1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/ccpr/GrCCFiller.h" |
9 | |
10 | #include "include/core/SkPath.h" |
11 | #include "include/core/SkPoint.h" |
12 | #include "src/core/SkMathPriv.h" |
13 | #include "src/core/SkPathPriv.h" |
14 | #include "src/gpu/GrCaps.h" |
15 | #include "src/gpu/GrOnFlushResourceProvider.h" |
16 | #include "src/gpu/GrOpFlushState.h" |
17 | #include "src/gpu/GrProgramInfo.h" |
18 | #include <cstdlib> |
19 | |
20 | using TriPointInstance = GrCCCoverageProcessor::TriPointInstance; |
21 | using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance; |
22 | |
23 | GrCCFiller::GrCCFiller(Algorithm algorithm, int numPaths, int numSkPoints, int numSkVerbs, |
24 | int numConicWeights) |
25 | : fAlgorithm(algorithm) |
26 | , fGeometry(numSkPoints, numSkVerbs, numConicWeights) |
27 | , fPathInfos(numPaths) |
28 | , fScissorSubBatches(numPaths) |
29 | , fTotalPrimitiveCounts{PrimitiveTallies(), PrimitiveTallies()} { |
30 | // Batches decide what to draw by looking where the previous one ended. Define initial batches |
31 | // that "end" at the beginning of the data. These will not be drawn, but will only be be read by |
32 | // the first actual batch. |
33 | fScissorSubBatches.push_back() = {PrimitiveTallies(), SkIRect::MakeEmpty()}; |
34 | fBatches.push_back() = {PrimitiveTallies(), fScissorSubBatches.count(), PrimitiveTallies()}; |
35 | } |
36 | |
37 | void GrCCFiller::parseDeviceSpaceFill(const SkPath& path, const SkPoint* deviceSpacePts, |
38 | GrScissorTest scissorTest, const SkIRect& clippedDevIBounds, |
39 | const SkIVector& devToAtlasOffset) { |
40 | SkASSERT(!fInstanceBuffer.gpuBuffer()); // Can't call after prepareToDraw(). |
41 | SkASSERT(!path.isEmpty()); |
42 | |
43 | int currPathPointsIdx = fGeometry.points().count(); |
44 | int currPathVerbsIdx = fGeometry.verbs().count(); |
45 | PrimitiveTallies currPathPrimitiveCounts = PrimitiveTallies(); |
46 | |
47 | fGeometry.beginPath(); |
48 | |
49 | const float* conicWeights = SkPathPriv::ConicWeightData(path); |
50 | int ptsIdx = 0; |
51 | int conicWeightsIdx = 0; |
52 | bool insideContour = false; |
53 | |
54 | for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
55 | switch (verb) { |
56 | case SkPath::kMove_Verb: |
57 | if (insideContour) { |
58 | currPathPrimitiveCounts += fGeometry.endContour(); |
59 | } |
60 | fGeometry.beginContour(deviceSpacePts[ptsIdx]); |
61 | ++ptsIdx; |
62 | insideContour = true; |
63 | continue; |
64 | case SkPath::kClose_Verb: |
65 | if (insideContour) { |
66 | currPathPrimitiveCounts += fGeometry.endContour(); |
67 | } |
68 | insideContour = false; |
69 | continue; |
70 | case SkPath::kLine_Verb: |
71 | fGeometry.lineTo(&deviceSpacePts[ptsIdx - 1]); |
72 | ++ptsIdx; |
73 | continue; |
74 | case SkPath::kQuad_Verb: |
75 | fGeometry.quadraticTo(&deviceSpacePts[ptsIdx - 1]); |
76 | ptsIdx += 2; |
77 | continue; |
78 | case SkPath::kCubic_Verb: |
79 | fGeometry.cubicTo(&deviceSpacePts[ptsIdx - 1]); |
80 | ptsIdx += 3; |
81 | continue; |
82 | case SkPath::kConic_Verb: |
83 | fGeometry.conicTo(&deviceSpacePts[ptsIdx - 1], conicWeights[conicWeightsIdx]); |
84 | ptsIdx += 2; |
85 | ++conicWeightsIdx; |
86 | continue; |
87 | default: |
88 | SK_ABORT("Unexpected path verb." ); |
89 | } |
90 | } |
91 | SkASSERT(ptsIdx == path.countPoints()); |
92 | SkASSERT(conicWeightsIdx == SkPathPriv::ConicWeightCnt(path)); |
93 | |
94 | if (insideContour) { |
95 | currPathPrimitiveCounts += fGeometry.endContour(); |
96 | } |
97 | |
98 | fPathInfos.emplace_back(scissorTest, devToAtlasOffset); |
99 | |
100 | // Tessellate fans from very large and/or simple paths, in order to reduce overdraw. |
101 | int numVerbs = fGeometry.verbs().count() - currPathVerbsIdx - 1; |
102 | int64_t tessellationWork = (int64_t)numVerbs * (32 - SkCLZ(numVerbs)); // N log N. |
103 | int64_t fanningWork = (int64_t)clippedDevIBounds.height() * clippedDevIBounds.width(); |
104 | if (tessellationWork * (50*50) + (100*100) < fanningWork) { // Don't tessellate under 100x100. |
105 | fPathInfos.back().tessellateFan( |
106 | fAlgorithm, path, fGeometry, currPathVerbsIdx, currPathPointsIdx, clippedDevIBounds, |
107 | &currPathPrimitiveCounts); |
108 | } |
109 | |
110 | fTotalPrimitiveCounts[(int)scissorTest] += currPathPrimitiveCounts; |
111 | |
112 | if (GrScissorTest::kEnabled == scissorTest) { |
113 | fScissorSubBatches.push_back() = {fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled], |
114 | clippedDevIBounds.makeOffset(devToAtlasOffset)}; |
115 | } |
116 | } |
117 | |
118 | void GrCCFiller::PathInfo::tessellateFan( |
119 | Algorithm algorithm, const SkPath& originalPath, const GrCCFillGeometry& geometry, |
120 | int verbsIdx, int ptsIdx, const SkIRect& clippedDevIBounds, |
121 | PrimitiveTallies* newTriangleCounts) { |
122 | using Verb = GrCCFillGeometry::Verb; |
123 | SkASSERT(-1 == fFanTessellationCount); |
124 | SkASSERT(!fFanTessellation); |
125 | |
126 | const SkTArray<Verb, true>& verbs = geometry.verbs(); |
127 | const SkTArray<SkPoint, true>& pts = geometry.points(); |
128 | |
129 | newTriangleCounts->fTriangles = |
130 | newTriangleCounts->fWeightedTriangles = 0; |
131 | |
132 | // Build an SkPath of the Redbook fan. |
133 | SkPath fan; |
134 | if (Algorithm::kCoverageCount == algorithm) { |
135 | // We use "winding" fill type right now because we are producing a coverage count, and must |
136 | // fill in every region that has non-zero wind. The path processor will convert coverage |
137 | // count to the appropriate fill type later. |
138 | fan.setFillType(SkPathFillType::kWinding); |
139 | } else { |
140 | // When counting winding numbers in the stencil buffer, it works to use even/odd for the fan |
141 | // tessellation (where applicable). But we need to strip out inverse fill info because |
142 | // inverse-ness gets accounted for later on. |
143 | fan.setFillType(SkPathFillType_ConvertToNonInverse(originalPath.getFillType())); |
144 | } |
145 | SkASSERT(Verb::kBeginPath == verbs[verbsIdx]); |
146 | for (int i = verbsIdx + 1; i < verbs.count(); ++i) { |
147 | switch (verbs[i]) { |
148 | case Verb::kBeginPath: |
149 | SK_ABORT("Invalid GrCCFillGeometry" ); |
150 | continue; |
151 | |
152 | case Verb::kBeginContour: |
153 | fan.moveTo(pts[ptsIdx++]); |
154 | continue; |
155 | |
156 | case Verb::kLineTo: |
157 | fan.lineTo(pts[ptsIdx++]); |
158 | continue; |
159 | |
160 | case Verb::kMonotonicQuadraticTo: |
161 | case Verb::kMonotonicConicTo: |
162 | fan.lineTo(pts[ptsIdx + 1]); |
163 | ptsIdx += 2; |
164 | continue; |
165 | |
166 | case Verb::kMonotonicCubicTo: |
167 | fan.lineTo(pts[ptsIdx + 2]); |
168 | ptsIdx += 3; |
169 | continue; |
170 | |
171 | case Verb::kEndClosedContour: |
172 | case Verb::kEndOpenContour: |
173 | fan.close(); |
174 | continue; |
175 | } |
176 | } |
177 | |
178 | GrTriangulator::WindingVertex* vertices = nullptr; |
179 | SkASSERT(!fan.isInverseFillType()); |
180 | fFanTessellationCount = GrTriangulator::PathToVertices( |
181 | fan, std::numeric_limits<float>::infinity(), SkRect::Make(clippedDevIBounds), |
182 | &vertices); |
183 | if (fFanTessellationCount <= 0) { |
184 | SkASSERT(0 == fFanTessellationCount); |
185 | SkASSERT(nullptr == vertices); |
186 | return; |
187 | } |
188 | |
189 | SkASSERT(0 == fFanTessellationCount % 3); |
190 | for (int i = 0; i < fFanTessellationCount; i += 3) { |
191 | int weight = abs(vertices[i].fWinding); |
192 | if (SkPathFillType::kEvenOdd == fan.getFillType()) { |
193 | // The tessellator doesn't wrap weights modulo 2 when we request even/odd fill type. |
194 | SkASSERT(weight & 1); |
195 | weight = 1; |
196 | } |
197 | if (weight > 1 && Algorithm::kCoverageCount == algorithm) { |
198 | ++newTriangleCounts->fWeightedTriangles; |
199 | } else { |
200 | newTriangleCounts->fTriangles += weight; |
201 | } |
202 | vertices[i].fWinding = weight; |
203 | } |
204 | |
205 | fFanTessellation.reset(vertices); |
206 | } |
207 | |
208 | GrCCFiller::BatchID GrCCFiller::closeCurrentBatch() { |
209 | SkASSERT(!fInstanceBuffer.gpuBuffer()); |
210 | SkASSERT(!fBatches.empty()); |
211 | |
212 | const auto& lastBatch = fBatches.back(); |
213 | int maxMeshes = 1 + fScissorSubBatches.count() - lastBatch.fEndScissorSubBatchIdx; |
214 | fMaxMeshesPerDraw = std::max(fMaxMeshesPerDraw, maxMeshes); |
215 | |
216 | const auto& lastScissorSubBatch = fScissorSubBatches[lastBatch.fEndScissorSubBatchIdx - 1]; |
217 | PrimitiveTallies batchTotalCounts = fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled] - |
218 | lastBatch.fEndNonScissorIndices; |
219 | batchTotalCounts += fTotalPrimitiveCounts[(int)GrScissorTest::kEnabled] - |
220 | lastScissorSubBatch.fEndPrimitiveIndices; |
221 | |
222 | // This will invalidate lastBatch. |
223 | fBatches.push_back() = { |
224 | fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled], |
225 | fScissorSubBatches.count(), |
226 | batchTotalCounts |
227 | }; |
228 | return fBatches.count() - 1; |
229 | } |
230 | |
231 | // Emits a contour's triangle fan. |
232 | // |
233 | // Classic Redbook fanning would be the triangles: [0 1 2], [0 2 3], ..., [0 n-2 n-1]. |
234 | // |
235 | // This function emits the triangle: [0 n/3 n*2/3], and then recurses on all three sides. The |
236 | // advantage to this approach is that for a convex-ish contour, it generates larger triangles. |
237 | // Classic fanning tends to generate long, skinny triangles, which are expensive to draw since they |
238 | // have a longer perimeter to rasterize and antialias. |
239 | // |
240 | // The indices array indexes the fan's points (think: glDrawElements), and must have at least log3 |
241 | // elements past the end for this method to use as scratch space. |
242 | // |
243 | // Returns the next triangle instance after the final one emitted. |
244 | static TriPointInstance* emit_recursive_fan( |
245 | const SkTArray<SkPoint, true>& pts, SkTArray<int32_t, true>& indices, int firstIndex, |
246 | int indexCount, const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering, |
247 | TriPointInstance out[]) { |
248 | if (indexCount < 3) { |
249 | return out; |
250 | } |
251 | |
252 | int32_t oneThirdCount = indexCount / 3; |
253 | int32_t twoThirdsCount = (2 * indexCount) / 3; |
254 | out++->set(pts[indices[firstIndex]], pts[indices[firstIndex + oneThirdCount]], |
255 | pts[indices[firstIndex + twoThirdsCount]], devToAtlasOffset, ordering); |
256 | |
257 | out = emit_recursive_fan( |
258 | pts, indices, firstIndex, oneThirdCount + 1, devToAtlasOffset, ordering, out); |
259 | out = emit_recursive_fan( |
260 | pts, indices, firstIndex + oneThirdCount, twoThirdsCount - oneThirdCount + 1, |
261 | devToAtlasOffset, ordering, out); |
262 | |
263 | int endIndex = firstIndex + indexCount; |
264 | int32_t oldValue = indices[endIndex]; |
265 | indices[endIndex] = indices[firstIndex]; |
266 | out = emit_recursive_fan( |
267 | pts, indices, firstIndex + twoThirdsCount, indexCount - twoThirdsCount + 1, |
268 | devToAtlasOffset, ordering, out); |
269 | indices[endIndex] = oldValue; |
270 | |
271 | return out; |
272 | } |
273 | |
274 | void GrCCFiller::emitTessellatedFan( |
275 | const GrTriangulator::WindingVertex* vertices, int numVertices, |
276 | const Sk2f& devToAtlasOffset, TriPointInstance::Ordering ordering, |
277 | TriPointInstance* triPointInstanceData, QuadPointInstance* quadPointInstanceData, |
278 | GrCCFillGeometry::PrimitiveTallies* indices) { |
279 | for (int i = 0; i < numVertices; i += 3) { |
280 | int weight = vertices[i].fWinding; |
281 | SkASSERT(weight >= 1); |
282 | if (weight > 1 && Algorithm::kStencilWindingCount != fAlgorithm) { |
283 | quadPointInstanceData[indices->fWeightedTriangles++].setW( |
284 | vertices[i].fPos, vertices[i+1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
285 | static_cast<float>(abs(vertices[i].fWinding))); |
286 | } else for (int j = 0; j < weight; ++j) { |
287 | // Unfortunately, there is not a way to increment stencil values by an amount larger |
288 | // than 1. Instead we draw the triangle 'weight' times. |
289 | triPointInstanceData[indices->fTriangles++].set( |
290 | vertices[i].fPos, vertices[i + 1].fPos, vertices[i + 2].fPos, devToAtlasOffset, |
291 | ordering); |
292 | } |
293 | } |
294 | } |
295 | |
296 | bool GrCCFiller::prepareToDraw(GrOnFlushResourceProvider* onFlushRP) { |
297 | using Verb = GrCCFillGeometry::Verb; |
298 | SkASSERT(!fInstanceBuffer.gpuBuffer()); |
299 | SkASSERT(fBatches.back().fEndNonScissorIndices == // Call closeCurrentBatch(). |
300 | fTotalPrimitiveCounts[(int)GrScissorTest::kDisabled]); |
301 | SkASSERT(fBatches.back().fEndScissorSubBatchIdx == fScissorSubBatches.count()); |
302 | |
303 | auto triangleOrdering = (Algorithm::kCoverageCount == fAlgorithm) |
304 | ? TriPointInstance::Ordering::kXYTransposed |
305 | : TriPointInstance::Ordering::kXYInterleaved; |
306 | |
307 | // Here we build a single instance buffer to share with every internal batch. |
308 | // |
309 | // CCPR processs 3 different types of primitives: triangles, quadratics, cubics. Each primitive |
310 | // type is further divided into instances that require a scissor and those that don't. This |
311 | // leaves us with 3*2 = 6 independent instance arrays to build for the GPU. |
312 | // |
313 | // Rather than place each instance array in its own GPU buffer, we allocate a single |
314 | // megabuffer and lay them all out side-by-side. We can offset the "baseInstance" parameter in |
315 | // our draw calls to direct the GPU to the applicable elements within a given array. |
316 | // |
317 | // We already know how big to make each of the 6 arrays from fTotalPrimitiveCounts, so layout is |
318 | // straightforward. Start with triangles and quadratics. They both view the instance buffer as |
319 | // an array of TriPointInstance[], so we can begin at zero and lay them out one after the other. |
320 | fBaseInstances[0].fTriangles = 0; |
321 | fBaseInstances[1].fTriangles = fBaseInstances[0].fTriangles + |
322 | fTotalPrimitiveCounts[0].fTriangles; |
323 | fBaseInstances[0].fQuadratics = fBaseInstances[1].fTriangles + |
324 | fTotalPrimitiveCounts[1].fTriangles; |
325 | fBaseInstances[1].fQuadratics = fBaseInstances[0].fQuadratics + |
326 | fTotalPrimitiveCounts[0].fQuadratics; |
327 | int triEndIdx = fBaseInstances[1].fQuadratics + fTotalPrimitiveCounts[1].fQuadratics; |
328 | |
329 | // Wound triangles and cubics both view the same instance buffer as an array of |
330 | // QuadPointInstance[]. So, reinterpreting the instance data as QuadPointInstance[], we start |
331 | // them on the first index that will not overwrite previous TriPointInstance data. |
332 | int quadBaseIdx = |
333 | GrSizeDivRoundUp(triEndIdx * sizeof(TriPointInstance), sizeof(QuadPointInstance)); |
334 | fBaseInstances[0].fWeightedTriangles = quadBaseIdx; |
335 | fBaseInstances[1].fWeightedTriangles = fBaseInstances[0].fWeightedTriangles + |
336 | fTotalPrimitiveCounts[0].fWeightedTriangles; |
337 | fBaseInstances[0].fCubics = fBaseInstances[1].fWeightedTriangles + |
338 | fTotalPrimitiveCounts[1].fWeightedTriangles; |
339 | fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics; |
340 | fBaseInstances[0].fConics = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics; |
341 | fBaseInstances[1].fConics = fBaseInstances[0].fConics + fTotalPrimitiveCounts[0].fConics; |
342 | int quadEndIdx = fBaseInstances[1].fConics + fTotalPrimitiveCounts[1].fConics; |
343 | |
344 | fInstanceBuffer.resetAndMapBuffer(onFlushRP, quadEndIdx * sizeof(QuadPointInstance)); |
345 | if (!fInstanceBuffer.gpuBuffer()) { |
346 | SkDebugf("WARNING: failed to allocate CCPR fill instance buffer.\n" ); |
347 | return false; |
348 | } |
349 | |
350 | auto triPointInstanceData = reinterpret_cast<TriPointInstance*>(fInstanceBuffer.data()); |
351 | auto quadPointInstanceData = reinterpret_cast<QuadPointInstance*>(fInstanceBuffer.data()); |
352 | SkASSERT(quadPointInstanceData); |
353 | |
354 | PathInfo* nextPathInfo = fPathInfos.begin(); |
355 | Sk2f devToAtlasOffset; |
356 | PrimitiveTallies instanceIndices[2] = {fBaseInstances[0], fBaseInstances[1]}; |
357 | PrimitiveTallies* currIndices = nullptr; |
358 | SkSTArray<256, int32_t, true> currFan; |
359 | bool currFanIsTessellated = false; |
360 | |
361 | const SkTArray<SkPoint, true>& pts = fGeometry.points(); |
362 | int ptsIdx = -1; |
363 | int nextConicWeightIdx = 0; |
364 | |
365 | // Expand the ccpr verbs into GPU instance buffers. |
366 | for (Verb verb : fGeometry.verbs()) { |
367 | switch (verb) { |
368 | case Verb::kBeginPath: |
369 | SkASSERT(currFan.empty()); |
370 | currIndices = &instanceIndices[(int)nextPathInfo->scissorTest()]; |
371 | devToAtlasOffset = Sk2f(static_cast<float>(nextPathInfo->devToAtlasOffset().fX), |
372 | static_cast<float>(nextPathInfo->devToAtlasOffset().fY)); |
373 | currFanIsTessellated = nextPathInfo->hasFanTessellation(); |
374 | if (currFanIsTessellated) { |
375 | this->emitTessellatedFan( |
376 | nextPathInfo->fanTessellation(), nextPathInfo->fanTessellationCount(), |
377 | devToAtlasOffset, triangleOrdering, triPointInstanceData, |
378 | quadPointInstanceData, currIndices); |
379 | } |
380 | ++nextPathInfo; |
381 | continue; |
382 | |
383 | case Verb::kBeginContour: |
384 | SkASSERT(currFan.empty()); |
385 | ++ptsIdx; |
386 | if (!currFanIsTessellated) { |
387 | currFan.push_back(ptsIdx); |
388 | } |
389 | continue; |
390 | |
391 | case Verb::kLineTo: |
392 | ++ptsIdx; |
393 | if (!currFanIsTessellated) { |
394 | SkASSERT(!currFan.empty()); |
395 | currFan.push_back(ptsIdx); |
396 | } |
397 | continue; |
398 | |
399 | case Verb::kMonotonicQuadraticTo: |
400 | triPointInstanceData[currIndices->fQuadratics++].set( |
401 | &pts[ptsIdx], devToAtlasOffset, TriPointInstance::Ordering::kXYTransposed); |
402 | ptsIdx += 2; |
403 | if (!currFanIsTessellated) { |
404 | SkASSERT(!currFan.empty()); |
405 | currFan.push_back(ptsIdx); |
406 | } |
407 | continue; |
408 | |
409 | case Verb::kMonotonicCubicTo: |
410 | quadPointInstanceData[currIndices->fCubics++].set( |
411 | &pts[ptsIdx], devToAtlasOffset[0], devToAtlasOffset[1]); |
412 | ptsIdx += 3; |
413 | if (!currFanIsTessellated) { |
414 | SkASSERT(!currFan.empty()); |
415 | currFan.push_back(ptsIdx); |
416 | } |
417 | continue; |
418 | |
419 | case Verb::kMonotonicConicTo: |
420 | quadPointInstanceData[currIndices->fConics++].setW( |
421 | &pts[ptsIdx], devToAtlasOffset, |
422 | fGeometry.getConicWeight(nextConicWeightIdx)); |
423 | ptsIdx += 2; |
424 | ++nextConicWeightIdx; |
425 | if (!currFanIsTessellated) { |
426 | SkASSERT(!currFan.empty()); |
427 | currFan.push_back(ptsIdx); |
428 | } |
429 | continue; |
430 | |
431 | case Verb::kEndClosedContour: // endPt == startPt. |
432 | if (!currFanIsTessellated) { |
433 | SkASSERT(!currFan.empty()); |
434 | currFan.pop_back(); |
435 | } |
436 | // fallthru. |
437 | case Verb::kEndOpenContour: // endPt != startPt. |
438 | SkASSERT(!currFanIsTessellated || currFan.empty()); |
439 | if (!currFanIsTessellated && currFan.count() >= 3) { |
440 | int fanSize = currFan.count(); |
441 | // Reserve space for emit_recursive_fan. Technically this can grow to |
442 | // fanSize + log3(fanSize), but we approximate with log2. |
443 | currFan.push_back_n(SkNextLog2(fanSize)); |
444 | SkDEBUGCODE(TriPointInstance* end =) emit_recursive_fan( |
445 | pts, currFan, 0, fanSize, devToAtlasOffset, triangleOrdering, |
446 | triPointInstanceData + currIndices->fTriangles); |
447 | currIndices->fTriangles += fanSize - 2; |
448 | SkASSERT(triPointInstanceData + currIndices->fTriangles == end); |
449 | } |
450 | currFan.reset(); |
451 | continue; |
452 | } |
453 | } |
454 | |
455 | fInstanceBuffer.unmapBuffer(); |
456 | |
457 | SkASSERT(nextPathInfo == fPathInfos.end()); |
458 | SkASSERT(ptsIdx == pts.count() - 1); |
459 | SkASSERT(instanceIndices[0].fTriangles == fBaseInstances[1].fTriangles); |
460 | SkASSERT(instanceIndices[1].fTriangles == fBaseInstances[0].fQuadratics); |
461 | SkASSERT(instanceIndices[0].fQuadratics == fBaseInstances[1].fQuadratics); |
462 | SkASSERT(instanceIndices[1].fQuadratics == triEndIdx); |
463 | SkASSERT(instanceIndices[0].fWeightedTriangles == fBaseInstances[1].fWeightedTriangles); |
464 | SkASSERT(instanceIndices[1].fWeightedTriangles == fBaseInstances[0].fCubics); |
465 | SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics); |
466 | SkASSERT(instanceIndices[1].fCubics == fBaseInstances[0].fConics); |
467 | SkASSERT(instanceIndices[0].fConics == fBaseInstances[1].fConics); |
468 | SkASSERT(instanceIndices[1].fConics == quadEndIdx); |
469 | |
470 | return true; |
471 | } |
472 | |
473 | void GrCCFiller::drawFills( |
474 | GrOpFlushState* flushState, GrCCCoverageProcessor* proc, const GrPipeline& pipeline, |
475 | BatchID batchID, const SkIRect& drawBounds) const { |
476 | using PrimitiveType = GrCCCoverageProcessor::PrimitiveType; |
477 | |
478 | SkASSERT(fInstanceBuffer.gpuBuffer()); |
479 | |
480 | GrResourceProvider* rp = flushState->resourceProvider(); |
481 | const PrimitiveTallies& batchTotalCounts = fBatches[batchID].fTotalPrimitiveCounts; |
482 | |
483 | int numSubpasses = proc->numSubpasses(); |
484 | |
485 | if (batchTotalCounts.fTriangles) { |
486 | for (int i = 0; i < numSubpasses; ++i) { |
487 | proc->reset(PrimitiveType::kTriangles, i, rp); |
488 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
489 | &PrimitiveTallies::fTriangles, drawBounds); |
490 | } |
491 | } |
492 | |
493 | if (batchTotalCounts.fWeightedTriangles) { |
494 | SkASSERT(Algorithm::kStencilWindingCount != fAlgorithm); |
495 | for (int i = 0; i < numSubpasses; ++i) { |
496 | proc->reset(PrimitiveType::kWeightedTriangles, i, rp); |
497 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
498 | &PrimitiveTallies::fWeightedTriangles, drawBounds); |
499 | } |
500 | } |
501 | |
502 | if (batchTotalCounts.fQuadratics) { |
503 | for (int i = 0; i < numSubpasses; ++i) { |
504 | proc->reset(PrimitiveType::kQuadratics, i, rp); |
505 | this->drawPrimitives(flushState, *proc, pipeline, batchID, |
506 | &PrimitiveTallies::fQuadratics, drawBounds); |
507 | } |
508 | } |
509 | |
510 | if (batchTotalCounts.fCubics) { |
511 | for (int i = 0; i < numSubpasses; ++i) { |
512 | proc->reset(PrimitiveType::kCubics, i, rp); |
513 | this->drawPrimitives(flushState, *proc, pipeline, batchID, &PrimitiveTallies::fCubics, |
514 | drawBounds); |
515 | } |
516 | } |
517 | |
518 | if (batchTotalCounts.fConics) { |
519 | for (int i = 0; i < numSubpasses; ++i) { |
520 | proc->reset(PrimitiveType::kConics, i, rp); |
521 | this->drawPrimitives(flushState, *proc, pipeline, batchID, &PrimitiveTallies::fConics, |
522 | drawBounds); |
523 | } |
524 | } |
525 | } |
526 | |
527 | void GrCCFiller::drawPrimitives( |
528 | GrOpFlushState* flushState, const GrCCCoverageProcessor& proc, const GrPipeline& pipeline, |
529 | BatchID batchID, int PrimitiveTallies::*instanceType, const SkIRect& drawBounds) const { |
530 | SkASSERT(pipeline.isScissorTestEnabled()); |
531 | |
532 | GrOpsRenderPass* renderPass = flushState->opsRenderPass(); |
533 | proc.bindPipeline(flushState, pipeline, SkRect::Make(drawBounds)); |
534 | proc.bindBuffers(renderPass, fInstanceBuffer.gpuBuffer()); |
535 | |
536 | SkASSERT(batchID > 0); |
537 | SkASSERT(batchID < fBatches.count()); |
538 | const Batch& previousBatch = fBatches[batchID - 1]; |
539 | const Batch& batch = fBatches[batchID]; |
540 | SkDEBUGCODE(int totalInstanceCount = 0); |
541 | |
542 | if (int instanceCount = batch.fEndNonScissorIndices.*instanceType - |
543 | previousBatch.fEndNonScissorIndices.*instanceType) { |
544 | SkASSERT(instanceCount > 0); |
545 | int baseInstance = fBaseInstances[(int)GrScissorTest::kDisabled].*instanceType + |
546 | previousBatch.fEndNonScissorIndices.*instanceType; |
547 | renderPass->setScissorRect(SkIRect::MakeXYWH(0, 0, drawBounds.width(), |
548 | drawBounds.height())); |
549 | proc.drawInstances(renderPass, instanceCount, baseInstance); |
550 | SkDEBUGCODE(totalInstanceCount += instanceCount); |
551 | } |
552 | |
553 | SkASSERT(previousBatch.fEndScissorSubBatchIdx > 0); |
554 | SkASSERT(batch.fEndScissorSubBatchIdx <= fScissorSubBatches.count()); |
555 | int baseScissorInstance = fBaseInstances[(int)GrScissorTest::kEnabled].*instanceType; |
556 | for (int i = previousBatch.fEndScissorSubBatchIdx; i < batch.fEndScissorSubBatchIdx; ++i) { |
557 | const ScissorSubBatch& previousSubBatch = fScissorSubBatches[i - 1]; |
558 | const ScissorSubBatch& scissorSubBatch = fScissorSubBatches[i]; |
559 | int startIndex = previousSubBatch.fEndPrimitiveIndices.*instanceType; |
560 | int instanceCount = scissorSubBatch.fEndPrimitiveIndices.*instanceType - startIndex; |
561 | if (!instanceCount) { |
562 | continue; |
563 | } |
564 | SkASSERT(instanceCount > 0); |
565 | renderPass->setScissorRect(scissorSubBatch.fScissor); |
566 | proc.drawInstances(renderPass, instanceCount, baseScissorInstance + startIndex); |
567 | SkDEBUGCODE(totalInstanceCount += instanceCount); |
568 | } |
569 | |
570 | SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType); |
571 | } |
572 | |