1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkWriteBuffer.h" |
9 | |
10 | #include "include/core/SkBitmap.h" |
11 | #include "include/core/SkData.h" |
12 | #include "include/core/SkStream.h" |
13 | #include "include/core/SkTypeface.h" |
14 | #include "include/private/SkTo.h" |
15 | #include "src/core/SkImagePriv.h" |
16 | #include "src/core/SkPaintPriv.h" |
17 | #include "src/core/SkPtrRecorder.h" |
18 | |
19 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
20 | |
21 | SkBinaryWriteBuffer::SkBinaryWriteBuffer() |
22 | : fFactorySet(nullptr) |
23 | , fTFSet(nullptr) { |
24 | } |
25 | |
26 | SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) |
27 | : fFactorySet(nullptr) |
28 | , fTFSet(nullptr) |
29 | , fWriter(storage, storageSize) |
30 | {} |
31 | |
32 | SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
33 | |
34 | bool SkBinaryWriteBuffer::usingInitialStorage() const { |
35 | return fWriter.usingInitialStorage(); |
36 | } |
37 | |
38 | void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
39 | fWriter.write32(SkToU32(size)); |
40 | fWriter.writePad(data, size); |
41 | } |
42 | |
43 | void SkBinaryWriteBuffer::writeBool(bool value) { |
44 | fWriter.writeBool(value); |
45 | } |
46 | |
47 | void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
48 | fWriter.writeScalar(value); |
49 | } |
50 | |
51 | void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
52 | fWriter.write32(count); |
53 | fWriter.write(value, count * sizeof(SkScalar)); |
54 | } |
55 | |
56 | void SkBinaryWriteBuffer::writeInt(int32_t value) { |
57 | fWriter.write32(value); |
58 | } |
59 | |
60 | void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
61 | fWriter.write32(count); |
62 | fWriter.write(value, count * sizeof(int32_t)); |
63 | } |
64 | |
65 | void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
66 | fWriter.write32(value); |
67 | } |
68 | |
69 | void SkBinaryWriteBuffer::writeString(const char* value) { |
70 | fWriter.writeString(value); |
71 | } |
72 | |
73 | void SkBinaryWriteBuffer::writeColor(SkColor color) { |
74 | fWriter.write32(color); |
75 | } |
76 | |
77 | void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
78 | fWriter.write32(count); |
79 | fWriter.write(color, count * sizeof(SkColor)); |
80 | } |
81 | |
82 | void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
83 | fWriter.write(&color, sizeof(SkColor4f)); |
84 | } |
85 | |
86 | void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
87 | fWriter.write32(count); |
88 | fWriter.write(color, count * sizeof(SkColor4f)); |
89 | } |
90 | |
91 | void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
92 | fWriter.writeScalar(point.fX); |
93 | fWriter.writeScalar(point.fY); |
94 | } |
95 | |
96 | void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
97 | this->writePad32(&point, sizeof(SkPoint3)); |
98 | } |
99 | |
100 | void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
101 | fWriter.write32(count); |
102 | fWriter.write(point, count * sizeof(SkPoint)); |
103 | } |
104 | |
105 | void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
106 | fWriter.writeMatrix(matrix); |
107 | } |
108 | |
109 | void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
110 | fWriter.write(&rect, sizeof(SkIRect)); |
111 | } |
112 | |
113 | void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
114 | fWriter.writeRect(rect); |
115 | } |
116 | |
117 | void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
118 | fWriter.writeRegion(region); |
119 | } |
120 | |
121 | void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
122 | fWriter.writePath(path); |
123 | } |
124 | |
125 | size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
126 | fWriter.write32(SkToU32(length)); |
127 | size_t bytesWritten = fWriter.readFromStream(stream, length); |
128 | if (bytesWritten < length) { |
129 | fWriter.reservePad(length - bytesWritten); |
130 | } |
131 | return bytesWritten; |
132 | } |
133 | |
134 | bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
135 | return fWriter.writeToStream(stream); |
136 | } |
137 | |
138 | /* Format: |
139 | * (subset) bounds |
140 | * size (31bits) |
141 | * data [ encoded, with raw width/height ] |
142 | */ |
143 | void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
144 | const SkIRect bounds = SkImage_getSubset(image); |
145 | this->writeIRect(bounds); |
146 | |
147 | sk_sp<SkData> data; |
148 | if (fProcs.fImageProc) { |
149 | data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); |
150 | } |
151 | if (!data) { |
152 | data = image->encodeToData(); |
153 | } |
154 | |
155 | size_t size = data ? data->size() : 0; |
156 | if (!SkTFitsIn<int32_t>(size)) { |
157 | size = 0; // too big to store |
158 | } |
159 | this->write32(SkToS32(size)); // writing 0 signals failure |
160 | if (size) { |
161 | this->writePad32(data->data(), size); |
162 | } |
163 | } |
164 | |
165 | void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
166 | // Write 32 bits (signed) |
167 | // 0 -- default font |
168 | // >0 -- index |
169 | // <0 -- custom (serial procs) |
170 | |
171 | if (obj == nullptr) { |
172 | fWriter.write32(0); |
173 | } else if (fProcs.fTypefaceProc) { |
174 | auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
175 | if (data) { |
176 | size_t size = data->size(); |
177 | if (!SkTFitsIn<int32_t>(size)) { |
178 | size = 0; // fall back to default font |
179 | } |
180 | int32_t ssize = SkToS32(size); |
181 | fWriter.write32(-ssize); // negative to signal custom |
182 | if (size) { |
183 | this->writePad32(data->data(), size); |
184 | } |
185 | return; |
186 | } |
187 | // no data means fall through for std behavior |
188 | } |
189 | fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
190 | } |
191 | |
192 | void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
193 | SkPaintPriv::Flatten(paint, *this); |
194 | } |
195 | |
196 | void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
197 | fFactorySet = std::move(rec); |
198 | } |
199 | |
200 | void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
201 | fTFSet = std::move(rec); |
202 | } |
203 | |
204 | void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
205 | if (nullptr == flattenable) { |
206 | this->write32(0); |
207 | return; |
208 | } |
209 | |
210 | /* |
211 | * We can write 1 of 2 versions of the flattenable: |
212 | * 1. index into fFactorySet : This assumes the writer will later |
213 | * resolve the function-ptrs into strings for its reader. SkPicture |
214 | * does exactly this, by writing a table of names (matching the indices) |
215 | * up front in its serialized form. |
216 | * 2. string name of the flattenable or index into fFlattenableDict: We |
217 | * store the string to allow the reader to specify its own factories |
218 | * after write time. In order to improve compression, if we have |
219 | * already written the string, we write its index instead. |
220 | */ |
221 | |
222 | SkFlattenable::Factory factory = flattenable->getFactory(); |
223 | SkASSERT(factory); |
224 | |
225 | if (fFactorySet) { |
226 | this->write32(fFactorySet->add(factory)); |
227 | } else { |
228 | |
229 | if (uint32_t* indexPtr = fFlattenableDict.find(factory)) { |
230 | // We will write the index as a 32-bit int. We want the first byte |
231 | // that we send to be zero - this will act as a sentinel that we |
232 | // have an index (not a string). This means that we will send the |
233 | // the index shifted left by 8. The remaining 24-bits should be |
234 | // plenty to store the index. Note that this strategy depends on |
235 | // being little endian. |
236 | SkASSERT(0 == *indexPtr >> 24); |
237 | this->write32(*indexPtr << 8); |
238 | } else { |
239 | const char* name = flattenable->getTypeName(); |
240 | SkASSERT(name); |
241 | // Otherwise write the string. Clients should not use the empty |
242 | // string as a name, or we will have a problem. |
243 | SkASSERT(0 != strcmp("" , name)); |
244 | this->writeString(name); |
245 | |
246 | // Add key to dictionary. |
247 | fFlattenableDict.set(factory, fFlattenableDict.count() + 1); |
248 | } |
249 | } |
250 | |
251 | // make room for the size of the flattened object |
252 | (void)fWriter.reserve(sizeof(uint32_t)); |
253 | // record the current size, so we can subtract after the object writes. |
254 | size_t offset = fWriter.bytesWritten(); |
255 | // now flatten the object |
256 | flattenable->flatten(*this); |
257 | size_t objSize = fWriter.bytesWritten() - offset; |
258 | // record the obj's size |
259 | fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
260 | } |
261 | |