| 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Stockfish is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <cmath> |
| 24 | #include <cstring> // For std::memset |
| 25 | #include <iostream> |
| 26 | #include <sstream> |
| 27 | |
| 28 | #include "evaluate.h" |
| 29 | #include "misc.h" |
| 30 | #include "movegen.h" |
| 31 | #include "movepick.h" |
| 32 | #include "position.h" |
| 33 | #include "search.h" |
| 34 | #include "thread.h" |
| 35 | #include "timeman.h" |
| 36 | #include "tt.h" |
| 37 | #include "uci.h" |
| 38 | #include "syzygy/tbprobe.h" |
| 39 | |
| 40 | namespace Search { |
| 41 | |
| 42 | LimitsType Limits; |
| 43 | } |
| 44 | |
| 45 | namespace Tablebases { |
| 46 | |
| 47 | int Cardinality; |
| 48 | bool RootInTB; |
| 49 | bool UseRule50; |
| 50 | Depth ProbeDepth; |
| 51 | } |
| 52 | |
| 53 | namespace TB = Tablebases; |
| 54 | |
| 55 | using std::string; |
| 56 | using Eval::evaluate; |
| 57 | using namespace Search; |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | // Different node types, used as a template parameter |
| 62 | enum NodeType { NonPV, PV }; |
| 63 | |
| 64 | // Razor and futility margins |
| 65 | constexpr int RazorMargin = 661; |
| 66 | Value futility_margin(Depth d, bool improving) { |
| 67 | return Value((168 - 51 * improving) * d / ONE_PLY); |
| 68 | } |
| 69 | |
| 70 | // Reductions lookup table, initialized at startup |
| 71 | int Reductions[MAX_MOVES]; // [depth or moveNumber] |
| 72 | |
| 73 | Depth reduction(bool i, Depth d, int mn) { |
| 74 | int r = Reductions[d / ONE_PLY] * Reductions[mn]; |
| 75 | return ((r + 520) / 1024 + (!i && r > 999)) * ONE_PLY; |
| 76 | } |
| 77 | |
| 78 | constexpr int futility_move_count(bool improving, int depth) { |
| 79 | return (5 + depth * depth) * (1 + improving) / 2; |
| 80 | } |
| 81 | |
| 82 | // History and stats update bonus, based on depth |
| 83 | int stat_bonus(Depth depth) { |
| 84 | int d = depth / ONE_PLY; |
| 85 | return d > 17 ? -8 : 22 * d * d + 151 * d - 140; |
| 86 | } |
| 87 | |
| 88 | // Add a small random component to draw evaluations to avoid 3fold-blindness |
| 89 | Value value_draw(Depth depth, Thread* thisThread) { |
| 90 | return depth < 4 * ONE_PLY ? VALUE_DRAW |
| 91 | : VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1); |
| 92 | } |
| 93 | |
| 94 | // Skill structure is used to implement strength limit |
| 95 | struct Skill { |
| 96 | explicit Skill(int l) : level(l) {} |
| 97 | bool enabled() const { return level < 20; } |
| 98 | bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; } |
| 99 | Move pick_best(size_t multiPV); |
| 100 | |
| 101 | int level; |
| 102 | Move best = MOVE_NONE; |
| 103 | }; |
| 104 | |
| 105 | // Breadcrumbs are used to mark nodes as being searched by a given thread |
| 106 | struct Breadcrumb { |
| 107 | std::atomic<Thread*> thread; |
| 108 | std::atomic<Key> key; |
| 109 | }; |
| 110 | std::array<Breadcrumb, 1024> breadcrumbs; |
| 111 | |
| 112 | // ThreadHolding structure keeps track of which thread left breadcrumbs at the given |
| 113 | // node for potential reductions. A free node will be marked upon entering the moves |
| 114 | // loop by the constructor, and unmarked upon leaving that loop by the destructor. |
| 115 | struct ThreadHolding { |
| 116 | explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) { |
| 117 | location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr; |
| 118 | otherThread = false; |
| 119 | owning = false; |
| 120 | if (location) |
| 121 | { |
| 122 | // See if another already marked this location, if not, mark it ourselves |
| 123 | Thread* tmp = (*location).thread.load(std::memory_order_relaxed); |
| 124 | if (tmp == nullptr) |
| 125 | { |
| 126 | (*location).thread.store(thisThread, std::memory_order_relaxed); |
| 127 | (*location).key.store(posKey, std::memory_order_relaxed); |
| 128 | owning = true; |
| 129 | } |
| 130 | else if ( tmp != thisThread |
| 131 | && (*location).key.load(std::memory_order_relaxed) == posKey) |
| 132 | otherThread = true; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | ~ThreadHolding() { |
| 137 | if (owning) // Free the marked location |
| 138 | (*location).thread.store(nullptr, std::memory_order_relaxed); |
| 139 | } |
| 140 | |
| 141 | bool marked() { return otherThread; } |
| 142 | |
| 143 | private: |
| 144 | Breadcrumb* location; |
| 145 | bool otherThread, owning; |
| 146 | }; |
| 147 | |
| 148 | template <NodeType NT> |
| 149 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); |
| 150 | |
| 151 | template <NodeType NT> |
| 152 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = DEPTH_ZERO); |
| 153 | |
| 154 | Value value_to_tt(Value v, int ply); |
| 155 | Value value_from_tt(Value v, int ply); |
| 156 | void update_pv(Move* pv, Move move, Move* childPv); |
| 157 | void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus); |
| 158 | void update_quiet_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietCount, int bonus); |
| 159 | void update_capture_stats(const Position& pos, Move move, Move* captures, int captureCount, int bonus); |
| 160 | |
| 161 | // perft() is our utility to verify move generation. All the leaf nodes up |
| 162 | // to the given depth are generated and counted, and the sum is returned. |
| 163 | template<bool Root> |
| 164 | uint64_t perft(Position& pos, Depth depth) { |
| 165 | |
| 166 | StateInfo st; |
| 167 | uint64_t cnt, nodes = 0; |
| 168 | const bool leaf = (depth == 2 * ONE_PLY); |
| 169 | |
| 170 | for (const auto& m : MoveList<LEGAL>(pos)) |
| 171 | { |
| 172 | if (Root && depth <= ONE_PLY) |
| 173 | cnt = 1, nodes++; |
| 174 | else |
| 175 | { |
| 176 | pos.do_move(m, st); |
| 177 | cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY); |
| 178 | nodes += cnt; |
| 179 | pos.undo_move(m); |
| 180 | } |
| 181 | if (Root) |
| 182 | sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; |
| 183 | } |
| 184 | return nodes; |
| 185 | } |
| 186 | |
| 187 | } // namespace |
| 188 | |
| 189 | |
| 190 | /// Search::init() is called at startup to initialize various lookup tables |
| 191 | |
| 192 | void Search::init() { |
| 193 | |
| 194 | for (int i = 1; i < MAX_MOVES; ++i) |
| 195 | Reductions[i] = int(23.4 * std::log(i)); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /// Search::clear() resets search state to its initial value |
| 200 | |
| 201 | void Search::clear() { |
| 202 | |
| 203 | Threads.main()->wait_for_search_finished(); |
| 204 | |
| 205 | Time.availableNodes = 0; |
| 206 | TT.clear(); |
| 207 | Threads.clear(); |
| 208 | Tablebases::init(Options["SyzygyPath" ]); // Free mapped files |
| 209 | } |
| 210 | |
| 211 | |
| 212 | /// MainThread::search() is started when the program receives the UCI 'go' |
| 213 | /// command. It searches from the root position and outputs the "bestmove". |
| 214 | |
| 215 | void MainThread::search() { |
| 216 | |
| 217 | if (Limits.perft) |
| 218 | { |
| 219 | nodes = perft<true>(rootPos, Limits.perft * ONE_PLY); |
| 220 | sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl; |
| 221 | return; |
| 222 | } |
| 223 | |
| 224 | Color us = rootPos.side_to_move(); |
| 225 | Time.init(Limits, us, rootPos.game_ply()); |
| 226 | TT.new_search(); |
| 227 | |
| 228 | if (rootMoves.empty()) |
| 229 | { |
| 230 | rootMoves.emplace_back(MOVE_NONE); |
| 231 | sync_cout << "info depth 0 score " |
| 232 | << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) |
| 233 | << sync_endl; |
| 234 | } |
| 235 | else |
| 236 | { |
| 237 | for (Thread* th : Threads) |
| 238 | { |
| 239 | th->bestMoveChanges = 0; |
| 240 | if (th != this) |
| 241 | th->start_searching(); |
| 242 | } |
| 243 | |
| 244 | Thread::search(); // Let's start searching! |
| 245 | } |
| 246 | |
| 247 | // When we reach the maximum depth, we can arrive here without a raise of |
| 248 | // Threads.stop. However, if we are pondering or in an infinite search, |
| 249 | // the UCI protocol states that we shouldn't print the best move before the |
| 250 | // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here |
| 251 | // until the GUI sends one of those commands. |
| 252 | |
| 253 | while (!Threads.stop && (ponder || Limits.infinite)) |
| 254 | {} // Busy wait for a stop or a ponder reset |
| 255 | |
| 256 | // Stop the threads if not already stopped (also raise the stop if |
| 257 | // "ponderhit" just reset Threads.ponder). |
| 258 | Threads.stop = true; |
| 259 | |
| 260 | // Wait until all threads have finished |
| 261 | for (Thread* th : Threads) |
| 262 | if (th != this) |
| 263 | th->wait_for_search_finished(); |
| 264 | |
| 265 | // When playing in 'nodes as time' mode, subtract the searched nodes from |
| 266 | // the available ones before exiting. |
| 267 | if (Limits.npmsec) |
| 268 | Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); |
| 269 | |
| 270 | Thread* bestThread = this; |
| 271 | |
| 272 | // Check if there are threads with a better score than main thread |
| 273 | if ( Options["MultiPV" ] == 1 |
| 274 | && !Limits.depth |
| 275 | && !(Skill(Options["Skill Level" ]).enabled() || Options["UCI_LimitStrength" ]) |
| 276 | && rootMoves[0].pv[0] != MOVE_NONE) |
| 277 | { |
| 278 | std::map<Move, int64_t> votes; |
| 279 | Value minScore = this->rootMoves[0].score; |
| 280 | |
| 281 | // Find out minimum score |
| 282 | for (Thread* th: Threads) |
| 283 | minScore = std::min(minScore, th->rootMoves[0].score); |
| 284 | |
| 285 | // Vote according to score and depth, and select the best thread |
| 286 | for (Thread* th : Threads) |
| 287 | { |
| 288 | votes[th->rootMoves[0].pv[0]] += |
| 289 | (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth); |
| 290 | |
| 291 | if (bestThread->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY) |
| 292 | { |
| 293 | // Make sure we pick the shortest mate |
| 294 | if (th->rootMoves[0].score > bestThread->rootMoves[0].score) |
| 295 | bestThread = th; |
| 296 | } |
| 297 | else if ( th->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY |
| 298 | || votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]) |
| 299 | bestThread = th; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | previousScore = bestThread->rootMoves[0].score; |
| 304 | |
| 305 | // Send again PV info if we have a new best thread |
| 306 | if (bestThread != this) |
| 307 | sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; |
| 308 | |
| 309 | sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); |
| 310 | |
| 311 | if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) |
| 312 | std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); |
| 313 | |
| 314 | std::cout << sync_endl; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | /// Thread::search() is the main iterative deepening loop. It calls search() |
| 319 | /// repeatedly with increasing depth until the allocated thinking time has been |
| 320 | /// consumed, the user stops the search, or the maximum search depth is reached. |
| 321 | |
| 322 | void Thread::search() { |
| 323 | |
| 324 | // To allow access to (ss-7) up to (ss+2), the stack must be oversized. |
| 325 | // The former is needed to allow update_continuation_histories(ss-1, ...), |
| 326 | // which accesses its argument at ss-6, also near the root. |
| 327 | // The latter is needed for statScores and killer initialization. |
| 328 | Stack stack[MAX_PLY+10], *ss = stack+7; |
| 329 | Move pv[MAX_PLY+1]; |
| 330 | Value bestValue, alpha, beta, delta; |
| 331 | Move lastBestMove = MOVE_NONE; |
| 332 | Depth lastBestMoveDepth = DEPTH_ZERO; |
| 333 | MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); |
| 334 | double timeReduction = 1, totBestMoveChanges = 0; |
| 335 | Color us = rootPos.side_to_move(); |
| 336 | |
| 337 | std::memset(ss-7, 0, 10 * sizeof(Stack)); |
| 338 | for (int i = 7; i > 0; i--) |
| 339 | (ss-i)->continuationHistory = &this->continuationHistory[NO_PIECE][0]; // Use as sentinel |
| 340 | ss->pv = pv; |
| 341 | |
| 342 | bestValue = delta = alpha = -VALUE_INFINITE; |
| 343 | beta = VALUE_INFINITE; |
| 344 | |
| 345 | size_t multiPV = Options["MultiPV" ]; |
| 346 | |
| 347 | // Pick integer skill levels, but non-deterministically round up or down |
| 348 | // such that the average integer skill corresponds to the input floating point one. |
| 349 | // UCI_Elo is converted to a suitable fractional skill level, using anchoring |
| 350 | // to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo |
| 351 | // for match (TC 60+0.6) results spanning a wide range of k values. |
| 352 | PRNG rng(now()); |
| 353 | double floatLevel = Options["UCI_LimitStrength" ] ? |
| 354 | clamp(std::pow((Options["UCI_Elo" ] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) : |
| 355 | double(Options["Skill Level" ]); |
| 356 | int intLevel = int(floatLevel) + |
| 357 | ((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0); |
| 358 | Skill skill(intLevel); |
| 359 | |
| 360 | // When playing with strength handicap enable MultiPV search that we will |
| 361 | // use behind the scenes to retrieve a set of possible moves. |
| 362 | if (skill.enabled()) |
| 363 | multiPV = std::max(multiPV, (size_t)4); |
| 364 | |
| 365 | multiPV = std::min(multiPV, rootMoves.size()); |
| 366 | |
| 367 | int ct = int(Options["Contempt" ]) * PawnValueEg / 100; // From centipawns |
| 368 | |
| 369 | // In analysis mode, adjust contempt in accordance with user preference |
| 370 | if (Limits.infinite || Options["UCI_AnalyseMode" ]) |
| 371 | ct = Options["Analysis Contempt" ] == "Off" ? 0 |
| 372 | : Options["Analysis Contempt" ] == "Both" ? ct |
| 373 | : Options["Analysis Contempt" ] == "White" && us == BLACK ? -ct |
| 374 | : Options["Analysis Contempt" ] == "Black" && us == WHITE ? -ct |
| 375 | : ct; |
| 376 | |
| 377 | // Evaluation score is from the white point of view |
| 378 | contempt = (us == WHITE ? make_score(ct, ct / 2) |
| 379 | : -make_score(ct, ct / 2)); |
| 380 | |
| 381 | // Iterative deepening loop until requested to stop or the target depth is reached |
| 382 | while ( (rootDepth += ONE_PLY) < DEPTH_MAX |
| 383 | && !Threads.stop |
| 384 | && !(Limits.depth && mainThread && rootDepth / ONE_PLY > Limits.depth)) |
| 385 | { |
| 386 | // Age out PV variability metric |
| 387 | if (mainThread) |
| 388 | totBestMoveChanges /= 2; |
| 389 | |
| 390 | // Save the last iteration's scores before first PV line is searched and |
| 391 | // all the move scores except the (new) PV are set to -VALUE_INFINITE. |
| 392 | for (RootMove& rm : rootMoves) |
| 393 | rm.previousScore = rm.score; |
| 394 | |
| 395 | size_t pvFirst = 0; |
| 396 | pvLast = 0; |
| 397 | |
| 398 | // MultiPV loop. We perform a full root search for each PV line |
| 399 | for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx) |
| 400 | { |
| 401 | if (pvIdx == pvLast) |
| 402 | { |
| 403 | pvFirst = pvLast; |
| 404 | for (pvLast++; pvLast < rootMoves.size(); pvLast++) |
| 405 | if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank) |
| 406 | break; |
| 407 | } |
| 408 | |
| 409 | // Reset UCI info selDepth for each depth and each PV line |
| 410 | selDepth = 0; |
| 411 | |
| 412 | // Reset aspiration window starting size |
| 413 | if (rootDepth >= 4 * ONE_PLY) |
| 414 | { |
| 415 | Value previousScore = rootMoves[pvIdx].previousScore; |
| 416 | delta = Value(23); |
| 417 | alpha = std::max(previousScore - delta,-VALUE_INFINITE); |
| 418 | beta = std::min(previousScore + delta, VALUE_INFINITE); |
| 419 | |
| 420 | // Adjust contempt based on root move's previousScore (dynamic contempt) |
| 421 | int dct = ct + 86 * previousScore / (abs(previousScore) + 176); |
| 422 | |
| 423 | contempt = (us == WHITE ? make_score(dct, dct / 2) |
| 424 | : -make_score(dct, dct / 2)); |
| 425 | } |
| 426 | |
| 427 | // Start with a small aspiration window and, in the case of a fail |
| 428 | // high/low, re-search with a bigger window until we don't fail |
| 429 | // high/low anymore. |
| 430 | int failedHighCnt = 0; |
| 431 | while (true) |
| 432 | { |
| 433 | Depth adjustedDepth = std::max(ONE_PLY, rootDepth - failedHighCnt * ONE_PLY); |
| 434 | bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false); |
| 435 | |
| 436 | // Bring the best move to the front. It is critical that sorting |
| 437 | // is done with a stable algorithm because all the values but the |
| 438 | // first and eventually the new best one are set to -VALUE_INFINITE |
| 439 | // and we want to keep the same order for all the moves except the |
| 440 | // new PV that goes to the front. Note that in case of MultiPV |
| 441 | // search the already searched PV lines are preserved. |
| 442 | std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); |
| 443 | |
| 444 | // If search has been stopped, we break immediately. Sorting is |
| 445 | // safe because RootMoves is still valid, although it refers to |
| 446 | // the previous iteration. |
| 447 | if (Threads.stop) |
| 448 | break; |
| 449 | |
| 450 | // When failing high/low give some update (without cluttering |
| 451 | // the UI) before a re-search. |
| 452 | if ( mainThread |
| 453 | && multiPV == 1 |
| 454 | && (bestValue <= alpha || bestValue >= beta) |
| 455 | && Time.elapsed() > 3000) |
| 456 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
| 457 | |
| 458 | // In case of failing low/high increase aspiration window and |
| 459 | // re-search, otherwise exit the loop. |
| 460 | if (bestValue <= alpha) |
| 461 | { |
| 462 | beta = (alpha + beta) / 2; |
| 463 | alpha = std::max(bestValue - delta, -VALUE_INFINITE); |
| 464 | |
| 465 | failedHighCnt = 0; |
| 466 | if (mainThread) |
| 467 | mainThread->stopOnPonderhit = false; |
| 468 | } |
| 469 | else if (bestValue >= beta) |
| 470 | { |
| 471 | beta = std::min(bestValue + delta, VALUE_INFINITE); |
| 472 | ++failedHighCnt; |
| 473 | } |
| 474 | else |
| 475 | break; |
| 476 | |
| 477 | delta += delta / 4 + 5; |
| 478 | |
| 479 | assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); |
| 480 | } |
| 481 | |
| 482 | // Sort the PV lines searched so far and update the GUI |
| 483 | std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1); |
| 484 | |
| 485 | if ( mainThread |
| 486 | && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000)) |
| 487 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
| 488 | } |
| 489 | |
| 490 | if (!Threads.stop) |
| 491 | completedDepth = rootDepth; |
| 492 | |
| 493 | if (rootMoves[0].pv[0] != lastBestMove) { |
| 494 | lastBestMove = rootMoves[0].pv[0]; |
| 495 | lastBestMoveDepth = rootDepth; |
| 496 | } |
| 497 | |
| 498 | // Have we found a "mate in x"? |
| 499 | if ( Limits.mate |
| 500 | && bestValue >= VALUE_MATE_IN_MAX_PLY |
| 501 | && VALUE_MATE - bestValue <= 2 * Limits.mate) |
| 502 | Threads.stop = true; |
| 503 | |
| 504 | if (!mainThread) |
| 505 | continue; |
| 506 | |
| 507 | // If skill level is enabled and time is up, pick a sub-optimal best move |
| 508 | if (skill.enabled() && skill.time_to_pick(rootDepth)) |
| 509 | skill.pick_best(multiPV); |
| 510 | |
| 511 | // Do we have time for the next iteration? Can we stop searching now? |
| 512 | if ( Limits.use_time_management() |
| 513 | && !Threads.stop |
| 514 | && !mainThread->stopOnPonderhit) |
| 515 | { |
| 516 | double fallingEval = (354 + 10 * (mainThread->previousScore - bestValue)) / 692.0; |
| 517 | fallingEval = clamp(fallingEval, 0.5, 1.5); |
| 518 | |
| 519 | // If the bestMove is stable over several iterations, reduce time accordingly |
| 520 | timeReduction = lastBestMoveDepth + 9 * ONE_PLY < completedDepth ? 1.97 : 0.98; |
| 521 | double reduction = (1.36 + mainThread->previousTimeReduction) / (2.29 * timeReduction); |
| 522 | |
| 523 | // Use part of the gained time from a previous stable move for the current move |
| 524 | for (Thread* th : Threads) |
| 525 | { |
| 526 | totBestMoveChanges += th->bestMoveChanges; |
| 527 | th->bestMoveChanges = 0; |
| 528 | } |
| 529 | double bestMoveInstability = 1 + totBestMoveChanges / Threads.size(); |
| 530 | |
| 531 | // Stop the search if we have only one legal move, or if available time elapsed |
| 532 | if ( rootMoves.size() == 1 |
| 533 | || Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability) |
| 534 | { |
| 535 | // If we are allowed to ponder do not stop the search now but |
| 536 | // keep pondering until the GUI sends "ponderhit" or "stop". |
| 537 | if (mainThread->ponder) |
| 538 | mainThread->stopOnPonderhit = true; |
| 539 | else |
| 540 | Threads.stop = true; |
| 541 | } |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | if (!mainThread) |
| 546 | return; |
| 547 | |
| 548 | mainThread->previousTimeReduction = timeReduction; |
| 549 | |
| 550 | // If skill level is enabled, swap best PV line with the sub-optimal one |
| 551 | if (skill.enabled()) |
| 552 | std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), |
| 553 | skill.best ? skill.best : skill.pick_best(multiPV))); |
| 554 | } |
| 555 | |
| 556 | |
| 557 | namespace { |
| 558 | |
| 559 | // search<>() is the main search function for both PV and non-PV nodes |
| 560 | |
| 561 | template <NodeType NT> |
| 562 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { |
| 563 | |
| 564 | constexpr bool PvNode = NT == PV; |
| 565 | const bool rootNode = PvNode && ss->ply == 0; |
| 566 | |
| 567 | // Check if we have an upcoming move which draws by repetition, or |
| 568 | // if the opponent had an alternative move earlier to this position. |
| 569 | if ( pos.rule50_count() >= 3 |
| 570 | && alpha < VALUE_DRAW |
| 571 | && !rootNode |
| 572 | && pos.has_game_cycle(ss->ply)) |
| 573 | { |
| 574 | alpha = value_draw(depth, pos.this_thread()); |
| 575 | if (alpha >= beta) |
| 576 | return alpha; |
| 577 | } |
| 578 | |
| 579 | // Dive into quiescence search when the depth reaches zero |
| 580 | if (depth < ONE_PLY) |
| 581 | return qsearch<NT>(pos, ss, alpha, beta); |
| 582 | |
| 583 | assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); |
| 584 | assert(PvNode || (alpha == beta - 1)); |
| 585 | assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); |
| 586 | assert(!(PvNode && cutNode)); |
| 587 | assert(depth / ONE_PLY * ONE_PLY == depth); |
| 588 | |
| 589 | Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64]; |
| 590 | StateInfo st; |
| 591 | TTEntry* tte; |
| 592 | Key posKey; |
| 593 | Move ttMove, move, excludedMove, bestMove; |
| 594 | Depth extension, newDepth; |
| 595 | Value bestValue, value, ttValue, eval, maxValue; |
| 596 | bool ttHit, ttPv, inCheck, givesCheck, improving, doLMR; |
| 597 | bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture; |
| 598 | Piece movedPiece; |
| 599 | int moveCount, captureCount, quietCount, singularLMR; |
| 600 | |
| 601 | // Step 1. Initialize node |
| 602 | Thread* thisThread = pos.this_thread(); |
| 603 | inCheck = pos.checkers(); |
| 604 | Color us = pos.side_to_move(); |
| 605 | moveCount = captureCount = quietCount = singularLMR = ss->moveCount = 0; |
| 606 | bestValue = -VALUE_INFINITE; |
| 607 | maxValue = VALUE_INFINITE; |
| 608 | |
| 609 | // Check for the available remaining time |
| 610 | if (thisThread == Threads.main()) |
| 611 | static_cast<MainThread*>(thisThread)->check_time(); |
| 612 | |
| 613 | // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) |
| 614 | if (PvNode && thisThread->selDepth < ss->ply + 1) |
| 615 | thisThread->selDepth = ss->ply + 1; |
| 616 | |
| 617 | if (!rootNode) |
| 618 | { |
| 619 | // Step 2. Check for aborted search and immediate draw |
| 620 | if ( Threads.stop.load(std::memory_order_relaxed) |
| 621 | || pos.is_draw(ss->ply) |
| 622 | || ss->ply >= MAX_PLY) |
| 623 | return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) |
| 624 | : value_draw(depth, pos.this_thread()); |
| 625 | |
| 626 | // Step 3. Mate distance pruning. Even if we mate at the next move our score |
| 627 | // would be at best mate_in(ss->ply+1), but if alpha is already bigger because |
| 628 | // a shorter mate was found upward in the tree then there is no need to search |
| 629 | // because we will never beat the current alpha. Same logic but with reversed |
| 630 | // signs applies also in the opposite condition of being mated instead of giving |
| 631 | // mate. In this case return a fail-high score. |
| 632 | alpha = std::max(mated_in(ss->ply), alpha); |
| 633 | beta = std::min(mate_in(ss->ply+1), beta); |
| 634 | if (alpha >= beta) |
| 635 | return alpha; |
| 636 | } |
| 637 | |
| 638 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
| 639 | |
| 640 | (ss+1)->ply = ss->ply + 1; |
| 641 | (ss+1)->excludedMove = bestMove = MOVE_NONE; |
| 642 | (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; |
| 643 | Square prevSq = to_sq((ss-1)->currentMove); |
| 644 | |
| 645 | // Initialize statScore to zero for the grandchildren of the current position. |
| 646 | // So statScore is shared between all grandchildren and only the first grandchild |
| 647 | // starts with statScore = 0. Later grandchildren start with the last calculated |
| 648 | // statScore of the previous grandchild. This influences the reduction rules in |
| 649 | // LMR which are based on the statScore of parent position. |
| 650 | if (rootNode) |
| 651 | (ss+4)->statScore = 0; |
| 652 | else |
| 653 | (ss+2)->statScore = 0; |
| 654 | |
| 655 | // Step 4. Transposition table lookup. We don't want the score of a partial |
| 656 | // search to overwrite a previous full search TT value, so we use a different |
| 657 | // position key in case of an excluded move. |
| 658 | excludedMove = ss->excludedMove; |
| 659 | posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash |
| 660 | tte = TT.probe(posKey, ttHit); |
| 661 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
| 662 | ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] |
| 663 | : ttHit ? tte->move() : MOVE_NONE; |
| 664 | ttPv = PvNode || (ttHit && tte->is_pv()); |
| 665 | |
| 666 | // At non-PV nodes we check for an early TT cutoff |
| 667 | if ( !PvNode |
| 668 | && ttHit |
| 669 | && tte->depth() >= depth |
| 670 | && ttValue != VALUE_NONE // Possible in case of TT access race |
| 671 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
| 672 | : (tte->bound() & BOUND_UPPER))) |
| 673 | { |
| 674 | // If ttMove is quiet, update move sorting heuristics on TT hit |
| 675 | if (ttMove) |
| 676 | { |
| 677 | if (ttValue >= beta) |
| 678 | { |
| 679 | if (!pos.capture_or_promotion(ttMove)) |
| 680 | update_quiet_stats(pos, ss, ttMove, nullptr, 0, stat_bonus(depth)); |
| 681 | |
| 682 | // Extra penalty for early quiet moves of the previous ply |
| 683 | if ((ss-1)->moveCount <= 2 && !pos.captured_piece()) |
| 684 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); |
| 685 | } |
| 686 | // Penalty for a quiet ttMove that fails low |
| 687 | else if (!pos.capture_or_promotion(ttMove)) |
| 688 | { |
| 689 | int penalty = -stat_bonus(depth); |
| 690 | thisThread->mainHistory[us][from_to(ttMove)] << penalty; |
| 691 | update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty); |
| 692 | } |
| 693 | } |
| 694 | return ttValue; |
| 695 | } |
| 696 | |
| 697 | // Step 5. Tablebases probe |
| 698 | if (!rootNode && TB::Cardinality) |
| 699 | { |
| 700 | int piecesCount = pos.count<ALL_PIECES>(); |
| 701 | |
| 702 | if ( piecesCount <= TB::Cardinality |
| 703 | && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth) |
| 704 | && pos.rule50_count() == 0 |
| 705 | && !pos.can_castle(ANY_CASTLING)) |
| 706 | { |
| 707 | TB::ProbeState err; |
| 708 | TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err); |
| 709 | |
| 710 | // Force check of time on the next occasion |
| 711 | if (thisThread == Threads.main()) |
| 712 | static_cast<MainThread*>(thisThread)->callsCnt = 0; |
| 713 | |
| 714 | if (err != TB::ProbeState::FAIL) |
| 715 | { |
| 716 | thisThread->tbHits.fetch_add(1, std::memory_order_relaxed); |
| 717 | |
| 718 | int drawScore = TB::UseRule50 ? 1 : 0; |
| 719 | |
| 720 | value = wdl < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply + 1 |
| 721 | : wdl > drawScore ? VALUE_MATE - MAX_PLY - ss->ply - 1 |
| 722 | : VALUE_DRAW + 2 * wdl * drawScore; |
| 723 | |
| 724 | Bound b = wdl < -drawScore ? BOUND_UPPER |
| 725 | : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT; |
| 726 | |
| 727 | if ( b == BOUND_EXACT |
| 728 | || (b == BOUND_LOWER ? value >= beta : value <= alpha)) |
| 729 | { |
| 730 | tte->save(posKey, value_to_tt(value, ss->ply), ttPv, b, |
| 731 | std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY), |
| 732 | MOVE_NONE, VALUE_NONE); |
| 733 | |
| 734 | return value; |
| 735 | } |
| 736 | |
| 737 | if (PvNode) |
| 738 | { |
| 739 | if (b == BOUND_LOWER) |
| 740 | bestValue = value, alpha = std::max(alpha, bestValue); |
| 741 | else |
| 742 | maxValue = value; |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | // Step 6. Static evaluation of the position |
| 749 | if (inCheck) |
| 750 | { |
| 751 | ss->staticEval = eval = VALUE_NONE; |
| 752 | improving = false; |
| 753 | goto moves_loop; // Skip early pruning when in check |
| 754 | } |
| 755 | else if (ttHit) |
| 756 | { |
| 757 | // Never assume anything about values stored in TT |
| 758 | ss->staticEval = eval = tte->eval(); |
| 759 | if (eval == VALUE_NONE) |
| 760 | ss->staticEval = eval = evaluate(pos); |
| 761 | |
| 762 | // Can ttValue be used as a better position evaluation? |
| 763 | if ( ttValue != VALUE_NONE |
| 764 | && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))) |
| 765 | eval = ttValue; |
| 766 | } |
| 767 | else |
| 768 | { |
| 769 | if ((ss-1)->currentMove != MOVE_NULL) |
| 770 | { |
| 771 | int bonus = -(ss-1)->statScore / 512; |
| 772 | |
| 773 | ss->staticEval = eval = evaluate(pos) + bonus; |
| 774 | } |
| 775 | else |
| 776 | ss->staticEval = eval = -(ss-1)->staticEval + 2 * Eval::Tempo; |
| 777 | |
| 778 | tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval); |
| 779 | } |
| 780 | |
| 781 | // Step 7. Razoring (~2 Elo) |
| 782 | if ( !rootNode // The required rootNode PV handling is not available in qsearch |
| 783 | && depth < 2 * ONE_PLY |
| 784 | && eval <= alpha - RazorMargin) |
| 785 | return qsearch<NT>(pos, ss, alpha, beta); |
| 786 | |
| 787 | improving = ss->staticEval >= (ss-2)->staticEval |
| 788 | || (ss-2)->staticEval == VALUE_NONE; |
| 789 | |
| 790 | // Step 8. Futility pruning: child node (~30 Elo) |
| 791 | if ( !PvNode |
| 792 | && depth < 7 * ONE_PLY |
| 793 | && eval - futility_margin(depth, improving) >= beta |
| 794 | && eval < VALUE_KNOWN_WIN) // Do not return unproven wins |
| 795 | return eval; |
| 796 | |
| 797 | // Step 9. Null move search with verification search (~40 Elo) |
| 798 | if ( !PvNode |
| 799 | && (ss-1)->currentMove != MOVE_NULL |
| 800 | && (ss-1)->statScore < 22661 |
| 801 | && eval >= beta |
| 802 | && ss->staticEval >= beta - 33 * depth / ONE_PLY + 299 |
| 803 | && !excludedMove |
| 804 | && pos.non_pawn_material(us) |
| 805 | && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor)) |
| 806 | { |
| 807 | assert(eval - beta >= 0); |
| 808 | |
| 809 | // Null move dynamic reduction based on depth and value |
| 810 | Depth R = ((835 + 70 * depth / ONE_PLY) / 256 + std::min(int(eval - beta) / 185, 3)) * ONE_PLY; |
| 811 | |
| 812 | ss->currentMove = MOVE_NULL; |
| 813 | ss->continuationHistory = &thisThread->continuationHistory[NO_PIECE][0]; |
| 814 | |
| 815 | pos.do_null_move(st); |
| 816 | |
| 817 | Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); |
| 818 | |
| 819 | pos.undo_null_move(); |
| 820 | |
| 821 | if (nullValue >= beta) |
| 822 | { |
| 823 | // Do not return unproven mate scores |
| 824 | if (nullValue >= VALUE_MATE_IN_MAX_PLY) |
| 825 | nullValue = beta; |
| 826 | |
| 827 | if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13 * ONE_PLY)) |
| 828 | return nullValue; |
| 829 | |
| 830 | assert(!thisThread->nmpMinPly); // Recursive verification is not allowed |
| 831 | |
| 832 | // Do verification search at high depths, with null move pruning disabled |
| 833 | // for us, until ply exceeds nmpMinPly. |
| 834 | thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / (4 * ONE_PLY); |
| 835 | thisThread->nmpColor = us; |
| 836 | |
| 837 | Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false); |
| 838 | |
| 839 | thisThread->nmpMinPly = 0; |
| 840 | |
| 841 | if (v >= beta) |
| 842 | return nullValue; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | // Step 10. ProbCut (~10 Elo) |
| 847 | // If we have a good enough capture and a reduced search returns a value |
| 848 | // much above beta, we can (almost) safely prune the previous move. |
| 849 | if ( !PvNode |
| 850 | && depth >= 5 * ONE_PLY |
| 851 | && abs(beta) < VALUE_MATE_IN_MAX_PLY) |
| 852 | { |
| 853 | Value raisedBeta = std::min(beta + 191 - 46 * improving, VALUE_INFINITE); |
| 854 | MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &thisThread->captureHistory); |
| 855 | int probCutCount = 0; |
| 856 | |
| 857 | while ( (move = mp.next_move()) != MOVE_NONE |
| 858 | && probCutCount < 2 + 2 * cutNode) |
| 859 | if (move != excludedMove && pos.legal(move)) |
| 860 | { |
| 861 | probCutCount++; |
| 862 | |
| 863 | ss->currentMove = move; |
| 864 | ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)]; |
| 865 | |
| 866 | assert(depth >= 5 * ONE_PLY); |
| 867 | |
| 868 | pos.do_move(move, st); |
| 869 | |
| 870 | // Perform a preliminary qsearch to verify that the move holds |
| 871 | value = -qsearch<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1); |
| 872 | |
| 873 | // If the qsearch held, perform the regular search |
| 874 | if (value >= raisedBeta) |
| 875 | value = -search<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1, depth - 4 * ONE_PLY, !cutNode); |
| 876 | |
| 877 | pos.undo_move(move); |
| 878 | |
| 879 | if (value >= raisedBeta) |
| 880 | return value; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | // Step 11. Internal iterative deepening (~2 Elo) |
| 885 | if (depth >= 7 * ONE_PLY && !ttMove) |
| 886 | { |
| 887 | search<NT>(pos, ss, alpha, beta, depth - 7 * ONE_PLY, cutNode); |
| 888 | |
| 889 | tte = TT.probe(posKey, ttHit); |
| 890 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
| 891 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
| 892 | } |
| 893 | |
| 894 | moves_loop: // When in check, search starts from here |
| 895 | |
| 896 | const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, |
| 897 | nullptr, (ss-4)->continuationHistory, |
| 898 | nullptr, (ss-6)->continuationHistory }; |
| 899 | |
| 900 | Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; |
| 901 | |
| 902 | MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, |
| 903 | &thisThread->captureHistory, |
| 904 | contHist, |
| 905 | countermove, |
| 906 | ss->killers); |
| 907 | |
| 908 | value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc |
| 909 | moveCountPruning = false; |
| 910 | ttCapture = ttMove && pos.capture_or_promotion(ttMove); |
| 911 | |
| 912 | // Mark this node as being searched |
| 913 | ThreadHolding th(thisThread, posKey, ss->ply); |
| 914 | |
| 915 | // Step 12. Loop through all pseudo-legal moves until no moves remain |
| 916 | // or a beta cutoff occurs. |
| 917 | while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE) |
| 918 | { |
| 919 | assert(is_ok(move)); |
| 920 | |
| 921 | if (move == excludedMove) |
| 922 | continue; |
| 923 | |
| 924 | // At root obey the "searchmoves" option and skip moves not listed in Root |
| 925 | // Move List. As a consequence any illegal move is also skipped. In MultiPV |
| 926 | // mode we also skip PV moves which have been already searched and those |
| 927 | // of lower "TB rank" if we are in a TB root position. |
| 928 | if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, |
| 929 | thisThread->rootMoves.begin() + thisThread->pvLast, move)) |
| 930 | continue; |
| 931 | |
| 932 | ss->moveCount = ++moveCount; |
| 933 | |
| 934 | if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) |
| 935 | sync_cout << "info depth " << depth / ONE_PLY |
| 936 | << " currmove " << UCI::move(move, pos.is_chess960()) |
| 937 | << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl; |
| 938 | if (PvNode) |
| 939 | (ss+1)->pv = nullptr; |
| 940 | |
| 941 | extension = DEPTH_ZERO; |
| 942 | captureOrPromotion = pos.capture_or_promotion(move); |
| 943 | movedPiece = pos.moved_piece(move); |
| 944 | givesCheck = pos.gives_check(move); |
| 945 | |
| 946 | // Step 13. Extensions (~70 Elo) |
| 947 | |
| 948 | // Singular extension search (~60 Elo). If all moves but one fail low on a |
| 949 | // search of (alpha-s, beta-s), and just one fails high on (alpha, beta), |
| 950 | // then that move is singular and should be extended. To verify this we do |
| 951 | // a reduced search on all the other moves but the ttMove and if the |
| 952 | // result is lower than ttValue minus a margin then we will extend the ttMove. |
| 953 | if ( depth >= 6 * ONE_PLY |
| 954 | && move == ttMove |
| 955 | && !rootNode |
| 956 | && !excludedMove // Avoid recursive singular search |
| 957 | /* && ttValue != VALUE_NONE Already implicit in the next condition */ |
| 958 | && abs(ttValue) < VALUE_KNOWN_WIN |
| 959 | && (tte->bound() & BOUND_LOWER) |
| 960 | && tte->depth() >= depth - 3 * ONE_PLY |
| 961 | && pos.legal(move)) |
| 962 | { |
| 963 | Value singularBeta = ttValue - 2 * depth / ONE_PLY; |
| 964 | Depth halfDepth = depth / (2 * ONE_PLY) * ONE_PLY; // ONE_PLY invariant |
| 965 | ss->excludedMove = move; |
| 966 | value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, halfDepth, cutNode); |
| 967 | ss->excludedMove = MOVE_NONE; |
| 968 | |
| 969 | if (value < singularBeta) |
| 970 | { |
| 971 | extension = ONE_PLY; |
| 972 | singularLMR++; |
| 973 | |
| 974 | if (value < singularBeta - std::min(4 * depth / ONE_PLY, 36)) |
| 975 | singularLMR++; |
| 976 | } |
| 977 | |
| 978 | // Multi-cut pruning |
| 979 | // Our ttMove is assumed to fail high, and now we failed high also on a reduced |
| 980 | // search without the ttMove. So we assume this expected Cut-node is not singular, |
| 981 | // that multiple moves fail high, and we can prune the whole subtree by returning |
| 982 | // a soft bound. |
| 983 | else if ( eval >= beta |
| 984 | && singularBeta >= beta) |
| 985 | return singularBeta; |
| 986 | } |
| 987 | |
| 988 | // Check extension (~2 Elo) |
| 989 | else if ( givesCheck |
| 990 | && (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move))) |
| 991 | extension = ONE_PLY; |
| 992 | |
| 993 | // Castling extension |
| 994 | else if (type_of(move) == CASTLING) |
| 995 | extension = ONE_PLY; |
| 996 | |
| 997 | // Shuffle extension |
| 998 | else if ( PvNode |
| 999 | && pos.rule50_count() > 18 |
| 1000 | && depth < 3 * ONE_PLY |
| 1001 | && ++thisThread->shuffleExts < thisThread->nodes.load(std::memory_order_relaxed) / 4) // To avoid too many extensions |
| 1002 | extension = ONE_PLY; |
| 1003 | |
| 1004 | // Passed pawn extension |
| 1005 | else if ( move == ss->killers[0] |
| 1006 | && pos.advanced_pawn_push(move) |
| 1007 | && pos.pawn_passed(us, to_sq(move))) |
| 1008 | extension = ONE_PLY; |
| 1009 | |
| 1010 | // Calculate new depth for this move |
| 1011 | newDepth = depth - ONE_PLY + extension; |
| 1012 | |
| 1013 | // Step 14. Pruning at shallow depth (~170 Elo) |
| 1014 | if ( !rootNode |
| 1015 | && pos.non_pawn_material(us) |
| 1016 | && bestValue > VALUE_MATED_IN_MAX_PLY) |
| 1017 | { |
| 1018 | // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold |
| 1019 | moveCountPruning = moveCount >= futility_move_count(improving, depth / ONE_PLY); |
| 1020 | |
| 1021 | if ( !captureOrPromotion |
| 1022 | && !givesCheck |
| 1023 | && (!pos.advanced_pawn_push(move) || pos.non_pawn_material(~us) > BishopValueMg)) |
| 1024 | { |
| 1025 | // Move count based pruning |
| 1026 | if (moveCountPruning) |
| 1027 | continue; |
| 1028 | |
| 1029 | // Reduced depth of the next LMR search |
| 1030 | int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), DEPTH_ZERO); |
| 1031 | lmrDepth /= ONE_PLY; |
| 1032 | |
| 1033 | // Countermoves based pruning (~20 Elo) |
| 1034 | if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1) |
| 1035 | && (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold |
| 1036 | && (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold) |
| 1037 | continue; |
| 1038 | |
| 1039 | // Futility pruning: parent node (~2 Elo) |
| 1040 | if ( lmrDepth < 6 |
| 1041 | && !inCheck |
| 1042 | && ss->staticEval + 250 + 211 * lmrDepth <= alpha) |
| 1043 | continue; |
| 1044 | |
| 1045 | // Prune moves with negative SEE (~10 Elo) |
| 1046 | if (!pos.see_ge(move, Value(-(31 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth))) |
| 1047 | continue; |
| 1048 | } |
| 1049 | else if ( (!givesCheck || !extension) |
| 1050 | && !pos.see_ge(move, Value(-199) * (depth / ONE_PLY))) // (~20 Elo) |
| 1051 | continue; |
| 1052 | } |
| 1053 | |
| 1054 | // Speculative prefetch as early as possible |
| 1055 | prefetch(TT.first_entry(pos.key_after(move))); |
| 1056 | |
| 1057 | // Check for legality just before making the move |
| 1058 | if (!rootNode && !pos.legal(move)) |
| 1059 | { |
| 1060 | ss->moveCount = --moveCount; |
| 1061 | continue; |
| 1062 | } |
| 1063 | |
| 1064 | // Update the current move (this must be done after singular extension search) |
| 1065 | ss->currentMove = move; |
| 1066 | ss->continuationHistory = &thisThread->continuationHistory[movedPiece][to_sq(move)]; |
| 1067 | |
| 1068 | // Step 15. Make the move |
| 1069 | pos.do_move(move, st, givesCheck); |
| 1070 | |
| 1071 | // Step 16. Reduced depth search (LMR). If the move fails high it will be |
| 1072 | // re-searched at full depth. |
| 1073 | if ( depth >= 3 * ONE_PLY |
| 1074 | && moveCount > 1 + 3 * rootNode |
| 1075 | && ( !captureOrPromotion |
| 1076 | || moveCountPruning |
| 1077 | || ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha)) |
| 1078 | { |
| 1079 | Depth r = reduction(improving, depth, moveCount); |
| 1080 | |
| 1081 | // Reduction if other threads are searching this position. |
| 1082 | if (th.marked()) |
| 1083 | r += ONE_PLY; |
| 1084 | |
| 1085 | // Decrease reduction if position is or has been on the PV |
| 1086 | if (ttPv) |
| 1087 | r -= 2 * ONE_PLY; |
| 1088 | |
| 1089 | // Decrease reduction if opponent's move count is high (~10 Elo) |
| 1090 | if ((ss-1)->moveCount > 15) |
| 1091 | r -= ONE_PLY; |
| 1092 | |
| 1093 | // Decrease reduction if move has been singularly extended |
| 1094 | r -= singularLMR * ONE_PLY; |
| 1095 | |
| 1096 | if (!captureOrPromotion) |
| 1097 | { |
| 1098 | // Increase reduction if ttMove is a capture (~0 Elo) |
| 1099 | if (ttCapture) |
| 1100 | r += ONE_PLY; |
| 1101 | |
| 1102 | // Increase reduction for cut nodes (~5 Elo) |
| 1103 | if (cutNode) |
| 1104 | r += 2 * ONE_PLY; |
| 1105 | |
| 1106 | // Decrease reduction for moves that escape a capture. Filter out |
| 1107 | // castling moves, because they are coded as "king captures rook" and |
| 1108 | // hence break make_move(). (~5 Elo) |
| 1109 | else if ( type_of(move) == NORMAL |
| 1110 | && !pos.see_ge(make_move(to_sq(move), from_sq(move)))) |
| 1111 | r -= 2 * ONE_PLY; |
| 1112 | |
| 1113 | ss->statScore = thisThread->mainHistory[us][from_to(move)] |
| 1114 | + (*contHist[0])[movedPiece][to_sq(move)] |
| 1115 | + (*contHist[1])[movedPiece][to_sq(move)] |
| 1116 | + (*contHist[3])[movedPiece][to_sq(move)] |
| 1117 | - 4729; |
| 1118 | |
| 1119 | // Reset statScore to zero if negative and most stats shows >= 0 |
| 1120 | if ( ss->statScore < 0 |
| 1121 | && (*contHist[0])[movedPiece][to_sq(move)] >= 0 |
| 1122 | && (*contHist[1])[movedPiece][to_sq(move)] >= 0 |
| 1123 | && thisThread->mainHistory[us][from_to(move)] >= 0) |
| 1124 | ss->statScore = 0; |
| 1125 | |
| 1126 | // Decrease/increase reduction by comparing opponent's stat score (~10 Elo) |
| 1127 | if (ss->statScore >= -99 && (ss-1)->statScore < -116) |
| 1128 | r -= ONE_PLY; |
| 1129 | |
| 1130 | else if ((ss-1)->statScore >= -117 && ss->statScore < -144) |
| 1131 | r += ONE_PLY; |
| 1132 | |
| 1133 | // Decrease/increase reduction for moves with a good/bad history (~30 Elo) |
| 1134 | r -= ss->statScore / 16384 * ONE_PLY; |
| 1135 | } |
| 1136 | |
| 1137 | Depth d = clamp(newDepth - r, ONE_PLY, newDepth); |
| 1138 | |
| 1139 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true); |
| 1140 | |
| 1141 | doFullDepthSearch = (value > alpha && d != newDepth), doLMR = true; |
| 1142 | } |
| 1143 | else |
| 1144 | doFullDepthSearch = !PvNode || moveCount > 1, doLMR = false; |
| 1145 | |
| 1146 | // Step 17. Full depth search when LMR is skipped or fails high |
| 1147 | if (doFullDepthSearch) |
| 1148 | { |
| 1149 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); |
| 1150 | |
| 1151 | if (doLMR && !captureOrPromotion) |
| 1152 | { |
| 1153 | int bonus = value > alpha ? stat_bonus(newDepth) |
| 1154 | : -stat_bonus(newDepth); |
| 1155 | |
| 1156 | if (move == ss->killers[0]) |
| 1157 | bonus += bonus / 4; |
| 1158 | |
| 1159 | update_continuation_histories(ss, movedPiece, to_sq(move), bonus); |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | // For PV nodes only, do a full PV search on the first move or after a fail |
| 1164 | // high (in the latter case search only if value < beta), otherwise let the |
| 1165 | // parent node fail low with value <= alpha and try another move. |
| 1166 | if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) |
| 1167 | { |
| 1168 | (ss+1)->pv = pv; |
| 1169 | (ss+1)->pv[0] = MOVE_NONE; |
| 1170 | |
| 1171 | value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false); |
| 1172 | } |
| 1173 | |
| 1174 | // Step 18. Undo move |
| 1175 | pos.undo_move(move); |
| 1176 | |
| 1177 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
| 1178 | |
| 1179 | // Step 19. Check for a new best move |
| 1180 | // Finished searching the move. If a stop occurred, the return value of |
| 1181 | // the search cannot be trusted, and we return immediately without |
| 1182 | // updating best move, PV and TT. |
| 1183 | if (Threads.stop.load(std::memory_order_relaxed)) |
| 1184 | return VALUE_ZERO; |
| 1185 | |
| 1186 | if (rootNode) |
| 1187 | { |
| 1188 | RootMove& rm = *std::find(thisThread->rootMoves.begin(), |
| 1189 | thisThread->rootMoves.end(), move); |
| 1190 | |
| 1191 | // PV move or new best move? |
| 1192 | if (moveCount == 1 || value > alpha) |
| 1193 | { |
| 1194 | rm.score = value; |
| 1195 | rm.selDepth = thisThread->selDepth; |
| 1196 | rm.pv.resize(1); |
| 1197 | |
| 1198 | assert((ss+1)->pv); |
| 1199 | |
| 1200 | for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) |
| 1201 | rm.pv.push_back(*m); |
| 1202 | |
| 1203 | // We record how often the best move has been changed in each |
| 1204 | // iteration. This information is used for time management: When |
| 1205 | // the best move changes frequently, we allocate some more time. |
| 1206 | if (moveCount > 1) |
| 1207 | ++thisThread->bestMoveChanges; |
| 1208 | } |
| 1209 | else |
| 1210 | // All other moves but the PV are set to the lowest value: this |
| 1211 | // is not a problem when sorting because the sort is stable and the |
| 1212 | // move position in the list is preserved - just the PV is pushed up. |
| 1213 | rm.score = -VALUE_INFINITE; |
| 1214 | } |
| 1215 | |
| 1216 | if (value > bestValue) |
| 1217 | { |
| 1218 | bestValue = value; |
| 1219 | |
| 1220 | if (value > alpha) |
| 1221 | { |
| 1222 | bestMove = move; |
| 1223 | |
| 1224 | if (PvNode && !rootNode) // Update pv even in fail-high case |
| 1225 | update_pv(ss->pv, move, (ss+1)->pv); |
| 1226 | |
| 1227 | if (PvNode && value < beta) // Update alpha! Always alpha < beta |
| 1228 | alpha = value; |
| 1229 | else |
| 1230 | { |
| 1231 | assert(value >= beta); // Fail high |
| 1232 | ss->statScore = 0; |
| 1233 | break; |
| 1234 | } |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | if (move != bestMove) |
| 1239 | { |
| 1240 | if (captureOrPromotion && captureCount < 32) |
| 1241 | capturesSearched[captureCount++] = move; |
| 1242 | |
| 1243 | else if (!captureOrPromotion && quietCount < 64) |
| 1244 | quietsSearched[quietCount++] = move; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | // The following condition would detect a stop only after move loop has been |
| 1249 | // completed. But in this case bestValue is valid because we have fully |
| 1250 | // searched our subtree, and we can anyhow save the result in TT. |
| 1251 | /* |
| 1252 | if (Threads.stop) |
| 1253 | return VALUE_DRAW; |
| 1254 | */ |
| 1255 | |
| 1256 | // Step 20. Check for mate and stalemate |
| 1257 | // All legal moves have been searched and if there are no legal moves, it |
| 1258 | // must be a mate or a stalemate. If we are in a singular extension search then |
| 1259 | // return a fail low score. |
| 1260 | |
| 1261 | assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size()); |
| 1262 | |
| 1263 | if (!moveCount) |
| 1264 | bestValue = excludedMove ? alpha |
| 1265 | : inCheck ? mated_in(ss->ply) : VALUE_DRAW; |
| 1266 | else if (bestMove) |
| 1267 | { |
| 1268 | // Quiet best move: update move sorting heuristics |
| 1269 | if (!pos.capture_or_promotion(bestMove)) |
| 1270 | update_quiet_stats(pos, ss, bestMove, quietsSearched, quietCount, |
| 1271 | stat_bonus(depth + (bestValue > beta + PawnValueMg ? ONE_PLY : DEPTH_ZERO))); |
| 1272 | |
| 1273 | update_capture_stats(pos, bestMove, capturesSearched, captureCount, stat_bonus(depth + ONE_PLY)); |
| 1274 | |
| 1275 | // Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted |
| 1276 | if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0])) |
| 1277 | && !pos.captured_piece()) |
| 1278 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); |
| 1279 | |
| 1280 | } |
| 1281 | // Bonus for prior countermove that caused the fail low |
| 1282 | else if ( (depth >= 3 * ONE_PLY || PvNode) |
| 1283 | && !pos.captured_piece()) |
| 1284 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth)); |
| 1285 | |
| 1286 | if (PvNode) |
| 1287 | bestValue = std::min(bestValue, maxValue); |
| 1288 | |
| 1289 | if (!excludedMove) |
| 1290 | tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv, |
| 1291 | bestValue >= beta ? BOUND_LOWER : |
| 1292 | PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, |
| 1293 | depth, bestMove, ss->staticEval); |
| 1294 | |
| 1295 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
| 1296 | |
| 1297 | return bestValue; |
| 1298 | } |
| 1299 | |
| 1300 | |
| 1301 | // qsearch() is the quiescence search function, which is called by the main search |
| 1302 | // function with zero depth, or recursively with further decreasing depth per call. |
| 1303 | template <NodeType NT> |
| 1304 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { |
| 1305 | |
| 1306 | constexpr bool PvNode = NT == PV; |
| 1307 | |
| 1308 | assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); |
| 1309 | assert(PvNode || (alpha == beta - 1)); |
| 1310 | assert(depth <= DEPTH_ZERO); |
| 1311 | assert(depth / ONE_PLY * ONE_PLY == depth); |
| 1312 | |
| 1313 | Move pv[MAX_PLY+1]; |
| 1314 | StateInfo st; |
| 1315 | TTEntry* tte; |
| 1316 | Key posKey; |
| 1317 | Move ttMove, move, bestMove; |
| 1318 | Depth ttDepth; |
| 1319 | Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; |
| 1320 | bool ttHit, pvHit, inCheck, givesCheck, evasionPrunable; |
| 1321 | int moveCount; |
| 1322 | |
| 1323 | if (PvNode) |
| 1324 | { |
| 1325 | oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves |
| 1326 | (ss+1)->pv = pv; |
| 1327 | ss->pv[0] = MOVE_NONE; |
| 1328 | } |
| 1329 | |
| 1330 | Thread* thisThread = pos.this_thread(); |
| 1331 | (ss+1)->ply = ss->ply + 1; |
| 1332 | bestMove = MOVE_NONE; |
| 1333 | inCheck = pos.checkers(); |
| 1334 | moveCount = 0; |
| 1335 | |
| 1336 | // Check for an immediate draw or maximum ply reached |
| 1337 | if ( pos.is_draw(ss->ply) |
| 1338 | || ss->ply >= MAX_PLY) |
| 1339 | return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW; |
| 1340 | |
| 1341 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
| 1342 | |
| 1343 | // Decide whether or not to include checks: this fixes also the type of |
| 1344 | // TT entry depth that we are going to use. Note that in qsearch we use |
| 1345 | // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. |
| 1346 | ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS |
| 1347 | : DEPTH_QS_NO_CHECKS; |
| 1348 | // Transposition table lookup |
| 1349 | posKey = pos.key(); |
| 1350 | tte = TT.probe(posKey, ttHit); |
| 1351 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
| 1352 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
| 1353 | pvHit = ttHit && tte->is_pv(); |
| 1354 | |
| 1355 | if ( !PvNode |
| 1356 | && ttHit |
| 1357 | && tte->depth() >= ttDepth |
| 1358 | && ttValue != VALUE_NONE // Only in case of TT access race |
| 1359 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
| 1360 | : (tte->bound() & BOUND_UPPER))) |
| 1361 | return ttValue; |
| 1362 | |
| 1363 | // Evaluate the position statically |
| 1364 | if (inCheck) |
| 1365 | { |
| 1366 | ss->staticEval = VALUE_NONE; |
| 1367 | bestValue = futilityBase = -VALUE_INFINITE; |
| 1368 | } |
| 1369 | else |
| 1370 | { |
| 1371 | if (ttHit) |
| 1372 | { |
| 1373 | // Never assume anything about values stored in TT |
| 1374 | if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) |
| 1375 | ss->staticEval = bestValue = evaluate(pos); |
| 1376 | |
| 1377 | // Can ttValue be used as a better position evaluation? |
| 1378 | if ( ttValue != VALUE_NONE |
| 1379 | && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))) |
| 1380 | bestValue = ttValue; |
| 1381 | } |
| 1382 | else |
| 1383 | ss->staticEval = bestValue = |
| 1384 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
| 1385 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
| 1386 | |
| 1387 | // Stand pat. Return immediately if static value is at least beta |
| 1388 | if (bestValue >= beta) |
| 1389 | { |
| 1390 | if (!ttHit) |
| 1391 | tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, BOUND_LOWER, |
| 1392 | DEPTH_NONE, MOVE_NONE, ss->staticEval); |
| 1393 | |
| 1394 | return bestValue; |
| 1395 | } |
| 1396 | |
| 1397 | if (PvNode && bestValue > alpha) |
| 1398 | alpha = bestValue; |
| 1399 | |
| 1400 | futilityBase = bestValue + 153; |
| 1401 | } |
| 1402 | |
| 1403 | const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, |
| 1404 | nullptr, (ss-4)->continuationHistory, |
| 1405 | nullptr, (ss-6)->continuationHistory }; |
| 1406 | |
| 1407 | // Initialize a MovePicker object for the current position, and prepare |
| 1408 | // to search the moves. Because the depth is <= 0 here, only captures, |
| 1409 | // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will |
| 1410 | // be generated. |
| 1411 | MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, |
| 1412 | &thisThread->captureHistory, |
| 1413 | contHist, |
| 1414 | to_sq((ss-1)->currentMove)); |
| 1415 | |
| 1416 | // Loop through the moves until no moves remain or a beta cutoff occurs |
| 1417 | while ((move = mp.next_move()) != MOVE_NONE) |
| 1418 | { |
| 1419 | assert(is_ok(move)); |
| 1420 | |
| 1421 | givesCheck = pos.gives_check(move); |
| 1422 | |
| 1423 | moveCount++; |
| 1424 | |
| 1425 | // Futility pruning |
| 1426 | if ( !inCheck |
| 1427 | && !givesCheck |
| 1428 | && futilityBase > -VALUE_KNOWN_WIN |
| 1429 | && !pos.advanced_pawn_push(move)) |
| 1430 | { |
| 1431 | assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push |
| 1432 | |
| 1433 | futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; |
| 1434 | |
| 1435 | if (futilityValue <= alpha) |
| 1436 | { |
| 1437 | bestValue = std::max(bestValue, futilityValue); |
| 1438 | continue; |
| 1439 | } |
| 1440 | |
| 1441 | if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) |
| 1442 | { |
| 1443 | bestValue = std::max(bestValue, futilityBase); |
| 1444 | continue; |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | // Detect non-capture evasions that are candidates to be pruned |
| 1449 | evasionPrunable = inCheck |
| 1450 | && (depth != DEPTH_ZERO || moveCount > 2) |
| 1451 | && bestValue > VALUE_MATED_IN_MAX_PLY |
| 1452 | && !pos.capture(move); |
| 1453 | |
| 1454 | // Don't search moves with negative SEE values |
| 1455 | if ( (!inCheck || evasionPrunable) |
| 1456 | && (!givesCheck || !(pos.blockers_for_king(~pos.side_to_move()) & from_sq(move))) |
| 1457 | && !pos.see_ge(move)) |
| 1458 | continue; |
| 1459 | |
| 1460 | // Speculative prefetch as early as possible |
| 1461 | prefetch(TT.first_entry(pos.key_after(move))); |
| 1462 | |
| 1463 | // Check for legality just before making the move |
| 1464 | if (!pos.legal(move)) |
| 1465 | { |
| 1466 | moveCount--; |
| 1467 | continue; |
| 1468 | } |
| 1469 | |
| 1470 | ss->currentMove = move; |
| 1471 | ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)]; |
| 1472 | |
| 1473 | // Make and search the move |
| 1474 | pos.do_move(move, st, givesCheck); |
| 1475 | value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - ONE_PLY); |
| 1476 | pos.undo_move(move); |
| 1477 | |
| 1478 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
| 1479 | |
| 1480 | // Check for a new best move |
| 1481 | if (value > bestValue) |
| 1482 | { |
| 1483 | bestValue = value; |
| 1484 | |
| 1485 | if (value > alpha) |
| 1486 | { |
| 1487 | bestMove = move; |
| 1488 | |
| 1489 | if (PvNode) // Update pv even in fail-high case |
| 1490 | update_pv(ss->pv, move, (ss+1)->pv); |
| 1491 | |
| 1492 | if (PvNode && value < beta) // Update alpha here! |
| 1493 | alpha = value; |
| 1494 | else |
| 1495 | break; // Fail high |
| 1496 | } |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | // All legal moves have been searched. A special case: If we're in check |
| 1501 | // and no legal moves were found, it is checkmate. |
| 1502 | if (inCheck && bestValue == -VALUE_INFINITE) |
| 1503 | return mated_in(ss->ply); // Plies to mate from the root |
| 1504 | |
| 1505 | tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, |
| 1506 | bestValue >= beta ? BOUND_LOWER : |
| 1507 | PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, |
| 1508 | ttDepth, bestMove, ss->staticEval); |
| 1509 | |
| 1510 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
| 1511 | |
| 1512 | return bestValue; |
| 1513 | } |
| 1514 | |
| 1515 | |
| 1516 | // value_to_tt() adjusts a mate score from "plies to mate from the root" to |
| 1517 | // "plies to mate from the current position". Non-mate scores are unchanged. |
| 1518 | // The function is called before storing a value in the transposition table. |
| 1519 | |
| 1520 | Value value_to_tt(Value v, int ply) { |
| 1521 | |
| 1522 | assert(v != VALUE_NONE); |
| 1523 | |
| 1524 | return v >= VALUE_MATE_IN_MAX_PLY ? v + ply |
| 1525 | : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; |
| 1526 | } |
| 1527 | |
| 1528 | |
| 1529 | // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score |
| 1530 | // from the transposition table (which refers to the plies to mate/be mated |
| 1531 | // from current position) to "plies to mate/be mated from the root". |
| 1532 | |
| 1533 | Value value_from_tt(Value v, int ply) { |
| 1534 | |
| 1535 | return v == VALUE_NONE ? VALUE_NONE |
| 1536 | : v >= VALUE_MATE_IN_MAX_PLY ? v - ply |
| 1537 | : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; |
| 1538 | } |
| 1539 | |
| 1540 | |
| 1541 | // update_pv() adds current move and appends child pv[] |
| 1542 | |
| 1543 | void update_pv(Move* pv, Move move, Move* childPv) { |
| 1544 | |
| 1545 | for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) |
| 1546 | *pv++ = *childPv++; |
| 1547 | *pv = MOVE_NONE; |
| 1548 | } |
| 1549 | |
| 1550 | |
| 1551 | // update_continuation_histories() updates histories of the move pairs formed |
| 1552 | // by moves at ply -1, -2, and -4 with current move. |
| 1553 | |
| 1554 | void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) { |
| 1555 | |
| 1556 | for (int i : {1, 2, 4, 6}) |
| 1557 | if (is_ok((ss-i)->currentMove)) |
| 1558 | (*(ss-i)->continuationHistory)[pc][to] << bonus; |
| 1559 | } |
| 1560 | |
| 1561 | |
| 1562 | // update_capture_stats() updates move sorting heuristics when a new capture best move is found |
| 1563 | |
| 1564 | void update_capture_stats(const Position& pos, Move move, |
| 1565 | Move* captures, int captureCount, int bonus) { |
| 1566 | |
| 1567 | CapturePieceToHistory& captureHistory = pos.this_thread()->captureHistory; |
| 1568 | Piece moved_piece = pos.moved_piece(move); |
| 1569 | PieceType captured = type_of(pos.piece_on(to_sq(move))); |
| 1570 | |
| 1571 | if (pos.capture_or_promotion(move)) |
| 1572 | captureHistory[moved_piece][to_sq(move)][captured] << bonus; |
| 1573 | |
| 1574 | // Decrease all the other played capture moves |
| 1575 | for (int i = 0; i < captureCount; ++i) |
| 1576 | { |
| 1577 | moved_piece = pos.moved_piece(captures[i]); |
| 1578 | captured = type_of(pos.piece_on(to_sq(captures[i]))); |
| 1579 | captureHistory[moved_piece][to_sq(captures[i])][captured] << -bonus; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | |
| 1584 | // update_quiet_stats() updates move sorting heuristics when a new quiet best move is found |
| 1585 | |
| 1586 | void update_quiet_stats(const Position& pos, Stack* ss, Move move, |
| 1587 | Move* quiets, int quietCount, int bonus) { |
| 1588 | |
| 1589 | if (ss->killers[0] != move) |
| 1590 | { |
| 1591 | ss->killers[1] = ss->killers[0]; |
| 1592 | ss->killers[0] = move; |
| 1593 | } |
| 1594 | |
| 1595 | Color us = pos.side_to_move(); |
| 1596 | Thread* thisThread = pos.this_thread(); |
| 1597 | thisThread->mainHistory[us][from_to(move)] << bonus; |
| 1598 | update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus); |
| 1599 | |
| 1600 | if (is_ok((ss-1)->currentMove)) |
| 1601 | { |
| 1602 | Square prevSq = to_sq((ss-1)->currentMove); |
| 1603 | thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move; |
| 1604 | } |
| 1605 | |
| 1606 | // Decrease all the other played quiet moves |
| 1607 | for (int i = 0; i < quietCount; ++i) |
| 1608 | { |
| 1609 | thisThread->mainHistory[us][from_to(quiets[i])] << -bonus; |
| 1610 | update_continuation_histories(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | // When playing with strength handicap, choose best move among a set of RootMoves |
| 1615 | // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. |
| 1616 | |
| 1617 | Move Skill::pick_best(size_t multiPV) { |
| 1618 | |
| 1619 | const RootMoves& rootMoves = Threads.main()->rootMoves; |
| 1620 | static PRNG rng(now()); // PRNG sequence should be non-deterministic |
| 1621 | |
| 1622 | // RootMoves are already sorted by score in descending order |
| 1623 | Value topScore = rootMoves[0].score; |
| 1624 | int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); |
| 1625 | int weakness = 120 - 2 * level; |
| 1626 | int maxScore = -VALUE_INFINITE; |
| 1627 | |
| 1628 | // Choose best move. For each move score we add two terms, both dependent on |
| 1629 | // weakness. One is deterministic and bigger for weaker levels, and one is |
| 1630 | // random. Then we choose the move with the resulting highest score. |
| 1631 | for (size_t i = 0; i < multiPV; ++i) |
| 1632 | { |
| 1633 | // This is our magic formula |
| 1634 | int push = ( weakness * int(topScore - rootMoves[i].score) |
| 1635 | + delta * (rng.rand<unsigned>() % weakness)) / 128; |
| 1636 | |
| 1637 | if (rootMoves[i].score + push >= maxScore) |
| 1638 | { |
| 1639 | maxScore = rootMoves[i].score + push; |
| 1640 | best = rootMoves[i].pv[0]; |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | return best; |
| 1645 | } |
| 1646 | |
| 1647 | } // namespace |
| 1648 | |
| 1649 | /// MainThread::check_time() is used to print debug info and, more importantly, |
| 1650 | /// to detect when we are out of available time and thus stop the search. |
| 1651 | |
| 1652 | void MainThread::check_time() { |
| 1653 | |
| 1654 | if (--callsCnt > 0) |
| 1655 | return; |
| 1656 | |
| 1657 | // When using nodes, ensure checking rate is not lower than 0.1% of nodes |
| 1658 | callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024; |
| 1659 | |
| 1660 | static TimePoint lastInfoTime = now(); |
| 1661 | |
| 1662 | TimePoint elapsed = Time.elapsed(); |
| 1663 | TimePoint tick = Limits.startTime + elapsed; |
| 1664 | |
| 1665 | if (tick - lastInfoTime >= 1000) |
| 1666 | { |
| 1667 | lastInfoTime = tick; |
| 1668 | dbg_print(); |
| 1669 | } |
| 1670 | |
| 1671 | // We should not stop pondering until told so by the GUI |
| 1672 | if (ponder) |
| 1673 | return; |
| 1674 | |
| 1675 | if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit)) |
| 1676 | || (Limits.movetime && elapsed >= Limits.movetime) |
| 1677 | || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) |
| 1678 | Threads.stop = true; |
| 1679 | } |
| 1680 | |
| 1681 | |
| 1682 | /// UCI::pv() formats PV information according to the UCI protocol. UCI requires |
| 1683 | /// that all (if any) unsearched PV lines are sent using a previous search score. |
| 1684 | |
| 1685 | string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { |
| 1686 | |
| 1687 | std::stringstream ss; |
| 1688 | TimePoint elapsed = Time.elapsed() + 1; |
| 1689 | const RootMoves& rootMoves = pos.this_thread()->rootMoves; |
| 1690 | size_t pvIdx = pos.this_thread()->pvIdx; |
| 1691 | size_t multiPV = std::min((size_t)Options["MultiPV" ], rootMoves.size()); |
| 1692 | uint64_t nodesSearched = Threads.nodes_searched(); |
| 1693 | uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); |
| 1694 | |
| 1695 | for (size_t i = 0; i < multiPV; ++i) |
| 1696 | { |
| 1697 | bool updated = (i <= pvIdx && rootMoves[i].score != -VALUE_INFINITE); |
| 1698 | |
| 1699 | if (depth == ONE_PLY && !updated) |
| 1700 | continue; |
| 1701 | |
| 1702 | Depth d = updated ? depth : depth - ONE_PLY; |
| 1703 | Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; |
| 1704 | |
| 1705 | bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; |
| 1706 | v = tb ? rootMoves[i].tbScore : v; |
| 1707 | |
| 1708 | if (ss.rdbuf()->in_avail()) // Not at first line |
| 1709 | ss << "\n" ; |
| 1710 | |
| 1711 | ss << "info" |
| 1712 | << " depth " << d / ONE_PLY |
| 1713 | << " seldepth " << rootMoves[i].selDepth |
| 1714 | << " multipv " << i + 1 |
| 1715 | << " score " << UCI::value(v); |
| 1716 | |
| 1717 | if (!tb && i == pvIdx) |
| 1718 | ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "" ); |
| 1719 | |
| 1720 | ss << " nodes " << nodesSearched |
| 1721 | << " nps " << nodesSearched * 1000 / elapsed; |
| 1722 | |
| 1723 | if (elapsed > 1000) // Earlier makes little sense |
| 1724 | ss << " hashfull " << TT.hashfull(); |
| 1725 | |
| 1726 | ss << " tbhits " << tbHits |
| 1727 | << " time " << elapsed |
| 1728 | << " pv" ; |
| 1729 | |
| 1730 | for (Move m : rootMoves[i].pv) |
| 1731 | ss << " " << UCI::move(m, pos.is_chess960()); |
| 1732 | } |
| 1733 | |
| 1734 | return ss.str(); |
| 1735 | } |
| 1736 | |
| 1737 | |
| 1738 | /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move |
| 1739 | /// before exiting the search, for instance, in case we stop the search during a |
| 1740 | /// fail high at root. We try hard to have a ponder move to return to the GUI, |
| 1741 | /// otherwise in case of 'ponder on' we have nothing to think on. |
| 1742 | |
| 1743 | bool RootMove::(Position& pos) { |
| 1744 | |
| 1745 | StateInfo st; |
| 1746 | bool ttHit; |
| 1747 | |
| 1748 | assert(pv.size() == 1); |
| 1749 | |
| 1750 | if (pv[0] == MOVE_NONE) |
| 1751 | return false; |
| 1752 | |
| 1753 | pos.do_move(pv[0], st); |
| 1754 | TTEntry* tte = TT.probe(pos.key(), ttHit); |
| 1755 | |
| 1756 | if (ttHit) |
| 1757 | { |
| 1758 | Move m = tte->move(); // Local copy to be SMP safe |
| 1759 | if (MoveList<LEGAL>(pos).contains(m)) |
| 1760 | pv.push_back(m); |
| 1761 | } |
| 1762 | |
| 1763 | pos.undo_move(pv[0]); |
| 1764 | return pv.size() > 1; |
| 1765 | } |
| 1766 | |
| 1767 | void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) { |
| 1768 | |
| 1769 | RootInTB = false; |
| 1770 | UseRule50 = bool(Options["Syzygy50MoveRule" ]); |
| 1771 | ProbeDepth = int(Options["SyzygyProbeDepth" ]) * ONE_PLY; |
| 1772 | Cardinality = int(Options["SyzygyProbeLimit" ]); |
| 1773 | bool dtz_available = true; |
| 1774 | |
| 1775 | // Tables with fewer pieces than SyzygyProbeLimit are searched with |
| 1776 | // ProbeDepth == DEPTH_ZERO |
| 1777 | if (Cardinality > MaxCardinality) |
| 1778 | { |
| 1779 | Cardinality = MaxCardinality; |
| 1780 | ProbeDepth = DEPTH_ZERO; |
| 1781 | } |
| 1782 | |
| 1783 | if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) |
| 1784 | { |
| 1785 | // Rank moves using DTZ tables |
| 1786 | RootInTB = root_probe(pos, rootMoves); |
| 1787 | |
| 1788 | if (!RootInTB) |
| 1789 | { |
| 1790 | // DTZ tables are missing; try to rank moves using WDL tables |
| 1791 | dtz_available = false; |
| 1792 | RootInTB = root_probe_wdl(pos, rootMoves); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | if (RootInTB) |
| 1797 | { |
| 1798 | // Sort moves according to TB rank |
| 1799 | std::sort(rootMoves.begin(), rootMoves.end(), |
| 1800 | [](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } ); |
| 1801 | |
| 1802 | // Probe during search only if DTZ is not available and we are winning |
| 1803 | if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW) |
| 1804 | Cardinality = 0; |
| 1805 | } |
| 1806 | else |
| 1807 | { |
| 1808 | // Clean up if root_probe() and root_probe_wdl() have failed |
| 1809 | for (auto& m : rootMoves) |
| 1810 | m.tbRank = 0; |
| 1811 | } |
| 1812 | } |
| 1813 | |