1 | /* |
2 | * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "opto/addnode.hpp" |
27 | #include "opto/connode.hpp" |
28 | #include "opto/convertnode.hpp" |
29 | #include "opto/movenode.hpp" |
30 | #include "opto/phaseX.hpp" |
31 | #include "opto/subnode.hpp" |
32 | |
33 | //============================================================================= |
34 | /* |
35 | The major change is for CMoveP and StrComp. They have related but slightly |
36 | different problems. They both take in TWO oops which are both null-checked |
37 | independently before the using Node. After CCP removes the CastPP's they need |
38 | to pick up the guarding test edge - in this case TWO control edges. I tried |
39 | various solutions, all have problems: |
40 | |
41 | (1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a |
42 | StrComp above a guarding null check. I've seen both cases in normal -Xcomp |
43 | testing. |
44 | |
45 | (2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is |
46 | to figure out which test post-dominates. The real problem is that it doesn't |
47 | matter which one you pick. After you pick up, the dominating-test elider in |
48 | IGVN can remove the test and allow you to hoist up to the dominating test on |
49 | the chosen oop bypassing the test on the not-chosen oop. Seen in testing. |
50 | Oops. |
51 | |
52 | (3) Leave the CastPP's in. This makes the graph more accurate in some sense; |
53 | we get to keep around the knowledge that an oop is not-null after some test. |
54 | Alas, the CastPP's interfere with GVN (some values are the regular oop, some |
55 | are the CastPP of the oop, all merge at Phi's which cannot collapse, etc). |
56 | This cost us 10% on SpecJVM, even when I removed some of the more trivial |
57 | cases in the optimizer. Removing more useless Phi's started allowing Loads to |
58 | illegally float above null checks. I gave up on this approach. |
59 | |
60 | (4) Add BOTH control edges to both tests. Alas, too much code knows that |
61 | control edges are in slot-zero ONLY. Many quick asserts fail; no way to do |
62 | this one. Note that I really want to allow the CMoveP to float and add both |
63 | control edges to the dependent Load op - meaning I can select early but I |
64 | cannot Load until I pass both tests. |
65 | |
66 | (5) Do not hoist CMoveP and StrComp. To this end I added the v-call |
67 | depends_only_on_test(). No obvious performance loss on Spec, but we are |
68 | clearly conservative on CMoveP (also so on StrComp but that's unlikely to |
69 | matter ever). |
70 | |
71 | */ |
72 | |
73 | |
74 | //------------------------------Ideal------------------------------------------ |
75 | // Return a node which is more "ideal" than the current node. |
76 | // Move constants to the right. |
77 | Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
78 | if( in(0) && remove_dead_region(phase, can_reshape) ) return this; |
79 | // Don't bother trying to transform a dead node |
80 | if( in(0) && in(0)->is_top() ) return NULL; |
81 | assert( !phase->eqv(in(Condition), this) && |
82 | !phase->eqv(in(IfFalse), this) && |
83 | !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" ); |
84 | if( phase->type(in(Condition)) == Type::TOP ) |
85 | return NULL; // return NULL when Condition is dead |
86 | |
87 | if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) { |
88 | if( in(Condition)->is_Bool() ) { |
89 | BoolNode* b = in(Condition)->as_Bool(); |
90 | BoolNode* b2 = b->negate(phase); |
91 | return make(in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type); |
92 | } |
93 | } |
94 | return NULL; |
95 | } |
96 | |
97 | //------------------------------is_cmove_id------------------------------------ |
98 | // Helper function to check for CMOVE identity. Shared with PhiNode::Identity |
99 | Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) { |
100 | // Check for Cmp'ing and CMove'ing same values |
101 | if( (phase->eqv(cmp->in(1),f) && |
102 | phase->eqv(cmp->in(2),t)) || |
103 | // Swapped Cmp is OK |
104 | (phase->eqv(cmp->in(2),f) && |
105 | phase->eqv(cmp->in(1),t)) ) { |
106 | // Give up this identity check for floating points because it may choose incorrect |
107 | // value around 0.0 and -0.0 |
108 | if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD ) |
109 | return NULL; |
110 | // Check for "(t==f)?t:f;" and replace with "f" |
111 | if( b->_test._test == BoolTest::eq ) |
112 | return f; |
113 | // Allow the inverted case as well |
114 | // Check for "(t!=f)?t:f;" and replace with "t" |
115 | if( b->_test._test == BoolTest::ne ) |
116 | return t; |
117 | } |
118 | return NULL; |
119 | } |
120 | |
121 | //------------------------------Identity--------------------------------------- |
122 | // Conditional-move is an identity if both inputs are the same, or the test |
123 | // true or false. |
124 | Node* CMoveNode::Identity(PhaseGVN* phase) { |
125 | if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs? |
126 | return in(IfFalse); // Then it doesn't matter |
127 | if( phase->type(in(Condition)) == TypeInt::ZERO ) |
128 | return in(IfFalse); // Always pick left(false) input |
129 | if( phase->type(in(Condition)) == TypeInt::ONE ) |
130 | return in(IfTrue); // Always pick right(true) input |
131 | |
132 | // Check for CMove'ing a constant after comparing against the constant. |
133 | // Happens all the time now, since if we compare equality vs a constant in |
134 | // the parser, we "know" the variable is constant on one path and we force |
135 | // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a |
136 | // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more |
137 | // general in that we don't need constants. |
138 | if( in(Condition)->is_Bool() ) { |
139 | BoolNode *b = in(Condition)->as_Bool(); |
140 | Node *cmp = b->in(1); |
141 | if( cmp->is_Cmp() ) { |
142 | Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b ); |
143 | if( id ) return id; |
144 | } |
145 | } |
146 | |
147 | return this; |
148 | } |
149 | |
150 | //------------------------------Value------------------------------------------ |
151 | // Result is the meet of inputs |
152 | const Type* CMoveNode::Value(PhaseGVN* phase) const { |
153 | if( phase->type(in(Condition)) == Type::TOP ) |
154 | return Type::TOP; |
155 | return phase->type(in(IfFalse))->meet_speculative(phase->type(in(IfTrue))); |
156 | } |
157 | |
158 | //------------------------------make------------------------------------------- |
159 | // Make a correctly-flavored CMove. Since _type is directly determined |
160 | // from the inputs we do not need to specify it here. |
161 | CMoveNode *CMoveNode::make(Node *c, Node *bol, Node *left, Node *right, const Type *t) { |
162 | switch( t->basic_type() ) { |
163 | case T_INT: return new CMoveINode( bol, left, right, t->is_int() ); |
164 | case T_FLOAT: return new CMoveFNode( bol, left, right, t ); |
165 | case T_DOUBLE: return new CMoveDNode( bol, left, right, t ); |
166 | case T_LONG: return new CMoveLNode( bol, left, right, t->is_long() ); |
167 | case T_OBJECT: return new CMovePNode( c, bol, left, right, t->is_oopptr() ); |
168 | case T_ADDRESS: return new CMovePNode( c, bol, left, right, t->is_ptr() ); |
169 | case T_NARROWOOP: return new CMoveNNode( c, bol, left, right, t ); |
170 | default: |
171 | ShouldNotReachHere(); |
172 | return NULL; |
173 | } |
174 | } |
175 | |
176 | //============================================================================= |
177 | //------------------------------Ideal------------------------------------------ |
178 | // Return a node which is more "ideal" than the current node. |
179 | // Check for conversions to boolean |
180 | Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
181 | // Try generic ideal's first |
182 | Node *x = CMoveNode::Ideal(phase, can_reshape); |
183 | if( x ) return x; |
184 | |
185 | // If zero is on the left (false-case, no-move-case) it must mean another |
186 | // constant is on the right (otherwise the shared CMove::Ideal code would |
187 | // have moved the constant to the right). This situation is bad for Intel |
188 | // and a don't-care for Sparc. It's bad for Intel because the zero has to |
189 | // be manifested in a register with a XOR which kills flags, which are live |
190 | // on input to the CMoveI, leading to a situation which causes excessive |
191 | // spilling on Intel. For Sparc, if the zero in on the left the Sparc will |
192 | // zero a register via G0 and conditionally-move the other constant. If the |
193 | // zero is on the right, the Sparc will load the first constant with a |
194 | // 13-bit set-lo and conditionally move G0. See bug 4677505. |
195 | if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) { |
196 | if( in(Condition)->is_Bool() ) { |
197 | BoolNode* b = in(Condition)->as_Bool(); |
198 | BoolNode* b2 = b->negate(phase); |
199 | return make(in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type); |
200 | } |
201 | } |
202 | |
203 | // Now check for booleans |
204 | int flip = 0; |
205 | |
206 | // Check for picking from zero/one |
207 | if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) { |
208 | flip = 1 - flip; |
209 | } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) { |
210 | } else return NULL; |
211 | |
212 | // Check for eq/ne test |
213 | if( !in(1)->is_Bool() ) return NULL; |
214 | BoolNode *bol = in(1)->as_Bool(); |
215 | if( bol->_test._test == BoolTest::eq ) { |
216 | } else if( bol->_test._test == BoolTest::ne ) { |
217 | flip = 1-flip; |
218 | } else return NULL; |
219 | |
220 | // Check for vs 0 or 1 |
221 | if( !bol->in(1)->is_Cmp() ) return NULL; |
222 | const CmpNode *cmp = bol->in(1)->as_Cmp(); |
223 | if( phase->type(cmp->in(2)) == TypeInt::ZERO ) { |
224 | } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) { |
225 | // Allow cmp-vs-1 if the other input is bounded by 0-1 |
226 | if( phase->type(cmp->in(1)) != TypeInt::BOOL ) |
227 | return NULL; |
228 | flip = 1 - flip; |
229 | } else return NULL; |
230 | |
231 | // Convert to a bool (flipped) |
232 | // Build int->bool conversion |
233 | if (PrintOpto) { tty->print_cr("CMOV to I2B" ); } |
234 | Node *n = new Conv2BNode( cmp->in(1) ); |
235 | if( flip ) |
236 | n = new XorINode( phase->transform(n), phase->intcon(1) ); |
237 | |
238 | return n; |
239 | } |
240 | |
241 | //============================================================================= |
242 | //------------------------------Ideal------------------------------------------ |
243 | // Return a node which is more "ideal" than the current node. |
244 | // Check for absolute value |
245 | Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
246 | // Try generic ideal's first |
247 | Node *x = CMoveNode::Ideal(phase, can_reshape); |
248 | if( x ) return x; |
249 | |
250 | int cmp_zero_idx = 0; // Index of compare input where to look for zero |
251 | int phi_x_idx = 0; // Index of phi input where to find naked x |
252 | |
253 | // Find the Bool |
254 | if( !in(1)->is_Bool() ) return NULL; |
255 | BoolNode *bol = in(1)->as_Bool(); |
256 | // Check bool sense |
257 | switch( bol->_test._test ) { |
258 | case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break; |
259 | case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break; |
260 | case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break; |
261 | case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break; |
262 | default: return NULL; break; |
263 | } |
264 | |
265 | // Find zero input of CmpF; the other input is being abs'd |
266 | Node *cmpf = bol->in(1); |
267 | if( cmpf->Opcode() != Op_CmpF ) return NULL; |
268 | Node *X = NULL; |
269 | bool flip = false; |
270 | if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) { |
271 | X = cmpf->in(3 - cmp_zero_idx); |
272 | } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) { |
273 | // The test is inverted, we should invert the result... |
274 | X = cmpf->in(cmp_zero_idx); |
275 | flip = true; |
276 | } else { |
277 | return NULL; |
278 | } |
279 | |
280 | // If X is found on the appropriate phi input, find the subtract on the other |
281 | if( X != in(phi_x_idx) ) return NULL; |
282 | int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue; |
283 | Node *sub = in(phi_sub_idx); |
284 | |
285 | // Allow only SubF(0,X) and fail out for all others; NegF is not OK |
286 | if( sub->Opcode() != Op_SubF || |
287 | sub->in(2) != X || |
288 | phase->type(sub->in(1)) != TypeF::ZERO ) return NULL; |
289 | |
290 | Node *abs = new AbsFNode( X ); |
291 | if( flip ) |
292 | abs = new SubFNode(sub->in(1), phase->transform(abs)); |
293 | |
294 | return abs; |
295 | } |
296 | |
297 | //============================================================================= |
298 | //------------------------------Ideal------------------------------------------ |
299 | // Return a node which is more "ideal" than the current node. |
300 | // Check for absolute value |
301 | Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
302 | // Try generic ideal's first |
303 | Node *x = CMoveNode::Ideal(phase, can_reshape); |
304 | if( x ) return x; |
305 | |
306 | int cmp_zero_idx = 0; // Index of compare input where to look for zero |
307 | int phi_x_idx = 0; // Index of phi input where to find naked x |
308 | |
309 | // Find the Bool |
310 | if( !in(1)->is_Bool() ) return NULL; |
311 | BoolNode *bol = in(1)->as_Bool(); |
312 | // Check bool sense |
313 | switch( bol->_test._test ) { |
314 | case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break; |
315 | case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break; |
316 | case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break; |
317 | case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break; |
318 | default: return NULL; break; |
319 | } |
320 | |
321 | // Find zero input of CmpD; the other input is being abs'd |
322 | Node *cmpd = bol->in(1); |
323 | if( cmpd->Opcode() != Op_CmpD ) return NULL; |
324 | Node *X = NULL; |
325 | bool flip = false; |
326 | if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) { |
327 | X = cmpd->in(3 - cmp_zero_idx); |
328 | } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) { |
329 | // The test is inverted, we should invert the result... |
330 | X = cmpd->in(cmp_zero_idx); |
331 | flip = true; |
332 | } else { |
333 | return NULL; |
334 | } |
335 | |
336 | // If X is found on the appropriate phi input, find the subtract on the other |
337 | if( X != in(phi_x_idx) ) return NULL; |
338 | int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue; |
339 | Node *sub = in(phi_sub_idx); |
340 | |
341 | // Allow only SubD(0,X) and fail out for all others; NegD is not OK |
342 | if( sub->Opcode() != Op_SubD || |
343 | sub->in(2) != X || |
344 | phase->type(sub->in(1)) != TypeD::ZERO ) return NULL; |
345 | |
346 | Node *abs = new AbsDNode( X ); |
347 | if( flip ) |
348 | abs = new SubDNode(sub->in(1), phase->transform(abs)); |
349 | |
350 | return abs; |
351 | } |
352 | |
353 | //------------------------------Value------------------------------------------ |
354 | const Type* MoveL2DNode::Value(PhaseGVN* phase) const { |
355 | const Type *t = phase->type( in(1) ); |
356 | if( t == Type::TOP ) return Type::TOP; |
357 | const TypeLong *tl = t->is_long(); |
358 | if( !tl->is_con() ) return bottom_type(); |
359 | JavaValue v; |
360 | v.set_jlong(tl->get_con()); |
361 | return TypeD::make( v.get_jdouble() ); |
362 | } |
363 | |
364 | //------------------------------Value------------------------------------------ |
365 | const Type* MoveI2FNode::Value(PhaseGVN* phase) const { |
366 | const Type *t = phase->type( in(1) ); |
367 | if( t == Type::TOP ) return Type::TOP; |
368 | const TypeInt *ti = t->is_int(); |
369 | if( !ti->is_con() ) return bottom_type(); |
370 | JavaValue v; |
371 | v.set_jint(ti->get_con()); |
372 | return TypeF::make( v.get_jfloat() ); |
373 | } |
374 | |
375 | //------------------------------Value------------------------------------------ |
376 | const Type* MoveF2INode::Value(PhaseGVN* phase) const { |
377 | const Type *t = phase->type( in(1) ); |
378 | if( t == Type::TOP ) return Type::TOP; |
379 | if( t == Type::FLOAT ) return TypeInt::INT; |
380 | const TypeF *tf = t->is_float_constant(); |
381 | JavaValue v; |
382 | v.set_jfloat(tf->getf()); |
383 | return TypeInt::make( v.get_jint() ); |
384 | } |
385 | |
386 | //------------------------------Value------------------------------------------ |
387 | const Type* MoveD2LNode::Value(PhaseGVN* phase) const { |
388 | const Type *t = phase->type( in(1) ); |
389 | if( t == Type::TOP ) return Type::TOP; |
390 | if( t == Type::DOUBLE ) return TypeLong::LONG; |
391 | const TypeD *td = t->is_double_constant(); |
392 | JavaValue v; |
393 | v.set_jdouble(td->getd()); |
394 | return TypeLong::make( v.get_jlong() ); |
395 | } |
396 | |
397 | #ifndef PRODUCT |
398 | //----------------------------BinaryNode--------------------------------------- |
399 | // The set of related nodes for a BinaryNode is all data inputs and all outputs |
400 | // till level 2 (i.e., one beyond the associated CMoveNode). In compact mode, |
401 | // it's the inputs till level 1 and the outputs till level 2. |
402 | void BinaryNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
403 | if (compact) { |
404 | this->collect_nodes(in_rel, 1, false, true); |
405 | } else { |
406 | this->collect_nodes_in_all_data(in_rel, false); |
407 | } |
408 | this->collect_nodes(out_rel, -2, false, false); |
409 | } |
410 | #endif |
411 | |