1 | /* |
2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/javaClasses.inline.hpp" |
27 | #include "classfile/systemDictionary.hpp" |
28 | #include "gc/shared/collectedHeap.hpp" |
29 | #include "gc/shared/collectedHeap.inline.hpp" |
30 | #include "gc/shared/gcTimer.hpp" |
31 | #include "gc/shared/gcTraceTime.inline.hpp" |
32 | #include "gc/shared/referencePolicy.hpp" |
33 | #include "gc/shared/referenceProcessor.inline.hpp" |
34 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
35 | #include "logging/log.hpp" |
36 | #include "memory/allocation.inline.hpp" |
37 | #include "memory/resourceArea.hpp" |
38 | #include "memory/universe.hpp" |
39 | #include "oops/access.inline.hpp" |
40 | #include "oops/oop.inline.hpp" |
41 | #include "runtime/java.hpp" |
42 | |
43 | ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL; |
44 | ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy = NULL; |
45 | jlong ReferenceProcessor::_soft_ref_timestamp_clock = 0; |
46 | |
47 | void referenceProcessor_init() { |
48 | ReferenceProcessor::init_statics(); |
49 | } |
50 | |
51 | void ReferenceProcessor::init_statics() { |
52 | // We need a monotonically non-decreasing time in ms but |
53 | // os::javaTimeMillis() does not guarantee monotonicity. |
54 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
55 | |
56 | // Initialize the soft ref timestamp clock. |
57 | _soft_ref_timestamp_clock = now; |
58 | // Also update the soft ref clock in j.l.r.SoftReference |
59 | java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock); |
60 | |
61 | _always_clear_soft_ref_policy = new AlwaysClearPolicy(); |
62 | if (is_server_compilation_mode_vm()) { |
63 | _default_soft_ref_policy = new LRUMaxHeapPolicy(); |
64 | } else { |
65 | _default_soft_ref_policy = new LRUCurrentHeapPolicy(); |
66 | } |
67 | if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) { |
68 | vm_exit_during_initialization("Could not allocate reference policy object" ); |
69 | } |
70 | guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery || |
71 | RefDiscoveryPolicy == ReferentBasedDiscovery, |
72 | "Unrecognized RefDiscoveryPolicy" ); |
73 | } |
74 | |
75 | void ReferenceProcessor::enable_discovery(bool check_no_refs) { |
76 | #ifdef ASSERT |
77 | // Verify that we're not currently discovering refs |
78 | assert(!_discovering_refs, "nested call?" ); |
79 | |
80 | if (check_no_refs) { |
81 | // Verify that the discovered lists are empty |
82 | verify_no_references_recorded(); |
83 | } |
84 | #endif // ASSERT |
85 | |
86 | // Someone could have modified the value of the static |
87 | // field in the j.l.r.SoftReference class that holds the |
88 | // soft reference timestamp clock using reflection or |
89 | // Unsafe between GCs. Unconditionally update the static |
90 | // field in ReferenceProcessor here so that we use the new |
91 | // value during reference discovery. |
92 | |
93 | _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); |
94 | _discovering_refs = true; |
95 | } |
96 | |
97 | ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery, |
98 | bool mt_processing, |
99 | uint mt_processing_degree, |
100 | bool mt_discovery, |
101 | uint mt_discovery_degree, |
102 | bool atomic_discovery, |
103 | BoolObjectClosure* , |
104 | bool adjust_no_of_processing_threads) : |
105 | _is_subject_to_discovery(is_subject_to_discovery), |
106 | _discovering_refs(false), |
107 | _enqueuing_is_done(false), |
108 | _processing_is_mt(mt_processing), |
109 | _next_id(0), |
110 | _adjust_no_of_processing_threads(adjust_no_of_processing_threads), |
111 | _is_alive_non_header(is_alive_non_header) |
112 | { |
113 | assert(is_subject_to_discovery != NULL, "must be set" ); |
114 | |
115 | _discovery_is_atomic = atomic_discovery; |
116 | _discovery_is_mt = mt_discovery; |
117 | _num_queues = MAX2(1U, mt_processing_degree); |
118 | _max_num_queues = MAX2(_num_queues, mt_discovery_degree); |
119 | _discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList, |
120 | _max_num_queues * number_of_subclasses_of_ref(), mtGC); |
121 | |
122 | if (_discovered_refs == NULL) { |
123 | vm_exit_during_initialization("Could not allocated RefProc Array" ); |
124 | } |
125 | _discoveredSoftRefs = &_discovered_refs[0]; |
126 | _discoveredWeakRefs = &_discoveredSoftRefs[_max_num_queues]; |
127 | _discoveredFinalRefs = &_discoveredWeakRefs[_max_num_queues]; |
128 | _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_queues]; |
129 | |
130 | // Initialize all entries to NULL |
131 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
132 | _discovered_refs[i].clear(); |
133 | } |
134 | |
135 | setup_policy(false /* default soft ref policy */); |
136 | } |
137 | |
138 | #ifndef PRODUCT |
139 | void ReferenceProcessor::verify_no_references_recorded() { |
140 | guarantee(!_discovering_refs, "Discovering refs?" ); |
141 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
142 | guarantee(_discovered_refs[i].is_empty(), |
143 | "Found non-empty discovered list at %u" , i); |
144 | } |
145 | } |
146 | #endif |
147 | |
148 | void ReferenceProcessor::weak_oops_do(OopClosure* f) { |
149 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
150 | if (UseCompressedOops) { |
151 | f->do_oop((narrowOop*)_discovered_refs[i].adr_head()); |
152 | } else { |
153 | f->do_oop((oop*)_discovered_refs[i].adr_head()); |
154 | } |
155 | } |
156 | } |
157 | |
158 | void ReferenceProcessor::update_soft_ref_master_clock() { |
159 | // Update (advance) the soft ref master clock field. This must be done |
160 | // after processing the soft ref list. |
161 | |
162 | // We need a monotonically non-decreasing time in ms but |
163 | // os::javaTimeMillis() does not guarantee monotonicity. |
164 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
165 | jlong soft_ref_clock = java_lang_ref_SoftReference::clock(); |
166 | assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync" ); |
167 | |
168 | NOT_PRODUCT( |
169 | if (now < _soft_ref_timestamp_clock) { |
170 | log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, |
171 | _soft_ref_timestamp_clock, now); |
172 | } |
173 | ) |
174 | // The values of now and _soft_ref_timestamp_clock are set using |
175 | // javaTimeNanos(), which is guaranteed to be monotonically |
176 | // non-decreasing provided the underlying platform provides such |
177 | // a time source (and it is bug free). |
178 | // In product mode, however, protect ourselves from non-monotonicity. |
179 | if (now > _soft_ref_timestamp_clock) { |
180 | _soft_ref_timestamp_clock = now; |
181 | java_lang_ref_SoftReference::set_clock(now); |
182 | } |
183 | // Else leave clock stalled at its old value until time progresses |
184 | // past clock value. |
185 | } |
186 | |
187 | size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const { |
188 | size_t total = 0; |
189 | for (uint i = 0; i < _max_num_queues; ++i) { |
190 | total += lists[i].length(); |
191 | } |
192 | return total; |
193 | } |
194 | |
195 | #ifdef ASSERT |
196 | void ReferenceProcessor::verify_total_count_zero(DiscoveredList lists[], const char* type) { |
197 | size_t count = total_count(lists); |
198 | assert(count == 0, "%ss must be empty but has " SIZE_FORMAT " elements" , type, count); |
199 | } |
200 | #endif |
201 | |
202 | ReferenceProcessorStats ReferenceProcessor::process_discovered_references( |
203 | BoolObjectClosure* is_alive, |
204 | OopClosure* keep_alive, |
205 | VoidClosure* complete_gc, |
206 | AbstractRefProcTaskExecutor* task_executor, |
207 | ReferenceProcessorPhaseTimes* phase_times) { |
208 | |
209 | double start_time = os::elapsedTime(); |
210 | |
211 | assert(!enqueuing_is_done(), "If here enqueuing should not be complete" ); |
212 | // Stop treating discovered references specially. |
213 | disable_discovery(); |
214 | |
215 | // If discovery was concurrent, someone could have modified |
216 | // the value of the static field in the j.l.r.SoftReference |
217 | // class that holds the soft reference timestamp clock using |
218 | // reflection or Unsafe between when discovery was enabled and |
219 | // now. Unconditionally update the static field in ReferenceProcessor |
220 | // here so that we use the new value during processing of the |
221 | // discovered soft refs. |
222 | |
223 | _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); |
224 | |
225 | ReferenceProcessorStats stats(total_count(_discoveredSoftRefs), |
226 | total_count(_discoveredWeakRefs), |
227 | total_count(_discoveredFinalRefs), |
228 | total_count(_discoveredPhantomRefs)); |
229 | |
230 | { |
231 | RefProcTotalPhaseTimesTracker tt(RefPhase1, phase_times, this); |
232 | process_soft_ref_reconsider(is_alive, keep_alive, complete_gc, |
233 | task_executor, phase_times); |
234 | } |
235 | |
236 | update_soft_ref_master_clock(); |
237 | |
238 | { |
239 | RefProcTotalPhaseTimesTracker tt(RefPhase2, phase_times, this); |
240 | process_soft_weak_final_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times); |
241 | } |
242 | |
243 | { |
244 | RefProcTotalPhaseTimesTracker tt(RefPhase3, phase_times, this); |
245 | process_final_keep_alive(keep_alive, complete_gc, task_executor, phase_times); |
246 | } |
247 | |
248 | { |
249 | RefProcTotalPhaseTimesTracker tt(RefPhase4, phase_times, this); |
250 | process_phantom_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times); |
251 | } |
252 | |
253 | if (task_executor != NULL) { |
254 | // Record the work done by the parallel workers. |
255 | task_executor->set_single_threaded_mode(); |
256 | } |
257 | |
258 | phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000); |
259 | |
260 | return stats; |
261 | } |
262 | |
263 | void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) { |
264 | _current_discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_current_discovered); |
265 | oop discovered = java_lang_ref_Reference::discovered(_current_discovered); |
266 | assert(_current_discovered_addr && oopDesc::is_oop_or_null(discovered), |
267 | "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)); |
268 | _next_discovered = discovered; |
269 | |
270 | _referent_addr = java_lang_ref_Reference::referent_addr_raw(_current_discovered); |
271 | _referent = java_lang_ref_Reference::referent(_current_discovered); |
272 | assert(Universe::heap()->is_in_reserved_or_null(_referent), |
273 | "Wrong oop found in java.lang.Reference object" ); |
274 | assert(allow_null_referent ? |
275 | oopDesc::is_oop_or_null(_referent) |
276 | : oopDesc::is_oop(_referent), |
277 | "Expected an oop%s for referent field at " PTR_FORMAT, |
278 | (allow_null_referent ? " or NULL" : "" ), |
279 | p2i(_referent)); |
280 | } |
281 | |
282 | void DiscoveredListIterator::remove() { |
283 | assert(oopDesc::is_oop(_current_discovered), "Dropping a bad reference" ); |
284 | RawAccess<>::oop_store(_current_discovered_addr, oop(NULL)); |
285 | |
286 | // First _prev_next ref actually points into DiscoveredList (gross). |
287 | oop new_next; |
288 | if (oopDesc::equals_raw(_next_discovered, _current_discovered)) { |
289 | // At the end of the list, we should make _prev point to itself. |
290 | // If _ref is the first ref, then _prev_next will be in the DiscoveredList, |
291 | // and _prev will be NULL. |
292 | new_next = _prev_discovered; |
293 | } else { |
294 | new_next = _next_discovered; |
295 | } |
296 | // Remove Reference object from discovered list. Note that G1 does not need a |
297 | // pre-barrier here because we know the Reference has already been found/marked, |
298 | // that's how it ended up in the discovered list in the first place. |
299 | RawAccess<>::oop_store(_prev_discovered_addr, new_next); |
300 | _removed++; |
301 | _refs_list.dec_length(1); |
302 | } |
303 | |
304 | void DiscoveredListIterator::clear_referent() { |
305 | RawAccess<>::oop_store(_referent_addr, oop(NULL)); |
306 | } |
307 | |
308 | void DiscoveredListIterator::enqueue() { |
309 | HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_current_discovered, |
310 | java_lang_ref_Reference::discovered_offset, |
311 | _next_discovered); |
312 | } |
313 | |
314 | void DiscoveredListIterator::complete_enqueue() { |
315 | if (_prev_discovered != NULL) { |
316 | // This is the last object. |
317 | // Swap refs_list into pending list and set obj's |
318 | // discovered to what we read from the pending list. |
319 | oop old = Universe::swap_reference_pending_list(_refs_list.head()); |
320 | HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_prev_discovered, java_lang_ref_Reference::discovered_offset, old); |
321 | } |
322 | } |
323 | |
324 | inline void log_dropped_ref(const DiscoveredListIterator& iter, const char* reason) { |
325 | if (log_develop_is_enabled(Trace, gc, ref)) { |
326 | ResourceMark rm; |
327 | log_develop_trace(gc, ref)("Dropping %s reference " PTR_FORMAT ": %s" , |
328 | reason, p2i(iter.obj()), |
329 | iter.obj()->klass()->internal_name()); |
330 | } |
331 | } |
332 | |
333 | inline void log_enqueued_ref(const DiscoveredListIterator& iter, const char* reason) { |
334 | if (log_develop_is_enabled(Trace, gc, ref)) { |
335 | ResourceMark rm; |
336 | log_develop_trace(gc, ref)("Enqueue %s reference (" INTPTR_FORMAT ": %s)" , |
337 | reason, p2i(iter.obj()), iter.obj()->klass()->internal_name()); |
338 | } |
339 | assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference" ); |
340 | } |
341 | |
342 | size_t ReferenceProcessor::process_soft_ref_reconsider_work(DiscoveredList& refs_list, |
343 | ReferencePolicy* policy, |
344 | BoolObjectClosure* is_alive, |
345 | OopClosure* keep_alive, |
346 | VoidClosure* complete_gc) { |
347 | assert(policy != NULL, "Must have a non-NULL policy" ); |
348 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
349 | // Decide which softly reachable refs should be kept alive. |
350 | while (iter.has_next()) { |
351 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
352 | bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive(); |
353 | if (referent_is_dead && |
354 | !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) { |
355 | log_dropped_ref(iter, "by policy" ); |
356 | // Remove Reference object from list |
357 | iter.remove(); |
358 | // keep the referent around |
359 | iter.make_referent_alive(); |
360 | iter.move_to_next(); |
361 | } else { |
362 | iter.next(); |
363 | } |
364 | } |
365 | // Close the reachable set |
366 | complete_gc->do_void(); |
367 | |
368 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT, |
369 | iter.removed(), iter.processed(), p2i(&refs_list)); |
370 | return iter.removed(); |
371 | } |
372 | |
373 | size_t ReferenceProcessor::process_soft_weak_final_refs_work(DiscoveredList& refs_list, |
374 | BoolObjectClosure* is_alive, |
375 | OopClosure* keep_alive, |
376 | bool do_enqueue_and_clear) { |
377 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
378 | while (iter.has_next()) { |
379 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
380 | if (iter.referent() == NULL) { |
381 | // Reference has been cleared since discovery; only possible if |
382 | // discovery is not atomic (checked by load_ptrs). Remove |
383 | // reference from list. |
384 | log_dropped_ref(iter, "cleared" ); |
385 | iter.remove(); |
386 | iter.move_to_next(); |
387 | } else if (iter.is_referent_alive()) { |
388 | // The referent is reachable after all. |
389 | // Remove reference from list. |
390 | log_dropped_ref(iter, "reachable" ); |
391 | iter.remove(); |
392 | // Update the referent pointer as necessary. Note that this |
393 | // should not entail any recursive marking because the |
394 | // referent must already have been traversed. |
395 | iter.make_referent_alive(); |
396 | iter.move_to_next(); |
397 | } else { |
398 | if (do_enqueue_and_clear) { |
399 | iter.clear_referent(); |
400 | iter.enqueue(); |
401 | log_enqueued_ref(iter, "cleared" ); |
402 | } |
403 | // Keep in discovered list |
404 | iter.next(); |
405 | } |
406 | } |
407 | if (do_enqueue_and_clear) { |
408 | iter.complete_enqueue(); |
409 | refs_list.clear(); |
410 | } |
411 | |
412 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT |
413 | " Refs in discovered list " INTPTR_FORMAT, |
414 | iter.removed(), iter.processed(), p2i(&refs_list)); |
415 | return iter.removed(); |
416 | } |
417 | |
418 | size_t ReferenceProcessor::process_final_keep_alive_work(DiscoveredList& refs_list, |
419 | OopClosure* keep_alive, |
420 | VoidClosure* complete_gc) { |
421 | DiscoveredListIterator iter(refs_list, keep_alive, NULL); |
422 | while (iter.has_next()) { |
423 | iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */)); |
424 | // keep the referent and followers around |
425 | iter.make_referent_alive(); |
426 | |
427 | // Self-loop next, to mark the FinalReference not active. |
428 | assert(java_lang_ref_Reference::next(iter.obj()) == NULL, "enqueued FinalReference" ); |
429 | java_lang_ref_Reference::set_next_raw(iter.obj(), iter.obj()); |
430 | |
431 | iter.enqueue(); |
432 | log_enqueued_ref(iter, "Final" ); |
433 | iter.next(); |
434 | } |
435 | iter.complete_enqueue(); |
436 | // Close the reachable set |
437 | complete_gc->do_void(); |
438 | refs_list.clear(); |
439 | |
440 | assert(iter.removed() == 0, "This phase does not remove anything." ); |
441 | return iter.removed(); |
442 | } |
443 | |
444 | size_t ReferenceProcessor::process_phantom_refs_work(DiscoveredList& refs_list, |
445 | BoolObjectClosure* is_alive, |
446 | OopClosure* keep_alive, |
447 | VoidClosure* complete_gc) { |
448 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
449 | while (iter.has_next()) { |
450 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
451 | |
452 | oop const referent = iter.referent(); |
453 | |
454 | if (referent == NULL || iter.is_referent_alive()) { |
455 | iter.make_referent_alive(); |
456 | iter.remove(); |
457 | iter.move_to_next(); |
458 | } else { |
459 | iter.clear_referent(); |
460 | iter.enqueue(); |
461 | log_enqueued_ref(iter, "cleared Phantom" ); |
462 | iter.next(); |
463 | } |
464 | } |
465 | iter.complete_enqueue(); |
466 | // Close the reachable set; needed for collectors which keep_alive_closure do |
467 | // not immediately complete their work. |
468 | complete_gc->do_void(); |
469 | refs_list.clear(); |
470 | |
471 | return iter.removed(); |
472 | } |
473 | |
474 | void |
475 | ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) { |
476 | oop obj = NULL; |
477 | oop next = refs_list.head(); |
478 | while (!oopDesc::equals_raw(next, obj)) { |
479 | obj = next; |
480 | next = java_lang_ref_Reference::discovered(obj); |
481 | java_lang_ref_Reference::set_discovered_raw(obj, NULL); |
482 | } |
483 | refs_list.clear(); |
484 | } |
485 | |
486 | void ReferenceProcessor::abandon_partial_discovery() { |
487 | // loop over the lists |
488 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
489 | if ((i % _max_num_queues) == 0) { |
490 | log_develop_trace(gc, ref)("Abandoning %s discovered list" , list_name(i)); |
491 | } |
492 | clear_discovered_references(_discovered_refs[i]); |
493 | } |
494 | } |
495 | |
496 | size_t ReferenceProcessor::total_reference_count(ReferenceType type) const { |
497 | DiscoveredList* list = NULL; |
498 | |
499 | switch (type) { |
500 | case REF_SOFT: |
501 | list = _discoveredSoftRefs; |
502 | break; |
503 | case REF_WEAK: |
504 | list = _discoveredWeakRefs; |
505 | break; |
506 | case REF_FINAL: |
507 | list = _discoveredFinalRefs; |
508 | break; |
509 | case REF_PHANTOM: |
510 | list = _discoveredPhantomRefs; |
511 | break; |
512 | case REF_OTHER: |
513 | case REF_NONE: |
514 | default: |
515 | ShouldNotReachHere(); |
516 | } |
517 | return total_count(list); |
518 | } |
519 | |
520 | class RefProcPhase1Task : public AbstractRefProcTaskExecutor::ProcessTask { |
521 | public: |
522 | RefProcPhase1Task(ReferenceProcessor& ref_processor, |
523 | ReferenceProcessorPhaseTimes* phase_times, |
524 | ReferencePolicy* policy) |
525 | : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times), |
526 | _policy(policy) { } |
527 | |
528 | virtual void work(uint worker_id, |
529 | BoolObjectClosure& is_alive, |
530 | OopClosure& keep_alive, |
531 | VoidClosure& complete_gc) |
532 | { |
533 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase1, _phase_times, worker_id); |
534 | size_t const removed = _ref_processor.process_soft_ref_reconsider_work(_ref_processor._discoveredSoftRefs[worker_id], |
535 | _policy, |
536 | &is_alive, |
537 | &keep_alive, |
538 | &complete_gc); |
539 | _phase_times->add_ref_cleared(REF_SOFT, removed); |
540 | } |
541 | private: |
542 | ReferencePolicy* _policy; |
543 | }; |
544 | |
545 | class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask { |
546 | void run_phase2(uint worker_id, |
547 | DiscoveredList list[], |
548 | BoolObjectClosure& is_alive, |
549 | OopClosure& keep_alive, |
550 | bool do_enqueue_and_clear, |
551 | ReferenceType ref_type) { |
552 | size_t const removed = _ref_processor.process_soft_weak_final_refs_work(list[worker_id], |
553 | &is_alive, |
554 | &keep_alive, |
555 | do_enqueue_and_clear); |
556 | _phase_times->add_ref_cleared(ref_type, removed); |
557 | } |
558 | |
559 | public: |
560 | RefProcPhase2Task(ReferenceProcessor& ref_processor, |
561 | ReferenceProcessorPhaseTimes* phase_times) |
562 | : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { } |
563 | |
564 | virtual void work(uint worker_id, |
565 | BoolObjectClosure& is_alive, |
566 | OopClosure& keep_alive, |
567 | VoidClosure& complete_gc) { |
568 | RefProcWorkerTimeTracker t(_phase_times->phase2_worker_time_sec(), worker_id); |
569 | { |
570 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase2, _phase_times, worker_id); |
571 | run_phase2(worker_id, _ref_processor._discoveredSoftRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_SOFT); |
572 | } |
573 | { |
574 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::WeakRefSubPhase2, _phase_times, worker_id); |
575 | run_phase2(worker_id, _ref_processor._discoveredWeakRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_WEAK); |
576 | } |
577 | { |
578 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase2, _phase_times, worker_id); |
579 | run_phase2(worker_id, _ref_processor._discoveredFinalRefs, is_alive, keep_alive, false /* do_enqueue_and_clear */, REF_FINAL); |
580 | } |
581 | // Close the reachable set; needed for collectors which keep_alive_closure do |
582 | // not immediately complete their work. |
583 | complete_gc.do_void(); |
584 | } |
585 | }; |
586 | |
587 | class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask { |
588 | public: |
589 | RefProcPhase3Task(ReferenceProcessor& ref_processor, |
590 | ReferenceProcessorPhaseTimes* phase_times) |
591 | : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times) { } |
592 | |
593 | virtual void work(uint worker_id, |
594 | BoolObjectClosure& is_alive, |
595 | OopClosure& keep_alive, |
596 | VoidClosure& complete_gc) |
597 | { |
598 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase3, _phase_times, worker_id); |
599 | _ref_processor.process_final_keep_alive_work(_ref_processor._discoveredFinalRefs[worker_id], &keep_alive, &complete_gc); |
600 | } |
601 | }; |
602 | |
603 | class RefProcPhase4Task: public AbstractRefProcTaskExecutor::ProcessTask { |
604 | public: |
605 | RefProcPhase4Task(ReferenceProcessor& ref_processor, |
606 | ReferenceProcessorPhaseTimes* phase_times) |
607 | : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { } |
608 | |
609 | virtual void work(uint worker_id, |
610 | BoolObjectClosure& is_alive, |
611 | OopClosure& keep_alive, |
612 | VoidClosure& complete_gc) |
613 | { |
614 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::PhantomRefSubPhase4, _phase_times, worker_id); |
615 | size_t const removed = _ref_processor.process_phantom_refs_work(_ref_processor._discoveredPhantomRefs[worker_id], |
616 | &is_alive, |
617 | &keep_alive, |
618 | &complete_gc); |
619 | _phase_times->add_ref_cleared(REF_PHANTOM, removed); |
620 | } |
621 | }; |
622 | |
623 | void ReferenceProcessor::log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues) { |
624 | LogTarget(Trace, gc, ref) lt; |
625 | |
626 | if (!lt.is_enabled()) { |
627 | return; |
628 | } |
629 | |
630 | size_t total = 0; |
631 | |
632 | LogStream ls(lt); |
633 | ls.print("%s" , prefix); |
634 | for (uint i = 0; i < num_active_queues; i++) { |
635 | ls.print(SIZE_FORMAT " " , list[i].length()); |
636 | total += list[i].length(); |
637 | } |
638 | ls.print_cr("(" SIZE_FORMAT ")" , total); |
639 | } |
640 | |
641 | #ifndef PRODUCT |
642 | void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) { |
643 | if (!log_is_enabled(Trace, gc, ref)) { |
644 | return; |
645 | } |
646 | |
647 | log_reflist("" , ref_lists, num_active_queues); |
648 | #ifdef ASSERT |
649 | for (uint i = num_active_queues; i < _max_num_queues; i++) { |
650 | assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u" , |
651 | ref_lists[i].length(), i); |
652 | } |
653 | #endif |
654 | } |
655 | #endif |
656 | |
657 | void ReferenceProcessor::set_active_mt_degree(uint v) { |
658 | _num_queues = v; |
659 | _next_id = 0; |
660 | } |
661 | |
662 | bool ReferenceProcessor::need_balance_queues(DiscoveredList refs_lists[]) { |
663 | assert(_processing_is_mt, "why balance non-mt processing?" ); |
664 | // _num_queues is the processing degree. Only list entries up to |
665 | // _num_queues will be processed, so any non-empty lists beyond |
666 | // that must be redistributed to lists in that range. Even if not |
667 | // needed for that, balancing may be desirable to eliminate poor |
668 | // distribution of references among the lists. |
669 | if (ParallelRefProcBalancingEnabled) { |
670 | return true; // Configuration says do it. |
671 | } else { |
672 | // Configuration says don't balance, but if there are non-empty |
673 | // lists beyond the processing degree, then must ignore the |
674 | // configuration and balance anyway. |
675 | for (uint i = _num_queues; i < _max_num_queues; ++i) { |
676 | if (!refs_lists[i].is_empty()) { |
677 | return true; // Must balance despite configuration. |
678 | } |
679 | } |
680 | return false; // Safe to obey configuration and not balance. |
681 | } |
682 | } |
683 | |
684 | void ReferenceProcessor::maybe_balance_queues(DiscoveredList refs_lists[]) { |
685 | assert(_processing_is_mt, "Should not call this otherwise" ); |
686 | if (need_balance_queues(refs_lists)) { |
687 | balance_queues(refs_lists); |
688 | } |
689 | } |
690 | |
691 | // Balances reference queues. |
692 | // Move entries from all queues[0, 1, ..., _max_num_q-1] to |
693 | // queues[0, 1, ..., _num_q-1] because only the first _num_q |
694 | // corresponding to the active workers will be processed. |
695 | void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[]) |
696 | { |
697 | // calculate total length |
698 | size_t total_refs = 0; |
699 | log_develop_trace(gc, ref)("Balance ref_lists " ); |
700 | |
701 | log_reflist_counts(ref_lists, _max_num_queues); |
702 | |
703 | for (uint i = 0; i < _max_num_queues; ++i) { |
704 | total_refs += ref_lists[i].length(); |
705 | } |
706 | size_t avg_refs = total_refs / _num_queues + 1; |
707 | uint to_idx = 0; |
708 | for (uint from_idx = 0; from_idx < _max_num_queues; from_idx++) { |
709 | bool move_all = false; |
710 | if (from_idx >= _num_queues) { |
711 | move_all = ref_lists[from_idx].length() > 0; |
712 | } |
713 | while ((ref_lists[from_idx].length() > avg_refs) || |
714 | move_all) { |
715 | assert(to_idx < _num_queues, "Sanity Check!" ); |
716 | if (ref_lists[to_idx].length() < avg_refs) { |
717 | // move superfluous refs |
718 | size_t refs_to_move; |
719 | // Move all the Ref's if the from queue will not be processed. |
720 | if (move_all) { |
721 | refs_to_move = MIN2(ref_lists[from_idx].length(), |
722 | avg_refs - ref_lists[to_idx].length()); |
723 | } else { |
724 | refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs, |
725 | avg_refs - ref_lists[to_idx].length()); |
726 | } |
727 | |
728 | assert(refs_to_move > 0, "otherwise the code below will fail" ); |
729 | |
730 | oop move_head = ref_lists[from_idx].head(); |
731 | oop move_tail = move_head; |
732 | oop new_head = move_head; |
733 | // find an element to split the list on |
734 | for (size_t j = 0; j < refs_to_move; ++j) { |
735 | move_tail = new_head; |
736 | new_head = java_lang_ref_Reference::discovered(new_head); |
737 | } |
738 | |
739 | // Add the chain to the to list. |
740 | if (ref_lists[to_idx].head() == NULL) { |
741 | // to list is empty. Make a loop at the end. |
742 | java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail); |
743 | } else { |
744 | java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head()); |
745 | } |
746 | ref_lists[to_idx].set_head(move_head); |
747 | ref_lists[to_idx].inc_length(refs_to_move); |
748 | |
749 | // Remove the chain from the from list. |
750 | if (oopDesc::equals_raw(move_tail, new_head)) { |
751 | // We found the end of the from list. |
752 | ref_lists[from_idx].set_head(NULL); |
753 | } else { |
754 | ref_lists[from_idx].set_head(new_head); |
755 | } |
756 | ref_lists[from_idx].dec_length(refs_to_move); |
757 | if (ref_lists[from_idx].length() == 0) { |
758 | break; |
759 | } |
760 | } else { |
761 | to_idx = (to_idx + 1) % _num_queues; |
762 | } |
763 | } |
764 | } |
765 | #ifdef ASSERT |
766 | log_reflist_counts(ref_lists, _num_queues); |
767 | size_t balanced_total_refs = 0; |
768 | for (uint i = 0; i < _num_queues; ++i) { |
769 | balanced_total_refs += ref_lists[i].length(); |
770 | } |
771 | assert(total_refs == balanced_total_refs, "Balancing was incomplete" ); |
772 | #endif |
773 | } |
774 | |
775 | bool ReferenceProcessor::is_mt_processing_set_up(AbstractRefProcTaskExecutor* task_executor) const { |
776 | return task_executor != NULL && _processing_is_mt; |
777 | } |
778 | |
779 | void ReferenceProcessor::process_soft_ref_reconsider(BoolObjectClosure* is_alive, |
780 | OopClosure* keep_alive, |
781 | VoidClosure* complete_gc, |
782 | AbstractRefProcTaskExecutor* task_executor, |
783 | ReferenceProcessorPhaseTimes* phase_times) { |
784 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
785 | |
786 | size_t const num_soft_refs = total_count(_discoveredSoftRefs); |
787 | phase_times->set_ref_discovered(REF_SOFT, num_soft_refs); |
788 | |
789 | phase_times->set_processing_is_mt(_processing_is_mt); |
790 | |
791 | if (num_soft_refs == 0 || _current_soft_ref_policy == NULL) { |
792 | log_debug(gc, ref)("Skipped phase1 of Reference Processing due to unavailable references" ); |
793 | return; |
794 | } |
795 | |
796 | RefProcMTDegreeAdjuster a(this, RefPhase1, num_soft_refs); |
797 | |
798 | if (_processing_is_mt) { |
799 | RefProcBalanceQueuesTimeTracker tt(RefPhase1, phase_times); |
800 | maybe_balance_queues(_discoveredSoftRefs); |
801 | } |
802 | |
803 | RefProcPhaseTimeTracker tt(RefPhase1, phase_times); |
804 | |
805 | log_reflist("Phase1 Soft before" , _discoveredSoftRefs, _max_num_queues); |
806 | if (_processing_is_mt) { |
807 | RefProcPhase1Task phase1(*this, phase_times, _current_soft_ref_policy); |
808 | task_executor->execute(phase1, num_queues()); |
809 | } else { |
810 | size_t removed = 0; |
811 | |
812 | RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase1, phase_times, 0); |
813 | for (uint i = 0; i < _max_num_queues; i++) { |
814 | removed += process_soft_ref_reconsider_work(_discoveredSoftRefs[i], _current_soft_ref_policy, |
815 | is_alive, keep_alive, complete_gc); |
816 | } |
817 | |
818 | phase_times->add_ref_cleared(REF_SOFT, removed); |
819 | } |
820 | log_reflist("Phase1 Soft after" , _discoveredSoftRefs, _max_num_queues); |
821 | } |
822 | |
823 | void ReferenceProcessor::process_soft_weak_final_refs(BoolObjectClosure* is_alive, |
824 | OopClosure* keep_alive, |
825 | VoidClosure* complete_gc, |
826 | AbstractRefProcTaskExecutor* task_executor, |
827 | ReferenceProcessorPhaseTimes* phase_times) { |
828 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
829 | |
830 | size_t const num_soft_refs = total_count(_discoveredSoftRefs); |
831 | size_t const num_weak_refs = total_count(_discoveredWeakRefs); |
832 | size_t const num_final_refs = total_count(_discoveredFinalRefs); |
833 | size_t const num_total_refs = num_soft_refs + num_weak_refs + num_final_refs; |
834 | phase_times->set_ref_discovered(REF_WEAK, num_weak_refs); |
835 | phase_times->set_ref_discovered(REF_FINAL, num_final_refs); |
836 | |
837 | phase_times->set_processing_is_mt(_processing_is_mt); |
838 | |
839 | if (num_total_refs == 0) { |
840 | log_debug(gc, ref)("Skipped phase2 of Reference Processing due to unavailable references" ); |
841 | return; |
842 | } |
843 | |
844 | RefProcMTDegreeAdjuster a(this, RefPhase2, num_total_refs); |
845 | |
846 | if (_processing_is_mt) { |
847 | RefProcBalanceQueuesTimeTracker tt(RefPhase2, phase_times); |
848 | maybe_balance_queues(_discoveredSoftRefs); |
849 | maybe_balance_queues(_discoveredWeakRefs); |
850 | maybe_balance_queues(_discoveredFinalRefs); |
851 | } |
852 | |
853 | RefProcPhaseTimeTracker tt(RefPhase2, phase_times); |
854 | |
855 | log_reflist("Phase2 Soft before" , _discoveredSoftRefs, _max_num_queues); |
856 | log_reflist("Phase2 Weak before" , _discoveredWeakRefs, _max_num_queues); |
857 | log_reflist("Phase2 Final before" , _discoveredFinalRefs, _max_num_queues); |
858 | if (_processing_is_mt) { |
859 | RefProcPhase2Task phase2(*this, phase_times); |
860 | task_executor->execute(phase2, num_queues()); |
861 | } else { |
862 | RefProcWorkerTimeTracker t(phase_times->phase2_worker_time_sec(), 0); |
863 | { |
864 | size_t removed = 0; |
865 | |
866 | RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase2, phase_times, 0); |
867 | for (uint i = 0; i < _max_num_queues; i++) { |
868 | removed += process_soft_weak_final_refs_work(_discoveredSoftRefs[i], is_alive, keep_alive, true /* do_enqueue */); |
869 | } |
870 | |
871 | phase_times->add_ref_cleared(REF_SOFT, removed); |
872 | } |
873 | { |
874 | size_t removed = 0; |
875 | |
876 | RefProcSubPhasesWorkerTimeTracker tt2(WeakRefSubPhase2, phase_times, 0); |
877 | for (uint i = 0; i < _max_num_queues; i++) { |
878 | removed += process_soft_weak_final_refs_work(_discoveredWeakRefs[i], is_alive, keep_alive, true /* do_enqueue */); |
879 | } |
880 | |
881 | phase_times->add_ref_cleared(REF_WEAK, removed); |
882 | } |
883 | { |
884 | size_t removed = 0; |
885 | |
886 | RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase2, phase_times, 0); |
887 | for (uint i = 0; i < _max_num_queues; i++) { |
888 | removed += process_soft_weak_final_refs_work(_discoveredFinalRefs[i], is_alive, keep_alive, false /* do_enqueue */); |
889 | } |
890 | |
891 | phase_times->add_ref_cleared(REF_FINAL, removed); |
892 | } |
893 | complete_gc->do_void(); |
894 | } |
895 | verify_total_count_zero(_discoveredSoftRefs, "SoftReference" ); |
896 | verify_total_count_zero(_discoveredWeakRefs, "WeakReference" ); |
897 | log_reflist("Phase2 Final after" , _discoveredFinalRefs, _max_num_queues); |
898 | } |
899 | |
900 | void ReferenceProcessor::process_final_keep_alive(OopClosure* keep_alive, |
901 | VoidClosure* complete_gc, |
902 | AbstractRefProcTaskExecutor* task_executor, |
903 | ReferenceProcessorPhaseTimes* phase_times) { |
904 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
905 | |
906 | size_t const num_final_refs = total_count(_discoveredFinalRefs); |
907 | |
908 | phase_times->set_processing_is_mt(_processing_is_mt); |
909 | |
910 | if (num_final_refs == 0) { |
911 | log_debug(gc, ref)("Skipped phase3 of Reference Processing due to unavailable references" ); |
912 | return; |
913 | } |
914 | |
915 | RefProcMTDegreeAdjuster a(this, RefPhase3, num_final_refs); |
916 | |
917 | if (_processing_is_mt) { |
918 | RefProcBalanceQueuesTimeTracker tt(RefPhase3, phase_times); |
919 | maybe_balance_queues(_discoveredFinalRefs); |
920 | } |
921 | |
922 | // Phase 3: |
923 | // . Traverse referents of final references and keep them and followers alive. |
924 | RefProcPhaseTimeTracker tt(RefPhase3, phase_times); |
925 | |
926 | if (_processing_is_mt) { |
927 | RefProcPhase3Task phase3(*this, phase_times); |
928 | task_executor->execute(phase3, num_queues()); |
929 | } else { |
930 | RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase3, phase_times, 0); |
931 | for (uint i = 0; i < _max_num_queues; i++) { |
932 | process_final_keep_alive_work(_discoveredFinalRefs[i], keep_alive, complete_gc); |
933 | } |
934 | } |
935 | verify_total_count_zero(_discoveredFinalRefs, "FinalReference" ); |
936 | } |
937 | |
938 | void ReferenceProcessor::process_phantom_refs(BoolObjectClosure* is_alive, |
939 | OopClosure* keep_alive, |
940 | VoidClosure* complete_gc, |
941 | AbstractRefProcTaskExecutor* task_executor, |
942 | ReferenceProcessorPhaseTimes* phase_times) { |
943 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
944 | |
945 | size_t const num_phantom_refs = total_count(_discoveredPhantomRefs); |
946 | phase_times->set_ref_discovered(REF_PHANTOM, num_phantom_refs); |
947 | |
948 | phase_times->set_processing_is_mt(_processing_is_mt); |
949 | |
950 | if (num_phantom_refs == 0) { |
951 | log_debug(gc, ref)("Skipped phase4 of Reference Processing due to unavailable references" ); |
952 | return; |
953 | } |
954 | |
955 | RefProcMTDegreeAdjuster a(this, RefPhase4, num_phantom_refs); |
956 | |
957 | if (_processing_is_mt) { |
958 | RefProcBalanceQueuesTimeTracker tt(RefPhase4, phase_times); |
959 | maybe_balance_queues(_discoveredPhantomRefs); |
960 | } |
961 | |
962 | // Phase 4: Walk phantom references appropriately. |
963 | RefProcPhaseTimeTracker tt(RefPhase4, phase_times); |
964 | |
965 | log_reflist("Phase4 Phantom before" , _discoveredPhantomRefs, _max_num_queues); |
966 | if (_processing_is_mt) { |
967 | RefProcPhase4Task phase4(*this, phase_times); |
968 | task_executor->execute(phase4, num_queues()); |
969 | } else { |
970 | size_t removed = 0; |
971 | |
972 | RefProcSubPhasesWorkerTimeTracker tt(PhantomRefSubPhase4, phase_times, 0); |
973 | for (uint i = 0; i < _max_num_queues; i++) { |
974 | removed += process_phantom_refs_work(_discoveredPhantomRefs[i], is_alive, keep_alive, complete_gc); |
975 | } |
976 | |
977 | phase_times->add_ref_cleared(REF_PHANTOM, removed); |
978 | } |
979 | verify_total_count_zero(_discoveredPhantomRefs, "PhantomReference" ); |
980 | } |
981 | |
982 | inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) { |
983 | uint id = 0; |
984 | // Determine the queue index to use for this object. |
985 | if (_discovery_is_mt) { |
986 | // During a multi-threaded discovery phase, |
987 | // each thread saves to its "own" list. |
988 | Thread* thr = Thread::current(); |
989 | id = thr->as_Worker_thread()->id(); |
990 | } else { |
991 | // single-threaded discovery, we save in round-robin |
992 | // fashion to each of the lists. |
993 | if (_processing_is_mt) { |
994 | id = next_id(); |
995 | } |
996 | } |
997 | assert(id < _max_num_queues, "Id is out of bounds id %u and max id %u)" , id, _max_num_queues); |
998 | |
999 | // Get the discovered queue to which we will add |
1000 | DiscoveredList* list = NULL; |
1001 | switch (rt) { |
1002 | case REF_OTHER: |
1003 | // Unknown reference type, no special treatment |
1004 | break; |
1005 | case REF_SOFT: |
1006 | list = &_discoveredSoftRefs[id]; |
1007 | break; |
1008 | case REF_WEAK: |
1009 | list = &_discoveredWeakRefs[id]; |
1010 | break; |
1011 | case REF_FINAL: |
1012 | list = &_discoveredFinalRefs[id]; |
1013 | break; |
1014 | case REF_PHANTOM: |
1015 | list = &_discoveredPhantomRefs[id]; |
1016 | break; |
1017 | case REF_NONE: |
1018 | // we should not reach here if we are an InstanceRefKlass |
1019 | default: |
1020 | ShouldNotReachHere(); |
1021 | } |
1022 | log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list)); |
1023 | return list; |
1024 | } |
1025 | |
1026 | inline void |
1027 | ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list, |
1028 | oop obj, |
1029 | HeapWord* discovered_addr) { |
1030 | assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller" ); |
1031 | // First we must make sure this object is only enqueued once. CAS in a non null |
1032 | // discovered_addr. |
1033 | oop current_head = refs_list.head(); |
1034 | // The last ref must have its discovered field pointing to itself. |
1035 | oop next_discovered = (current_head != NULL) ? current_head : obj; |
1036 | |
1037 | oop retest = HeapAccess<AS_NO_KEEPALIVE>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL)); |
1038 | |
1039 | if (retest == NULL) { |
1040 | // This thread just won the right to enqueue the object. |
1041 | // We have separate lists for enqueueing, so no synchronization |
1042 | // is necessary. |
1043 | refs_list.set_head(obj); |
1044 | refs_list.inc_length(1); |
1045 | |
1046 | log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)" , |
1047 | p2i(obj), obj->klass()->internal_name()); |
1048 | } else { |
1049 | // If retest was non NULL, another thread beat us to it: |
1050 | // The reference has already been discovered... |
1051 | log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)" , |
1052 | p2i(obj), obj->klass()->internal_name()); |
1053 | } |
1054 | } |
1055 | |
1056 | #ifndef PRODUCT |
1057 | // Non-atomic (i.e. concurrent) discovery might allow us |
1058 | // to observe j.l.References with NULL referents, being those |
1059 | // cleared concurrently by mutators during (or after) discovery. |
1060 | void ReferenceProcessor::verify_referent(oop obj) { |
1061 | bool da = discovery_is_atomic(); |
1062 | oop referent = java_lang_ref_Reference::referent(obj); |
1063 | assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent), |
1064 | "Bad referent " INTPTR_FORMAT " found in Reference " |
1065 | INTPTR_FORMAT " during %satomic discovery " , |
1066 | p2i(referent), p2i(obj), da ? "" : "non-" ); |
1067 | } |
1068 | #endif |
1069 | |
1070 | bool ReferenceProcessor::is_subject_to_discovery(oop const obj) const { |
1071 | return _is_subject_to_discovery->do_object_b(obj); |
1072 | } |
1073 | |
1074 | // We mention two of several possible choices here: |
1075 | // #0: if the reference object is not in the "originating generation" |
1076 | // (or part of the heap being collected, indicated by our "span" |
1077 | // we don't treat it specially (i.e. we scan it as we would |
1078 | // a normal oop, treating its references as strong references). |
1079 | // This means that references can't be discovered unless their |
1080 | // referent is also in the same span. This is the simplest, |
1081 | // most "local" and most conservative approach, albeit one |
1082 | // that may cause weak references to be enqueued least promptly. |
1083 | // We call this choice the "ReferenceBasedDiscovery" policy. |
1084 | // #1: the reference object may be in any generation (span), but if |
1085 | // the referent is in the generation (span) being currently collected |
1086 | // then we can discover the reference object, provided |
1087 | // the object has not already been discovered by |
1088 | // a different concurrently running collector (as may be the |
1089 | // case, for instance, if the reference object is in CMS and |
1090 | // the referent in DefNewGeneration), and provided the processing |
1091 | // of this reference object by the current collector will |
1092 | // appear atomic to every other collector in the system. |
1093 | // (Thus, for instance, a concurrent collector may not |
1094 | // discover references in other generations even if the |
1095 | // referent is in its own generation). This policy may, |
1096 | // in certain cases, enqueue references somewhat sooner than |
1097 | // might Policy #0 above, but at marginally increased cost |
1098 | // and complexity in processing these references. |
1099 | // We call this choice the "RefeferentBasedDiscovery" policy. |
1100 | bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) { |
1101 | // Make sure we are discovering refs (rather than processing discovered refs). |
1102 | if (!_discovering_refs || !RegisterReferences) { |
1103 | return false; |
1104 | } |
1105 | |
1106 | if ((rt == REF_FINAL) && (java_lang_ref_Reference::next(obj) != NULL)) { |
1107 | // Don't rediscover non-active FinalReferences. |
1108 | return false; |
1109 | } |
1110 | |
1111 | if (RefDiscoveryPolicy == ReferenceBasedDiscovery && |
1112 | !is_subject_to_discovery(obj)) { |
1113 | // Reference is not in the originating generation; |
1114 | // don't treat it specially (i.e. we want to scan it as a normal |
1115 | // object with strong references). |
1116 | return false; |
1117 | } |
1118 | |
1119 | // We only discover references whose referents are not (yet) |
1120 | // known to be strongly reachable. |
1121 | if (is_alive_non_header() != NULL) { |
1122 | verify_referent(obj); |
1123 | if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) { |
1124 | return false; // referent is reachable |
1125 | } |
1126 | } |
1127 | if (rt == REF_SOFT) { |
1128 | // For soft refs we can decide now if these are not |
1129 | // current candidates for clearing, in which case we |
1130 | // can mark through them now, rather than delaying that |
1131 | // to the reference-processing phase. Since all current |
1132 | // time-stamp policies advance the soft-ref clock only |
1133 | // at a full collection cycle, this is always currently |
1134 | // accurate. |
1135 | if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) { |
1136 | return false; |
1137 | } |
1138 | } |
1139 | |
1140 | ResourceMark rm; // Needed for tracing. |
1141 | |
1142 | HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj); |
1143 | const oop discovered = java_lang_ref_Reference::discovered(obj); |
1144 | assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)); |
1145 | if (discovered != NULL) { |
1146 | // The reference has already been discovered... |
1147 | log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)" , |
1148 | p2i(obj), obj->klass()->internal_name()); |
1149 | if (RefDiscoveryPolicy == ReferentBasedDiscovery) { |
1150 | // assumes that an object is not processed twice; |
1151 | // if it's been already discovered it must be on another |
1152 | // generation's discovered list; so we won't discover it. |
1153 | return false; |
1154 | } else { |
1155 | assert(RefDiscoveryPolicy == ReferenceBasedDiscovery, |
1156 | "Unrecognized policy" ); |
1157 | // Check assumption that an object is not potentially |
1158 | // discovered twice except by concurrent collectors that potentially |
1159 | // trace the same Reference object twice. |
1160 | assert(UseConcMarkSweepGC || UseG1GC || UseShenandoahGC, |
1161 | "Only possible with a concurrent marking collector" ); |
1162 | return true; |
1163 | } |
1164 | } |
1165 | |
1166 | if (RefDiscoveryPolicy == ReferentBasedDiscovery) { |
1167 | verify_referent(obj); |
1168 | // Discover if and only if EITHER: |
1169 | // .. reference is in our span, OR |
1170 | // .. we are an atomic collector and referent is in our span |
1171 | if (is_subject_to_discovery(obj) || |
1172 | (discovery_is_atomic() && |
1173 | is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) { |
1174 | } else { |
1175 | return false; |
1176 | } |
1177 | } else { |
1178 | assert(RefDiscoveryPolicy == ReferenceBasedDiscovery && |
1179 | is_subject_to_discovery(obj), "code inconsistency" ); |
1180 | } |
1181 | |
1182 | // Get the right type of discovered queue head. |
1183 | DiscoveredList* list = get_discovered_list(rt); |
1184 | if (list == NULL) { |
1185 | return false; // nothing special needs to be done |
1186 | } |
1187 | |
1188 | if (_discovery_is_mt) { |
1189 | add_to_discovered_list_mt(*list, obj, discovered_addr); |
1190 | } else { |
1191 | // We do a raw store here: the field will be visited later when processing |
1192 | // the discovered references. |
1193 | oop current_head = list->head(); |
1194 | // The last ref must have its discovered field pointing to itself. |
1195 | oop next_discovered = (current_head != NULL) ? current_head : obj; |
1196 | |
1197 | assert(discovered == NULL, "control point invariant" ); |
1198 | RawAccess<>::oop_store(discovered_addr, next_discovered); |
1199 | list->set_head(obj); |
1200 | list->inc_length(1); |
1201 | |
1202 | log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)" , p2i(obj), obj->klass()->internal_name()); |
1203 | } |
1204 | assert(oopDesc::is_oop(obj), "Discovered a bad reference" ); |
1205 | verify_referent(obj); |
1206 | return true; |
1207 | } |
1208 | |
1209 | bool ReferenceProcessor::has_discovered_references() { |
1210 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
1211 | if (!_discovered_refs[i].is_empty()) { |
1212 | return true; |
1213 | } |
1214 | } |
1215 | return false; |
1216 | } |
1217 | |
1218 | void ReferenceProcessor::preclean_discovered_references(BoolObjectClosure* is_alive, |
1219 | OopClosure* keep_alive, |
1220 | VoidClosure* complete_gc, |
1221 | YieldClosure* yield, |
1222 | GCTimer* gc_timer) { |
1223 | // These lists can be handled here in any order and, indeed, concurrently. |
1224 | |
1225 | // Soft references |
1226 | { |
1227 | GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences" , gc_timer); |
1228 | log_reflist("SoftRef before: " , _discoveredSoftRefs, _max_num_queues); |
1229 | for (uint i = 0; i < _max_num_queues; i++) { |
1230 | if (yield->should_return()) { |
1231 | return; |
1232 | } |
1233 | if (preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive, |
1234 | keep_alive, complete_gc, yield)) { |
1235 | log_reflist("SoftRef abort: " , _discoveredSoftRefs, _max_num_queues); |
1236 | return; |
1237 | } |
1238 | } |
1239 | log_reflist("SoftRef after: " , _discoveredSoftRefs, _max_num_queues); |
1240 | } |
1241 | |
1242 | // Weak references |
1243 | { |
1244 | GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences" , gc_timer); |
1245 | log_reflist("WeakRef before: " , _discoveredWeakRefs, _max_num_queues); |
1246 | for (uint i = 0; i < _max_num_queues; i++) { |
1247 | if (yield->should_return()) { |
1248 | return; |
1249 | } |
1250 | if (preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive, |
1251 | keep_alive, complete_gc, yield)) { |
1252 | log_reflist("WeakRef abort: " , _discoveredWeakRefs, _max_num_queues); |
1253 | return; |
1254 | } |
1255 | } |
1256 | log_reflist("WeakRef after: " , _discoveredWeakRefs, _max_num_queues); |
1257 | } |
1258 | |
1259 | // Final references |
1260 | { |
1261 | GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences" , gc_timer); |
1262 | log_reflist("FinalRef before: " , _discoveredFinalRefs, _max_num_queues); |
1263 | for (uint i = 0; i < _max_num_queues; i++) { |
1264 | if (yield->should_return()) { |
1265 | return; |
1266 | } |
1267 | if (preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive, |
1268 | keep_alive, complete_gc, yield)) { |
1269 | log_reflist("FinalRef abort: " , _discoveredFinalRefs, _max_num_queues); |
1270 | return; |
1271 | } |
1272 | } |
1273 | log_reflist("FinalRef after: " , _discoveredFinalRefs, _max_num_queues); |
1274 | } |
1275 | |
1276 | // Phantom references |
1277 | { |
1278 | GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences" , gc_timer); |
1279 | log_reflist("PhantomRef before: " , _discoveredPhantomRefs, _max_num_queues); |
1280 | for (uint i = 0; i < _max_num_queues; i++) { |
1281 | if (yield->should_return()) { |
1282 | return; |
1283 | } |
1284 | if (preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive, |
1285 | keep_alive, complete_gc, yield)) { |
1286 | log_reflist("PhantomRef abort: " , _discoveredPhantomRefs, _max_num_queues); |
1287 | return; |
1288 | } |
1289 | } |
1290 | log_reflist("PhantomRef after: " , _discoveredPhantomRefs, _max_num_queues); |
1291 | } |
1292 | } |
1293 | |
1294 | // Walk the given discovered ref list, and remove all reference objects |
1295 | // whose referents are still alive, whose referents are NULL or which |
1296 | // are not active (have a non-NULL next field). NOTE: When we are |
1297 | // thus precleaning the ref lists (which happens single-threaded today), |
1298 | // we do not disable refs discovery to honor the correct semantics of |
1299 | // java.lang.Reference. As a result, we need to be careful below |
1300 | // that ref removal steps interleave safely with ref discovery steps |
1301 | // (in this thread). |
1302 | bool ReferenceProcessor::preclean_discovered_reflist(DiscoveredList& refs_list, |
1303 | BoolObjectClosure* is_alive, |
1304 | OopClosure* keep_alive, |
1305 | VoidClosure* complete_gc, |
1306 | YieldClosure* yield) { |
1307 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
1308 | while (iter.has_next()) { |
1309 | if (yield->should_return_fine_grain()) { |
1310 | return true; |
1311 | } |
1312 | iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */)); |
1313 | if (iter.referent() == NULL || iter.is_referent_alive()) { |
1314 | // The referent has been cleared, or is alive; we need to trace |
1315 | // and mark its cohort. |
1316 | log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)" , |
1317 | p2i(iter.obj()), iter.obj()->klass()->internal_name()); |
1318 | // Remove Reference object from list |
1319 | iter.remove(); |
1320 | // Keep alive its cohort. |
1321 | iter.make_referent_alive(); |
1322 | iter.move_to_next(); |
1323 | } else { |
1324 | iter.next(); |
1325 | } |
1326 | } |
1327 | // Close the reachable set |
1328 | complete_gc->do_void(); |
1329 | |
1330 | if (iter.processed() > 0) { |
1331 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT, |
1332 | iter.removed(), iter.processed(), p2i(&refs_list)); |
1333 | } |
1334 | return false; |
1335 | } |
1336 | |
1337 | const char* ReferenceProcessor::list_name(uint i) { |
1338 | assert(i <= _max_num_queues * number_of_subclasses_of_ref(), |
1339 | "Out of bounds index" ); |
1340 | |
1341 | int j = i / _max_num_queues; |
1342 | switch (j) { |
1343 | case 0: return "SoftRef" ; |
1344 | case 1: return "WeakRef" ; |
1345 | case 2: return "FinalRef" ; |
1346 | case 3: return "PhantomRef" ; |
1347 | } |
1348 | ShouldNotReachHere(); |
1349 | return NULL; |
1350 | } |
1351 | |
1352 | uint RefProcMTDegreeAdjuster::ergo_proc_thread_count(size_t ref_count, |
1353 | uint max_threads, |
1354 | RefProcPhases phase) const { |
1355 | assert(0 < max_threads, "must allow at least one thread" ); |
1356 | |
1357 | if (use_max_threads(phase) || (ReferencesPerThread == 0)) { |
1358 | return max_threads; |
1359 | } |
1360 | |
1361 | size_t thread_count = 1 + (ref_count / ReferencesPerThread); |
1362 | return (uint)MIN3(thread_count, |
1363 | static_cast<size_t>(max_threads), |
1364 | (size_t)os::active_processor_count()); |
1365 | } |
1366 | |
1367 | bool RefProcMTDegreeAdjuster::use_max_threads(RefProcPhases phase) const { |
1368 | // Even a small number of references in either of those cases could produce large amounts of work. |
1369 | return (phase == ReferenceProcessor::RefPhase1 || phase == ReferenceProcessor::RefPhase3); |
1370 | } |
1371 | |
1372 | RefProcMTDegreeAdjuster::RefProcMTDegreeAdjuster(ReferenceProcessor* rp, |
1373 | RefProcPhases phase, |
1374 | size_t ref_count): |
1375 | _rp(rp), |
1376 | _saved_mt_processing(_rp->processing_is_mt()), |
1377 | _saved_num_queues(_rp->num_queues()) { |
1378 | if (!_rp->processing_is_mt() || !_rp->adjust_no_of_processing_threads() || (ReferencesPerThread == 0)) { |
1379 | return; |
1380 | } |
1381 | |
1382 | uint workers = ergo_proc_thread_count(ref_count, _rp->num_queues(), phase); |
1383 | |
1384 | _rp->set_mt_processing(workers > 1); |
1385 | _rp->set_active_mt_degree(workers); |
1386 | } |
1387 | |
1388 | RefProcMTDegreeAdjuster::~RefProcMTDegreeAdjuster() { |
1389 | // Revert to previous status. |
1390 | _rp->set_mt_processing(_saved_mt_processing); |
1391 | _rp->set_active_mt_degree(_saved_num_queues); |
1392 | } |
1393 | |