| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkWriteBuffer.h" |
| 9 | |
| 10 | #include "include/core/SkBitmap.h" |
| 11 | #include "include/core/SkData.h" |
| 12 | #include "include/core/SkStream.h" |
| 13 | #include "include/core/SkTypeface.h" |
| 14 | #include "include/private/SkTo.h" |
| 15 | #include "src/core/SkImagePriv.h" |
| 16 | #include "src/core/SkPaintPriv.h" |
| 17 | #include "src/core/SkPtrRecorder.h" |
| 18 | |
| 19 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 20 | |
| 21 | SkBinaryWriteBuffer::SkBinaryWriteBuffer() |
| 22 | : fFactorySet(nullptr) |
| 23 | , fTFSet(nullptr) { |
| 24 | } |
| 25 | |
| 26 | SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) |
| 27 | : fFactorySet(nullptr) |
| 28 | , fTFSet(nullptr) |
| 29 | , fWriter(storage, storageSize) |
| 30 | {} |
| 31 | |
| 32 | SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
| 33 | |
| 34 | bool SkBinaryWriteBuffer::usingInitialStorage() const { |
| 35 | return fWriter.usingInitialStorage(); |
| 36 | } |
| 37 | |
| 38 | void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
| 39 | fWriter.write32(SkToU32(size)); |
| 40 | fWriter.writePad(data, size); |
| 41 | } |
| 42 | |
| 43 | void SkBinaryWriteBuffer::writeBool(bool value) { |
| 44 | fWriter.writeBool(value); |
| 45 | } |
| 46 | |
| 47 | void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
| 48 | fWriter.writeScalar(value); |
| 49 | } |
| 50 | |
| 51 | void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
| 52 | fWriter.write32(count); |
| 53 | fWriter.write(value, count * sizeof(SkScalar)); |
| 54 | } |
| 55 | |
| 56 | void SkBinaryWriteBuffer::writeInt(int32_t value) { |
| 57 | fWriter.write32(value); |
| 58 | } |
| 59 | |
| 60 | void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
| 61 | fWriter.write32(count); |
| 62 | fWriter.write(value, count * sizeof(int32_t)); |
| 63 | } |
| 64 | |
| 65 | void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
| 66 | fWriter.write32(value); |
| 67 | } |
| 68 | |
| 69 | void SkBinaryWriteBuffer::writeString(const char* value) { |
| 70 | fWriter.writeString(value); |
| 71 | } |
| 72 | |
| 73 | void SkBinaryWriteBuffer::writeColor(SkColor color) { |
| 74 | fWriter.write32(color); |
| 75 | } |
| 76 | |
| 77 | void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
| 78 | fWriter.write32(count); |
| 79 | fWriter.write(color, count * sizeof(SkColor)); |
| 80 | } |
| 81 | |
| 82 | void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
| 83 | fWriter.write(&color, sizeof(SkColor4f)); |
| 84 | } |
| 85 | |
| 86 | void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
| 87 | fWriter.write32(count); |
| 88 | fWriter.write(color, count * sizeof(SkColor4f)); |
| 89 | } |
| 90 | |
| 91 | void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
| 92 | fWriter.writeScalar(point.fX); |
| 93 | fWriter.writeScalar(point.fY); |
| 94 | } |
| 95 | |
| 96 | void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
| 97 | this->writePad32(&point, sizeof(SkPoint3)); |
| 98 | } |
| 99 | |
| 100 | void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
| 101 | fWriter.write32(count); |
| 102 | fWriter.write(point, count * sizeof(SkPoint)); |
| 103 | } |
| 104 | |
| 105 | void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
| 106 | fWriter.writeMatrix(matrix); |
| 107 | } |
| 108 | |
| 109 | void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
| 110 | fWriter.write(&rect, sizeof(SkIRect)); |
| 111 | } |
| 112 | |
| 113 | void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
| 114 | fWriter.writeRect(rect); |
| 115 | } |
| 116 | |
| 117 | void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
| 118 | fWriter.writeRegion(region); |
| 119 | } |
| 120 | |
| 121 | void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
| 122 | fWriter.writePath(path); |
| 123 | } |
| 124 | |
| 125 | size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
| 126 | fWriter.write32(SkToU32(length)); |
| 127 | size_t bytesWritten = fWriter.readFromStream(stream, length); |
| 128 | if (bytesWritten < length) { |
| 129 | fWriter.reservePad(length - bytesWritten); |
| 130 | } |
| 131 | return bytesWritten; |
| 132 | } |
| 133 | |
| 134 | bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
| 135 | return fWriter.writeToStream(stream); |
| 136 | } |
| 137 | |
| 138 | /* Format: |
| 139 | * (subset) bounds |
| 140 | * size (31bits) |
| 141 | * data [ encoded, with raw width/height ] |
| 142 | */ |
| 143 | void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| 144 | const SkIRect bounds = SkImage_getSubset(image); |
| 145 | this->writeIRect(bounds); |
| 146 | |
| 147 | sk_sp<SkData> data; |
| 148 | if (fProcs.fImageProc) { |
| 149 | data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); |
| 150 | } |
| 151 | if (!data) { |
| 152 | data = image->encodeToData(); |
| 153 | } |
| 154 | |
| 155 | size_t size = data ? data->size() : 0; |
| 156 | if (!SkTFitsIn<int32_t>(size)) { |
| 157 | size = 0; // too big to store |
| 158 | } |
| 159 | this->write32(SkToS32(size)); // writing 0 signals failure |
| 160 | if (size) { |
| 161 | this->writePad32(data->data(), size); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| 166 | // Write 32 bits (signed) |
| 167 | // 0 -- default font |
| 168 | // >0 -- index |
| 169 | // <0 -- custom (serial procs) |
| 170 | |
| 171 | if (obj == nullptr) { |
| 172 | fWriter.write32(0); |
| 173 | } else if (fProcs.fTypefaceProc) { |
| 174 | auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
| 175 | if (data) { |
| 176 | size_t size = data->size(); |
| 177 | if (!SkTFitsIn<int32_t>(size)) { |
| 178 | size = 0; // fall back to default font |
| 179 | } |
| 180 | int32_t ssize = SkToS32(size); |
| 181 | fWriter.write32(-ssize); // negative to signal custom |
| 182 | if (size) { |
| 183 | this->writePad32(data->data(), size); |
| 184 | } |
| 185 | return; |
| 186 | } |
| 187 | // no data means fall through for std behavior |
| 188 | } |
| 189 | fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
| 190 | } |
| 191 | |
| 192 | void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| 193 | SkPaintPriv::Flatten(paint, *this); |
| 194 | } |
| 195 | |
| 196 | void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
| 197 | fFactorySet = std::move(rec); |
| 198 | } |
| 199 | |
| 200 | void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
| 201 | fTFSet = std::move(rec); |
| 202 | } |
| 203 | |
| 204 | void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| 205 | if (nullptr == flattenable) { |
| 206 | this->write32(0); |
| 207 | return; |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * We can write 1 of 2 versions of the flattenable: |
| 212 | * 1. index into fFactorySet : This assumes the writer will later |
| 213 | * resolve the function-ptrs into strings for its reader. SkPicture |
| 214 | * does exactly this, by writing a table of names (matching the indices) |
| 215 | * up front in its serialized form. |
| 216 | * 2. string name of the flattenable or index into fFlattenableDict: We |
| 217 | * store the string to allow the reader to specify its own factories |
| 218 | * after write time. In order to improve compression, if we have |
| 219 | * already written the string, we write its index instead. |
| 220 | */ |
| 221 | |
| 222 | SkFlattenable::Factory factory = flattenable->getFactory(); |
| 223 | SkASSERT(factory); |
| 224 | |
| 225 | if (fFactorySet) { |
| 226 | this->write32(fFactorySet->add(factory)); |
| 227 | } else { |
| 228 | |
| 229 | if (uint32_t* indexPtr = fFlattenableDict.find(factory)) { |
| 230 | // We will write the index as a 32-bit int. We want the first byte |
| 231 | // that we send to be zero - this will act as a sentinel that we |
| 232 | // have an index (not a string). This means that we will send the |
| 233 | // the index shifted left by 8. The remaining 24-bits should be |
| 234 | // plenty to store the index. Note that this strategy depends on |
| 235 | // being little endian. |
| 236 | SkASSERT(0 == *indexPtr >> 24); |
| 237 | this->write32(*indexPtr << 8); |
| 238 | } else { |
| 239 | const char* name = flattenable->getTypeName(); |
| 240 | SkASSERT(name); |
| 241 | // Otherwise write the string. Clients should not use the empty |
| 242 | // string as a name, or we will have a problem. |
| 243 | SkASSERT(0 != strcmp("" , name)); |
| 244 | this->writeString(name); |
| 245 | |
| 246 | // Add key to dictionary. |
| 247 | fFlattenableDict.set(factory, fFlattenableDict.count() + 1); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | // make room for the size of the flattened object |
| 252 | (void)fWriter.reserve(sizeof(uint32_t)); |
| 253 | // record the current size, so we can subtract after the object writes. |
| 254 | size_t offset = fWriter.bytesWritten(); |
| 255 | // now flatten the object |
| 256 | flattenable->flatten(*this); |
| 257 | size_t objSize = fWriter.bytesWritten() - offset; |
| 258 | // record the obj's size |
| 259 | fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| 260 | } |
| 261 | |