1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #include <algorithm> |
22 | #include <cassert> |
23 | #include <cmath> |
24 | #include <cstring> // For std::memset |
25 | #include <iostream> |
26 | #include <sstream> |
27 | |
28 | #include "evaluate.h" |
29 | #include "misc.h" |
30 | #include "movegen.h" |
31 | #include "movepick.h" |
32 | #include "position.h" |
33 | #include "search.h" |
34 | #include "thread.h" |
35 | #include "timeman.h" |
36 | #include "tt.h" |
37 | #include "uci.h" |
38 | #include "syzygy/tbprobe.h" |
39 | |
40 | namespace Search { |
41 | |
42 | LimitsType Limits; |
43 | } |
44 | |
45 | namespace Tablebases { |
46 | |
47 | int Cardinality; |
48 | bool RootInTB; |
49 | bool UseRule50; |
50 | Depth ProbeDepth; |
51 | } |
52 | |
53 | namespace TB = Tablebases; |
54 | |
55 | using std::string; |
56 | using Eval::evaluate; |
57 | using namespace Search; |
58 | |
59 | namespace { |
60 | |
61 | // Different node types, used as a template parameter |
62 | enum NodeType { NonPV, PV }; |
63 | |
64 | // Razor and futility margins |
65 | constexpr int RazorMargin = 661; |
66 | Value futility_margin(Depth d, bool improving) { |
67 | return Value((168 - 51 * improving) * d / ONE_PLY); |
68 | } |
69 | |
70 | // Reductions lookup table, initialized at startup |
71 | int Reductions[MAX_MOVES]; // [depth or moveNumber] |
72 | |
73 | Depth reduction(bool i, Depth d, int mn) { |
74 | int r = Reductions[d / ONE_PLY] * Reductions[mn]; |
75 | return ((r + 520) / 1024 + (!i && r > 999)) * ONE_PLY; |
76 | } |
77 | |
78 | constexpr int futility_move_count(bool improving, int depth) { |
79 | return (5 + depth * depth) * (1 + improving) / 2; |
80 | } |
81 | |
82 | // History and stats update bonus, based on depth |
83 | int stat_bonus(Depth depth) { |
84 | int d = depth / ONE_PLY; |
85 | return d > 17 ? -8 : 22 * d * d + 151 * d - 140; |
86 | } |
87 | |
88 | // Add a small random component to draw evaluations to avoid 3fold-blindness |
89 | Value value_draw(Depth depth, Thread* thisThread) { |
90 | return depth < 4 * ONE_PLY ? VALUE_DRAW |
91 | : VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1); |
92 | } |
93 | |
94 | // Skill structure is used to implement strength limit |
95 | struct Skill { |
96 | explicit Skill(int l) : level(l) {} |
97 | bool enabled() const { return level < 20; } |
98 | bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; } |
99 | Move pick_best(size_t multiPV); |
100 | |
101 | int level; |
102 | Move best = MOVE_NONE; |
103 | }; |
104 | |
105 | // Breadcrumbs are used to mark nodes as being searched by a given thread |
106 | struct Breadcrumb { |
107 | std::atomic<Thread*> thread; |
108 | std::atomic<Key> key; |
109 | }; |
110 | std::array<Breadcrumb, 1024> breadcrumbs; |
111 | |
112 | // ThreadHolding structure keeps track of which thread left breadcrumbs at the given |
113 | // node for potential reductions. A free node will be marked upon entering the moves |
114 | // loop by the constructor, and unmarked upon leaving that loop by the destructor. |
115 | struct ThreadHolding { |
116 | explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) { |
117 | location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr; |
118 | otherThread = false; |
119 | owning = false; |
120 | if (location) |
121 | { |
122 | // See if another already marked this location, if not, mark it ourselves |
123 | Thread* tmp = (*location).thread.load(std::memory_order_relaxed); |
124 | if (tmp == nullptr) |
125 | { |
126 | (*location).thread.store(thisThread, std::memory_order_relaxed); |
127 | (*location).key.store(posKey, std::memory_order_relaxed); |
128 | owning = true; |
129 | } |
130 | else if ( tmp != thisThread |
131 | && (*location).key.load(std::memory_order_relaxed) == posKey) |
132 | otherThread = true; |
133 | } |
134 | } |
135 | |
136 | ~ThreadHolding() { |
137 | if (owning) // Free the marked location |
138 | (*location).thread.store(nullptr, std::memory_order_relaxed); |
139 | } |
140 | |
141 | bool marked() { return otherThread; } |
142 | |
143 | private: |
144 | Breadcrumb* location; |
145 | bool otherThread, owning; |
146 | }; |
147 | |
148 | template <NodeType NT> |
149 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); |
150 | |
151 | template <NodeType NT> |
152 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = DEPTH_ZERO); |
153 | |
154 | Value value_to_tt(Value v, int ply); |
155 | Value value_from_tt(Value v, int ply); |
156 | void update_pv(Move* pv, Move move, Move* childPv); |
157 | void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus); |
158 | void update_quiet_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietCount, int bonus); |
159 | void update_capture_stats(const Position& pos, Move move, Move* captures, int captureCount, int bonus); |
160 | |
161 | // perft() is our utility to verify move generation. All the leaf nodes up |
162 | // to the given depth are generated and counted, and the sum is returned. |
163 | template<bool Root> |
164 | uint64_t perft(Position& pos, Depth depth) { |
165 | |
166 | StateInfo st; |
167 | uint64_t cnt, nodes = 0; |
168 | const bool leaf = (depth == 2 * ONE_PLY); |
169 | |
170 | for (const auto& m : MoveList<LEGAL>(pos)) |
171 | { |
172 | if (Root && depth <= ONE_PLY) |
173 | cnt = 1, nodes++; |
174 | else |
175 | { |
176 | pos.do_move(m, st); |
177 | cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY); |
178 | nodes += cnt; |
179 | pos.undo_move(m); |
180 | } |
181 | if (Root) |
182 | sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; |
183 | } |
184 | return nodes; |
185 | } |
186 | |
187 | } // namespace |
188 | |
189 | |
190 | /// Search::init() is called at startup to initialize various lookup tables |
191 | |
192 | void Search::init() { |
193 | |
194 | for (int i = 1; i < MAX_MOVES; ++i) |
195 | Reductions[i] = int(23.4 * std::log(i)); |
196 | } |
197 | |
198 | |
199 | /// Search::clear() resets search state to its initial value |
200 | |
201 | void Search::clear() { |
202 | |
203 | Threads.main()->wait_for_search_finished(); |
204 | |
205 | Time.availableNodes = 0; |
206 | TT.clear(); |
207 | Threads.clear(); |
208 | Tablebases::init(Options["SyzygyPath" ]); // Free mapped files |
209 | } |
210 | |
211 | |
212 | /// MainThread::search() is started when the program receives the UCI 'go' |
213 | /// command. It searches from the root position and outputs the "bestmove". |
214 | |
215 | void MainThread::search() { |
216 | |
217 | if (Limits.perft) |
218 | { |
219 | nodes = perft<true>(rootPos, Limits.perft * ONE_PLY); |
220 | sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl; |
221 | return; |
222 | } |
223 | |
224 | Color us = rootPos.side_to_move(); |
225 | Time.init(Limits, us, rootPos.game_ply()); |
226 | TT.new_search(); |
227 | |
228 | if (rootMoves.empty()) |
229 | { |
230 | rootMoves.emplace_back(MOVE_NONE); |
231 | sync_cout << "info depth 0 score " |
232 | << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) |
233 | << sync_endl; |
234 | } |
235 | else |
236 | { |
237 | for (Thread* th : Threads) |
238 | { |
239 | th->bestMoveChanges = 0; |
240 | if (th != this) |
241 | th->start_searching(); |
242 | } |
243 | |
244 | Thread::search(); // Let's start searching! |
245 | } |
246 | |
247 | // When we reach the maximum depth, we can arrive here without a raise of |
248 | // Threads.stop. However, if we are pondering or in an infinite search, |
249 | // the UCI protocol states that we shouldn't print the best move before the |
250 | // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here |
251 | // until the GUI sends one of those commands. |
252 | |
253 | while (!Threads.stop && (ponder || Limits.infinite)) |
254 | {} // Busy wait for a stop or a ponder reset |
255 | |
256 | // Stop the threads if not already stopped (also raise the stop if |
257 | // "ponderhit" just reset Threads.ponder). |
258 | Threads.stop = true; |
259 | |
260 | // Wait until all threads have finished |
261 | for (Thread* th : Threads) |
262 | if (th != this) |
263 | th->wait_for_search_finished(); |
264 | |
265 | // When playing in 'nodes as time' mode, subtract the searched nodes from |
266 | // the available ones before exiting. |
267 | if (Limits.npmsec) |
268 | Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); |
269 | |
270 | Thread* bestThread = this; |
271 | |
272 | // Check if there are threads with a better score than main thread |
273 | if ( Options["MultiPV" ] == 1 |
274 | && !Limits.depth |
275 | && !(Skill(Options["Skill Level" ]).enabled() || Options["UCI_LimitStrength" ]) |
276 | && rootMoves[0].pv[0] != MOVE_NONE) |
277 | { |
278 | std::map<Move, int64_t> votes; |
279 | Value minScore = this->rootMoves[0].score; |
280 | |
281 | // Find out minimum score |
282 | for (Thread* th: Threads) |
283 | minScore = std::min(minScore, th->rootMoves[0].score); |
284 | |
285 | // Vote according to score and depth, and select the best thread |
286 | for (Thread* th : Threads) |
287 | { |
288 | votes[th->rootMoves[0].pv[0]] += |
289 | (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth); |
290 | |
291 | if (bestThread->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY) |
292 | { |
293 | // Make sure we pick the shortest mate |
294 | if (th->rootMoves[0].score > bestThread->rootMoves[0].score) |
295 | bestThread = th; |
296 | } |
297 | else if ( th->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY |
298 | || votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]) |
299 | bestThread = th; |
300 | } |
301 | } |
302 | |
303 | previousScore = bestThread->rootMoves[0].score; |
304 | |
305 | // Send again PV info if we have a new best thread |
306 | if (bestThread != this) |
307 | sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; |
308 | |
309 | sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); |
310 | |
311 | if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) |
312 | std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); |
313 | |
314 | std::cout << sync_endl; |
315 | } |
316 | |
317 | |
318 | /// Thread::search() is the main iterative deepening loop. It calls search() |
319 | /// repeatedly with increasing depth until the allocated thinking time has been |
320 | /// consumed, the user stops the search, or the maximum search depth is reached. |
321 | |
322 | void Thread::search() { |
323 | |
324 | // To allow access to (ss-7) up to (ss+2), the stack must be oversized. |
325 | // The former is needed to allow update_continuation_histories(ss-1, ...), |
326 | // which accesses its argument at ss-6, also near the root. |
327 | // The latter is needed for statScores and killer initialization. |
328 | Stack stack[MAX_PLY+10], *ss = stack+7; |
329 | Move pv[MAX_PLY+1]; |
330 | Value bestValue, alpha, beta, delta; |
331 | Move lastBestMove = MOVE_NONE; |
332 | Depth lastBestMoveDepth = DEPTH_ZERO; |
333 | MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); |
334 | double timeReduction = 1, totBestMoveChanges = 0; |
335 | Color us = rootPos.side_to_move(); |
336 | |
337 | std::memset(ss-7, 0, 10 * sizeof(Stack)); |
338 | for (int i = 7; i > 0; i--) |
339 | (ss-i)->continuationHistory = &this->continuationHistory[NO_PIECE][0]; // Use as sentinel |
340 | ss->pv = pv; |
341 | |
342 | bestValue = delta = alpha = -VALUE_INFINITE; |
343 | beta = VALUE_INFINITE; |
344 | |
345 | size_t multiPV = Options["MultiPV" ]; |
346 | |
347 | // Pick integer skill levels, but non-deterministically round up or down |
348 | // such that the average integer skill corresponds to the input floating point one. |
349 | // UCI_Elo is converted to a suitable fractional skill level, using anchoring |
350 | // to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo |
351 | // for match (TC 60+0.6) results spanning a wide range of k values. |
352 | PRNG rng(now()); |
353 | double floatLevel = Options["UCI_LimitStrength" ] ? |
354 | clamp(std::pow((Options["UCI_Elo" ] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) : |
355 | double(Options["Skill Level" ]); |
356 | int intLevel = int(floatLevel) + |
357 | ((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0); |
358 | Skill skill(intLevel); |
359 | |
360 | // When playing with strength handicap enable MultiPV search that we will |
361 | // use behind the scenes to retrieve a set of possible moves. |
362 | if (skill.enabled()) |
363 | multiPV = std::max(multiPV, (size_t)4); |
364 | |
365 | multiPV = std::min(multiPV, rootMoves.size()); |
366 | |
367 | int ct = int(Options["Contempt" ]) * PawnValueEg / 100; // From centipawns |
368 | |
369 | // In analysis mode, adjust contempt in accordance with user preference |
370 | if (Limits.infinite || Options["UCI_AnalyseMode" ]) |
371 | ct = Options["Analysis Contempt" ] == "Off" ? 0 |
372 | : Options["Analysis Contempt" ] == "Both" ? ct |
373 | : Options["Analysis Contempt" ] == "White" && us == BLACK ? -ct |
374 | : Options["Analysis Contempt" ] == "Black" && us == WHITE ? -ct |
375 | : ct; |
376 | |
377 | // Evaluation score is from the white point of view |
378 | contempt = (us == WHITE ? make_score(ct, ct / 2) |
379 | : -make_score(ct, ct / 2)); |
380 | |
381 | // Iterative deepening loop until requested to stop or the target depth is reached |
382 | while ( (rootDepth += ONE_PLY) < DEPTH_MAX |
383 | && !Threads.stop |
384 | && !(Limits.depth && mainThread && rootDepth / ONE_PLY > Limits.depth)) |
385 | { |
386 | // Age out PV variability metric |
387 | if (mainThread) |
388 | totBestMoveChanges /= 2; |
389 | |
390 | // Save the last iteration's scores before first PV line is searched and |
391 | // all the move scores except the (new) PV are set to -VALUE_INFINITE. |
392 | for (RootMove& rm : rootMoves) |
393 | rm.previousScore = rm.score; |
394 | |
395 | size_t pvFirst = 0; |
396 | pvLast = 0; |
397 | |
398 | // MultiPV loop. We perform a full root search for each PV line |
399 | for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx) |
400 | { |
401 | if (pvIdx == pvLast) |
402 | { |
403 | pvFirst = pvLast; |
404 | for (pvLast++; pvLast < rootMoves.size(); pvLast++) |
405 | if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank) |
406 | break; |
407 | } |
408 | |
409 | // Reset UCI info selDepth for each depth and each PV line |
410 | selDepth = 0; |
411 | |
412 | // Reset aspiration window starting size |
413 | if (rootDepth >= 4 * ONE_PLY) |
414 | { |
415 | Value previousScore = rootMoves[pvIdx].previousScore; |
416 | delta = Value(23); |
417 | alpha = std::max(previousScore - delta,-VALUE_INFINITE); |
418 | beta = std::min(previousScore + delta, VALUE_INFINITE); |
419 | |
420 | // Adjust contempt based on root move's previousScore (dynamic contempt) |
421 | int dct = ct + 86 * previousScore / (abs(previousScore) + 176); |
422 | |
423 | contempt = (us == WHITE ? make_score(dct, dct / 2) |
424 | : -make_score(dct, dct / 2)); |
425 | } |
426 | |
427 | // Start with a small aspiration window and, in the case of a fail |
428 | // high/low, re-search with a bigger window until we don't fail |
429 | // high/low anymore. |
430 | int failedHighCnt = 0; |
431 | while (true) |
432 | { |
433 | Depth adjustedDepth = std::max(ONE_PLY, rootDepth - failedHighCnt * ONE_PLY); |
434 | bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false); |
435 | |
436 | // Bring the best move to the front. It is critical that sorting |
437 | // is done with a stable algorithm because all the values but the |
438 | // first and eventually the new best one are set to -VALUE_INFINITE |
439 | // and we want to keep the same order for all the moves except the |
440 | // new PV that goes to the front. Note that in case of MultiPV |
441 | // search the already searched PV lines are preserved. |
442 | std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); |
443 | |
444 | // If search has been stopped, we break immediately. Sorting is |
445 | // safe because RootMoves is still valid, although it refers to |
446 | // the previous iteration. |
447 | if (Threads.stop) |
448 | break; |
449 | |
450 | // When failing high/low give some update (without cluttering |
451 | // the UI) before a re-search. |
452 | if ( mainThread |
453 | && multiPV == 1 |
454 | && (bestValue <= alpha || bestValue >= beta) |
455 | && Time.elapsed() > 3000) |
456 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
457 | |
458 | // In case of failing low/high increase aspiration window and |
459 | // re-search, otherwise exit the loop. |
460 | if (bestValue <= alpha) |
461 | { |
462 | beta = (alpha + beta) / 2; |
463 | alpha = std::max(bestValue - delta, -VALUE_INFINITE); |
464 | |
465 | failedHighCnt = 0; |
466 | if (mainThread) |
467 | mainThread->stopOnPonderhit = false; |
468 | } |
469 | else if (bestValue >= beta) |
470 | { |
471 | beta = std::min(bestValue + delta, VALUE_INFINITE); |
472 | ++failedHighCnt; |
473 | } |
474 | else |
475 | break; |
476 | |
477 | delta += delta / 4 + 5; |
478 | |
479 | assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); |
480 | } |
481 | |
482 | // Sort the PV lines searched so far and update the GUI |
483 | std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1); |
484 | |
485 | if ( mainThread |
486 | && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000)) |
487 | sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; |
488 | } |
489 | |
490 | if (!Threads.stop) |
491 | completedDepth = rootDepth; |
492 | |
493 | if (rootMoves[0].pv[0] != lastBestMove) { |
494 | lastBestMove = rootMoves[0].pv[0]; |
495 | lastBestMoveDepth = rootDepth; |
496 | } |
497 | |
498 | // Have we found a "mate in x"? |
499 | if ( Limits.mate |
500 | && bestValue >= VALUE_MATE_IN_MAX_PLY |
501 | && VALUE_MATE - bestValue <= 2 * Limits.mate) |
502 | Threads.stop = true; |
503 | |
504 | if (!mainThread) |
505 | continue; |
506 | |
507 | // If skill level is enabled and time is up, pick a sub-optimal best move |
508 | if (skill.enabled() && skill.time_to_pick(rootDepth)) |
509 | skill.pick_best(multiPV); |
510 | |
511 | // Do we have time for the next iteration? Can we stop searching now? |
512 | if ( Limits.use_time_management() |
513 | && !Threads.stop |
514 | && !mainThread->stopOnPonderhit) |
515 | { |
516 | double fallingEval = (354 + 10 * (mainThread->previousScore - bestValue)) / 692.0; |
517 | fallingEval = clamp(fallingEval, 0.5, 1.5); |
518 | |
519 | // If the bestMove is stable over several iterations, reduce time accordingly |
520 | timeReduction = lastBestMoveDepth + 9 * ONE_PLY < completedDepth ? 1.97 : 0.98; |
521 | double reduction = (1.36 + mainThread->previousTimeReduction) / (2.29 * timeReduction); |
522 | |
523 | // Use part of the gained time from a previous stable move for the current move |
524 | for (Thread* th : Threads) |
525 | { |
526 | totBestMoveChanges += th->bestMoveChanges; |
527 | th->bestMoveChanges = 0; |
528 | } |
529 | double bestMoveInstability = 1 + totBestMoveChanges / Threads.size(); |
530 | |
531 | // Stop the search if we have only one legal move, or if available time elapsed |
532 | if ( rootMoves.size() == 1 |
533 | || Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability) |
534 | { |
535 | // If we are allowed to ponder do not stop the search now but |
536 | // keep pondering until the GUI sends "ponderhit" or "stop". |
537 | if (mainThread->ponder) |
538 | mainThread->stopOnPonderhit = true; |
539 | else |
540 | Threads.stop = true; |
541 | } |
542 | } |
543 | } |
544 | |
545 | if (!mainThread) |
546 | return; |
547 | |
548 | mainThread->previousTimeReduction = timeReduction; |
549 | |
550 | // If skill level is enabled, swap best PV line with the sub-optimal one |
551 | if (skill.enabled()) |
552 | std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), |
553 | skill.best ? skill.best : skill.pick_best(multiPV))); |
554 | } |
555 | |
556 | |
557 | namespace { |
558 | |
559 | // search<>() is the main search function for both PV and non-PV nodes |
560 | |
561 | template <NodeType NT> |
562 | Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { |
563 | |
564 | constexpr bool PvNode = NT == PV; |
565 | const bool rootNode = PvNode && ss->ply == 0; |
566 | |
567 | // Check if we have an upcoming move which draws by repetition, or |
568 | // if the opponent had an alternative move earlier to this position. |
569 | if ( pos.rule50_count() >= 3 |
570 | && alpha < VALUE_DRAW |
571 | && !rootNode |
572 | && pos.has_game_cycle(ss->ply)) |
573 | { |
574 | alpha = value_draw(depth, pos.this_thread()); |
575 | if (alpha >= beta) |
576 | return alpha; |
577 | } |
578 | |
579 | // Dive into quiescence search when the depth reaches zero |
580 | if (depth < ONE_PLY) |
581 | return qsearch<NT>(pos, ss, alpha, beta); |
582 | |
583 | assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); |
584 | assert(PvNode || (alpha == beta - 1)); |
585 | assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); |
586 | assert(!(PvNode && cutNode)); |
587 | assert(depth / ONE_PLY * ONE_PLY == depth); |
588 | |
589 | Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64]; |
590 | StateInfo st; |
591 | TTEntry* tte; |
592 | Key posKey; |
593 | Move ttMove, move, excludedMove, bestMove; |
594 | Depth extension, newDepth; |
595 | Value bestValue, value, ttValue, eval, maxValue; |
596 | bool ttHit, ttPv, inCheck, givesCheck, improving, doLMR; |
597 | bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture; |
598 | Piece movedPiece; |
599 | int moveCount, captureCount, quietCount, singularLMR; |
600 | |
601 | // Step 1. Initialize node |
602 | Thread* thisThread = pos.this_thread(); |
603 | inCheck = pos.checkers(); |
604 | Color us = pos.side_to_move(); |
605 | moveCount = captureCount = quietCount = singularLMR = ss->moveCount = 0; |
606 | bestValue = -VALUE_INFINITE; |
607 | maxValue = VALUE_INFINITE; |
608 | |
609 | // Check for the available remaining time |
610 | if (thisThread == Threads.main()) |
611 | static_cast<MainThread*>(thisThread)->check_time(); |
612 | |
613 | // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) |
614 | if (PvNode && thisThread->selDepth < ss->ply + 1) |
615 | thisThread->selDepth = ss->ply + 1; |
616 | |
617 | if (!rootNode) |
618 | { |
619 | // Step 2. Check for aborted search and immediate draw |
620 | if ( Threads.stop.load(std::memory_order_relaxed) |
621 | || pos.is_draw(ss->ply) |
622 | || ss->ply >= MAX_PLY) |
623 | return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) |
624 | : value_draw(depth, pos.this_thread()); |
625 | |
626 | // Step 3. Mate distance pruning. Even if we mate at the next move our score |
627 | // would be at best mate_in(ss->ply+1), but if alpha is already bigger because |
628 | // a shorter mate was found upward in the tree then there is no need to search |
629 | // because we will never beat the current alpha. Same logic but with reversed |
630 | // signs applies also in the opposite condition of being mated instead of giving |
631 | // mate. In this case return a fail-high score. |
632 | alpha = std::max(mated_in(ss->ply), alpha); |
633 | beta = std::min(mate_in(ss->ply+1), beta); |
634 | if (alpha >= beta) |
635 | return alpha; |
636 | } |
637 | |
638 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
639 | |
640 | (ss+1)->ply = ss->ply + 1; |
641 | (ss+1)->excludedMove = bestMove = MOVE_NONE; |
642 | (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; |
643 | Square prevSq = to_sq((ss-1)->currentMove); |
644 | |
645 | // Initialize statScore to zero for the grandchildren of the current position. |
646 | // So statScore is shared between all grandchildren and only the first grandchild |
647 | // starts with statScore = 0. Later grandchildren start with the last calculated |
648 | // statScore of the previous grandchild. This influences the reduction rules in |
649 | // LMR which are based on the statScore of parent position. |
650 | if (rootNode) |
651 | (ss+4)->statScore = 0; |
652 | else |
653 | (ss+2)->statScore = 0; |
654 | |
655 | // Step 4. Transposition table lookup. We don't want the score of a partial |
656 | // search to overwrite a previous full search TT value, so we use a different |
657 | // position key in case of an excluded move. |
658 | excludedMove = ss->excludedMove; |
659 | posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash |
660 | tte = TT.probe(posKey, ttHit); |
661 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
662 | ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] |
663 | : ttHit ? tte->move() : MOVE_NONE; |
664 | ttPv = PvNode || (ttHit && tte->is_pv()); |
665 | |
666 | // At non-PV nodes we check for an early TT cutoff |
667 | if ( !PvNode |
668 | && ttHit |
669 | && tte->depth() >= depth |
670 | && ttValue != VALUE_NONE // Possible in case of TT access race |
671 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
672 | : (tte->bound() & BOUND_UPPER))) |
673 | { |
674 | // If ttMove is quiet, update move sorting heuristics on TT hit |
675 | if (ttMove) |
676 | { |
677 | if (ttValue >= beta) |
678 | { |
679 | if (!pos.capture_or_promotion(ttMove)) |
680 | update_quiet_stats(pos, ss, ttMove, nullptr, 0, stat_bonus(depth)); |
681 | |
682 | // Extra penalty for early quiet moves of the previous ply |
683 | if ((ss-1)->moveCount <= 2 && !pos.captured_piece()) |
684 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); |
685 | } |
686 | // Penalty for a quiet ttMove that fails low |
687 | else if (!pos.capture_or_promotion(ttMove)) |
688 | { |
689 | int penalty = -stat_bonus(depth); |
690 | thisThread->mainHistory[us][from_to(ttMove)] << penalty; |
691 | update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty); |
692 | } |
693 | } |
694 | return ttValue; |
695 | } |
696 | |
697 | // Step 5. Tablebases probe |
698 | if (!rootNode && TB::Cardinality) |
699 | { |
700 | int piecesCount = pos.count<ALL_PIECES>(); |
701 | |
702 | if ( piecesCount <= TB::Cardinality |
703 | && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth) |
704 | && pos.rule50_count() == 0 |
705 | && !pos.can_castle(ANY_CASTLING)) |
706 | { |
707 | TB::ProbeState err; |
708 | TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err); |
709 | |
710 | // Force check of time on the next occasion |
711 | if (thisThread == Threads.main()) |
712 | static_cast<MainThread*>(thisThread)->callsCnt = 0; |
713 | |
714 | if (err != TB::ProbeState::FAIL) |
715 | { |
716 | thisThread->tbHits.fetch_add(1, std::memory_order_relaxed); |
717 | |
718 | int drawScore = TB::UseRule50 ? 1 : 0; |
719 | |
720 | value = wdl < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply + 1 |
721 | : wdl > drawScore ? VALUE_MATE - MAX_PLY - ss->ply - 1 |
722 | : VALUE_DRAW + 2 * wdl * drawScore; |
723 | |
724 | Bound b = wdl < -drawScore ? BOUND_UPPER |
725 | : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT; |
726 | |
727 | if ( b == BOUND_EXACT |
728 | || (b == BOUND_LOWER ? value >= beta : value <= alpha)) |
729 | { |
730 | tte->save(posKey, value_to_tt(value, ss->ply), ttPv, b, |
731 | std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY), |
732 | MOVE_NONE, VALUE_NONE); |
733 | |
734 | return value; |
735 | } |
736 | |
737 | if (PvNode) |
738 | { |
739 | if (b == BOUND_LOWER) |
740 | bestValue = value, alpha = std::max(alpha, bestValue); |
741 | else |
742 | maxValue = value; |
743 | } |
744 | } |
745 | } |
746 | } |
747 | |
748 | // Step 6. Static evaluation of the position |
749 | if (inCheck) |
750 | { |
751 | ss->staticEval = eval = VALUE_NONE; |
752 | improving = false; |
753 | goto moves_loop; // Skip early pruning when in check |
754 | } |
755 | else if (ttHit) |
756 | { |
757 | // Never assume anything about values stored in TT |
758 | ss->staticEval = eval = tte->eval(); |
759 | if (eval == VALUE_NONE) |
760 | ss->staticEval = eval = evaluate(pos); |
761 | |
762 | // Can ttValue be used as a better position evaluation? |
763 | if ( ttValue != VALUE_NONE |
764 | && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))) |
765 | eval = ttValue; |
766 | } |
767 | else |
768 | { |
769 | if ((ss-1)->currentMove != MOVE_NULL) |
770 | { |
771 | int bonus = -(ss-1)->statScore / 512; |
772 | |
773 | ss->staticEval = eval = evaluate(pos) + bonus; |
774 | } |
775 | else |
776 | ss->staticEval = eval = -(ss-1)->staticEval + 2 * Eval::Tempo; |
777 | |
778 | tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval); |
779 | } |
780 | |
781 | // Step 7. Razoring (~2 Elo) |
782 | if ( !rootNode // The required rootNode PV handling is not available in qsearch |
783 | && depth < 2 * ONE_PLY |
784 | && eval <= alpha - RazorMargin) |
785 | return qsearch<NT>(pos, ss, alpha, beta); |
786 | |
787 | improving = ss->staticEval >= (ss-2)->staticEval |
788 | || (ss-2)->staticEval == VALUE_NONE; |
789 | |
790 | // Step 8. Futility pruning: child node (~30 Elo) |
791 | if ( !PvNode |
792 | && depth < 7 * ONE_PLY |
793 | && eval - futility_margin(depth, improving) >= beta |
794 | && eval < VALUE_KNOWN_WIN) // Do not return unproven wins |
795 | return eval; |
796 | |
797 | // Step 9. Null move search with verification search (~40 Elo) |
798 | if ( !PvNode |
799 | && (ss-1)->currentMove != MOVE_NULL |
800 | && (ss-1)->statScore < 22661 |
801 | && eval >= beta |
802 | && ss->staticEval >= beta - 33 * depth / ONE_PLY + 299 |
803 | && !excludedMove |
804 | && pos.non_pawn_material(us) |
805 | && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor)) |
806 | { |
807 | assert(eval - beta >= 0); |
808 | |
809 | // Null move dynamic reduction based on depth and value |
810 | Depth R = ((835 + 70 * depth / ONE_PLY) / 256 + std::min(int(eval - beta) / 185, 3)) * ONE_PLY; |
811 | |
812 | ss->currentMove = MOVE_NULL; |
813 | ss->continuationHistory = &thisThread->continuationHistory[NO_PIECE][0]; |
814 | |
815 | pos.do_null_move(st); |
816 | |
817 | Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); |
818 | |
819 | pos.undo_null_move(); |
820 | |
821 | if (nullValue >= beta) |
822 | { |
823 | // Do not return unproven mate scores |
824 | if (nullValue >= VALUE_MATE_IN_MAX_PLY) |
825 | nullValue = beta; |
826 | |
827 | if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13 * ONE_PLY)) |
828 | return nullValue; |
829 | |
830 | assert(!thisThread->nmpMinPly); // Recursive verification is not allowed |
831 | |
832 | // Do verification search at high depths, with null move pruning disabled |
833 | // for us, until ply exceeds nmpMinPly. |
834 | thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / (4 * ONE_PLY); |
835 | thisThread->nmpColor = us; |
836 | |
837 | Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false); |
838 | |
839 | thisThread->nmpMinPly = 0; |
840 | |
841 | if (v >= beta) |
842 | return nullValue; |
843 | } |
844 | } |
845 | |
846 | // Step 10. ProbCut (~10 Elo) |
847 | // If we have a good enough capture and a reduced search returns a value |
848 | // much above beta, we can (almost) safely prune the previous move. |
849 | if ( !PvNode |
850 | && depth >= 5 * ONE_PLY |
851 | && abs(beta) < VALUE_MATE_IN_MAX_PLY) |
852 | { |
853 | Value raisedBeta = std::min(beta + 191 - 46 * improving, VALUE_INFINITE); |
854 | MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &thisThread->captureHistory); |
855 | int probCutCount = 0; |
856 | |
857 | while ( (move = mp.next_move()) != MOVE_NONE |
858 | && probCutCount < 2 + 2 * cutNode) |
859 | if (move != excludedMove && pos.legal(move)) |
860 | { |
861 | probCutCount++; |
862 | |
863 | ss->currentMove = move; |
864 | ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)]; |
865 | |
866 | assert(depth >= 5 * ONE_PLY); |
867 | |
868 | pos.do_move(move, st); |
869 | |
870 | // Perform a preliminary qsearch to verify that the move holds |
871 | value = -qsearch<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1); |
872 | |
873 | // If the qsearch held, perform the regular search |
874 | if (value >= raisedBeta) |
875 | value = -search<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1, depth - 4 * ONE_PLY, !cutNode); |
876 | |
877 | pos.undo_move(move); |
878 | |
879 | if (value >= raisedBeta) |
880 | return value; |
881 | } |
882 | } |
883 | |
884 | // Step 11. Internal iterative deepening (~2 Elo) |
885 | if (depth >= 7 * ONE_PLY && !ttMove) |
886 | { |
887 | search<NT>(pos, ss, alpha, beta, depth - 7 * ONE_PLY, cutNode); |
888 | |
889 | tte = TT.probe(posKey, ttHit); |
890 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
891 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
892 | } |
893 | |
894 | moves_loop: // When in check, search starts from here |
895 | |
896 | const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, |
897 | nullptr, (ss-4)->continuationHistory, |
898 | nullptr, (ss-6)->continuationHistory }; |
899 | |
900 | Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; |
901 | |
902 | MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, |
903 | &thisThread->captureHistory, |
904 | contHist, |
905 | countermove, |
906 | ss->killers); |
907 | |
908 | value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc |
909 | moveCountPruning = false; |
910 | ttCapture = ttMove && pos.capture_or_promotion(ttMove); |
911 | |
912 | // Mark this node as being searched |
913 | ThreadHolding th(thisThread, posKey, ss->ply); |
914 | |
915 | // Step 12. Loop through all pseudo-legal moves until no moves remain |
916 | // or a beta cutoff occurs. |
917 | while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE) |
918 | { |
919 | assert(is_ok(move)); |
920 | |
921 | if (move == excludedMove) |
922 | continue; |
923 | |
924 | // At root obey the "searchmoves" option and skip moves not listed in Root |
925 | // Move List. As a consequence any illegal move is also skipped. In MultiPV |
926 | // mode we also skip PV moves which have been already searched and those |
927 | // of lower "TB rank" if we are in a TB root position. |
928 | if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, |
929 | thisThread->rootMoves.begin() + thisThread->pvLast, move)) |
930 | continue; |
931 | |
932 | ss->moveCount = ++moveCount; |
933 | |
934 | if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) |
935 | sync_cout << "info depth " << depth / ONE_PLY |
936 | << " currmove " << UCI::move(move, pos.is_chess960()) |
937 | << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl; |
938 | if (PvNode) |
939 | (ss+1)->pv = nullptr; |
940 | |
941 | extension = DEPTH_ZERO; |
942 | captureOrPromotion = pos.capture_or_promotion(move); |
943 | movedPiece = pos.moved_piece(move); |
944 | givesCheck = pos.gives_check(move); |
945 | |
946 | // Step 13. Extensions (~70 Elo) |
947 | |
948 | // Singular extension search (~60 Elo). If all moves but one fail low on a |
949 | // search of (alpha-s, beta-s), and just one fails high on (alpha, beta), |
950 | // then that move is singular and should be extended. To verify this we do |
951 | // a reduced search on all the other moves but the ttMove and if the |
952 | // result is lower than ttValue minus a margin then we will extend the ttMove. |
953 | if ( depth >= 6 * ONE_PLY |
954 | && move == ttMove |
955 | && !rootNode |
956 | && !excludedMove // Avoid recursive singular search |
957 | /* && ttValue != VALUE_NONE Already implicit in the next condition */ |
958 | && abs(ttValue) < VALUE_KNOWN_WIN |
959 | && (tte->bound() & BOUND_LOWER) |
960 | && tte->depth() >= depth - 3 * ONE_PLY |
961 | && pos.legal(move)) |
962 | { |
963 | Value singularBeta = ttValue - 2 * depth / ONE_PLY; |
964 | Depth halfDepth = depth / (2 * ONE_PLY) * ONE_PLY; // ONE_PLY invariant |
965 | ss->excludedMove = move; |
966 | value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, halfDepth, cutNode); |
967 | ss->excludedMove = MOVE_NONE; |
968 | |
969 | if (value < singularBeta) |
970 | { |
971 | extension = ONE_PLY; |
972 | singularLMR++; |
973 | |
974 | if (value < singularBeta - std::min(4 * depth / ONE_PLY, 36)) |
975 | singularLMR++; |
976 | } |
977 | |
978 | // Multi-cut pruning |
979 | // Our ttMove is assumed to fail high, and now we failed high also on a reduced |
980 | // search without the ttMove. So we assume this expected Cut-node is not singular, |
981 | // that multiple moves fail high, and we can prune the whole subtree by returning |
982 | // a soft bound. |
983 | else if ( eval >= beta |
984 | && singularBeta >= beta) |
985 | return singularBeta; |
986 | } |
987 | |
988 | // Check extension (~2 Elo) |
989 | else if ( givesCheck |
990 | && (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move))) |
991 | extension = ONE_PLY; |
992 | |
993 | // Castling extension |
994 | else if (type_of(move) == CASTLING) |
995 | extension = ONE_PLY; |
996 | |
997 | // Shuffle extension |
998 | else if ( PvNode |
999 | && pos.rule50_count() > 18 |
1000 | && depth < 3 * ONE_PLY |
1001 | && ++thisThread->shuffleExts < thisThread->nodes.load(std::memory_order_relaxed) / 4) // To avoid too many extensions |
1002 | extension = ONE_PLY; |
1003 | |
1004 | // Passed pawn extension |
1005 | else if ( move == ss->killers[0] |
1006 | && pos.advanced_pawn_push(move) |
1007 | && pos.pawn_passed(us, to_sq(move))) |
1008 | extension = ONE_PLY; |
1009 | |
1010 | // Calculate new depth for this move |
1011 | newDepth = depth - ONE_PLY + extension; |
1012 | |
1013 | // Step 14. Pruning at shallow depth (~170 Elo) |
1014 | if ( !rootNode |
1015 | && pos.non_pawn_material(us) |
1016 | && bestValue > VALUE_MATED_IN_MAX_PLY) |
1017 | { |
1018 | // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold |
1019 | moveCountPruning = moveCount >= futility_move_count(improving, depth / ONE_PLY); |
1020 | |
1021 | if ( !captureOrPromotion |
1022 | && !givesCheck |
1023 | && (!pos.advanced_pawn_push(move) || pos.non_pawn_material(~us) > BishopValueMg)) |
1024 | { |
1025 | // Move count based pruning |
1026 | if (moveCountPruning) |
1027 | continue; |
1028 | |
1029 | // Reduced depth of the next LMR search |
1030 | int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), DEPTH_ZERO); |
1031 | lmrDepth /= ONE_PLY; |
1032 | |
1033 | // Countermoves based pruning (~20 Elo) |
1034 | if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1) |
1035 | && (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold |
1036 | && (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold) |
1037 | continue; |
1038 | |
1039 | // Futility pruning: parent node (~2 Elo) |
1040 | if ( lmrDepth < 6 |
1041 | && !inCheck |
1042 | && ss->staticEval + 250 + 211 * lmrDepth <= alpha) |
1043 | continue; |
1044 | |
1045 | // Prune moves with negative SEE (~10 Elo) |
1046 | if (!pos.see_ge(move, Value(-(31 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth))) |
1047 | continue; |
1048 | } |
1049 | else if ( (!givesCheck || !extension) |
1050 | && !pos.see_ge(move, Value(-199) * (depth / ONE_PLY))) // (~20 Elo) |
1051 | continue; |
1052 | } |
1053 | |
1054 | // Speculative prefetch as early as possible |
1055 | prefetch(TT.first_entry(pos.key_after(move))); |
1056 | |
1057 | // Check for legality just before making the move |
1058 | if (!rootNode && !pos.legal(move)) |
1059 | { |
1060 | ss->moveCount = --moveCount; |
1061 | continue; |
1062 | } |
1063 | |
1064 | // Update the current move (this must be done after singular extension search) |
1065 | ss->currentMove = move; |
1066 | ss->continuationHistory = &thisThread->continuationHistory[movedPiece][to_sq(move)]; |
1067 | |
1068 | // Step 15. Make the move |
1069 | pos.do_move(move, st, givesCheck); |
1070 | |
1071 | // Step 16. Reduced depth search (LMR). If the move fails high it will be |
1072 | // re-searched at full depth. |
1073 | if ( depth >= 3 * ONE_PLY |
1074 | && moveCount > 1 + 3 * rootNode |
1075 | && ( !captureOrPromotion |
1076 | || moveCountPruning |
1077 | || ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha)) |
1078 | { |
1079 | Depth r = reduction(improving, depth, moveCount); |
1080 | |
1081 | // Reduction if other threads are searching this position. |
1082 | if (th.marked()) |
1083 | r += ONE_PLY; |
1084 | |
1085 | // Decrease reduction if position is or has been on the PV |
1086 | if (ttPv) |
1087 | r -= 2 * ONE_PLY; |
1088 | |
1089 | // Decrease reduction if opponent's move count is high (~10 Elo) |
1090 | if ((ss-1)->moveCount > 15) |
1091 | r -= ONE_PLY; |
1092 | |
1093 | // Decrease reduction if move has been singularly extended |
1094 | r -= singularLMR * ONE_PLY; |
1095 | |
1096 | if (!captureOrPromotion) |
1097 | { |
1098 | // Increase reduction if ttMove is a capture (~0 Elo) |
1099 | if (ttCapture) |
1100 | r += ONE_PLY; |
1101 | |
1102 | // Increase reduction for cut nodes (~5 Elo) |
1103 | if (cutNode) |
1104 | r += 2 * ONE_PLY; |
1105 | |
1106 | // Decrease reduction for moves that escape a capture. Filter out |
1107 | // castling moves, because they are coded as "king captures rook" and |
1108 | // hence break make_move(). (~5 Elo) |
1109 | else if ( type_of(move) == NORMAL |
1110 | && !pos.see_ge(make_move(to_sq(move), from_sq(move)))) |
1111 | r -= 2 * ONE_PLY; |
1112 | |
1113 | ss->statScore = thisThread->mainHistory[us][from_to(move)] |
1114 | + (*contHist[0])[movedPiece][to_sq(move)] |
1115 | + (*contHist[1])[movedPiece][to_sq(move)] |
1116 | + (*contHist[3])[movedPiece][to_sq(move)] |
1117 | - 4729; |
1118 | |
1119 | // Reset statScore to zero if negative and most stats shows >= 0 |
1120 | if ( ss->statScore < 0 |
1121 | && (*contHist[0])[movedPiece][to_sq(move)] >= 0 |
1122 | && (*contHist[1])[movedPiece][to_sq(move)] >= 0 |
1123 | && thisThread->mainHistory[us][from_to(move)] >= 0) |
1124 | ss->statScore = 0; |
1125 | |
1126 | // Decrease/increase reduction by comparing opponent's stat score (~10 Elo) |
1127 | if (ss->statScore >= -99 && (ss-1)->statScore < -116) |
1128 | r -= ONE_PLY; |
1129 | |
1130 | else if ((ss-1)->statScore >= -117 && ss->statScore < -144) |
1131 | r += ONE_PLY; |
1132 | |
1133 | // Decrease/increase reduction for moves with a good/bad history (~30 Elo) |
1134 | r -= ss->statScore / 16384 * ONE_PLY; |
1135 | } |
1136 | |
1137 | Depth d = clamp(newDepth - r, ONE_PLY, newDepth); |
1138 | |
1139 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true); |
1140 | |
1141 | doFullDepthSearch = (value > alpha && d != newDepth), doLMR = true; |
1142 | } |
1143 | else |
1144 | doFullDepthSearch = !PvNode || moveCount > 1, doLMR = false; |
1145 | |
1146 | // Step 17. Full depth search when LMR is skipped or fails high |
1147 | if (doFullDepthSearch) |
1148 | { |
1149 | value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); |
1150 | |
1151 | if (doLMR && !captureOrPromotion) |
1152 | { |
1153 | int bonus = value > alpha ? stat_bonus(newDepth) |
1154 | : -stat_bonus(newDepth); |
1155 | |
1156 | if (move == ss->killers[0]) |
1157 | bonus += bonus / 4; |
1158 | |
1159 | update_continuation_histories(ss, movedPiece, to_sq(move), bonus); |
1160 | } |
1161 | } |
1162 | |
1163 | // For PV nodes only, do a full PV search on the first move or after a fail |
1164 | // high (in the latter case search only if value < beta), otherwise let the |
1165 | // parent node fail low with value <= alpha and try another move. |
1166 | if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) |
1167 | { |
1168 | (ss+1)->pv = pv; |
1169 | (ss+1)->pv[0] = MOVE_NONE; |
1170 | |
1171 | value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false); |
1172 | } |
1173 | |
1174 | // Step 18. Undo move |
1175 | pos.undo_move(move); |
1176 | |
1177 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
1178 | |
1179 | // Step 19. Check for a new best move |
1180 | // Finished searching the move. If a stop occurred, the return value of |
1181 | // the search cannot be trusted, and we return immediately without |
1182 | // updating best move, PV and TT. |
1183 | if (Threads.stop.load(std::memory_order_relaxed)) |
1184 | return VALUE_ZERO; |
1185 | |
1186 | if (rootNode) |
1187 | { |
1188 | RootMove& rm = *std::find(thisThread->rootMoves.begin(), |
1189 | thisThread->rootMoves.end(), move); |
1190 | |
1191 | // PV move or new best move? |
1192 | if (moveCount == 1 || value > alpha) |
1193 | { |
1194 | rm.score = value; |
1195 | rm.selDepth = thisThread->selDepth; |
1196 | rm.pv.resize(1); |
1197 | |
1198 | assert((ss+1)->pv); |
1199 | |
1200 | for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) |
1201 | rm.pv.push_back(*m); |
1202 | |
1203 | // We record how often the best move has been changed in each |
1204 | // iteration. This information is used for time management: When |
1205 | // the best move changes frequently, we allocate some more time. |
1206 | if (moveCount > 1) |
1207 | ++thisThread->bestMoveChanges; |
1208 | } |
1209 | else |
1210 | // All other moves but the PV are set to the lowest value: this |
1211 | // is not a problem when sorting because the sort is stable and the |
1212 | // move position in the list is preserved - just the PV is pushed up. |
1213 | rm.score = -VALUE_INFINITE; |
1214 | } |
1215 | |
1216 | if (value > bestValue) |
1217 | { |
1218 | bestValue = value; |
1219 | |
1220 | if (value > alpha) |
1221 | { |
1222 | bestMove = move; |
1223 | |
1224 | if (PvNode && !rootNode) // Update pv even in fail-high case |
1225 | update_pv(ss->pv, move, (ss+1)->pv); |
1226 | |
1227 | if (PvNode && value < beta) // Update alpha! Always alpha < beta |
1228 | alpha = value; |
1229 | else |
1230 | { |
1231 | assert(value >= beta); // Fail high |
1232 | ss->statScore = 0; |
1233 | break; |
1234 | } |
1235 | } |
1236 | } |
1237 | |
1238 | if (move != bestMove) |
1239 | { |
1240 | if (captureOrPromotion && captureCount < 32) |
1241 | capturesSearched[captureCount++] = move; |
1242 | |
1243 | else if (!captureOrPromotion && quietCount < 64) |
1244 | quietsSearched[quietCount++] = move; |
1245 | } |
1246 | } |
1247 | |
1248 | // The following condition would detect a stop only after move loop has been |
1249 | // completed. But in this case bestValue is valid because we have fully |
1250 | // searched our subtree, and we can anyhow save the result in TT. |
1251 | /* |
1252 | if (Threads.stop) |
1253 | return VALUE_DRAW; |
1254 | */ |
1255 | |
1256 | // Step 20. Check for mate and stalemate |
1257 | // All legal moves have been searched and if there are no legal moves, it |
1258 | // must be a mate or a stalemate. If we are in a singular extension search then |
1259 | // return a fail low score. |
1260 | |
1261 | assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size()); |
1262 | |
1263 | if (!moveCount) |
1264 | bestValue = excludedMove ? alpha |
1265 | : inCheck ? mated_in(ss->ply) : VALUE_DRAW; |
1266 | else if (bestMove) |
1267 | { |
1268 | // Quiet best move: update move sorting heuristics |
1269 | if (!pos.capture_or_promotion(bestMove)) |
1270 | update_quiet_stats(pos, ss, bestMove, quietsSearched, quietCount, |
1271 | stat_bonus(depth + (bestValue > beta + PawnValueMg ? ONE_PLY : DEPTH_ZERO))); |
1272 | |
1273 | update_capture_stats(pos, bestMove, capturesSearched, captureCount, stat_bonus(depth + ONE_PLY)); |
1274 | |
1275 | // Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted |
1276 | if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0])) |
1277 | && !pos.captured_piece()) |
1278 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); |
1279 | |
1280 | } |
1281 | // Bonus for prior countermove that caused the fail low |
1282 | else if ( (depth >= 3 * ONE_PLY || PvNode) |
1283 | && !pos.captured_piece()) |
1284 | update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth)); |
1285 | |
1286 | if (PvNode) |
1287 | bestValue = std::min(bestValue, maxValue); |
1288 | |
1289 | if (!excludedMove) |
1290 | tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv, |
1291 | bestValue >= beta ? BOUND_LOWER : |
1292 | PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, |
1293 | depth, bestMove, ss->staticEval); |
1294 | |
1295 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
1296 | |
1297 | return bestValue; |
1298 | } |
1299 | |
1300 | |
1301 | // qsearch() is the quiescence search function, which is called by the main search |
1302 | // function with zero depth, or recursively with further decreasing depth per call. |
1303 | template <NodeType NT> |
1304 | Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { |
1305 | |
1306 | constexpr bool PvNode = NT == PV; |
1307 | |
1308 | assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); |
1309 | assert(PvNode || (alpha == beta - 1)); |
1310 | assert(depth <= DEPTH_ZERO); |
1311 | assert(depth / ONE_PLY * ONE_PLY == depth); |
1312 | |
1313 | Move pv[MAX_PLY+1]; |
1314 | StateInfo st; |
1315 | TTEntry* tte; |
1316 | Key posKey; |
1317 | Move ttMove, move, bestMove; |
1318 | Depth ttDepth; |
1319 | Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; |
1320 | bool ttHit, pvHit, inCheck, givesCheck, evasionPrunable; |
1321 | int moveCount; |
1322 | |
1323 | if (PvNode) |
1324 | { |
1325 | oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves |
1326 | (ss+1)->pv = pv; |
1327 | ss->pv[0] = MOVE_NONE; |
1328 | } |
1329 | |
1330 | Thread* thisThread = pos.this_thread(); |
1331 | (ss+1)->ply = ss->ply + 1; |
1332 | bestMove = MOVE_NONE; |
1333 | inCheck = pos.checkers(); |
1334 | moveCount = 0; |
1335 | |
1336 | // Check for an immediate draw or maximum ply reached |
1337 | if ( pos.is_draw(ss->ply) |
1338 | || ss->ply >= MAX_PLY) |
1339 | return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW; |
1340 | |
1341 | assert(0 <= ss->ply && ss->ply < MAX_PLY); |
1342 | |
1343 | // Decide whether or not to include checks: this fixes also the type of |
1344 | // TT entry depth that we are going to use. Note that in qsearch we use |
1345 | // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. |
1346 | ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS |
1347 | : DEPTH_QS_NO_CHECKS; |
1348 | // Transposition table lookup |
1349 | posKey = pos.key(); |
1350 | tte = TT.probe(posKey, ttHit); |
1351 | ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; |
1352 | ttMove = ttHit ? tte->move() : MOVE_NONE; |
1353 | pvHit = ttHit && tte->is_pv(); |
1354 | |
1355 | if ( !PvNode |
1356 | && ttHit |
1357 | && tte->depth() >= ttDepth |
1358 | && ttValue != VALUE_NONE // Only in case of TT access race |
1359 | && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) |
1360 | : (tte->bound() & BOUND_UPPER))) |
1361 | return ttValue; |
1362 | |
1363 | // Evaluate the position statically |
1364 | if (inCheck) |
1365 | { |
1366 | ss->staticEval = VALUE_NONE; |
1367 | bestValue = futilityBase = -VALUE_INFINITE; |
1368 | } |
1369 | else |
1370 | { |
1371 | if (ttHit) |
1372 | { |
1373 | // Never assume anything about values stored in TT |
1374 | if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) |
1375 | ss->staticEval = bestValue = evaluate(pos); |
1376 | |
1377 | // Can ttValue be used as a better position evaluation? |
1378 | if ( ttValue != VALUE_NONE |
1379 | && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))) |
1380 | bestValue = ttValue; |
1381 | } |
1382 | else |
1383 | ss->staticEval = bestValue = |
1384 | (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) |
1385 | : -(ss-1)->staticEval + 2 * Eval::Tempo; |
1386 | |
1387 | // Stand pat. Return immediately if static value is at least beta |
1388 | if (bestValue >= beta) |
1389 | { |
1390 | if (!ttHit) |
1391 | tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, BOUND_LOWER, |
1392 | DEPTH_NONE, MOVE_NONE, ss->staticEval); |
1393 | |
1394 | return bestValue; |
1395 | } |
1396 | |
1397 | if (PvNode && bestValue > alpha) |
1398 | alpha = bestValue; |
1399 | |
1400 | futilityBase = bestValue + 153; |
1401 | } |
1402 | |
1403 | const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, |
1404 | nullptr, (ss-4)->continuationHistory, |
1405 | nullptr, (ss-6)->continuationHistory }; |
1406 | |
1407 | // Initialize a MovePicker object for the current position, and prepare |
1408 | // to search the moves. Because the depth is <= 0 here, only captures, |
1409 | // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will |
1410 | // be generated. |
1411 | MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, |
1412 | &thisThread->captureHistory, |
1413 | contHist, |
1414 | to_sq((ss-1)->currentMove)); |
1415 | |
1416 | // Loop through the moves until no moves remain or a beta cutoff occurs |
1417 | while ((move = mp.next_move()) != MOVE_NONE) |
1418 | { |
1419 | assert(is_ok(move)); |
1420 | |
1421 | givesCheck = pos.gives_check(move); |
1422 | |
1423 | moveCount++; |
1424 | |
1425 | // Futility pruning |
1426 | if ( !inCheck |
1427 | && !givesCheck |
1428 | && futilityBase > -VALUE_KNOWN_WIN |
1429 | && !pos.advanced_pawn_push(move)) |
1430 | { |
1431 | assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push |
1432 | |
1433 | futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; |
1434 | |
1435 | if (futilityValue <= alpha) |
1436 | { |
1437 | bestValue = std::max(bestValue, futilityValue); |
1438 | continue; |
1439 | } |
1440 | |
1441 | if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) |
1442 | { |
1443 | bestValue = std::max(bestValue, futilityBase); |
1444 | continue; |
1445 | } |
1446 | } |
1447 | |
1448 | // Detect non-capture evasions that are candidates to be pruned |
1449 | evasionPrunable = inCheck |
1450 | && (depth != DEPTH_ZERO || moveCount > 2) |
1451 | && bestValue > VALUE_MATED_IN_MAX_PLY |
1452 | && !pos.capture(move); |
1453 | |
1454 | // Don't search moves with negative SEE values |
1455 | if ( (!inCheck || evasionPrunable) |
1456 | && (!givesCheck || !(pos.blockers_for_king(~pos.side_to_move()) & from_sq(move))) |
1457 | && !pos.see_ge(move)) |
1458 | continue; |
1459 | |
1460 | // Speculative prefetch as early as possible |
1461 | prefetch(TT.first_entry(pos.key_after(move))); |
1462 | |
1463 | // Check for legality just before making the move |
1464 | if (!pos.legal(move)) |
1465 | { |
1466 | moveCount--; |
1467 | continue; |
1468 | } |
1469 | |
1470 | ss->currentMove = move; |
1471 | ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)]; |
1472 | |
1473 | // Make and search the move |
1474 | pos.do_move(move, st, givesCheck); |
1475 | value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - ONE_PLY); |
1476 | pos.undo_move(move); |
1477 | |
1478 | assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); |
1479 | |
1480 | // Check for a new best move |
1481 | if (value > bestValue) |
1482 | { |
1483 | bestValue = value; |
1484 | |
1485 | if (value > alpha) |
1486 | { |
1487 | bestMove = move; |
1488 | |
1489 | if (PvNode) // Update pv even in fail-high case |
1490 | update_pv(ss->pv, move, (ss+1)->pv); |
1491 | |
1492 | if (PvNode && value < beta) // Update alpha here! |
1493 | alpha = value; |
1494 | else |
1495 | break; // Fail high |
1496 | } |
1497 | } |
1498 | } |
1499 | |
1500 | // All legal moves have been searched. A special case: If we're in check |
1501 | // and no legal moves were found, it is checkmate. |
1502 | if (inCheck && bestValue == -VALUE_INFINITE) |
1503 | return mated_in(ss->ply); // Plies to mate from the root |
1504 | |
1505 | tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, |
1506 | bestValue >= beta ? BOUND_LOWER : |
1507 | PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, |
1508 | ttDepth, bestMove, ss->staticEval); |
1509 | |
1510 | assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); |
1511 | |
1512 | return bestValue; |
1513 | } |
1514 | |
1515 | |
1516 | // value_to_tt() adjusts a mate score from "plies to mate from the root" to |
1517 | // "plies to mate from the current position". Non-mate scores are unchanged. |
1518 | // The function is called before storing a value in the transposition table. |
1519 | |
1520 | Value value_to_tt(Value v, int ply) { |
1521 | |
1522 | assert(v != VALUE_NONE); |
1523 | |
1524 | return v >= VALUE_MATE_IN_MAX_PLY ? v + ply |
1525 | : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; |
1526 | } |
1527 | |
1528 | |
1529 | // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score |
1530 | // from the transposition table (which refers to the plies to mate/be mated |
1531 | // from current position) to "plies to mate/be mated from the root". |
1532 | |
1533 | Value value_from_tt(Value v, int ply) { |
1534 | |
1535 | return v == VALUE_NONE ? VALUE_NONE |
1536 | : v >= VALUE_MATE_IN_MAX_PLY ? v - ply |
1537 | : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; |
1538 | } |
1539 | |
1540 | |
1541 | // update_pv() adds current move and appends child pv[] |
1542 | |
1543 | void update_pv(Move* pv, Move move, Move* childPv) { |
1544 | |
1545 | for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) |
1546 | *pv++ = *childPv++; |
1547 | *pv = MOVE_NONE; |
1548 | } |
1549 | |
1550 | |
1551 | // update_continuation_histories() updates histories of the move pairs formed |
1552 | // by moves at ply -1, -2, and -4 with current move. |
1553 | |
1554 | void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) { |
1555 | |
1556 | for (int i : {1, 2, 4, 6}) |
1557 | if (is_ok((ss-i)->currentMove)) |
1558 | (*(ss-i)->continuationHistory)[pc][to] << bonus; |
1559 | } |
1560 | |
1561 | |
1562 | // update_capture_stats() updates move sorting heuristics when a new capture best move is found |
1563 | |
1564 | void update_capture_stats(const Position& pos, Move move, |
1565 | Move* captures, int captureCount, int bonus) { |
1566 | |
1567 | CapturePieceToHistory& captureHistory = pos.this_thread()->captureHistory; |
1568 | Piece moved_piece = pos.moved_piece(move); |
1569 | PieceType captured = type_of(pos.piece_on(to_sq(move))); |
1570 | |
1571 | if (pos.capture_or_promotion(move)) |
1572 | captureHistory[moved_piece][to_sq(move)][captured] << bonus; |
1573 | |
1574 | // Decrease all the other played capture moves |
1575 | for (int i = 0; i < captureCount; ++i) |
1576 | { |
1577 | moved_piece = pos.moved_piece(captures[i]); |
1578 | captured = type_of(pos.piece_on(to_sq(captures[i]))); |
1579 | captureHistory[moved_piece][to_sq(captures[i])][captured] << -bonus; |
1580 | } |
1581 | } |
1582 | |
1583 | |
1584 | // update_quiet_stats() updates move sorting heuristics when a new quiet best move is found |
1585 | |
1586 | void update_quiet_stats(const Position& pos, Stack* ss, Move move, |
1587 | Move* quiets, int quietCount, int bonus) { |
1588 | |
1589 | if (ss->killers[0] != move) |
1590 | { |
1591 | ss->killers[1] = ss->killers[0]; |
1592 | ss->killers[0] = move; |
1593 | } |
1594 | |
1595 | Color us = pos.side_to_move(); |
1596 | Thread* thisThread = pos.this_thread(); |
1597 | thisThread->mainHistory[us][from_to(move)] << bonus; |
1598 | update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus); |
1599 | |
1600 | if (is_ok((ss-1)->currentMove)) |
1601 | { |
1602 | Square prevSq = to_sq((ss-1)->currentMove); |
1603 | thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move; |
1604 | } |
1605 | |
1606 | // Decrease all the other played quiet moves |
1607 | for (int i = 0; i < quietCount; ++i) |
1608 | { |
1609 | thisThread->mainHistory[us][from_to(quiets[i])] << -bonus; |
1610 | update_continuation_histories(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); |
1611 | } |
1612 | } |
1613 | |
1614 | // When playing with strength handicap, choose best move among a set of RootMoves |
1615 | // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. |
1616 | |
1617 | Move Skill::pick_best(size_t multiPV) { |
1618 | |
1619 | const RootMoves& rootMoves = Threads.main()->rootMoves; |
1620 | static PRNG rng(now()); // PRNG sequence should be non-deterministic |
1621 | |
1622 | // RootMoves are already sorted by score in descending order |
1623 | Value topScore = rootMoves[0].score; |
1624 | int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); |
1625 | int weakness = 120 - 2 * level; |
1626 | int maxScore = -VALUE_INFINITE; |
1627 | |
1628 | // Choose best move. For each move score we add two terms, both dependent on |
1629 | // weakness. One is deterministic and bigger for weaker levels, and one is |
1630 | // random. Then we choose the move with the resulting highest score. |
1631 | for (size_t i = 0; i < multiPV; ++i) |
1632 | { |
1633 | // This is our magic formula |
1634 | int push = ( weakness * int(topScore - rootMoves[i].score) |
1635 | + delta * (rng.rand<unsigned>() % weakness)) / 128; |
1636 | |
1637 | if (rootMoves[i].score + push >= maxScore) |
1638 | { |
1639 | maxScore = rootMoves[i].score + push; |
1640 | best = rootMoves[i].pv[0]; |
1641 | } |
1642 | } |
1643 | |
1644 | return best; |
1645 | } |
1646 | |
1647 | } // namespace |
1648 | |
1649 | /// MainThread::check_time() is used to print debug info and, more importantly, |
1650 | /// to detect when we are out of available time and thus stop the search. |
1651 | |
1652 | void MainThread::check_time() { |
1653 | |
1654 | if (--callsCnt > 0) |
1655 | return; |
1656 | |
1657 | // When using nodes, ensure checking rate is not lower than 0.1% of nodes |
1658 | callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024; |
1659 | |
1660 | static TimePoint lastInfoTime = now(); |
1661 | |
1662 | TimePoint elapsed = Time.elapsed(); |
1663 | TimePoint tick = Limits.startTime + elapsed; |
1664 | |
1665 | if (tick - lastInfoTime >= 1000) |
1666 | { |
1667 | lastInfoTime = tick; |
1668 | dbg_print(); |
1669 | } |
1670 | |
1671 | // We should not stop pondering until told so by the GUI |
1672 | if (ponder) |
1673 | return; |
1674 | |
1675 | if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit)) |
1676 | || (Limits.movetime && elapsed >= Limits.movetime) |
1677 | || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) |
1678 | Threads.stop = true; |
1679 | } |
1680 | |
1681 | |
1682 | /// UCI::pv() formats PV information according to the UCI protocol. UCI requires |
1683 | /// that all (if any) unsearched PV lines are sent using a previous search score. |
1684 | |
1685 | string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { |
1686 | |
1687 | std::stringstream ss; |
1688 | TimePoint elapsed = Time.elapsed() + 1; |
1689 | const RootMoves& rootMoves = pos.this_thread()->rootMoves; |
1690 | size_t pvIdx = pos.this_thread()->pvIdx; |
1691 | size_t multiPV = std::min((size_t)Options["MultiPV" ], rootMoves.size()); |
1692 | uint64_t nodesSearched = Threads.nodes_searched(); |
1693 | uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); |
1694 | |
1695 | for (size_t i = 0; i < multiPV; ++i) |
1696 | { |
1697 | bool updated = (i <= pvIdx && rootMoves[i].score != -VALUE_INFINITE); |
1698 | |
1699 | if (depth == ONE_PLY && !updated) |
1700 | continue; |
1701 | |
1702 | Depth d = updated ? depth : depth - ONE_PLY; |
1703 | Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; |
1704 | |
1705 | bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; |
1706 | v = tb ? rootMoves[i].tbScore : v; |
1707 | |
1708 | if (ss.rdbuf()->in_avail()) // Not at first line |
1709 | ss << "\n" ; |
1710 | |
1711 | ss << "info" |
1712 | << " depth " << d / ONE_PLY |
1713 | << " seldepth " << rootMoves[i].selDepth |
1714 | << " multipv " << i + 1 |
1715 | << " score " << UCI::value(v); |
1716 | |
1717 | if (!tb && i == pvIdx) |
1718 | ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "" ); |
1719 | |
1720 | ss << " nodes " << nodesSearched |
1721 | << " nps " << nodesSearched * 1000 / elapsed; |
1722 | |
1723 | if (elapsed > 1000) // Earlier makes little sense |
1724 | ss << " hashfull " << TT.hashfull(); |
1725 | |
1726 | ss << " tbhits " << tbHits |
1727 | << " time " << elapsed |
1728 | << " pv" ; |
1729 | |
1730 | for (Move m : rootMoves[i].pv) |
1731 | ss << " " << UCI::move(m, pos.is_chess960()); |
1732 | } |
1733 | |
1734 | return ss.str(); |
1735 | } |
1736 | |
1737 | |
1738 | /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move |
1739 | /// before exiting the search, for instance, in case we stop the search during a |
1740 | /// fail high at root. We try hard to have a ponder move to return to the GUI, |
1741 | /// otherwise in case of 'ponder on' we have nothing to think on. |
1742 | |
1743 | bool RootMove::(Position& pos) { |
1744 | |
1745 | StateInfo st; |
1746 | bool ttHit; |
1747 | |
1748 | assert(pv.size() == 1); |
1749 | |
1750 | if (pv[0] == MOVE_NONE) |
1751 | return false; |
1752 | |
1753 | pos.do_move(pv[0], st); |
1754 | TTEntry* tte = TT.probe(pos.key(), ttHit); |
1755 | |
1756 | if (ttHit) |
1757 | { |
1758 | Move m = tte->move(); // Local copy to be SMP safe |
1759 | if (MoveList<LEGAL>(pos).contains(m)) |
1760 | pv.push_back(m); |
1761 | } |
1762 | |
1763 | pos.undo_move(pv[0]); |
1764 | return pv.size() > 1; |
1765 | } |
1766 | |
1767 | void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) { |
1768 | |
1769 | RootInTB = false; |
1770 | UseRule50 = bool(Options["Syzygy50MoveRule" ]); |
1771 | ProbeDepth = int(Options["SyzygyProbeDepth" ]) * ONE_PLY; |
1772 | Cardinality = int(Options["SyzygyProbeLimit" ]); |
1773 | bool dtz_available = true; |
1774 | |
1775 | // Tables with fewer pieces than SyzygyProbeLimit are searched with |
1776 | // ProbeDepth == DEPTH_ZERO |
1777 | if (Cardinality > MaxCardinality) |
1778 | { |
1779 | Cardinality = MaxCardinality; |
1780 | ProbeDepth = DEPTH_ZERO; |
1781 | } |
1782 | |
1783 | if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) |
1784 | { |
1785 | // Rank moves using DTZ tables |
1786 | RootInTB = root_probe(pos, rootMoves); |
1787 | |
1788 | if (!RootInTB) |
1789 | { |
1790 | // DTZ tables are missing; try to rank moves using WDL tables |
1791 | dtz_available = false; |
1792 | RootInTB = root_probe_wdl(pos, rootMoves); |
1793 | } |
1794 | } |
1795 | |
1796 | if (RootInTB) |
1797 | { |
1798 | // Sort moves according to TB rank |
1799 | std::sort(rootMoves.begin(), rootMoves.end(), |
1800 | [](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } ); |
1801 | |
1802 | // Probe during search only if DTZ is not available and we are winning |
1803 | if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW) |
1804 | Cardinality = 0; |
1805 | } |
1806 | else |
1807 | { |
1808 | // Clean up if root_probe() and root_probe_wdl() have failed |
1809 | for (auto& m : rootMoves) |
1810 | m.tbRank = 0; |
1811 | } |
1812 | } |
1813 | |