 | // |
| 89 | // Note that this method should only be called from the vm_thread while |
| 90 | // at a safepoint! |
| 91 | // |
| 92 | // Note that the all_soft_refs_clear flag in the soft ref policy |
| 93 | // may be true because this method can be called without intervening |
| 94 | // activity. For example when the heap space is tight and full measure |
| 95 | // are being taken to free space. |
| 96 | |
| 97 | void PSMarkSweep::invoke(bool maximum_heap_compaction) { |
| 98 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
| 99 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread" ); |
| 100 | assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant" ); |
| 101 | |
| 102 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 103 | GCCause::Cause gc_cause = heap->gc_cause(); |
| 104 | PSAdaptiveSizePolicy* policy = heap->size_policy(); |
| 105 | IsGCActiveMark mark; |
| 106 | |
| 107 | if (ScavengeBeforeFullGC) { |
| 108 | PSScavenge::invoke_no_policy(); |
| 109 | } |
| 110 | |
| 111 | const bool clear_all_soft_refs = |
| 112 | heap->soft_ref_policy()->should_clear_all_soft_refs(); |
| 113 | |
| 114 | uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount; |
| 115 | UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count); |
| 116 | PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction); |
| 117 | } |
| 118 | |
| 119 | // This method contains no policy. You should probably |
| 120 | // be calling invoke() instead. |
| 121 | bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) { |
| 122 | assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint" ); |
| 123 | assert(ref_processor() != NULL, "Sanity" ); |
| 124 | |
| 125 | if (GCLocker::check_active_before_gc()) { |
| 126 | return false; |
| 127 | } |
| 128 | |
| 129 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 130 | GCCause::Cause gc_cause = heap->gc_cause(); |
| 131 | |
| 132 | GCIdMark gc_id_mark; |
| 133 | _gc_timer->register_gc_start(); |
| 134 | _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start()); |
| 135 | |
| 136 | PSAdaptiveSizePolicy* size_policy = heap->size_policy(); |
| 137 | |
| 138 | // The scope of casr should end after code that can change |
| 139 | // SoftRefolicy::_should_clear_all_soft_refs. |
| 140 | ClearedAllSoftRefs casr(clear_all_softrefs, heap->soft_ref_policy()); |
| 141 | |
| 142 | PSYoungGen* young_gen = heap->young_gen(); |
| 143 | PSOldGen* old_gen = heap->old_gen(); |
| 144 | |
| 145 | // Increment the invocation count |
| 146 | heap->increment_total_collections(true /* full */); |
| 147 | |
| 148 | // Save information needed to minimize mangling |
| 149 | heap->record_gen_tops_before_GC(); |
| 150 | |
| 151 | // We need to track unique mark sweep invocations as well. |
| 152 | _total_invocations++; |
| 153 | |
| 154 | heap->print_heap_before_gc(); |
| 155 | heap->trace_heap_before_gc(_gc_tracer); |
| 156 | |
| 157 | // Fill in TLABs |
| 158 | heap->ensure_parsability(true); // retire TLABs |
| 159 | |
| 160 | if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { |
| 161 | HandleMark hm; // Discard invalid handles created during verification |
| 162 | Universe::verify("Before GC" ); |
| 163 | } |
| 164 | |
| 165 | // Verify object start arrays |
| 166 | if (VerifyObjectStartArray && |
| 167 | VerifyBeforeGC) { |
| 168 | old_gen->verify_object_start_array(); |
| 169 | } |
| 170 | |
| 171 | // Filled in below to track the state of the young gen after the collection. |
| 172 | bool eden_empty; |
| 173 | bool survivors_empty; |
| 174 | bool young_gen_empty; |
| 175 | |
| 176 | { |
| 177 | HandleMark hm; |
| 178 | |
| 179 | GCTraceCPUTime tcpu; |
| 180 | GCTraceTime(Info, gc) t("Pause Full" , NULL, gc_cause, true); |
| 181 | |
| 182 | heap->pre_full_gc_dump(_gc_timer); |
| 183 | |
| 184 | TraceCollectorStats tcs(counters()); |
| 185 | TraceMemoryManagerStats tms(heap->old_gc_manager(),gc_cause); |
| 186 | |
| 187 | if (log_is_enabled(Debug, gc, heap, exit)) { |
| 188 | accumulated_time()->start(); |
| 189 | } |
| 190 | |
| 191 | // Let the size policy know we're starting |
| 192 | size_policy->major_collection_begin(); |
| 193 | |
| 194 | BiasedLocking::preserve_marks(); |
| 195 | |
| 196 | // Capture metadata size before collection for sizing. |
| 197 | size_t metadata_prev_used = MetaspaceUtils::used_bytes(); |
| 198 | |
| 199 | size_t old_gen_prev_used = old_gen->used_in_bytes(); |
| 200 | size_t young_gen_prev_used = young_gen->used_in_bytes(); |
| 201 | |
| 202 | allocate_stacks(); |
| 203 | |
| 204 | #if COMPILER2_OR_JVMCI |
| 205 | DerivedPointerTable::clear(); |
| 206 | #endif |
| 207 | |
| 208 | ref_processor()->enable_discovery(); |
| 209 | ref_processor()->setup_policy(clear_all_softrefs); |
| 210 | |
| 211 | mark_sweep_phase1(clear_all_softrefs); |
| 212 | |
| 213 | mark_sweep_phase2(); |
| 214 | |
| 215 | #if COMPILER2_OR_JVMCI |
| 216 | // Don't add any more derived pointers during phase3 |
| 217 | assert(DerivedPointerTable::is_active(), "Sanity" ); |
| 218 | DerivedPointerTable::set_active(false); |
| 219 | #endif |
| 220 | |
| 221 | mark_sweep_phase3(); |
| 222 | |
| 223 | mark_sweep_phase4(); |
| 224 | |
| 225 | restore_marks(); |
| 226 | |
| 227 | deallocate_stacks(); |
| 228 | |
| 229 | if (ZapUnusedHeapArea) { |
| 230 | // Do a complete mangle (top to end) because the usage for |
| 231 | // scratch does not maintain a top pointer. |
| 232 | young_gen->to_space()->mangle_unused_area_complete(); |
| 233 | } |
| 234 | |
| 235 | eden_empty = young_gen->eden_space()->is_empty(); |
| 236 | if (!eden_empty) { |
| 237 | eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen); |
| 238 | } |
| 239 | |
| 240 | // Update heap occupancy information which is used as |
| 241 | // input to soft ref clearing policy at the next gc. |
| 242 | Universe::update_heap_info_at_gc(); |
| 243 | |
| 244 | survivors_empty = young_gen->from_space()->is_empty() && |
| 245 | young_gen->to_space()->is_empty(); |
| 246 | young_gen_empty = eden_empty && survivors_empty; |
| 247 | |
| 248 | PSCardTable* card_table = heap->card_table(); |
| 249 | MemRegion old_mr = heap->old_gen()->reserved(); |
| 250 | if (young_gen_empty) { |
| 251 | card_table->clear(MemRegion(old_mr.start(), old_mr.end())); |
| 252 | } else { |
| 253 | card_table->invalidate(MemRegion(old_mr.start(), old_mr.end())); |
| 254 | } |
| 255 | |
| 256 | // Delete metaspaces for unloaded class loaders and clean up loader_data graph |
| 257 | ClassLoaderDataGraph::purge(); |
| 258 | MetaspaceUtils::verify_metrics(); |
| 259 | |
| 260 | BiasedLocking::restore_marks(); |
| 261 | heap->prune_scavengable_nmethods(); |
| 262 | JvmtiExport::gc_epilogue(); |
| 263 | |
| 264 | #if COMPILER2_OR_JVMCI |
| 265 | DerivedPointerTable::update_pointers(); |
| 266 | #endif |
| 267 | |
| 268 | assert(!ref_processor()->discovery_enabled(), "Should have been disabled earlier" ); |
| 269 | |
| 270 | // Update time of last GC |
| 271 | reset_millis_since_last_gc(); |
| 272 | |
| 273 | // Let the size policy know we're done |
| 274 | size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); |
| 275 | |
| 276 | if (UseAdaptiveSizePolicy) { |
| 277 | |
| 278 | log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d " , heap->total_collections()); |
| 279 | log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, |
| 280 | old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); |
| 281 | |
| 282 | // Don't check if the size_policy is ready here. Let |
| 283 | // the size_policy check that internally. |
| 284 | if (UseAdaptiveGenerationSizePolicyAtMajorCollection && |
| 285 | AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { |
| 286 | // Swap the survivor spaces if from_space is empty. The |
| 287 | // resize_young_gen() called below is normally used after |
| 288 | // a successful young GC and swapping of survivor spaces; |
| 289 | // otherwise, it will fail to resize the young gen with |
| 290 | // the current implementation. |
| 291 | if (young_gen->from_space()->is_empty()) { |
| 292 | young_gen->from_space()->clear(SpaceDecorator::Mangle); |
| 293 | young_gen->swap_spaces(); |
| 294 | } |
| 295 | |
| 296 | // Calculate optimal free space amounts |
| 297 | assert(young_gen->max_size() > |
| 298 | young_gen->from_space()->capacity_in_bytes() + |
| 299 | young_gen->to_space()->capacity_in_bytes(), |
| 300 | "Sizes of space in young gen are out of bounds" ); |
| 301 | |
| 302 | size_t young_live = young_gen->used_in_bytes(); |
| 303 | size_t eden_live = young_gen->eden_space()->used_in_bytes(); |
| 304 | size_t old_live = old_gen->used_in_bytes(); |
| 305 | size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); |
| 306 | size_t max_old_gen_size = old_gen->max_gen_size(); |
| 307 | size_t max_eden_size = young_gen->max_size() - |
| 308 | young_gen->from_space()->capacity_in_bytes() - |
| 309 | young_gen->to_space()->capacity_in_bytes(); |
| 310 | |
| 311 | // Used for diagnostics |
| 312 | size_policy->clear_generation_free_space_flags(); |
| 313 | |
| 314 | size_policy->compute_generations_free_space(young_live, |
| 315 | eden_live, |
| 316 | old_live, |
| 317 | cur_eden, |
| 318 | max_old_gen_size, |
| 319 | max_eden_size, |
| 320 | true /* full gc*/); |
| 321 | |
| 322 | size_policy->check_gc_overhead_limit(eden_live, |
| 323 | max_old_gen_size, |
| 324 | max_eden_size, |
| 325 | true /* full gc*/, |
| 326 | gc_cause, |
| 327 | heap->soft_ref_policy()); |
| 328 | |
| 329 | size_policy->decay_supplemental_growth(true /* full gc*/); |
| 330 | |
| 331 | heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes()); |
| 332 | |
| 333 | heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), |
| 334 | size_policy->calculated_survivor_size_in_bytes()); |
| 335 | } |
| 336 | log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d " , heap->total_collections()); |
| 337 | } |
| 338 | |
| 339 | if (UsePerfData) { |
| 340 | heap->gc_policy_counters()->update_counters(); |
| 341 | heap->gc_policy_counters()->update_old_capacity( |
| 342 | old_gen->capacity_in_bytes()); |
| 343 | heap->gc_policy_counters()->update_young_capacity( |
| 344 | young_gen->capacity_in_bytes()); |
| 345 | } |
| 346 | |
| 347 | heap->resize_all_tlabs(); |
| 348 | |
| 349 | // We collected the heap, recalculate the metaspace capacity |
| 350 | MetaspaceGC::compute_new_size(); |
| 351 | |
| 352 | if (log_is_enabled(Debug, gc, heap, exit)) { |
| 353 | accumulated_time()->stop(); |
| 354 | } |
| 355 | |
| 356 | young_gen->print_used_change(young_gen_prev_used); |
| 357 | old_gen->print_used_change(old_gen_prev_used); |
| 358 | MetaspaceUtils::print_metaspace_change(metadata_prev_used); |
| 359 | |
| 360 | // Track memory usage and detect low memory |
| 361 | MemoryService::track_memory_usage(); |
| 362 | heap->update_counters(); |
| 363 | |
| 364 | heap->post_full_gc_dump(_gc_timer); |
| 365 | } |
| 366 | |
| 367 | if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { |
| 368 | HandleMark hm; // Discard invalid handles created during verification |
| 369 | Universe::verify("After GC" ); |
| 370 | } |
| 371 | |
| 372 | // Re-verify object start arrays |
| 373 | if (VerifyObjectStartArray && |
| 374 | VerifyAfterGC) { |
| 375 | old_gen->verify_object_start_array(); |
| 376 | } |
| 377 | |
| 378 | if (ZapUnusedHeapArea) { |
| 379 | old_gen->object_space()->check_mangled_unused_area_complete(); |
| 380 | } |
| 381 | |
| 382 | NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); |
| 383 | |
| 384 | heap->print_heap_after_gc(); |
| 385 | heap->trace_heap_after_gc(_gc_tracer); |
| 386 | |
| 387 | #ifdef TRACESPINNING |
| 388 | ParallelTaskTerminator::print_termination_counts(); |
| 389 | #endif |
| 390 | |
| 391 | AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); |
| 392 | |
| 393 | _gc_timer->register_gc_end(); |
| 394 | |
| 395 | _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); |
| 396 | |
| 397 | return true; |
| 398 | } |
| 399 | |
| 400 | bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, |
| 401 | PSYoungGen* young_gen, |
| 402 | PSOldGen* old_gen) { |
| 403 | MutableSpace* const eden_space = young_gen->eden_space(); |
| 404 | assert(!eden_space->is_empty(), "eden must be non-empty" ); |
| 405 | assert(young_gen->virtual_space()->alignment() == |
| 406 | old_gen->virtual_space()->alignment(), "alignments do not match" ); |
| 407 | |
| 408 | if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { |
| 409 | return false; |
| 410 | } |
| 411 | |
| 412 | // Both generations must be completely committed. |
| 413 | if (young_gen->virtual_space()->uncommitted_size() != 0) { |
| 414 | return false; |
| 415 | } |
| 416 | if (old_gen->virtual_space()->uncommitted_size() != 0) { |
| 417 | return false; |
| 418 | } |
| 419 | |
| 420 | // Figure out how much to take from eden. Include the average amount promoted |
| 421 | // in the total; otherwise the next young gen GC will simply bail out to a |
| 422 | // full GC. |
| 423 | const size_t alignment = old_gen->virtual_space()->alignment(); |
| 424 | const size_t eden_used = eden_space->used_in_bytes(); |
| 425 | const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); |
| 426 | const size_t absorb_size = align_up(eden_used + promoted, alignment); |
| 427 | const size_t eden_capacity = eden_space->capacity_in_bytes(); |
| 428 | |
| 429 | if (absorb_size >= eden_capacity) { |
| 430 | return false; // Must leave some space in eden. |
| 431 | } |
| 432 | |
| 433 | const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; |
| 434 | if (new_young_size < young_gen->min_gen_size()) { |
| 435 | return false; // Respect young gen minimum size. |
| 436 | } |
| 437 | |
| 438 | log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K: " |
| 439 | "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " |
| 440 | "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " |
| 441 | "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K " , |
| 442 | absorb_size / K, |
| 443 | eden_capacity / K, (eden_capacity - absorb_size) / K, |
| 444 | young_gen->from_space()->used_in_bytes() / K, |
| 445 | young_gen->to_space()->used_in_bytes() / K, |
| 446 | young_gen->capacity_in_bytes() / K, new_young_size / K); |
| 447 | |
| 448 | // Fill the unused part of the old gen. |
| 449 | MutableSpace* const old_space = old_gen->object_space(); |
| 450 | HeapWord* const unused_start = old_space->top(); |
| 451 | size_t const unused_words = pointer_delta(old_space->end(), unused_start); |
| 452 | |
| 453 | if (unused_words > 0) { |
| 454 | if (unused_words < CollectedHeap::min_fill_size()) { |
| 455 | return false; // If the old gen cannot be filled, must give up. |
| 456 | } |
| 457 | CollectedHeap::fill_with_objects(unused_start, unused_words); |
| 458 | } |
| 459 | |
| 460 | // Take the live data from eden and set both top and end in the old gen to |
| 461 | // eden top. (Need to set end because reset_after_change() mangles the region |
| 462 | // from end to virtual_space->high() in debug builds). |
| 463 | HeapWord* const new_top = eden_space->top(); |
| 464 | old_gen->virtual_space()->expand_into(young_gen->virtual_space(), |
| 465 | absorb_size); |
| 466 | young_gen->reset_after_change(); |
| 467 | old_space->set_top(new_top); |
| 468 | old_space->set_end(new_top); |
| 469 | old_gen->reset_after_change(); |
| 470 | |
| 471 | // Update the object start array for the filler object and the data from eden. |
| 472 | ObjectStartArray* const start_array = old_gen->start_array(); |
| 473 | for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { |
| 474 | start_array->allocate_block(p); |
| 475 | } |
| 476 | |
| 477 | // Could update the promoted average here, but it is not typically updated at |
| 478 | // full GCs and the value to use is unclear. Something like |
| 479 | // |
| 480 | // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. |
| 481 | |
| 482 | size_policy->set_bytes_absorbed_from_eden(absorb_size); |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | void PSMarkSweep::allocate_stacks() { |
| 487 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 488 | PSYoungGen* young_gen = heap->young_gen(); |
| 489 | |
| 490 | MutableSpace* to_space = young_gen->to_space(); |
| 491 | _preserved_marks = (PreservedMark*)to_space->top(); |
| 492 | _preserved_count = 0; |
| 493 | |
| 494 | // We want to calculate the size in bytes first. |
| 495 | _preserved_count_max = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte)); |
| 496 | // Now divide by the size of a PreservedMark |
| 497 | _preserved_count_max /= sizeof(PreservedMark); |
| 498 | } |
| 499 | |
| 500 | |
| 501 | void PSMarkSweep::deallocate_stacks() { |
| 502 | _preserved_mark_stack.clear(true); |
| 503 | _preserved_oop_stack.clear(true); |
| 504 | _marking_stack.clear(); |
| 505 | _objarray_stack.clear(true); |
| 506 | } |
| 507 | |
| 508 | void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) { |
| 509 | // Recursively traverse all live objects and mark them |
| 510 | GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects" , _gc_timer); |
| 511 | |
| 512 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 513 | |
| 514 | // Need to clear claim bits before the tracing starts. |
| 515 | ClassLoaderDataGraph::clear_claimed_marks(); |
| 516 | |
| 517 | // General strong roots. |
| 518 | { |
| 519 | ParallelScavengeHeap::ParStrongRootsScope psrs; |
| 520 | Universe::oops_do(mark_and_push_closure()); |
| 521 | JNIHandles::oops_do(mark_and_push_closure()); // Global (strong) JNI handles |
| 522 | MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations); |
| 523 | Threads::oops_do(mark_and_push_closure(), &each_active_code_blob); |
| 524 | ObjectSynchronizer::oops_do(mark_and_push_closure()); |
| 525 | Management::oops_do(mark_and_push_closure()); |
| 526 | JvmtiExport::oops_do(mark_and_push_closure()); |
| 527 | SystemDictionary::oops_do(mark_and_push_closure()); |
| 528 | ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure()); |
| 529 | // Do not treat nmethods as strong roots for mark/sweep, since we can unload them. |
| 530 | //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure())); |
| 531 | AOT_ONLY(AOTLoader::oops_do(mark_and_push_closure());) |
| 532 | JVMCI_ONLY(JVMCI::oops_do(mark_and_push_closure());) |
| 533 | } |
| 534 | |
| 535 | // Flush marking stack. |
| 536 | follow_stack(); |
| 537 | |
| 538 | // Process reference objects found during marking |
| 539 | { |
| 540 | GCTraceTime(Debug, gc, phases) t("Reference Processing" , _gc_timer); |
| 541 | |
| 542 | ref_processor()->setup_policy(clear_all_softrefs); |
| 543 | ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->max_num_queues()); |
| 544 | const ReferenceProcessorStats& stats = |
| 545 | ref_processor()->process_discovered_references( |
| 546 | is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, &pt); |
| 547 | gc_tracer()->report_gc_reference_stats(stats); |
| 548 | pt.print_all_references(); |
| 549 | } |
| 550 | |
| 551 | // This is the point where the entire marking should have completed. |
| 552 | assert(_marking_stack.is_empty(), "Marking should have completed" ); |
| 553 | |
| 554 | { |
| 555 | GCTraceTime(Debug, gc, phases) t("Weak Processing" , _gc_timer); |
| 556 | WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl); |
| 557 | } |
| 558 | |
| 559 | { |
| 560 | GCTraceTime(Debug, gc, phases) t("Class Unloading" , _gc_timer); |
| 561 | |
| 562 | // Unload classes and purge the SystemDictionary. |
| 563 | bool purged_class = SystemDictionary::do_unloading(_gc_timer); |
| 564 | |
| 565 | // Unload nmethods. |
| 566 | CodeCache::do_unloading(is_alive_closure(), purged_class); |
| 567 | |
| 568 | // Prune dead klasses from subklass/sibling/implementor lists. |
| 569 | Klass::clean_weak_klass_links(purged_class); |
| 570 | |
| 571 | // Clean JVMCI metadata handles. |
| 572 | JVMCI_ONLY(JVMCI::do_unloading(purged_class)); |
| 573 | } |
| 574 | |
| 575 | _gc_tracer->report_object_count_after_gc(is_alive_closure()); |
| 576 | } |
| 577 | |
| 578 | |
| 579 | void PSMarkSweep::mark_sweep_phase2() { |
| 580 | GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses" , _gc_timer); |
| 581 | |
| 582 | // Now all live objects are marked, compute the new object addresses. |
| 583 | |
| 584 | // It is not required that we traverse spaces in the same order in |
| 585 | // phase2, phase3 and phase4, but the ValidateMarkSweep live oops |
| 586 | // tracking expects us to do so. See comment under phase4. |
| 587 | |
| 588 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 589 | PSOldGen* old_gen = heap->old_gen(); |
| 590 | |
| 591 | // Begin compacting into the old gen |
| 592 | PSMarkSweepDecorator::set_destination_decorator_tenured(); |
| 593 | |
| 594 | // This will also compact the young gen spaces. |
| 595 | old_gen->precompact(); |
| 596 | } |
| 597 | |
| 598 | void PSMarkSweep::mark_sweep_phase3() { |
| 599 | // Adjust the pointers to reflect the new locations |
| 600 | GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers" , _gc_timer); |
| 601 | |
| 602 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 603 | PSYoungGen* young_gen = heap->young_gen(); |
| 604 | PSOldGen* old_gen = heap->old_gen(); |
| 605 | |
| 606 | // Need to clear claim bits before the tracing starts. |
| 607 | ClassLoaderDataGraph::clear_claimed_marks(); |
| 608 | |
| 609 | // General strong roots. |
| 610 | Universe::oops_do(adjust_pointer_closure()); |
| 611 | JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles |
| 612 | Threads::oops_do(adjust_pointer_closure(), NULL); |
| 613 | ObjectSynchronizer::oops_do(adjust_pointer_closure()); |
| 614 | Management::oops_do(adjust_pointer_closure()); |
| 615 | JvmtiExport::oops_do(adjust_pointer_closure()); |
| 616 | SystemDictionary::oops_do(adjust_pointer_closure()); |
| 617 | ClassLoaderDataGraph::cld_do(adjust_cld_closure()); |
| 618 | |
| 619 | // Now adjust pointers in remaining weak roots. (All of which should |
| 620 | // have been cleared if they pointed to non-surviving objects.) |
| 621 | // Global (weak) JNI handles |
| 622 | WeakProcessor::oops_do(adjust_pointer_closure()); |
| 623 | |
| 624 | CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations); |
| 625 | CodeCache::blobs_do(&adjust_from_blobs); |
| 626 | AOT_ONLY(AOTLoader::oops_do(adjust_pointer_closure());) |
| 627 | |
| 628 | JVMCI_ONLY(JVMCI::oops_do(adjust_pointer_closure());) |
| 629 | |
| 630 | ref_processor()->weak_oops_do(adjust_pointer_closure()); |
| 631 | PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure()); |
| 632 | |
| 633 | adjust_marks(); |
| 634 | |
| 635 | young_gen->adjust_pointers(); |
| 636 | old_gen->adjust_pointers(); |
| 637 | } |
| 638 | |
| 639 | void PSMarkSweep::mark_sweep_phase4() { |
| 640 | EventMark m("4 compact heap" ); |
| 641 | GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects" , _gc_timer); |
| 642 | |
| 643 | // All pointers are now adjusted, move objects accordingly |
| 644 | |
| 645 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
| 646 | PSYoungGen* young_gen = heap->young_gen(); |
| 647 | PSOldGen* old_gen = heap->old_gen(); |
| 648 | |
| 649 | old_gen->compact(); |
| 650 | young_gen->compact(); |
| 651 | } |
| 652 | |
| 653 | jlong PSMarkSweep::millis_since_last_gc() { |
| 654 | // We need a monotonically non-decreasing time in ms but |
| 655 | // os::javaTimeMillis() does not guarantee monotonicity. |
| 656 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
| 657 | jlong ret_val = now - _time_of_last_gc; |
| 658 | // XXX See note in genCollectedHeap::millis_since_last_gc(). |
| 659 | if (ret_val < 0) { |
| 660 | NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);) |
| 661 | return 0; |
| 662 | } |
| 663 | return ret_val; |
| 664 | } |
| 665 | |
| 666 | void PSMarkSweep::reset_millis_since_last_gc() { |
| 667 | // We need a monotonically non-decreasing time in ms but |
| 668 | // os::javaTimeMillis() does not guarantee monotonicity. |
| 669 | _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
| 670 | } |
| 671 | |