| 1 | /* |
| 2 | * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "libadt/vectset.hpp" |
| 27 | #include "memory/allocation.hpp" |
| 28 | #include "memory/resourceArea.hpp" |
| 29 | #include "opto/block.hpp" |
| 30 | #include "opto/machnode.hpp" |
| 31 | #include "opto/phaseX.hpp" |
| 32 | #include "opto/rootnode.hpp" |
| 33 | |
| 34 | // Portions of code courtesy of Clifford Click |
| 35 | |
| 36 | // A data structure that holds all the information needed to find dominators. |
| 37 | struct Tarjan { |
| 38 | Block *_block; // Basic block for this info |
| 39 | |
| 40 | uint _semi; // Semi-dominators |
| 41 | uint _size; // Used for faster LINK and EVAL |
| 42 | Tarjan *_parent; // Parent in DFS |
| 43 | Tarjan *_label; // Used for LINK and EVAL |
| 44 | Tarjan *_ancestor; // Used for LINK and EVAL |
| 45 | Tarjan *_child; // Used for faster LINK and EVAL |
| 46 | Tarjan *_dom; // Parent in dominator tree (immediate dom) |
| 47 | Tarjan *_bucket; // Set of vertices with given semidominator |
| 48 | |
| 49 | Tarjan *_dom_child; // Child in dominator tree |
| 50 | Tarjan *_dom_next; // Next in dominator tree |
| 51 | |
| 52 | // Fast union-find work |
| 53 | void COMPRESS(); |
| 54 | Tarjan *EVAL(void); |
| 55 | void LINK( Tarjan *w, Tarjan *tarjan0 ); |
| 56 | |
| 57 | void setdepth( uint size ); |
| 58 | |
| 59 | }; |
| 60 | |
| 61 | // Compute the dominator tree of the CFG. The CFG must already have been |
| 62 | // constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm. |
| 63 | void PhaseCFG::build_dominator_tree() { |
| 64 | // Pre-grow the blocks array, prior to the ResourceMark kicking in |
| 65 | _blocks.map(number_of_blocks(), 0); |
| 66 | |
| 67 | ResourceMark rm; |
| 68 | // Setup mappings from my Graph to Tarjan's stuff and back |
| 69 | // Note: Tarjan uses 1-based arrays |
| 70 | Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1); |
| 71 | |
| 72 | // Tarjan's algorithm, almost verbatim: |
| 73 | // Step 1: |
| 74 | uint dfsnum = do_DFS(tarjan, number_of_blocks()); |
| 75 | if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops! |
| 76 | // If the returned dfsnum does not match the number of blocks, then we |
| 77 | // must have some unreachable loops. These can be made at any time by |
| 78 | // IterGVN. They are cleaned up by CCP or the loop opts, but the last |
| 79 | // IterGVN can always make more that are not cleaned up. Highly unlikely |
| 80 | // except in ZKM.jar, where endless irreducible loops cause the loop opts |
| 81 | // to not get run. |
| 82 | // |
| 83 | // Having found unreachable loops, we have made a bad RPO _block layout. |
| 84 | // We can re-run the above DFS pass with the correct number of blocks, |
| 85 | // and hack the Tarjan algorithm below to be robust in the presence of |
| 86 | // such dead loops (as was done for the NTarjan code farther below). |
| 87 | // Since this situation is so unlikely, instead I've decided to bail out. |
| 88 | // CNC 7/24/2001 |
| 89 | C->record_method_not_compilable("unreachable loop" ); |
| 90 | return; |
| 91 | } |
| 92 | _blocks._cnt = number_of_blocks(); |
| 93 | |
| 94 | // Tarjan is using 1-based arrays, so these are some initialize flags |
| 95 | tarjan[0]._size = tarjan[0]._semi = 0; |
| 96 | tarjan[0]._label = &tarjan[0]; |
| 97 | |
| 98 | for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order |
| 99 | Tarjan *w = &tarjan[i]; // Get vertex from DFS |
| 100 | |
| 101 | // Step 2: |
| 102 | Node *whead = w->_block->head(); |
| 103 | for (uint j = 1; j < whead->req(); j++) { |
| 104 | Block* b = get_block_for_node(whead->in(j)); |
| 105 | Tarjan *vx = &tarjan[b->_pre_order]; |
| 106 | Tarjan *u = vx->EVAL(); |
| 107 | if( u->_semi < w->_semi ) |
| 108 | w->_semi = u->_semi; |
| 109 | } |
| 110 | |
| 111 | // w is added to a bucket here, and only here. |
| 112 | // Thus w is in at most one bucket and the sum of all bucket sizes is O(n). |
| 113 | // Thus bucket can be a linked list. |
| 114 | // Thus we do not need a small integer name for each Block. |
| 115 | w->_bucket = tarjan[w->_semi]._bucket; |
| 116 | tarjan[w->_semi]._bucket = w; |
| 117 | |
| 118 | w->_parent->LINK( w, &tarjan[0] ); |
| 119 | |
| 120 | // Step 3: |
| 121 | for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) { |
| 122 | Tarjan *u = vx->EVAL(); |
| 123 | vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent; |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | // Step 4: |
| 128 | for (uint i = 2; i <= number_of_blocks(); i++) { |
| 129 | Tarjan *w = &tarjan[i]; |
| 130 | if( w->_dom != &tarjan[w->_semi] ) |
| 131 | w->_dom = w->_dom->_dom; |
| 132 | w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
| 133 | } |
| 134 | // No immediate dominator for the root |
| 135 | Tarjan *w = &tarjan[get_root_block()->_pre_order]; |
| 136 | w->_dom = NULL; |
| 137 | w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
| 138 | |
| 139 | // Convert the dominator tree array into my kind of graph |
| 140 | for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices |
| 141 | Tarjan *t = &tarjan[i]; // Handy access |
| 142 | Tarjan *tdom = t->_dom; // Handy access to immediate dominator |
| 143 | if( tdom ) { // Root has no immediate dominator |
| 144 | t->_block->_idom = tdom->_block; // Set immediate dominator |
| 145 | t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child |
| 146 | tdom->_dom_child = t; // Make me a child of my parent |
| 147 | } else |
| 148 | t->_block->_idom = NULL; // Root |
| 149 | } |
| 150 | w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree |
| 151 | |
| 152 | } |
| 153 | |
| 154 | class Block_Stack { |
| 155 | private: |
| 156 | struct Block_Descr { |
| 157 | Block *block; // Block |
| 158 | int index; // Index of block's successor pushed on stack |
| 159 | int freq_idx; // Index of block's most frequent successor |
| 160 | }; |
| 161 | Block_Descr *_stack_top; |
| 162 | Block_Descr *_stack_max; |
| 163 | Block_Descr *_stack; |
| 164 | Tarjan *_tarjan; |
| 165 | uint most_frequent_successor( Block *b ); |
| 166 | public: |
| 167 | Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) { |
| 168 | _stack = NEW_RESOURCE_ARRAY(Block_Descr, size); |
| 169 | _stack_max = _stack + size; |
| 170 | _stack_top = _stack - 1; // stack is empty |
| 171 | } |
| 172 | void push(uint pre_order, Block *b) { |
| 173 | Tarjan *t = &_tarjan[pre_order]; // Fast local access |
| 174 | b->_pre_order = pre_order; // Flag as visited |
| 175 | t->_block = b; // Save actual block |
| 176 | t->_semi = pre_order; // Block to DFS map |
| 177 | t->_label = t; // DFS to vertex map |
| 178 | t->_ancestor = NULL; // Fast LINK & EVAL setup |
| 179 | t->_child = &_tarjan[0]; // Sentenial |
| 180 | t->_size = 1; |
| 181 | t->_bucket = NULL; |
| 182 | if (pre_order == 1) |
| 183 | t->_parent = NULL; // first block doesn't have parent |
| 184 | else { |
| 185 | // Save parent (current top block on stack) in DFS |
| 186 | t->_parent = &_tarjan[_stack_top->block->_pre_order]; |
| 187 | } |
| 188 | // Now put this block on stack |
| 189 | ++_stack_top; |
| 190 | assert(_stack_top < _stack_max, "" ); // assert if stack have to grow |
| 191 | _stack_top->block = b; |
| 192 | _stack_top->index = -1; |
| 193 | // Find the index into b->succs[] array of the most frequent successor. |
| 194 | _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0 |
| 195 | } |
| 196 | Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; } |
| 197 | bool is_nonempty() { return (_stack_top >= _stack); } |
| 198 | bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); } |
| 199 | Block* next_successor() { |
| 200 | int i = _stack_top->index; |
| 201 | i++; |
| 202 | if (i == _stack_top->freq_idx) i++; |
| 203 | if (i >= (int)(_stack_top->block->_num_succs)) { |
| 204 | i = _stack_top->freq_idx; // process most frequent successor last |
| 205 | } |
| 206 | _stack_top->index = i; |
| 207 | return _stack_top->block->_succs[ i ]; |
| 208 | } |
| 209 | }; |
| 210 | |
| 211 | // Find the index into the b->succs[] array of the most frequent successor. |
| 212 | uint Block_Stack::most_frequent_successor( Block *b ) { |
| 213 | uint freq_idx = 0; |
| 214 | int eidx = b->end_idx(); |
| 215 | Node *n = b->get_node(eidx); |
| 216 | int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode(); |
| 217 | switch( op ) { |
| 218 | case Op_CountedLoopEnd: |
| 219 | case Op_If: { // Split frequency amongst children |
| 220 | float prob = n->as_MachIf()->_prob; |
| 221 | // Is succ[0] the TRUE branch or the FALSE branch? |
| 222 | if( b->get_node(eidx+1)->Opcode() == Op_IfFalse ) |
| 223 | prob = 1.0f - prob; |
| 224 | freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob |
| 225 | break; |
| 226 | } |
| 227 | case Op_Catch: // Split frequency amongst children |
| 228 | for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ ) |
| 229 | if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index ) |
| 230 | break; |
| 231 | // Handle case of no fall-thru (e.g., check-cast MUST throw an exception) |
| 232 | if( freq_idx == b->_num_succs ) freq_idx = 0; |
| 233 | break; |
| 234 | // Currently there is no support for finding out the most |
| 235 | // frequent successor for jumps, so lets just make it the first one |
| 236 | case Op_Jump: |
| 237 | case Op_Root: |
| 238 | case Op_Goto: |
| 239 | case Op_NeverBranch: |
| 240 | freq_idx = 0; // fall thru |
| 241 | break; |
| 242 | case Op_TailCall: |
| 243 | case Op_TailJump: |
| 244 | case Op_Return: |
| 245 | case Op_Halt: |
| 246 | case Op_Rethrow: |
| 247 | break; |
| 248 | default: |
| 249 | ShouldNotReachHere(); |
| 250 | } |
| 251 | return freq_idx; |
| 252 | } |
| 253 | |
| 254 | // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup |
| 255 | // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. |
| 256 | uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) { |
| 257 | Block* root_block = get_root_block(); |
| 258 | uint pre_order = 1; |
| 259 | // Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc |
| 260 | Block_Stack bstack(tarjan, number_of_blocks() + 1); |
| 261 | |
| 262 | // Push on stack the state for the first block |
| 263 | bstack.push(pre_order, root_block); |
| 264 | ++pre_order; |
| 265 | |
| 266 | while (bstack.is_nonempty()) { |
| 267 | if (!bstack.last_successor()) { |
| 268 | // Walk over all successors in pre-order (DFS). |
| 269 | Block* next_block = bstack.next_successor(); |
| 270 | if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited |
| 271 | // Push on stack the state of successor |
| 272 | bstack.push(pre_order, next_block); |
| 273 | ++pre_order; |
| 274 | } |
| 275 | } |
| 276 | else { |
| 277 | // Build a reverse post-order in the CFG _blocks array |
| 278 | Block *stack_top = bstack.pop(); |
| 279 | stack_top->_rpo = --rpo_counter; |
| 280 | _blocks.map(stack_top->_rpo, stack_top); |
| 281 | } |
| 282 | } |
| 283 | return pre_order; |
| 284 | } |
| 285 | |
| 286 | void Tarjan::COMPRESS() |
| 287 | { |
| 288 | assert( _ancestor != 0, "" ); |
| 289 | if( _ancestor->_ancestor != 0 ) { |
| 290 | _ancestor->COMPRESS( ); |
| 291 | if( _ancestor->_label->_semi < _label->_semi ) |
| 292 | _label = _ancestor->_label; |
| 293 | _ancestor = _ancestor->_ancestor; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | Tarjan *Tarjan::EVAL() { |
| 298 | if( !_ancestor ) return _label; |
| 299 | COMPRESS(); |
| 300 | return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; |
| 301 | } |
| 302 | |
| 303 | void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) { |
| 304 | Tarjan *s = w; |
| 305 | while( w->_label->_semi < s->_child->_label->_semi ) { |
| 306 | if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) { |
| 307 | s->_child->_ancestor = s; |
| 308 | s->_child = s->_child->_child; |
| 309 | } else { |
| 310 | s->_child->_size = s->_size; |
| 311 | s = s->_ancestor = s->_child; |
| 312 | } |
| 313 | } |
| 314 | s->_label = w->_label; |
| 315 | _size += w->_size; |
| 316 | if( _size < (w->_size << 1) ) { |
| 317 | Tarjan *tmp = s; s = _child; _child = tmp; |
| 318 | } |
| 319 | while( s != tarjan0 ) { |
| 320 | s->_ancestor = this; |
| 321 | s = s->_child; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | void Tarjan::setdepth( uint stack_size ) { |
| 326 | Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size); |
| 327 | Tarjan **next = top; |
| 328 | Tarjan **last; |
| 329 | uint depth = 0; |
| 330 | *top = this; |
| 331 | ++top; |
| 332 | do { |
| 333 | // next level |
| 334 | ++depth; |
| 335 | last = top; |
| 336 | do { |
| 337 | // Set current depth for all tarjans on this level |
| 338 | Tarjan *t = *next; // next tarjan from stack |
| 339 | ++next; |
| 340 | do { |
| 341 | t->_block->_dom_depth = depth; // Set depth in dominator tree |
| 342 | Tarjan *dom_child = t->_dom_child; |
| 343 | t = t->_dom_next; // next tarjan |
| 344 | if (dom_child != NULL) { |
| 345 | *top = dom_child; // save child on stack |
| 346 | ++top; |
| 347 | } |
| 348 | } while (t != NULL); |
| 349 | } while (next < last); |
| 350 | } while (last < top); |
| 351 | } |
| 352 | |
| 353 | // Compute dominators on the Sea of Nodes form |
| 354 | // A data structure that holds all the information needed to find dominators. |
| 355 | struct NTarjan { |
| 356 | Node *_control; // Control node associated with this info |
| 357 | |
| 358 | uint _semi; // Semi-dominators |
| 359 | uint _size; // Used for faster LINK and EVAL |
| 360 | NTarjan *_parent; // Parent in DFS |
| 361 | NTarjan *_label; // Used for LINK and EVAL |
| 362 | NTarjan *_ancestor; // Used for LINK and EVAL |
| 363 | NTarjan *_child; // Used for faster LINK and EVAL |
| 364 | NTarjan *_dom; // Parent in dominator tree (immediate dom) |
| 365 | NTarjan *_bucket; // Set of vertices with given semidominator |
| 366 | |
| 367 | NTarjan *_dom_child; // Child in dominator tree |
| 368 | NTarjan *_dom_next; // Next in dominator tree |
| 369 | |
| 370 | // Perform DFS search. |
| 371 | // Setup 'vertex' as DFS to vertex mapping. |
| 372 | // Setup 'semi' as vertex to DFS mapping. |
| 373 | // Set 'parent' to DFS parent. |
| 374 | static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder ); |
| 375 | void setdepth( uint size, uint *dom_depth ); |
| 376 | |
| 377 | // Fast union-find work |
| 378 | void COMPRESS(); |
| 379 | NTarjan *EVAL(void); |
| 380 | void LINK( NTarjan *w, NTarjan *ntarjan0 ); |
| 381 | #ifndef PRODUCT |
| 382 | void dump(int offset) const; |
| 383 | #endif |
| 384 | }; |
| 385 | |
| 386 | // Compute the dominator tree of the sea of nodes. This version walks all CFG |
| 387 | // nodes (using the is_CFG() call) and places them in a dominator tree. Thus, |
| 388 | // it needs a count of the CFG nodes for the mapping table. This is the |
| 389 | // Lengauer & Tarjan O(E-alpha(E,V)) algorithm. |
| 390 | void PhaseIdealLoop::Dominators() { |
| 391 | ResourceMark rm; |
| 392 | // Setup mappings from my Graph to Tarjan's stuff and back |
| 393 | // Note: Tarjan uses 1-based arrays |
| 394 | NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1); |
| 395 | // Initialize _control field for fast reference |
| 396 | int i; |
| 397 | for( i= C->unique()-1; i>=0; i-- ) |
| 398 | ntarjan[i]._control = NULL; |
| 399 | |
| 400 | // Store the DFS order for the main loop |
| 401 | const uint fill_value = max_juint; |
| 402 | uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1); |
| 403 | memset(dfsorder, fill_value, (C->unique()+1) * sizeof(uint)); |
| 404 | |
| 405 | // Tarjan's algorithm, almost verbatim: |
| 406 | // Step 1: |
| 407 | VectorSet visited(Thread::current()->resource_area()); |
| 408 | int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder); |
| 409 | |
| 410 | // Tarjan is using 1-based arrays, so these are some initialize flags |
| 411 | ntarjan[0]._size = ntarjan[0]._semi = 0; |
| 412 | ntarjan[0]._label = &ntarjan[0]; |
| 413 | |
| 414 | for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order |
| 415 | NTarjan *w = &ntarjan[i]; // Get Node from DFS |
| 416 | assert(w->_control != NULL,"bad DFS walk" ); |
| 417 | |
| 418 | // Step 2: |
| 419 | Node *whead = w->_control; |
| 420 | for( uint j=0; j < whead->req(); j++ ) { // For each predecessor |
| 421 | if( whead->in(j) == NULL || !whead->in(j)->is_CFG() ) |
| 422 | continue; // Only process control nodes |
| 423 | uint b = dfsorder[whead->in(j)->_idx]; |
| 424 | if(b == fill_value) continue; |
| 425 | NTarjan *vx = &ntarjan[b]; |
| 426 | NTarjan *u = vx->EVAL(); |
| 427 | if( u->_semi < w->_semi ) |
| 428 | w->_semi = u->_semi; |
| 429 | } |
| 430 | |
| 431 | // w is added to a bucket here, and only here. |
| 432 | // Thus w is in at most one bucket and the sum of all bucket sizes is O(n). |
| 433 | // Thus bucket can be a linked list. |
| 434 | w->_bucket = ntarjan[w->_semi]._bucket; |
| 435 | ntarjan[w->_semi]._bucket = w; |
| 436 | |
| 437 | w->_parent->LINK( w, &ntarjan[0] ); |
| 438 | |
| 439 | // Step 3: |
| 440 | for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) { |
| 441 | NTarjan *u = vx->EVAL(); |
| 442 | vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent; |
| 443 | } |
| 444 | |
| 445 | // Cleanup any unreachable loops now. Unreachable loops are loops that |
| 446 | // flow into the main graph (and hence into ROOT) but are not reachable |
| 447 | // from above. Such code is dead, but requires a global pass to detect |
| 448 | // it; this global pass was the 'build_loop_tree' pass run just prior. |
| 449 | if( !_verify_only && whead->is_Region() ) { |
| 450 | for( uint i = 1; i < whead->req(); i++ ) { |
| 451 | if (!has_node(whead->in(i))) { |
| 452 | // Kill dead input path |
| 453 | assert( !visited.test(whead->in(i)->_idx), |
| 454 | "input with no loop must be dead" ); |
| 455 | _igvn.delete_input_of(whead, i); |
| 456 | for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) { |
| 457 | Node* p = whead->fast_out(j); |
| 458 | if( p->is_Phi() ) { |
| 459 | _igvn.delete_input_of(p, i); |
| 460 | } |
| 461 | } |
| 462 | i--; // Rerun same iteration |
| 463 | } // End of if dead input path |
| 464 | } // End of for all input paths |
| 465 | } // End if if whead is a Region |
| 466 | } // End of for all Nodes in reverse DFS order |
| 467 | |
| 468 | // Step 4: |
| 469 | for( i=2; i < dfsnum; i++ ) { // DFS order |
| 470 | NTarjan *w = &ntarjan[i]; |
| 471 | assert(w->_control != NULL,"Bad DFS walk" ); |
| 472 | if( w->_dom != &ntarjan[w->_semi] ) |
| 473 | w->_dom = w->_dom->_dom; |
| 474 | w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
| 475 | } |
| 476 | // No immediate dominator for the root |
| 477 | NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]]; |
| 478 | w->_dom = NULL; |
| 479 | w->_parent = NULL; |
| 480 | w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
| 481 | |
| 482 | // Convert the dominator tree array into my kind of graph |
| 483 | for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices |
| 484 | NTarjan *t = &ntarjan[i]; // Handy access |
| 485 | assert(t->_control != NULL,"Bad DFS walk" ); |
| 486 | NTarjan *tdom = t->_dom; // Handy access to immediate dominator |
| 487 | if( tdom ) { // Root has no immediate dominator |
| 488 | _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator |
| 489 | t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child |
| 490 | tdom->_dom_child = t; // Make me a child of my parent |
| 491 | } else |
| 492 | _idom[C->root()->_idx] = NULL; // Root |
| 493 | } |
| 494 | w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree |
| 495 | // Pick up the 'top' node as well |
| 496 | _idom [C->top()->_idx] = C->root(); |
| 497 | _dom_depth[C->top()->_idx] = 1; |
| 498 | |
| 499 | // Debug Print of Dominator tree |
| 500 | if( PrintDominators ) { |
| 501 | #ifndef PRODUCT |
| 502 | w->dump(0); |
| 503 | #endif |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup |
| 508 | // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. |
| 509 | int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) { |
| 510 | // Allocate stack of size C->live_nodes()/8 to avoid frequent realloc |
| 511 | GrowableArray <Node *> dfstack(pil->C->live_nodes() >> 3); |
| 512 | Node *b = pil->C->root(); |
| 513 | int dfsnum = 1; |
| 514 | dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use |
| 515 | dfstack.push(b); |
| 516 | |
| 517 | while (dfstack.is_nonempty()) { |
| 518 | b = dfstack.pop(); |
| 519 | if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited |
| 520 | NTarjan *w = &ntarjan[dfsnum]; |
| 521 | // Only fully process control nodes |
| 522 | w->_control = b; // Save actual node |
| 523 | // Use parent's cached dfsnum to identify "Parent in DFS" |
| 524 | w->_parent = &ntarjan[dfsorder[b->_idx]]; |
| 525 | dfsorder[b->_idx] = dfsnum; // Save DFS order info |
| 526 | w->_semi = dfsnum; // Node to DFS map |
| 527 | w->_label = w; // DFS to vertex map |
| 528 | w->_ancestor = NULL; // Fast LINK & EVAL setup |
| 529 | w->_child = &ntarjan[0]; // Sentinal |
| 530 | w->_size = 1; |
| 531 | w->_bucket = NULL; |
| 532 | |
| 533 | // Need DEF-USE info for this pass |
| 534 | for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards |
| 535 | Node* s = b->raw_out(i); // Get a use |
| 536 | // CFG nodes only and not dead stuff |
| 537 | if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) { |
| 538 | dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use |
| 539 | dfstack.push(s); |
| 540 | } |
| 541 | } |
| 542 | dfsnum++; // update after parent's dfsnum has been cached. |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | return dfsnum; |
| 547 | } |
| 548 | |
| 549 | void NTarjan::COMPRESS() |
| 550 | { |
| 551 | assert( _ancestor != 0, "" ); |
| 552 | if( _ancestor->_ancestor != 0 ) { |
| 553 | _ancestor->COMPRESS( ); |
| 554 | if( _ancestor->_label->_semi < _label->_semi ) |
| 555 | _label = _ancestor->_label; |
| 556 | _ancestor = _ancestor->_ancestor; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | NTarjan *NTarjan::EVAL() { |
| 561 | if( !_ancestor ) return _label; |
| 562 | COMPRESS(); |
| 563 | return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; |
| 564 | } |
| 565 | |
| 566 | void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) { |
| 567 | NTarjan *s = w; |
| 568 | while( w->_label->_semi < s->_child->_label->_semi ) { |
| 569 | if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) { |
| 570 | s->_child->_ancestor = s; |
| 571 | s->_child = s->_child->_child; |
| 572 | } else { |
| 573 | s->_child->_size = s->_size; |
| 574 | s = s->_ancestor = s->_child; |
| 575 | } |
| 576 | } |
| 577 | s->_label = w->_label; |
| 578 | _size += w->_size; |
| 579 | if( _size < (w->_size << 1) ) { |
| 580 | NTarjan *tmp = s; s = _child; _child = tmp; |
| 581 | } |
| 582 | while( s != ntarjan0 ) { |
| 583 | s->_ancestor = this; |
| 584 | s = s->_child; |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | void NTarjan::setdepth( uint stack_size, uint *dom_depth ) { |
| 589 | NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size); |
| 590 | NTarjan **next = top; |
| 591 | NTarjan **last; |
| 592 | uint depth = 0; |
| 593 | *top = this; |
| 594 | ++top; |
| 595 | do { |
| 596 | // next level |
| 597 | ++depth; |
| 598 | last = top; |
| 599 | do { |
| 600 | // Set current depth for all tarjans on this level |
| 601 | NTarjan *t = *next; // next tarjan from stack |
| 602 | ++next; |
| 603 | do { |
| 604 | dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree |
| 605 | NTarjan *dom_child = t->_dom_child; |
| 606 | t = t->_dom_next; // next tarjan |
| 607 | if (dom_child != NULL) { |
| 608 | *top = dom_child; // save child on stack |
| 609 | ++top; |
| 610 | } |
| 611 | } while (t != NULL); |
| 612 | } while (next < last); |
| 613 | } while (last < top); |
| 614 | } |
| 615 | |
| 616 | #ifndef PRODUCT |
| 617 | void NTarjan::dump(int offset) const { |
| 618 | // Dump the data from this node |
| 619 | int i; |
| 620 | for(i = offset; i >0; i--) // Use indenting for tree structure |
| 621 | tty->print(" " ); |
| 622 | tty->print("Dominator Node: " ); |
| 623 | _control->dump(); // Control node for this dom node |
| 624 | tty->print("\n" ); |
| 625 | for(i = offset; i >0; i--) // Use indenting for tree structure |
| 626 | tty->print(" " ); |
| 627 | tty->print("semi:%d, size:%d\n" ,_semi, _size); |
| 628 | for(i = offset; i >0; i--) // Use indenting for tree structure |
| 629 | tty->print(" " ); |
| 630 | tty->print("DFS Parent: " ); |
| 631 | if(_parent != NULL) |
| 632 | _parent->_control->dump(); // Parent in DFS |
| 633 | tty->print("\n" ); |
| 634 | for(i = offset; i >0; i--) // Use indenting for tree structure |
| 635 | tty->print(" " ); |
| 636 | tty->print("Dom Parent: " ); |
| 637 | if(_dom != NULL) |
| 638 | _dom->_control->dump(); // Parent in Dominator Tree |
| 639 | tty->print("\n" ); |
| 640 | |
| 641 | // Recurse over remaining tree |
| 642 | if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree |
| 643 | if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree |
| 644 | |
| 645 | } |
| 646 | #endif |
| 647 | |