1 | /* |
2 | * Copyright 2012 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkImageFilter.h" |
9 | |
10 | #include "include/core/SkCanvas.h" |
11 | #include "include/core/SkRect.h" |
12 | #include "include/effects/SkComposeImageFilter.h" |
13 | #include "include/private/SkSafe32.h" |
14 | #include "src/core/SkFuzzLogging.h" |
15 | #include "src/core/SkImageFilterCache.h" |
16 | #include "src/core/SkImageFilter_Base.h" |
17 | #include "src/core/SkLocalMatrixImageFilter.h" |
18 | #include "src/core/SkMatrixImageFilter.h" |
19 | #include "src/core/SkReadBuffer.h" |
20 | #include "src/core/SkSpecialImage.h" |
21 | #include "src/core/SkSpecialSurface.h" |
22 | #include "src/core/SkValidationUtils.h" |
23 | #include "src/core/SkWriteBuffer.h" |
24 | #if SK_SUPPORT_GPU |
25 | #include "include/gpu/GrContext.h" |
26 | #include "include/private/GrRecordingContext.h" |
27 | #include "src/gpu/GrColorSpaceXform.h" |
28 | #include "src/gpu/GrContextPriv.h" |
29 | #include "src/gpu/GrFixedClip.h" |
30 | #include "src/gpu/GrRecordingContextPriv.h" |
31 | #include "src/gpu/GrRenderTargetContext.h" |
32 | #include "src/gpu/GrTextureProxy.h" |
33 | #include "src/gpu/SkGr.h" |
34 | #endif |
35 | #include <atomic> |
36 | |
37 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
38 | // SkImageFilter - A number of the public APIs on SkImageFilter downcast to SkImageFilter_Base |
39 | // in order to perform their actual work. |
40 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
41 | |
42 | /** |
43 | * Returns the number of inputs this filter will accept (some inputs can |
44 | * be NULL). |
45 | */ |
46 | int SkImageFilter::countInputs() const { return as_IFB(this)->fInputs.count(); } |
47 | |
48 | /** |
49 | * Returns the input filter at a given index, or NULL if no input is |
50 | * connected. The indices used are filter-specific. |
51 | */ |
52 | const SkImageFilter* SkImageFilter::getInput(int i) const { |
53 | SkASSERT(i < this->countInputs()); |
54 | return as_IFB(this)->fInputs[i].get(); |
55 | } |
56 | |
57 | bool SkImageFilter::isColorFilterNode(SkColorFilter** filterPtr) const { |
58 | return as_IFB(this)->onIsColorFilterNode(filterPtr); |
59 | } |
60 | |
61 | SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm, |
62 | MapDirection direction, const SkIRect* inputRect) const { |
63 | // The old filterBounds() function uses SkIRects that are defined in layer space so, while |
64 | // we still are supporting it, bypass SkIF_B's new public filter bounds functions and go right |
65 | // to the internal layer-space calculations. |
66 | skif::Mapping mapping(SkMatrix::I(), ctm); |
67 | if (kReverse_MapDirection == direction) { |
68 | skif::LayerSpace<SkIRect> targetOutput(src); |
69 | skif::LayerSpace<SkIRect> content(inputRect ? *inputRect : src); |
70 | return SkIRect(as_IFB(this)->onGetInputLayerBounds(mapping, targetOutput, content)); |
71 | } else { |
72 | SkASSERT(!inputRect); |
73 | skif::LayerSpace<SkIRect> content(src); |
74 | skif::LayerSpace<SkIRect> output = as_IFB(this)->onGetOutputLayerBounds(mapping, content); |
75 | // Manually apply the crop rect for now, until cropping is performed by a dedicated SkIF. |
76 | SkIRect dst; |
77 | as_IFB(this)->getCropRect().applyTo( |
78 | SkIRect(output), ctm, as_IFB(this)->affectsTransparentBlack(), &dst); |
79 | return dst; |
80 | } |
81 | } |
82 | |
83 | SkRect SkImageFilter::computeFastBounds(const SkRect& src) const { |
84 | if (0 == this->countInputs()) { |
85 | return src; |
86 | } |
87 | SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src; |
88 | for (int i = 1; i < this->countInputs(); i++) { |
89 | const SkImageFilter* input = this->getInput(i); |
90 | if (input) { |
91 | combinedBounds.join(input->computeFastBounds(src)); |
92 | } else { |
93 | combinedBounds.join(src); |
94 | } |
95 | } |
96 | return combinedBounds; |
97 | } |
98 | |
99 | bool SkImageFilter::canComputeFastBounds() const { |
100 | if (as_IFB(this)->affectsTransparentBlack()) { |
101 | return false; |
102 | } |
103 | for (int i = 0; i < this->countInputs(); i++) { |
104 | const SkImageFilter* input = this->getInput(i); |
105 | if (input && !input->canComputeFastBounds()) { |
106 | return false; |
107 | } |
108 | } |
109 | return true; |
110 | } |
111 | |
112 | bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const { |
113 | SkASSERT(nullptr != filterPtr); |
114 | if (!this->isColorFilterNode(filterPtr)) { |
115 | return false; |
116 | } |
117 | if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) { |
118 | (*filterPtr)->unref(); |
119 | return false; |
120 | } |
121 | return true; |
122 | } |
123 | |
124 | sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix, |
125 | SkFilterQuality filterQuality, |
126 | sk_sp<SkImageFilter> input) { |
127 | return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input)); |
128 | } |
129 | |
130 | sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const { |
131 | return SkLocalMatrixImageFilter::Make(matrix, this->refMe()); |
132 | } |
133 | |
134 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
135 | // SkImageFilter_Base |
136 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
137 | |
138 | SK_USE_FLUENT_IMAGE_FILTER_TYPES |
139 | |
140 | static int32_t next_image_filter_unique_id() { |
141 | static std::atomic<int32_t> nextID{1}; |
142 | |
143 | int32_t id; |
144 | do { |
145 | id = nextID++; |
146 | } while (id == 0); |
147 | return id; |
148 | } |
149 | |
150 | SkImageFilter_Base::SkImageFilter_Base(sk_sp<SkImageFilter> const* inputs, |
151 | int inputCount, const CropRect* cropRect) |
152 | : fUsesSrcInput(false) |
153 | , fUniqueID(next_image_filter_unique_id()) { |
154 | fCropRect = cropRect ? *cropRect : CropRect(SkRect(), 0x0); |
155 | |
156 | fInputs.reset(inputCount); |
157 | |
158 | for (int i = 0; i < inputCount; ++i) { |
159 | if (!inputs[i] || as_IFB(inputs[i])->fUsesSrcInput) { |
160 | fUsesSrcInput = true; |
161 | } |
162 | fInputs[i] = inputs[i]; |
163 | } |
164 | } |
165 | |
166 | SkImageFilter_Base::~SkImageFilter_Base() { |
167 | SkImageFilterCache::Get()->purgeByImageFilter(this); |
168 | } |
169 | |
170 | bool SkImageFilter_Base::Common::unflatten(SkReadBuffer& buffer, int expectedCount) { |
171 | const int count = buffer.readInt(); |
172 | if (!buffer.validate(count >= 0)) { |
173 | return false; |
174 | } |
175 | if (!buffer.validate(expectedCount < 0 || count == expectedCount)) { |
176 | return false; |
177 | } |
178 | |
179 | SkASSERT(fInputs.empty()); |
180 | for (int i = 0; i < count; i++) { |
181 | fInputs.push_back(buffer.readBool() ? buffer.readImageFilter() : nullptr); |
182 | if (!buffer.isValid()) { |
183 | return false; |
184 | } |
185 | } |
186 | SkRect rect; |
187 | buffer.readRect(&rect); |
188 | if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) { |
189 | return false; |
190 | } |
191 | |
192 | uint32_t flags = buffer.readUInt(); |
193 | fCropRect = CropRect(rect, flags); |
194 | return buffer.isValid(); |
195 | } |
196 | |
197 | void SkImageFilter_Base::flatten(SkWriteBuffer& buffer) const { |
198 | buffer.writeInt(fInputs.count()); |
199 | for (int i = 0; i < fInputs.count(); i++) { |
200 | const SkImageFilter* input = this->getInput(i); |
201 | buffer.writeBool(input != nullptr); |
202 | if (input != nullptr) { |
203 | buffer.writeFlattenable(input); |
204 | } |
205 | } |
206 | buffer.writeRect(fCropRect.rect()); |
207 | buffer.writeUInt(fCropRect.flags()); |
208 | } |
209 | |
210 | skif::FilterResult<For::kOutput> SkImageFilter_Base::filterImage(const skif::Context& context) const { |
211 | // TODO (michaelludwig) - Old filters have an implicit assumption that the source image |
212 | // (originally passed separately) has an origin of (0, 0). SkComposeImageFilter makes an effort |
213 | // to ensure that remains the case. Once everyone uses the new type systems for bounds, non |
214 | // (0, 0) source origins will be easy to support. |
215 | SkASSERT(context.source().layerOrigin().x() == 0 && context.source().layerOrigin().y() == 0); |
216 | |
217 | skif::FilterResult<For::kOutput> result; |
218 | if (!context.isValid()) { |
219 | return result; |
220 | } |
221 | |
222 | uint32_t srcGenID = fUsesSrcInput ? context.sourceImage()->uniqueID() : 0; |
223 | const SkIRect srcSubset = fUsesSrcInput ? context.sourceImage()->subset() |
224 | : SkIRect::MakeWH(0, 0); |
225 | |
226 | SkImageFilterCacheKey key(fUniqueID, context.mapping().layerMatrix(), context.clipBounds(), |
227 | srcGenID, srcSubset); |
228 | if (context.cache() && context.cache()->get(key, &result)) { |
229 | return result; |
230 | } |
231 | |
232 | result = this->onFilterImage(context); |
233 | |
234 | #if SK_SUPPORT_GPU |
235 | if (context.gpuBacked() && result.image() && !result.image()->isTextureBacked()) { |
236 | // Keep the result on the GPU - this is still required for some |
237 | // image filters that don't support GPU in all cases |
238 | auto asTexture = result.image()->makeTextureImage(context.getContext()); |
239 | result = skif::FilterResult<For::kOutput>(std::move(asTexture), result.layerOrigin()); |
240 | } |
241 | #endif |
242 | |
243 | if (context.cache()) { |
244 | context.cache()->set(key, this, result); |
245 | } |
246 | |
247 | return result; |
248 | } |
249 | |
250 | skif::LayerSpace<SkIRect> SkImageFilter_Base::getInputBounds( |
251 | const skif::Mapping& mapping, const skif::DeviceSpace<SkRect>& desiredOutput, |
252 | const skif::ParameterSpace<SkRect>* knownContentBounds) const { |
253 | // Map both the device-space desired coverage area and the known content bounds to layer space |
254 | skif::LayerSpace<SkIRect> desiredBounds = mapping.deviceToLayer(desiredOutput).roundOut(); |
255 | // If we have no known content bounds use the desired coverage area, because that is the most |
256 | // conservative possibility. |
257 | skif::LayerSpace<SkIRect> contentBounds = |
258 | knownContentBounds ? mapping.paramToLayer(*knownContentBounds).roundOut() |
259 | : desiredBounds; |
260 | |
261 | // Process the layer-space desired output with the filter DAG to determine required input |
262 | skif::LayerSpace<SkIRect> requiredInput = this->onGetInputLayerBounds( |
263 | mapping, desiredBounds, contentBounds); |
264 | // If we know what's actually going to be drawn into the layer, and we don't change transparent |
265 | // black, then we can further restrict the layer to what the known content is |
266 | if (knownContentBounds && !this->affectsTransparentBlack()) { |
267 | if (!requiredInput.intersect(contentBounds)) { |
268 | // Nothing would be output by the filter, so return empty rect |
269 | return skif::LayerSpace<SkIRect>(SkIRect::MakeEmpty()); |
270 | } |
271 | } |
272 | return requiredInput; |
273 | } |
274 | |
275 | skif::DeviceSpace<SkIRect> SkImageFilter_Base::getOutputBounds( |
276 | const skif::Mapping& mapping, const skif::ParameterSpace<SkRect>& contentBounds) const { |
277 | // Map the input content into the layer space where filtering will occur |
278 | skif::LayerSpace<SkRect> layerContent = mapping.paramToLayer(contentBounds); |
279 | // Determine the filter DAGs output bounds in layer space |
280 | skif::LayerSpace<SkIRect> filterOutput = this->onGetOutputLayerBounds( |
281 | mapping, layerContent.roundOut()); |
282 | // FIXME (michaelludwig) - To be removed once cropping is isolated, but remain consistent with |
283 | // old filterBounds(kForward) behavior. |
284 | SkIRect dst; |
285 | as_IFB(this)->getCropRect().applyTo( |
286 | SkIRect(filterOutput), mapping.layerMatrix(), |
287 | as_IFB(this)->affectsTransparentBlack(), &dst); |
288 | |
289 | // Map all the way to device space |
290 | return mapping.layerToDevice(skif::LayerSpace<SkIRect>(dst)); |
291 | } |
292 | |
293 | // TODO (michaelludwig) - Default to using the old onFilterImage, as filters are updated one by one. |
294 | // Once the old function is gone, this onFilterImage() will be made a pure virtual. |
295 | skif::FilterResult<For::kOutput> SkImageFilter_Base::onFilterImage(const skif::Context& context) const { |
296 | SkIPoint origin; |
297 | auto image = this->onFilterImage(context, &origin); |
298 | return skif::FilterResult<For::kOutput>(std::move(image), skif::LayerSpace<SkIPoint>(origin)); |
299 | } |
300 | |
301 | bool SkImageFilter_Base::canHandleComplexCTM() const { |
302 | // CropRects need to apply in the source coordinate system, but are not aware of complex CTMs |
303 | // when performing clipping. For a simple fix, any filter with a crop rect set cannot support |
304 | // complex CTMs until that's updated. |
305 | if (this->cropRectIsSet() || !this->onCanHandleComplexCTM()) { |
306 | return false; |
307 | } |
308 | const int count = this->countInputs(); |
309 | for (int i = 0; i < count; ++i) { |
310 | const SkImageFilter_Base* input = as_IFB(this->getInput(i)); |
311 | if (input && !input->canHandleComplexCTM()) { |
312 | return false; |
313 | } |
314 | } |
315 | return true; |
316 | } |
317 | |
318 | void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds, const SkMatrix& ctm, |
319 | bool embiggen, SkIRect* cropped) const { |
320 | *cropped = imageBounds; |
321 | if (fFlags) { |
322 | SkRect devCropR; |
323 | ctm.mapRect(&devCropR, fRect); |
324 | SkIRect devICropR = devCropR.roundOut(); |
325 | |
326 | // Compute the left/top first, in case we need to modify the right/bottom for a missing edge |
327 | if (fFlags & kHasLeft_CropEdge) { |
328 | if (embiggen || devICropR.fLeft > cropped->fLeft) { |
329 | cropped->fLeft = devICropR.fLeft; |
330 | } |
331 | } else { |
332 | devICropR.fRight = Sk32_sat_add(cropped->fLeft, devICropR.width()); |
333 | } |
334 | if (fFlags & kHasTop_CropEdge) { |
335 | if (embiggen || devICropR.fTop > cropped->fTop) { |
336 | cropped->fTop = devICropR.fTop; |
337 | } |
338 | } else { |
339 | devICropR.fBottom = Sk32_sat_add(cropped->fTop, devICropR.height()); |
340 | } |
341 | if (fFlags & kHasWidth_CropEdge) { |
342 | if (embiggen || devICropR.fRight < cropped->fRight) { |
343 | cropped->fRight = devICropR.fRight; |
344 | } |
345 | } |
346 | if (fFlags & kHasHeight_CropEdge) { |
347 | if (embiggen || devICropR.fBottom < cropped->fBottom) { |
348 | cropped->fBottom = devICropR.fBottom; |
349 | } |
350 | } |
351 | } |
352 | } |
353 | |
354 | bool SkImageFilter_Base::applyCropRect(const Context& ctx, const SkIRect& srcBounds, |
355 | SkIRect* dstBounds) const { |
356 | SkIRect tmpDst = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection, nullptr); |
357 | fCropRect.applyTo(tmpDst, ctx.ctm(), this->affectsTransparentBlack(), dstBounds); |
358 | // Intersect against the clip bounds, in case the crop rect has |
359 | // grown the bounds beyond the original clip. This can happen for |
360 | // example in tiling, where the clip is much smaller than the filtered |
361 | // primitive. If we didn't do this, we would be processing the filter |
362 | // at the full crop rect size in every tile. |
363 | return dstBounds->intersect(ctx.clipBounds()); |
364 | } |
365 | |
366 | // Return a larger (newWidth x newHeight) copy of 'src' with black padding |
367 | // around it. |
368 | static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src, const SkImageFilter_Base::Context& ctx, |
369 | int newWidth, int newHeight, int offX, int offY) { |
370 | // We would like to operate in the source's color space (so that we return an "identical" |
371 | // image, other than the padding. To achieve that, we'd create a new context using |
372 | // src->getColorSpace() to replace ctx.colorSpace(). |
373 | |
374 | // That fails in at least two ways. For formats that are texturable but not renderable (like |
375 | // F16 on some ES implementations), we can't create a surface to do the work. For sRGB, images |
376 | // may be tagged with an sRGB color space (which leads to an sRGB config in makeSurface). But |
377 | // the actual config of that sRGB image on a device with no sRGB support is non-sRGB. |
378 | // |
379 | // Rather than try to special case these situations, we execute the image padding in the |
380 | // destination color space. This should not affect the output of the DAG in (almost) any case, |
381 | // because the result of this call is going to be used as an input, where it would have been |
382 | // switched to the destination space anyway. The one exception would be a filter that expected |
383 | // to consume unclamped F16 data, but the padded version of the image is pre-clamped to 8888. |
384 | // We can revisit this logic if that ever becomes an actual problem. |
385 | sk_sp<SkSpecialSurface> surf(ctx.makeSurface(SkISize::Make(newWidth, newHeight))); |
386 | if (!surf) { |
387 | return nullptr; |
388 | } |
389 | |
390 | SkCanvas* canvas = surf->getCanvas(); |
391 | SkASSERT(canvas); |
392 | |
393 | canvas->clear(0x0); |
394 | |
395 | src->draw(canvas, offX, offY, nullptr); |
396 | |
397 | return surf->makeImageSnapshot(); |
398 | } |
399 | |
400 | sk_sp<SkSpecialImage> SkImageFilter_Base::applyCropRectAndPad(const Context& ctx, |
401 | SkSpecialImage* src, |
402 | SkIPoint* srcOffset, |
403 | SkIRect* bounds) const { |
404 | const SkIRect srcBounds = SkIRect::MakeXYWH(srcOffset->x(), srcOffset->y(), |
405 | src->width(), src->height()); |
406 | |
407 | if (!this->applyCropRect(ctx, srcBounds, bounds)) { |
408 | return nullptr; |
409 | } |
410 | |
411 | if (srcBounds.contains(*bounds)) { |
412 | return sk_sp<SkSpecialImage>(SkRef(src)); |
413 | } else { |
414 | sk_sp<SkSpecialImage> img(pad_image(src, ctx, bounds->width(), bounds->height(), |
415 | Sk32_sat_sub(srcOffset->x(), bounds->x()), |
416 | Sk32_sat_sub(srcOffset->y(), bounds->y()))); |
417 | *srcOffset = SkIPoint::Make(bounds->x(), bounds->y()); |
418 | return img; |
419 | } |
420 | } |
421 | |
422 | // NOTE: The new onGetOutputLayerBounds() and onGetInputLayerBounds() default to calling into the |
423 | // deprecated onFilterBounds and onFilterNodeBounds. While these functions are not tagged, they do |
424 | // match the documented default behavior for the new bounds functions. |
425 | SkIRect SkImageFilter_Base::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, |
426 | MapDirection dir, const SkIRect* inputRect) const { |
427 | if (this->countInputs() < 1) { |
428 | return src; |
429 | } |
430 | |
431 | SkIRect totalBounds; |
432 | for (int i = 0; i < this->countInputs(); ++i) { |
433 | const SkImageFilter* filter = this->getInput(i); |
434 | SkIRect rect = filter ? filter->filterBounds(src, ctm, dir, inputRect) : src; |
435 | if (0 == i) { |
436 | totalBounds = rect; |
437 | } else { |
438 | totalBounds.join(rect); |
439 | } |
440 | } |
441 | |
442 | return totalBounds; |
443 | } |
444 | |
445 | SkIRect SkImageFilter_Base::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, |
446 | MapDirection, const SkIRect*) const { |
447 | return src; |
448 | } |
449 | |
450 | skif::LayerSpace<SkIRect> SkImageFilter_Base::visitInputLayerBounds( |
451 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
452 | const skif::LayerSpace<SkIRect>& contentBounds) const { |
453 | if (this->countInputs() < 1) { |
454 | // TODO (michaelludwig) - if a filter doesn't have any inputs, it doesn't need any |
455 | // implicit source image, so arguably we could return an empty rect here. 'desiredOutput' is |
456 | // consistent with original behavior, so empty bounds may have unintended side effects |
457 | // but should be explored later. |
458 | return desiredOutput; |
459 | } |
460 | |
461 | skif::LayerSpace<SkIRect> netInput; |
462 | for (int i = 0; i < this->countInputs(); ++i) { |
463 | const SkImageFilter* filter = this->getInput(i); |
464 | // The required input for this input filter, or 'targetOutput' if the filter is null and |
465 | // the source image is used (so must be sized to cover 'targetOutput'). |
466 | skif::LayerSpace<SkIRect> requiredInput = |
467 | filter ? as_IFB(filter)->onGetInputLayerBounds(mapping, desiredOutput, |
468 | contentBounds) |
469 | : desiredOutput; |
470 | // Accumulate with all other filters |
471 | if (i == 0) { |
472 | netInput = requiredInput; |
473 | } else { |
474 | netInput.join(requiredInput); |
475 | } |
476 | } |
477 | return netInput; |
478 | } |
479 | |
480 | skif::LayerSpace<SkIRect> SkImageFilter_Base::visitOutputLayerBounds( |
481 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
482 | if (this->countInputs() < 1) { |
483 | // TODO (michaelludwig) - if a filter doesn't have any inputs, it presumably is determining |
484 | // its output size from something other than the implicit source contentBounds, in which |
485 | // case it shouldn't be calling this helper function, so explore adding an unreachable test |
486 | return contentBounds; |
487 | } |
488 | |
489 | skif::LayerSpace<SkIRect> netOutput; |
490 | for (int i = 0; i < this->countInputs(); ++i) { |
491 | const SkImageFilter* filter = this->getInput(i); |
492 | // The output for just this input filter, or 'contentBounds' if the filter is null and |
493 | // the source image is used (i.e. the identity filter applied to the source). |
494 | skif::LayerSpace<SkIRect> output = |
495 | filter ? as_IFB(filter)->onGetOutputLayerBounds(mapping, contentBounds) |
496 | : contentBounds; |
497 | // Accumulate with all other filters |
498 | if (i == 0) { |
499 | netOutput = output; |
500 | } else { |
501 | netOutput.join(output); |
502 | } |
503 | } |
504 | return netOutput; |
505 | } |
506 | |
507 | skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetInputLayerBounds( |
508 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& desiredOutput, |
509 | const skif::LayerSpace<SkIRect>& contentBounds, VisitChildren recurse) const { |
510 | // Call old functions for now since they may have been overridden by a subclass that's not been |
511 | // updated yet; normally this would just default to visitInputLayerBounds() |
512 | SkIRect content = SkIRect(contentBounds); |
513 | SkIRect input = this->onFilterNodeBounds(SkIRect(desiredOutput), mapping.layerMatrix(), |
514 | kReverse_MapDirection, &content); |
515 | if (recurse == VisitChildren::kYes) { |
516 | SkIRect aggregate = this->onFilterBounds(input, mapping.layerMatrix(), |
517 | kReverse_MapDirection, &input); |
518 | return skif::LayerSpace<SkIRect>(aggregate); |
519 | } else { |
520 | return skif::LayerSpace<SkIRect>(input); |
521 | } |
522 | } |
523 | |
524 | skif::LayerSpace<SkIRect> SkImageFilter_Base::onGetOutputLayerBounds( |
525 | const skif::Mapping& mapping, const skif::LayerSpace<SkIRect>& contentBounds) const { |
526 | // Call old functions for now; normally this would default to visitOutputLayerBounds() |
527 | SkIRect aggregate = this->onFilterBounds(SkIRect(contentBounds), mapping.layerMatrix(), |
528 | kForward_MapDirection, nullptr); |
529 | SkIRect output = this->onFilterNodeBounds(aggregate, mapping.layerMatrix(), |
530 | kForward_MapDirection, nullptr); |
531 | return skif::LayerSpace<SkIRect>(output); |
532 | } |
533 | |
534 | template<skif::Usage kU> |
535 | skif::FilterResult<kU> SkImageFilter_Base::filterInput(int index, const skif::Context& ctx) const { |
536 | // Sanity checks for the index-specific input usages |
537 | SkASSERT(kU != skif::Usage::kInput0 || index == 0); |
538 | SkASSERT(kU != skif::Usage::kInput1 || index == 1); |
539 | |
540 | const SkImageFilter* input = this->getInput(index); |
541 | if (!input) { |
542 | // Convert from the generic kInput of the source image to kU |
543 | return static_cast<skif::FilterResult<kU>>(ctx.source()); |
544 | } |
545 | |
546 | skif::FilterResult<For::kOutput> result = as_IFB(input)->filterImage(this->mapContext(ctx)); |
547 | SkASSERT(!result.image() || ctx.gpuBacked() == result.image()->isTextureBacked()); |
548 | |
549 | // Map the output result of the input image filter to the input usage requested for this filter |
550 | return static_cast<skif::FilterResult<kU>>(std::move(result)); |
551 | } |
552 | // Instantiate filterInput() for kInput, kInput0, and kInput1. This does not provide a definition |
553 | // for kOutput, which should never be used anyways, and this way the linker will fail for us then. |
554 | template skif::FilterResult<For::kInput> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
555 | template skif::FilterResult<For::kInput0> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
556 | template skif::FilterResult<For::kInput1> SkImageFilter_Base::filterInput(int, const skif::Context&) const; |
557 | |
558 | SkImageFilter_Base::Context SkImageFilter_Base::mapContext(const Context& ctx) const { |
559 | // We don't recurse through the child input filters because that happens automatically |
560 | // as part of the filterImage() evaluation. In this case, we want the bounds for the |
561 | // edge from this node to its children, without the effects of the child filters. |
562 | skif::LayerSpace<SkIRect> childOutput = this->onGetInputLayerBounds( |
563 | ctx.mapping(), ctx.desiredOutput(), ctx.desiredOutput(), VisitChildren::kNo); |
564 | return ctx.withNewDesiredOutput(childOutput); |
565 | } |
566 | |
567 | #if SK_SUPPORT_GPU |
568 | sk_sp<SkSpecialImage> SkImageFilter_Base::DrawWithFP(GrRecordingContext* context, |
569 | std::unique_ptr<GrFragmentProcessor> fp, |
570 | const SkIRect& bounds, |
571 | SkColorType colorType, |
572 | const SkColorSpace* colorSpace, |
573 | GrProtected isProtected) { |
574 | GrPaint paint; |
575 | paint.addColorFragmentProcessor(std::move(fp)); |
576 | paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
577 | |
578 | auto renderTargetContext = GrRenderTargetContext::Make( |
579 | context, SkColorTypeToGrColorType(colorType), sk_ref_sp(colorSpace), |
580 | SkBackingFit::kApprox, bounds.size(), 1, GrMipMapped::kNo, isProtected, |
581 | kBottomLeft_GrSurfaceOrigin); |
582 | if (!renderTargetContext) { |
583 | return nullptr; |
584 | } |
585 | |
586 | SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height()); |
587 | SkRect srcRect = SkRect::Make(bounds); |
588 | SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height()); |
589 | GrFixedClip clip(dstIRect); |
590 | renderTargetContext->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect, |
591 | srcRect); |
592 | |
593 | return SkSpecialImage::MakeDeferredFromGpu( |
594 | context, dstIRect, kNeedNewImageUniqueID_SpecialImage, |
595 | renderTargetContext->readSurfaceView(), renderTargetContext->colorInfo().colorType(), |
596 | renderTargetContext->colorInfo().refColorSpace()); |
597 | } |
598 | |
599 | sk_sp<SkSpecialImage> SkImageFilter_Base::ImageToColorSpace(SkSpecialImage* src, |
600 | SkColorType colorType, |
601 | SkColorSpace* colorSpace) { |
602 | // There are several conditions that determine if we actually need to convert the source to the |
603 | // destination's color space. Rather than duplicate that logic here, just try to make an xform |
604 | // object. If that produces something, then both are tagged, and the source is in a different |
605 | // gamut than the dest. There is some overhead to making the xform, but those are cached, and |
606 | // if we get one back, that means we're about to use it during the conversion anyway. |
607 | auto colorSpaceXform = GrColorSpaceXform::Make(src->getColorSpace(), src->alphaType(), |
608 | colorSpace, kPremul_SkAlphaType); |
609 | |
610 | if (!colorSpaceXform) { |
611 | // No xform needed, just return the original image |
612 | return sk_ref_sp(src); |
613 | } |
614 | |
615 | sk_sp<SkSpecialSurface> surf(src->makeSurface(colorType, colorSpace, |
616 | SkISize::Make(src->width(), src->height()))); |
617 | if (!surf) { |
618 | return sk_ref_sp(src); |
619 | } |
620 | |
621 | SkCanvas* canvas = surf->getCanvas(); |
622 | SkASSERT(canvas); |
623 | SkPaint p; |
624 | p.setBlendMode(SkBlendMode::kSrc); |
625 | src->draw(canvas, 0, 0, &p); |
626 | return surf->makeImageSnapshot(); |
627 | } |
628 | #endif |
629 | |
630 | // In repeat mode, when we are going to sample off one edge of the srcBounds we require the |
631 | // opposite side be preserved. |
632 | SkIRect SkImageFilter_Base::DetermineRepeatedSrcBound(const SkIRect& srcBounds, |
633 | const SkIVector& filterOffset, |
634 | const SkISize& filterSize, |
635 | const SkIRect& originalSrcBounds) { |
636 | SkIRect tmp = srcBounds; |
637 | tmp.adjust(-filterOffset.fX, -filterOffset.fY, |
638 | filterSize.fWidth - filterOffset.fX, filterSize.fHeight - filterOffset.fY); |
639 | |
640 | if (tmp.fLeft < originalSrcBounds.fLeft || tmp.fRight > originalSrcBounds.fRight) { |
641 | tmp.fLeft = originalSrcBounds.fLeft; |
642 | tmp.fRight = originalSrcBounds.fRight; |
643 | } |
644 | if (tmp.fTop < originalSrcBounds.fTop || tmp.fBottom > originalSrcBounds.fBottom) { |
645 | tmp.fTop = originalSrcBounds.fTop; |
646 | tmp.fBottom = originalSrcBounds.fBottom; |
647 | } |
648 | |
649 | return tmp; |
650 | } |
651 | |
652 | void SkImageFilter_Base::PurgeCache() { |
653 | SkImageFilterCache::Get()->purge(); |
654 | } |
655 | |
656 | static sk_sp<SkImageFilter> apply_ctm_to_filter(sk_sp<SkImageFilter> input, const SkMatrix& ctm, |
657 | SkMatrix* remainder) { |
658 | if (ctm.isScaleTranslate() || as_IFB(input)->canHandleComplexCTM()) { |
659 | // The filter supports the CTM, so leave it as-is and 'remainder' stores the whole CTM |
660 | *remainder = ctm; |
661 | return input; |
662 | } |
663 | |
664 | // We have a complex CTM and a filter that can't support them, so it needs to use the matrix |
665 | // transform filter that resamples the image contents. Decompose the simple portion of the ctm |
666 | // into 'remainder' |
667 | SkMatrix ctmToEmbed; |
668 | SkSize scale; |
669 | if (ctm.decomposeScale(&scale, &ctmToEmbed)) { |
670 | // decomposeScale splits ctm into scale * ctmToEmbed, so bake ctmToEmbed into DAG |
671 | // with a matrix filter and return scale as the remaining matrix for the real CTM. |
672 | remainder->setScale(scale.fWidth, scale.fHeight); |
673 | |
674 | // ctmToEmbed is passed to SkMatrixImageFilter, which performs its transforms as if it were |
675 | // a pre-transformation before applying the image-filter context's CTM. In this case, we |
676 | // need ctmToEmbed to be a post-transformation (i.e. after the scale matrix since |
677 | // decomposeScale produces ctm = ctmToEmbed * scale). Giving scale^-1 * ctmToEmbed * scale |
678 | // to the matrix filter achieves this effect. |
679 | // TODO (michaelludwig) - When the original root node of a filter can be drawn directly to a |
680 | // device using ctmToEmbed, this abuse of SkMatrixImageFilter can go away. |
681 | ctmToEmbed.preScale(scale.fWidth, scale.fHeight); |
682 | ctmToEmbed.postScale(1.f / scale.fWidth, 1.f / scale.fHeight); |
683 | } else { |
684 | // Unable to decompose |
685 | // FIXME Ideally we'd embed the entire CTM as part of the matrix image filter, but |
686 | // the device <-> src bounds calculations for filters are very brittle under perspective, |
687 | // and can easily run into precision issues (wrong bounds that clip), or performance issues |
688 | // (producing large source-space images where 80% of the image is compressed into a few |
689 | // device pixels). A longer term solution for perspective-space image filtering is needed |
690 | // see skbug.com/9074 |
691 | if (ctm.hasPerspective()) { |
692 | *remainder = ctm; |
693 | return input; |
694 | } |
695 | |
696 | ctmToEmbed = ctm; |
697 | remainder->setIdentity(); |
698 | } |
699 | |
700 | return SkMatrixImageFilter::Make(ctmToEmbed, kLow_SkFilterQuality, input); |
701 | } |
702 | |
703 | sk_sp<SkImageFilter> SkImageFilter_Base::applyCTM(const SkMatrix& ctm, SkMatrix* remainder) const { |
704 | return apply_ctm_to_filter(this->refMe(), ctm, remainder); |
705 | } |
706 | |