| 1 | /* |
| 2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/javaClasses.inline.hpp" |
| 27 | #include "classfile/systemDictionary.hpp" |
| 28 | #include "gc/shared/collectedHeap.hpp" |
| 29 | #include "gc/shared/collectedHeap.inline.hpp" |
| 30 | #include "gc/shared/gcTimer.hpp" |
| 31 | #include "gc/shared/gcTraceTime.inline.hpp" |
| 32 | #include "gc/shared/referencePolicy.hpp" |
| 33 | #include "gc/shared/referenceProcessor.inline.hpp" |
| 34 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
| 35 | #include "logging/log.hpp" |
| 36 | #include "memory/allocation.inline.hpp" |
| 37 | #include "memory/resourceArea.hpp" |
| 38 | #include "memory/universe.hpp" |
| 39 | #include "oops/access.inline.hpp" |
| 40 | #include "oops/oop.inline.hpp" |
| 41 | #include "runtime/java.hpp" |
| 42 | |
| 43 | ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL; |
| 44 | ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy = NULL; |
| 45 | jlong ReferenceProcessor::_soft_ref_timestamp_clock = 0; |
| 46 | |
| 47 | void referenceProcessor_init() { |
| 48 | ReferenceProcessor::init_statics(); |
| 49 | } |
| 50 | |
| 51 | void ReferenceProcessor::init_statics() { |
| 52 | // We need a monotonically non-decreasing time in ms but |
| 53 | // os::javaTimeMillis() does not guarantee monotonicity. |
| 54 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
| 55 | |
| 56 | // Initialize the soft ref timestamp clock. |
| 57 | _soft_ref_timestamp_clock = now; |
| 58 | // Also update the soft ref clock in j.l.r.SoftReference |
| 59 | java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock); |
| 60 | |
| 61 | _always_clear_soft_ref_policy = new AlwaysClearPolicy(); |
| 62 | if (is_server_compilation_mode_vm()) { |
| 63 | _default_soft_ref_policy = new LRUMaxHeapPolicy(); |
| 64 | } else { |
| 65 | _default_soft_ref_policy = new LRUCurrentHeapPolicy(); |
| 66 | } |
| 67 | if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) { |
| 68 | vm_exit_during_initialization("Could not allocate reference policy object" ); |
| 69 | } |
| 70 | guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery || |
| 71 | RefDiscoveryPolicy == ReferentBasedDiscovery, |
| 72 | "Unrecognized RefDiscoveryPolicy" ); |
| 73 | } |
| 74 | |
| 75 | void ReferenceProcessor::enable_discovery(bool check_no_refs) { |
| 76 | #ifdef ASSERT |
| 77 | // Verify that we're not currently discovering refs |
| 78 | assert(!_discovering_refs, "nested call?" ); |
| 79 | |
| 80 | if (check_no_refs) { |
| 81 | // Verify that the discovered lists are empty |
| 82 | verify_no_references_recorded(); |
| 83 | } |
| 84 | #endif // ASSERT |
| 85 | |
| 86 | // Someone could have modified the value of the static |
| 87 | // field in the j.l.r.SoftReference class that holds the |
| 88 | // soft reference timestamp clock using reflection or |
| 89 | // Unsafe between GCs. Unconditionally update the static |
| 90 | // field in ReferenceProcessor here so that we use the new |
| 91 | // value during reference discovery. |
| 92 | |
| 93 | _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); |
| 94 | _discovering_refs = true; |
| 95 | } |
| 96 | |
| 97 | ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery, |
| 98 | bool mt_processing, |
| 99 | uint mt_processing_degree, |
| 100 | bool mt_discovery, |
| 101 | uint mt_discovery_degree, |
| 102 | bool atomic_discovery, |
| 103 | BoolObjectClosure* , |
| 104 | bool adjust_no_of_processing_threads) : |
| 105 | _is_subject_to_discovery(is_subject_to_discovery), |
| 106 | _discovering_refs(false), |
| 107 | _enqueuing_is_done(false), |
| 108 | _processing_is_mt(mt_processing), |
| 109 | _next_id(0), |
| 110 | _adjust_no_of_processing_threads(adjust_no_of_processing_threads), |
| 111 | _is_alive_non_header(is_alive_non_header) |
| 112 | { |
| 113 | assert(is_subject_to_discovery != NULL, "must be set" ); |
| 114 | |
| 115 | _discovery_is_atomic = atomic_discovery; |
| 116 | _discovery_is_mt = mt_discovery; |
| 117 | _num_queues = MAX2(1U, mt_processing_degree); |
| 118 | _max_num_queues = MAX2(_num_queues, mt_discovery_degree); |
| 119 | _discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList, |
| 120 | _max_num_queues * number_of_subclasses_of_ref(), mtGC); |
| 121 | |
| 122 | if (_discovered_refs == NULL) { |
| 123 | vm_exit_during_initialization("Could not allocated RefProc Array" ); |
| 124 | } |
| 125 | _discoveredSoftRefs = &_discovered_refs[0]; |
| 126 | _discoveredWeakRefs = &_discoveredSoftRefs[_max_num_queues]; |
| 127 | _discoveredFinalRefs = &_discoveredWeakRefs[_max_num_queues]; |
| 128 | _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_queues]; |
| 129 | |
| 130 | // Initialize all entries to NULL |
| 131 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
| 132 | _discovered_refs[i].clear(); |
| 133 | } |
| 134 | |
| 135 | setup_policy(false /* default soft ref policy */); |
| 136 | } |
| 137 | |
| 138 | #ifndef PRODUCT |
| 139 | void ReferenceProcessor::verify_no_references_recorded() { |
| 140 | guarantee(!_discovering_refs, "Discovering refs?" ); |
| 141 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
| 142 | guarantee(_discovered_refs[i].is_empty(), |
| 143 | "Found non-empty discovered list at %u" , i); |
| 144 | } |
| 145 | } |
| 146 | #endif |
| 147 | |
| 148 | void ReferenceProcessor::weak_oops_do(OopClosure* f) { |
| 149 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
| 150 | if (UseCompressedOops) { |
| 151 | f->do_oop((narrowOop*)_discovered_refs[i].adr_head()); |
| 152 | } else { |
| 153 | f->do_oop((oop*)_discovered_refs[i].adr_head()); |
| 154 | } |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | void ReferenceProcessor::update_soft_ref_master_clock() { |
| 159 | // Update (advance) the soft ref master clock field. This must be done |
| 160 | // after processing the soft ref list. |
| 161 | |
| 162 | // We need a monotonically non-decreasing time in ms but |
| 163 | // os::javaTimeMillis() does not guarantee monotonicity. |
| 164 | jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
| 165 | jlong soft_ref_clock = java_lang_ref_SoftReference::clock(); |
| 166 | assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync" ); |
| 167 | |
| 168 | NOT_PRODUCT( |
| 169 | if (now < _soft_ref_timestamp_clock) { |
| 170 | log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, |
| 171 | _soft_ref_timestamp_clock, now); |
| 172 | } |
| 173 | ) |
| 174 | // The values of now and _soft_ref_timestamp_clock are set using |
| 175 | // javaTimeNanos(), which is guaranteed to be monotonically |
| 176 | // non-decreasing provided the underlying platform provides such |
| 177 | // a time source (and it is bug free). |
| 178 | // In product mode, however, protect ourselves from non-monotonicity. |
| 179 | if (now > _soft_ref_timestamp_clock) { |
| 180 | _soft_ref_timestamp_clock = now; |
| 181 | java_lang_ref_SoftReference::set_clock(now); |
| 182 | } |
| 183 | // Else leave clock stalled at its old value until time progresses |
| 184 | // past clock value. |
| 185 | } |
| 186 | |
| 187 | size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const { |
| 188 | size_t total = 0; |
| 189 | for (uint i = 0; i < _max_num_queues; ++i) { |
| 190 | total += lists[i].length(); |
| 191 | } |
| 192 | return total; |
| 193 | } |
| 194 | |
| 195 | #ifdef ASSERT |
| 196 | void ReferenceProcessor::verify_total_count_zero(DiscoveredList lists[], const char* type) { |
| 197 | size_t count = total_count(lists); |
| 198 | assert(count == 0, "%ss must be empty but has " SIZE_FORMAT " elements" , type, count); |
| 199 | } |
| 200 | #endif |
| 201 | |
| 202 | ReferenceProcessorStats ReferenceProcessor::process_discovered_references( |
| 203 | BoolObjectClosure* is_alive, |
| 204 | OopClosure* keep_alive, |
| 205 | VoidClosure* complete_gc, |
| 206 | AbstractRefProcTaskExecutor* task_executor, |
| 207 | ReferenceProcessorPhaseTimes* phase_times) { |
| 208 | |
| 209 | double start_time = os::elapsedTime(); |
| 210 | |
| 211 | assert(!enqueuing_is_done(), "If here enqueuing should not be complete" ); |
| 212 | // Stop treating discovered references specially. |
| 213 | disable_discovery(); |
| 214 | |
| 215 | // If discovery was concurrent, someone could have modified |
| 216 | // the value of the static field in the j.l.r.SoftReference |
| 217 | // class that holds the soft reference timestamp clock using |
| 218 | // reflection or Unsafe between when discovery was enabled and |
| 219 | // now. Unconditionally update the static field in ReferenceProcessor |
| 220 | // here so that we use the new value during processing of the |
| 221 | // discovered soft refs. |
| 222 | |
| 223 | _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); |
| 224 | |
| 225 | ReferenceProcessorStats stats(total_count(_discoveredSoftRefs), |
| 226 | total_count(_discoveredWeakRefs), |
| 227 | total_count(_discoveredFinalRefs), |
| 228 | total_count(_discoveredPhantomRefs)); |
| 229 | |
| 230 | { |
| 231 | RefProcTotalPhaseTimesTracker tt(RefPhase1, phase_times, this); |
| 232 | process_soft_ref_reconsider(is_alive, keep_alive, complete_gc, |
| 233 | task_executor, phase_times); |
| 234 | } |
| 235 | |
| 236 | update_soft_ref_master_clock(); |
| 237 | |
| 238 | { |
| 239 | RefProcTotalPhaseTimesTracker tt(RefPhase2, phase_times, this); |
| 240 | process_soft_weak_final_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times); |
| 241 | } |
| 242 | |
| 243 | { |
| 244 | RefProcTotalPhaseTimesTracker tt(RefPhase3, phase_times, this); |
| 245 | process_final_keep_alive(keep_alive, complete_gc, task_executor, phase_times); |
| 246 | } |
| 247 | |
| 248 | { |
| 249 | RefProcTotalPhaseTimesTracker tt(RefPhase4, phase_times, this); |
| 250 | process_phantom_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times); |
| 251 | } |
| 252 | |
| 253 | if (task_executor != NULL) { |
| 254 | // Record the work done by the parallel workers. |
| 255 | task_executor->set_single_threaded_mode(); |
| 256 | } |
| 257 | |
| 258 | phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000); |
| 259 | |
| 260 | return stats; |
| 261 | } |
| 262 | |
| 263 | void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) { |
| 264 | _current_discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_current_discovered); |
| 265 | oop discovered = java_lang_ref_Reference::discovered(_current_discovered); |
| 266 | assert(_current_discovered_addr && oopDesc::is_oop_or_null(discovered), |
| 267 | "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)); |
| 268 | _next_discovered = discovered; |
| 269 | |
| 270 | _referent_addr = java_lang_ref_Reference::referent_addr_raw(_current_discovered); |
| 271 | _referent = java_lang_ref_Reference::referent(_current_discovered); |
| 272 | assert(Universe::heap()->is_in_reserved_or_null(_referent), |
| 273 | "Wrong oop found in java.lang.Reference object" ); |
| 274 | assert(allow_null_referent ? |
| 275 | oopDesc::is_oop_or_null(_referent) |
| 276 | : oopDesc::is_oop(_referent), |
| 277 | "Expected an oop%s for referent field at " PTR_FORMAT, |
| 278 | (allow_null_referent ? " or NULL" : "" ), |
| 279 | p2i(_referent)); |
| 280 | } |
| 281 | |
| 282 | void DiscoveredListIterator::remove() { |
| 283 | assert(oopDesc::is_oop(_current_discovered), "Dropping a bad reference" ); |
| 284 | RawAccess<>::oop_store(_current_discovered_addr, oop(NULL)); |
| 285 | |
| 286 | // First _prev_next ref actually points into DiscoveredList (gross). |
| 287 | oop new_next; |
| 288 | if (oopDesc::equals_raw(_next_discovered, _current_discovered)) { |
| 289 | // At the end of the list, we should make _prev point to itself. |
| 290 | // If _ref is the first ref, then _prev_next will be in the DiscoveredList, |
| 291 | // and _prev will be NULL. |
| 292 | new_next = _prev_discovered; |
| 293 | } else { |
| 294 | new_next = _next_discovered; |
| 295 | } |
| 296 | // Remove Reference object from discovered list. Note that G1 does not need a |
| 297 | // pre-barrier here because we know the Reference has already been found/marked, |
| 298 | // that's how it ended up in the discovered list in the first place. |
| 299 | RawAccess<>::oop_store(_prev_discovered_addr, new_next); |
| 300 | _removed++; |
| 301 | _refs_list.dec_length(1); |
| 302 | } |
| 303 | |
| 304 | void DiscoveredListIterator::clear_referent() { |
| 305 | RawAccess<>::oop_store(_referent_addr, oop(NULL)); |
| 306 | } |
| 307 | |
| 308 | void DiscoveredListIterator::enqueue() { |
| 309 | HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_current_discovered, |
| 310 | java_lang_ref_Reference::discovered_offset, |
| 311 | _next_discovered); |
| 312 | } |
| 313 | |
| 314 | void DiscoveredListIterator::complete_enqueue() { |
| 315 | if (_prev_discovered != NULL) { |
| 316 | // This is the last object. |
| 317 | // Swap refs_list into pending list and set obj's |
| 318 | // discovered to what we read from the pending list. |
| 319 | oop old = Universe::swap_reference_pending_list(_refs_list.head()); |
| 320 | HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_prev_discovered, java_lang_ref_Reference::discovered_offset, old); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | inline void log_dropped_ref(const DiscoveredListIterator& iter, const char* reason) { |
| 325 | if (log_develop_is_enabled(Trace, gc, ref)) { |
| 326 | ResourceMark rm; |
| 327 | log_develop_trace(gc, ref)("Dropping %s reference " PTR_FORMAT ": %s" , |
| 328 | reason, p2i(iter.obj()), |
| 329 | iter.obj()->klass()->internal_name()); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | inline void log_enqueued_ref(const DiscoveredListIterator& iter, const char* reason) { |
| 334 | if (log_develop_is_enabled(Trace, gc, ref)) { |
| 335 | ResourceMark rm; |
| 336 | log_develop_trace(gc, ref)("Enqueue %s reference (" INTPTR_FORMAT ": %s)" , |
| 337 | reason, p2i(iter.obj()), iter.obj()->klass()->internal_name()); |
| 338 | } |
| 339 | assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference" ); |
| 340 | } |
| 341 | |
| 342 | size_t ReferenceProcessor::process_soft_ref_reconsider_work(DiscoveredList& refs_list, |
| 343 | ReferencePolicy* policy, |
| 344 | BoolObjectClosure* is_alive, |
| 345 | OopClosure* keep_alive, |
| 346 | VoidClosure* complete_gc) { |
| 347 | assert(policy != NULL, "Must have a non-NULL policy" ); |
| 348 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
| 349 | // Decide which softly reachable refs should be kept alive. |
| 350 | while (iter.has_next()) { |
| 351 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
| 352 | bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive(); |
| 353 | if (referent_is_dead && |
| 354 | !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) { |
| 355 | log_dropped_ref(iter, "by policy" ); |
| 356 | // Remove Reference object from list |
| 357 | iter.remove(); |
| 358 | // keep the referent around |
| 359 | iter.make_referent_alive(); |
| 360 | iter.move_to_next(); |
| 361 | } else { |
| 362 | iter.next(); |
| 363 | } |
| 364 | } |
| 365 | // Close the reachable set |
| 366 | complete_gc->do_void(); |
| 367 | |
| 368 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT, |
| 369 | iter.removed(), iter.processed(), p2i(&refs_list)); |
| 370 | return iter.removed(); |
| 371 | } |
| 372 | |
| 373 | size_t ReferenceProcessor::process_soft_weak_final_refs_work(DiscoveredList& refs_list, |
| 374 | BoolObjectClosure* is_alive, |
| 375 | OopClosure* keep_alive, |
| 376 | bool do_enqueue_and_clear) { |
| 377 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
| 378 | while (iter.has_next()) { |
| 379 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
| 380 | if (iter.referent() == NULL) { |
| 381 | // Reference has been cleared since discovery; only possible if |
| 382 | // discovery is not atomic (checked by load_ptrs). Remove |
| 383 | // reference from list. |
| 384 | log_dropped_ref(iter, "cleared" ); |
| 385 | iter.remove(); |
| 386 | iter.move_to_next(); |
| 387 | } else if (iter.is_referent_alive()) { |
| 388 | // The referent is reachable after all. |
| 389 | // Remove reference from list. |
| 390 | log_dropped_ref(iter, "reachable" ); |
| 391 | iter.remove(); |
| 392 | // Update the referent pointer as necessary. Note that this |
| 393 | // should not entail any recursive marking because the |
| 394 | // referent must already have been traversed. |
| 395 | iter.make_referent_alive(); |
| 396 | iter.move_to_next(); |
| 397 | } else { |
| 398 | if (do_enqueue_and_clear) { |
| 399 | iter.clear_referent(); |
| 400 | iter.enqueue(); |
| 401 | log_enqueued_ref(iter, "cleared" ); |
| 402 | } |
| 403 | // Keep in discovered list |
| 404 | iter.next(); |
| 405 | } |
| 406 | } |
| 407 | if (do_enqueue_and_clear) { |
| 408 | iter.complete_enqueue(); |
| 409 | refs_list.clear(); |
| 410 | } |
| 411 | |
| 412 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT |
| 413 | " Refs in discovered list " INTPTR_FORMAT, |
| 414 | iter.removed(), iter.processed(), p2i(&refs_list)); |
| 415 | return iter.removed(); |
| 416 | } |
| 417 | |
| 418 | size_t ReferenceProcessor::process_final_keep_alive_work(DiscoveredList& refs_list, |
| 419 | OopClosure* keep_alive, |
| 420 | VoidClosure* complete_gc) { |
| 421 | DiscoveredListIterator iter(refs_list, keep_alive, NULL); |
| 422 | while (iter.has_next()) { |
| 423 | iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */)); |
| 424 | // keep the referent and followers around |
| 425 | iter.make_referent_alive(); |
| 426 | |
| 427 | // Self-loop next, to mark the FinalReference not active. |
| 428 | assert(java_lang_ref_Reference::next(iter.obj()) == NULL, "enqueued FinalReference" ); |
| 429 | java_lang_ref_Reference::set_next_raw(iter.obj(), iter.obj()); |
| 430 | |
| 431 | iter.enqueue(); |
| 432 | log_enqueued_ref(iter, "Final" ); |
| 433 | iter.next(); |
| 434 | } |
| 435 | iter.complete_enqueue(); |
| 436 | // Close the reachable set |
| 437 | complete_gc->do_void(); |
| 438 | refs_list.clear(); |
| 439 | |
| 440 | assert(iter.removed() == 0, "This phase does not remove anything." ); |
| 441 | return iter.removed(); |
| 442 | } |
| 443 | |
| 444 | size_t ReferenceProcessor::process_phantom_refs_work(DiscoveredList& refs_list, |
| 445 | BoolObjectClosure* is_alive, |
| 446 | OopClosure* keep_alive, |
| 447 | VoidClosure* complete_gc) { |
| 448 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
| 449 | while (iter.has_next()) { |
| 450 | iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); |
| 451 | |
| 452 | oop const referent = iter.referent(); |
| 453 | |
| 454 | if (referent == NULL || iter.is_referent_alive()) { |
| 455 | iter.make_referent_alive(); |
| 456 | iter.remove(); |
| 457 | iter.move_to_next(); |
| 458 | } else { |
| 459 | iter.clear_referent(); |
| 460 | iter.enqueue(); |
| 461 | log_enqueued_ref(iter, "cleared Phantom" ); |
| 462 | iter.next(); |
| 463 | } |
| 464 | } |
| 465 | iter.complete_enqueue(); |
| 466 | // Close the reachable set; needed for collectors which keep_alive_closure do |
| 467 | // not immediately complete their work. |
| 468 | complete_gc->do_void(); |
| 469 | refs_list.clear(); |
| 470 | |
| 471 | return iter.removed(); |
| 472 | } |
| 473 | |
| 474 | void |
| 475 | ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) { |
| 476 | oop obj = NULL; |
| 477 | oop next = refs_list.head(); |
| 478 | while (!oopDesc::equals_raw(next, obj)) { |
| 479 | obj = next; |
| 480 | next = java_lang_ref_Reference::discovered(obj); |
| 481 | java_lang_ref_Reference::set_discovered_raw(obj, NULL); |
| 482 | } |
| 483 | refs_list.clear(); |
| 484 | } |
| 485 | |
| 486 | void ReferenceProcessor::abandon_partial_discovery() { |
| 487 | // loop over the lists |
| 488 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
| 489 | if ((i % _max_num_queues) == 0) { |
| 490 | log_develop_trace(gc, ref)("Abandoning %s discovered list" , list_name(i)); |
| 491 | } |
| 492 | clear_discovered_references(_discovered_refs[i]); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | size_t ReferenceProcessor::total_reference_count(ReferenceType type) const { |
| 497 | DiscoveredList* list = NULL; |
| 498 | |
| 499 | switch (type) { |
| 500 | case REF_SOFT: |
| 501 | list = _discoveredSoftRefs; |
| 502 | break; |
| 503 | case REF_WEAK: |
| 504 | list = _discoveredWeakRefs; |
| 505 | break; |
| 506 | case REF_FINAL: |
| 507 | list = _discoveredFinalRefs; |
| 508 | break; |
| 509 | case REF_PHANTOM: |
| 510 | list = _discoveredPhantomRefs; |
| 511 | break; |
| 512 | case REF_OTHER: |
| 513 | case REF_NONE: |
| 514 | default: |
| 515 | ShouldNotReachHere(); |
| 516 | } |
| 517 | return total_count(list); |
| 518 | } |
| 519 | |
| 520 | class RefProcPhase1Task : public AbstractRefProcTaskExecutor::ProcessTask { |
| 521 | public: |
| 522 | RefProcPhase1Task(ReferenceProcessor& ref_processor, |
| 523 | ReferenceProcessorPhaseTimes* phase_times, |
| 524 | ReferencePolicy* policy) |
| 525 | : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times), |
| 526 | _policy(policy) { } |
| 527 | |
| 528 | virtual void work(uint worker_id, |
| 529 | BoolObjectClosure& is_alive, |
| 530 | OopClosure& keep_alive, |
| 531 | VoidClosure& complete_gc) |
| 532 | { |
| 533 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase1, _phase_times, worker_id); |
| 534 | size_t const removed = _ref_processor.process_soft_ref_reconsider_work(_ref_processor._discoveredSoftRefs[worker_id], |
| 535 | _policy, |
| 536 | &is_alive, |
| 537 | &keep_alive, |
| 538 | &complete_gc); |
| 539 | _phase_times->add_ref_cleared(REF_SOFT, removed); |
| 540 | } |
| 541 | private: |
| 542 | ReferencePolicy* _policy; |
| 543 | }; |
| 544 | |
| 545 | class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask { |
| 546 | void run_phase2(uint worker_id, |
| 547 | DiscoveredList list[], |
| 548 | BoolObjectClosure& is_alive, |
| 549 | OopClosure& keep_alive, |
| 550 | bool do_enqueue_and_clear, |
| 551 | ReferenceType ref_type) { |
| 552 | size_t const removed = _ref_processor.process_soft_weak_final_refs_work(list[worker_id], |
| 553 | &is_alive, |
| 554 | &keep_alive, |
| 555 | do_enqueue_and_clear); |
| 556 | _phase_times->add_ref_cleared(ref_type, removed); |
| 557 | } |
| 558 | |
| 559 | public: |
| 560 | RefProcPhase2Task(ReferenceProcessor& ref_processor, |
| 561 | ReferenceProcessorPhaseTimes* phase_times) |
| 562 | : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { } |
| 563 | |
| 564 | virtual void work(uint worker_id, |
| 565 | BoolObjectClosure& is_alive, |
| 566 | OopClosure& keep_alive, |
| 567 | VoidClosure& complete_gc) { |
| 568 | RefProcWorkerTimeTracker t(_phase_times->phase2_worker_time_sec(), worker_id); |
| 569 | { |
| 570 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase2, _phase_times, worker_id); |
| 571 | run_phase2(worker_id, _ref_processor._discoveredSoftRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_SOFT); |
| 572 | } |
| 573 | { |
| 574 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::WeakRefSubPhase2, _phase_times, worker_id); |
| 575 | run_phase2(worker_id, _ref_processor._discoveredWeakRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_WEAK); |
| 576 | } |
| 577 | { |
| 578 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase2, _phase_times, worker_id); |
| 579 | run_phase2(worker_id, _ref_processor._discoveredFinalRefs, is_alive, keep_alive, false /* do_enqueue_and_clear */, REF_FINAL); |
| 580 | } |
| 581 | // Close the reachable set; needed for collectors which keep_alive_closure do |
| 582 | // not immediately complete their work. |
| 583 | complete_gc.do_void(); |
| 584 | } |
| 585 | }; |
| 586 | |
| 587 | class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask { |
| 588 | public: |
| 589 | RefProcPhase3Task(ReferenceProcessor& ref_processor, |
| 590 | ReferenceProcessorPhaseTimes* phase_times) |
| 591 | : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times) { } |
| 592 | |
| 593 | virtual void work(uint worker_id, |
| 594 | BoolObjectClosure& is_alive, |
| 595 | OopClosure& keep_alive, |
| 596 | VoidClosure& complete_gc) |
| 597 | { |
| 598 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase3, _phase_times, worker_id); |
| 599 | _ref_processor.process_final_keep_alive_work(_ref_processor._discoveredFinalRefs[worker_id], &keep_alive, &complete_gc); |
| 600 | } |
| 601 | }; |
| 602 | |
| 603 | class RefProcPhase4Task: public AbstractRefProcTaskExecutor::ProcessTask { |
| 604 | public: |
| 605 | RefProcPhase4Task(ReferenceProcessor& ref_processor, |
| 606 | ReferenceProcessorPhaseTimes* phase_times) |
| 607 | : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { } |
| 608 | |
| 609 | virtual void work(uint worker_id, |
| 610 | BoolObjectClosure& is_alive, |
| 611 | OopClosure& keep_alive, |
| 612 | VoidClosure& complete_gc) |
| 613 | { |
| 614 | RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::PhantomRefSubPhase4, _phase_times, worker_id); |
| 615 | size_t const removed = _ref_processor.process_phantom_refs_work(_ref_processor._discoveredPhantomRefs[worker_id], |
| 616 | &is_alive, |
| 617 | &keep_alive, |
| 618 | &complete_gc); |
| 619 | _phase_times->add_ref_cleared(REF_PHANTOM, removed); |
| 620 | } |
| 621 | }; |
| 622 | |
| 623 | void ReferenceProcessor::log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues) { |
| 624 | LogTarget(Trace, gc, ref) lt; |
| 625 | |
| 626 | if (!lt.is_enabled()) { |
| 627 | return; |
| 628 | } |
| 629 | |
| 630 | size_t total = 0; |
| 631 | |
| 632 | LogStream ls(lt); |
| 633 | ls.print("%s" , prefix); |
| 634 | for (uint i = 0; i < num_active_queues; i++) { |
| 635 | ls.print(SIZE_FORMAT " " , list[i].length()); |
| 636 | total += list[i].length(); |
| 637 | } |
| 638 | ls.print_cr("(" SIZE_FORMAT ")" , total); |
| 639 | } |
| 640 | |
| 641 | #ifndef PRODUCT |
| 642 | void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) { |
| 643 | if (!log_is_enabled(Trace, gc, ref)) { |
| 644 | return; |
| 645 | } |
| 646 | |
| 647 | log_reflist("" , ref_lists, num_active_queues); |
| 648 | #ifdef ASSERT |
| 649 | for (uint i = num_active_queues; i < _max_num_queues; i++) { |
| 650 | assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u" , |
| 651 | ref_lists[i].length(), i); |
| 652 | } |
| 653 | #endif |
| 654 | } |
| 655 | #endif |
| 656 | |
| 657 | void ReferenceProcessor::set_active_mt_degree(uint v) { |
| 658 | _num_queues = v; |
| 659 | _next_id = 0; |
| 660 | } |
| 661 | |
| 662 | bool ReferenceProcessor::need_balance_queues(DiscoveredList refs_lists[]) { |
| 663 | assert(_processing_is_mt, "why balance non-mt processing?" ); |
| 664 | // _num_queues is the processing degree. Only list entries up to |
| 665 | // _num_queues will be processed, so any non-empty lists beyond |
| 666 | // that must be redistributed to lists in that range. Even if not |
| 667 | // needed for that, balancing may be desirable to eliminate poor |
| 668 | // distribution of references among the lists. |
| 669 | if (ParallelRefProcBalancingEnabled) { |
| 670 | return true; // Configuration says do it. |
| 671 | } else { |
| 672 | // Configuration says don't balance, but if there are non-empty |
| 673 | // lists beyond the processing degree, then must ignore the |
| 674 | // configuration and balance anyway. |
| 675 | for (uint i = _num_queues; i < _max_num_queues; ++i) { |
| 676 | if (!refs_lists[i].is_empty()) { |
| 677 | return true; // Must balance despite configuration. |
| 678 | } |
| 679 | } |
| 680 | return false; // Safe to obey configuration and not balance. |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | void ReferenceProcessor::maybe_balance_queues(DiscoveredList refs_lists[]) { |
| 685 | assert(_processing_is_mt, "Should not call this otherwise" ); |
| 686 | if (need_balance_queues(refs_lists)) { |
| 687 | balance_queues(refs_lists); |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | // Balances reference queues. |
| 692 | // Move entries from all queues[0, 1, ..., _max_num_q-1] to |
| 693 | // queues[0, 1, ..., _num_q-1] because only the first _num_q |
| 694 | // corresponding to the active workers will be processed. |
| 695 | void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[]) |
| 696 | { |
| 697 | // calculate total length |
| 698 | size_t total_refs = 0; |
| 699 | log_develop_trace(gc, ref)("Balance ref_lists " ); |
| 700 | |
| 701 | log_reflist_counts(ref_lists, _max_num_queues); |
| 702 | |
| 703 | for (uint i = 0; i < _max_num_queues; ++i) { |
| 704 | total_refs += ref_lists[i].length(); |
| 705 | } |
| 706 | size_t avg_refs = total_refs / _num_queues + 1; |
| 707 | uint to_idx = 0; |
| 708 | for (uint from_idx = 0; from_idx < _max_num_queues; from_idx++) { |
| 709 | bool move_all = false; |
| 710 | if (from_idx >= _num_queues) { |
| 711 | move_all = ref_lists[from_idx].length() > 0; |
| 712 | } |
| 713 | while ((ref_lists[from_idx].length() > avg_refs) || |
| 714 | move_all) { |
| 715 | assert(to_idx < _num_queues, "Sanity Check!" ); |
| 716 | if (ref_lists[to_idx].length() < avg_refs) { |
| 717 | // move superfluous refs |
| 718 | size_t refs_to_move; |
| 719 | // Move all the Ref's if the from queue will not be processed. |
| 720 | if (move_all) { |
| 721 | refs_to_move = MIN2(ref_lists[from_idx].length(), |
| 722 | avg_refs - ref_lists[to_idx].length()); |
| 723 | } else { |
| 724 | refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs, |
| 725 | avg_refs - ref_lists[to_idx].length()); |
| 726 | } |
| 727 | |
| 728 | assert(refs_to_move > 0, "otherwise the code below will fail" ); |
| 729 | |
| 730 | oop move_head = ref_lists[from_idx].head(); |
| 731 | oop move_tail = move_head; |
| 732 | oop new_head = move_head; |
| 733 | // find an element to split the list on |
| 734 | for (size_t j = 0; j < refs_to_move; ++j) { |
| 735 | move_tail = new_head; |
| 736 | new_head = java_lang_ref_Reference::discovered(new_head); |
| 737 | } |
| 738 | |
| 739 | // Add the chain to the to list. |
| 740 | if (ref_lists[to_idx].head() == NULL) { |
| 741 | // to list is empty. Make a loop at the end. |
| 742 | java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail); |
| 743 | } else { |
| 744 | java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head()); |
| 745 | } |
| 746 | ref_lists[to_idx].set_head(move_head); |
| 747 | ref_lists[to_idx].inc_length(refs_to_move); |
| 748 | |
| 749 | // Remove the chain from the from list. |
| 750 | if (oopDesc::equals_raw(move_tail, new_head)) { |
| 751 | // We found the end of the from list. |
| 752 | ref_lists[from_idx].set_head(NULL); |
| 753 | } else { |
| 754 | ref_lists[from_idx].set_head(new_head); |
| 755 | } |
| 756 | ref_lists[from_idx].dec_length(refs_to_move); |
| 757 | if (ref_lists[from_idx].length() == 0) { |
| 758 | break; |
| 759 | } |
| 760 | } else { |
| 761 | to_idx = (to_idx + 1) % _num_queues; |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | #ifdef ASSERT |
| 766 | log_reflist_counts(ref_lists, _num_queues); |
| 767 | size_t balanced_total_refs = 0; |
| 768 | for (uint i = 0; i < _num_queues; ++i) { |
| 769 | balanced_total_refs += ref_lists[i].length(); |
| 770 | } |
| 771 | assert(total_refs == balanced_total_refs, "Balancing was incomplete" ); |
| 772 | #endif |
| 773 | } |
| 774 | |
| 775 | bool ReferenceProcessor::is_mt_processing_set_up(AbstractRefProcTaskExecutor* task_executor) const { |
| 776 | return task_executor != NULL && _processing_is_mt; |
| 777 | } |
| 778 | |
| 779 | void ReferenceProcessor::process_soft_ref_reconsider(BoolObjectClosure* is_alive, |
| 780 | OopClosure* keep_alive, |
| 781 | VoidClosure* complete_gc, |
| 782 | AbstractRefProcTaskExecutor* task_executor, |
| 783 | ReferenceProcessorPhaseTimes* phase_times) { |
| 784 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
| 785 | |
| 786 | size_t const num_soft_refs = total_count(_discoveredSoftRefs); |
| 787 | phase_times->set_ref_discovered(REF_SOFT, num_soft_refs); |
| 788 | |
| 789 | phase_times->set_processing_is_mt(_processing_is_mt); |
| 790 | |
| 791 | if (num_soft_refs == 0 || _current_soft_ref_policy == NULL) { |
| 792 | log_debug(gc, ref)("Skipped phase1 of Reference Processing due to unavailable references" ); |
| 793 | return; |
| 794 | } |
| 795 | |
| 796 | RefProcMTDegreeAdjuster a(this, RefPhase1, num_soft_refs); |
| 797 | |
| 798 | if (_processing_is_mt) { |
| 799 | RefProcBalanceQueuesTimeTracker tt(RefPhase1, phase_times); |
| 800 | maybe_balance_queues(_discoveredSoftRefs); |
| 801 | } |
| 802 | |
| 803 | RefProcPhaseTimeTracker tt(RefPhase1, phase_times); |
| 804 | |
| 805 | log_reflist("Phase1 Soft before" , _discoveredSoftRefs, _max_num_queues); |
| 806 | if (_processing_is_mt) { |
| 807 | RefProcPhase1Task phase1(*this, phase_times, _current_soft_ref_policy); |
| 808 | task_executor->execute(phase1, num_queues()); |
| 809 | } else { |
| 810 | size_t removed = 0; |
| 811 | |
| 812 | RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase1, phase_times, 0); |
| 813 | for (uint i = 0; i < _max_num_queues; i++) { |
| 814 | removed += process_soft_ref_reconsider_work(_discoveredSoftRefs[i], _current_soft_ref_policy, |
| 815 | is_alive, keep_alive, complete_gc); |
| 816 | } |
| 817 | |
| 818 | phase_times->add_ref_cleared(REF_SOFT, removed); |
| 819 | } |
| 820 | log_reflist("Phase1 Soft after" , _discoveredSoftRefs, _max_num_queues); |
| 821 | } |
| 822 | |
| 823 | void ReferenceProcessor::process_soft_weak_final_refs(BoolObjectClosure* is_alive, |
| 824 | OopClosure* keep_alive, |
| 825 | VoidClosure* complete_gc, |
| 826 | AbstractRefProcTaskExecutor* task_executor, |
| 827 | ReferenceProcessorPhaseTimes* phase_times) { |
| 828 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
| 829 | |
| 830 | size_t const num_soft_refs = total_count(_discoveredSoftRefs); |
| 831 | size_t const num_weak_refs = total_count(_discoveredWeakRefs); |
| 832 | size_t const num_final_refs = total_count(_discoveredFinalRefs); |
| 833 | size_t const num_total_refs = num_soft_refs + num_weak_refs + num_final_refs; |
| 834 | phase_times->set_ref_discovered(REF_WEAK, num_weak_refs); |
| 835 | phase_times->set_ref_discovered(REF_FINAL, num_final_refs); |
| 836 | |
| 837 | phase_times->set_processing_is_mt(_processing_is_mt); |
| 838 | |
| 839 | if (num_total_refs == 0) { |
| 840 | log_debug(gc, ref)("Skipped phase2 of Reference Processing due to unavailable references" ); |
| 841 | return; |
| 842 | } |
| 843 | |
| 844 | RefProcMTDegreeAdjuster a(this, RefPhase2, num_total_refs); |
| 845 | |
| 846 | if (_processing_is_mt) { |
| 847 | RefProcBalanceQueuesTimeTracker tt(RefPhase2, phase_times); |
| 848 | maybe_balance_queues(_discoveredSoftRefs); |
| 849 | maybe_balance_queues(_discoveredWeakRefs); |
| 850 | maybe_balance_queues(_discoveredFinalRefs); |
| 851 | } |
| 852 | |
| 853 | RefProcPhaseTimeTracker tt(RefPhase2, phase_times); |
| 854 | |
| 855 | log_reflist("Phase2 Soft before" , _discoveredSoftRefs, _max_num_queues); |
| 856 | log_reflist("Phase2 Weak before" , _discoveredWeakRefs, _max_num_queues); |
| 857 | log_reflist("Phase2 Final before" , _discoveredFinalRefs, _max_num_queues); |
| 858 | if (_processing_is_mt) { |
| 859 | RefProcPhase2Task phase2(*this, phase_times); |
| 860 | task_executor->execute(phase2, num_queues()); |
| 861 | } else { |
| 862 | RefProcWorkerTimeTracker t(phase_times->phase2_worker_time_sec(), 0); |
| 863 | { |
| 864 | size_t removed = 0; |
| 865 | |
| 866 | RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase2, phase_times, 0); |
| 867 | for (uint i = 0; i < _max_num_queues; i++) { |
| 868 | removed += process_soft_weak_final_refs_work(_discoveredSoftRefs[i], is_alive, keep_alive, true /* do_enqueue */); |
| 869 | } |
| 870 | |
| 871 | phase_times->add_ref_cleared(REF_SOFT, removed); |
| 872 | } |
| 873 | { |
| 874 | size_t removed = 0; |
| 875 | |
| 876 | RefProcSubPhasesWorkerTimeTracker tt2(WeakRefSubPhase2, phase_times, 0); |
| 877 | for (uint i = 0; i < _max_num_queues; i++) { |
| 878 | removed += process_soft_weak_final_refs_work(_discoveredWeakRefs[i], is_alive, keep_alive, true /* do_enqueue */); |
| 879 | } |
| 880 | |
| 881 | phase_times->add_ref_cleared(REF_WEAK, removed); |
| 882 | } |
| 883 | { |
| 884 | size_t removed = 0; |
| 885 | |
| 886 | RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase2, phase_times, 0); |
| 887 | for (uint i = 0; i < _max_num_queues; i++) { |
| 888 | removed += process_soft_weak_final_refs_work(_discoveredFinalRefs[i], is_alive, keep_alive, false /* do_enqueue */); |
| 889 | } |
| 890 | |
| 891 | phase_times->add_ref_cleared(REF_FINAL, removed); |
| 892 | } |
| 893 | complete_gc->do_void(); |
| 894 | } |
| 895 | verify_total_count_zero(_discoveredSoftRefs, "SoftReference" ); |
| 896 | verify_total_count_zero(_discoveredWeakRefs, "WeakReference" ); |
| 897 | log_reflist("Phase2 Final after" , _discoveredFinalRefs, _max_num_queues); |
| 898 | } |
| 899 | |
| 900 | void ReferenceProcessor::process_final_keep_alive(OopClosure* keep_alive, |
| 901 | VoidClosure* complete_gc, |
| 902 | AbstractRefProcTaskExecutor* task_executor, |
| 903 | ReferenceProcessorPhaseTimes* phase_times) { |
| 904 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
| 905 | |
| 906 | size_t const num_final_refs = total_count(_discoveredFinalRefs); |
| 907 | |
| 908 | phase_times->set_processing_is_mt(_processing_is_mt); |
| 909 | |
| 910 | if (num_final_refs == 0) { |
| 911 | log_debug(gc, ref)("Skipped phase3 of Reference Processing due to unavailable references" ); |
| 912 | return; |
| 913 | } |
| 914 | |
| 915 | RefProcMTDegreeAdjuster a(this, RefPhase3, num_final_refs); |
| 916 | |
| 917 | if (_processing_is_mt) { |
| 918 | RefProcBalanceQueuesTimeTracker tt(RefPhase3, phase_times); |
| 919 | maybe_balance_queues(_discoveredFinalRefs); |
| 920 | } |
| 921 | |
| 922 | // Phase 3: |
| 923 | // . Traverse referents of final references and keep them and followers alive. |
| 924 | RefProcPhaseTimeTracker tt(RefPhase3, phase_times); |
| 925 | |
| 926 | if (_processing_is_mt) { |
| 927 | RefProcPhase3Task phase3(*this, phase_times); |
| 928 | task_executor->execute(phase3, num_queues()); |
| 929 | } else { |
| 930 | RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase3, phase_times, 0); |
| 931 | for (uint i = 0; i < _max_num_queues; i++) { |
| 932 | process_final_keep_alive_work(_discoveredFinalRefs[i], keep_alive, complete_gc); |
| 933 | } |
| 934 | } |
| 935 | verify_total_count_zero(_discoveredFinalRefs, "FinalReference" ); |
| 936 | } |
| 937 | |
| 938 | void ReferenceProcessor::process_phantom_refs(BoolObjectClosure* is_alive, |
| 939 | OopClosure* keep_alive, |
| 940 | VoidClosure* complete_gc, |
| 941 | AbstractRefProcTaskExecutor* task_executor, |
| 942 | ReferenceProcessorPhaseTimes* phase_times) { |
| 943 | assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set." ); |
| 944 | |
| 945 | size_t const num_phantom_refs = total_count(_discoveredPhantomRefs); |
| 946 | phase_times->set_ref_discovered(REF_PHANTOM, num_phantom_refs); |
| 947 | |
| 948 | phase_times->set_processing_is_mt(_processing_is_mt); |
| 949 | |
| 950 | if (num_phantom_refs == 0) { |
| 951 | log_debug(gc, ref)("Skipped phase4 of Reference Processing due to unavailable references" ); |
| 952 | return; |
| 953 | } |
| 954 | |
| 955 | RefProcMTDegreeAdjuster a(this, RefPhase4, num_phantom_refs); |
| 956 | |
| 957 | if (_processing_is_mt) { |
| 958 | RefProcBalanceQueuesTimeTracker tt(RefPhase4, phase_times); |
| 959 | maybe_balance_queues(_discoveredPhantomRefs); |
| 960 | } |
| 961 | |
| 962 | // Phase 4: Walk phantom references appropriately. |
| 963 | RefProcPhaseTimeTracker tt(RefPhase4, phase_times); |
| 964 | |
| 965 | log_reflist("Phase4 Phantom before" , _discoveredPhantomRefs, _max_num_queues); |
| 966 | if (_processing_is_mt) { |
| 967 | RefProcPhase4Task phase4(*this, phase_times); |
| 968 | task_executor->execute(phase4, num_queues()); |
| 969 | } else { |
| 970 | size_t removed = 0; |
| 971 | |
| 972 | RefProcSubPhasesWorkerTimeTracker tt(PhantomRefSubPhase4, phase_times, 0); |
| 973 | for (uint i = 0; i < _max_num_queues; i++) { |
| 974 | removed += process_phantom_refs_work(_discoveredPhantomRefs[i], is_alive, keep_alive, complete_gc); |
| 975 | } |
| 976 | |
| 977 | phase_times->add_ref_cleared(REF_PHANTOM, removed); |
| 978 | } |
| 979 | verify_total_count_zero(_discoveredPhantomRefs, "PhantomReference" ); |
| 980 | } |
| 981 | |
| 982 | inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) { |
| 983 | uint id = 0; |
| 984 | // Determine the queue index to use for this object. |
| 985 | if (_discovery_is_mt) { |
| 986 | // During a multi-threaded discovery phase, |
| 987 | // each thread saves to its "own" list. |
| 988 | Thread* thr = Thread::current(); |
| 989 | id = thr->as_Worker_thread()->id(); |
| 990 | } else { |
| 991 | // single-threaded discovery, we save in round-robin |
| 992 | // fashion to each of the lists. |
| 993 | if (_processing_is_mt) { |
| 994 | id = next_id(); |
| 995 | } |
| 996 | } |
| 997 | assert(id < _max_num_queues, "Id is out of bounds id %u and max id %u)" , id, _max_num_queues); |
| 998 | |
| 999 | // Get the discovered queue to which we will add |
| 1000 | DiscoveredList* list = NULL; |
| 1001 | switch (rt) { |
| 1002 | case REF_OTHER: |
| 1003 | // Unknown reference type, no special treatment |
| 1004 | break; |
| 1005 | case REF_SOFT: |
| 1006 | list = &_discoveredSoftRefs[id]; |
| 1007 | break; |
| 1008 | case REF_WEAK: |
| 1009 | list = &_discoveredWeakRefs[id]; |
| 1010 | break; |
| 1011 | case REF_FINAL: |
| 1012 | list = &_discoveredFinalRefs[id]; |
| 1013 | break; |
| 1014 | case REF_PHANTOM: |
| 1015 | list = &_discoveredPhantomRefs[id]; |
| 1016 | break; |
| 1017 | case REF_NONE: |
| 1018 | // we should not reach here if we are an InstanceRefKlass |
| 1019 | default: |
| 1020 | ShouldNotReachHere(); |
| 1021 | } |
| 1022 | log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list)); |
| 1023 | return list; |
| 1024 | } |
| 1025 | |
| 1026 | inline void |
| 1027 | ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list, |
| 1028 | oop obj, |
| 1029 | HeapWord* discovered_addr) { |
| 1030 | assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller" ); |
| 1031 | // First we must make sure this object is only enqueued once. CAS in a non null |
| 1032 | // discovered_addr. |
| 1033 | oop current_head = refs_list.head(); |
| 1034 | // The last ref must have its discovered field pointing to itself. |
| 1035 | oop next_discovered = (current_head != NULL) ? current_head : obj; |
| 1036 | |
| 1037 | oop retest = HeapAccess<AS_NO_KEEPALIVE>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL)); |
| 1038 | |
| 1039 | if (retest == NULL) { |
| 1040 | // This thread just won the right to enqueue the object. |
| 1041 | // We have separate lists for enqueueing, so no synchronization |
| 1042 | // is necessary. |
| 1043 | refs_list.set_head(obj); |
| 1044 | refs_list.inc_length(1); |
| 1045 | |
| 1046 | log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)" , |
| 1047 | p2i(obj), obj->klass()->internal_name()); |
| 1048 | } else { |
| 1049 | // If retest was non NULL, another thread beat us to it: |
| 1050 | // The reference has already been discovered... |
| 1051 | log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)" , |
| 1052 | p2i(obj), obj->klass()->internal_name()); |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | #ifndef PRODUCT |
| 1057 | // Non-atomic (i.e. concurrent) discovery might allow us |
| 1058 | // to observe j.l.References with NULL referents, being those |
| 1059 | // cleared concurrently by mutators during (or after) discovery. |
| 1060 | void ReferenceProcessor::verify_referent(oop obj) { |
| 1061 | bool da = discovery_is_atomic(); |
| 1062 | oop referent = java_lang_ref_Reference::referent(obj); |
| 1063 | assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent), |
| 1064 | "Bad referent " INTPTR_FORMAT " found in Reference " |
| 1065 | INTPTR_FORMAT " during %satomic discovery " , |
| 1066 | p2i(referent), p2i(obj), da ? "" : "non-" ); |
| 1067 | } |
| 1068 | #endif |
| 1069 | |
| 1070 | bool ReferenceProcessor::is_subject_to_discovery(oop const obj) const { |
| 1071 | return _is_subject_to_discovery->do_object_b(obj); |
| 1072 | } |
| 1073 | |
| 1074 | // We mention two of several possible choices here: |
| 1075 | // #0: if the reference object is not in the "originating generation" |
| 1076 | // (or part of the heap being collected, indicated by our "span" |
| 1077 | // we don't treat it specially (i.e. we scan it as we would |
| 1078 | // a normal oop, treating its references as strong references). |
| 1079 | // This means that references can't be discovered unless their |
| 1080 | // referent is also in the same span. This is the simplest, |
| 1081 | // most "local" and most conservative approach, albeit one |
| 1082 | // that may cause weak references to be enqueued least promptly. |
| 1083 | // We call this choice the "ReferenceBasedDiscovery" policy. |
| 1084 | // #1: the reference object may be in any generation (span), but if |
| 1085 | // the referent is in the generation (span) being currently collected |
| 1086 | // then we can discover the reference object, provided |
| 1087 | // the object has not already been discovered by |
| 1088 | // a different concurrently running collector (as may be the |
| 1089 | // case, for instance, if the reference object is in CMS and |
| 1090 | // the referent in DefNewGeneration), and provided the processing |
| 1091 | // of this reference object by the current collector will |
| 1092 | // appear atomic to every other collector in the system. |
| 1093 | // (Thus, for instance, a concurrent collector may not |
| 1094 | // discover references in other generations even if the |
| 1095 | // referent is in its own generation). This policy may, |
| 1096 | // in certain cases, enqueue references somewhat sooner than |
| 1097 | // might Policy #0 above, but at marginally increased cost |
| 1098 | // and complexity in processing these references. |
| 1099 | // We call this choice the "RefeferentBasedDiscovery" policy. |
| 1100 | bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) { |
| 1101 | // Make sure we are discovering refs (rather than processing discovered refs). |
| 1102 | if (!_discovering_refs || !RegisterReferences) { |
| 1103 | return false; |
| 1104 | } |
| 1105 | |
| 1106 | if ((rt == REF_FINAL) && (java_lang_ref_Reference::next(obj) != NULL)) { |
| 1107 | // Don't rediscover non-active FinalReferences. |
| 1108 | return false; |
| 1109 | } |
| 1110 | |
| 1111 | if (RefDiscoveryPolicy == ReferenceBasedDiscovery && |
| 1112 | !is_subject_to_discovery(obj)) { |
| 1113 | // Reference is not in the originating generation; |
| 1114 | // don't treat it specially (i.e. we want to scan it as a normal |
| 1115 | // object with strong references). |
| 1116 | return false; |
| 1117 | } |
| 1118 | |
| 1119 | // We only discover references whose referents are not (yet) |
| 1120 | // known to be strongly reachable. |
| 1121 | if (is_alive_non_header() != NULL) { |
| 1122 | verify_referent(obj); |
| 1123 | if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) { |
| 1124 | return false; // referent is reachable |
| 1125 | } |
| 1126 | } |
| 1127 | if (rt == REF_SOFT) { |
| 1128 | // For soft refs we can decide now if these are not |
| 1129 | // current candidates for clearing, in which case we |
| 1130 | // can mark through them now, rather than delaying that |
| 1131 | // to the reference-processing phase. Since all current |
| 1132 | // time-stamp policies advance the soft-ref clock only |
| 1133 | // at a full collection cycle, this is always currently |
| 1134 | // accurate. |
| 1135 | if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) { |
| 1136 | return false; |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | ResourceMark rm; // Needed for tracing. |
| 1141 | |
| 1142 | HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj); |
| 1143 | const oop discovered = java_lang_ref_Reference::discovered(obj); |
| 1144 | assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered)); |
| 1145 | if (discovered != NULL) { |
| 1146 | // The reference has already been discovered... |
| 1147 | log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)" , |
| 1148 | p2i(obj), obj->klass()->internal_name()); |
| 1149 | if (RefDiscoveryPolicy == ReferentBasedDiscovery) { |
| 1150 | // assumes that an object is not processed twice; |
| 1151 | // if it's been already discovered it must be on another |
| 1152 | // generation's discovered list; so we won't discover it. |
| 1153 | return false; |
| 1154 | } else { |
| 1155 | assert(RefDiscoveryPolicy == ReferenceBasedDiscovery, |
| 1156 | "Unrecognized policy" ); |
| 1157 | // Check assumption that an object is not potentially |
| 1158 | // discovered twice except by concurrent collectors that potentially |
| 1159 | // trace the same Reference object twice. |
| 1160 | assert(UseConcMarkSweepGC || UseG1GC || UseShenandoahGC, |
| 1161 | "Only possible with a concurrent marking collector" ); |
| 1162 | return true; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | if (RefDiscoveryPolicy == ReferentBasedDiscovery) { |
| 1167 | verify_referent(obj); |
| 1168 | // Discover if and only if EITHER: |
| 1169 | // .. reference is in our span, OR |
| 1170 | // .. we are an atomic collector and referent is in our span |
| 1171 | if (is_subject_to_discovery(obj) || |
| 1172 | (discovery_is_atomic() && |
| 1173 | is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) { |
| 1174 | } else { |
| 1175 | return false; |
| 1176 | } |
| 1177 | } else { |
| 1178 | assert(RefDiscoveryPolicy == ReferenceBasedDiscovery && |
| 1179 | is_subject_to_discovery(obj), "code inconsistency" ); |
| 1180 | } |
| 1181 | |
| 1182 | // Get the right type of discovered queue head. |
| 1183 | DiscoveredList* list = get_discovered_list(rt); |
| 1184 | if (list == NULL) { |
| 1185 | return false; // nothing special needs to be done |
| 1186 | } |
| 1187 | |
| 1188 | if (_discovery_is_mt) { |
| 1189 | add_to_discovered_list_mt(*list, obj, discovered_addr); |
| 1190 | } else { |
| 1191 | // We do a raw store here: the field will be visited later when processing |
| 1192 | // the discovered references. |
| 1193 | oop current_head = list->head(); |
| 1194 | // The last ref must have its discovered field pointing to itself. |
| 1195 | oop next_discovered = (current_head != NULL) ? current_head : obj; |
| 1196 | |
| 1197 | assert(discovered == NULL, "control point invariant" ); |
| 1198 | RawAccess<>::oop_store(discovered_addr, next_discovered); |
| 1199 | list->set_head(obj); |
| 1200 | list->inc_length(1); |
| 1201 | |
| 1202 | log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)" , p2i(obj), obj->klass()->internal_name()); |
| 1203 | } |
| 1204 | assert(oopDesc::is_oop(obj), "Discovered a bad reference" ); |
| 1205 | verify_referent(obj); |
| 1206 | return true; |
| 1207 | } |
| 1208 | |
| 1209 | bool ReferenceProcessor::has_discovered_references() { |
| 1210 | for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) { |
| 1211 | if (!_discovered_refs[i].is_empty()) { |
| 1212 | return true; |
| 1213 | } |
| 1214 | } |
| 1215 | return false; |
| 1216 | } |
| 1217 | |
| 1218 | void ReferenceProcessor::preclean_discovered_references(BoolObjectClosure* is_alive, |
| 1219 | OopClosure* keep_alive, |
| 1220 | VoidClosure* complete_gc, |
| 1221 | YieldClosure* yield, |
| 1222 | GCTimer* gc_timer) { |
| 1223 | // These lists can be handled here in any order and, indeed, concurrently. |
| 1224 | |
| 1225 | // Soft references |
| 1226 | { |
| 1227 | GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences" , gc_timer); |
| 1228 | log_reflist("SoftRef before: " , _discoveredSoftRefs, _max_num_queues); |
| 1229 | for (uint i = 0; i < _max_num_queues; i++) { |
| 1230 | if (yield->should_return()) { |
| 1231 | return; |
| 1232 | } |
| 1233 | if (preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive, |
| 1234 | keep_alive, complete_gc, yield)) { |
| 1235 | log_reflist("SoftRef abort: " , _discoveredSoftRefs, _max_num_queues); |
| 1236 | return; |
| 1237 | } |
| 1238 | } |
| 1239 | log_reflist("SoftRef after: " , _discoveredSoftRefs, _max_num_queues); |
| 1240 | } |
| 1241 | |
| 1242 | // Weak references |
| 1243 | { |
| 1244 | GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences" , gc_timer); |
| 1245 | log_reflist("WeakRef before: " , _discoveredWeakRefs, _max_num_queues); |
| 1246 | for (uint i = 0; i < _max_num_queues; i++) { |
| 1247 | if (yield->should_return()) { |
| 1248 | return; |
| 1249 | } |
| 1250 | if (preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive, |
| 1251 | keep_alive, complete_gc, yield)) { |
| 1252 | log_reflist("WeakRef abort: " , _discoveredWeakRefs, _max_num_queues); |
| 1253 | return; |
| 1254 | } |
| 1255 | } |
| 1256 | log_reflist("WeakRef after: " , _discoveredWeakRefs, _max_num_queues); |
| 1257 | } |
| 1258 | |
| 1259 | // Final references |
| 1260 | { |
| 1261 | GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences" , gc_timer); |
| 1262 | log_reflist("FinalRef before: " , _discoveredFinalRefs, _max_num_queues); |
| 1263 | for (uint i = 0; i < _max_num_queues; i++) { |
| 1264 | if (yield->should_return()) { |
| 1265 | return; |
| 1266 | } |
| 1267 | if (preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive, |
| 1268 | keep_alive, complete_gc, yield)) { |
| 1269 | log_reflist("FinalRef abort: " , _discoveredFinalRefs, _max_num_queues); |
| 1270 | return; |
| 1271 | } |
| 1272 | } |
| 1273 | log_reflist("FinalRef after: " , _discoveredFinalRefs, _max_num_queues); |
| 1274 | } |
| 1275 | |
| 1276 | // Phantom references |
| 1277 | { |
| 1278 | GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences" , gc_timer); |
| 1279 | log_reflist("PhantomRef before: " , _discoveredPhantomRefs, _max_num_queues); |
| 1280 | for (uint i = 0; i < _max_num_queues; i++) { |
| 1281 | if (yield->should_return()) { |
| 1282 | return; |
| 1283 | } |
| 1284 | if (preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive, |
| 1285 | keep_alive, complete_gc, yield)) { |
| 1286 | log_reflist("PhantomRef abort: " , _discoveredPhantomRefs, _max_num_queues); |
| 1287 | return; |
| 1288 | } |
| 1289 | } |
| 1290 | log_reflist("PhantomRef after: " , _discoveredPhantomRefs, _max_num_queues); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | // Walk the given discovered ref list, and remove all reference objects |
| 1295 | // whose referents are still alive, whose referents are NULL or which |
| 1296 | // are not active (have a non-NULL next field). NOTE: When we are |
| 1297 | // thus precleaning the ref lists (which happens single-threaded today), |
| 1298 | // we do not disable refs discovery to honor the correct semantics of |
| 1299 | // java.lang.Reference. As a result, we need to be careful below |
| 1300 | // that ref removal steps interleave safely with ref discovery steps |
| 1301 | // (in this thread). |
| 1302 | bool ReferenceProcessor::preclean_discovered_reflist(DiscoveredList& refs_list, |
| 1303 | BoolObjectClosure* is_alive, |
| 1304 | OopClosure* keep_alive, |
| 1305 | VoidClosure* complete_gc, |
| 1306 | YieldClosure* yield) { |
| 1307 | DiscoveredListIterator iter(refs_list, keep_alive, is_alive); |
| 1308 | while (iter.has_next()) { |
| 1309 | if (yield->should_return_fine_grain()) { |
| 1310 | return true; |
| 1311 | } |
| 1312 | iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */)); |
| 1313 | if (iter.referent() == NULL || iter.is_referent_alive()) { |
| 1314 | // The referent has been cleared, or is alive; we need to trace |
| 1315 | // and mark its cohort. |
| 1316 | log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)" , |
| 1317 | p2i(iter.obj()), iter.obj()->klass()->internal_name()); |
| 1318 | // Remove Reference object from list |
| 1319 | iter.remove(); |
| 1320 | // Keep alive its cohort. |
| 1321 | iter.make_referent_alive(); |
| 1322 | iter.move_to_next(); |
| 1323 | } else { |
| 1324 | iter.next(); |
| 1325 | } |
| 1326 | } |
| 1327 | // Close the reachable set |
| 1328 | complete_gc->do_void(); |
| 1329 | |
| 1330 | if (iter.processed() > 0) { |
| 1331 | log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT, |
| 1332 | iter.removed(), iter.processed(), p2i(&refs_list)); |
| 1333 | } |
| 1334 | return false; |
| 1335 | } |
| 1336 | |
| 1337 | const char* ReferenceProcessor::list_name(uint i) { |
| 1338 | assert(i <= _max_num_queues * number_of_subclasses_of_ref(), |
| 1339 | "Out of bounds index" ); |
| 1340 | |
| 1341 | int j = i / _max_num_queues; |
| 1342 | switch (j) { |
| 1343 | case 0: return "SoftRef" ; |
| 1344 | case 1: return "WeakRef" ; |
| 1345 | case 2: return "FinalRef" ; |
| 1346 | case 3: return "PhantomRef" ; |
| 1347 | } |
| 1348 | ShouldNotReachHere(); |
| 1349 | return NULL; |
| 1350 | } |
| 1351 | |
| 1352 | uint RefProcMTDegreeAdjuster::ergo_proc_thread_count(size_t ref_count, |
| 1353 | uint max_threads, |
| 1354 | RefProcPhases phase) const { |
| 1355 | assert(0 < max_threads, "must allow at least one thread" ); |
| 1356 | |
| 1357 | if (use_max_threads(phase) || (ReferencesPerThread == 0)) { |
| 1358 | return max_threads; |
| 1359 | } |
| 1360 | |
| 1361 | size_t thread_count = 1 + (ref_count / ReferencesPerThread); |
| 1362 | return (uint)MIN3(thread_count, |
| 1363 | static_cast<size_t>(max_threads), |
| 1364 | (size_t)os::active_processor_count()); |
| 1365 | } |
| 1366 | |
| 1367 | bool RefProcMTDegreeAdjuster::use_max_threads(RefProcPhases phase) const { |
| 1368 | // Even a small number of references in either of those cases could produce large amounts of work. |
| 1369 | return (phase == ReferenceProcessor::RefPhase1 || phase == ReferenceProcessor::RefPhase3); |
| 1370 | } |
| 1371 | |
| 1372 | RefProcMTDegreeAdjuster::RefProcMTDegreeAdjuster(ReferenceProcessor* rp, |
| 1373 | RefProcPhases phase, |
| 1374 | size_t ref_count): |
| 1375 | _rp(rp), |
| 1376 | _saved_mt_processing(_rp->processing_is_mt()), |
| 1377 | _saved_num_queues(_rp->num_queues()) { |
| 1378 | if (!_rp->processing_is_mt() || !_rp->adjust_no_of_processing_threads() || (ReferencesPerThread == 0)) { |
| 1379 | return; |
| 1380 | } |
| 1381 | |
| 1382 | uint workers = ergo_proc_thread_count(ref_count, _rp->num_queues(), phase); |
| 1383 | |
| 1384 | _rp->set_mt_processing(workers > 1); |
| 1385 | _rp->set_active_mt_degree(workers); |
| 1386 | } |
| 1387 | |
| 1388 | RefProcMTDegreeAdjuster::~RefProcMTDegreeAdjuster() { |
| 1389 | // Revert to previous status. |
| 1390 | _rp->set_mt_processing(_saved_mt_processing); |
| 1391 | _rp->set_active_mt_degree(_saved_num_queues); |
| 1392 | } |
| 1393 | |