1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkScanPriv.h" |
9 | |
10 | #include "include/core/SkMatrix.h" |
11 | #include "include/core/SkPath.h" |
12 | #include "include/core/SkRegion.h" |
13 | #include "include/private/SkTo.h" |
14 | #include "src/core/SkAntiRun.h" |
15 | #include "src/core/SkBlitter.h" |
16 | #include "src/core/SkPathPriv.h" |
17 | |
18 | #define SHIFT SK_SUPERSAMPLE_SHIFT |
19 | #define SCALE (1 << SHIFT) |
20 | #define MASK (SCALE - 1) |
21 | |
22 | /** @file |
23 | We have two techniques for capturing the output of the supersampler: |
24 | - SUPERMASK, which records a large mask-bitmap |
25 | this is often faster for small, complex objects |
26 | - RLE, which records a rle-encoded scanline |
27 | this is often faster for large objects with big spans |
28 | |
29 | These blitters use two coordinate systems: |
30 | - destination coordinates, scale equal to the output - often |
31 | abbreviated with 'i' or 'I' in variable names |
32 | - supersampled coordinates, scale equal to the output * SCALE |
33 | */ |
34 | |
35 | //#define FORCE_SUPERMASK |
36 | //#define FORCE_RLE |
37 | |
38 | /////////////////////////////////////////////////////////////////////////////// |
39 | |
40 | /// Base class for a single-pass supersampled blitter. |
41 | class BaseSuperBlitter : public SkBlitter { |
42 | public: |
43 | BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, |
44 | const SkIRect& clipBounds, bool isInverse); |
45 | |
46 | /// Must be explicitly defined on subclasses. |
47 | virtual void blitAntiH(int x, int y, const SkAlpha antialias[], |
48 | const int16_t runs[]) override { |
49 | SkDEBUGFAIL("How did I get here?" ); |
50 | } |
51 | /// May not be called on BaseSuperBlitter because it blits out of order. |
52 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
53 | SkDEBUGFAIL("How did I get here?" ); |
54 | } |
55 | |
56 | protected: |
57 | SkBlitter* fRealBlitter; |
58 | /// Current y coordinate, in destination coordinates. |
59 | int fCurrIY; |
60 | /// Widest row of region to be blitted, in destination coordinates. |
61 | int fWidth; |
62 | /// Leftmost x coordinate in any row, in destination coordinates. |
63 | int fLeft; |
64 | /// Leftmost x coordinate in any row, in supersampled coordinates. |
65 | int fSuperLeft; |
66 | |
67 | SkDEBUGCODE(int fCurrX;) |
68 | /// Current y coordinate in supersampled coordinates. |
69 | int fCurrY; |
70 | /// Initial y coordinate (top of bounds). |
71 | int fTop; |
72 | |
73 | SkIRect fSectBounds; |
74 | }; |
75 | |
76 | BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlit, const SkIRect& ir, |
77 | const SkIRect& clipBounds, bool isInverse) { |
78 | fRealBlitter = realBlit; |
79 | |
80 | SkIRect sectBounds; |
81 | if (isInverse) { |
82 | // We use the clip bounds instead of the ir, since we may be asked to |
83 | //draw outside of the rect when we're a inverse filltype |
84 | sectBounds = clipBounds; |
85 | } else { |
86 | if (!sectBounds.intersect(ir, clipBounds)) { |
87 | sectBounds.setEmpty(); |
88 | } |
89 | } |
90 | |
91 | const int left = sectBounds.left(); |
92 | const int right = sectBounds.right(); |
93 | |
94 | fLeft = left; |
95 | fSuperLeft = SkLeftShift(left, SHIFT); |
96 | fWidth = right - left; |
97 | fTop = sectBounds.top(); |
98 | fCurrIY = fTop - 1; |
99 | fCurrY = SkLeftShift(fTop, SHIFT) - 1; |
100 | |
101 | SkDEBUGCODE(fCurrX = -1;) |
102 | } |
103 | |
104 | /// Run-length-encoded supersampling antialiased blitter. |
105 | class SuperBlitter : public BaseSuperBlitter { |
106 | public: |
107 | SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds, |
108 | bool isInverse); |
109 | |
110 | ~SuperBlitter() override { |
111 | this->flush(); |
112 | } |
113 | |
114 | /// Once fRuns contains a complete supersampled row, flush() blits |
115 | /// it out through the wrapped blitter. |
116 | void flush(); |
117 | |
118 | /// Blits a row of pixels, with location and width specified |
119 | /// in supersampled coordinates. |
120 | void blitH(int x, int y, int width) override; |
121 | /// Blits a rectangle of pixels, with location and size specified |
122 | /// in supersampled coordinates. |
123 | void blitRect(int x, int y, int width, int height) override; |
124 | |
125 | private: |
126 | // The next three variables are used to track a circular buffer that |
127 | // contains the values used in SkAlphaRuns. These variables should only |
128 | // ever be updated in advanceRuns(), and fRuns should always point to |
129 | // a valid SkAlphaRuns... |
130 | int fRunsToBuffer; |
131 | void* fRunsBuffer; |
132 | int fCurrentRun; |
133 | SkAlphaRuns fRuns; |
134 | |
135 | // extra one to store the zero at the end |
136 | int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); } |
137 | |
138 | // This function updates the fRuns variable to point to the next buffer space |
139 | // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
140 | // and resets fRuns to point to an empty scanline. |
141 | void advanceRuns() { |
142 | const size_t kRunsSz = this->getRunsSz(); |
143 | fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
144 | fRuns.fRuns = reinterpret_cast<int16_t*>( |
145 | reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
146 | fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
147 | fRuns.reset(fWidth); |
148 | } |
149 | |
150 | int fOffsetX; |
151 | }; |
152 | |
153 | SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds, |
154 | bool isInverse) |
155 | : BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse) |
156 | { |
157 | fRunsToBuffer = realBlitter->requestRowsPreserved(); |
158 | fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
159 | fCurrentRun = -1; |
160 | |
161 | this->advanceRuns(); |
162 | |
163 | fOffsetX = 0; |
164 | } |
165 | |
166 | void SuperBlitter::flush() { |
167 | if (fCurrIY >= fTop) { |
168 | |
169 | SkASSERT(fCurrentRun < fRunsToBuffer); |
170 | if (!fRuns.empty()) { |
171 | // SkDEBUGCODE(fRuns.dump();) |
172 | fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns); |
173 | this->advanceRuns(); |
174 | fOffsetX = 0; |
175 | } |
176 | |
177 | fCurrIY = fTop - 1; |
178 | SkDEBUGCODE(fCurrX = -1;) |
179 | } |
180 | } |
181 | |
182 | /** coverage_to_partial_alpha() is being used by SkAlphaRuns, which |
183 | *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)] |
184 | to produce a final value in [0, 255] and handles clamping 256->255 |
185 | itself, with the same (alpha - (alpha >> 8)) correction as |
186 | coverage_to_exact_alpha(). |
187 | */ |
188 | static inline int coverage_to_partial_alpha(int aa) { |
189 | aa <<= 8 - 2*SHIFT; |
190 | return aa; |
191 | } |
192 | |
193 | /** coverage_to_exact_alpha() is being used by our blitter, which wants |
194 | a final value in [0, 255]. |
195 | */ |
196 | static inline int coverage_to_exact_alpha(int aa) { |
197 | int alpha = (256 >> SHIFT) * aa; |
198 | // clamp 256->255 |
199 | return alpha - (alpha >> 8); |
200 | } |
201 | |
202 | void SuperBlitter::blitH(int x, int y, int width) { |
203 | SkASSERT(width > 0); |
204 | |
205 | int iy = y >> SHIFT; |
206 | SkASSERT(iy >= fCurrIY); |
207 | |
208 | x -= fSuperLeft; |
209 | // hack, until I figure out why my cubics (I think) go beyond the bounds |
210 | if (x < 0) { |
211 | width += x; |
212 | x = 0; |
213 | } |
214 | |
215 | #ifdef SK_DEBUG |
216 | SkASSERT(y != fCurrY || x >= fCurrX); |
217 | #endif |
218 | SkASSERT(y >= fCurrY); |
219 | if (fCurrY != y) { |
220 | fOffsetX = 0; |
221 | fCurrY = y; |
222 | } |
223 | |
224 | if (iy != fCurrIY) { // new scanline |
225 | this->flush(); |
226 | fCurrIY = iy; |
227 | } |
228 | |
229 | int start = x; |
230 | int stop = x + width; |
231 | |
232 | SkASSERT(start >= 0 && stop > start); |
233 | // integer-pixel-aligned ends of blit, rounded out |
234 | int fb = start & MASK; |
235 | int fe = stop & MASK; |
236 | int n = (stop >> SHIFT) - (start >> SHIFT) - 1; |
237 | |
238 | if (n < 0) { |
239 | fb = fe - fb; |
240 | n = 0; |
241 | fe = 0; |
242 | } else { |
243 | if (fb == 0) { |
244 | n += 1; |
245 | } else { |
246 | fb = SCALE - fb; |
247 | } |
248 | } |
249 | |
250 | fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb), |
251 | n, coverage_to_partial_alpha(fe), |
252 | (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT), |
253 | fOffsetX); |
254 | |
255 | #ifdef SK_DEBUG |
256 | fRuns.assertValid(y & MASK, (1 << (8 - SHIFT))); |
257 | fCurrX = x + width; |
258 | #endif |
259 | } |
260 | |
261 | #if 0 // UNUSED |
262 | static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA, |
263 | int n, U8CPU riteA) { |
264 | SkASSERT(leftA <= 0xFF); |
265 | SkASSERT(riteA <= 0xFF); |
266 | |
267 | int16_t* run = runs.fRuns; |
268 | uint8_t* aa = runs.fAlpha; |
269 | |
270 | if (ileft > 0) { |
271 | run[0] = ileft; |
272 | aa[0] = 0; |
273 | run += ileft; |
274 | aa += ileft; |
275 | } |
276 | |
277 | SkASSERT(leftA < 0xFF); |
278 | if (leftA > 0) { |
279 | *run++ = 1; |
280 | *aa++ = leftA; |
281 | } |
282 | |
283 | if (n > 0) { |
284 | run[0] = n; |
285 | aa[0] = 0xFF; |
286 | run += n; |
287 | aa += n; |
288 | } |
289 | |
290 | SkASSERT(riteA < 0xFF); |
291 | if (riteA > 0) { |
292 | *run++ = 1; |
293 | *aa++ = riteA; |
294 | } |
295 | run[0] = 0; |
296 | } |
297 | #endif |
298 | |
299 | void SuperBlitter::blitRect(int x, int y, int width, int height) { |
300 | SkASSERT(width > 0); |
301 | SkASSERT(height > 0); |
302 | |
303 | // blit leading rows |
304 | while ((y & MASK)) { |
305 | this->blitH(x, y++, width); |
306 | if (--height <= 0) { |
307 | return; |
308 | } |
309 | } |
310 | SkASSERT(height > 0); |
311 | |
312 | // Since this is a rect, instead of blitting supersampled rows one at a |
313 | // time and then resolving to the destination canvas, we can blit |
314 | // directly to the destintion canvas one row per SCALE supersampled rows. |
315 | int start_y = y >> SHIFT; |
316 | int stop_y = (y + height) >> SHIFT; |
317 | int count = stop_y - start_y; |
318 | if (count > 0) { |
319 | y += count << SHIFT; |
320 | height -= count << SHIFT; |
321 | |
322 | // save original X for our tail blitH() loop at the bottom |
323 | int origX = x; |
324 | |
325 | x -= fSuperLeft; |
326 | // hack, until I figure out why my cubics (I think) go beyond the bounds |
327 | if (x < 0) { |
328 | width += x; |
329 | x = 0; |
330 | } |
331 | |
332 | // There is always a left column, a middle, and a right column. |
333 | // ileft is the destination x of the first pixel of the entire rect. |
334 | // xleft is (SCALE - # of covered supersampled pixels) in that |
335 | // destination pixel. |
336 | int ileft = x >> SHIFT; |
337 | int xleft = x & MASK; |
338 | // irite is the destination x of the last pixel of the OPAQUE section. |
339 | // xrite is the number of supersampled pixels extending beyond irite; |
340 | // xrite/SCALE should give us alpha. |
341 | int irite = (x + width) >> SHIFT; |
342 | int xrite = (x + width) & MASK; |
343 | if (!xrite) { |
344 | xrite = SCALE; |
345 | irite--; |
346 | } |
347 | |
348 | // Need to call flush() to clean up pending draws before we |
349 | // even consider blitV(), since otherwise it can look nonmonotonic. |
350 | SkASSERT(start_y > fCurrIY); |
351 | this->flush(); |
352 | |
353 | int n = irite - ileft - 1; |
354 | if (n < 0) { |
355 | // If n < 0, we'll only have a single partially-transparent column |
356 | // of pixels to render. |
357 | xleft = xrite - xleft; |
358 | SkASSERT(xleft <= SCALE); |
359 | SkASSERT(xleft > 0); |
360 | fRealBlitter->blitV(ileft + fLeft, start_y, count, |
361 | coverage_to_exact_alpha(xleft)); |
362 | } else { |
363 | // With n = 0, we have two possibly-transparent columns of pixels |
364 | // to render; with n > 0, we have opaque columns between them. |
365 | |
366 | xleft = SCALE - xleft; |
367 | |
368 | // Using coverage_to_exact_alpha is not consistent with blitH() |
369 | const int coverageL = coverage_to_exact_alpha(xleft); |
370 | const int coverageR = coverage_to_exact_alpha(xrite); |
371 | |
372 | SkASSERT(coverageL > 0 || n > 0 || coverageR > 0); |
373 | SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth); |
374 | |
375 | fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count, |
376 | coverageL, coverageR); |
377 | } |
378 | |
379 | // preamble for our next call to blitH() |
380 | fCurrIY = stop_y - 1; |
381 | fOffsetX = 0; |
382 | fCurrY = y - 1; |
383 | fRuns.reset(fWidth); |
384 | x = origX; |
385 | } |
386 | |
387 | // catch any remaining few rows |
388 | SkASSERT(height <= MASK); |
389 | while (--height >= 0) { |
390 | this->blitH(x, y++, width); |
391 | } |
392 | } |
393 | |
394 | /////////////////////////////////////////////////////////////////////////////// |
395 | |
396 | /// Masked supersampling antialiased blitter. |
397 | class MaskSuperBlitter : public BaseSuperBlitter { |
398 | public: |
399 | MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect&, bool isInverse); |
400 | ~MaskSuperBlitter() override { |
401 | fRealBlitter->blitMask(fMask, fClipRect); |
402 | } |
403 | |
404 | void blitH(int x, int y, int width) override; |
405 | |
406 | static bool CanHandleRect(const SkIRect& bounds) { |
407 | #ifdef FORCE_RLE |
408 | return false; |
409 | #endif |
410 | int width = bounds.width(); |
411 | int64_t rb = SkAlign4(width); |
412 | // use 64bits to detect overflow |
413 | int64_t storage = rb * bounds.height(); |
414 | |
415 | return (width <= MaskSuperBlitter::kMAX_WIDTH) && |
416 | (storage <= MaskSuperBlitter::kMAX_STORAGE); |
417 | } |
418 | |
419 | private: |
420 | enum { |
421 | #ifdef FORCE_SUPERMASK |
422 | kMAX_WIDTH = 2048, |
423 | kMAX_STORAGE = 1024 * 1024 * 2 |
424 | #else |
425 | kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster |
426 | kMAX_STORAGE = 1024 |
427 | #endif |
428 | }; |
429 | |
430 | SkMask fMask; |
431 | SkIRect fClipRect; |
432 | // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than |
433 | // perform a test to see if stopAlpha != 0 |
434 | uint32_t fStorage[(kMAX_STORAGE >> 2) + 1]; |
435 | }; |
436 | |
437 | MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, |
438 | const SkIRect& clipBounds, bool isInverse) |
439 | : BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse) |
440 | { |
441 | SkASSERT(CanHandleRect(ir)); |
442 | SkASSERT(!isInverse); |
443 | |
444 | fMask.fImage = (uint8_t*)fStorage; |
445 | fMask.fBounds = ir; |
446 | fMask.fRowBytes = ir.width(); |
447 | fMask.fFormat = SkMask::kA8_Format; |
448 | |
449 | fClipRect = ir; |
450 | if (!fClipRect.intersect(clipBounds)) { |
451 | SkASSERT(0); |
452 | fClipRect.setEmpty(); |
453 | } |
454 | |
455 | // For valgrind, write 1 extra byte at the end so we don't read |
456 | // uninitialized memory. See comment in add_aa_span and fStorage[]. |
457 | memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1); |
458 | } |
459 | |
460 | static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) { |
461 | /* I should be able to just add alpha[x] + startAlpha. |
462 | However, if the trailing edge of the previous span and the leading |
463 | edge of the current span round to the same super-sampled x value, |
464 | I might overflow to 256 with this add, hence the funny subtract. |
465 | */ |
466 | unsigned tmp = *alpha + startAlpha; |
467 | SkASSERT(tmp <= 256); |
468 | *alpha = SkToU8(tmp - (tmp >> 8)); |
469 | } |
470 | |
471 | static inline uint32_t quadplicate_byte(U8CPU value) { |
472 | uint32_t pair = (value << 8) | value; |
473 | return (pair << 16) | pair; |
474 | } |
475 | |
476 | // Perform this tricky subtract, to avoid overflowing to 256. Our caller should |
477 | // only ever call us with at most enough to hit 256 (never larger), so it is |
478 | // enough to just subtract the high-bit. Actually clamping with a branch would |
479 | // be slower (e.g. if (tmp > 255) tmp = 255;) |
480 | // |
481 | static inline void saturated_add(uint8_t* ptr, U8CPU add) { |
482 | unsigned tmp = *ptr + add; |
483 | SkASSERT(tmp <= 256); |
484 | *ptr = SkToU8(tmp - (tmp >> 8)); |
485 | } |
486 | |
487 | // minimum count before we want to setup an inner loop, adding 4-at-a-time |
488 | #define MIN_COUNT_FOR_QUAD_LOOP 16 |
489 | |
490 | static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount, |
491 | U8CPU stopAlpha, U8CPU maxValue) { |
492 | SkASSERT(middleCount >= 0); |
493 | |
494 | saturated_add(alpha, startAlpha); |
495 | alpha += 1; |
496 | |
497 | if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) { |
498 | // loop until we're quad-byte aligned |
499 | while (reinterpret_cast<intptr_t>(alpha) & 0x3) { |
500 | alpha[0] = SkToU8(alpha[0] + maxValue); |
501 | alpha += 1; |
502 | middleCount -= 1; |
503 | } |
504 | |
505 | int bigCount = middleCount >> 2; |
506 | uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha); |
507 | uint32_t qval = quadplicate_byte(maxValue); |
508 | do { |
509 | *qptr++ += qval; |
510 | } while (--bigCount > 0); |
511 | |
512 | middleCount &= 3; |
513 | alpha = reinterpret_cast<uint8_t*> (qptr); |
514 | // fall through to the following while-loop |
515 | } |
516 | |
517 | while (--middleCount >= 0) { |
518 | alpha[0] = SkToU8(alpha[0] + maxValue); |
519 | alpha += 1; |
520 | } |
521 | |
522 | // potentially this can be off the end of our "legal" alpha values, but that |
523 | // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0 |
524 | // every time (slow), we just do it, and ensure that we've allocated extra space |
525 | // (see the + 1 comment in fStorage[] |
526 | saturated_add(alpha, stopAlpha); |
527 | } |
528 | |
529 | void MaskSuperBlitter::blitH(int x, int y, int width) { |
530 | int iy = (y >> SHIFT); |
531 | |
532 | SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom); |
533 | iy -= fMask.fBounds.fTop; // make it relative to 0 |
534 | |
535 | // This should never happen, but it does. Until the true cause is |
536 | // discovered, let's skip this span instead of crashing. |
537 | // See http://crbug.com/17569. |
538 | if (iy < 0) { |
539 | return; |
540 | } |
541 | |
542 | #ifdef SK_DEBUG |
543 | { |
544 | int ix = x >> SHIFT; |
545 | SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight); |
546 | } |
547 | #endif |
548 | |
549 | x -= SkLeftShift(fMask.fBounds.fLeft, SHIFT); |
550 | |
551 | // hack, until I figure out why my cubics (I think) go beyond the bounds |
552 | if (x < 0) { |
553 | width += x; |
554 | x = 0; |
555 | } |
556 | |
557 | uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT); |
558 | |
559 | int start = x; |
560 | int stop = x + width; |
561 | |
562 | SkASSERT(start >= 0 && stop > start); |
563 | int fb = start & MASK; |
564 | int fe = stop & MASK; |
565 | int n = (stop >> SHIFT) - (start >> SHIFT) - 1; |
566 | |
567 | |
568 | if (n < 0) { |
569 | SkASSERT(row >= fMask.fImage); |
570 | SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1); |
571 | add_aa_span(row, coverage_to_partial_alpha(fe - fb)); |
572 | } else { |
573 | fb = SCALE - fb; |
574 | SkASSERT(row >= fMask.fImage); |
575 | SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1); |
576 | add_aa_span(row, coverage_to_partial_alpha(fb), |
577 | n, coverage_to_partial_alpha(fe), |
578 | (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT)); |
579 | } |
580 | |
581 | #ifdef SK_DEBUG |
582 | fCurrX = x + width; |
583 | #endif |
584 | } |
585 | |
586 | /////////////////////////////////////////////////////////////////////////////// |
587 | |
588 | static SkIRect safeRoundOut(const SkRect& src) { |
589 | // roundOut will pin huge floats to max/min int |
590 | SkIRect dst = src.roundOut(); |
591 | |
592 | // intersect with a smaller huge rect, so the rect will not be considered empty for being |
593 | // too large. e.g. { -SK_MaxS32 ... SK_MaxS32 } is considered empty because its width |
594 | // exceeds signed 32bit. |
595 | const int32_t limit = SK_MaxS32 >> SK_SUPERSAMPLE_SHIFT; |
596 | (void)dst.intersect({ -limit, -limit, limit, limit}); |
597 | |
598 | return dst; |
599 | } |
600 | |
601 | constexpr int kSampleSize = 8; |
602 | #if !defined(SK_DISABLE_AAA) |
603 | constexpr SkScalar kComplexityThreshold = 0.25; |
604 | #endif |
605 | |
606 | static void compute_complexity(const SkPath& path, SkScalar& avgLength, SkScalar& complexity) { |
607 | int n = path.countPoints(); |
608 | if (n < kSampleSize || path.getBounds().isEmpty()) { |
609 | // set to invalid value to indicate that we failed to compute |
610 | avgLength = complexity = -1; |
611 | return; |
612 | } |
613 | |
614 | SkScalar sumLength = 0; |
615 | SkPoint lastPoint = path.getPoint(0); |
616 | for(int i = 1; i < kSampleSize; ++i) { |
617 | SkPoint point = path.getPoint(i); |
618 | sumLength += SkPoint::Distance(lastPoint, point); |
619 | lastPoint = point; |
620 | } |
621 | avgLength = sumLength / (kSampleSize - 1); |
622 | |
623 | auto sqr = [](SkScalar x) { return x*x; }; |
624 | |
625 | SkScalar diagonalSqr = sqr(path.getBounds().width()) + sqr(path.getBounds().height()); |
626 | |
627 | // If the path consists of random line segments, the number of intersections should be |
628 | // proportional to this. |
629 | SkScalar intersections = sk_ieee_float_divide(sqr(n) * sqr(avgLength), diagonalSqr); |
630 | |
631 | // The number of intersections per scanline should be proportional to this number. |
632 | complexity = sk_ieee_float_divide(intersections, path.getBounds().height()); |
633 | |
634 | if (sk_float_isnan(complexity)) { // it may be possible to have 0.0 / 0.0; inf is fine for us. |
635 | complexity = -1; |
636 | } |
637 | } |
638 | |
639 | static bool ShouldUseAAA(const SkPath& path, SkScalar avgLength, SkScalar complexity) { |
640 | #if defined(SK_DISABLE_AAA) |
641 | return false; |
642 | #else |
643 | if (gSkForceAnalyticAA) { |
644 | return true; |
645 | } |
646 | if (!gSkUseAnalyticAA) { |
647 | return false; |
648 | } |
649 | if (path.isRect(nullptr)) { |
650 | return true; |
651 | } |
652 | |
653 | #ifdef SK_SUPPORT_LEGACY_AAA_CHOICE |
654 | const SkRect& bounds = path.getBounds(); |
655 | // When the path have so many points compared to the size of its |
656 | // bounds/resolution, it indicates that the path is not quite smooth in |
657 | // the current resolution: the expected number of turning points in |
658 | // every pixel row/column is significantly greater than zero. Hence |
659 | // Aanlytic AA is not likely to produce visible quality improvements, |
660 | // and Analytic AA might be slower than supersampling. |
661 | return path.countPoints() < std::max(bounds.width(), bounds.height()) / 2 - 10; |
662 | #else |
663 | if (path.countPoints() >= path.getBounds().height()) { |
664 | // SAA is faster than AAA in this case even if there are no |
665 | // intersections because AAA will have too many scan lines. See |
666 | // skbug.com/8272 |
667 | return false; |
668 | } |
669 | // We will use AAA if the number of verbs < kSampleSize and therefore complexity < 0 |
670 | return complexity < kComplexityThreshold; |
671 | #endif |
672 | #endif |
673 | } |
674 | |
675 | void SkScan::SAAFillPath(const SkPath& path, SkBlitter* blitter, const SkIRect& ir, |
676 | const SkIRect& clipBounds, bool forceRLE) { |
677 | bool containedInClip = clipBounds.contains(ir); |
678 | bool isInverse = path.isInverseFillType(); |
679 | |
680 | // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it |
681 | // if we're an inverse filltype |
682 | if (!isInverse && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) { |
683 | MaskSuperBlitter superBlit(blitter, ir, clipBounds, isInverse); |
684 | SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
685 | sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip); |
686 | } else { |
687 | SuperBlitter superBlit(blitter, ir, clipBounds, isInverse); |
688 | sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip); |
689 | } |
690 | } |
691 | |
692 | static int overflows_short_shift(int value, int shift) { |
693 | const int s = 16 + shift; |
694 | return (SkLeftShift(value, s) >> s) - value; |
695 | } |
696 | |
697 | /** |
698 | Would any of the coordinates of this rectangle not fit in a short, |
699 | when left-shifted by shift? |
700 | */ |
701 | static int rect_overflows_short_shift(SkIRect rect, int shift) { |
702 | SkASSERT(!overflows_short_shift(8191, shift)); |
703 | SkASSERT(overflows_short_shift(8192, shift)); |
704 | SkASSERT(!overflows_short_shift(32767, 0)); |
705 | SkASSERT(overflows_short_shift(32768, 0)); |
706 | |
707 | // Since we expect these to succeed, we bit-or together |
708 | // for a tiny extra bit of speed. |
709 | return overflows_short_shift(rect.fLeft, shift) | |
710 | overflows_short_shift(rect.fRight, shift) | |
711 | overflows_short_shift(rect.fTop, shift) | |
712 | overflows_short_shift(rect.fBottom, shift); |
713 | } |
714 | |
715 | void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip, |
716 | SkBlitter* blitter, bool forceRLE) { |
717 | if (origClip.isEmpty()) { |
718 | return; |
719 | } |
720 | |
721 | const bool isInverse = path.isInverseFillType(); |
722 | SkIRect ir = safeRoundOut(path.getBounds()); |
723 | if (ir.isEmpty()) { |
724 | if (isInverse) { |
725 | blitter->blitRegion(origClip); |
726 | } |
727 | return; |
728 | } |
729 | |
730 | // If the intersection of the path bounds and the clip bounds |
731 | // will overflow 32767 when << by SHIFT, we can't supersample, |
732 | // so draw without antialiasing. |
733 | SkIRect clippedIR; |
734 | if (isInverse) { |
735 | // If the path is an inverse fill, it's going to fill the entire |
736 | // clip, and we care whether the entire clip exceeds our limits. |
737 | clippedIR = origClip.getBounds(); |
738 | } else { |
739 | if (!clippedIR.intersect(ir, origClip.getBounds())) { |
740 | return; |
741 | } |
742 | } |
743 | if (rect_overflows_short_shift(clippedIR, SHIFT)) { |
744 | SkScan::FillPath(path, origClip, blitter); |
745 | return; |
746 | } |
747 | |
748 | // Our antialiasing can't handle a clip larger than 32767, so we restrict |
749 | // the clip to that limit here. (the runs[] uses int16_t for its index). |
750 | // |
751 | // A more general solution (one that could also eliminate the need to |
752 | // disable aa based on ir bounds (see overflows_short_shift) would be |
753 | // to tile the clip/target... |
754 | SkRegion tmpClipStorage; |
755 | const SkRegion* clipRgn = &origClip; |
756 | { |
757 | static const int32_t kMaxClipCoord = 32767; |
758 | const SkIRect& bounds = origClip.getBounds(); |
759 | if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
760 | SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
761 | tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
762 | clipRgn = &tmpClipStorage; |
763 | } |
764 | } |
765 | // for here down, use clipRgn, not origClip |
766 | |
767 | SkScanClipper clipper(blitter, clipRgn, ir); |
768 | |
769 | if (clipper.getBlitter() == nullptr) { // clipped out |
770 | if (isInverse) { |
771 | blitter->blitRegion(*clipRgn); |
772 | } |
773 | return; |
774 | } |
775 | |
776 | SkASSERT(clipper.getClipRect() == nullptr || |
777 | *clipper.getClipRect() == clipRgn->getBounds()); |
778 | |
779 | // now use the (possibly wrapped) blitter |
780 | blitter = clipper.getBlitter(); |
781 | |
782 | if (isInverse) { |
783 | sk_blit_above(blitter, ir, *clipRgn); |
784 | } |
785 | |
786 | SkScalar avgLength, complexity; |
787 | compute_complexity(path, avgLength, complexity); |
788 | |
789 | if (ShouldUseAAA(path, avgLength, complexity)) { |
790 | // Do not use AAA if path is too complicated: |
791 | // there won't be any speedup or significant visual improvement. |
792 | SkScan::AAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE); |
793 | } else { |
794 | SkScan::SAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE); |
795 | } |
796 | |
797 | if (isInverse) { |
798 | sk_blit_below(blitter, ir, *clipRgn); |
799 | } |
800 | } |
801 | |
802 | /////////////////////////////////////////////////////////////////////////////// |
803 | |
804 | #include "src/core/SkRasterClip.h" |
805 | |
806 | void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) { |
807 | if (clip.isEmpty() || !path.isFinite()) { |
808 | return; |
809 | } |
810 | |
811 | if (clip.isBW()) { |
812 | FillPath(path, clip.bwRgn(), blitter); |
813 | } else { |
814 | SkRegion tmp; |
815 | SkAAClipBlitter aaBlitter; |
816 | |
817 | tmp.setRect(clip.getBounds()); |
818 | aaBlitter.init(blitter, &clip.aaRgn()); |
819 | SkScan::FillPath(path, tmp, &aaBlitter); |
820 | } |
821 | } |
822 | |
823 | void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) { |
824 | if (clip.isEmpty() || !path.isFinite()) { |
825 | return; |
826 | } |
827 | |
828 | if (clip.isBW()) { |
829 | AntiFillPath(path, clip.bwRgn(), blitter, false); |
830 | } else { |
831 | SkRegion tmp; |
832 | SkAAClipBlitter aaBlitter; |
833 | |
834 | tmp.setRect(clip.getBounds()); |
835 | aaBlitter.init(blitter, &clip.aaRgn()); |
836 | AntiFillPath(path, tmp, &aaBlitter, true); // SkAAClipBlitter can blitMask, why forceRLE? |
837 | } |
838 | } |
839 | |