1 | //===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file defines various meta classes of instructions that exist in the VM |
11 | // representation. Specific concrete subclasses of these may be found in the |
12 | // i*.h files... |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #ifndef LLVM_IR_INSTRTYPES_H |
17 | #define LLVM_IR_INSTRTYPES_H |
18 | |
19 | #include "llvm/ADT/ArrayRef.h" |
20 | #include "llvm/ADT/None.h" |
21 | #include "llvm/ADT/Optional.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/ADT/StringMap.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/ADT/Twine.h" |
26 | #include "llvm/ADT/iterator_range.h" |
27 | #include "llvm/IR/Attributes.h" |
28 | #include "llvm/IR/CallingConv.h" |
29 | #include "llvm/IR/Constants.h" |
30 | #include "llvm/IR/DerivedTypes.h" |
31 | #include "llvm/IR/Instruction.h" |
32 | #include "llvm/IR/LLVMContext.h" |
33 | #include "llvm/IR/OperandTraits.h" |
34 | #include "llvm/IR/Type.h" |
35 | #include "llvm/IR/User.h" |
36 | #include "llvm/IR/Value.h" |
37 | #include "llvm/Support/Casting.h" |
38 | #include "llvm/Support/ErrorHandling.h" |
39 | #include <algorithm> |
40 | #include <cassert> |
41 | #include <cstddef> |
42 | #include <cstdint> |
43 | #include <iterator> |
44 | #include <string> |
45 | #include <vector> |
46 | |
47 | namespace llvm { |
48 | |
49 | namespace Intrinsic { |
50 | enum ID : unsigned; |
51 | } |
52 | |
53 | //===----------------------------------------------------------------------===// |
54 | // UnaryInstruction Class |
55 | //===----------------------------------------------------------------------===// |
56 | |
57 | class UnaryInstruction : public Instruction { |
58 | protected: |
59 | UnaryInstruction(Type *Ty, unsigned iType, Value *V, |
60 | Instruction *IB = nullptr) |
61 | : Instruction(Ty, iType, &Op<0>(), 1, IB) { |
62 | Op<0>() = V; |
63 | } |
64 | UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE) |
65 | : Instruction(Ty, iType, &Op<0>(), 1, IAE) { |
66 | Op<0>() = V; |
67 | } |
68 | |
69 | public: |
70 | // allocate space for exactly one operand |
71 | void *operator new(size_t s) { |
72 | return User::operator new(s, 1); |
73 | } |
74 | |
75 | /// Transparently provide more efficient getOperand methods. |
76 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
77 | |
78 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
79 | static bool classof(const Instruction *I) { |
80 | return I->getOpcode() == Instruction::Alloca || |
81 | I->getOpcode() == Instruction::Load || |
82 | I->getOpcode() == Instruction::VAArg || |
83 | I->getOpcode() == Instruction::ExtractValue || |
84 | (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd); |
85 | } |
86 | static bool classof(const Value *V) { |
87 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
88 | } |
89 | }; |
90 | |
91 | template <> |
92 | struct OperandTraits<UnaryInstruction> : |
93 | public FixedNumOperandTraits<UnaryInstruction, 1> { |
94 | }; |
95 | |
96 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value) |
97 | |
98 | //===----------------------------------------------------------------------===// |
99 | // BinaryOperator Class |
100 | //===----------------------------------------------------------------------===// |
101 | |
102 | class BinaryOperator : public Instruction { |
103 | void AssertOK(); |
104 | |
105 | protected: |
106 | BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, |
107 | const Twine &Name, Instruction *InsertBefore); |
108 | BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, |
109 | const Twine &Name, BasicBlock *InsertAtEnd); |
110 | |
111 | // Note: Instruction needs to be a friend here to call cloneImpl. |
112 | friend class Instruction; |
113 | |
114 | BinaryOperator *cloneImpl() const; |
115 | |
116 | public: |
117 | // allocate space for exactly two operands |
118 | void *operator new(size_t s) { |
119 | return User::operator new(s, 2); |
120 | } |
121 | |
122 | /// Transparently provide more efficient getOperand methods. |
123 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
124 | |
125 | /// Construct a binary instruction, given the opcode and the two |
126 | /// operands. Optionally (if InstBefore is specified) insert the instruction |
127 | /// into a BasicBlock right before the specified instruction. The specified |
128 | /// Instruction is allowed to be a dereferenced end iterator. |
129 | /// |
130 | static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, |
131 | const Twine &Name = Twine(), |
132 | Instruction *InsertBefore = nullptr); |
133 | |
134 | /// Construct a binary instruction, given the opcode and the two |
135 | /// operands. Also automatically insert this instruction to the end of the |
136 | /// BasicBlock specified. |
137 | /// |
138 | static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, |
139 | const Twine &Name, BasicBlock *InsertAtEnd); |
140 | |
141 | /// These methods just forward to Create, and are useful when you |
142 | /// statically know what type of instruction you're going to create. These |
143 | /// helpers just save some typing. |
144 | #define HANDLE_BINARY_INST(N, OPC, CLASS) \ |
145 | static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ |
146 | const Twine &Name = "") {\ |
147 | return Create(Instruction::OPC, V1, V2, Name);\ |
148 | } |
149 | #include "llvm/IR/Instruction.def" |
150 | #define HANDLE_BINARY_INST(N, OPC, CLASS) \ |
151 | static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ |
152 | const Twine &Name, BasicBlock *BB) {\ |
153 | return Create(Instruction::OPC, V1, V2, Name, BB);\ |
154 | } |
155 | #include "llvm/IR/Instruction.def" |
156 | #define HANDLE_BINARY_INST(N, OPC, CLASS) \ |
157 | static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ |
158 | const Twine &Name, Instruction *I) {\ |
159 | return Create(Instruction::OPC, V1, V2, Name, I);\ |
160 | } |
161 | #include "llvm/IR/Instruction.def" |
162 | |
163 | static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc, |
164 | Value *V1, Value *V2, |
165 | BinaryOperator *CopyBO, |
166 | const Twine &Name = "" ) { |
167 | BinaryOperator *BO = Create(Opc, V1, V2, Name); |
168 | BO->copyIRFlags(CopyBO); |
169 | return BO; |
170 | } |
171 | |
172 | static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2, |
173 | BinaryOperator *FMFSource, |
174 | const Twine &Name = "" ) { |
175 | return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name); |
176 | } |
177 | static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2, |
178 | BinaryOperator *FMFSource, |
179 | const Twine &Name = "" ) { |
180 | return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name); |
181 | } |
182 | static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2, |
183 | BinaryOperator *FMFSource, |
184 | const Twine &Name = "" ) { |
185 | return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name); |
186 | } |
187 | static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2, |
188 | BinaryOperator *FMFSource, |
189 | const Twine &Name = "" ) { |
190 | return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name); |
191 | } |
192 | static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2, |
193 | BinaryOperator *FMFSource, |
194 | const Twine &Name = "" ) { |
195 | return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name); |
196 | } |
197 | static BinaryOperator *CreateFNegFMF(Value *Op, BinaryOperator *FMFSource, |
198 | const Twine &Name = "" ) { |
199 | Value *Zero = ConstantFP::getNegativeZero(Op->getType()); |
200 | return CreateWithCopiedFlags(Instruction::FSub, Zero, Op, FMFSource); |
201 | } |
202 | |
203 | static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, |
204 | const Twine &Name = "" ) { |
205 | BinaryOperator *BO = Create(Opc, V1, V2, Name); |
206 | BO->setHasNoSignedWrap(true); |
207 | return BO; |
208 | } |
209 | static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, |
210 | const Twine &Name, BasicBlock *BB) { |
211 | BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); |
212 | BO->setHasNoSignedWrap(true); |
213 | return BO; |
214 | } |
215 | static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, |
216 | const Twine &Name, Instruction *I) { |
217 | BinaryOperator *BO = Create(Opc, V1, V2, Name, I); |
218 | BO->setHasNoSignedWrap(true); |
219 | return BO; |
220 | } |
221 | |
222 | static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, |
223 | const Twine &Name = "" ) { |
224 | BinaryOperator *BO = Create(Opc, V1, V2, Name); |
225 | BO->setHasNoUnsignedWrap(true); |
226 | return BO; |
227 | } |
228 | static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, |
229 | const Twine &Name, BasicBlock *BB) { |
230 | BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); |
231 | BO->setHasNoUnsignedWrap(true); |
232 | return BO; |
233 | } |
234 | static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, |
235 | const Twine &Name, Instruction *I) { |
236 | BinaryOperator *BO = Create(Opc, V1, V2, Name, I); |
237 | BO->setHasNoUnsignedWrap(true); |
238 | return BO; |
239 | } |
240 | |
241 | static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, |
242 | const Twine &Name = "" ) { |
243 | BinaryOperator *BO = Create(Opc, V1, V2, Name); |
244 | BO->setIsExact(true); |
245 | return BO; |
246 | } |
247 | static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, |
248 | const Twine &Name, BasicBlock *BB) { |
249 | BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); |
250 | BO->setIsExact(true); |
251 | return BO; |
252 | } |
253 | static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, |
254 | const Twine &Name, Instruction *I) { |
255 | BinaryOperator *BO = Create(Opc, V1, V2, Name, I); |
256 | BO->setIsExact(true); |
257 | return BO; |
258 | } |
259 | |
260 | #define DEFINE_HELPERS(OPC, NUWNSWEXACT) \ |
261 | static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2, \ |
262 | const Twine &Name = "") { \ |
263 | return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \ |
264 | } \ |
265 | static BinaryOperator *Create##NUWNSWEXACT##OPC( \ |
266 | Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \ |
267 | return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \ |
268 | } \ |
269 | static BinaryOperator *Create##NUWNSWEXACT##OPC( \ |
270 | Value *V1, Value *V2, const Twine &Name, Instruction *I) { \ |
271 | return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \ |
272 | } |
273 | |
274 | DEFINE_HELPERS(Add, NSW) // CreateNSWAdd |
275 | DEFINE_HELPERS(Add, NUW) // CreateNUWAdd |
276 | DEFINE_HELPERS(Sub, NSW) // CreateNSWSub |
277 | DEFINE_HELPERS(Sub, NUW) // CreateNUWSub |
278 | DEFINE_HELPERS(Mul, NSW) // CreateNSWMul |
279 | DEFINE_HELPERS(Mul, NUW) // CreateNUWMul |
280 | DEFINE_HELPERS(Shl, NSW) // CreateNSWShl |
281 | DEFINE_HELPERS(Shl, NUW) // CreateNUWShl |
282 | |
283 | DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv |
284 | DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv |
285 | DEFINE_HELPERS(AShr, Exact) // CreateExactAShr |
286 | DEFINE_HELPERS(LShr, Exact) // CreateExactLShr |
287 | |
288 | #undef DEFINE_HELPERS |
289 | |
290 | /// Helper functions to construct and inspect unary operations (NEG and NOT) |
291 | /// via binary operators SUB and XOR: |
292 | /// |
293 | /// Create the NEG and NOT instructions out of SUB and XOR instructions. |
294 | /// |
295 | static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "" , |
296 | Instruction *InsertBefore = nullptr); |
297 | static BinaryOperator *CreateNeg(Value *Op, const Twine &Name, |
298 | BasicBlock *InsertAtEnd); |
299 | static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "" , |
300 | Instruction *InsertBefore = nullptr); |
301 | static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name, |
302 | BasicBlock *InsertAtEnd); |
303 | static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "" , |
304 | Instruction *InsertBefore = nullptr); |
305 | static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name, |
306 | BasicBlock *InsertAtEnd); |
307 | static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "" , |
308 | Instruction *InsertBefore = nullptr); |
309 | static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name, |
310 | BasicBlock *InsertAtEnd); |
311 | static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "" , |
312 | Instruction *InsertBefore = nullptr); |
313 | static BinaryOperator *CreateNot(Value *Op, const Twine &Name, |
314 | BasicBlock *InsertAtEnd); |
315 | |
316 | BinaryOps getOpcode() const { |
317 | return static_cast<BinaryOps>(Instruction::getOpcode()); |
318 | } |
319 | |
320 | /// Exchange the two operands to this instruction. |
321 | /// This instruction is safe to use on any binary instruction and |
322 | /// does not modify the semantics of the instruction. If the instruction |
323 | /// cannot be reversed (ie, it's a Div), then return true. |
324 | /// |
325 | bool swapOperands(); |
326 | |
327 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
328 | static bool classof(const Instruction *I) { |
329 | return I->isBinaryOp(); |
330 | } |
331 | static bool classof(const Value *V) { |
332 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
333 | } |
334 | }; |
335 | |
336 | template <> |
337 | struct OperandTraits<BinaryOperator> : |
338 | public FixedNumOperandTraits<BinaryOperator, 2> { |
339 | }; |
340 | |
341 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value) |
342 | |
343 | //===----------------------------------------------------------------------===// |
344 | // CastInst Class |
345 | //===----------------------------------------------------------------------===// |
346 | |
347 | /// This is the base class for all instructions that perform data |
348 | /// casts. It is simply provided so that instruction category testing |
349 | /// can be performed with code like: |
350 | /// |
351 | /// if (isa<CastInst>(Instr)) { ... } |
352 | /// Base class of casting instructions. |
353 | class CastInst : public UnaryInstruction { |
354 | protected: |
355 | /// Constructor with insert-before-instruction semantics for subclasses |
356 | CastInst(Type *Ty, unsigned iType, Value *S, |
357 | const Twine &NameStr = "" , Instruction *InsertBefore = nullptr) |
358 | : UnaryInstruction(Ty, iType, S, InsertBefore) { |
359 | setName(NameStr); |
360 | } |
361 | /// Constructor with insert-at-end-of-block semantics for subclasses |
362 | CastInst(Type *Ty, unsigned iType, Value *S, |
363 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
364 | : UnaryInstruction(Ty, iType, S, InsertAtEnd) { |
365 | setName(NameStr); |
366 | } |
367 | |
368 | public: |
369 | /// Provides a way to construct any of the CastInst subclasses using an |
370 | /// opcode instead of the subclass's constructor. The opcode must be in the |
371 | /// CastOps category (Instruction::isCast(opcode) returns true). This |
372 | /// constructor has insert-before-instruction semantics to automatically |
373 | /// insert the new CastInst before InsertBefore (if it is non-null). |
374 | /// Construct any of the CastInst subclasses |
375 | static CastInst *Create( |
376 | Instruction::CastOps, ///< The opcode of the cast instruction |
377 | Value *S, ///< The value to be casted (operand 0) |
378 | Type *Ty, ///< The type to which cast should be made |
379 | const Twine &Name = "" , ///< Name for the instruction |
380 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
381 | ); |
382 | /// Provides a way to construct any of the CastInst subclasses using an |
383 | /// opcode instead of the subclass's constructor. The opcode must be in the |
384 | /// CastOps category. This constructor has insert-at-end-of-block semantics |
385 | /// to automatically insert the new CastInst at the end of InsertAtEnd (if |
386 | /// its non-null). |
387 | /// Construct any of the CastInst subclasses |
388 | static CastInst *Create( |
389 | Instruction::CastOps, ///< The opcode for the cast instruction |
390 | Value *S, ///< The value to be casted (operand 0) |
391 | Type *Ty, ///< The type to which operand is casted |
392 | const Twine &Name, ///< The name for the instruction |
393 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
394 | ); |
395 | |
396 | /// Create a ZExt or BitCast cast instruction |
397 | static CastInst *CreateZExtOrBitCast( |
398 | Value *S, ///< The value to be casted (operand 0) |
399 | Type *Ty, ///< The type to which cast should be made |
400 | const Twine &Name = "" , ///< Name for the instruction |
401 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
402 | ); |
403 | |
404 | /// Create a ZExt or BitCast cast instruction |
405 | static CastInst *CreateZExtOrBitCast( |
406 | Value *S, ///< The value to be casted (operand 0) |
407 | Type *Ty, ///< The type to which operand is casted |
408 | const Twine &Name, ///< The name for the instruction |
409 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
410 | ); |
411 | |
412 | /// Create a SExt or BitCast cast instruction |
413 | static CastInst *CreateSExtOrBitCast( |
414 | Value *S, ///< The value to be casted (operand 0) |
415 | Type *Ty, ///< The type to which cast should be made |
416 | const Twine &Name = "" , ///< Name for the instruction |
417 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
418 | ); |
419 | |
420 | /// Create a SExt or BitCast cast instruction |
421 | static CastInst *CreateSExtOrBitCast( |
422 | Value *S, ///< The value to be casted (operand 0) |
423 | Type *Ty, ///< The type to which operand is casted |
424 | const Twine &Name, ///< The name for the instruction |
425 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
426 | ); |
427 | |
428 | /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction. |
429 | static CastInst *CreatePointerCast( |
430 | Value *S, ///< The pointer value to be casted (operand 0) |
431 | Type *Ty, ///< The type to which operand is casted |
432 | const Twine &Name, ///< The name for the instruction |
433 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
434 | ); |
435 | |
436 | /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction. |
437 | static CastInst *CreatePointerCast( |
438 | Value *S, ///< The pointer value to be casted (operand 0) |
439 | Type *Ty, ///< The type to which cast should be made |
440 | const Twine &Name = "" , ///< Name for the instruction |
441 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
442 | ); |
443 | |
444 | /// Create a BitCast or an AddrSpaceCast cast instruction. |
445 | static CastInst *CreatePointerBitCastOrAddrSpaceCast( |
446 | Value *S, ///< The pointer value to be casted (operand 0) |
447 | Type *Ty, ///< The type to which operand is casted |
448 | const Twine &Name, ///< The name for the instruction |
449 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
450 | ); |
451 | |
452 | /// Create a BitCast or an AddrSpaceCast cast instruction. |
453 | static CastInst *CreatePointerBitCastOrAddrSpaceCast( |
454 | Value *S, ///< The pointer value to be casted (operand 0) |
455 | Type *Ty, ///< The type to which cast should be made |
456 | const Twine &Name = "" , ///< Name for the instruction |
457 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
458 | ); |
459 | |
460 | /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction. |
461 | /// |
462 | /// If the value is a pointer type and the destination an integer type, |
463 | /// creates a PtrToInt cast. If the value is an integer type and the |
464 | /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates |
465 | /// a bitcast. |
466 | static CastInst *CreateBitOrPointerCast( |
467 | Value *S, ///< The pointer value to be casted (operand 0) |
468 | Type *Ty, ///< The type to which cast should be made |
469 | const Twine &Name = "" , ///< Name for the instruction |
470 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
471 | ); |
472 | |
473 | /// Create a ZExt, BitCast, or Trunc for int -> int casts. |
474 | static CastInst *CreateIntegerCast( |
475 | Value *S, ///< The pointer value to be casted (operand 0) |
476 | Type *Ty, ///< The type to which cast should be made |
477 | bool isSigned, ///< Whether to regard S as signed or not |
478 | const Twine &Name = "" , ///< Name for the instruction |
479 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
480 | ); |
481 | |
482 | /// Create a ZExt, BitCast, or Trunc for int -> int casts. |
483 | static CastInst *CreateIntegerCast( |
484 | Value *S, ///< The integer value to be casted (operand 0) |
485 | Type *Ty, ///< The integer type to which operand is casted |
486 | bool isSigned, ///< Whether to regard S as signed or not |
487 | const Twine &Name, ///< The name for the instruction |
488 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
489 | ); |
490 | |
491 | /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts |
492 | static CastInst *CreateFPCast( |
493 | Value *S, ///< The floating point value to be casted |
494 | Type *Ty, ///< The floating point type to cast to |
495 | const Twine &Name = "" , ///< Name for the instruction |
496 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
497 | ); |
498 | |
499 | /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts |
500 | static CastInst *CreateFPCast( |
501 | Value *S, ///< The floating point value to be casted |
502 | Type *Ty, ///< The floating point type to cast to |
503 | const Twine &Name, ///< The name for the instruction |
504 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
505 | ); |
506 | |
507 | /// Create a Trunc or BitCast cast instruction |
508 | static CastInst *CreateTruncOrBitCast( |
509 | Value *S, ///< The value to be casted (operand 0) |
510 | Type *Ty, ///< The type to which cast should be made |
511 | const Twine &Name = "" , ///< Name for the instruction |
512 | Instruction *InsertBefore = nullptr ///< Place to insert the instruction |
513 | ); |
514 | |
515 | /// Create a Trunc or BitCast cast instruction |
516 | static CastInst *CreateTruncOrBitCast( |
517 | Value *S, ///< The value to be casted (operand 0) |
518 | Type *Ty, ///< The type to which operand is casted |
519 | const Twine &Name, ///< The name for the instruction |
520 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
521 | ); |
522 | |
523 | /// Check whether it is valid to call getCastOpcode for these types. |
524 | static bool isCastable( |
525 | Type *SrcTy, ///< The Type from which the value should be cast. |
526 | Type *DestTy ///< The Type to which the value should be cast. |
527 | ); |
528 | |
529 | /// Check whether a bitcast between these types is valid |
530 | static bool isBitCastable( |
531 | Type *SrcTy, ///< The Type from which the value should be cast. |
532 | Type *DestTy ///< The Type to which the value should be cast. |
533 | ); |
534 | |
535 | /// Check whether a bitcast, inttoptr, or ptrtoint cast between these |
536 | /// types is valid and a no-op. |
537 | /// |
538 | /// This ensures that any pointer<->integer cast has enough bits in the |
539 | /// integer and any other cast is a bitcast. |
540 | static bool isBitOrNoopPointerCastable( |
541 | Type *SrcTy, ///< The Type from which the value should be cast. |
542 | Type *DestTy, ///< The Type to which the value should be cast. |
543 | const DataLayout &DL); |
544 | |
545 | /// Returns the opcode necessary to cast Val into Ty using usual casting |
546 | /// rules. |
547 | /// Infer the opcode for cast operand and type |
548 | static Instruction::CastOps getCastOpcode( |
549 | const Value *Val, ///< The value to cast |
550 | bool SrcIsSigned, ///< Whether to treat the source as signed |
551 | Type *Ty, ///< The Type to which the value should be casted |
552 | bool DstIsSigned ///< Whether to treate the dest. as signed |
553 | ); |
554 | |
555 | /// There are several places where we need to know if a cast instruction |
556 | /// only deals with integer source and destination types. To simplify that |
557 | /// logic, this method is provided. |
558 | /// @returns true iff the cast has only integral typed operand and dest type. |
559 | /// Determine if this is an integer-only cast. |
560 | bool isIntegerCast() const; |
561 | |
562 | /// A lossless cast is one that does not alter the basic value. It implies |
563 | /// a no-op cast but is more stringent, preventing things like int->float, |
564 | /// long->double, or int->ptr. |
565 | /// @returns true iff the cast is lossless. |
566 | /// Determine if this is a lossless cast. |
567 | bool isLosslessCast() const; |
568 | |
569 | /// A no-op cast is one that can be effected without changing any bits. |
570 | /// It implies that the source and destination types are the same size. The |
571 | /// DataLayout argument is to determine the pointer size when examining casts |
572 | /// involving Integer and Pointer types. They are no-op casts if the integer |
573 | /// is the same size as the pointer. However, pointer size varies with |
574 | /// platform. |
575 | /// Determine if the described cast is a no-op cast. |
576 | static bool isNoopCast( |
577 | Instruction::CastOps Opcode, ///< Opcode of cast |
578 | Type *SrcTy, ///< SrcTy of cast |
579 | Type *DstTy, ///< DstTy of cast |
580 | const DataLayout &DL ///< DataLayout to get the Int Ptr type from. |
581 | ); |
582 | |
583 | /// Determine if this cast is a no-op cast. |
584 | /// |
585 | /// \param DL is the DataLayout to determine pointer size. |
586 | bool isNoopCast(const DataLayout &DL) const; |
587 | |
588 | /// Determine how a pair of casts can be eliminated, if they can be at all. |
589 | /// This is a helper function for both CastInst and ConstantExpr. |
590 | /// @returns 0 if the CastInst pair can't be eliminated, otherwise |
591 | /// returns Instruction::CastOps value for a cast that can replace |
592 | /// the pair, casting SrcTy to DstTy. |
593 | /// Determine if a cast pair is eliminable |
594 | static unsigned isEliminableCastPair( |
595 | Instruction::CastOps firstOpcode, ///< Opcode of first cast |
596 | Instruction::CastOps secondOpcode, ///< Opcode of second cast |
597 | Type *SrcTy, ///< SrcTy of 1st cast |
598 | Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast |
599 | Type *DstTy, ///< DstTy of 2nd cast |
600 | Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null |
601 | Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null |
602 | Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null |
603 | ); |
604 | |
605 | /// Return the opcode of this CastInst |
606 | Instruction::CastOps getOpcode() const { |
607 | return Instruction::CastOps(Instruction::getOpcode()); |
608 | } |
609 | |
610 | /// Return the source type, as a convenience |
611 | Type* getSrcTy() const { return getOperand(0)->getType(); } |
612 | /// Return the destination type, as a convenience |
613 | Type* getDestTy() const { return getType(); } |
614 | |
615 | /// This method can be used to determine if a cast from S to DstTy using |
616 | /// Opcode op is valid or not. |
617 | /// @returns true iff the proposed cast is valid. |
618 | /// Determine if a cast is valid without creating one. |
619 | static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy); |
620 | |
621 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
622 | static bool classof(const Instruction *I) { |
623 | return I->isCast(); |
624 | } |
625 | static bool classof(const Value *V) { |
626 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
627 | } |
628 | }; |
629 | |
630 | //===----------------------------------------------------------------------===// |
631 | // CmpInst Class |
632 | //===----------------------------------------------------------------------===// |
633 | |
634 | /// This class is the base class for the comparison instructions. |
635 | /// Abstract base class of comparison instructions. |
636 | class CmpInst : public Instruction { |
637 | public: |
638 | /// This enumeration lists the possible predicates for CmpInst subclasses. |
639 | /// Values in the range 0-31 are reserved for FCmpInst, while values in the |
640 | /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the |
641 | /// predicate values are not overlapping between the classes. |
642 | /// |
643 | /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of |
644 | /// FCMP_* values. Changing the bit patterns requires a potential change to |
645 | /// those passes. |
646 | enum Predicate { |
647 | // Opcode U L G E Intuitive operation |
648 | FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded) |
649 | FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal |
650 | FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than |
651 | FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal |
652 | FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than |
653 | FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal |
654 | FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal |
655 | FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans) |
656 | FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y) |
657 | FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal |
658 | FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than |
659 | FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal |
660 | FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than |
661 | FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal |
662 | FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal |
663 | FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded) |
664 | FIRST_FCMP_PREDICATE = FCMP_FALSE, |
665 | LAST_FCMP_PREDICATE = FCMP_TRUE, |
666 | BAD_FCMP_PREDICATE = FCMP_TRUE + 1, |
667 | ICMP_EQ = 32, ///< equal |
668 | ICMP_NE = 33, ///< not equal |
669 | ICMP_UGT = 34, ///< unsigned greater than |
670 | ICMP_UGE = 35, ///< unsigned greater or equal |
671 | ICMP_ULT = 36, ///< unsigned less than |
672 | ICMP_ULE = 37, ///< unsigned less or equal |
673 | ICMP_SGT = 38, ///< signed greater than |
674 | ICMP_SGE = 39, ///< signed greater or equal |
675 | ICMP_SLT = 40, ///< signed less than |
676 | ICMP_SLE = 41, ///< signed less or equal |
677 | FIRST_ICMP_PREDICATE = ICMP_EQ, |
678 | LAST_ICMP_PREDICATE = ICMP_SLE, |
679 | BAD_ICMP_PREDICATE = ICMP_SLE + 1 |
680 | }; |
681 | |
682 | protected: |
683 | CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, |
684 | Value *LHS, Value *RHS, const Twine &Name = "" , |
685 | Instruction *InsertBefore = nullptr, |
686 | Instruction *FlagsSource = nullptr); |
687 | |
688 | CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, |
689 | Value *LHS, Value *RHS, const Twine &Name, |
690 | BasicBlock *InsertAtEnd); |
691 | |
692 | public: |
693 | // allocate space for exactly two operands |
694 | void *operator new(size_t s) { |
695 | return User::operator new(s, 2); |
696 | } |
697 | |
698 | /// Construct a compare instruction, given the opcode, the predicate and |
699 | /// the two operands. Optionally (if InstBefore is specified) insert the |
700 | /// instruction into a BasicBlock right before the specified instruction. |
701 | /// The specified Instruction is allowed to be a dereferenced end iterator. |
702 | /// Create a CmpInst |
703 | static CmpInst *Create(OtherOps Op, |
704 | Predicate predicate, Value *S1, |
705 | Value *S2, const Twine &Name = "" , |
706 | Instruction *InsertBefore = nullptr); |
707 | |
708 | /// Construct a compare instruction, given the opcode, the predicate and the |
709 | /// two operands. Also automatically insert this instruction to the end of |
710 | /// the BasicBlock specified. |
711 | /// Create a CmpInst |
712 | static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1, |
713 | Value *S2, const Twine &Name, BasicBlock *InsertAtEnd); |
714 | |
715 | /// Get the opcode casted to the right type |
716 | OtherOps getOpcode() const { |
717 | return static_cast<OtherOps>(Instruction::getOpcode()); |
718 | } |
719 | |
720 | /// Return the predicate for this instruction. |
721 | Predicate getPredicate() const { |
722 | return Predicate(getSubclassDataFromInstruction()); |
723 | } |
724 | |
725 | /// Set the predicate for this instruction to the specified value. |
726 | void setPredicate(Predicate P) { setInstructionSubclassData(P); } |
727 | |
728 | static bool isFPPredicate(Predicate P) { |
729 | return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE; |
730 | } |
731 | |
732 | static bool isIntPredicate(Predicate P) { |
733 | return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE; |
734 | } |
735 | |
736 | static StringRef getPredicateName(Predicate P); |
737 | |
738 | bool isFPPredicate() const { return isFPPredicate(getPredicate()); } |
739 | bool isIntPredicate() const { return isIntPredicate(getPredicate()); } |
740 | |
741 | /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, |
742 | /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. |
743 | /// @returns the inverse predicate for the instruction's current predicate. |
744 | /// Return the inverse of the instruction's predicate. |
745 | Predicate getInversePredicate() const { |
746 | return getInversePredicate(getPredicate()); |
747 | } |
748 | |
749 | /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, |
750 | /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. |
751 | /// @returns the inverse predicate for predicate provided in \p pred. |
752 | /// Return the inverse of a given predicate |
753 | static Predicate getInversePredicate(Predicate pred); |
754 | |
755 | /// For example, EQ->EQ, SLE->SGE, ULT->UGT, |
756 | /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc. |
757 | /// @returns the predicate that would be the result of exchanging the two |
758 | /// operands of the CmpInst instruction without changing the result |
759 | /// produced. |
760 | /// Return the predicate as if the operands were swapped |
761 | Predicate getSwappedPredicate() const { |
762 | return getSwappedPredicate(getPredicate()); |
763 | } |
764 | |
765 | /// This is a static version that you can use without an instruction |
766 | /// available. |
767 | /// Return the predicate as if the operands were swapped. |
768 | static Predicate getSwappedPredicate(Predicate pred); |
769 | |
770 | /// For predicate of kind "is X or equal to 0" returns the predicate "is X". |
771 | /// For predicate of kind "is X" returns the predicate "is X or equal to 0". |
772 | /// does not support other kind of predicates. |
773 | /// @returns the predicate that does not contains is equal to zero if |
774 | /// it had and vice versa. |
775 | /// Return the flipped strictness of predicate |
776 | Predicate getFlippedStrictnessPredicate() const { |
777 | return getFlippedStrictnessPredicate(getPredicate()); |
778 | } |
779 | |
780 | /// This is a static version that you can use without an instruction |
781 | /// available. |
782 | /// Return the flipped strictness of predicate |
783 | static Predicate getFlippedStrictnessPredicate(Predicate pred); |
784 | |
785 | /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE. |
786 | /// Returns the non-strict version of strict comparisons. |
787 | Predicate getNonStrictPredicate() const { |
788 | return getNonStrictPredicate(getPredicate()); |
789 | } |
790 | |
791 | /// This is a static version that you can use without an instruction |
792 | /// available. |
793 | /// @returns the non-strict version of comparison provided in \p pred. |
794 | /// If \p pred is not a strict comparison predicate, returns \p pred. |
795 | /// Returns the non-strict version of strict comparisons. |
796 | static Predicate getNonStrictPredicate(Predicate pred); |
797 | |
798 | /// Provide more efficient getOperand methods. |
799 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
800 | |
801 | /// This is just a convenience that dispatches to the subclasses. |
802 | /// Swap the operands and adjust predicate accordingly to retain |
803 | /// the same comparison. |
804 | void swapOperands(); |
805 | |
806 | /// This is just a convenience that dispatches to the subclasses. |
807 | /// Determine if this CmpInst is commutative. |
808 | bool isCommutative() const; |
809 | |
810 | /// This is just a convenience that dispatches to the subclasses. |
811 | /// Determine if this is an equals/not equals predicate. |
812 | bool isEquality() const; |
813 | |
814 | /// @returns true if the comparison is signed, false otherwise. |
815 | /// Determine if this instruction is using a signed comparison. |
816 | bool isSigned() const { |
817 | return isSigned(getPredicate()); |
818 | } |
819 | |
820 | /// @returns true if the comparison is unsigned, false otherwise. |
821 | /// Determine if this instruction is using an unsigned comparison. |
822 | bool isUnsigned() const { |
823 | return isUnsigned(getPredicate()); |
824 | } |
825 | |
826 | /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert |
827 | /// @returns the signed version of the unsigned predicate pred. |
828 | /// return the signed version of a predicate |
829 | static Predicate getSignedPredicate(Predicate pred); |
830 | |
831 | /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert |
832 | /// @returns the signed version of the predicate for this instruction (which |
833 | /// has to be an unsigned predicate). |
834 | /// return the signed version of a predicate |
835 | Predicate getSignedPredicate() { |
836 | return getSignedPredicate(getPredicate()); |
837 | } |
838 | |
839 | /// This is just a convenience. |
840 | /// Determine if this is true when both operands are the same. |
841 | bool isTrueWhenEqual() const { |
842 | return isTrueWhenEqual(getPredicate()); |
843 | } |
844 | |
845 | /// This is just a convenience. |
846 | /// Determine if this is false when both operands are the same. |
847 | bool isFalseWhenEqual() const { |
848 | return isFalseWhenEqual(getPredicate()); |
849 | } |
850 | |
851 | /// @returns true if the predicate is unsigned, false otherwise. |
852 | /// Determine if the predicate is an unsigned operation. |
853 | static bool isUnsigned(Predicate predicate); |
854 | |
855 | /// @returns true if the predicate is signed, false otherwise. |
856 | /// Determine if the predicate is an signed operation. |
857 | static bool isSigned(Predicate predicate); |
858 | |
859 | /// Determine if the predicate is an ordered operation. |
860 | static bool isOrdered(Predicate predicate); |
861 | |
862 | /// Determine if the predicate is an unordered operation. |
863 | static bool isUnordered(Predicate predicate); |
864 | |
865 | /// Determine if the predicate is true when comparing a value with itself. |
866 | static bool isTrueWhenEqual(Predicate predicate); |
867 | |
868 | /// Determine if the predicate is false when comparing a value with itself. |
869 | static bool isFalseWhenEqual(Predicate predicate); |
870 | |
871 | /// Determine if Pred1 implies Pred2 is true when two compares have matching |
872 | /// operands. |
873 | static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2); |
874 | |
875 | /// Determine if Pred1 implies Pred2 is false when two compares have matching |
876 | /// operands. |
877 | static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2); |
878 | |
879 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
880 | static bool classof(const Instruction *I) { |
881 | return I->getOpcode() == Instruction::ICmp || |
882 | I->getOpcode() == Instruction::FCmp; |
883 | } |
884 | static bool classof(const Value *V) { |
885 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
886 | } |
887 | |
888 | /// Create a result type for fcmp/icmp |
889 | static Type* makeCmpResultType(Type* opnd_type) { |
890 | if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) { |
891 | return VectorType::get(Type::getInt1Ty(opnd_type->getContext()), |
892 | vt->getNumElements()); |
893 | } |
894 | return Type::getInt1Ty(opnd_type->getContext()); |
895 | } |
896 | |
897 | private: |
898 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
899 | // subclasses cannot accidentally use it. |
900 | void setValueSubclassData(unsigned short D) { |
901 | Value::setValueSubclassData(D); |
902 | } |
903 | }; |
904 | |
905 | // FIXME: these are redundant if CmpInst < BinaryOperator |
906 | template <> |
907 | struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> { |
908 | }; |
909 | |
910 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value) |
911 | |
912 | /// A lightweight accessor for an operand bundle meant to be passed |
913 | /// around by value. |
914 | struct OperandBundleUse { |
915 | ArrayRef<Use> Inputs; |
916 | |
917 | OperandBundleUse() = default; |
918 | explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs) |
919 | : Inputs(Inputs), Tag(Tag) {} |
920 | |
921 | /// Return true if the operand at index \p Idx in this operand bundle |
922 | /// has the attribute A. |
923 | bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const { |
924 | if (isDeoptOperandBundle()) |
925 | if (A == Attribute::ReadOnly || A == Attribute::NoCapture) |
926 | return Inputs[Idx]->getType()->isPointerTy(); |
927 | |
928 | // Conservative answer: no operands have any attributes. |
929 | return false; |
930 | } |
931 | |
932 | /// Return the tag of this operand bundle as a string. |
933 | StringRef getTagName() const { |
934 | return Tag->getKey(); |
935 | } |
936 | |
937 | /// Return the tag of this operand bundle as an integer. |
938 | /// |
939 | /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag, |
940 | /// and this function returns the unique integer getOrInsertBundleTag |
941 | /// associated the tag of this operand bundle to. |
942 | uint32_t getTagID() const { |
943 | return Tag->getValue(); |
944 | } |
945 | |
946 | /// Return true if this is a "deopt" operand bundle. |
947 | bool isDeoptOperandBundle() const { |
948 | return getTagID() == LLVMContext::OB_deopt; |
949 | } |
950 | |
951 | /// Return true if this is a "funclet" operand bundle. |
952 | bool isFuncletOperandBundle() const { |
953 | return getTagID() == LLVMContext::OB_funclet; |
954 | } |
955 | |
956 | private: |
957 | /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag. |
958 | StringMapEntry<uint32_t> *Tag; |
959 | }; |
960 | |
961 | /// A container for an operand bundle being viewed as a set of values |
962 | /// rather than a set of uses. |
963 | /// |
964 | /// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and |
965 | /// so it is possible to create and pass around "self-contained" instances of |
966 | /// OperandBundleDef and ConstOperandBundleDef. |
967 | template <typename InputTy> class OperandBundleDefT { |
968 | std::string Tag; |
969 | std::vector<InputTy> Inputs; |
970 | |
971 | public: |
972 | explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs) |
973 | : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {} |
974 | explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs) |
975 | : Tag(std::move(Tag)), Inputs(Inputs) {} |
976 | |
977 | explicit OperandBundleDefT(const OperandBundleUse &OBU) { |
978 | Tag = OBU.getTagName(); |
979 | Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end()); |
980 | } |
981 | |
982 | ArrayRef<InputTy> inputs() const { return Inputs; } |
983 | |
984 | using input_iterator = typename std::vector<InputTy>::const_iterator; |
985 | |
986 | size_t input_size() const { return Inputs.size(); } |
987 | input_iterator input_begin() const { return Inputs.begin(); } |
988 | input_iterator input_end() const { return Inputs.end(); } |
989 | |
990 | StringRef getTag() const { return Tag; } |
991 | }; |
992 | |
993 | using OperandBundleDef = OperandBundleDefT<Value *>; |
994 | using ConstOperandBundleDef = OperandBundleDefT<const Value *>; |
995 | |
996 | //===----------------------------------------------------------------------===// |
997 | // CallBase Class |
998 | //===----------------------------------------------------------------------===// |
999 | |
1000 | /// Base class for all callable instructions (InvokeInst and CallInst) |
1001 | /// Holds everything related to calling a function. |
1002 | /// |
1003 | /// All call-like instructions are required to use a common operand layout: |
1004 | /// - Zero or more arguments to the call, |
1005 | /// - Zero or more operand bundles with zero or more operand inputs each |
1006 | /// bundle, |
1007 | /// - Zero or more subclass controlled operands |
1008 | /// - The called function. |
1009 | /// |
1010 | /// This allows this base class to easily access the called function and the |
1011 | /// start of the arguments without knowing how many other operands a particular |
1012 | /// subclass requires. Note that accessing the end of the argument list isn't |
1013 | /// as cheap as most other operations on the base class. |
1014 | class CallBase : public Instruction { |
1015 | protected: |
1016 | /// The last operand is the called operand. |
1017 | static constexpr int CalledOperandOpEndIdx = -1; |
1018 | |
1019 | AttributeList Attrs; ///< parameter attributes for callable |
1020 | FunctionType *FTy; |
1021 | |
1022 | template <class... ArgsTy> |
1023 | CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args) |
1024 | : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {} |
1025 | |
1026 | using Instruction::Instruction; |
1027 | |
1028 | bool hasDescriptor() const { return Value::HasDescriptor; } |
1029 | |
1030 | unsigned getNumSubclassExtraOperands() const { |
1031 | switch (getOpcode()) { |
1032 | case Instruction::Call: |
1033 | return 0; |
1034 | case Instruction::Invoke: |
1035 | return 2; |
1036 | } |
1037 | llvm_unreachable("Invalid opcode!" ); |
1038 | } |
1039 | |
1040 | public: |
1041 | using Instruction::getContext; |
1042 | |
1043 | static bool classof(const Instruction *I) { |
1044 | return I->getOpcode() == Instruction::Call || |
1045 | I->getOpcode() == Instruction::Invoke; |
1046 | } |
1047 | static bool classof(const Value *V) { |
1048 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1049 | } |
1050 | |
1051 | FunctionType *getFunctionType() const { return FTy; } |
1052 | |
1053 | void mutateFunctionType(FunctionType *FTy) { |
1054 | Value::mutateType(FTy->getReturnType()); |
1055 | this->FTy = FTy; |
1056 | } |
1057 | |
1058 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
1059 | |
1060 | /// data_operands_begin/data_operands_end - Return iterators iterating over |
1061 | /// the call / invoke argument list and bundle operands. For invokes, this is |
1062 | /// the set of instruction operands except the invoke target and the two |
1063 | /// successor blocks; and for calls this is the set of instruction operands |
1064 | /// except the call target. |
1065 | User::op_iterator data_operands_begin() { return op_begin(); } |
1066 | User::const_op_iterator data_operands_begin() const { |
1067 | return const_cast<CallBase *>(this)->data_operands_begin(); |
1068 | } |
1069 | User::op_iterator data_operands_end() { |
1070 | // Walk from the end of the operands over the called operand and any |
1071 | // subclass operands. |
1072 | return op_end() - getNumSubclassExtraOperands() - 1; |
1073 | } |
1074 | User::const_op_iterator data_operands_end() const { |
1075 | return const_cast<CallBase *>(this)->data_operands_end(); |
1076 | } |
1077 | iterator_range<User::op_iterator> data_ops() { |
1078 | return make_range(data_operands_begin(), data_operands_end()); |
1079 | } |
1080 | iterator_range<User::const_op_iterator> data_ops() const { |
1081 | return make_range(data_operands_begin(), data_operands_end()); |
1082 | } |
1083 | bool data_operands_empty() const { |
1084 | return data_operands_end() == data_operands_begin(); |
1085 | } |
1086 | unsigned data_operands_size() const { |
1087 | return std::distance(data_operands_begin(), data_operands_end()); |
1088 | } |
1089 | |
1090 | bool isDataOperand(const Use *U) const { |
1091 | assert(this == U->getUser() && |
1092 | "Only valid to query with a use of this instruction!" ); |
1093 | return data_operands_begin() <= U && U < data_operands_end(); |
1094 | } |
1095 | bool isDataOperand(Value::const_user_iterator UI) const { |
1096 | return isDataOperand(&UI.getUse()); |
1097 | } |
1098 | |
1099 | /// Return the iterator pointing to the beginning of the argument list. |
1100 | User::op_iterator arg_begin() { return op_begin(); } |
1101 | User::const_op_iterator arg_begin() const { |
1102 | return const_cast<CallBase *>(this)->arg_begin(); |
1103 | } |
1104 | |
1105 | /// Return the iterator pointing to the end of the argument list. |
1106 | User::op_iterator arg_end() { |
1107 | // From the end of the data operands, walk backwards past the bundle |
1108 | // operands. |
1109 | return data_operands_end() - getNumTotalBundleOperands(); |
1110 | } |
1111 | User::const_op_iterator arg_end() const { |
1112 | return const_cast<CallBase *>(this)->arg_end(); |
1113 | } |
1114 | |
1115 | /// Iteration adapter for range-for loops. |
1116 | iterator_range<User::op_iterator> args() { |
1117 | return make_range(arg_begin(), arg_end()); |
1118 | } |
1119 | iterator_range<User::const_op_iterator> args() const { |
1120 | return make_range(arg_begin(), arg_end()); |
1121 | } |
1122 | bool arg_empty() const { return arg_end() == arg_begin(); } |
1123 | unsigned arg_size() const { return arg_end() - arg_begin(); } |
1124 | |
1125 | // Legacy API names that duplicate the above and will be removed once users |
1126 | // are migrated. |
1127 | iterator_range<User::op_iterator> arg_operands() { |
1128 | return make_range(arg_begin(), arg_end()); |
1129 | } |
1130 | iterator_range<User::const_op_iterator> arg_operands() const { |
1131 | return make_range(arg_begin(), arg_end()); |
1132 | } |
1133 | unsigned getNumArgOperands() const { return arg_size(); } |
1134 | |
1135 | Value *getArgOperand(unsigned i) const { |
1136 | assert(i < getNumArgOperands() && "Out of bounds!" ); |
1137 | return getOperand(i); |
1138 | } |
1139 | |
1140 | void setArgOperand(unsigned i, Value *v) { |
1141 | assert(i < getNumArgOperands() && "Out of bounds!" ); |
1142 | setOperand(i, v); |
1143 | } |
1144 | |
1145 | /// Wrappers for getting the \c Use of a call argument. |
1146 | const Use &getArgOperandUse(unsigned i) const { |
1147 | assert(i < getNumArgOperands() && "Out of bounds!" ); |
1148 | return User::getOperandUse(i); |
1149 | } |
1150 | Use &getArgOperandUse(unsigned i) { |
1151 | assert(i < getNumArgOperands() && "Out of bounds!" ); |
1152 | return User::getOperandUse(i); |
1153 | } |
1154 | |
1155 | bool isArgOperand(const Use *U) const { |
1156 | assert(this == U->getUser() && |
1157 | "Only valid to query with a use of this instruction!" ); |
1158 | return arg_begin() <= U && U < arg_end(); |
1159 | } |
1160 | bool isArgOperand(Value::const_user_iterator UI) const { |
1161 | return isArgOperand(&UI.getUse()); |
1162 | } |
1163 | |
1164 | /// Returns true if this CallSite passes the given Value* as an argument to |
1165 | /// the called function. |
1166 | bool hasArgument(const Value *V) const { |
1167 | return llvm::any_of(args(), [V](const Value *Arg) { return Arg == V; }); |
1168 | } |
1169 | |
1170 | Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); } |
1171 | |
1172 | // DEPRECATED: This routine will be removed in favor of `getCalledOperand` in |
1173 | // the near future. |
1174 | Value *getCalledValue() const { return getCalledOperand(); } |
1175 | |
1176 | const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); } |
1177 | Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); } |
1178 | |
1179 | /// Returns the function called, or null if this is an |
1180 | /// indirect function invocation. |
1181 | Function *getCalledFunction() const { |
1182 | return dyn_cast_or_null<Function>(getCalledOperand()); |
1183 | } |
1184 | |
1185 | /// Return true if the callsite is an indirect call. |
1186 | bool isIndirectCall() const; |
1187 | |
1188 | /// Determine whether the passed iterator points to the callee operand's Use. |
1189 | bool isCallee(Value::const_user_iterator UI) const { |
1190 | return isCallee(&UI.getUse()); |
1191 | } |
1192 | |
1193 | /// Determine whether this Use is the callee operand's Use. |
1194 | bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; } |
1195 | |
1196 | /// Helper to get the caller (the parent function). |
1197 | Function *getCaller(); |
1198 | const Function *getCaller() const { |
1199 | return const_cast<CallBase *>(this)->getCaller(); |
1200 | } |
1201 | |
1202 | /// Returns the intrinsic ID of the intrinsic called or |
1203 | /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if |
1204 | /// this is an indirect call. |
1205 | Intrinsic::ID getIntrinsicID() const; |
1206 | |
1207 | void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; } |
1208 | |
1209 | /// Sets the function called, including updating the function type. |
1210 | void setCalledFunction(Value *Fn) { |
1211 | setCalledFunction( |
1212 | cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()), |
1213 | Fn); |
1214 | } |
1215 | |
1216 | /// Sets the function called, including updating to the specified function |
1217 | /// type. |
1218 | void setCalledFunction(FunctionType *FTy, Value *Fn) { |
1219 | this->FTy = FTy; |
1220 | assert(FTy == cast<FunctionType>( |
1221 | cast<PointerType>(Fn->getType())->getElementType())); |
1222 | setCalledOperand(Fn); |
1223 | } |
1224 | |
1225 | CallingConv::ID getCallingConv() const { |
1226 | return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2); |
1227 | } |
1228 | |
1229 | void setCallingConv(CallingConv::ID CC) { |
1230 | auto ID = static_cast<unsigned>(CC); |
1231 | assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention" ); |
1232 | setInstructionSubclassData((getSubclassDataFromInstruction() & 3) | |
1233 | (ID << 2)); |
1234 | } |
1235 | |
1236 | /// \name Attribute API |
1237 | /// |
1238 | /// These methods access and modify attributes on this call (including |
1239 | /// looking through to the attributes on the called function when necessary). |
1240 | ///@{ |
1241 | |
1242 | /// Return the parameter attributes for this call. |
1243 | /// |
1244 | AttributeList getAttributes() const { return Attrs; } |
1245 | |
1246 | /// Set the parameter attributes for this call. |
1247 | /// |
1248 | void setAttributes(AttributeList A) { Attrs = A; } |
1249 | |
1250 | /// Determine whether this call has the given attribute. |
1251 | bool hasFnAttr(Attribute::AttrKind Kind) const { |
1252 | assert(Kind != Attribute::NoBuiltin && |
1253 | "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin" ); |
1254 | return hasFnAttrImpl(Kind); |
1255 | } |
1256 | |
1257 | /// Determine whether this call has the given attribute. |
1258 | bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); } |
1259 | |
1260 | /// adds the attribute to the list of attributes. |
1261 | void addAttribute(unsigned i, Attribute::AttrKind Kind) { |
1262 | AttributeList PAL = getAttributes(); |
1263 | PAL = PAL.addAttribute(getContext(), i, Kind); |
1264 | setAttributes(PAL); |
1265 | } |
1266 | |
1267 | /// adds the attribute to the list of attributes. |
1268 | void addAttribute(unsigned i, Attribute Attr) { |
1269 | AttributeList PAL = getAttributes(); |
1270 | PAL = PAL.addAttribute(getContext(), i, Attr); |
1271 | setAttributes(PAL); |
1272 | } |
1273 | |
1274 | /// Adds the attribute to the indicated argument |
1275 | void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { |
1276 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1277 | AttributeList PAL = getAttributes(); |
1278 | PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); |
1279 | setAttributes(PAL); |
1280 | } |
1281 | |
1282 | /// Adds the attribute to the indicated argument |
1283 | void addParamAttr(unsigned ArgNo, Attribute Attr) { |
1284 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1285 | AttributeList PAL = getAttributes(); |
1286 | PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); |
1287 | setAttributes(PAL); |
1288 | } |
1289 | |
1290 | /// removes the attribute from the list of attributes. |
1291 | void removeAttribute(unsigned i, Attribute::AttrKind Kind) { |
1292 | AttributeList PAL = getAttributes(); |
1293 | PAL = PAL.removeAttribute(getContext(), i, Kind); |
1294 | setAttributes(PAL); |
1295 | } |
1296 | |
1297 | /// removes the attribute from the list of attributes. |
1298 | void removeAttribute(unsigned i, StringRef Kind) { |
1299 | AttributeList PAL = getAttributes(); |
1300 | PAL = PAL.removeAttribute(getContext(), i, Kind); |
1301 | setAttributes(PAL); |
1302 | } |
1303 | |
1304 | /// Removes the attribute from the given argument |
1305 | void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { |
1306 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1307 | AttributeList PAL = getAttributes(); |
1308 | PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); |
1309 | setAttributes(PAL); |
1310 | } |
1311 | |
1312 | /// Removes the attribute from the given argument |
1313 | void removeParamAttr(unsigned ArgNo, StringRef Kind) { |
1314 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1315 | AttributeList PAL = getAttributes(); |
1316 | PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); |
1317 | setAttributes(PAL); |
1318 | } |
1319 | |
1320 | /// adds the dereferenceable attribute to the list of attributes. |
1321 | void addDereferenceableAttr(unsigned i, uint64_t Bytes) { |
1322 | AttributeList PAL = getAttributes(); |
1323 | PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); |
1324 | setAttributes(PAL); |
1325 | } |
1326 | |
1327 | /// adds the dereferenceable_or_null attribute to the list of |
1328 | /// attributes. |
1329 | void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { |
1330 | AttributeList PAL = getAttributes(); |
1331 | PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); |
1332 | setAttributes(PAL); |
1333 | } |
1334 | |
1335 | /// Determine whether the return value has the given attribute. |
1336 | bool hasRetAttr(Attribute::AttrKind Kind) const; |
1337 | |
1338 | /// Determine whether the argument or parameter has the given attribute. |
1339 | bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const; |
1340 | |
1341 | /// Get the attribute of a given kind at a position. |
1342 | Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const { |
1343 | return getAttributes().getAttribute(i, Kind); |
1344 | } |
1345 | |
1346 | /// Get the attribute of a given kind at a position. |
1347 | Attribute getAttribute(unsigned i, StringRef Kind) const { |
1348 | return getAttributes().getAttribute(i, Kind); |
1349 | } |
1350 | |
1351 | /// Get the attribute of a given kind from a given arg |
1352 | Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { |
1353 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1354 | return getAttributes().getParamAttr(ArgNo, Kind); |
1355 | } |
1356 | |
1357 | /// Get the attribute of a given kind from a given arg |
1358 | Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const { |
1359 | assert(ArgNo < getNumArgOperands() && "Out of bounds" ); |
1360 | return getAttributes().getParamAttr(ArgNo, Kind); |
1361 | } |
1362 | |
1363 | /// Return true if the data operand at index \p i has the attribute \p |
1364 | /// A. |
1365 | /// |
1366 | /// Data operands include call arguments and values used in operand bundles, |
1367 | /// but does not include the callee operand. This routine dispatches to the |
1368 | /// underlying AttributeList or the OperandBundleUser as appropriate. |
1369 | /// |
1370 | /// The index \p i is interpreted as |
1371 | /// |
1372 | /// \p i == Attribute::ReturnIndex -> the return value |
1373 | /// \p i in [1, arg_size + 1) -> argument number (\p i - 1) |
1374 | /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index |
1375 | /// (\p i - 1) in the operand list. |
1376 | bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const { |
1377 | // Note that we have to add one because `i` isn't zero-indexed. |
1378 | assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && |
1379 | "Data operand index out of bounds!" ); |
1380 | |
1381 | // The attribute A can either be directly specified, if the operand in |
1382 | // question is a call argument; or be indirectly implied by the kind of its |
1383 | // containing operand bundle, if the operand is a bundle operand. |
1384 | |
1385 | if (i == AttributeList::ReturnIndex) |
1386 | return hasRetAttr(Kind); |
1387 | |
1388 | // FIXME: Avoid these i - 1 calculations and update the API to use |
1389 | // zero-based indices. |
1390 | if (i < (getNumArgOperands() + 1)) |
1391 | return paramHasAttr(i - 1, Kind); |
1392 | |
1393 | assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && |
1394 | "Must be either a call argument or an operand bundle!" ); |
1395 | return bundleOperandHasAttr(i - 1, Kind); |
1396 | } |
1397 | |
1398 | /// Determine whether this data operand is not captured. |
1399 | // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to |
1400 | // better indicate that this may return a conservative answer. |
1401 | bool doesNotCapture(unsigned OpNo) const { |
1402 | return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture); |
1403 | } |
1404 | |
1405 | /// Determine whether this argument is passed by value. |
1406 | bool isByValArgument(unsigned ArgNo) const { |
1407 | return paramHasAttr(ArgNo, Attribute::ByVal); |
1408 | } |
1409 | |
1410 | /// Determine whether this argument is passed in an alloca. |
1411 | bool isInAllocaArgument(unsigned ArgNo) const { |
1412 | return paramHasAttr(ArgNo, Attribute::InAlloca); |
1413 | } |
1414 | |
1415 | /// Determine whether this argument is passed by value or in an alloca. |
1416 | bool isByValOrInAllocaArgument(unsigned ArgNo) const { |
1417 | return paramHasAttr(ArgNo, Attribute::ByVal) || |
1418 | paramHasAttr(ArgNo, Attribute::InAlloca); |
1419 | } |
1420 | |
1421 | /// Determine if there are is an inalloca argument. Only the last argument can |
1422 | /// have the inalloca attribute. |
1423 | bool hasInAllocaArgument() const { |
1424 | return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca); |
1425 | } |
1426 | |
1427 | // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to |
1428 | // better indicate that this may return a conservative answer. |
1429 | bool doesNotAccessMemory(unsigned OpNo) const { |
1430 | return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); |
1431 | } |
1432 | |
1433 | // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to |
1434 | // better indicate that this may return a conservative answer. |
1435 | bool onlyReadsMemory(unsigned OpNo) const { |
1436 | return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) || |
1437 | dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); |
1438 | } |
1439 | |
1440 | // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to |
1441 | // better indicate that this may return a conservative answer. |
1442 | bool doesNotReadMemory(unsigned OpNo) const { |
1443 | return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) || |
1444 | dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); |
1445 | } |
1446 | |
1447 | /// Extract the alignment of the return value. |
1448 | unsigned getRetAlignment() const { return Attrs.getRetAlignment(); } |
1449 | |
1450 | /// Extract the alignment for a call or parameter (0=unknown). |
1451 | unsigned getParamAlignment(unsigned ArgNo) const { |
1452 | return Attrs.getParamAlignment(ArgNo); |
1453 | } |
1454 | |
1455 | /// Extract the number of dereferenceable bytes for a call or |
1456 | /// parameter (0=unknown). |
1457 | uint64_t getDereferenceableBytes(unsigned i) const { |
1458 | return Attrs.getDereferenceableBytes(i); |
1459 | } |
1460 | |
1461 | /// Extract the number of dereferenceable_or_null bytes for a call or |
1462 | /// parameter (0=unknown). |
1463 | uint64_t getDereferenceableOrNullBytes(unsigned i) const { |
1464 | return Attrs.getDereferenceableOrNullBytes(i); |
1465 | } |
1466 | |
1467 | /// Return true if the return value is known to be not null. |
1468 | /// This may be because it has the nonnull attribute, or because at least |
1469 | /// one byte is dereferenceable and the pointer is in addrspace(0). |
1470 | bool isReturnNonNull() const; |
1471 | |
1472 | /// Determine if the return value is marked with NoAlias attribute. |
1473 | bool returnDoesNotAlias() const { |
1474 | return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); |
1475 | } |
1476 | |
1477 | /// If one of the arguments has the 'returned' attribute, returns its |
1478 | /// operand value. Otherwise, return nullptr. |
1479 | Value *getReturnedArgOperand() const; |
1480 | |
1481 | /// Return true if the call should not be treated as a call to a |
1482 | /// builtin. |
1483 | bool isNoBuiltin() const { |
1484 | return hasFnAttrImpl(Attribute::NoBuiltin) && |
1485 | !hasFnAttrImpl(Attribute::Builtin); |
1486 | } |
1487 | |
1488 | /// Determine if the call requires strict floating point semantics. |
1489 | bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); } |
1490 | |
1491 | /// Return true if the call should not be inlined. |
1492 | bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } |
1493 | void setIsNoInline() { |
1494 | addAttribute(AttributeList::FunctionIndex, Attribute::NoInline); |
1495 | } |
1496 | /// Determine if the call does not access memory. |
1497 | bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } |
1498 | void setDoesNotAccessMemory() { |
1499 | addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); |
1500 | } |
1501 | |
1502 | /// Determine if the call does not access or only reads memory. |
1503 | bool onlyReadsMemory() const { |
1504 | return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); |
1505 | } |
1506 | void setOnlyReadsMemory() { |
1507 | addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); |
1508 | } |
1509 | |
1510 | /// Determine if the call does not access or only writes memory. |
1511 | bool doesNotReadMemory() const { |
1512 | return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly); |
1513 | } |
1514 | void setDoesNotReadMemory() { |
1515 | addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly); |
1516 | } |
1517 | |
1518 | /// Determine if the call can access memmory only using pointers based |
1519 | /// on its arguments. |
1520 | bool onlyAccessesArgMemory() const { |
1521 | return hasFnAttr(Attribute::ArgMemOnly); |
1522 | } |
1523 | void setOnlyAccessesArgMemory() { |
1524 | addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly); |
1525 | } |
1526 | |
1527 | /// Determine if the function may only access memory that is |
1528 | /// inaccessible from the IR. |
1529 | bool onlyAccessesInaccessibleMemory() const { |
1530 | return hasFnAttr(Attribute::InaccessibleMemOnly); |
1531 | } |
1532 | void setOnlyAccessesInaccessibleMemory() { |
1533 | addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly); |
1534 | } |
1535 | |
1536 | /// Determine if the function may only access memory that is |
1537 | /// either inaccessible from the IR or pointed to by its arguments. |
1538 | bool onlyAccessesInaccessibleMemOrArgMem() const { |
1539 | return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly); |
1540 | } |
1541 | void setOnlyAccessesInaccessibleMemOrArgMem() { |
1542 | addAttribute(AttributeList::FunctionIndex, |
1543 | Attribute::InaccessibleMemOrArgMemOnly); |
1544 | } |
1545 | /// Determine if the call cannot return. |
1546 | bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } |
1547 | void setDoesNotReturn() { |
1548 | addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); |
1549 | } |
1550 | |
1551 | /// Determine if the call should not perform indirect branch tracking. |
1552 | bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); } |
1553 | |
1554 | /// Determine if the call cannot unwind. |
1555 | bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } |
1556 | void setDoesNotThrow() { |
1557 | addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); |
1558 | } |
1559 | |
1560 | /// Determine if the invoke cannot be duplicated. |
1561 | bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); } |
1562 | void setCannotDuplicate() { |
1563 | addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate); |
1564 | } |
1565 | |
1566 | /// Determine if the invoke is convergent |
1567 | bool isConvergent() const { return hasFnAttr(Attribute::Convergent); } |
1568 | void setConvergent() { |
1569 | addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); |
1570 | } |
1571 | void setNotConvergent() { |
1572 | removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent); |
1573 | } |
1574 | |
1575 | /// Determine if the call returns a structure through first |
1576 | /// pointer argument. |
1577 | bool hasStructRetAttr() const { |
1578 | if (getNumArgOperands() == 0) |
1579 | return false; |
1580 | |
1581 | // Be friendly and also check the callee. |
1582 | return paramHasAttr(0, Attribute::StructRet); |
1583 | } |
1584 | |
1585 | /// Determine if any call argument is an aggregate passed by value. |
1586 | bool hasByValArgument() const { |
1587 | return Attrs.hasAttrSomewhere(Attribute::ByVal); |
1588 | } |
1589 | |
1590 | ///@{ |
1591 | // End of attribute API. |
1592 | |
1593 | /// \name Operand Bundle API |
1594 | /// |
1595 | /// This group of methods provides the API to access and manipulate operand |
1596 | /// bundles on this call. |
1597 | /// @{ |
1598 | |
1599 | /// Return the number of operand bundles associated with this User. |
1600 | unsigned getNumOperandBundles() const { |
1601 | return std::distance(bundle_op_info_begin(), bundle_op_info_end()); |
1602 | } |
1603 | |
1604 | /// Return true if this User has any operand bundles. |
1605 | bool hasOperandBundles() const { return getNumOperandBundles() != 0; } |
1606 | |
1607 | /// Return the index of the first bundle operand in the Use array. |
1608 | unsigned getBundleOperandsStartIndex() const { |
1609 | assert(hasOperandBundles() && "Don't call otherwise!" ); |
1610 | return bundle_op_info_begin()->Begin; |
1611 | } |
1612 | |
1613 | /// Return the index of the last bundle operand in the Use array. |
1614 | unsigned getBundleOperandsEndIndex() const { |
1615 | assert(hasOperandBundles() && "Don't call otherwise!" ); |
1616 | return bundle_op_info_end()[-1].End; |
1617 | } |
1618 | |
1619 | /// Return true if the operand at index \p Idx is a bundle operand. |
1620 | bool isBundleOperand(unsigned Idx) const { |
1621 | return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() && |
1622 | Idx < getBundleOperandsEndIndex(); |
1623 | } |
1624 | |
1625 | /// Returns true if the use is a bundle operand. |
1626 | bool isBundleOperand(const Use *U) const { |
1627 | assert(this == U->getUser() && |
1628 | "Only valid to query with a use of this instruction!" ); |
1629 | return hasOperandBundles() && isBundleOperand(U - op_begin()); |
1630 | } |
1631 | bool isBundleOperand(Value::const_user_iterator UI) const { |
1632 | return isBundleOperand(&UI.getUse()); |
1633 | } |
1634 | |
1635 | /// Return the total number operands (not operand bundles) used by |
1636 | /// every operand bundle in this OperandBundleUser. |
1637 | unsigned getNumTotalBundleOperands() const { |
1638 | if (!hasOperandBundles()) |
1639 | return 0; |
1640 | |
1641 | unsigned Begin = getBundleOperandsStartIndex(); |
1642 | unsigned End = getBundleOperandsEndIndex(); |
1643 | |
1644 | assert(Begin <= End && "Should be!" ); |
1645 | return End - Begin; |
1646 | } |
1647 | |
1648 | /// Return the operand bundle at a specific index. |
1649 | OperandBundleUse getOperandBundleAt(unsigned Index) const { |
1650 | assert(Index < getNumOperandBundles() && "Index out of bounds!" ); |
1651 | return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index)); |
1652 | } |
1653 | |
1654 | /// Return the number of operand bundles with the tag Name attached to |
1655 | /// this instruction. |
1656 | unsigned countOperandBundlesOfType(StringRef Name) const { |
1657 | unsigned Count = 0; |
1658 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) |
1659 | if (getOperandBundleAt(i).getTagName() == Name) |
1660 | Count++; |
1661 | |
1662 | return Count; |
1663 | } |
1664 | |
1665 | /// Return the number of operand bundles with the tag ID attached to |
1666 | /// this instruction. |
1667 | unsigned countOperandBundlesOfType(uint32_t ID) const { |
1668 | unsigned Count = 0; |
1669 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) |
1670 | if (getOperandBundleAt(i).getTagID() == ID) |
1671 | Count++; |
1672 | |
1673 | return Count; |
1674 | } |
1675 | |
1676 | /// Return an operand bundle by name, if present. |
1677 | /// |
1678 | /// It is an error to call this for operand bundle types that may have |
1679 | /// multiple instances of them on the same instruction. |
1680 | Optional<OperandBundleUse> getOperandBundle(StringRef Name) const { |
1681 | assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!" ); |
1682 | |
1683 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) { |
1684 | OperandBundleUse U = getOperandBundleAt(i); |
1685 | if (U.getTagName() == Name) |
1686 | return U; |
1687 | } |
1688 | |
1689 | return None; |
1690 | } |
1691 | |
1692 | /// Return an operand bundle by tag ID, if present. |
1693 | /// |
1694 | /// It is an error to call this for operand bundle types that may have |
1695 | /// multiple instances of them on the same instruction. |
1696 | Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const { |
1697 | assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!" ); |
1698 | |
1699 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) { |
1700 | OperandBundleUse U = getOperandBundleAt(i); |
1701 | if (U.getTagID() == ID) |
1702 | return U; |
1703 | } |
1704 | |
1705 | return None; |
1706 | } |
1707 | |
1708 | /// Return the list of operand bundles attached to this instruction as |
1709 | /// a vector of OperandBundleDefs. |
1710 | /// |
1711 | /// This function copies the OperandBundeUse instances associated with this |
1712 | /// OperandBundleUser to a vector of OperandBundleDefs. Note: |
1713 | /// OperandBundeUses and OperandBundleDefs are non-trivially *different* |
1714 | /// representations of operand bundles (see documentation above). |
1715 | void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const { |
1716 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) |
1717 | Defs.emplace_back(getOperandBundleAt(i)); |
1718 | } |
1719 | |
1720 | /// Return the operand bundle for the operand at index OpIdx. |
1721 | /// |
1722 | /// It is an error to call this with an OpIdx that does not correspond to an |
1723 | /// bundle operand. |
1724 | OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const { |
1725 | return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx)); |
1726 | } |
1727 | |
1728 | /// Return true if this operand bundle user has operand bundles that |
1729 | /// may read from the heap. |
1730 | bool hasReadingOperandBundles() const { |
1731 | // Implementation note: this is a conservative implementation of operand |
1732 | // bundle semantics, where *any* operand bundle forces a callsite to be at |
1733 | // least readonly. |
1734 | return hasOperandBundles(); |
1735 | } |
1736 | |
1737 | /// Return true if this operand bundle user has operand bundles that |
1738 | /// may write to the heap. |
1739 | bool hasClobberingOperandBundles() const { |
1740 | for (auto &BOI : bundle_op_infos()) { |
1741 | if (BOI.Tag->second == LLVMContext::OB_deopt || |
1742 | BOI.Tag->second == LLVMContext::OB_funclet) |
1743 | continue; |
1744 | |
1745 | // This instruction has an operand bundle that is not known to us. |
1746 | // Assume the worst. |
1747 | return true; |
1748 | } |
1749 | |
1750 | return false; |
1751 | } |
1752 | |
1753 | /// Return true if the bundle operand at index \p OpIdx has the |
1754 | /// attribute \p A. |
1755 | bool bundleOperandHasAttr(unsigned OpIdx, Attribute::AttrKind A) const { |
1756 | auto &BOI = getBundleOpInfoForOperand(OpIdx); |
1757 | auto OBU = operandBundleFromBundleOpInfo(BOI); |
1758 | return OBU.operandHasAttr(OpIdx - BOI.Begin, A); |
1759 | } |
1760 | |
1761 | /// Return true if \p Other has the same sequence of operand bundle |
1762 | /// tags with the same number of operands on each one of them as this |
1763 | /// OperandBundleUser. |
1764 | bool hasIdenticalOperandBundleSchema(const CallBase &Other) const { |
1765 | if (getNumOperandBundles() != Other.getNumOperandBundles()) |
1766 | return false; |
1767 | |
1768 | return std::equal(bundle_op_info_begin(), bundle_op_info_end(), |
1769 | Other.bundle_op_info_begin()); |
1770 | } |
1771 | |
1772 | /// Return true if this operand bundle user contains operand bundles |
1773 | /// with tags other than those specified in \p IDs. |
1774 | bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const { |
1775 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) { |
1776 | uint32_t ID = getOperandBundleAt(i).getTagID(); |
1777 | if (!is_contained(IDs, ID)) |
1778 | return true; |
1779 | } |
1780 | return false; |
1781 | } |
1782 | |
1783 | /// Is the function attribute S disallowed by some operand bundle on |
1784 | /// this operand bundle user? |
1785 | bool isFnAttrDisallowedByOpBundle(StringRef S) const { |
1786 | // Operand bundles only possibly disallow readnone, readonly and argmenonly |
1787 | // attributes. All String attributes are fine. |
1788 | return false; |
1789 | } |
1790 | |
1791 | /// Is the function attribute A disallowed by some operand bundle on |
1792 | /// this operand bundle user? |
1793 | bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const { |
1794 | switch (A) { |
1795 | default: |
1796 | return false; |
1797 | |
1798 | case Attribute::InaccessibleMemOrArgMemOnly: |
1799 | return hasReadingOperandBundles(); |
1800 | |
1801 | case Attribute::InaccessibleMemOnly: |
1802 | return hasReadingOperandBundles(); |
1803 | |
1804 | case Attribute::ArgMemOnly: |
1805 | return hasReadingOperandBundles(); |
1806 | |
1807 | case Attribute::ReadNone: |
1808 | return hasReadingOperandBundles(); |
1809 | |
1810 | case Attribute::ReadOnly: |
1811 | return hasClobberingOperandBundles(); |
1812 | } |
1813 | |
1814 | llvm_unreachable("switch has a default case!" ); |
1815 | } |
1816 | |
1817 | /// Used to keep track of an operand bundle. See the main comment on |
1818 | /// OperandBundleUser above. |
1819 | struct BundleOpInfo { |
1820 | /// The operand bundle tag, interned by |
1821 | /// LLVMContextImpl::getOrInsertBundleTag. |
1822 | StringMapEntry<uint32_t> *Tag; |
1823 | |
1824 | /// The index in the Use& vector where operands for this operand |
1825 | /// bundle starts. |
1826 | uint32_t Begin; |
1827 | |
1828 | /// The index in the Use& vector where operands for this operand |
1829 | /// bundle ends. |
1830 | uint32_t End; |
1831 | |
1832 | bool operator==(const BundleOpInfo &Other) const { |
1833 | return Tag == Other.Tag && Begin == Other.Begin && End == Other.End; |
1834 | } |
1835 | }; |
1836 | |
1837 | /// Simple helper function to map a BundleOpInfo to an |
1838 | /// OperandBundleUse. |
1839 | OperandBundleUse |
1840 | operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const { |
1841 | auto begin = op_begin(); |
1842 | ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End); |
1843 | return OperandBundleUse(BOI.Tag, Inputs); |
1844 | } |
1845 | |
1846 | using bundle_op_iterator = BundleOpInfo *; |
1847 | using const_bundle_op_iterator = const BundleOpInfo *; |
1848 | |
1849 | /// Return the start of the list of BundleOpInfo instances associated |
1850 | /// with this OperandBundleUser. |
1851 | /// |
1852 | /// OperandBundleUser uses the descriptor area co-allocated with the host User |
1853 | /// to store some meta information about which operands are "normal" operands, |
1854 | /// and which ones belong to some operand bundle. |
1855 | /// |
1856 | /// The layout of an operand bundle user is |
1857 | /// |
1858 | /// +-----------uint32_t End-------------------------------------+ |
1859 | /// | | |
1860 | /// | +--------uint32_t Begin--------------------+ | |
1861 | /// | | | | |
1862 | /// ^ ^ v v |
1863 | /// |------|------|----|----|----|----|----|---------|----|---------|----|----- |
1864 | /// | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un |
1865 | /// |------|------|----|----|----|----|----|---------|----|---------|----|----- |
1866 | /// v v ^ ^ |
1867 | /// | | | | |
1868 | /// | +--------uint32_t Begin------------+ | |
1869 | /// | | |
1870 | /// +-----------uint32_t End-----------------------------+ |
1871 | /// |
1872 | /// |
1873 | /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use |
1874 | /// list. These descriptions are installed and managed by this class, and |
1875 | /// they're all instances of OperandBundleUser<T>::BundleOpInfo. |
1876 | /// |
1877 | /// DU is an additional descriptor installed by User's 'operator new' to keep |
1878 | /// track of the 'BOI0 ... BOIN' co-allocation. OperandBundleUser does not |
1879 | /// access or modify DU in any way, it's an implementation detail private to |
1880 | /// User. |
1881 | /// |
1882 | /// The regular Use& vector for the User starts at U0. The operand bundle |
1883 | /// uses are part of the Use& vector, just like normal uses. In the diagram |
1884 | /// above, the operand bundle uses start at BOI0_U0. Each instance of |
1885 | /// BundleOpInfo has information about a contiguous set of uses constituting |
1886 | /// an operand bundle, and the total set of operand bundle uses themselves |
1887 | /// form a contiguous set of uses (i.e. there are no gaps between uses |
1888 | /// corresponding to individual operand bundles). |
1889 | /// |
1890 | /// This class does not know the location of the set of operand bundle uses |
1891 | /// within the use list -- that is decided by the User using this class via |
1892 | /// the BeginIdx argument in populateBundleOperandInfos. |
1893 | /// |
1894 | /// Currently operand bundle users with hung-off operands are not supported. |
1895 | bundle_op_iterator bundle_op_info_begin() { |
1896 | if (!hasDescriptor()) |
1897 | return nullptr; |
1898 | |
1899 | uint8_t *BytesBegin = getDescriptor().begin(); |
1900 | return reinterpret_cast<bundle_op_iterator>(BytesBegin); |
1901 | } |
1902 | |
1903 | /// Return the start of the list of BundleOpInfo instances associated |
1904 | /// with this OperandBundleUser. |
1905 | const_bundle_op_iterator bundle_op_info_begin() const { |
1906 | auto *NonConstThis = const_cast<CallBase *>(this); |
1907 | return NonConstThis->bundle_op_info_begin(); |
1908 | } |
1909 | |
1910 | /// Return the end of the list of BundleOpInfo instances associated |
1911 | /// with this OperandBundleUser. |
1912 | bundle_op_iterator bundle_op_info_end() { |
1913 | if (!hasDescriptor()) |
1914 | return nullptr; |
1915 | |
1916 | uint8_t *BytesEnd = getDescriptor().end(); |
1917 | return reinterpret_cast<bundle_op_iterator>(BytesEnd); |
1918 | } |
1919 | |
1920 | /// Return the end of the list of BundleOpInfo instances associated |
1921 | /// with this OperandBundleUser. |
1922 | const_bundle_op_iterator bundle_op_info_end() const { |
1923 | auto *NonConstThis = const_cast<CallBase *>(this); |
1924 | return NonConstThis->bundle_op_info_end(); |
1925 | } |
1926 | |
1927 | /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end). |
1928 | iterator_range<bundle_op_iterator> bundle_op_infos() { |
1929 | return make_range(bundle_op_info_begin(), bundle_op_info_end()); |
1930 | } |
1931 | |
1932 | /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end). |
1933 | iterator_range<const_bundle_op_iterator> bundle_op_infos() const { |
1934 | return make_range(bundle_op_info_begin(), bundle_op_info_end()); |
1935 | } |
1936 | |
1937 | /// Populate the BundleOpInfo instances and the Use& vector from \p |
1938 | /// Bundles. Return the op_iterator pointing to the Use& one past the last |
1939 | /// last bundle operand use. |
1940 | /// |
1941 | /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo |
1942 | /// instance allocated in this User's descriptor. |
1943 | op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, |
1944 | const unsigned BeginIndex); |
1945 | |
1946 | /// Return the BundleOpInfo for the operand at index OpIdx. |
1947 | /// |
1948 | /// It is an error to call this with an OpIdx that does not correspond to an |
1949 | /// bundle operand. |
1950 | const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const { |
1951 | for (auto &BOI : bundle_op_infos()) |
1952 | if (BOI.Begin <= OpIdx && OpIdx < BOI.End) |
1953 | return BOI; |
1954 | |
1955 | llvm_unreachable("Did not find operand bundle for operand!" ); |
1956 | } |
1957 | |
1958 | protected: |
1959 | /// Return the total number of values used in \p Bundles. |
1960 | static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) { |
1961 | unsigned Total = 0; |
1962 | for (auto &B : Bundles) |
1963 | Total += B.input_size(); |
1964 | return Total; |
1965 | } |
1966 | |
1967 | /// @} |
1968 | // End of operand bundle API. |
1969 | |
1970 | private: |
1971 | bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const; |
1972 | bool hasFnAttrOnCalledFunction(StringRef Kind) const; |
1973 | |
1974 | template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const { |
1975 | if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind)) |
1976 | return true; |
1977 | |
1978 | // Operand bundles override attributes on the called function, but don't |
1979 | // override attributes directly present on the call instruction. |
1980 | if (isFnAttrDisallowedByOpBundle(Kind)) |
1981 | return false; |
1982 | |
1983 | return hasFnAttrOnCalledFunction(Kind); |
1984 | } |
1985 | }; |
1986 | |
1987 | template <> |
1988 | struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {}; |
1989 | |
1990 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value) |
1991 | |
1992 | //===----------------------------------------------------------------------===// |
1993 | // FuncletPadInst Class |
1994 | //===----------------------------------------------------------------------===// |
1995 | class FuncletPadInst : public Instruction { |
1996 | private: |
1997 | FuncletPadInst(const FuncletPadInst &CPI); |
1998 | |
1999 | explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, |
2000 | ArrayRef<Value *> Args, unsigned Values, |
2001 | const Twine &NameStr, Instruction *InsertBefore); |
2002 | explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, |
2003 | ArrayRef<Value *> Args, unsigned Values, |
2004 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2005 | |
2006 | void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr); |
2007 | |
2008 | protected: |
2009 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2010 | friend class Instruction; |
2011 | friend class CatchPadInst; |
2012 | friend class CleanupPadInst; |
2013 | |
2014 | FuncletPadInst *cloneImpl() const; |
2015 | |
2016 | public: |
2017 | /// Provide fast operand accessors |
2018 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
2019 | |
2020 | /// getNumArgOperands - Return the number of funcletpad arguments. |
2021 | /// |
2022 | unsigned getNumArgOperands() const { return getNumOperands() - 1; } |
2023 | |
2024 | /// Convenience accessors |
2025 | |
2026 | /// Return the outer EH-pad this funclet is nested within. |
2027 | /// |
2028 | /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst |
2029 | /// is a CatchPadInst. |
2030 | Value *getParentPad() const { return Op<-1>(); } |
2031 | void setParentPad(Value *ParentPad) { |
2032 | assert(ParentPad); |
2033 | Op<-1>() = ParentPad; |
2034 | } |
2035 | |
2036 | /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument. |
2037 | /// |
2038 | Value *getArgOperand(unsigned i) const { return getOperand(i); } |
2039 | void setArgOperand(unsigned i, Value *v) { setOperand(i, v); } |
2040 | |
2041 | /// arg_operands - iteration adapter for range-for loops. |
2042 | op_range arg_operands() { return op_range(op_begin(), op_end() - 1); } |
2043 | |
2044 | /// arg_operands - iteration adapter for range-for loops. |
2045 | const_op_range arg_operands() const { |
2046 | return const_op_range(op_begin(), op_end() - 1); |
2047 | } |
2048 | |
2049 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2050 | static bool classof(const Instruction *I) { return I->isFuncletPad(); } |
2051 | static bool classof(const Value *V) { |
2052 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2053 | } |
2054 | }; |
2055 | |
2056 | template <> |
2057 | struct OperandTraits<FuncletPadInst> |
2058 | : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {}; |
2059 | |
2060 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value) |
2061 | |
2062 | } // end namespace llvm |
2063 | |
2064 | #endif // LLVM_IR_INSTRTYPES_H |
2065 | |