| 1 | /* | 
|---|
| 2 | * Copyright 2019 Google LLC. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "src/gpu/tessellate/GrTessellatePathOp.h" | 
|---|
| 9 |  | 
|---|
| 10 | #include "src/gpu/GrEagerVertexAllocator.h" | 
|---|
| 11 | #include "src/gpu/GrGpu.h" | 
|---|
| 12 | #include "src/gpu/GrOpFlushState.h" | 
|---|
| 13 | #include "src/gpu/GrTriangulator.h" | 
|---|
| 14 | #include "src/gpu/tessellate/GrFillPathShader.h" | 
|---|
| 15 | #include "src/gpu/tessellate/GrPathParser.h" | 
|---|
| 16 | #include "src/gpu/tessellate/GrStencilPathShader.h" | 
|---|
| 17 |  | 
|---|
| 18 | GrTessellatePathOp::FixedFunctionFlags GrTessellatePathOp::fixedFunctionFlags() const { | 
|---|
| 19 | auto flags = FixedFunctionFlags::kUsesStencil; | 
|---|
| 20 | if (GrAAType::kNone != fAAType) { | 
|---|
| 21 | flags |= FixedFunctionFlags::kUsesHWAA; | 
|---|
| 22 | } | 
|---|
| 23 | return flags; | 
|---|
| 24 | } | 
|---|
| 25 |  | 
|---|
| 26 | void GrTessellatePathOp::onPrePrepare(GrRecordingContext*, | 
|---|
| 27 | const GrSurfaceProxyView* writeView, | 
|---|
| 28 | GrAppliedClip*, | 
|---|
| 29 | const GrXferProcessor::DstProxyView&) { | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | void GrTessellatePathOp::onPrepare(GrOpFlushState* state) { | 
|---|
| 33 | GrEagerDynamicVertexAllocator pathVertexAllocator(state, &fPathVertexBuffer, &fBasePathVertex); | 
|---|
| 34 | GrEagerDynamicVertexAllocator cubicInstanceAllocator(state, &fCubicInstanceBuffer, | 
|---|
| 35 | &fBaseCubicInstance); | 
|---|
| 36 |  | 
|---|
| 37 | // First check if the path is large and/or simple enough that we can actually tessellate the | 
|---|
| 38 | // inner polygon(s) on the CPU. This is our fastest approach. It allows us to stencil only the | 
|---|
| 39 | // curves, and then draw the internal polygons directly to the final render target, thus filling | 
|---|
| 40 | // in the majority of pixels in a single render pass. | 
|---|
| 41 | SkScalar scales[2]; | 
|---|
| 42 | SkAssertResult(fViewMatrix.getMinMaxScales(scales));  // Will fail if perspective. | 
|---|
| 43 | const SkRect& bounds = fPath.getBounds(); | 
|---|
| 44 | int numVerbs = fPath.countVerbs(); | 
|---|
| 45 | if (numVerbs <= 0) { | 
|---|
| 46 | return; | 
|---|
| 47 | } | 
|---|
| 48 | float gpuFragmentWork = bounds.height() * scales[0] * bounds.width() * scales[1]; | 
|---|
| 49 | float cpuTessellationWork = (float)numVerbs * SkNextLog2(numVerbs);  // N log N. | 
|---|
| 50 | if (cpuTessellationWork * 500 + (256 * 256) < gpuFragmentWork) {  // Don't try below 256x256. | 
|---|
| 51 | bool pathIsLinear; | 
|---|
| 52 | // PathToTriangles(..kSimpleInnerPolygon..) will fail if the inner polygon is not simple. | 
|---|
| 53 | if ((fPathVertexCount = GrTriangulator::PathToTriangles( | 
|---|
| 54 | fPath, 0, SkRect::MakeEmpty(), &pathVertexAllocator, | 
|---|
| 55 | GrTriangulator::Mode::kSimpleInnerPolygons, &pathIsLinear))) { | 
|---|
| 56 | if (((Flags::kStencilOnly | Flags::kWireframe) & fFlags) || | 
|---|
| 57 | GrAAType::kCoverage == fAAType || | 
|---|
| 58 | (state->appliedClip() && state->appliedClip()->hasStencilClip())) { | 
|---|
| 59 | // If we have certain flags, mixed samples, or a stencil clip then we unfortunately | 
|---|
| 60 | // can't fill the inner polygon directly. Create a stencil shader here to ensure we | 
|---|
| 61 | // still stencil the entire path. | 
|---|
| 62 | fStencilPathShader = state->allocator()->make<GrStencilTriangleShader>(fViewMatrix); | 
|---|
| 63 | } | 
|---|
| 64 | if (!(Flags::kStencilOnly & fFlags)) { | 
|---|
| 65 | fFillPathShader = state->allocator()->make<GrFillTriangleShader>( | 
|---|
| 66 | fViewMatrix, fColor); | 
|---|
| 67 | } | 
|---|
| 68 | if (!pathIsLinear) { | 
|---|
| 69 | fCubicInstanceCount = GrPathParser::EmitCubicInstances( | 
|---|
| 70 | fPath, &cubicInstanceAllocator); | 
|---|
| 71 | SkASSERT(fCubicInstanceCount); | 
|---|
| 72 | } | 
|---|
| 73 | return; | 
|---|
| 74 | } | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | // Next see if we can split up inner polygon triangles and curves, and triangulate the inner | 
|---|
| 78 | // polygon(s) more efficiently. This causes greater CPU overhead due to the extra shaders and | 
|---|
| 79 | // draw calls, but the better triangulation can reduce the rasterizer load by a great deal on | 
|---|
| 80 | // complex paths. | 
|---|
| 81 | // NOTE: Raster-edge work is 1-dimensional, so we sum height and width instead of multiplying. | 
|---|
| 82 | float rasterEdgeWork = (bounds.height() + bounds.width()) * scales[1] * fPath.countVerbs(); | 
|---|
| 83 | if (rasterEdgeWork > 1000 * 1000) { | 
|---|
| 84 | if ((fPathVertexCount = | 
|---|
| 85 | GrPathParser::EmitInnerPolygonTriangles(fPath, &pathVertexAllocator))) { | 
|---|
| 86 | fStencilPathShader = state->allocator()->make<GrStencilTriangleShader>(fViewMatrix); | 
|---|
| 87 | } | 
|---|
| 88 | fCubicInstanceCount = GrPathParser::EmitCubicInstances(fPath, &cubicInstanceAllocator); | 
|---|
| 89 | return; | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | // Fastest CPU approach: emit one cubic wedge per verb, fanning out from the center. | 
|---|
| 93 | if ((fPathVertexCount = GrPathParser::EmitCenterWedgePatches(fPath, &pathVertexAllocator))) { | 
|---|
| 94 | fStencilPathShader = state->allocator()->make<GrStencilWedgeShader>(fViewMatrix); | 
|---|
| 95 | } | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | void GrTessellatePathOp::onExecute(GrOpFlushState* state, const SkRect& chainBounds) { | 
|---|
| 99 | this->drawStencilPass(state); | 
|---|
| 100 | if (!(Flags::kStencilOnly & fFlags)) { | 
|---|
| 101 | this->drawCoverPass(state); | 
|---|
| 102 | } | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | void GrTessellatePathOp::drawStencilPass(GrOpFlushState* state) { | 
|---|
| 106 | // Increments clockwise triangles and decrements counterclockwise. Used for "winding" fill. | 
|---|
| 107 | constexpr static GrUserStencilSettings kIncrDecrStencil( | 
|---|
| 108 | GrUserStencilSettings::StaticInitSeparate< | 
|---|
| 109 | 0x0000,                                0x0000, | 
|---|
| 110 | GrUserStencilTest::kAlwaysIfInClip,    GrUserStencilTest::kAlwaysIfInClip, | 
|---|
| 111 | 0xffff,                                0xffff, | 
|---|
| 112 | GrUserStencilOp::kIncWrap,             GrUserStencilOp::kDecWrap, | 
|---|
| 113 | GrUserStencilOp::kKeep,                GrUserStencilOp::kKeep, | 
|---|
| 114 | 0xffff,                                0xffff>()); | 
|---|
| 115 |  | 
|---|
| 116 | // Inverts the bottom stencil bit. Used for "even/odd" fill. | 
|---|
| 117 | constexpr static GrUserStencilSettings kInvertStencil( | 
|---|
| 118 | GrUserStencilSettings::StaticInit< | 
|---|
| 119 | 0x0000, | 
|---|
| 120 | GrUserStencilTest::kAlwaysIfInClip, | 
|---|
| 121 | 0xffff, | 
|---|
| 122 | GrUserStencilOp::kInvert, | 
|---|
| 123 | GrUserStencilOp::kKeep, | 
|---|
| 124 | 0x0001>()); | 
|---|
| 125 |  | 
|---|
| 126 | GrPipeline::InitArgs initArgs; | 
|---|
| 127 | if (GrAAType::kNone != fAAType) { | 
|---|
| 128 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; | 
|---|
| 129 | } | 
|---|
| 130 | if (state->caps().wireframeSupport() && (Flags::kWireframe & fFlags)) { | 
|---|
| 131 | initArgs.fInputFlags |= GrPipeline::InputFlags::kWireframe; | 
|---|
| 132 | } | 
|---|
| 133 | SkASSERT(SkPathFillType::kWinding == fPath.getFillType() || | 
|---|
| 134 | SkPathFillType::kEvenOdd == fPath.getFillType()); | 
|---|
| 135 | initArgs.fUserStencil = (SkPathFillType::kWinding == fPath.getFillType()) ? | 
|---|
| 136 | &kIncrDecrStencil : &kInvertStencil; | 
|---|
| 137 | initArgs.fCaps = &state->caps(); | 
|---|
| 138 | GrPipeline pipeline(initArgs, GrDisableColorXPFactory::MakeXferProcessor(), | 
|---|
| 139 | state->appliedHardClip()); | 
|---|
| 140 |  | 
|---|
| 141 | if (fStencilPathShader) { | 
|---|
| 142 | SkASSERT(fPathVertexBuffer); | 
|---|
| 143 | GrPathShader::ProgramInfo programInfo(state->writeView(), &pipeline, fStencilPathShader); | 
|---|
| 144 | state->bindPipelineAndScissorClip(programInfo, this->bounds()); | 
|---|
| 145 | state->bindBuffers(nullptr, nullptr, fPathVertexBuffer.get()); | 
|---|
| 146 | state->draw(fPathVertexCount, fBasePathVertex); | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | if (fCubicInstanceBuffer) { | 
|---|
| 150 | // Here we treat the cubic instance buffer as tessellation patches to stencil the curves. | 
|---|
| 151 | GrStencilCubicShader shader(fViewMatrix); | 
|---|
| 152 | GrPathShader::ProgramInfo programInfo(state->writeView(), &pipeline, &shader); | 
|---|
| 153 | state->bindPipelineAndScissorClip(programInfo, this->bounds()); | 
|---|
| 154 | // Bind instancedBuff as vertex. | 
|---|
| 155 | state->bindBuffers(nullptr, nullptr, fCubicInstanceBuffer.get()); | 
|---|
| 156 | state->draw(fCubicInstanceCount * 4, fBaseCubicInstance * 4); | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | // http://skbug.com/9739 | 
|---|
| 160 | if (state->caps().requiresManualFBBarrierAfterTessellatedStencilDraw()) { | 
|---|
| 161 | state->gpu()->insertManualFramebufferBarrier(); | 
|---|
| 162 | } | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | void GrTessellatePathOp::drawCoverPass(GrOpFlushState* state) { | 
|---|
| 166 | // Allows non-zero stencil values to pass and write a color, and resets the stencil value back | 
|---|
| 167 | // to zero; discards immediately on stencil values of zero. | 
|---|
| 168 | // NOTE: It's ok to not check the clip here because the previous stencil pass only wrote to | 
|---|
| 169 | // samples already inside the clip. | 
|---|
| 170 | constexpr static GrUserStencilSettings kTestAndResetStencil( | 
|---|
| 171 | GrUserStencilSettings::StaticInit< | 
|---|
| 172 | 0x0000, | 
|---|
| 173 | GrUserStencilTest::kNotEqual, | 
|---|
| 174 | 0xffff, | 
|---|
| 175 | GrUserStencilOp::kZero, | 
|---|
| 176 | GrUserStencilOp::kKeep, | 
|---|
| 177 | 0xffff>()); | 
|---|
| 178 |  | 
|---|
| 179 | GrPipeline::InitArgs initArgs; | 
|---|
| 180 | if (GrAAType::kNone != fAAType) { | 
|---|
| 181 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; | 
|---|
| 182 | if (1 == state->proxy()->numSamples()) { | 
|---|
| 183 | SkASSERT(GrAAType::kCoverage == fAAType); | 
|---|
| 184 | // We are mixed sampled. Use conservative raster to make the sample coverage mask 100% | 
|---|
| 185 | // at every fragment. This way we will still get a double hit on shared edges, but | 
|---|
| 186 | // whichever side comes first will cover every sample and will clear the stencil. The | 
|---|
| 187 | // other side will then be discarded and not cause a double blend. | 
|---|
| 188 | initArgs.fInputFlags |= GrPipeline::InputFlags::kConservativeRaster; | 
|---|
| 189 | } | 
|---|
| 190 | } | 
|---|
| 191 | initArgs.fCaps = &state->caps(); | 
|---|
| 192 | initArgs.fDstProxyView = state->drawOpArgs().dstProxyView(); | 
|---|
| 193 | initArgs.fWriteSwizzle = state->drawOpArgs().writeSwizzle(); | 
|---|
| 194 | GrPipeline pipeline(initArgs, std::move(fProcessors), state->detachAppliedClip()); | 
|---|
| 195 |  | 
|---|
| 196 | if (fFillPathShader) { | 
|---|
| 197 | SkASSERT(fPathVertexBuffer); | 
|---|
| 198 |  | 
|---|
| 199 | // These are a twist on the standard red book stencil settings that allow us to draw the | 
|---|
| 200 | // inner polygon directly to the final render target. At this point, the curves are already | 
|---|
| 201 | // stencilled in. So if the stencil value is zero, then it means the path at our sample is | 
|---|
| 202 | // not affected by any curves and we fill the path in directly. If the stencil value is | 
|---|
| 203 | // nonzero, then we don't fill and instead continue the standard red book stencil process. | 
|---|
| 204 | // | 
|---|
| 205 | // NOTE: These settings are currently incompatible with a stencil clip. | 
|---|
| 206 | constexpr static GrUserStencilSettings kFillOrIncrDecrStencil( | 
|---|
| 207 | GrUserStencilSettings::StaticInitSeparate< | 
|---|
| 208 | 0x0000,                        0x0000, | 
|---|
| 209 | GrUserStencilTest::kEqual,     GrUserStencilTest::kEqual, | 
|---|
| 210 | 0xffff,                        0xffff, | 
|---|
| 211 | GrUserStencilOp::kKeep,        GrUserStencilOp::kKeep, | 
|---|
| 212 | GrUserStencilOp::kIncWrap,     GrUserStencilOp::kDecWrap, | 
|---|
| 213 | 0xffff,                        0xffff>()); | 
|---|
| 214 |  | 
|---|
| 215 | constexpr static GrUserStencilSettings kFillOrInvertStencil( | 
|---|
| 216 | GrUserStencilSettings::StaticInit< | 
|---|
| 217 | 0x0000, | 
|---|
| 218 | GrUserStencilTest::kEqual, | 
|---|
| 219 | 0xffff, | 
|---|
| 220 | GrUserStencilOp::kKeep, | 
|---|
| 221 | GrUserStencilOp::kZero, | 
|---|
| 222 | 0xffff>()); | 
|---|
| 223 |  | 
|---|
| 224 | if (fStencilPathShader) { | 
|---|
| 225 | // The path was already stencilled. Here we just need to do a cover pass. | 
|---|
| 226 | pipeline.setUserStencil(&kTestAndResetStencil); | 
|---|
| 227 | } else if (!fCubicInstanceBuffer) { | 
|---|
| 228 | // There are no curves, so we can just ignore stencil and fill the path directly. | 
|---|
| 229 | pipeline.setUserStencil(&GrUserStencilSettings::kUnused); | 
|---|
| 230 | } else if (SkPathFillType::kWinding == fPath.getFillType()) { | 
|---|
| 231 | // Fill in the path pixels not touched by curves, incr/decr stencil otherwise. | 
|---|
| 232 | SkASSERT(!pipeline.hasStencilClip()); | 
|---|
| 233 | pipeline.setUserStencil(&kFillOrIncrDecrStencil); | 
|---|
| 234 | } else { | 
|---|
| 235 | // Fill in the path pixels not touched by curves, invert stencil otherwise. | 
|---|
| 236 | SkASSERT(!pipeline.hasStencilClip()); | 
|---|
| 237 | pipeline.setUserStencil(&kFillOrInvertStencil); | 
|---|
| 238 | } | 
|---|
| 239 | GrPathShader::ProgramInfo programInfo(state->writeView(), &pipeline, fFillPathShader); | 
|---|
| 240 | state->bindPipelineAndScissorClip(programInfo, this->bounds()); | 
|---|
| 241 | state->bindTextures(*fFillPathShader, nullptr, pipeline); | 
|---|
| 242 | state->bindBuffers(nullptr, nullptr, fPathVertexBuffer.get()); | 
|---|
| 243 | state->draw(fPathVertexCount, fBasePathVertex); | 
|---|
| 244 |  | 
|---|
| 245 | if (fCubicInstanceBuffer) { | 
|---|
| 246 | // At this point, every pixel is filled in except the ones touched by curves. Issue a | 
|---|
| 247 | // final cover pass over the curves by drawing their convex hulls. This will fill in any | 
|---|
| 248 | // remaining samples and reset the stencil buffer. | 
|---|
| 249 | pipeline.setUserStencil(&kTestAndResetStencil); | 
|---|
| 250 | GrFillCubicHullShader shader(fViewMatrix, fColor); | 
|---|
| 251 | GrPathShader::ProgramInfo programInfo(state->writeView(), &pipeline, &shader); | 
|---|
| 252 | state->bindPipelineAndScissorClip(programInfo, this->bounds()); | 
|---|
| 253 | state->bindTextures(shader, nullptr, pipeline); | 
|---|
| 254 | state->bindBuffers(nullptr, fCubicInstanceBuffer.get(), nullptr); | 
|---|
| 255 | state->drawInstanced(fCubicInstanceCount, fBaseCubicInstance, 4, 0); | 
|---|
| 256 | } | 
|---|
| 257 | } else { | 
|---|
| 258 | // There is not a fill shader for the path. Just draw a bounding box. | 
|---|
| 259 | pipeline.setUserStencil(&kTestAndResetStencil); | 
|---|
| 260 | GrFillBoundingBoxShader shader(fViewMatrix, fColor, fPath.getBounds()); | 
|---|
| 261 | GrPathShader::ProgramInfo programInfo(state->writeView(), &pipeline, &shader); | 
|---|
| 262 | state->bindPipelineAndScissorClip(programInfo, this->bounds()); | 
|---|
| 263 | state->bindTextures(shader, nullptr, pipeline); | 
|---|
| 264 | state->bindBuffers(nullptr, nullptr, nullptr); | 
|---|
| 265 | state->draw(4, 0); | 
|---|
| 266 | } | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|