1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #include <cassert> |
22 | #include <cstring> // For std::memset |
23 | |
24 | #include "material.h" |
25 | #include "thread.h" |
26 | |
27 | using namespace std; |
28 | |
29 | namespace { |
30 | |
31 | // Polynomial material imbalance parameters |
32 | |
33 | constexpr int QuadraticOurs[][PIECE_TYPE_NB] = { |
34 | // OUR PIECES |
35 | // pair pawn knight bishop rook queen |
36 | {1438 }, // Bishop pair |
37 | { 40, 38 }, // Pawn |
38 | { 32, 255, -62 }, // Knight OUR PIECES |
39 | { 0, 104, 4, 0 }, // Bishop |
40 | { -26, -2, 47, 105, -208 }, // Rook |
41 | {-189, 24, 117, 133, -134, -6 } // Queen |
42 | }; |
43 | |
44 | constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = { |
45 | // THEIR PIECES |
46 | // pair pawn knight bishop rook queen |
47 | { 0 }, // Bishop pair |
48 | { 36, 0 }, // Pawn |
49 | { 9, 63, 0 }, // Knight OUR PIECES |
50 | { 59, 65, 42, 0 }, // Bishop |
51 | { 46, 39, 24, -24, 0 }, // Rook |
52 | { 97, 100, -42, 137, 268, 0 } // Queen |
53 | }; |
54 | |
55 | // Endgame evaluation and scaling functions are accessed directly and not through |
56 | // the function maps because they correspond to more than one material hash key. |
57 | Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) }; |
58 | |
59 | Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) }; |
60 | Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) }; |
61 | Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) }; |
62 | Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) }; |
63 | |
64 | // Helper used to detect a given material distribution |
65 | bool is_KXK(const Position& pos, Color us) { |
66 | return !more_than_one(pos.pieces(~us)) |
67 | && pos.non_pawn_material(us) >= RookValueMg; |
68 | } |
69 | |
70 | bool is_KBPsK(const Position& pos, Color us) { |
71 | return pos.non_pawn_material(us) == BishopValueMg |
72 | && pos.count<PAWN >(us) >= 1; |
73 | } |
74 | |
75 | bool is_KQKRPs(const Position& pos, Color us) { |
76 | return !pos.count<PAWN>(us) |
77 | && pos.non_pawn_material(us) == QueenValueMg |
78 | && pos.count<ROOK>(~us) == 1 |
79 | && pos.count<PAWN>(~us) >= 1; |
80 | } |
81 | |
82 | /// imbalance() calculates the imbalance by comparing the piece count of each |
83 | /// piece type for both colors. |
84 | template<Color Us> |
85 | int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { |
86 | |
87 | constexpr Color Them = (Us == WHITE ? BLACK : WHITE); |
88 | |
89 | int bonus = 0; |
90 | |
91 | // Second-degree polynomial material imbalance, by Tord Romstad |
92 | for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) |
93 | { |
94 | if (!pieceCount[Us][pt1]) |
95 | continue; |
96 | |
97 | int v = 0; |
98 | |
99 | for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) |
100 | v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] |
101 | + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; |
102 | |
103 | bonus += pieceCount[Us][pt1] * v; |
104 | } |
105 | |
106 | return bonus; |
107 | } |
108 | |
109 | } // namespace |
110 | |
111 | namespace Material { |
112 | |
113 | /// Material::probe() looks up the current position's material configuration in |
114 | /// the material hash table. It returns a pointer to the Entry if the position |
115 | /// is found. Otherwise a new Entry is computed and stored there, so we don't |
116 | /// have to recompute all when the same material configuration occurs again. |
117 | |
118 | Entry* probe(const Position& pos) { |
119 | |
120 | Key key = pos.material_key(); |
121 | Entry* e = pos.this_thread()->materialTable[key]; |
122 | |
123 | if (e->key == key) |
124 | return e; |
125 | |
126 | std::memset(e, 0, sizeof(Entry)); |
127 | e->key = key; |
128 | e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; |
129 | |
130 | Value npm_w = pos.non_pawn_material(WHITE); |
131 | Value npm_b = pos.non_pawn_material(BLACK); |
132 | Value npm = clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); |
133 | |
134 | // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME] |
135 | e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); |
136 | |
137 | // Let's look if we have a specialized evaluation function for this particular |
138 | // material configuration. Firstly we look for a fixed configuration one, then |
139 | // for a generic one if the previous search failed. |
140 | if ((e->evaluationFunction = Endgames::probe<Value>(key)) != nullptr) |
141 | return e; |
142 | |
143 | for (Color c : { WHITE, BLACK }) |
144 | if (is_KXK(pos, c)) |
145 | { |
146 | e->evaluationFunction = &EvaluateKXK[c]; |
147 | return e; |
148 | } |
149 | |
150 | // OK, we didn't find any special evaluation function for the current material |
151 | // configuration. Is there a suitable specialized scaling function? |
152 | const auto* sf = Endgames::probe<ScaleFactor>(key); |
153 | |
154 | if (sf) |
155 | { |
156 | e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned |
157 | return e; |
158 | } |
159 | |
160 | // We didn't find any specialized scaling function, so fall back on generic |
161 | // ones that refer to more than one material distribution. Note that in this |
162 | // case we don't return after setting the function. |
163 | for (Color c : { WHITE, BLACK }) |
164 | { |
165 | if (is_KBPsK(pos, c)) |
166 | e->scalingFunction[c] = &ScaleKBPsK[c]; |
167 | |
168 | else if (is_KQKRPs(pos, c)) |
169 | e->scalingFunction[c] = &ScaleKQKRPs[c]; |
170 | } |
171 | |
172 | if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board |
173 | { |
174 | if (!pos.count<PAWN>(BLACK)) |
175 | { |
176 | assert(pos.count<PAWN>(WHITE) >= 2); |
177 | |
178 | e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; |
179 | } |
180 | else if (!pos.count<PAWN>(WHITE)) |
181 | { |
182 | assert(pos.count<PAWN>(BLACK) >= 2); |
183 | |
184 | e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; |
185 | } |
186 | else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1) |
187 | { |
188 | // This is a special case because we set scaling functions |
189 | // for both colors instead of only one. |
190 | e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; |
191 | e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; |
192 | } |
193 | } |
194 | |
195 | // Zero or just one pawn makes it difficult to win, even with a small material |
196 | // advantage. This catches some trivial draws like KK, KBK and KNK and gives a |
197 | // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN). |
198 | if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg) |
199 | e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : |
200 | npm_b <= BishopValueMg ? 4 : 14); |
201 | |
202 | if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg) |
203 | e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : |
204 | npm_w <= BishopValueMg ? 4 : 14); |
205 | |
206 | // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder |
207 | // for the bishop pair "extended piece", which allows us to be more flexible |
208 | // in defining bishop pair bonuses. |
209 | const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { |
210 | { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE), |
211 | pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) }, |
212 | { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK), |
213 | pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } }; |
214 | |
215 | e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16); |
216 | return e; |
217 | } |
218 | |
219 | } // namespace Material |
220 | |