| 1 | /* |
| 2 | * Copyright 2011 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkImageEncoder.h" |
| 9 | #include "include/core/SkPaint.h" |
| 10 | #include "include/core/SkShader.h" |
| 11 | #include "include/private/SkColorData.h" |
| 12 | #include "include/private/SkMacros.h" |
| 13 | #include "src/core/SkBitmapCache.h" |
| 14 | #include "src/core/SkBitmapController.h" |
| 15 | #include "src/core/SkBitmapProcState.h" |
| 16 | #include "src/core/SkMipMap.h" |
| 17 | #include "src/core/SkOpts.h" |
| 18 | #include "src/core/SkResourceCache.h" |
| 19 | #include "src/core/SkUtils.h" |
| 20 | |
| 21 | // One-stop-shop shader for, |
| 22 | // - nearest-neighbor sampling (_nofilter_), |
| 23 | // - clamp tiling in X and Y both (Clamp_), |
| 24 | // - with at most a scale and translate matrix (_DX_), |
| 25 | // - and no extra alpha applied (_opaque_), |
| 26 | // - sampling from 8888 (_S32_) and drawing to 8888 (_S32_). |
| 27 | static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, |
| 28 | SkPMColor* dst, int count) { |
| 29 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| 30 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| 31 | SkASSERT(s.fAlphaScale == 256); |
| 32 | |
| 33 | const unsigned maxX = s.fPixmap.width() - 1; |
| 34 | SkFractionalInt fx; |
| 35 | int dstY; |
| 36 | { |
| 37 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 38 | const unsigned maxY = s.fPixmap.height() - 1; |
| 39 | dstY = SkTPin<int>(mapper.intY(), 0, maxY); |
| 40 | fx = mapper.fractionalIntX(); |
| 41 | } |
| 42 | |
| 43 | const SkPMColor* src = s.fPixmap.addr32(0, dstY); |
| 44 | const SkFractionalInt dx = s.fInvSxFractionalInt; |
| 45 | |
| 46 | // Check if we're safely inside [0...maxX] so no need to clamp each computed index. |
| 47 | // |
| 48 | if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && |
| 49 | (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) |
| 50 | { |
| 51 | int count4 = count >> 2; |
| 52 | for (int i = 0; i < count4; ++i) { |
| 53 | SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| 54 | SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| 55 | SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| 56 | SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; |
| 57 | dst[0] = src0; |
| 58 | dst[1] = src1; |
| 59 | dst[2] = src2; |
| 60 | dst[3] = src3; |
| 61 | dst += 4; |
| 62 | } |
| 63 | for (int i = (count4 << 2); i < count; ++i) { |
| 64 | unsigned index = SkFractionalIntToInt(fx); |
| 65 | SkASSERT(index <= maxX); |
| 66 | *dst++ = src[index]; |
| 67 | fx += dx; |
| 68 | } |
| 69 | } else { |
| 70 | for (int i = 0; i < count; ++i) { |
| 71 | dst[i] = src[SkTPin<int>(SkFractionalIntToInt(fx), 0, maxX)]; |
| 72 | fx += dx; |
| 73 | } |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s, |
| 78 | const uint32_t* xy, int count, SkPMColor* colors) { |
| 79 | SkASSERT(count > 0 && colors != nullptr); |
| 80 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| 81 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
| 82 | SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
| 83 | SkASSERT(s.fAlphaScale <= 256); |
| 84 | |
| 85 | // xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates. |
| 86 | unsigned y = *xy++; |
| 87 | SkASSERT(y < (unsigned)s.fPixmap.height()); |
| 88 | |
| 89 | auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() ); |
| 90 | |
| 91 | if (1 == s.fPixmap.width()) { |
| 92 | sk_memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count); |
| 93 | return; |
| 94 | } |
| 95 | |
| 96 | // Step 4 xs == 2 uint32_t at a time. |
| 97 | while (count >= 4) { |
| 98 | uint32_t x01 = *xy++, |
| 99 | x23 = *xy++; |
| 100 | |
| 101 | SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)]; |
| 102 | SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)]; |
| 103 | SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)]; |
| 104 | SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)]; |
| 105 | |
| 106 | *colors++ = SkAlphaMulQ(p0, s.fAlphaScale); |
| 107 | *colors++ = SkAlphaMulQ(p1, s.fAlphaScale); |
| 108 | *colors++ = SkAlphaMulQ(p2, s.fAlphaScale); |
| 109 | *colors++ = SkAlphaMulQ(p3, s.fAlphaScale); |
| 110 | |
| 111 | count -= 4; |
| 112 | } |
| 113 | |
| 114 | // Step 1 x == 1 uint16_t at a time. |
| 115 | auto x = (const uint16_t*)xy; |
| 116 | while (count --> 0) { |
| 117 | *colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s, |
| 122 | const uint32_t* xy, int count, SkPMColor* colors) { |
| 123 | SkASSERT(count > 0 && colors != nullptr); |
| 124 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
| 125 | SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); |
| 126 | SkASSERT(s.fAlphaScale <= 256); |
| 127 | |
| 128 | auto src = (const char*)s.fPixmap.addr(); |
| 129 | size_t rb = s.fPixmap.rowBytes(); |
| 130 | |
| 131 | while (count --> 0) { |
| 132 | uint32_t XY = *xy++, |
| 133 | x = XY & 0xffff, |
| 134 | y = XY >> 16; |
| 135 | SkASSERT(x < (unsigned)s.fPixmap.width ()); |
| 136 | SkASSERT(y < (unsigned)s.fPixmap.height()); |
| 137 | *colors++ = ((const SkPMColor*)(src + y*rb))[x]; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | SkBitmapProcInfo::SkBitmapProcInfo(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy) |
| 142 | : fImage(image) |
| 143 | , fTileModeX(tmx) |
| 144 | , fTileModeY(tmy) |
| 145 | , fBMState(nullptr) |
| 146 | {} |
| 147 | |
| 148 | SkBitmapProcInfo::~SkBitmapProcInfo() {} |
| 149 | |
| 150 | |
| 151 | // true iff the matrix has a scale and no more than an optional translate. |
| 152 | static bool matrix_only_scale_translate(const SkMatrix& m) { |
| 153 | return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask; |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | * For the purposes of drawing bitmaps, if a matrix is "almost" translate |
| 158 | * go ahead and treat it as if it were, so that subsequent code can go fast. |
| 159 | */ |
| 160 | static bool just_trans_general(const SkMatrix& matrix) { |
| 161 | SkASSERT(matrix_only_scale_translate(matrix)); |
| 162 | |
| 163 | const SkScalar tol = SK_Scalar1 / 32768; |
| 164 | |
| 165 | return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol) |
| 166 | && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol); |
| 167 | } |
| 168 | |
| 169 | /** |
| 170 | * Determine if the matrix can be treated as integral-only-translate, |
| 171 | * for the purpose of filtering. |
| 172 | */ |
| 173 | static bool just_trans_integral(const SkMatrix& m) { |
| 174 | static constexpr SkScalar tol = SK_Scalar1 / 256; |
| 175 | |
| 176 | return m.getType() <= SkMatrix::kTranslate_Mask |
| 177 | && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol) |
| 178 | && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol); |
| 179 | } |
| 180 | |
| 181 | static bool valid_for_filtering(unsigned dimension) { |
| 182 | // for filtering, width and height must fit in 14bits, since we use steal |
| 183 | // 2 bits from each to store our 4bit subpixel data |
| 184 | return (dimension & ~0x3FFF) == 0; |
| 185 | } |
| 186 | |
| 187 | bool SkBitmapProcInfo::init(const SkMatrix& inv, const SkPaint& paint) { |
| 188 | SkASSERT(!inv.hasPerspective()); |
| 189 | SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate()); |
| 190 | |
| 191 | fPixmap.reset(); |
| 192 | fInvMatrix = inv; |
| 193 | fFilterQuality = paint.getFilterQuality(); |
| 194 | |
| 195 | fBMState = SkBitmapController::RequestBitmap(fImage, inv, paint.getFilterQuality(), &fAlloc); |
| 196 | |
| 197 | // Note : we allow the controller to return an empty (zero-dimension) result. Should we? |
| 198 | if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) { |
| 199 | return false; |
| 200 | } |
| 201 | fPixmap = fBMState->pixmap(); |
| 202 | fInvMatrix = fBMState->invMatrix(); |
| 203 | fPaintColor = paint.getColor(); |
| 204 | fFilterQuality = fBMState->quality(); |
| 205 | SkASSERT(fFilterQuality <= kLow_SkFilterQuality); |
| 206 | SkASSERT(fPixmap.addr()); |
| 207 | |
| 208 | bool integral_translate_only = just_trans_integral(fInvMatrix); |
| 209 | if (!integral_translate_only) { |
| 210 | // Most of the scanline procs deal with "unit" texture coordinates, as this |
| 211 | // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate |
| 212 | // those, we divide the matrix by its dimensions here. |
| 213 | // |
| 214 | // We don't do this if we're either trivial (can ignore the matrix) or clamping |
| 215 | // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. |
| 216 | |
| 217 | if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) { |
| 218 | SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height()); |
| 219 | } |
| 220 | |
| 221 | // Now that all possible changes to the matrix have taken place, check |
| 222 | // to see if we're really close to a no-scale matrix. If so, explicitly |
| 223 | // set it to be so. Subsequent code may inspect this matrix to choose |
| 224 | // a faster path in this case. |
| 225 | |
| 226 | // This code will only execute if the matrix has some scale component; |
| 227 | // if it's already pure translate then we won't do this inversion. |
| 228 | |
| 229 | if (matrix_only_scale_translate(fInvMatrix)) { |
| 230 | SkMatrix forward; |
| 231 | if (fInvMatrix.invert(&forward) && just_trans_general(forward)) { |
| 232 | fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | // Recompute the flag after matrix adjustments. |
| 237 | integral_translate_only = just_trans_integral(fInvMatrix); |
| 238 | } |
| 239 | |
| 240 | if (kLow_SkFilterQuality == fFilterQuality && |
| 241 | (!valid_for_filtering(fPixmap.width() | fPixmap.height()) || |
| 242 | integral_translate_only)) { |
| 243 | fFilterQuality = kNone_SkFilterQuality; |
| 244 | } |
| 245 | |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Analyze filter-quality and matrix, and decide how to implement that. |
| 251 | * |
| 252 | * In general, we cascade down the request level [ High ... None ] |
| 253 | * - for a given level, if we can fulfill it, fine, else |
| 254 | * - else we downgrade to the next lower level and try again. |
| 255 | * We can always fulfill requests for Low and None |
| 256 | * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack |
| 257 | * and may be removed. |
| 258 | */ |
| 259 | bool SkBitmapProcState::chooseProcs() { |
| 260 | SkASSERT(!fInvMatrix.hasPerspective()); |
| 261 | SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate()); |
| 262 | SkASSERT(fPixmap.colorType() == kN32_SkColorType); |
| 263 | SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType || |
| 264 | fPixmap.alphaType() == kOpaque_SkAlphaType); |
| 265 | |
| 266 | SkASSERT(fTileModeX != SkTileMode::kDecal); |
| 267 | SkASSERT(fFilterQuality < kHigh_SkFilterQuality); |
| 268 | |
| 269 | fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix); |
| 270 | fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); |
| 271 | fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ()); |
| 272 | |
| 273 | fAlphaScale = SkAlpha255To256(SkColorGetA(fPaintColor)); |
| 274 | |
| 275 | bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; |
| 276 | fMatrixProc = this->chooseMatrixProc(translate_only); |
| 277 | SkASSERT(fMatrixProc); |
| 278 | |
| 279 | const bool filter = fFilterQuality > kNone_SkFilterQuality; |
| 280 | if (fInvMatrix.isScaleTranslate()) { |
| 281 | fSampleProc32 = filter ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ; |
| 282 | } else { |
| 283 | fSampleProc32 = filter ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY; |
| 284 | } |
| 285 | SkASSERT(fSampleProc32); |
| 286 | |
| 287 | // our special-case shaderprocs |
| 288 | // TODO: move this one into chooseShaderProc32() or pull all that in here. |
| 289 | if (fAlphaScale == 256 |
| 290 | && fFilterQuality == kNone_SkFilterQuality |
| 291 | && SkTileMode::kClamp == fTileModeX |
| 292 | && SkTileMode::kClamp == fTileModeY |
| 293 | && fInvMatrix.isScaleTranslate()) { |
| 294 | fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; |
| 295 | } else { |
| 296 | fShaderProc32 = this->chooseShaderProc32(); |
| 297 | } |
| 298 | |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
| 303 | int x, int y, |
| 304 | SkPMColor* colors, |
| 305 | int count) { |
| 306 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| 307 | SkASSERT(s.fInvMatrix.isTranslate()); |
| 308 | SkASSERT(count > 0 && colors != nullptr); |
| 309 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
| 310 | |
| 311 | const int maxX = s.fPixmap.width() - 1; |
| 312 | const int maxY = s.fPixmap.height() - 1; |
| 313 | int ix = s.fFilterOneX + x; |
| 314 | int iy = SkTPin(s.fFilterOneY + y, 0, maxY); |
| 315 | const SkPMColor* row = s.fPixmap.addr32(0, iy); |
| 316 | |
| 317 | // clamp to the left |
| 318 | if (ix < 0) { |
| 319 | int n = std::min(-ix, count); |
| 320 | sk_memset32(colors, row[0], n); |
| 321 | count -= n; |
| 322 | if (0 == count) { |
| 323 | return; |
| 324 | } |
| 325 | colors += n; |
| 326 | SkASSERT(-ix == n); |
| 327 | ix = 0; |
| 328 | } |
| 329 | // copy the middle |
| 330 | if (ix <= maxX) { |
| 331 | int n = std::min(maxX - ix + 1, count); |
| 332 | memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
| 333 | count -= n; |
| 334 | if (0 == count) { |
| 335 | return; |
| 336 | } |
| 337 | colors += n; |
| 338 | } |
| 339 | SkASSERT(count > 0); |
| 340 | // clamp to the right |
| 341 | sk_memset32(colors, row[maxX], count); |
| 342 | } |
| 343 | |
| 344 | static inline int sk_int_mod(int x, int n) { |
| 345 | SkASSERT(n > 0); |
| 346 | if ((unsigned)x >= (unsigned)n) { |
| 347 | if (x < 0) { |
| 348 | x = n + ~(~x % n); |
| 349 | } else { |
| 350 | x = x % n; |
| 351 | } |
| 352 | } |
| 353 | return x; |
| 354 | } |
| 355 | |
| 356 | static inline int sk_int_mirror(int x, int n) { |
| 357 | x = sk_int_mod(x, 2 * n); |
| 358 | if (x >= n) { |
| 359 | x = n + ~(x - n); |
| 360 | } |
| 361 | return x; |
| 362 | } |
| 363 | |
| 364 | static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, |
| 365 | int x, int y, |
| 366 | SkPMColor* colors, |
| 367 | int count) { |
| 368 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| 369 | SkASSERT(s.fInvMatrix.isTranslate()); |
| 370 | SkASSERT(count > 0 && colors != nullptr); |
| 371 | SkASSERT(kNone_SkFilterQuality == s.fFilterQuality); |
| 372 | |
| 373 | const int stopX = s.fPixmap.width(); |
| 374 | const int stopY = s.fPixmap.height(); |
| 375 | int ix = s.fFilterOneX + x; |
| 376 | int iy = sk_int_mod(s.fFilterOneY + y, stopY); |
| 377 | const SkPMColor* row = s.fPixmap.addr32(0, iy); |
| 378 | |
| 379 | ix = sk_int_mod(ix, stopX); |
| 380 | for (;;) { |
| 381 | int n = std::min(stopX - ix, count); |
| 382 | memcpy(colors, row + ix, n * sizeof(SkPMColor)); |
| 383 | count -= n; |
| 384 | if (0 == count) { |
| 385 | return; |
| 386 | } |
| 387 | colors += n; |
| 388 | ix = 0; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | static inline void filter_32_alpha(unsigned t, |
| 393 | SkPMColor color0, |
| 394 | SkPMColor color1, |
| 395 | SkPMColor* dstColor, |
| 396 | unsigned alphaScale) { |
| 397 | SkASSERT((unsigned)t <= 0xF); |
| 398 | SkASSERT(alphaScale <= 256); |
| 399 | |
| 400 | const uint32_t mask = 0xFF00FF; |
| 401 | |
| 402 | int scale = 256 - 16*t; |
| 403 | uint32_t lo = (color0 & mask) * scale; |
| 404 | uint32_t hi = ((color0 >> 8) & mask) * scale; |
| 405 | |
| 406 | scale = 16*t; |
| 407 | lo += (color1 & mask) * scale; |
| 408 | hi += ((color1 >> 8) & mask) * scale; |
| 409 | |
| 410 | // TODO: if (alphaScale < 256) ... |
| 411 | lo = ((lo >> 8) & mask) * alphaScale; |
| 412 | hi = ((hi >> 8) & mask) * alphaScale; |
| 413 | |
| 414 | *dstColor = ((lo >> 8) & mask) | (hi & ~mask); |
| 415 | } |
| 416 | |
| 417 | static void S32_D32_constX_shaderproc(const void* sIn, |
| 418 | int x, int y, |
| 419 | SkPMColor* colors, |
| 420 | int count) { |
| 421 | const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); |
| 422 | SkASSERT(s.fInvMatrix.isScaleTranslate()); |
| 423 | SkASSERT(count > 0 && colors != nullptr); |
| 424 | SkASSERT(1 == s.fPixmap.width()); |
| 425 | |
| 426 | int iY0; |
| 427 | int iY1 SK_INIT_TO_AVOID_WARNING; |
| 428 | int iSubY SK_INIT_TO_AVOID_WARNING; |
| 429 | |
| 430 | if (kNone_SkFilterQuality != s.fFilterQuality) { |
| 431 | SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); |
| 432 | uint32_t xy[2]; |
| 433 | |
| 434 | mproc(s, xy, 1, x, y); |
| 435 | |
| 436 | iY0 = xy[0] >> 18; |
| 437 | iY1 = xy[0] & 0x3FFF; |
| 438 | iSubY = (xy[0] >> 14) & 0xF; |
| 439 | } else { |
| 440 | int yTemp; |
| 441 | |
| 442 | if (s.fInvMatrix.isTranslate()) { |
| 443 | yTemp = s.fFilterOneY + y; |
| 444 | } else{ |
| 445 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 446 | |
| 447 | // When the matrix has a scale component the setup code in |
| 448 | // chooseProcs multiples the inverse matrix by the inverse of the |
| 449 | // bitmap's width and height. Since this method is going to do |
| 450 | // its own tiling and sampling we need to undo that here. |
| 451 | if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) { |
| 452 | yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
| 453 | } else { |
| 454 | yTemp = mapper.intY(); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | const int stopY = s.fPixmap.height(); |
| 459 | switch (s.fTileModeY) { |
| 460 | case SkTileMode::kClamp: |
| 461 | iY0 = SkTPin(yTemp, 0, stopY-1); |
| 462 | break; |
| 463 | case SkTileMode::kRepeat: |
| 464 | iY0 = sk_int_mod(yTemp, stopY); |
| 465 | break; |
| 466 | case SkTileMode::kMirror: |
| 467 | default: |
| 468 | iY0 = sk_int_mirror(yTemp, stopY); |
| 469 | break; |
| 470 | } |
| 471 | |
| 472 | #ifdef SK_DEBUG |
| 473 | { |
| 474 | const SkBitmapProcStateAutoMapper mapper(s, x, y); |
| 475 | int iY2; |
| 476 | |
| 477 | if (!s.fInvMatrix.isTranslate() && |
| 478 | (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) { |
| 479 | iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); |
| 480 | } else { |
| 481 | iY2 = mapper.intY(); |
| 482 | } |
| 483 | |
| 484 | switch (s.fTileModeY) { |
| 485 | case SkTileMode::kClamp: |
| 486 | iY2 = SkTPin(iY2, 0, stopY-1); |
| 487 | break; |
| 488 | case SkTileMode::kRepeat: |
| 489 | iY2 = sk_int_mod(iY2, stopY); |
| 490 | break; |
| 491 | case SkTileMode::kMirror: |
| 492 | default: |
| 493 | iY2 = sk_int_mirror(iY2, stopY); |
| 494 | break; |
| 495 | } |
| 496 | |
| 497 | SkASSERT(iY0 == iY2); |
| 498 | } |
| 499 | #endif |
| 500 | } |
| 501 | |
| 502 | const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); |
| 503 | SkPMColor color; |
| 504 | |
| 505 | if (kNone_SkFilterQuality != s.fFilterQuality) { |
| 506 | const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); |
| 507 | filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); |
| 508 | } else { |
| 509 | if (s.fAlphaScale < 256) { |
| 510 | color = SkAlphaMulQ(*row0, s.fAlphaScale); |
| 511 | } else { |
| 512 | color = *row0; |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | sk_memset32(colors, color, count); |
| 517 | } |
| 518 | |
| 519 | static void DoNothing_shaderproc(const void*, int x, int y, |
| 520 | SkPMColor* colors, int count) { |
| 521 | // if we get called, the matrix is too tricky, so we just draw nothing |
| 522 | sk_memset32(colors, 0, count); |
| 523 | } |
| 524 | |
| 525 | bool SkBitmapProcState::setupForTranslate() { |
| 526 | SkPoint pt; |
| 527 | const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); |
| 528 | |
| 529 | /* |
| 530 | * if the translate is larger than our ints, we can get random results, or |
| 531 | * worse, we might get 0x80000000, which wreaks havoc on us, since we can't |
| 532 | * negate it. |
| 533 | */ |
| 534 | const SkScalar too_big = SkIntToScalar(1 << 30); |
| 535 | if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | // Since we know we're not filtered, we re-purpose these fields allow |
| 540 | // us to go from device -> src coordinates w/ just an integer add, |
| 541 | // rather than running through the inverse-matrix |
| 542 | fFilterOneX = mapper.intX(); |
| 543 | fFilterOneY = mapper.intY(); |
| 544 | |
| 545 | return true; |
| 546 | } |
| 547 | |
| 548 | SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { |
| 549 | |
| 550 | if (kN32_SkColorType != fPixmap.colorType()) { |
| 551 | return nullptr; |
| 552 | } |
| 553 | |
| 554 | if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) { |
| 555 | if (kNone_SkFilterQuality == fFilterQuality && |
| 556 | fInvMatrix.isTranslate() && |
| 557 | !this->setupForTranslate()) { |
| 558 | return DoNothing_shaderproc; |
| 559 | } |
| 560 | return S32_D32_constX_shaderproc; |
| 561 | } |
| 562 | |
| 563 | if (fAlphaScale < 256) { |
| 564 | return nullptr; |
| 565 | } |
| 566 | if (!fInvMatrix.isTranslate()) { |
| 567 | return nullptr; |
| 568 | } |
| 569 | if (kNone_SkFilterQuality != fFilterQuality) { |
| 570 | return nullptr; |
| 571 | } |
| 572 | |
| 573 | SkTileMode tx = fTileModeX; |
| 574 | SkTileMode ty = fTileModeY; |
| 575 | |
| 576 | if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) { |
| 577 | if (this->setupForTranslate()) { |
| 578 | return Clamp_S32_D32_nofilter_trans_shaderproc; |
| 579 | } |
| 580 | return DoNothing_shaderproc; |
| 581 | } |
| 582 | if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) { |
| 583 | if (this->setupForTranslate()) { |
| 584 | return Repeat_S32_D32_nofilter_trans_shaderproc; |
| 585 | } |
| 586 | return DoNothing_shaderproc; |
| 587 | } |
| 588 | return nullptr; |
| 589 | } |
| 590 | |
| 591 | #ifdef SK_DEBUG |
| 592 | |
| 593 | static void check_scale_nofilter(uint32_t bitmapXY[], int count, |
| 594 | unsigned mx, unsigned my) { |
| 595 | unsigned y = *bitmapXY++; |
| 596 | SkASSERT(y < my); |
| 597 | |
| 598 | const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); |
| 599 | for (int i = 0; i < count; ++i) { |
| 600 | SkASSERT(xptr[i] < mx); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | static void check_scale_filter(uint32_t bitmapXY[], int count, |
| 605 | unsigned mx, unsigned my) { |
| 606 | uint32_t YY = *bitmapXY++; |
| 607 | unsigned y0 = YY >> 18; |
| 608 | unsigned y1 = YY & 0x3FFF; |
| 609 | SkASSERT(y0 < my); |
| 610 | SkASSERT(y1 < my); |
| 611 | |
| 612 | for (int i = 0; i < count; ++i) { |
| 613 | uint32_t XX = bitmapXY[i]; |
| 614 | unsigned x0 = XX >> 18; |
| 615 | unsigned x1 = XX & 0x3FFF; |
| 616 | SkASSERT(x0 < mx); |
| 617 | SkASSERT(x1 < mx); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
| 622 | for (int i = 0; i < count; ++i) { |
| 623 | uint32_t XY = bitmapXY[i]; |
| 624 | unsigned x = XY & 0xFFFF; |
| 625 | unsigned y = XY >> 16; |
| 626 | SkASSERT(x < mx); |
| 627 | SkASSERT(y < my); |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { |
| 632 | for (int i = 0; i < count; ++i) { |
| 633 | uint32_t YY = *bitmapXY++; |
| 634 | unsigned y0 = YY >> 18; |
| 635 | unsigned y1 = YY & 0x3FFF; |
| 636 | SkASSERT(y0 < my); |
| 637 | SkASSERT(y1 < my); |
| 638 | |
| 639 | uint32_t XX = *bitmapXY++; |
| 640 | unsigned x0 = XX >> 18; |
| 641 | unsigned x1 = XX & 0x3FFF; |
| 642 | SkASSERT(x0 < mx); |
| 643 | SkASSERT(x1 < mx); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, |
| 648 | uint32_t bitmapXY[], int count, |
| 649 | int x, int y) { |
| 650 | SkASSERT(bitmapXY); |
| 651 | SkASSERT(count > 0); |
| 652 | |
| 653 | state.fMatrixProc(state, bitmapXY, count, x, y); |
| 654 | |
| 655 | void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); |
| 656 | |
| 657 | const bool filter = state.fFilterQuality > kNone_SkFilterQuality; |
| 658 | if (state.fInvMatrix.isScaleTranslate()) { |
| 659 | proc = filter ? check_scale_filter : check_scale_nofilter; |
| 660 | } else { |
| 661 | proc = filter ? check_affine_filter : check_affine_nofilter; |
| 662 | } |
| 663 | |
| 664 | proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); |
| 665 | } |
| 666 | |
| 667 | SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { |
| 668 | return DebugMatrixProc; |
| 669 | } |
| 670 | |
| 671 | #endif |
| 672 | |
| 673 | /* |
| 674 | The storage requirements for the different matrix procs are as follows, |
| 675 | where each X or Y is 2 bytes, and N is the number of pixels/elements: |
| 676 | |
| 677 | scale/translate nofilter Y(4bytes) + N * X |
| 678 | affine/perspective nofilter N * (X Y) |
| 679 | scale/translate filter Y Y + N * (X X) |
| 680 | affine filter N * (Y Y X X) |
| 681 | */ |
| 682 | int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { |
| 683 | int32_t size = static_cast<int32_t>(bufferSize); |
| 684 | |
| 685 | size &= ~3; // only care about 4-byte aligned chunks |
| 686 | if (fInvMatrix.isScaleTranslate()) { |
| 687 | size -= 4; // the shared Y (or YY) coordinate |
| 688 | if (size < 0) { |
| 689 | size = 0; |
| 690 | } |
| 691 | size >>= 1; |
| 692 | } else { |
| 693 | size >>= 2; |
| 694 | } |
| 695 | |
| 696 | if (fFilterQuality != kNone_SkFilterQuality) { |
| 697 | size >>= 1; |
| 698 | } |
| 699 | |
| 700 | return size; |
| 701 | } |
| 702 | |
| 703 | |