| 1 | /* |
| 2 | * Copyright 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkImageFilter.h" |
| 9 | |
| 10 | #include "include/core/SkCanvas.h" |
| 11 | #include "include/core/SkRect.h" |
| 12 | #include "include/effects/SkComposeImageFilter.h" |
| 13 | #include "include/private/SkSafe32.h" |
| 14 | #include "src/core/SkFuzzLogging.h" |
| 15 | #include "src/core/SkImageFilterCache.h" |
| 16 | #include "src/core/SkImageFilter_Base.h" |
| 17 | #include "src/core/SkLocalMatrixImageFilter.h" |
| 18 | #include "src/core/SkMatrixImageFilter.h" |
| 19 | #include "src/core/SkReadBuffer.h" |
| 20 | #include "src/core/SkSpecialImage.h" |
| 21 | #include "src/core/SkSpecialSurface.h" |
| 22 | #include "src/core/SkValidationUtils.h" |
| 23 | #include "src/core/SkWriteBuffer.h" |
| 24 | #if SK_SUPPORT_GPU |
| 25 | #include "include/gpu/GrContext.h" |
| 26 | #include "include/private/GrRecordingContext.h" |
| 27 | #include "src/gpu/GrColorSpaceXform.h" |
| 28 | #include "src/gpu/GrContextPriv.h" |
| 29 | #include "src/gpu/GrFixedClip.h" |
| 30 | #include "src/gpu/GrRecordingContextPriv.h" |
| 31 | #include "src/gpu/GrRenderTargetContext.h" |
| 32 | #include "src/gpu/GrTextureProxy.h" |
| 33 | #include "src/gpu/SkGr.h" |
| 34 | #endif |
| 35 | #include <atomic> |
| 36 | |
| 37 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 38 | // SkImageFilter - A number of the public APIs on SkImageFilter downcast to SkImageFilter_Base |
| 39 | // in order to perform their actual work. |
| 40 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 41 | |
| 42 | /** |
| 43 | * Returns the number of inputs this filter will accept (some inputs can |
| 44 | * be NULL). |
| 45 | */ |
| 46 | int SkImageFilter::countInputs() const { return as_IFB(this)->fInputs.count(); } |
| 47 | |
| 48 | /** |
| 49 | * Returns the input filter at a given index, or NULL if no input is |
| 50 | * connected. The indices used are filter-specific. |
| 51 | */ |
| 52 | const SkImageFilter* SkImageFilter::getInput(int i) const { |
| 53 | SkASSERT(i < this->countInputs()); |
| 54 | return as_IFB(this)->fInputs[i].get(); |
| 55 | } |
| 56 | |
| 57 | bool SkImageFilter::isColorFilterNode(SkColorFilter** filterPtr) const { |
| 58 | return as_IFB(this)->onIsColorFilterNode(filterPtr); |
| 59 | } |
| 60 | |
| 61 | SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm, |
| 62 | MapDirection direction, const SkIRect* inputRect) const { |
| 63 | // The old filterBounds() function uses SkIRects that are defined in layer space so, while |
| 64 | // we still are supporting it, bypass SkIF_B's new public filter bounds functions and go right |
| 65 | // to the internal layer-space calculations. |
| 66 | skif::Mapping mapping(SkMatrix::I(), ctm); |
| 67 | if (kReverse_MapDirection == direction) { |
| 68 | skif::LayerSpace<SkIRect> targetOutput(src); |
| 69 | skif::LayerSpace<SkIRect> content(inputRect ? *inputRect : src); |
| 70 | return SkIRect(as_IFB(this)->onGetInputLayerBounds(mapping, targetOutput, content)); |
| 71 | } else { |
| 72 | SkASSERT(!inputRect); |
| 73 | skif::LayerSpace<SkIRect> content(src); |
| 74 | skif::LayerSpace<SkIRect> output = as_IFB(this)->onGetOutputLayerBounds(mapping, content); |
| 75 | // Manually apply the crop rect for now, until cropping is performed by a dedicated SkIF. |
| 76 | SkIRect dst; |
| 77 | as_IFB(this)->getCropRect().applyTo( |
| 78 | SkIRect(output), ctm, as_IFB(this)->affectsTransparentBlack(), &dst); |
| 79 | return dst; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | SkRect SkImageFilter::computeFastBounds(const SkRect& src) const { |
| 84 | if (0 == this->countInputs()) { |
| 85 | return src; |
| 86 | } |
| 87 | SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src; |
| 88 | for (int i = 1; i < this->countInputs(); i++) { |
| 89 | const SkImageFilter* input = this->getInput(i); |
| 90 | if (input) { |
| 91 | combinedBounds.join(input->computeFastBounds(src)); |
| 92 | } else { |
| 93 | combinedBounds.join(src); |
| 94 | } |
| 95 | } |
| 96 | return combinedBounds; |
| 97 | } |
| 98 | |
| 99 | bool SkImageFilter::canComputeFastBounds() const { |
| 100 | if (as_IFB(this)->affectsTransparentBlack()) { |
| 101 | return false; |
| 102 | } |
| 103 | for (int i = 0; i < this->countInputs(); i++) { |
| 104 | const SkImageFilter* input = this->getInput(i); |
| 105 | if (input && !input->canComputeFastBounds()) { |
| 106 | return false; |
| 107 | } |
| 108 | } |
| 109 | return true; |
| 110 | } |
| 111 | |
| 112 | bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const { |
| 113 | SkASSERT(nullptr != filterPtr); |
| 114 | if (!this->isColorFilterNode(filterPtr)) { |
| 115 | return false; |
| 116 | } |
| 117 | if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) { |
| 118 | (*filterPtr)->unref(); |
| 119 | return false; |
| 120 | } |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix, |
| 125 | SkFilterQuality filterQuality, |
| 126 | sk_sp<SkImageFilter> input) { |
| 127 | return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input)); |
| 128 | } |
| 129 | |
| 130 | sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const { |
| 131 | return SkLocalMatrixImageFilter::Make(matrix, this->refMe()); |
| 132 | } |
| 133 | |
| 134 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 135 | // SkImageFilter_Base |
| 136 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 137 | |
| 138 | SK_USE_FLUENT_IMAGE_FILTER_TYPES |
| 139 | |
| 140 | static int32_t next_image_filter_unique_id() { |
| 141 | static std::atomic<int32_t> nextID{1}; |
| 142 | |
| 143 | int32_t id; |
| 144 | do { |
| 145 | id = nextID++; |
| 146 | } while (id == 0); |
| 147 | return id; |
| 148 | } |
| 149 | |
| 150 | SkImageFilter_Base::SkImageFilter_Base(sk_sp<SkImageFilter> const* inputs, |
| 151 | int inputCount, const CropRect* cropRect) |
| 152 | : fUsesSrcInput(false) |
| 153 | , fUniqueID(next_image_filter_unique_id()) { |
| 154 | fCropRect = cropRect ? *cropRect : CropRect(SkRect(), 0x0); |
| 155 | |
| 156 | fInputs.reset(inputCount); |
| 157 | |
| 158 | for (int i = 0; i < inputCount; ++i) { |
| 159 | if (!inputs[i] || as_IFB(inputs[i])->fUsesSrcInput) { |
| 160 | fUsesSrcInput = true; |
| 161 | } |
| 162 | fInputs[i] = inputs[i]; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | SkImageFilter_Base::~SkImageFilter_Base() { |
| 167 | SkImageFilterCache::Get()->purgeByImageFilter(this); |
| 168 | } |
| 169 | |
| 170 | bool SkImageFilter_Base::Common::unflatten(SkReadBuffer& buffer, int expectedCount) { |
| 171 | const int count = buffer.readInt(); |
| 172 | if (!buffer.validate(count >= 0)) { |
| 173 | return false; |
| 174 | } |
| 175 | if (!buffer.validate(expectedCount < 0 || count == expectedCount)) { |
| 176 | return false; |
| 177 | } |
| 178 | |
| 179 | SkASSERT(fInputs.empty()); |
| 180 | for (int i = 0; i < count; i++) { |
| 181 | fInputs.push_back(buffer.readBool() ? buffer.readImageFilter() : nullptr); |
| 182 | if (!buffer.isValid()) { |
| 183 | return false; |
| 184 | } |
| 185 | } |
| 186 | SkRect rect; |
| 187 | buffer.readRect(&rect); |
| 188 | if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) { |
| 189 | return false; |
| 190 | } |
| 191 | |
| 192 | uint32_t flags = buffer.readUInt(); |
| 193 | fCropRect = CropRect(rect, flags); |
| 194 | return buffer.isValid(); |
| 195 | } |
| 196 | |
| 197 | void SkImageFilter_Base::flatten(SkWriteBuffer& buffer) const { |
| 198 | buffer.writeInt(fInputs.count()); |
| 199 | for (int i = 0; i < fInputs.count(); i++) { |
| 200 | const SkImageFilter* input = this->getInput(i); |
| 201 | buffer.writeBool(input != nullptr); |
| 202 | if (input != nullptr) { |
| 203 | buffer.writeFlattenable(input); |
| 204 | } |
| 205 | } |
| 206 | buffer.writeRect(fCropRect.rect()); |
| 207 | buffer.writeUInt(fCropRect.flags()); |
| 208 | } |
| 209 | |
| 210 | skif::FilterResult<For::kOutput> SkImageFilter_Base::filterImage(const skif::Context& context) const { |
| 211 | // TODO (michaelludwig) - Old filters have an implicit assumption that the source image |
| 212 | // (originally passed separately) has an origin of (0, 0). SkComposeImageFilter makes an effort |
| 213 | // to ensure that remains the case. Once everyone uses the new type systems for bounds, non |
| 214 | // (0, 0) source origins will be easy to support. |
| 215 | SkASSERT(context.source().layerOrigin().x() == 0 && context.source().layerOrigin().y() == 0); |
| 216 | |
| 217 | skif::FilterResult<For::kOutput> result; |
| 218 | if (!context.isValid()) { |
| 219 | return result; |
| 220 | } |
| 221 | |
| 222 | uint32_t srcGenID = fUsesSrcInput ? context.sourceImage()->uniqueID() : 0; |
| 223 | const SkIRect srcSubset = fUsesSrcInput ? context.sourceImage()->subset() |
| 224 | : SkIRect::MakeWH(0, 0); |
| 225 | |
| 226 | SkImageFilterCacheKey key(fUniqueID, context.mapping().layerMatrix(), context.clipBounds(), |
| 227 | srcGenID, srcSubset); |
| 228 | if (context.cache() && context.cache()->get(key, &result)) { |
| 229 | return result; |
| 230 | } |
| 231 | |
| 232 | result = this->onFilterImage(context); |
| 233 | |
| 234 | #if SK_SUPPORT_GPU |
| 235 | if (context.gpuBacked() && result.image() && !result.image()->isTextureBacked()) { |
| 236 | // Keep the result on the GPU - this is still required for some |
| 237 | // image filters that don't support GPU in all cases |
| 238 | auto asTexture = result.image()->makeTextureImage(context.getContext()); |
| 239 | result = skif::FilterResult<For::kOutput>(std::move(asTexture), result.layerOrigin()); |
| 240 | } |
| 241 | #endif |
| 242 | |
| 243 | if (context.cache()) { |
| 244 | context.cache()->set(key, this, result); |
| 245 | } |
| 246 | |
| 247 | return result; |
| 248 | } |
| 249 | |
| 250 | skif::LayerSpace<SkIRect> SkImageFilter_Base::getInputBounds( |
| 251 | const skif::Mapping& mapping, const skif::DeviceSpace<SkRect>& desiredOutput, |
| 252 | const skif::ParameterSpace<SkRect>* knownContentBounds) const { |
| 253 | // Map both the device-space desired coverage area and the known content bounds to layer space |
| 254 | skif::LayerSpace<SkIRect> desiredBounds = mapping.deviceToLayer(desiredOutput).roundOut(); |
| 255 | // If we have no known content bounds use the desired coverage area, because that is the most |
| 256 | // conservative possibility. |
| 257 | skif::LayerSpace<SkIRect> contentBounds = |
| 258 | knownContentBounds ? mapping.paramToLayer(*knownContentBounds).roundOut() |
| 259 | : desiredBounds; |
| 260 | |
| 261 | // Process the layer-space desired output with the filter DAG to determine required input |
| 262 | skif::LayerSpace<SkIRect> requiredInput = this->onGetInputLayerBounds( |
| 263 | mapping, desiredBounds, contentBounds); |
| 264 | // If we know what's actually going to be drawn into the layer, and we don't change transparent |
| 265 | // black, then we can further restrict the layer to what the known content is |
| 266 | if (knownContentBounds && !this->affectsTransparentBlack()) { |
| 267 | if (!requiredInput.intersect(contentBounds)) { |
| 268 | // Nothing would be output by the filter, so return empty rect |
| 269 | return skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty()); |
| 270 | } |
| 271 | } |
| 272 | return requiredInput; |
| 273 | } |
| 274 | |
| 275 | skif::DeviceSpace<SkIRect> SkImageFilter_Base::getOutputBounds( |
| 276 | const skif::Mapping& mapping, const skif::ParameterSpace<SkRect>& contentBounds) const { |
| 277 | // Map the input content into the layer space where filtering will occur |
| 278 | skif::LayerSpace<SkRect> layerContent = mapping.paramToLayer(contentBounds); |
| 279 | // Determine the filter DAGs output bounds in layer space |
| 280 | skif::LayerSpace<SkIRect> filterOutput = this->onGetOutputLayerBounds( |
| 281 | mapping, layerContent.roundOut()); |
| 282 | // FIXME (michaelludwig) - To be removed once cropping is isolated, but remain consistent with |
| 283 | // old filterBounds(kForward) behavior. |
| 284 | SkIRect dst; |
| 285 | as_IFB(this)->getCropRect().applyTo( |
| 286 | SkIRect(filterOutput), mapping.layerMatrix(), |
| 287 | as_IFB(this)->affectsTransparentBlack(), &dst); |
| 288 | |
| 289 | // Map all the way to device space |
| 290 | return mapping.layerToDevice(skif::LayerSpace<SkIRect>(dst)); |
| 291 | } |
| 292 | |
| 293 | // TODO (michaelludwig) - Default to using the old onFilterImage, as filters are updated one by one. |
| 294 | // Once the old function is gone, this onFilterImage() will be made a pure virtual. |
| 295 | skif::FilterResult<For::kOutput> SkImageFilter_Base::onFilterImage(const skif::Context& context) const { |
| 296 | SkIPoint origin; |
| 297 | auto image = this->onFilterImage(context, &origin); |
| 298 | return skif::FilterResult<For::kOutput>(std::move(image), skif::LayerSpace<SkIPoint>(origin)); |
| 299 | } |
| 300 | |
| 301 | bool SkImageFilter_Base::canHandleComplexCTM() const { |
| 302 | // CropRects need to apply in the source coordinate system, but are not aware of complex CTMs |
| 303 | // when performing clipping. For a simple fix, any filter with a crop rect set cannot support |
| 304 | // complex CTMs until that's updated. |
| 305 | if (this->cropRectIsSet() || !this->onCanHandleComplexCTM()) { |
| 306 | return false; |
| 307 | } |
| 308 | const int count = this->countInputs(); |
| 309 | for (int i = 0; i < count; ++i) { |
| 310 | const SkImageFilter_Base* input = as_IFB(this->getInput(i)); |
| 311 | if (input && !input->canHandleComplexCTM()) { |
| 312 | return false; |
| 313 | } |
| 314 | } |
| 315 | return true; |
| 316 | } |
| 317 | |
| 318 | void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds, const SkMatrix& ctm, |
| 319 | bool embiggen, SkIRect* cropped) const { |
| 320 | *cropped = imageBounds; |
| 321 | if (fFlags) { |
| 322 | SkRect devCropR; |
| 323 | ctm.mapRect(&devCropR, fRect); |
| 324 | SkIRect devICropR = devCropR.roundOut(); |
| 325 | |
| 326 | // Compute the left/top first, in case we need to modify the right/bottom for a missing edge |
| 327 | if (fFlags & kHasLeft_CropEdge) { |
| 328 | if (embiggen || devICropR.fLeft > cropped->fLeft) { |
| 329 | cropped->fLeft = devICropR.fLeft; |
| 330 | } |
| 331 | } else { |
| 332 | devICropR.fRight = Sk32_sat_add(cropped->fLeft, devICropR.width()); |
| 333 | } |
| 334 | if (fFlags & kHasTop_CropEdge) { |
| 335 | if (embiggen || devICropR.fTop > cropped->fTop) { |
| 336 | cropped->fTop = devICropR.fTop; |
| 337 | } |
| 338 | } else { |
| 339 | devICropR.fBottom = Sk32_sat_add(cropped->fTop, devICropR.height()); |
| 340 | } |
| 341 | if (fFlags & kHasWidth_CropEdge) { |
| 342 | if (embiggen || devICropR.fRight < cropped->fRight) { |
| 343 | cropped->fRight = devICropR.fRight; |
| 344 | } |
| 345 | } |
| 346 | if (fFlags & kHasHeight_CropEdge) { |
| 347 | if (embiggen || devICropR.fBottom < cropped->fBottom) { |
| 348 | cropped->fBottom = devICropR.fBottom; |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | bool SkImageFilter_Base::applyCropRect(const Context& ctx, const SkIRect& srcBounds, |
| 355 | SkIRect* dstBounds) const { |
| 356 | SkIRect tmpDst = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection, nullptr); |
| 357 | fCropRect.applyTo(tmpDst, ctx.ctm(), this->affectsTransparentBlack(), dstBounds); |
| 358 | // Intersect against the clip bounds, in case the crop rect has |
| 359 | // grown the bounds beyond the original clip. This can happen for |
| 360 | // example in tiling, where the clip is much smaller than the filtered |
| 361 | // primitive. If we didn't do this, we would be processing the filter |
| 362 | // at the full crop rect size in every tile. |
| 363 | return dstBounds->intersect(ctx.clipBounds()); |
| 364 | } |
| 365 | |
| 366 | // Return a larger (newWidth x newHeight) copy of 'src' with black padding |
| 367 | // around it. |
| 368 | static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src, const SkImageFilter_Base::Context& ctx, |
| 369 | int newWidth, int newHeight, int offX, int offY) { |
| 370 | // We would like to operate in the source's color space (so that we return an "identical" |
| 371 | // image, other than the padding. To achieve that, we'd create a new context using |
| 372 | // src->getColorSpace() to replace ctx.colorSpace(). |
| 373 | |
| 374 | // That fails in at least two ways. For formats that are texturable but not renderable (like |
| 375 | // F16 on some ES implementations), we can't create a surface to do the work. For sRGB, images |
| 376 | // may be tagged with an sRGB color space (which leads to an sRGB config in makeSurface). But |
| 377 | // the actual config of that sRGB image on a device with no sRGB support is non-sRGB. |
| 378 | // |
| 379 | // Rather than try to special case these situations, we execute the image padding in the |
| 380 | // destination color space. This should not affect the output of the DAG in (almost) any case, |
| 381 | // because the result of this call is going to be used as an input, where it would have been |
| 382 | // switched to the destination space anyway. The one exception would be a filter that expected |
| 383 | // to consume unclamped F16 data, but the padded version of the image is pre-clamped to 8888. |
| 384 | // We can revisit this logic if that ever becomes an actual problem. |
| 385 | sk_sp<SkSpecialSurface> surf(ctx.makeSurface(SkISize::Make(newWidth, newHeight))); |
| 386 | if (!surf) { |
| 387 | return nullptr; |
| 388 | } |
| 389 | |
| 390 | SkCanvas* canvas = surf->getCanvas(); |
| 391 | SkASSERT(canvas); |
| 392 | |
| 393 | canvas->clear(0x0); |
| 394 | |
| 395 | src->draw(canvas, offX, offY, nullptr); |
| 396 | |
| 397 | return surf->makeImageSnapshot(); |
| 398 | } |
| 399 | |
| 400 | sk_sp<SkSpecialImage> SkImageFilter_Base::applyCropRectAndPad(const Context& ctx, |
| 401 | SkSpecialImage* src, |
| 402 | SkIPoint* srcOffset, |
| 403 | SkIRect* bounds) const { |
| 404 | const SkIRect srcBounds = SkIRect::MakeXYWH(srcOffset->x(), srcOffset->y(), |
| 405 | src->width(), src->height()); |
| 406 | |
| 407 | if (!this->applyCropRect(ctx, srcBounds, bounds)) { |
| 408 | return nullptr; |
| 409 | } |
| 410 | |
| 411 | if (srcBounds.contains(*bounds)) { |
| 412 | return sk_sp<SkSpecialImage>(SkRef(src)); |
| 413 | } else { |
| 414 | sk_sp<SkSpecialImage> img(pad_image(src, ctx, bounds->width(), bounds->height(), |
| 415 | Sk32_sat_sub(srcOffset->x(), bounds->x()), |
| 416 | Sk32_sat_sub(srcOffset->y(), bounds->y()))); |
| 417 | *srcOffset = SkIPoint::Make(bounds->x(), bounds->y()); |
| 418 | return img; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // NOTE: The new onGetOutputLayerBounds() and onGetInputLayerBounds() default to calling into the |
| 423 | // deprecated onFilterBounds and onFilterNodeBounds. While these functions are not tagged, they do |
| 424 | // match the documented default behavior for the new bounds functions. |
| 425 | SkIRect SkImageFilter_Base::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, |
| 426 | MapDirection dir, const SkIRect* inputRect) const { |
| 427 | if (this->countInputs() < 1) { |
| 428 | return src; |
| 429 | } |
| 430 | |
| 431 | SkIRect totalBounds; |
| 432 | for (int i = 0; i < this->countInputs(); ++i) { |
| 433 | const SkImageFilter* filter = this->getInput(i); |
| 434 | SkIRect rect = filter ? filter->filterBounds(src, ctm, dir, inputRect) : src; |
| 435 | if (0 == i) { |
| 436 | totalBounds = rect; |
| 437 | } else { |
| 438 | totalBounds.join(rect); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | return totalBounds; |
| 443 | } |
| 444 | |
| 445 | SkIRect SkImageFilter_Base::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, |
| 446 | MapDirection, const SkIRect*) const { |
| 447 | return src; |
| 448 | } |
| 449 | |
| 450 | skif::LayerSpace<SkIRect> SkImageFilter_Base::visitInputLayerBounds( |
| 451 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
| 452 | const skif::LayerSpace<SkIRect>& contentBounds) const { |
| 453 | if (this->countInputs() < 1) { |
| 454 | // TODO (michaelludwig) - if a filter doesn't have any inputs, it doesn't need any |
| 455 | // implicit source image, so arguably we could return an empty rect here. 'desiredOutput' is |
| 456 | // consistent with original behavior, so empty bounds may have unintended side effects |
| 457 | // but should be explored later. |
| 458 | return desiredOutput; |
| 459 | } |
| 460 | |
| 461 | skif::LayerSpace<SkIRect> netInput; |
| 462 | for (int i = 0; i < this->countInputs(); ++i) { |
| 463 | const SkImageFilter* filter = this->getInput(i); |
| 464 | // The required input for this input filter, or 'targetOutput' if the filter is null and |
| 465 | // the source image is used (so must be sized to cover 'targetOutput'). |
| 466 | skif::LayerSpace<SkIRect> requiredInput = |
| 467 | filter ? as_IFB(filter)->onGetInputLayerBounds(mapping, desiredOutput, |
| 468 | contentBounds) |
| 469 | : desiredOutput; |
| 470 | // Accumulate with all other filters |
| 471 | if (i == 0) { |
| 472 | netInput = requiredInput; |
| 473 | } else { |
| 474 | netInput.join(requiredInput); |
| 475 | } |
| 476 | } |
| 477 | return netInput; |
| 478 | } |
| 479 | |
| 480 | skif::LayerSpace<SkIRect> SkImageFilter_Base::visitOutputLayerBounds( |
| 481 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
| 482 | if (this->countInputs() < 1) { |
| 483 | // TODO (michaelludwig) - if a filter doesn't have any inputs, it presumably is determining |
| 484 | // its output size from something other than the implicit source contentBounds, in which |
| 485 | // case it shouldn't be calling this helper function, so explore adding an unreachable test |
| 486 | return contentBounds; |
| 487 | } |
| 488 | |
| 489 | skif::LayerSpace<SkIRect> netOutput; |
| 490 | for (int i = 0; i < this->countInputs(); ++i) { |
| 491 | const SkImageFilter* filter = this->getInput(i); |
| 492 | // The output for just this input filter, or 'contentBounds' if the filter is null and |
| 493 | // the source image is used (i.e. the identity filter applied to the source). |
| 494 | skif::LayerSpace<SkIRect> output = |
| 495 | filter ? as_IFB(filter)->onGetOutputLayerBounds(mapping, contentBounds) |
| 496 | : contentBounds; |
| 497 | // Accumulate with all other filters |
| 498 | if (i == 0) { |
| 499 | netOutput = output; |
| 500 | } else { |
| 501 | netOutput.join(output); |
| 502 | } |
| 503 | } |
| 504 | return netOutput; |
| 505 | } |
| 506 | |
| 507 | skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetInputLayerBounds( |
| 508 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
| 509 | const skif::LayerSpace<SkIRect>& contentBounds, VisitChildren recurse) const { |
| 510 | // Call old functions for now since they may have been overridden by a subclass that's not been |
| 511 | // updated yet; normally this would just default to visitInputLayerBounds() |
| 512 | SkIRect content = SkIRect(contentBounds); |
| 513 | SkIRect input = this->onFilterNodeBounds(SkIRect(desiredOutput), mapping.layerMatrix(), |
| 514 | kReverse_MapDirection, &content); |
| 515 | if (recurse == VisitChildren::kYes) { |
| 516 | SkIRect aggregate = this->onFilterBounds(input, mapping.layerMatrix(), |
| 517 | kReverse_MapDirection, &input); |
| 518 | return skif::LayerSpace<SkIRect>(aggregate); |
| 519 | } else { |
| 520 | return skif::LayerSpace<SkIRect>(input); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetOutputLayerBounds( |
| 525 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
| 526 | // Call old functions for now; normally this would default to visitOutputLayerBounds() |
| 527 | SkIRect aggregate = this->onFilterBounds(SkIRect(contentBounds), mapping.layerMatrix(), |
| 528 | kForward_MapDirection, nullptr); |
| 529 | SkIRect output = this->onFilterNodeBounds(aggregate, mapping.layerMatrix(), |
| 530 | kForward_MapDirection, nullptr); |
| 531 | return skif::LayerSpace<SkIRect>(output); |
| 532 | } |
| 533 | |
| 534 | template<skif::Usage kU> |
| 535 | skif::FilterResult<kU> SkImageFilter_Base::filterInput(int index, const skif::Context& ctx) const { |
| 536 | // Sanity checks for the index-specific input usages |
| 537 | SkASSERT(kU != skif::Usage::kInput0 || index == 0); |
| 538 | SkASSERT(kU != skif::Usage::kInput1 || index == 1); |
| 539 | |
| 540 | const SkImageFilter* input = this->getInput(index); |
| 541 | if (!input) { |
| 542 | // Convert from the generic kInput of the source image to kU |
| 543 | return static_cast<skif::FilterResult<kU>>(ctx.source()); |
| 544 | } |
| 545 | |
| 546 | skif::FilterResult<For::kOutput> result = as_IFB(input)->filterImage(this->mapContext(ctx)); |
| 547 | SkASSERT(!result.image() || ctx.gpuBacked() == result.image()->isTextureBacked()); |
| 548 | |
| 549 | // Map the output result of the input image filter to the input usage requested for this filter |
| 550 | return static_cast<skif::FilterResult<kU>>(std::move(result)); |
| 551 | } |
| 552 | // Instantiate filterInput() for kInput, kInput0, and kInput1. This does not provide a definition |
| 553 | // for kOutput, which should never be used anyways, and this way the linker will fail for us then. |
| 554 | template skif::FilterResult<For::kInput> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| 555 | template skif::FilterResult<For::kInput0> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| 556 | template skif::FilterResult<For::kInput1> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
| 557 | |
| 558 | SkImageFilter_Base::Context SkImageFilter_Base::mapContext(const Context& ctx) const { |
| 559 | // We don't recurse through the child input filters because that happens automatically |
| 560 | // as part of the filterImage() evaluation. In this case, we want the bounds for the |
| 561 | // edge from this node to its children, without the effects of the child filters. |
| 562 | skif::LayerSpace<SkIRect> childOutput = this->onGetInputLayerBounds( |
| 563 | ctx.mapping(), ctx.desiredOutput(), ctx.desiredOutput(), VisitChildren::kNo); |
| 564 | return ctx.withNewDesiredOutput(childOutput); |
| 565 | } |
| 566 | |
| 567 | #if SK_SUPPORT_GPU |
| 568 | sk_sp<SkSpecialImage> SkImageFilter_Base::DrawWithFP(GrRecordingContext* context, |
| 569 | std::unique_ptr<GrFragmentProcessor> fp, |
| 570 | const SkIRect& bounds, |
| 571 | SkColorType colorType, |
| 572 | const SkColorSpace* colorSpace, |
| 573 | GrProtected isProtected) { |
| 574 | GrPaint paint; |
| 575 | paint.addColorFragmentProcessor(std::move(fp)); |
| 576 | paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| 577 | |
| 578 | auto renderTargetContext = GrRenderTargetContext::Make( |
| 579 | context, SkColorTypeToGrColorType(colorType), sk_ref_sp(colorSpace), |
| 580 | SkBackingFit::kApprox, bounds.size(), 1, GrMipMapped::kNo, isProtected, |
| 581 | kBottomLeft_GrSurfaceOrigin); |
| 582 | if (!renderTargetContext) { |
| 583 | return nullptr; |
| 584 | } |
| 585 | |
| 586 | SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height()); |
| 587 | SkRect srcRect = SkRect::Make(bounds); |
| 588 | SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height()); |
| 589 | GrFixedClip clip(dstIRect); |
| 590 | renderTargetContext->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect, |
| 591 | srcRect); |
| 592 | |
| 593 | return SkSpecialImage::MakeDeferredFromGpu( |
| 594 | context, dstIRect, kNeedNewImageUniqueID_SpecialImage, |
| 595 | renderTargetContext->readSurfaceView(), renderTargetContext->colorInfo().colorType(), |
| 596 | renderTargetContext->colorInfo().refColorSpace()); |
| 597 | } |
| 598 | |
| 599 | sk_sp<SkSpecialImage> SkImageFilter_Base::ImageToColorSpace(SkSpecialImage* src, |
| 600 | SkColorType colorType, |
| 601 | SkColorSpace* colorSpace) { |
| 602 | // There are several conditions that determine if we actually need to convert the source to the |
| 603 | // destination's color space. Rather than duplicate that logic here, just try to make an xform |
| 604 | // object. If that produces something, then both are tagged, and the source is in a different |
| 605 | // gamut than the dest. There is some overhead to making the xform, but those are cached, and |
| 606 | // if we get one back, that means we're about to use it during the conversion anyway. |
| 607 | auto colorSpaceXform = GrColorSpaceXform::Make(src->getColorSpace(), src->alphaType(), |
| 608 | colorSpace, kPremul_SkAlphaType); |
| 609 | |
| 610 | if (!colorSpaceXform) { |
| 611 | // No xform needed, just return the original image |
| 612 | return sk_ref_sp(src); |
| 613 | } |
| 614 | |
| 615 | sk_sp<SkSpecialSurface> surf(src->makeSurface(colorType, colorSpace, |
| 616 | SkISize::Make(src->width(), src->height()))); |
| 617 | if (!surf) { |
| 618 | return sk_ref_sp(src); |
| 619 | } |
| 620 | |
| 621 | SkCanvas* canvas = surf->getCanvas(); |
| 622 | SkASSERT(canvas); |
| 623 | SkPaint p; |
| 624 | p.setBlendMode(SkBlendMode::kSrc); |
| 625 | src->draw(canvas, 0, 0, &p); |
| 626 | return surf->makeImageSnapshot(); |
| 627 | } |
| 628 | #endif |
| 629 | |
| 630 | // In repeat mode, when we are going to sample off one edge of the srcBounds we require the |
| 631 | // opposite side be preserved. |
| 632 | SkIRect SkImageFilter_Base::DetermineRepeatedSrcBound(const SkIRect& srcBounds, |
| 633 | const SkIVector& filterOffset, |
| 634 | const SkISize& filterSize, |
| 635 | const SkIRect& originalSrcBounds) { |
| 636 | SkIRect tmp = srcBounds; |
| 637 | tmp.adjust(-filterOffset.fX, -filterOffset.fY, |
| 638 | filterSize.fWidth - filterOffset.fX, filterSize.fHeight - filterOffset.fY); |
| 639 | |
| 640 | if (tmp.fLeft < originalSrcBounds.fLeft || tmp.fRight > originalSrcBounds.fRight) { |
| 641 | tmp.fLeft = originalSrcBounds.fLeft; |
| 642 | tmp.fRight = originalSrcBounds.fRight; |
| 643 | } |
| 644 | if (tmp.fTop < originalSrcBounds.fTop || tmp.fBottom > originalSrcBounds.fBottom) { |
| 645 | tmp.fTop = originalSrcBounds.fTop; |
| 646 | tmp.fBottom = originalSrcBounds.fBottom; |
| 647 | } |
| 648 | |
| 649 | return tmp; |
| 650 | } |
| 651 | |
| 652 | void SkImageFilter_Base::PurgeCache() { |
| 653 | SkImageFilterCache::Get()->purge(); |
| 654 | } |
| 655 | |
| 656 | static sk_sp<SkImageFilter> apply_ctm_to_filter(sk_sp<SkImageFilter> input, const SkMatrix& ctm, |
| 657 | SkMatrix* remainder) { |
| 658 | if (ctm.isScaleTranslate() || as_IFB(input)->canHandleComplexCTM()) { |
| 659 | // The filter supports the CTM, so leave it as-is and 'remainder' stores the whole CTM |
| 660 | *remainder = ctm; |
| 661 | return input; |
| 662 | } |
| 663 | |
| 664 | // We have a complex CTM and a filter that can't support them, so it needs to use the matrix |
| 665 | // transform filter that resamples the image contents. Decompose the simple portion of the ctm |
| 666 | // into 'remainder' |
| 667 | SkMatrix ctmToEmbed; |
| 668 | SkSize scale; |
| 669 | if (ctm.decomposeScale(&scale, &ctmToEmbed)) { |
| 670 | // decomposeScale splits ctm into scale * ctmToEmbed, so bake ctmToEmbed into DAG |
| 671 | // with a matrix filter and return scale as the remaining matrix for the real CTM. |
| 672 | remainder->setScale(scale.fWidth, scale.fHeight); |
| 673 | |
| 674 | // ctmToEmbed is passed to SkMatrixImageFilter, which performs its transforms as if it were |
| 675 | // a pre-transformation before applying the image-filter context's CTM. In this case, we |
| 676 | // need ctmToEmbed to be a post-transformation (i.e. after the scale matrix since |
| 677 | // decomposeScale produces ctm = ctmToEmbed * scale). Giving scale^-1 * ctmToEmbed * scale |
| 678 | // to the matrix filter achieves this effect. |
| 679 | // TODO (michaelludwig) - When the original root node of a filter can be drawn directly to a |
| 680 | // device using ctmToEmbed, this abuse of SkMatrixImageFilter can go away. |
| 681 | ctmToEmbed.preScale(scale.fWidth, scale.fHeight); |
| 682 | ctmToEmbed.postScale(1.f / scale.fWidth, 1.f / scale.fHeight); |
| 683 | } else { |
| 684 | // Unable to decompose |
| 685 | // FIXME Ideally we'd embed the entire CTM as part of the matrix image filter, but |
| 686 | // the device <-> src bounds calculations for filters are very brittle under perspective, |
| 687 | // and can easily run into precision issues (wrong bounds that clip), or performance issues |
| 688 | // (producing large source-space images where 80% of the image is compressed into a few |
| 689 | // device pixels). A longer term solution for perspective-space image filtering is needed |
| 690 | // see skbug.com/9074 |
| 691 | if (ctm.hasPerspective()) { |
| 692 | *remainder = ctm; |
| 693 | return input; |
| 694 | } |
| 695 | |
| 696 | ctmToEmbed = ctm; |
| 697 | remainder->setIdentity(); |
| 698 | } |
| 699 | |
| 700 | return SkMatrixImageFilter::Make(ctmToEmbed, kLow_SkFilterQuality, input); |
| 701 | } |
| 702 | |
| 703 | sk_sp<SkImageFilter> SkImageFilter_Base::applyCTM(const SkMatrix& ctm, SkMatrix* remainder) const { |
| 704 | return apply_ctm_to_filter(this->refMe(), ctm, remainder); |
| 705 | } |
| 706 | |