1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkImageEncoder.h" |
9 | #include "include/core/SkPaint.h" |
10 | #include "include/core/SkShader.h" |
11 | #include "include/private/SkColorData.h" |
12 | #include "include/private/SkMacros.h" |
13 | #include "src/core/SkBitmapCache.h" |
14 | #include "src/core/SkBitmapController.h" |
15 | #include "src/core/SkBitmapProcState.h" |
16 | #include "src/core/SkMipMap.h" |
17 | #include "src/core/SkOpts.h" |
18 | #include "src/core/SkResourceCache.h" |
19 | #include "src/core/SkUtils.h" |
20 | |
21 | // One-stop-shop shader for, |
22 | // - nearest-neighbor sampling (_nofilter_), |
23 | // - clamp tiling in X and Y both (Clamp_), |
24 | // - with at most a scale and translate matrix (_DX_), |
25 | // - and no extra alpha applied (_opaque_), |
26 | // - sampling from 8888 (_S32_) and drawing to 8888 (_S32_). |
27 | static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, |
28 | SkPMColor* dst, int count) { |
29 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
30 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
31 | SkASSERT(s.fAlphaScale == 256); |
32 | |
33 | const unsigned maxX = s.fPixmap.width() - 1; |
34 | SkFractionalInt fx; |
35 | int dstY; |
36 | { |
37 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
38 | const unsigned maxY = s.fPixmap.height() - 1; |
39 | dstY = SkTPin<int>(mapper.intY(), 0, maxY); |
40 | fx = mapper.fractionalIntX(); |
41 | } |
42 | |
43 | const SkPMColor* src = s.fPixmap.addr32(0, dstY); |
44 | const SkFractionalInt dx = s.fInvSxFractionalInt; |
45 | |
46 | // Check if we're safely inside [0...maxX] so no need to clamp each computed index. |
47 | // |
48 | if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && |
49 | (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) |
50 | { |
51 | int count4 = count >> 2; |
52 | for (int i = 0; i < count4; ++i) { |
53 | SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; |
54 | SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; |
55 | SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; |
56 | SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; |
57 | dst[0] = src0; |
58 | dst[1] = src1; |
59 | dst[2] = src2; |
60 | dst[3] = src3; |
61 | dst += 4; |
62 | } |
63 | for (int i = (count4 << 2); i < count; ++i) { |
64 | unsigned index = SkFractionalIntToInt(fx); |
65 | SkASSERT(index <= maxX); |
66 | *dst++ = src[index]; |
67 | fx += dx; |
68 | } |
69 | } else { |
70 | for (int i = 0; i < count; ++i) { |
71 | dst[i] = src[SkTPin<int>(SkFractionalIntToInt(fx), 0, maxX)]; |
72 | fx += dx; |
73 | } |
74 | } |
75 | } |
76 | |
77 | static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s, |
78 | const uint32_t* xy, int count, SkPMColor* colors) { |
79 | SkASSERT(count > 0 && colors != nullptr); |
80 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
81 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
82 | SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
83 | SkASSERT(s.fAlphaScale <= 256); |
84 | |
85 | // xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates. |
86 | unsigned y = *xy++; |
87 | SkASSERT(y < (unsigned)s.fPixmap.height()); |
88 | |
89 | auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() ); |
90 | |
91 | if (1 == s.fPixmap.width()) { |
92 | sk_memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count); |
93 | return; |
94 | } |
95 | |
96 | // Step 4 xs == 2 uint32_t at a time. |
97 | while (count >= 4) { |
98 | uint32_t x01 = *xy++, |
99 | x23 = *xy++; |
100 | |
101 | SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)]; |
102 | SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)]; |
103 | SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)]; |
104 | SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)]; |
105 | |
106 | *colors++ = SkAlphaMulQ(p0, s.fAlphaScale); |
107 | *colors++ = SkAlphaMulQ(p1, s.fAlphaScale); |
108 | *colors++ = SkAlphaMulQ(p2, s.fAlphaScale); |
109 | *colors++ = SkAlphaMulQ(p3, s.fAlphaScale); |
110 | |
111 | count -= 4; |
112 | } |
113 | |
114 | // Step 1 x == 1 uint16_t at a time. |
115 | auto x = (const uint16_t*)xy; |
116 | while (count --> 0) { |
117 | *colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale); |
118 | } |
119 | } |
120 | |
121 | static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s, |
122 | const uint32_t* xy, int count, SkPMColor* colors) { |
123 | SkASSERT(count > 0 && colors != nullptr); |
124 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
125 | SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
126 | SkASSERT(s.fAlphaScale <= 256); |
127 | |
128 | auto src = (const char*)s.fPixmap.addr(); |
129 | size_t rb = s.fPixmap.rowBytes(); |
130 | |
131 | while (count --> 0) { |
132 | uint32_t XY = *xy++, |
133 | x = XY & 0xffff, |
134 | y = XY >> 16; |
135 | SkASSERT(x < (unsigned)s.fPixmap.width ()); |
136 | SkASSERT(y < (unsigned)s.fPixmap.height()); |
137 | *colors++ = ((const SkPMColor*)(src + y*rb))[x]; |
138 | } |
139 | } |
140 | |
141 | SkBitmapProcInfo::SkBitmapProcInfo(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy) |
142 | : fImage(image) |
143 | , fTileModeX(tmx) |
144 | , fTileModeY(tmy) |
145 | , fBMState(nullptr) |
146 | {} |
147 | |
148 | SkBitmapProcInfo::~SkBitmapProcInfo() {} |
149 | |
150 | |
151 | // true iff the matrix has a scale and no more than an optional translate. |
152 | static bool matrix_only_scale_translate(const SkMatrix& m) { |
153 | return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask; |
154 | } |
155 | |
156 | /** |
157 | * For the purposes of drawing bitmaps, if a matrix is "almost" translate |
158 | * go ahead and treat it as if it were, so that subsequent code can go fast. |
159 | */ |
160 | static bool just_trans_general(const SkMatrix& matrix) { |
161 | SkASSERT(matrix_only_scale_translate(matrix)); |
162 | |
163 | const SkScalar tol = SK_Scalar1 / 32768; |
164 | |
165 | return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol) |
166 | && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol); |
167 | } |
168 | |
169 | /** |
170 | * Determine if the matrix can be treated as integral-only-translate, |
171 | * for the purpose of filtering. |
172 | */ |
173 | static bool just_trans_integral(const SkMatrix& m) { |
174 | static constexpr SkScalar tol = SK_Scalar1 / 256; |
175 | |
176 | return m.getType() <= SkMatrix::kTranslate_Mask |
177 | && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol) |
178 | && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol); |
179 | } |
180 | |
181 | static bool valid_for_filtering(unsigned dimension) { |
182 | // for filtering, width and height must fit in 14bits, since we use steal |
183 | // 2 bits from each to store our 4bit subpixel data |
184 | return (dimension & ~0x3FFF) == 0; |
185 | } |
186 | |
187 | bool SkBitmapProcInfo::init(const SkMatrix& inv, const SkPaint& paint) { |
188 | SkASSERT(!inv.hasPerspective()); |
189 | SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate()); |
190 | |
191 | fPixmap.reset(); |
192 | fInvMatrix = inv; |
193 | fFilterQuality = paint.getFilterQuality(); |
194 | |
195 | fBMState = SkBitmapController::RequestBitmap(fImage, inv, paint.getFilterQuality(), &fAlloc); |
196 | |
197 | // Note : we allow the controller to return an empty (zero-dimension) result. Should we? |
198 | if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) { |
199 | return false; |
200 | } |
201 | fPixmap = fBMState->pixmap(); |
202 | fInvMatrix = fBMState->invMatrix(); |
203 | fPaintColor = paint.getColor(); |
204 | fFilterQuality = fBMState->quality(); |
205 | SkASSERT(fFilterQuality <= kLow_SkFilterQuality); |
206 | SkASSERT(fPixmap.addr()); |
207 | |
208 | bool integral_translate_only = just_trans_integral(fInvMatrix); |
209 | if (!integral_translate_only) { |
210 | // Most of the scanline procs deal with "unit" texture coordinates, as this |
211 | // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate |
212 | // those, we divide the matrix by its dimensions here. |
213 | // |
214 | // We don't do this if we're either trivial (can ignore the matrix) or clamping |
215 | // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. |
216 | |
217 | if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) { |
218 | SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height()); |
219 | } |
220 | |
221 | // Now that all possible changes to the matrix have taken place, check |
222 | // to see if we're really close to a no-scale matrix. If so, explicitly |
223 | // set it to be so. Subsequent code may inspect this matrix to choose |
224 | // a faster path in this case. |
225 | |
226 | // This code will only execute if the matrix has some scale component; |
227 | // if it's already pure translate then we won't do this inversion. |
228 | |
229 | if (matrix_only_scale_translate(fInvMatrix)) { |
230 | SkMatrix forward; |
231 | if (fInvMatrix.invert(&forward) && just_trans_general(forward)) { |
232 | fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); |
233 | } |
234 | } |
235 | |
236 | // Recompute the flag after matrix adjustments. |
237 | integral_translate_only = just_trans_integral(fInvMatrix); |
238 | } |
239 | |
240 | if (kLow_SkFilterQuality == fFilterQuality && |
241 | (!valid_for_filtering(fPixmap.width() | fPixmap.height()) || |
242 | integral_translate_only)) { |
243 | fFilterQuality = kNone_SkFilterQuality; |
244 | } |
245 | |
246 | return true; |
247 | } |
248 | |
249 | /* |
250 | * Analyze filter-quality and matrix, and decide how to implement that. |
251 | * |
252 | * In general, we cascade down the request level [ High ... None ] |
253 | * - for a given level, if we can fulfill it, fine, else |
254 | * - else we downgrade to the next lower level and try again. |
255 | * We can always fulfill requests for Low and None |
256 | * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack |
257 | * and may be removed. |
258 | */ |
259 | bool SkBitmapProcState::chooseProcs() { |
260 | SkASSERT(!fInvMatrix.hasPerspective()); |
261 | SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate()); |
262 | SkASSERT(fPixmap.colorType() == kN32_SkColorType); |
263 | SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType || |
264 | fPixmap.alphaType() == kOpaque_SkAlphaType); |
265 | |
266 | SkASSERT(fTileModeX != SkTileMode::kDecal); |
267 | SkASSERT(fFilterQuality < kHigh_SkFilterQuality); |
268 | |
269 | fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix); |
270 | fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); |
271 | fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ()); |
272 | |
273 | fAlphaScale = SkAlpha255To256(SkColorGetA(fPaintColor)); |
274 | |
275 | bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; |
276 | fMatrixProc = this->chooseMatrixProc(translate_only); |
277 | SkASSERT(fMatrixProc); |
278 | |
279 | const bool filter = fFilterQuality > kNone_SkFilterQuality; |
280 | if (fInvMatrix.isScaleTranslate()) { |
281 | fSampleProc32 = filter ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ; |
282 | } else { |
283 | fSampleProc32 = filter ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY; |
284 | } |
285 | SkASSERT(fSampleProc32); |
286 | |
287 | // our special-case shaderprocs |
288 | // TODO: move this one into chooseShaderProc32() or pull all that in here. |
289 | if (fAlphaScale == 256 |
290 | && fFilterQuality == kNone_SkFilterQuality |
291 | && SkTileMode::kClamp == fTileModeX |
292 | && SkTileMode::kClamp == fTileModeY |
293 | && fInvMatrix.isScaleTranslate()) { |
294 | fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; |
295 | } else { |
296 | fShaderProc32 = this->chooseShaderProc32(); |
297 | } |
298 | |
299 | return true; |
300 | } |
301 | |
302 | static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
303 | int x, int y, |
304 | SkPMColor* colors, |
305 | int count) { |
306 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
307 | SkASSERT(s.fInvMatrix.isTranslate()); |
308 | SkASSERT(count > 0 && colors != nullptr); |
309 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
310 | |
311 | const int maxX = s.fPixmap.width() - 1; |
312 | const int maxY = s.fPixmap.height() - 1; |
313 | int ix = s.fFilterOneX + x; |
314 | int iy = SkTPin(s.fFilterOneY + y, 0, maxY); |
315 | const SkPMColor* row = s.fPixmap.addr32(0, iy); |
316 | |
317 | // clamp to the left |
318 | if (ix < 0) { |
319 | int n = std::min(-ix, count); |
320 | sk_memset32(colors, row[0], n); |
321 | count -= n; |
322 | if (0 == count) { |
323 | return; |
324 | } |
325 | colors += n; |
326 | SkASSERT(-ix == n); |
327 | ix = 0; |
328 | } |
329 | // copy the middle |
330 | if (ix <= maxX) { |
331 | int n = std::min(maxX - ix + 1, count); |
332 | memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
333 | count -= n; |
334 | if (0 == count) { |
335 | return; |
336 | } |
337 | colors += n; |
338 | } |
339 | SkASSERT(count > 0); |
340 | // clamp to the right |
341 | sk_memset32(colors, row[maxX], count); |
342 | } |
343 | |
344 | static inline int sk_int_mod(int x, int n) { |
345 | SkASSERT(n > 0); |
346 | if ((unsigned)x >= (unsigned)n) { |
347 | if (x < 0) { |
348 | x = n + ~(~x % n); |
349 | } else { |
350 | x = x % n; |
351 | } |
352 | } |
353 | return x; |
354 | } |
355 | |
356 | static inline int sk_int_mirror(int x, int n) { |
357 | x = sk_int_mod(x, 2 * n); |
358 | if (x >= n) { |
359 | x = n + ~(x - n); |
360 | } |
361 | return x; |
362 | } |
363 | |
364 | static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
365 | int x, int y, |
366 | SkPMColor* colors, |
367 | int count) { |
368 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
369 | SkASSERT(s.fInvMatrix.isTranslate()); |
370 | SkASSERT(count > 0 && colors != nullptr); |
371 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
372 | |
373 | const int stopX = s.fPixmap.width(); |
374 | const int stopY = s.fPixmap.height(); |
375 | int ix = s.fFilterOneX + x; |
376 | int iy = sk_int_mod(s.fFilterOneY + y, stopY); |
377 | const SkPMColor* row = s.fPixmap.addr32(0, iy); |
378 | |
379 | ix = sk_int_mod(ix, stopX); |
380 | for (;;) { |
381 | int n = std::min(stopX - ix, count); |
382 | memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
383 | count -= n; |
384 | if (0 == count) { |
385 | return; |
386 | } |
387 | colors += n; |
388 | ix = 0; |
389 | } |
390 | } |
391 | |
392 | static inline void filter_32_alpha(unsigned t, |
393 | SkPMColor color0, |
394 | SkPMColor color1, |
395 | SkPMColor* dstColor, |
396 | unsigned alphaScale) { |
397 | SkASSERT((unsigned)t <= 0xF); |
398 | SkASSERT(alphaScale <= 256); |
399 | |
400 | const uint32_t mask = 0xFF00FF; |
401 | |
402 | int scale = 256 - 16*t; |
403 | uint32_t lo = (color0 & mask) * scale; |
404 | uint32_t hi = ((color0 >> 8) & mask) * scale; |
405 | |
406 | scale = 16*t; |
407 | lo += (color1 & mask) * scale; |
408 | hi += ((color1 >> 8) & mask) * scale; |
409 | |
410 | // TODO: if (alphaScale < 256) ... |
411 | lo = ((lo >> 8) & mask) * alphaScale; |
412 | hi = ((hi >> 8) & mask) * alphaScale; |
413 | |
414 | *dstColor = ((lo >> 8) & mask) | (hi & ~mask); |
415 | } |
416 | |
417 | static void S32_D32_constX_shaderproc(const void* sIn, |
418 | int x, int y, |
419 | SkPMColor* colors, |
420 | int count) { |
421 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
422 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
423 | SkASSERT(count > 0 && colors != nullptr); |
424 | SkASSERT(1 == s.fPixmap.width()); |
425 | |
426 | int iY0; |
427 | int iY1 SK_INIT_TO_AVOID_WARNING; |
428 | int iSubY SK_INIT_TO_AVOID_WARNING; |
429 | |
430 | if (kNone_SkFilterQuality != s.fFilterQuality) { |
431 | SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); |
432 | uint32_t xy[2]; |
433 | |
434 | mproc(s, xy, 1, x, y); |
435 | |
436 | iY0 = xy[0] >> 18; |
437 | iY1 = xy[0] & 0x3FFF; |
438 | iSubY = (xy[0] >> 14) & 0xF; |
439 | } else { |
440 | int yTemp; |
441 | |
442 | if (s.fInvMatrix.isTranslate()) { |
443 | yTemp = s.fFilterOneY + y; |
444 | } else{ |
445 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
446 | |
447 | // When the matrix has a scale component the setup code in |
448 | // chooseProcs multiples the inverse matrix by the inverse of the |
449 | // bitmap's width and height. Since this method is going to do |
450 | // its own tiling and sampling we need to undo that here. |
451 | if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) { |
452 | yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
453 | } else { |
454 | yTemp = mapper.intY(); |
455 | } |
456 | } |
457 | |
458 | const int stopY = s.fPixmap.height(); |
459 | switch (s.fTileModeY) { |
460 | case SkTileMode::kClamp: |
461 | iY0 = SkTPin(yTemp, 0, stopY-1); |
462 | break; |
463 | case SkTileMode::kRepeat: |
464 | iY0 = sk_int_mod(yTemp, stopY); |
465 | break; |
466 | case SkTileMode::kMirror: |
467 | default: |
468 | iY0 = sk_int_mirror(yTemp, stopY); |
469 | break; |
470 | } |
471 | |
472 | #ifdef SK_DEBUG |
473 | { |
474 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
475 | int iY2; |
476 | |
477 | if (!s.fInvMatrix.isTranslate() && |
478 | (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) { |
479 | iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
480 | } else { |
481 | iY2 = mapper.intY(); |
482 | } |
483 | |
484 | switch (s.fTileModeY) { |
485 | case SkTileMode::kClamp: |
486 | iY2 = SkTPin(iY2, 0, stopY-1); |
487 | break; |
488 | case SkTileMode::kRepeat: |
489 | iY2 = sk_int_mod(iY2, stopY); |
490 | break; |
491 | case SkTileMode::kMirror: |
492 | default: |
493 | iY2 = sk_int_mirror(iY2, stopY); |
494 | break; |
495 | } |
496 | |
497 | SkASSERT(iY0 == iY2); |
498 | } |
499 | #endif |
500 | } |
501 | |
502 | const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); |
503 | SkPMColor color; |
504 | |
505 | if (kNone_SkFilterQuality != s.fFilterQuality) { |
506 | const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); |
507 | filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); |
508 | } else { |
509 | if (s.fAlphaScale < 256) { |
510 | color = SkAlphaMulQ(*row0, s.fAlphaScale); |
511 | } else { |
512 | color = *row0; |
513 | } |
514 | } |
515 | |
516 | sk_memset32(colors, color, count); |
517 | } |
518 | |
519 | static void DoNothing_shaderproc(const void*, int x, int y, |
520 | SkPMColor* colors, int count) { |
521 | // if we get called, the matrix is too tricky, so we just draw nothing |
522 | sk_memset32(colors, 0, count); |
523 | } |
524 | |
525 | bool SkBitmapProcState::setupForTranslate() { |
526 | SkPoint pt; |
527 | const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); |
528 | |
529 | /* |
530 | * if the translate is larger than our ints, we can get random results, or |
531 | * worse, we might get 0x80000000, which wreaks havoc on us, since we can't |
532 | * negate it. |
533 | */ |
534 | const SkScalar too_big = SkIntToScalar(1 << 30); |
535 | if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { |
536 | return false; |
537 | } |
538 | |
539 | // Since we know we're not filtered, we re-purpose these fields allow |
540 | // us to go from device -> src coordinates w/ just an integer add, |
541 | // rather than running through the inverse-matrix |
542 | fFilterOneX = mapper.intX(); |
543 | fFilterOneY = mapper.intY(); |
544 | |
545 | return true; |
546 | } |
547 | |
548 | SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { |
549 | |
550 | if (kN32_SkColorType != fPixmap.colorType()) { |
551 | return nullptr; |
552 | } |
553 | |
554 | if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) { |
555 | if (kNone_SkFilterQuality == fFilterQuality && |
556 | fInvMatrix.isTranslate() && |
557 | !this->setupForTranslate()) { |
558 | return DoNothing_shaderproc; |
559 | } |
560 | return S32_D32_constX_shaderproc; |
561 | } |
562 | |
563 | if (fAlphaScale < 256) { |
564 | return nullptr; |
565 | } |
566 | if (!fInvMatrix.isTranslate()) { |
567 | return nullptr; |
568 | } |
569 | if (kNone_SkFilterQuality != fFilterQuality) { |
570 | return nullptr; |
571 | } |
572 | |
573 | SkTileMode tx = fTileModeX; |
574 | SkTileMode ty = fTileModeY; |
575 | |
576 | if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) { |
577 | if (this->setupForTranslate()) { |
578 | return Clamp_S32_D32_nofilter_trans_shaderproc; |
579 | } |
580 | return DoNothing_shaderproc; |
581 | } |
582 | if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) { |
583 | if (this->setupForTranslate()) { |
584 | return Repeat_S32_D32_nofilter_trans_shaderproc; |
585 | } |
586 | return DoNothing_shaderproc; |
587 | } |
588 | return nullptr; |
589 | } |
590 | |
591 | #ifdef SK_DEBUG |
592 | |
593 | static void check_scale_nofilter(uint32_t bitmapXY[], int count, |
594 | unsigned mx, unsigned my) { |
595 | unsigned y = *bitmapXY++; |
596 | SkASSERT(y < my); |
597 | |
598 | const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); |
599 | for (int i = 0; i < count; ++i) { |
600 | SkASSERT(xptr[i] < mx); |
601 | } |
602 | } |
603 | |
604 | static void check_scale_filter(uint32_t bitmapXY[], int count, |
605 | unsigned mx, unsigned my) { |
606 | uint32_t YY = *bitmapXY++; |
607 | unsigned y0 = YY >> 18; |
608 | unsigned y1 = YY & 0x3FFF; |
609 | SkASSERT(y0 < my); |
610 | SkASSERT(y1 < my); |
611 | |
612 | for (int i = 0; i < count; ++i) { |
613 | uint32_t XX = bitmapXY[i]; |
614 | unsigned x0 = XX >> 18; |
615 | unsigned x1 = XX & 0x3FFF; |
616 | SkASSERT(x0 < mx); |
617 | SkASSERT(x1 < mx); |
618 | } |
619 | } |
620 | |
621 | static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
622 | for (int i = 0; i < count; ++i) { |
623 | uint32_t XY = bitmapXY[i]; |
624 | unsigned x = XY & 0xFFFF; |
625 | unsigned y = XY >> 16; |
626 | SkASSERT(x < mx); |
627 | SkASSERT(y < my); |
628 | } |
629 | } |
630 | |
631 | static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
632 | for (int i = 0; i < count; ++i) { |
633 | uint32_t YY = *bitmapXY++; |
634 | unsigned y0 = YY >> 18; |
635 | unsigned y1 = YY & 0x3FFF; |
636 | SkASSERT(y0 < my); |
637 | SkASSERT(y1 < my); |
638 | |
639 | uint32_t XX = *bitmapXY++; |
640 | unsigned x0 = XX >> 18; |
641 | unsigned x1 = XX & 0x3FFF; |
642 | SkASSERT(x0 < mx); |
643 | SkASSERT(x1 < mx); |
644 | } |
645 | } |
646 | |
647 | void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, |
648 | uint32_t bitmapXY[], int count, |
649 | int x, int y) { |
650 | SkASSERT(bitmapXY); |
651 | SkASSERT(count > 0); |
652 | |
653 | state.fMatrixProc(state, bitmapXY, count, x, y); |
654 | |
655 | void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); |
656 | |
657 | const bool filter = state.fFilterQuality > kNone_SkFilterQuality; |
658 | if (state.fInvMatrix.isScaleTranslate()) { |
659 | proc = filter ? check_scale_filter : check_scale_nofilter; |
660 | } else { |
661 | proc = filter ? check_affine_filter : check_affine_nofilter; |
662 | } |
663 | |
664 | proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); |
665 | } |
666 | |
667 | SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { |
668 | return DebugMatrixProc; |
669 | } |
670 | |
671 | #endif |
672 | |
673 | /* |
674 | The storage requirements for the different matrix procs are as follows, |
675 | where each X or Y is 2 bytes, and N is the number of pixels/elements: |
676 | |
677 | scale/translate nofilter Y(4bytes) + N * X |
678 | affine/perspective nofilter N * (X Y) |
679 | scale/translate filter Y Y + N * (X X) |
680 | affine filter N * (Y Y X X) |
681 | */ |
682 | int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { |
683 | int32_t size = static_cast<int32_t>(bufferSize); |
684 | |
685 | size &= ~3; // only care about 4-byte aligned chunks |
686 | if (fInvMatrix.isScaleTranslate()) { |
687 | size -= 4; // the shared Y (or YY) coordinate |
688 | if (size < 0) { |
689 | size = 0; |
690 | } |
691 | size >>= 1; |
692 | } else { |
693 | size >>= 2; |
694 | } |
695 | |
696 | if (fFilterQuality != kNone_SkFilterQuality) { |
697 | size >>= 1; |
698 | } |
699 | |
700 | return size; |
701 | } |
702 | |
703 | |