1 | /* |
2 | * Copyright 2011 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkScan.h" |
9 | |
10 | #include "include/private/SkColorData.h" |
11 | #include "include/private/SkTo.h" |
12 | #include "src/core/SkBlitter.h" |
13 | #include "src/core/SkFDot6.h" |
14 | #include "src/core/SkLineClipper.h" |
15 | #include "src/core/SkRasterClip.h" |
16 | |
17 | #include <utility> |
18 | |
19 | /* Our attempt to compute the worst case "bounds" for the horizontal and |
20 | vertical cases has some numerical bug in it, and we sometimes undervalue |
21 | our extends. The bug is that when this happens, we will set the clip to |
22 | nullptr (for speed), and thus draw outside of the clip by a pixel, which might |
23 | only look bad, but it might also access memory outside of the valid range |
24 | allcoated for the device bitmap. |
25 | |
26 | This define enables our fix to outset our "bounds" by 1, thus avoiding the |
27 | chance of the bug, but at the cost of sometimes taking the rectblitter |
28 | case (i.e. not setting the clip to nullptr) when we might not actually need |
29 | to. If we can improve/fix the actual calculations, then we can remove this |
30 | step. |
31 | */ |
32 | #define OUTSET_BEFORE_CLIP_TEST true |
33 | |
34 | #define HLINE_STACK_BUFFER 100 |
35 | |
36 | static inline int SmallDot6Scale(int value, int dot6) { |
37 | SkASSERT((int16_t)value == value); |
38 | SkASSERT((unsigned)dot6 <= 64); |
39 | return (value * dot6) >> 6; |
40 | } |
41 | |
42 | //#define TEST_GAMMA |
43 | |
44 | #ifdef TEST_GAMMA |
45 | static uint8_t gGammaTable[256]; |
46 | #define ApplyGamma(table, alpha) (table)[alpha] |
47 | |
48 | static void build_gamma_table() { |
49 | static bool gInit = false; |
50 | |
51 | if (gInit == false) { |
52 | for (int i = 0; i < 256; i++) { |
53 | SkFixed n = i * 257; |
54 | n += n >> 15; |
55 | SkASSERT(n >= 0 && n <= SK_Fixed1); |
56 | n = SkFixedSqrt(n); |
57 | n = n * 255 >> 16; |
58 | // SkDebugf("morph %d -> %d\n", i, n); |
59 | gGammaTable[i] = SkToU8(n); |
60 | } |
61 | gInit = true; |
62 | } |
63 | } |
64 | #else |
65 | #define ApplyGamma(table, alpha) SkToU8(alpha) |
66 | #endif |
67 | |
68 | /////////////////////////////////////////////////////////////////////////////// |
69 | |
70 | static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count, |
71 | U8CPU alpha) { |
72 | SkASSERT(count > 0); |
73 | |
74 | int16_t runs[HLINE_STACK_BUFFER + 1]; |
75 | uint8_t aa[HLINE_STACK_BUFFER]; |
76 | |
77 | do { |
78 | // In theory, we should be able to just do this once (outside of the loop), |
79 | // since aa[] and runs[] are supposed" to be const when we call the blitter. |
80 | // In reality, some wrapper-blitters (e.g. SkRgnClipBlitter) cast away that |
81 | // constness, and modify the buffers in-place. Hence the need to be defensive |
82 | // here and reseed the aa value. |
83 | aa[0] = ApplyGamma(gGammaTable, alpha); |
84 | |
85 | int n = count; |
86 | if (n > HLINE_STACK_BUFFER) { |
87 | n = HLINE_STACK_BUFFER; |
88 | } |
89 | runs[0] = SkToS16(n); |
90 | runs[n] = 0; |
91 | blitter->blitAntiH(x, y, aa, runs); |
92 | x += n; |
93 | count -= n; |
94 | } while (count > 0); |
95 | } |
96 | |
97 | class SkAntiHairBlitter { |
98 | public: |
99 | SkAntiHairBlitter() : fBlitter(nullptr) {} |
100 | virtual ~SkAntiHairBlitter() {} |
101 | |
102 | SkBlitter* getBlitter() const { return fBlitter; } |
103 | |
104 | void setup(SkBlitter* blitter) { |
105 | fBlitter = blitter; |
106 | } |
107 | |
108 | virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) = 0; |
109 | virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) = 0; |
110 | |
111 | private: |
112 | SkBlitter* fBlitter; |
113 | }; |
114 | |
115 | class HLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
116 | public: |
117 | SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) override { |
118 | fy += SK_Fixed1/2; |
119 | |
120 | int y = fy >> 16; |
121 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
122 | |
123 | // lower line |
124 | unsigned ma = SmallDot6Scale(a, mod64); |
125 | if (ma) { |
126 | call_hline_blitter(this->getBlitter(), x, y, 1, ma); |
127 | } |
128 | |
129 | // upper line |
130 | ma = SmallDot6Scale(255 - a, mod64); |
131 | if (ma) { |
132 | call_hline_blitter(this->getBlitter(), x, y - 1, 1, ma); |
133 | } |
134 | |
135 | return fy - SK_Fixed1/2; |
136 | } |
137 | |
138 | virtual SkFixed drawLine(int x, int stopx, SkFixed fy, |
139 | SkFixed slope) override { |
140 | SkASSERT(x < stopx); |
141 | int count = stopx - x; |
142 | fy += SK_Fixed1/2; |
143 | |
144 | int y = fy >> 16; |
145 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
146 | |
147 | // lower line |
148 | if (a) { |
149 | call_hline_blitter(this->getBlitter(), x, y, count, a); |
150 | } |
151 | |
152 | // upper line |
153 | a = 255 - a; |
154 | if (a) { |
155 | call_hline_blitter(this->getBlitter(), x, y - 1, count, a); |
156 | } |
157 | |
158 | return fy - SK_Fixed1/2; |
159 | } |
160 | }; |
161 | |
162 | class Horish_SkAntiHairBlitter : public SkAntiHairBlitter { |
163 | public: |
164 | SkFixed drawCap(int x, SkFixed fy, SkFixed dy, int mod64) override { |
165 | fy += SK_Fixed1/2; |
166 | |
167 | int lower_y = fy >> 16; |
168 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
169 | unsigned a0 = SmallDot6Scale(255 - a, mod64); |
170 | unsigned a1 = SmallDot6Scale(a, mod64); |
171 | this->getBlitter()->blitAntiV2(x, lower_y - 1, a0, a1); |
172 | |
173 | return fy + dy - SK_Fixed1/2; |
174 | } |
175 | |
176 | SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed dy) override { |
177 | SkASSERT(x < stopx); |
178 | |
179 | fy += SK_Fixed1/2; |
180 | SkBlitter* blitter = this->getBlitter(); |
181 | do { |
182 | int lower_y = fy >> 16; |
183 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
184 | blitter->blitAntiV2(x, lower_y - 1, 255 - a, a); |
185 | fy += dy; |
186 | } while (++x < stopx); |
187 | |
188 | return fy - SK_Fixed1/2; |
189 | } |
190 | }; |
191 | |
192 | class VLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
193 | public: |
194 | SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) override { |
195 | SkASSERT(0 == dx); |
196 | fx += SK_Fixed1/2; |
197 | |
198 | int x = fx >> 16; |
199 | int a = (uint8_t)((fx >> 8) & 0xFF); |
200 | |
201 | unsigned ma = SmallDot6Scale(a, mod64); |
202 | if (ma) { |
203 | this->getBlitter()->blitV(x, y, 1, ma); |
204 | } |
205 | ma = SmallDot6Scale(255 - a, mod64); |
206 | if (ma) { |
207 | this->getBlitter()->blitV(x - 1, y, 1, ma); |
208 | } |
209 | |
210 | return fx - SK_Fixed1/2; |
211 | } |
212 | |
213 | SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) override { |
214 | SkASSERT(y < stopy); |
215 | SkASSERT(0 == dx); |
216 | fx += SK_Fixed1/2; |
217 | |
218 | int x = fx >> 16; |
219 | int a = (uint8_t)((fx >> 8) & 0xFF); |
220 | |
221 | if (a) { |
222 | this->getBlitter()->blitV(x, y, stopy - y, a); |
223 | } |
224 | a = 255 - a; |
225 | if (a) { |
226 | this->getBlitter()->blitV(x - 1, y, stopy - y, a); |
227 | } |
228 | |
229 | return fx - SK_Fixed1/2; |
230 | } |
231 | }; |
232 | |
233 | class Vertish_SkAntiHairBlitter : public SkAntiHairBlitter { |
234 | public: |
235 | SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) override { |
236 | fx += SK_Fixed1/2; |
237 | |
238 | int x = fx >> 16; |
239 | uint8_t a = (uint8_t)((fx >> 8) & 0xFF); |
240 | this->getBlitter()->blitAntiH2(x - 1, y, |
241 | SmallDot6Scale(255 - a, mod64), SmallDot6Scale(a, mod64)); |
242 | |
243 | return fx + dx - SK_Fixed1/2; |
244 | } |
245 | |
246 | SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) override { |
247 | SkASSERT(y < stopy); |
248 | fx += SK_Fixed1/2; |
249 | do { |
250 | int x = fx >> 16; |
251 | uint8_t a = (uint8_t)((fx >> 8) & 0xFF); |
252 | this->getBlitter()->blitAntiH2(x - 1, y, 255 - a, a); |
253 | fx += dx; |
254 | } while (++y < stopy); |
255 | |
256 | return fx - SK_Fixed1/2; |
257 | } |
258 | }; |
259 | |
260 | static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b) { |
261 | SkASSERT((SkLeftShift(a, 16) >> 16) == a); |
262 | SkASSERT(b != 0); |
263 | return SkLeftShift(a, 16) / b; |
264 | } |
265 | |
266 | #define SkBITCOUNT(x) (sizeof(x) << 3) |
267 | |
268 | #if 1 |
269 | // returns high-bit set iff x==0x8000... |
270 | static inline int bad_int(int x) { |
271 | return x & -x; |
272 | } |
273 | |
274 | static int any_bad_ints(int a, int b, int c, int d) { |
275 | return (bad_int(a) | bad_int(b) | bad_int(c) | bad_int(d)) >> (SkBITCOUNT(int) - 1); |
276 | } |
277 | #else |
278 | static inline int good_int(int x) { |
279 | return x ^ (1 << (SkBITCOUNT(x) - 1)); |
280 | } |
281 | |
282 | static int any_bad_ints(int a, int b, int c, int d) { |
283 | return !(good_int(a) & good_int(b) & good_int(c) & good_int(d)); |
284 | } |
285 | #endif |
286 | |
287 | #ifdef SK_DEBUG |
288 | static bool canConvertFDot6ToFixed(SkFDot6 x) { |
289 | const int maxDot6 = SK_MaxS32 >> (16 - 6); |
290 | return SkAbs32(x) <= maxDot6; |
291 | } |
292 | #endif |
293 | |
294 | /* |
295 | * We want the fractional part of ordinate, but we want multiples of 64 to |
296 | * return 64, not 0, so we can't just say (ordinate & 63). |
297 | * We basically want to compute those bits, and if they're 0, return 64. |
298 | * We can do that w/o a branch with an extra sub and add. |
299 | */ |
300 | static int contribution_64(SkFDot6 ordinate) { |
301 | #if 0 |
302 | int result = ordinate & 63; |
303 | if (0 == result) { |
304 | result = 64; |
305 | } |
306 | #else |
307 | int result = ((ordinate - 1) & 63) + 1; |
308 | #endif |
309 | SkASSERT(result > 0 && result <= 64); |
310 | return result; |
311 | } |
312 | |
313 | static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1, |
314 | const SkIRect* clip, SkBlitter* blitter) { |
315 | // check for integer NaN (0x80000000) which we can't handle (can't negate it) |
316 | // It appears typically from a huge float (inf or nan) being converted to int. |
317 | // If we see it, just don't draw. |
318 | if (any_bad_ints(x0, y0, x1, y1)) { |
319 | return; |
320 | } |
321 | |
322 | // The caller must clip the line to [-32767.0 ... 32767.0] ahead of time |
323 | // (in dot6 format) |
324 | SkASSERT(canConvertFDot6ToFixed(x0)); |
325 | SkASSERT(canConvertFDot6ToFixed(y0)); |
326 | SkASSERT(canConvertFDot6ToFixed(x1)); |
327 | SkASSERT(canConvertFDot6ToFixed(y1)); |
328 | |
329 | if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511)) { |
330 | /* instead of (x0 + x1) >> 1, we shift each separately. This is less |
331 | precise, but avoids overflowing the intermediate result if the |
332 | values are huge. A better fix might be to clip the original pts |
333 | directly (i.e. do the divide), so we don't spend time subdividing |
334 | huge lines at all. |
335 | */ |
336 | int hx = (x0 >> 1) + (x1 >> 1); |
337 | int hy = (y0 >> 1) + (y1 >> 1); |
338 | do_anti_hairline(x0, y0, hx, hy, clip, blitter); |
339 | do_anti_hairline(hx, hy, x1, y1, clip, blitter); |
340 | return; |
341 | } |
342 | |
343 | int scaleStart, scaleStop; |
344 | int istart, istop; |
345 | SkFixed fstart, slope; |
346 | |
347 | HLine_SkAntiHairBlitter hline_blitter; |
348 | Horish_SkAntiHairBlitter horish_blitter; |
349 | VLine_SkAntiHairBlitter vline_blitter; |
350 | Vertish_SkAntiHairBlitter vertish_blitter; |
351 | SkAntiHairBlitter* hairBlitter = nullptr; |
352 | |
353 | if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) { // mostly horizontal |
354 | if (x0 > x1) { // we want to go left-to-right |
355 | using std::swap; |
356 | swap(x0, x1); |
357 | swap(y0, y1); |
358 | } |
359 | |
360 | istart = SkFDot6Floor(x0); |
361 | istop = SkFDot6Ceil(x1); |
362 | fstart = SkFDot6ToFixed(y0); |
363 | if (y0 == y1) { // completely horizontal, take fast case |
364 | slope = 0; |
365 | hairBlitter = &hline_blitter; |
366 | } else { |
367 | slope = fastfixdiv(y1 - y0, x1 - x0); |
368 | SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1); |
369 | fstart += (slope * (32 - (x0 & 63)) + 32) >> 6; |
370 | hairBlitter = &horish_blitter; |
371 | } |
372 | |
373 | SkASSERT(istop > istart); |
374 | if (istop - istart == 1) { |
375 | // we are within a single pixel |
376 | scaleStart = x1 - x0; |
377 | SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
378 | scaleStop = 0; |
379 | } else { |
380 | scaleStart = 64 - (x0 & 63); |
381 | scaleStop = x1 & 63; |
382 | } |
383 | |
384 | if (clip){ |
385 | if (istart >= clip->fRight || istop <= clip->fLeft) { |
386 | return; |
387 | } |
388 | if (istart < clip->fLeft) { |
389 | fstart += slope * (clip->fLeft - istart); |
390 | istart = clip->fLeft; |
391 | scaleStart = 64; |
392 | if (istop - istart == 1) { |
393 | // we are within a single pixel |
394 | scaleStart = contribution_64(x1); |
395 | scaleStop = 0; |
396 | } |
397 | } |
398 | if (istop > clip->fRight) { |
399 | istop = clip->fRight; |
400 | scaleStop = 0; // so we don't draw this last column |
401 | } |
402 | |
403 | SkASSERT(istart <= istop); |
404 | if (istart == istop) { |
405 | return; |
406 | } |
407 | // now test if our Y values are completely inside the clip |
408 | int top, bottom; |
409 | if (slope >= 0) { // T2B |
410 | top = SkFixedFloorToInt(fstart - SK_FixedHalf); |
411 | bottom = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
412 | } else { // B2T |
413 | bottom = SkFixedCeilToInt(fstart + SK_FixedHalf); |
414 | top = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
415 | } |
416 | #ifdef OUTSET_BEFORE_CLIP_TEST |
417 | top -= 1; |
418 | bottom += 1; |
419 | #endif |
420 | if (top >= clip->fBottom || bottom <= clip->fTop) { |
421 | return; |
422 | } |
423 | if (clip->fTop <= top && clip->fBottom >= bottom) { |
424 | clip = nullptr; |
425 | } |
426 | } |
427 | } else { // mostly vertical |
428 | if (y0 > y1) { // we want to go top-to-bottom |
429 | using std::swap; |
430 | swap(x0, x1); |
431 | swap(y0, y1); |
432 | } |
433 | |
434 | istart = SkFDot6Floor(y0); |
435 | istop = SkFDot6Ceil(y1); |
436 | fstart = SkFDot6ToFixed(x0); |
437 | if (x0 == x1) { |
438 | if (y0 == y1) { // are we zero length? |
439 | return; // nothing to do |
440 | } |
441 | slope = 0; |
442 | hairBlitter = &vline_blitter; |
443 | } else { |
444 | slope = fastfixdiv(x1 - x0, y1 - y0); |
445 | SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1); |
446 | fstart += (slope * (32 - (y0 & 63)) + 32) >> 6; |
447 | hairBlitter = &vertish_blitter; |
448 | } |
449 | |
450 | SkASSERT(istop > istart); |
451 | if (istop - istart == 1) { |
452 | // we are within a single pixel |
453 | scaleStart = y1 - y0; |
454 | SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
455 | scaleStop = 0; |
456 | } else { |
457 | scaleStart = 64 - (y0 & 63); |
458 | scaleStop = y1 & 63; |
459 | } |
460 | |
461 | if (clip) { |
462 | if (istart >= clip->fBottom || istop <= clip->fTop) { |
463 | return; |
464 | } |
465 | if (istart < clip->fTop) { |
466 | fstart += slope * (clip->fTop - istart); |
467 | istart = clip->fTop; |
468 | scaleStart = 64; |
469 | if (istop - istart == 1) { |
470 | // we are within a single pixel |
471 | scaleStart = contribution_64(y1); |
472 | scaleStop = 0; |
473 | } |
474 | } |
475 | if (istop > clip->fBottom) { |
476 | istop = clip->fBottom; |
477 | scaleStop = 0; // so we don't draw this last row |
478 | } |
479 | |
480 | SkASSERT(istart <= istop); |
481 | if (istart == istop) |
482 | return; |
483 | |
484 | // now test if our X values are completely inside the clip |
485 | int left, right; |
486 | if (slope >= 0) { // L2R |
487 | left = SkFixedFloorToInt(fstart - SK_FixedHalf); |
488 | right = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
489 | } else { // R2L |
490 | right = SkFixedCeilToInt(fstart + SK_FixedHalf); |
491 | left = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
492 | } |
493 | #ifdef OUTSET_BEFORE_CLIP_TEST |
494 | left -= 1; |
495 | right += 1; |
496 | #endif |
497 | if (left >= clip->fRight || right <= clip->fLeft) { |
498 | return; |
499 | } |
500 | if (clip->fLeft <= left && clip->fRight >= right) { |
501 | clip = nullptr; |
502 | } |
503 | } |
504 | } |
505 | |
506 | SkRectClipBlitter rectClipper; |
507 | if (clip) { |
508 | rectClipper.init(blitter, *clip); |
509 | blitter = &rectClipper; |
510 | } |
511 | |
512 | SkASSERT(hairBlitter); |
513 | hairBlitter->setup(blitter); |
514 | |
515 | #ifdef SK_DEBUG |
516 | if (scaleStart > 0 && scaleStop > 0) { |
517 | // be sure we don't draw twice in the same pixel |
518 | SkASSERT(istart < istop - 1); |
519 | } |
520 | #endif |
521 | |
522 | fstart = hairBlitter->drawCap(istart, fstart, slope, scaleStart); |
523 | istart += 1; |
524 | int fullSpans = istop - istart - (scaleStop > 0); |
525 | if (fullSpans > 0) { |
526 | fstart = hairBlitter->drawLine(istart, istart + fullSpans, fstart, slope); |
527 | } |
528 | if (scaleStop > 0) { |
529 | hairBlitter->drawCap(istop - 1, fstart, slope, scaleStop); |
530 | } |
531 | } |
532 | |
533 | void SkScan::AntiHairLineRgn(const SkPoint array[], int arrayCount, const SkRegion* clip, |
534 | SkBlitter* blitter) { |
535 | if (clip && clip->isEmpty()) { |
536 | return; |
537 | } |
538 | |
539 | SkASSERT(clip == nullptr || !clip->getBounds().isEmpty()); |
540 | |
541 | #ifdef TEST_GAMMA |
542 | build_gamma_table(); |
543 | #endif |
544 | |
545 | const SkScalar max = SkIntToScalar(32767); |
546 | const SkRect fixedBounds = SkRect::MakeLTRB(-max, -max, max, max); |
547 | |
548 | SkRect clipBounds; |
549 | if (clip) { |
550 | clipBounds.set(clip->getBounds()); |
551 | /* We perform integral clipping later on, but we do a scalar clip first |
552 | to ensure that our coordinates are expressible in fixed/integers. |
553 | |
554 | antialiased hairlines can draw up to 1/2 of a pixel outside of |
555 | their bounds, so we need to outset the clip before calling the |
556 | clipper. To make the numerics safer, we outset by a whole pixel, |
557 | since the 1/2 pixel boundary is important to the antihair blitter, |
558 | we don't want to risk numerical fate by chopping on that edge. |
559 | */ |
560 | clipBounds.outset(SK_Scalar1, SK_Scalar1); |
561 | } |
562 | |
563 | for (int i = 0; i < arrayCount - 1; ++i) { |
564 | SkPoint pts[2]; |
565 | |
566 | // We have to pre-clip the line to fit in a SkFixed, so we just chop |
567 | // the line. TODO find a way to actually draw beyond that range. |
568 | if (!SkLineClipper::IntersectLine(&array[i], fixedBounds, pts)) { |
569 | continue; |
570 | } |
571 | |
572 | if (clip && !SkLineClipper::IntersectLine(pts, clipBounds, pts)) { |
573 | continue; |
574 | } |
575 | |
576 | SkFDot6 x0 = SkScalarToFDot6(pts[0].fX); |
577 | SkFDot6 y0 = SkScalarToFDot6(pts[0].fY); |
578 | SkFDot6 x1 = SkScalarToFDot6(pts[1].fX); |
579 | SkFDot6 y1 = SkScalarToFDot6(pts[1].fY); |
580 | |
581 | if (clip) { |
582 | SkFDot6 left = std::min(x0, x1); |
583 | SkFDot6 top = std::min(y0, y1); |
584 | SkFDot6 right = std::max(x0, x1); |
585 | SkFDot6 bottom = std::max(y0, y1); |
586 | SkIRect ir; |
587 | |
588 | ir.setLTRB(SkFDot6Floor(left) - 1, |
589 | SkFDot6Floor(top) - 1, |
590 | SkFDot6Ceil(right) + 1, |
591 | SkFDot6Ceil(bottom) + 1); |
592 | |
593 | if (clip->quickReject(ir)) { |
594 | continue; |
595 | } |
596 | if (!clip->quickContains(ir)) { |
597 | SkRegion::Cliperator iter(*clip, ir); |
598 | const SkIRect* r = &iter.rect(); |
599 | |
600 | while (!iter.done()) { |
601 | do_anti_hairline(x0, y0, x1, y1, r, blitter); |
602 | iter.next(); |
603 | } |
604 | continue; |
605 | } |
606 | // fall through to no-clip case |
607 | } |
608 | do_anti_hairline(x0, y0, x1, y1, nullptr, blitter); |
609 | } |
610 | } |
611 | |
612 | void SkScan::AntiHairRect(const SkRect& rect, const SkRasterClip& clip, |
613 | SkBlitter* blitter) { |
614 | SkPoint pts[5]; |
615 | |
616 | pts[0].set(rect.fLeft, rect.fTop); |
617 | pts[1].set(rect.fRight, rect.fTop); |
618 | pts[2].set(rect.fRight, rect.fBottom); |
619 | pts[3].set(rect.fLeft, rect.fBottom); |
620 | pts[4] = pts[0]; |
621 | SkScan::AntiHairLine(pts, 5, clip, blitter); |
622 | } |
623 | |
624 | /////////////////////////////////////////////////////////////////////////////// |
625 | |
626 | typedef int FDot8; // 24.8 integer fixed point |
627 | |
628 | static inline FDot8 SkFixedToFDot8(SkFixed x) { |
629 | return (x + 0x80) >> 8; |
630 | } |
631 | |
632 | static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
633 | SkBlitter* blitter) { |
634 | SkASSERT(L < R); |
635 | |
636 | if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
637 | blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L)); |
638 | return; |
639 | } |
640 | |
641 | int left = L >> 8; |
642 | |
643 | if (L & 0xFF) { |
644 | blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF))); |
645 | left += 1; |
646 | } |
647 | |
648 | int rite = R >> 8; |
649 | int width = rite - left; |
650 | if (width > 0) { |
651 | call_hline_blitter(blitter, left, top, width, alpha); |
652 | } |
653 | if (R & 0xFF) { |
654 | blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF)); |
655 | } |
656 | } |
657 | |
658 | static void antifilldot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, SkBlitter* blitter, |
659 | bool fillInner) { |
660 | // check for empty now that we're in our reduced precision space |
661 | if (L >= R || T >= B) { |
662 | return; |
663 | } |
664 | int top = T >> 8; |
665 | if (top == ((B - 1) >> 8)) { // just one scanline high |
666 | do_scanline(L, top, R, B - T - 1, blitter); |
667 | return; |
668 | } |
669 | |
670 | if (T & 0xFF) { |
671 | do_scanline(L, top, R, 256 - (T & 0xFF), blitter); |
672 | top += 1; |
673 | } |
674 | |
675 | int bot = B >> 8; |
676 | int height = bot - top; |
677 | if (height > 0) { |
678 | int left = L >> 8; |
679 | if (left == ((R - 1) >> 8)) { // just 1-pixel wide |
680 | blitter->blitV(left, top, height, R - L - 1); |
681 | } else { |
682 | if (L & 0xFF) { |
683 | blitter->blitV(left, top, height, 256 - (L & 0xFF)); |
684 | left += 1; |
685 | } |
686 | int rite = R >> 8; |
687 | int width = rite - left; |
688 | if (width > 0 && fillInner) { |
689 | blitter->blitRect(left, top, width, height); |
690 | } |
691 | if (R & 0xFF) { |
692 | blitter->blitV(rite, top, height, R & 0xFF); |
693 | } |
694 | } |
695 | } |
696 | |
697 | if (B & 0xFF) { |
698 | do_scanline(L, bot, R, B & 0xFF, blitter); |
699 | } |
700 | } |
701 | |
702 | static void antifillrect(const SkXRect& xr, SkBlitter* blitter) { |
703 | antifilldot8(SkFixedToFDot8(xr.fLeft), SkFixedToFDot8(xr.fTop), |
704 | SkFixedToFDot8(xr.fRight), SkFixedToFDot8(xr.fBottom), |
705 | blitter, true); |
706 | } |
707 | |
708 | /////////////////////////////////////////////////////////////////////////////// |
709 | |
710 | void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip, |
711 | SkBlitter* blitter) { |
712 | if (nullptr == clip) { |
713 | antifillrect(xr, blitter); |
714 | } else { |
715 | SkIRect outerBounds; |
716 | XRect_roundOut(xr, &outerBounds); |
717 | |
718 | if (clip->isRect()) { |
719 | const SkIRect& clipBounds = clip->getBounds(); |
720 | |
721 | if (clipBounds.contains(outerBounds)) { |
722 | antifillrect(xr, blitter); |
723 | } else { |
724 | SkXRect tmpR; |
725 | // this keeps our original edges fractional |
726 | XRect_set(&tmpR, clipBounds); |
727 | if (tmpR.intersect(xr)) { |
728 | antifillrect(tmpR, blitter); |
729 | } |
730 | } |
731 | } else { |
732 | SkRegion::Cliperator clipper(*clip, outerBounds); |
733 | const SkIRect& rr = clipper.rect(); |
734 | |
735 | while (!clipper.done()) { |
736 | SkXRect tmpR; |
737 | |
738 | // this keeps our original edges fractional |
739 | XRect_set(&tmpR, rr); |
740 | if (tmpR.intersect(xr)) { |
741 | antifillrect(tmpR, blitter); |
742 | } |
743 | clipper.next(); |
744 | } |
745 | } |
746 | } |
747 | } |
748 | |
749 | void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip, |
750 | SkBlitter* blitter) { |
751 | if (clip.isBW()) { |
752 | AntiFillXRect(xr, &clip.bwRgn(), blitter); |
753 | } else { |
754 | SkIRect outerBounds; |
755 | XRect_roundOut(xr, &outerBounds); |
756 | |
757 | if (clip.quickContains(outerBounds)) { |
758 | AntiFillXRect(xr, nullptr, blitter); |
759 | } else { |
760 | SkAAClipBlitterWrapper wrapper(clip, blitter); |
761 | AntiFillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter()); |
762 | } |
763 | } |
764 | } |
765 | |
766 | /* This guy takes a float-rect, but with the key improvement that it has |
767 | already been clipped, so we know that it is safe to convert it into a |
768 | XRect (fixedpoint), as it won't overflow. |
769 | */ |
770 | static void antifillrect(const SkRect& r, SkBlitter* blitter) { |
771 | SkXRect xr; |
772 | |
773 | XRect_set(&xr, r); |
774 | antifillrect(xr, blitter); |
775 | } |
776 | |
777 | /* We repeat the clipping logic of AntiFillXRect because the float rect might |
778 | overflow if we blindly converted it to an XRect. This sucks that we have to |
779 | repeat the clipping logic, but I don't see how to share the code/logic. |
780 | |
781 | We clip r (as needed) into one or more (smaller) float rects, and then pass |
782 | those to our version of antifillrect, which converts it into an XRect and |
783 | then calls the blit. |
784 | */ |
785 | void SkScan::AntiFillRect(const SkRect& origR, const SkRegion* clip, |
786 | SkBlitter* blitter) { |
787 | if (clip) { |
788 | SkRect newR; |
789 | newR.set(clip->getBounds()); |
790 | if (!newR.intersect(origR)) { |
791 | return; |
792 | } |
793 | |
794 | const SkIRect outerBounds = newR.roundOut(); |
795 | |
796 | if (clip->isRect()) { |
797 | antifillrect(newR, blitter); |
798 | } else { |
799 | SkRegion::Cliperator clipper(*clip, outerBounds); |
800 | while (!clipper.done()) { |
801 | newR.set(clipper.rect()); |
802 | if (newR.intersect(origR)) { |
803 | antifillrect(newR, blitter); |
804 | } |
805 | clipper.next(); |
806 | } |
807 | } |
808 | } else { |
809 | antifillrect(origR, blitter); |
810 | } |
811 | } |
812 | |
813 | void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip, |
814 | SkBlitter* blitter) { |
815 | if (clip.isBW()) { |
816 | AntiFillRect(r, &clip.bwRgn(), blitter); |
817 | } else { |
818 | SkAAClipBlitterWrapper wrap(clip, blitter); |
819 | AntiFillRect(r, &wrap.getRgn(), wrap.getBlitter()); |
820 | } |
821 | } |
822 | |
823 | /////////////////////////////////////////////////////////////////////////////// |
824 | |
825 | #define SkAlphaMulRound(a, b) SkMulDiv255Round(a, b) |
826 | |
827 | // calls blitRect() if the rectangle is non-empty |
828 | static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) { |
829 | if (L < R && T < B) { |
830 | blitter->blitRect(L, T, R - L, B - T); |
831 | } |
832 | } |
833 | |
834 | static inline FDot8 SkScalarToFDot8(SkScalar x) { |
835 | return (int)(x * 256); |
836 | } |
837 | |
838 | static inline int FDot8Floor(FDot8 x) { |
839 | return x >> 8; |
840 | } |
841 | |
842 | static inline int FDot8Ceil(FDot8 x) { |
843 | return (x + 0xFF) >> 8; |
844 | } |
845 | |
846 | // 1 - (1 - a)*(1 - b) |
847 | static inline U8CPU InvAlphaMul(U8CPU a, U8CPU b) { |
848 | // need precise rounding (not just SkAlphaMul) so that values like |
849 | // a=228, b=252 don't overflow the result |
850 | return SkToU8(a + b - SkAlphaMulRound(a, b)); |
851 | } |
852 | |
853 | static void inner_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
854 | SkBlitter* blitter) { |
855 | SkASSERT(L < R); |
856 | |
857 | if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
858 | FDot8 widClamp = R - L; |
859 | // border case clamp 256 to 255 instead of going through call_hline_blitter |
860 | // see skbug/4406 |
861 | widClamp = widClamp - (widClamp >> 8); |
862 | blitter->blitV(L >> 8, top, 1, InvAlphaMul(alpha, widClamp)); |
863 | return; |
864 | } |
865 | |
866 | int left = L >> 8; |
867 | if (L & 0xFF) { |
868 | blitter->blitV(left, top, 1, InvAlphaMul(alpha, L & 0xFF)); |
869 | left += 1; |
870 | } |
871 | |
872 | int rite = R >> 8; |
873 | int width = rite - left; |
874 | if (width > 0) { |
875 | call_hline_blitter(blitter, left, top, width, alpha); |
876 | } |
877 | |
878 | if (R & 0xFF) { |
879 | blitter->blitV(rite, top, 1, InvAlphaMul(alpha, ~R & 0xFF)); |
880 | } |
881 | } |
882 | |
883 | static void innerstrokedot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, |
884 | SkBlitter* blitter) { |
885 | SkASSERT(L < R && T < B); |
886 | |
887 | int top = T >> 8; |
888 | if (top == ((B - 1) >> 8)) { // just one scanline high |
889 | // We want the inverse of B-T, since we're the inner-stroke |
890 | int alpha = 256 - (B - T); |
891 | if (alpha) { |
892 | inner_scanline(L, top, R, alpha, blitter); |
893 | } |
894 | return; |
895 | } |
896 | |
897 | if (T & 0xFF) { |
898 | inner_scanline(L, top, R, T & 0xFF, blitter); |
899 | top += 1; |
900 | } |
901 | |
902 | int bot = B >> 8; |
903 | int height = bot - top; |
904 | if (height > 0) { |
905 | if (L & 0xFF) { |
906 | blitter->blitV(L >> 8, top, height, L & 0xFF); |
907 | } |
908 | if (R & 0xFF) { |
909 | blitter->blitV(R >> 8, top, height, ~R & 0xFF); |
910 | } |
911 | } |
912 | |
913 | if (B & 0xFF) { |
914 | inner_scanline(L, bot, R, ~B & 0xFF, blitter); |
915 | } |
916 | } |
917 | |
918 | static inline void align_thin_stroke(FDot8& edge1, FDot8& edge2) { |
919 | SkASSERT(edge1 <= edge2); |
920 | |
921 | if (FDot8Floor(edge1) == FDot8Floor(edge2)) { |
922 | edge2 -= (edge1 & 0xFF); |
923 | edge1 &= ~0xFF; |
924 | } |
925 | } |
926 | |
927 | void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
928 | const SkRegion* clip, SkBlitter* blitter) { |
929 | SkASSERT(strokeSize.fX >= 0 && strokeSize.fY >= 0); |
930 | |
931 | SkScalar rx = SkScalarHalf(strokeSize.fX); |
932 | SkScalar ry = SkScalarHalf(strokeSize.fY); |
933 | |
934 | // outset by the radius |
935 | FDot8 outerL = SkScalarToFDot8(r.fLeft - rx); |
936 | FDot8 outerT = SkScalarToFDot8(r.fTop - ry); |
937 | FDot8 outerR = SkScalarToFDot8(r.fRight + rx); |
938 | FDot8 outerB = SkScalarToFDot8(r.fBottom + ry); |
939 | |
940 | SkIRect outer; |
941 | // set outer to the outer rect of the outer section |
942 | outer.setLTRB(FDot8Floor(outerL), FDot8Floor(outerT), FDot8Ceil(outerR), FDot8Ceil(outerB)); |
943 | |
944 | SkBlitterClipper clipper; |
945 | if (clip) { |
946 | if (clip->quickReject(outer)) { |
947 | return; |
948 | } |
949 | if (!clip->contains(outer)) { |
950 | blitter = clipper.apply(blitter, clip, &outer); |
951 | } |
952 | // now we can ignore clip for the rest of the function |
953 | } |
954 | |
955 | // in case we lost a bit with diameter/2 |
956 | rx = strokeSize.fX - rx; |
957 | ry = strokeSize.fY - ry; |
958 | |
959 | // inset by the radius |
960 | FDot8 innerL = SkScalarToFDot8(r.fLeft + rx); |
961 | FDot8 innerT = SkScalarToFDot8(r.fTop + ry); |
962 | FDot8 innerR = SkScalarToFDot8(r.fRight - rx); |
963 | FDot8 innerB = SkScalarToFDot8(r.fBottom - ry); |
964 | |
965 | // For sub-unit strokes, tweak the hulls such that one of the edges coincides with the pixel |
966 | // edge. This ensures that the general rect stroking logic below |
967 | // a) doesn't blit the same scanline twice |
968 | // b) computes the correct coverage when both edges fall within the same pixel |
969 | if (strokeSize.fX < 1 || strokeSize.fY < 1) { |
970 | align_thin_stroke(outerL, innerL); |
971 | align_thin_stroke(outerT, innerT); |
972 | align_thin_stroke(innerR, outerR); |
973 | align_thin_stroke(innerB, outerB); |
974 | } |
975 | |
976 | // stroke the outer hull |
977 | antifilldot8(outerL, outerT, outerR, outerB, blitter, false); |
978 | |
979 | // set outer to the outer rect of the middle section |
980 | outer.setLTRB(FDot8Ceil(outerL), FDot8Ceil(outerT), FDot8Floor(outerR), FDot8Floor(outerB)); |
981 | |
982 | if (innerL >= innerR || innerT >= innerB) { |
983 | fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, outer.fBottom, |
984 | blitter); |
985 | } else { |
986 | SkIRect inner; |
987 | // set inner to the inner rect of the middle section |
988 | inner.setLTRB(FDot8Floor(innerL), FDot8Floor(innerT), FDot8Ceil(innerR), FDot8Ceil(innerB)); |
989 | |
990 | // draw the frame in 4 pieces |
991 | fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, inner.fTop, |
992 | blitter); |
993 | fillcheckrect(outer.fLeft, inner.fTop, inner.fLeft, inner.fBottom, |
994 | blitter); |
995 | fillcheckrect(inner.fRight, inner.fTop, outer.fRight, inner.fBottom, |
996 | blitter); |
997 | fillcheckrect(outer.fLeft, inner.fBottom, outer.fRight, outer.fBottom, |
998 | blitter); |
999 | |
1000 | // now stroke the inner rect, which is similar to antifilldot8() except that |
1001 | // it treats the fractional coordinates with the inverse bias (since its |
1002 | // inner). |
1003 | innerstrokedot8(innerL, innerT, innerR, innerB, blitter); |
1004 | } |
1005 | } |
1006 | |
1007 | void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
1008 | const SkRasterClip& clip, SkBlitter* blitter) { |
1009 | if (clip.isBW()) { |
1010 | AntiFrameRect(r, strokeSize, &clip.bwRgn(), blitter); |
1011 | } else { |
1012 | SkAAClipBlitterWrapper wrap(clip, blitter); |
1013 | AntiFrameRect(r, strokeSize, &wrap.getRgn(), wrap.getBlitter()); |
1014 | } |
1015 | } |
1016 | |