| 1 | /* |
| 2 | * Copyright (c) 2016-2019, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief Rose build: code for constructing literal tables. |
| 32 | */ |
| 33 | |
| 34 | #include "rose_build_matchers.h" |
| 35 | |
| 36 | #include "rose_build_dump.h" |
| 37 | #include "rose_build_impl.h" |
| 38 | #include "rose_build_lit_accel.h" |
| 39 | #include "rose_build_width.h" |
| 40 | #include "hwlm/hwlm_build.h" |
| 41 | #include "hwlm/hwlm_internal.h" |
| 42 | #include "hwlm/hwlm_literal.h" |
| 43 | #include "nfa/castlecompile.h" |
| 44 | #include "nfa/nfa_api_queue.h" |
| 45 | #include "util/charreach_util.h" |
| 46 | #include "util/compile_context.h" |
| 47 | #include "util/compile_error.h" |
| 48 | #include "util/dump_charclass.h" |
| 49 | #include "util/make_unique.h" |
| 50 | #include "util/report.h" |
| 51 | #include "util/report_manager.h" |
| 52 | #include "util/verify_types.h" |
| 53 | #include "ue2common.h" |
| 54 | |
| 55 | #include <iomanip> |
| 56 | #include <sstream> |
| 57 | |
| 58 | #include <boost/range/adaptor/map.hpp> |
| 59 | #include <boost/range/adaptor/reversed.hpp> |
| 60 | |
| 61 | using namespace std; |
| 62 | using boost::adaptors::map_values; |
| 63 | |
| 64 | namespace ue2 { |
| 65 | |
| 66 | static const size_t MAX_ACCEL_STRING_LEN = 16; |
| 67 | |
| 68 | #if defined(DEBUG) || defined(DUMP_SUPPORT) |
| 69 | static UNUSED |
| 70 | string dumpMask(const vector<u8> &v) { |
| 71 | ostringstream oss; |
| 72 | for (u8 e : v) { |
| 73 | oss << setfill('0') << setw(2) << hex << (unsigned int)e; |
| 74 | } |
| 75 | return oss.str(); |
| 76 | } |
| 77 | #endif |
| 78 | |
| 79 | static |
| 80 | bool maskFromLeftGraph(const LeftEngInfo &left, vector<u8> &msk, |
| 81 | vector<u8> &cmp) { |
| 82 | const u32 lag = left.lag; |
| 83 | const ReportID report = left.leftfix_report; |
| 84 | |
| 85 | DEBUG_PRINTF("leftfix with lag %u, report %u\n" , lag, report); |
| 86 | |
| 87 | assert(left.graph); |
| 88 | const NGHolder &h = *left.graph; |
| 89 | assert(in_degree(h.acceptEod, h) == 1); // no eod reports |
| 90 | |
| 91 | // Start with the set of reporter vertices for this leftfix. |
| 92 | set<NFAVertex> curr; |
| 93 | for (auto u : inv_adjacent_vertices_range(h.accept, h)) { |
| 94 | if (contains(h[u].reports, report)) { |
| 95 | curr.insert(u); |
| 96 | } |
| 97 | } |
| 98 | assert(!curr.empty()); |
| 99 | |
| 100 | size_t i = HWLM_MASKLEN - lag - 1; |
| 101 | do { |
| 102 | if (curr.empty() || contains(curr, h.start) |
| 103 | || contains(curr, h.startDs)) { |
| 104 | DEBUG_PRINTF("end of the road\n" ); |
| 105 | break; |
| 106 | } |
| 107 | |
| 108 | set<NFAVertex> next; |
| 109 | CharReach cr; |
| 110 | for (NFAVertex v : curr) { |
| 111 | const auto &v_cr = h[v].char_reach; |
| 112 | DEBUG_PRINTF("vertex %zu, reach %s\n" , h[v].index, |
| 113 | describeClass(v_cr).c_str()); |
| 114 | cr |= v_cr; |
| 115 | insert(&next, inv_adjacent_vertices(v, h)); |
| 116 | } |
| 117 | make_and_cmp_mask(cr, &msk.at(i), &cmp.at(i)); |
| 118 | DEBUG_PRINTF("%zu: reach=%s, msk=%u, cmp=%u\n" , i, |
| 119 | describeClass(cr).c_str(), msk[i], cmp[i]); |
| 120 | curr.swap(next); |
| 121 | } while (i-- > 0); |
| 122 | |
| 123 | return true; |
| 124 | } |
| 125 | |
| 126 | static |
| 127 | bool maskFromLeftCastle(const LeftEngInfo &left, vector<u8> &msk, |
| 128 | vector<u8> &cmp) { |
| 129 | const u32 lag = left.lag; |
| 130 | const ReportID report = left.leftfix_report; |
| 131 | |
| 132 | DEBUG_PRINTF("leftfix with lag %u, report %u\n" , lag, report); |
| 133 | |
| 134 | assert(left.castle); |
| 135 | const CastleProto &c = *left.castle; |
| 136 | |
| 137 | depth min_width(depth::infinity()); |
| 138 | for (const PureRepeat &repeat : c.repeats | map_values) { |
| 139 | if (contains(repeat.reports, report)) { |
| 140 | min_width = min(min_width, repeat.bounds.min); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | DEBUG_PRINTF("castle min width for this report is %s\n" , |
| 145 | min_width.str().c_str()); |
| 146 | |
| 147 | if (!min_width.is_finite() || min_width == depth(0)) { |
| 148 | DEBUG_PRINTF("bad min width\n" ); |
| 149 | return false; |
| 150 | } |
| 151 | |
| 152 | u32 len = min_width; |
| 153 | u32 end = HWLM_MASKLEN - lag; |
| 154 | for (u32 i = end; i > end - min(end, len); i--) { |
| 155 | make_and_cmp_mask(c.reach(), &msk.at(i - 1), &cmp.at(i - 1)); |
| 156 | } |
| 157 | |
| 158 | return true; |
| 159 | } |
| 160 | |
| 161 | static |
| 162 | bool maskFromLeft(const LeftEngInfo &left, vector<u8> &msk, vector<u8> &cmp) { |
| 163 | if (left.lag >= HWLM_MASKLEN) { |
| 164 | DEBUG_PRINTF("too much lag\n" ); |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | if (left.graph) { |
| 169 | return maskFromLeftGraph(left, msk, cmp); |
| 170 | } else if (left.castle) { |
| 171 | return maskFromLeftCastle(left, msk, cmp); |
| 172 | } |
| 173 | |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | static |
| 178 | bool maskFromPreds(const RoseBuildImpl &build, const rose_literal_id &id, |
| 179 | const RoseVertex v, vector<u8> &msk, vector<u8> &cmp) { |
| 180 | const RoseGraph &g = build.g; |
| 181 | |
| 182 | // For right now, wuss out and only handle cases with one pred. |
| 183 | if (in_degree(v, g) != 1) { |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | // Root successors have no literal before them. |
| 188 | if (build.isRootSuccessor(v)) { |
| 189 | return false; |
| 190 | } |
| 191 | |
| 192 | // If we have a single predecessor with a short bound, we may be able to |
| 193 | // fill out a mask with the trailing bytes of the previous literal. This |
| 194 | // allows us to improve literals like the 'bar' in 'fo.bar'. |
| 195 | |
| 196 | RoseEdge e = *(in_edges(v, g).first); |
| 197 | u32 bound = g[e].maxBound; |
| 198 | if (bound != g[e].minBound || bound >= HWLM_MASKLEN) { |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | bound += id.s.length(); |
| 203 | if (bound >= HWLM_MASKLEN) { |
| 204 | return false; |
| 205 | } |
| 206 | |
| 207 | DEBUG_PRINTF("bound %u\n" , bound); |
| 208 | |
| 209 | RoseVertex u = source(e, g); |
| 210 | if (g[u].literals.size() != 1) { |
| 211 | DEBUG_PRINTF("u has %zu literals\n" , g[u].literals.size()); |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | u32 u_lit_id = *(g[u].literals.begin()); |
| 216 | const rose_literal_id &u_id = build.literals.at(u_lit_id); |
| 217 | DEBUG_PRINTF("u has lit: %s\n" , escapeString(u_id.s).c_str()); |
| 218 | |
| 219 | // Number of characters to take from the back of u's literal. |
| 220 | size_t u_len = u_id.s.length(); |
| 221 | size_t u_sublen = min(u_len, (size_t)HWLM_MASKLEN - bound); |
| 222 | |
| 223 | size_t i = HWLM_MASKLEN - (bound + u_sublen); |
| 224 | |
| 225 | ue2_literal::const_iterator it, ite; |
| 226 | for (it = u_id.s.begin() + (u_len - u_sublen), ite = u_id.s.end(); |
| 227 | it != ite; ++it) { |
| 228 | make_and_cmp_mask(*it, &msk.at(i), &cmp.at(i)); |
| 229 | ++i; |
| 230 | } |
| 231 | |
| 232 | return true; |
| 233 | } |
| 234 | |
| 235 | static |
| 236 | bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id, |
| 237 | const RoseVertex v, vector<u8> &msk, vector<u8> &cmp) { |
| 238 | // Start with zero masks. |
| 239 | msk.assign(HWLM_MASKLEN, 0); |
| 240 | cmp.assign(HWLM_MASKLEN, 0); |
| 241 | |
| 242 | const LeftEngInfo &left = build.g[v].left; |
| 243 | if (left && left.lag < HWLM_MASKLEN) { |
| 244 | if (maskFromLeft(left, msk, cmp)) { |
| 245 | DEBUG_PRINTF("mask from a leftfix!\n" ); |
| 246 | return true; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | if (id.s.length() < HWLM_MASKLEN) { |
| 251 | if (maskFromPreds(build, id, v, msk, cmp)) { |
| 252 | DEBUG_PRINTF("mask from preds!\n" ); |
| 253 | return true; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | static |
| 261 | bool hamsterMaskCombine(vector<u8> &msk, vector<u8> &cmp, |
| 262 | const vector<u8> &v_msk, const vector<u8> &v_cmp) { |
| 263 | assert(msk.size() == HWLM_MASKLEN && cmp.size() == HWLM_MASKLEN); |
| 264 | assert(v_msk.size() == HWLM_MASKLEN && v_cmp.size() == HWLM_MASKLEN); |
| 265 | |
| 266 | u8 all_masks = 0; |
| 267 | |
| 268 | for (size_t i = 0; i < HWLM_MASKLEN; i++) { |
| 269 | u8 filter = ~(cmp[i] ^ v_cmp[i]); |
| 270 | msk[i] &= v_msk[i]; |
| 271 | msk[i] &= filter; |
| 272 | cmp[i] &= filter; |
| 273 | |
| 274 | all_masks |= msk[i]; |
| 275 | } |
| 276 | |
| 277 | // Return false if we have no bits on in any mask elements. |
| 278 | return all_masks != 0; |
| 279 | } |
| 280 | |
| 281 | static |
| 282 | bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id, |
| 283 | const rose_literal_info &info, vector<u8> &msk, |
| 284 | vector<u8> &cmp) { |
| 285 | if (!build.cc.grey.roseHamsterMasks) { |
| 286 | return false; |
| 287 | } |
| 288 | |
| 289 | if (!info.delayed_ids.empty()) { |
| 290 | // Not safe to add masks to delayed literals at this late stage. |
| 291 | return false; |
| 292 | } |
| 293 | |
| 294 | msk.assign(HWLM_MASKLEN, 0); |
| 295 | cmp.assign(HWLM_MASKLEN, 0); |
| 296 | |
| 297 | size_t num = 0; |
| 298 | vector<u8> v_msk, v_cmp; |
| 299 | |
| 300 | for (RoseVertex v : info.vertices) { |
| 301 | if (!addSurroundingMask(build, id, v, v_msk, v_cmp)) { |
| 302 | DEBUG_PRINTF("no mask\n" ); |
| 303 | return false; |
| 304 | } |
| 305 | |
| 306 | if (!num++) { |
| 307 | // First (or only) vertex, this becomes the mask/cmp pair. |
| 308 | msk = v_msk; |
| 309 | cmp = v_cmp; |
| 310 | } else { |
| 311 | // Multiple vertices with potentially different masks. We combine |
| 312 | // them into an 'advisory' mask. |
| 313 | if (!hamsterMaskCombine(msk, cmp, v_msk, v_cmp)) { |
| 314 | DEBUG_PRINTF("mask went to zero\n" ); |
| 315 | return false; |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | normaliseLiteralMask(id.s, msk, cmp); |
| 321 | |
| 322 | if (msk.empty()) { |
| 323 | DEBUG_PRINTF("no mask\n" ); |
| 324 | return false; |
| 325 | } |
| 326 | |
| 327 | DEBUG_PRINTF("msk=%s, cmp=%s\n" , dumpMask(msk).c_str(), |
| 328 | dumpMask(cmp).c_str()); |
| 329 | return true; |
| 330 | } |
| 331 | |
| 332 | void findMoreLiteralMasks(RoseBuildImpl &build) { |
| 333 | if (!build.cc.grey.roseHamsterMasks) { |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | vector<u32> candidates; |
| 338 | for (u32 id = 0; id < build.literals.size(); id++) { |
| 339 | const auto &lit = build.literals.at(id); |
| 340 | |
| 341 | if (lit.delay || build.isDelayed(id)) { |
| 342 | continue; |
| 343 | } |
| 344 | |
| 345 | // Literal masks are only allowed for literals that will end up in an |
| 346 | // HWLM table. |
| 347 | switch (lit.table) { |
| 348 | case ROSE_FLOATING: |
| 349 | case ROSE_EOD_ANCHORED: |
| 350 | case ROSE_ANCHORED_SMALL_BLOCK: |
| 351 | break; |
| 352 | default: |
| 353 | continue; |
| 354 | } |
| 355 | |
| 356 | candidates.push_back(id); |
| 357 | } |
| 358 | |
| 359 | for (const u32 &id : candidates) { |
| 360 | const auto &lit = build.literals.at(id); |
| 361 | auto &lit_info = build.literal_info.at(id); |
| 362 | |
| 363 | vector<u8> msk, cmp; |
| 364 | if (!addSurroundingMask(build, lit, lit_info, msk, cmp)) { |
| 365 | continue; |
| 366 | } |
| 367 | DEBUG_PRINTF("found surrounding mask for lit_id=%u (%s)\n" , id, |
| 368 | dumpString(lit.s).c_str()); |
| 369 | u32 new_id = build.getLiteralId(lit.s, msk, cmp, lit.delay, lit.table); |
| 370 | if (new_id == id) { |
| 371 | continue; |
| 372 | } |
| 373 | DEBUG_PRINTF("replacing with new lit_id=%u\n" , new_id); |
| 374 | |
| 375 | // Note that our new literal may already exist and have vertices, etc. |
| 376 | // We assume that this transform is happening prior to group assignment. |
| 377 | assert(lit_info.group_mask == 0); |
| 378 | auto &new_info = build.literal_info.at(new_id); |
| 379 | |
| 380 | // Move the vertices across. |
| 381 | new_info.vertices.insert(begin(lit_info.vertices), |
| 382 | end(lit_info.vertices)); |
| 383 | for (auto v : lit_info.vertices) { |
| 384 | build.g[v].literals.erase(id); |
| 385 | build.g[v].literals.insert(new_id); |
| 386 | } |
| 387 | lit_info.vertices.clear(); |
| 388 | |
| 389 | // Preserve other properties. |
| 390 | new_info.requires_benefits = lit_info.requires_benefits; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | // The mask already associated with the literal and any mask due to |
| 395 | // mixed-case is mandatory. |
| 396 | static |
| 397 | void addLiteralMask(const rose_literal_id &id, vector<u8> &msk, |
| 398 | vector<u8> &cmp) { |
| 399 | const size_t suffix_len = min(id.s.length(), size_t{HWLM_MASKLEN}); |
| 400 | bool mixed_suffix = mixed_sensitivity_in(id.s.end() - suffix_len, |
| 401 | id.s.end()); |
| 402 | |
| 403 | if (id.msk.empty() && !mixed_suffix) { |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | while (msk.size() < HWLM_MASKLEN) { |
| 408 | msk.insert(msk.begin(), 0); |
| 409 | cmp.insert(cmp.begin(), 0); |
| 410 | } |
| 411 | |
| 412 | if (!id.msk.empty()) { |
| 413 | assert(id.msk.size() <= HWLM_MASKLEN); |
| 414 | assert(id.msk.size() == id.cmp.size()); |
| 415 | for (size_t i = 0; i < id.msk.size(); i++) { |
| 416 | size_t mand_offset = msk.size() - i - 1; |
| 417 | size_t lit_offset = id.msk.size() - i - 1; |
| 418 | msk[mand_offset] = id.msk[lit_offset]; |
| 419 | cmp[mand_offset] = id.cmp[lit_offset]; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | if (mixed_suffix) { |
| 424 | auto it = id.s.rbegin(); |
| 425 | for (size_t i = 0; i < suffix_len; ++i, ++it) { |
| 426 | const auto &c = *it; |
| 427 | if (!c.nocase) { |
| 428 | size_t offset = HWLM_MASKLEN - i - 1; |
| 429 | DEBUG_PRINTF("offset %zu must match 0x%02x exactly\n" , offset, |
| 430 | c.c); |
| 431 | make_and_cmp_mask(c, &msk[offset], &cmp[offset]); |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | normaliseLiteralMask(id.s, msk, cmp); |
| 437 | } |
| 438 | |
| 439 | static |
| 440 | bool isDirectHighlander(const RoseBuildImpl &build, const u32 id, |
| 441 | const rose_literal_info &info) { |
| 442 | if (!build.isDirectReport(id)) { |
| 443 | return false; |
| 444 | } |
| 445 | |
| 446 | auto is_simple_exhaustible = [&build](ReportID rid) { |
| 447 | const Report &report = build.rm.getReport(rid); |
| 448 | return isSimpleExhaustible(report); |
| 449 | }; |
| 450 | |
| 451 | assert(!info.vertices.empty()); |
| 452 | for (const auto &v : info.vertices) { |
| 453 | const auto &reports = build.g[v].reports; |
| 454 | assert(!reports.empty()); |
| 455 | if (!all_of(begin(reports), end(reports), |
| 456 | is_simple_exhaustible)) { |
| 457 | return false; |
| 458 | } |
| 459 | } |
| 460 | return true; |
| 461 | } |
| 462 | |
| 463 | // Called by isNoRunsLiteral below. |
| 464 | static |
| 465 | bool isNoRunsVertex(const RoseBuildImpl &build, RoseVertex u) { |
| 466 | const RoseGraph &g = build.g; |
| 467 | if (!g[u].isBoring()) { |
| 468 | DEBUG_PRINTF("u=%zu is not boring\n" , g[u].index); |
| 469 | return false; |
| 470 | } |
| 471 | |
| 472 | if (!g[u].reports.empty()) { |
| 473 | DEBUG_PRINTF("u=%zu has accept\n" , g[u].index); |
| 474 | return false; |
| 475 | } |
| 476 | |
| 477 | /* TODO: handle non-root roles as well. It can't be that difficult... */ |
| 478 | |
| 479 | if (in_degree(u, g) != 1) { |
| 480 | DEBUG_PRINTF("u=%zu is not a root role\n" , g[u].index); |
| 481 | return false; |
| 482 | } |
| 483 | |
| 484 | RoseEdge e = edge(build.root, u, g); |
| 485 | |
| 486 | if (!e) { |
| 487 | DEBUG_PRINTF("u=%zu is not a root role\n" , g[u].index); |
| 488 | return false; |
| 489 | } |
| 490 | |
| 491 | if (g[e].minBound != 0 || g[e].maxBound != ROSE_BOUND_INF) { |
| 492 | DEBUG_PRINTF("u=%zu has bounds from root\n" , g[u].index); |
| 493 | return false; |
| 494 | } |
| 495 | |
| 496 | for (const auto &oe : out_edges_range(u, g)) { |
| 497 | RoseVertex v = target(oe, g); |
| 498 | if (g[oe].maxBound != ROSE_BOUND_INF) { |
| 499 | DEBUG_PRINTF("edge (%zu,%zu) has max bound\n" , g[u].index, |
| 500 | g[v].index); |
| 501 | return false; |
| 502 | } |
| 503 | if (g[v].left) { |
| 504 | DEBUG_PRINTF("v=%zu has rose prefix\n" , g[v].index); |
| 505 | return false; |
| 506 | } |
| 507 | } |
| 508 | return true; |
| 509 | } |
| 510 | |
| 511 | static |
| 512 | bool isNoRunsLiteral(const RoseBuildImpl &build, const u32 id, |
| 513 | const rose_literal_info &info, const size_t max_len) { |
| 514 | DEBUG_PRINTF("lit id %u\n" , id); |
| 515 | |
| 516 | if (info.requires_benefits) { |
| 517 | DEBUG_PRINTF("requires benefits\n" ); // which would need confirm |
| 518 | return false; |
| 519 | } |
| 520 | |
| 521 | size_t len = build.literals.at(id).s.length(); |
| 522 | if (len > max_len) { |
| 523 | DEBUG_PRINTF("long literal, requires confirm\n" ); |
| 524 | return false; |
| 525 | } |
| 526 | |
| 527 | if (len > ROSE_SHORT_LITERAL_LEN_MAX) { |
| 528 | DEBUG_PRINTF("medium-length literal, requires confirm\n" ); |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | if (isDirectHighlander(build, id, info)) { |
| 533 | DEBUG_PRINTF("highlander direct report\n" ); |
| 534 | return true; |
| 535 | } |
| 536 | |
| 537 | // Undelayed vertices. |
| 538 | for (RoseVertex v : info.vertices) { |
| 539 | if (!isNoRunsVertex(build, v)) { |
| 540 | return false; |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | // Delayed vertices. |
| 545 | for (u32 d : info.delayed_ids) { |
| 546 | assert(d < build.literal_info.size()); |
| 547 | const rose_literal_info &delayed_info = build.literal_info.at(d); |
| 548 | assert(delayed_info.undelayed_id == id); |
| 549 | for (RoseVertex v : delayed_info.vertices) { |
| 550 | if (!isNoRunsVertex(build, v)) { |
| 551 | return false; |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | DEBUG_PRINTF("is no-runs literal\n" ); |
| 557 | return true; |
| 558 | } |
| 559 | |
| 560 | static |
| 561 | bool isNoRunsFragment(const RoseBuildImpl &build, const LitFragment &f, |
| 562 | const size_t max_len) { |
| 563 | // For the fragment to be marked "no runs", every literal it fires must |
| 564 | // need no further confirmation work. |
| 565 | return all_of_in(f.lit_ids, [&](u32 lit_id) { |
| 566 | const auto &info = build.literal_info.at(lit_id); |
| 567 | return isNoRunsLiteral(build, lit_id, info, max_len); |
| 568 | }); |
| 569 | } |
| 570 | |
| 571 | static |
| 572 | const raw_puff &getChainedPuff(const RoseBuildImpl &build, |
| 573 | const Report &report) { |
| 574 | DEBUG_PRINTF("chained report, event %u\n" , report.onmatch); |
| 575 | |
| 576 | // MPV has already been moved to the outfixes vector. |
| 577 | assert(!build.mpv_outfix); |
| 578 | |
| 579 | auto mpv_outfix_it = find_if( |
| 580 | begin(build.outfixes), end(build.outfixes), |
| 581 | [](const OutfixInfo &outfix) { return outfix.is_nonempty_mpv(); }); |
| 582 | assert(mpv_outfix_it != end(build.outfixes)); |
| 583 | const auto *mpv = mpv_outfix_it->mpv(); |
| 584 | |
| 585 | u32 puff_index = report.onmatch - MQE_TOP_FIRST; |
| 586 | assert(puff_index < mpv->triggered_puffettes.size()); |
| 587 | return mpv->triggered_puffettes.at(puff_index); |
| 588 | } |
| 589 | |
| 590 | /** |
| 591 | * \brief Returns a conservative estimate of the minimum offset at which the |
| 592 | * given literal can lead to a report. |
| 593 | * |
| 594 | * TODO: This could be made more precise by calculating a "distance to accept" |
| 595 | * for every vertex in the graph; right now we're only accurate for leaf nodes. |
| 596 | */ |
| 597 | static |
| 598 | u64a literalMinReportOffset(const RoseBuildImpl &build, |
| 599 | const rose_literal_id &lit, |
| 600 | const rose_literal_info &info) { |
| 601 | const auto &g = build.g; |
| 602 | |
| 603 | const u32 lit_len = verify_u32(lit.elength()); |
| 604 | |
| 605 | u64a lit_min_offset = UINT64_MAX; |
| 606 | |
| 607 | for (const auto &v : info.vertices) { |
| 608 | DEBUG_PRINTF("vertex %zu min_offset=%u\n" , g[v].index, g[v].min_offset); |
| 609 | |
| 610 | u64a vert_offset = g[v].min_offset; |
| 611 | |
| 612 | if (vert_offset >= lit_min_offset) { |
| 613 | continue; |
| 614 | } |
| 615 | |
| 616 | u64a min_offset = UINT64_MAX; |
| 617 | |
| 618 | for (const auto &id : g[v].reports) { |
| 619 | const Report &report = build.rm.getReport(id); |
| 620 | DEBUG_PRINTF("report id %u, min offset=%llu\n" , id, |
| 621 | report.minOffset); |
| 622 | if (report.type == INTERNAL_ROSE_CHAIN) { |
| 623 | // This vertex triggers an MPV, which will fire reports after |
| 624 | // repeating for a while. |
| 625 | assert(report.minOffset == 0); // Should not have bounds. |
| 626 | const auto &puff = getChainedPuff(build, report); |
| 627 | DEBUG_PRINTF("chained puff repeats=%u\n" , puff.repeats); |
| 628 | const Report &puff_report = build.rm.getReport(puff.report); |
| 629 | DEBUG_PRINTF("puff report %u, min offset=%llu\n" , puff.report, |
| 630 | puff_report.minOffset); |
| 631 | min_offset = min(min_offset, max(vert_offset + puff.repeats, |
| 632 | puff_report.minOffset)); |
| 633 | } else { |
| 634 | DEBUG_PRINTF("report min offset=%llu\n" , report.minOffset); |
| 635 | min_offset = min(min_offset, max(vert_offset, |
| 636 | report.minOffset)); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | if (g[v].suffix) { |
| 641 | depth suffix_width = findMinWidth(g[v].suffix, g[v].suffix.top); |
| 642 | assert(suffix_width.is_reachable()); |
| 643 | DEBUG_PRINTF("suffix with width %s\n" , suffix_width.str().c_str()); |
| 644 | min_offset = min(min_offset, vert_offset + suffix_width); |
| 645 | } |
| 646 | |
| 647 | if (!isLeafNode(v, g) || min_offset == UINT64_MAX) { |
| 648 | min_offset = vert_offset; |
| 649 | } |
| 650 | |
| 651 | lit_min_offset = min(lit_min_offset, min_offset); |
| 652 | } |
| 653 | |
| 654 | // If this literal in the undelayed literal corresponding to some delayed |
| 655 | // literals, we must take their minimum offsets into account. |
| 656 | for (const u32 &delayed_id : info.delayed_ids) { |
| 657 | const auto &delayed_lit = build.literals.at(delayed_id); |
| 658 | const auto &delayed_info = build.literal_info.at(delayed_id); |
| 659 | u64a delayed_min_offset = literalMinReportOffset(build, delayed_lit, |
| 660 | delayed_info); |
| 661 | DEBUG_PRINTF("delayed_id=%u, min_offset = %llu\n" , delayed_id, |
| 662 | delayed_min_offset); |
| 663 | lit_min_offset = min(lit_min_offset, delayed_min_offset); |
| 664 | } |
| 665 | |
| 666 | // If we share a vertex with a shorter literal, our min offset might dip |
| 667 | // below the length of this one. |
| 668 | lit_min_offset = max(lit_min_offset, u64a{lit_len}); |
| 669 | |
| 670 | return lit_min_offset; |
| 671 | } |
| 672 | |
| 673 | template<class Container> |
| 674 | void trim_to_suffix(Container &c, size_t len) { |
| 675 | if (c.size() <= len) { |
| 676 | return; |
| 677 | } |
| 678 | |
| 679 | size_t suffix_len = c.size() - len; |
| 680 | c.erase(c.begin(), c.begin() + suffix_len); |
| 681 | } |
| 682 | |
| 683 | namespace { |
| 684 | |
| 685 | /** \brief Prototype for literal matcher construction. */ |
| 686 | struct MatcherProto { |
| 687 | /** \brief Literal fragments used to construct the literal matcher. */ |
| 688 | vector<hwlmLiteral> lits; |
| 689 | |
| 690 | /** \brief Longer literals used for acceleration analysis. */ |
| 691 | vector<AccelString> accel_lits; |
| 692 | |
| 693 | /** \brief The history required by the literal matcher. */ |
| 694 | size_t history_required = 0; |
| 695 | |
| 696 | /** \brief Insert the contents of another MatcherProto. */ |
| 697 | void insert(const MatcherProto &a); |
| 698 | }; |
| 699 | } |
| 700 | |
| 701 | static |
| 702 | void addFragmentLiteral(const RoseBuildImpl &build, MatcherProto &mp, |
| 703 | const LitFragment &f, u32 id, size_t max_len) { |
| 704 | const rose_literal_id &lit = build.literals.at(id); |
| 705 | |
| 706 | DEBUG_PRINTF("lit='%s' (len %zu)\n" , dumpString(lit.s).c_str(), |
| 707 | lit.s.length()); |
| 708 | |
| 709 | vector<u8> msk = lit.msk; // copy |
| 710 | vector<u8> cmp = lit.cmp; // copy |
| 711 | |
| 712 | bool noruns = isNoRunsFragment(build, f, max_len); |
| 713 | DEBUG_PRINTF("fragment is %s\n" , noruns ? "noruns" : "not noruns" ); |
| 714 | |
| 715 | auto lit_final = lit.s; // copy |
| 716 | |
| 717 | if (lit_final.length() > ROSE_SHORT_LITERAL_LEN_MAX) { |
| 718 | DEBUG_PRINTF("truncating to tail of length %zu\n" , |
| 719 | size_t{ROSE_SHORT_LITERAL_LEN_MAX}); |
| 720 | lit_final.erase(0, lit_final.length() - ROSE_SHORT_LITERAL_LEN_MAX); |
| 721 | // We shouldn't have set a threshold below 8 chars. |
| 722 | assert(msk.size() <= ROSE_SHORT_LITERAL_LEN_MAX); |
| 723 | assert(!noruns); |
| 724 | } |
| 725 | |
| 726 | addLiteralMask(lit, msk, cmp); |
| 727 | |
| 728 | const auto &s_final = lit_final.get_string(); |
| 729 | bool nocase = lit_final.any_nocase(); |
| 730 | bool pure = f.s.get_pure(); |
| 731 | |
| 732 | DEBUG_PRINTF("id=%u, s='%s', nocase=%d, noruns=%d, msk=%s, cmp=%s\n" , |
| 733 | f.fragment_id, escapeString(s_final).c_str(), (int)nocase, |
| 734 | noruns, dumpMask(msk).c_str(), dumpMask(cmp).c_str()); |
| 735 | |
| 736 | if (!maskIsConsistent(s_final, nocase, msk, cmp)) { |
| 737 | DEBUG_PRINTF("msk/cmp for literal can't match, skipping\n" ); |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | const auto &groups = f.groups; |
| 742 | |
| 743 | mp.lits.emplace_back(move(s_final), nocase, noruns, f.fragment_id, |
| 744 | groups, msk, cmp, pure); |
| 745 | } |
| 746 | |
| 747 | static |
| 748 | void addAccelLiteral(MatcherProto &mp, const rose_literal_id &lit, |
| 749 | const rose_literal_info &info, size_t max_len) { |
| 750 | const auto &s = lit.s; // copy |
| 751 | |
| 752 | DEBUG_PRINTF("lit='%s' (len %zu)\n" , dumpString(s).c_str(), s.length()); |
| 753 | |
| 754 | vector<u8> msk = lit.msk; // copy |
| 755 | vector<u8> cmp = lit.cmp; // copy |
| 756 | addLiteralMask(lit, msk, cmp); |
| 757 | |
| 758 | if (!maskIsConsistent(s.get_string(), s.any_nocase(), msk, cmp)) { |
| 759 | DEBUG_PRINTF("msk/cmp for literal can't match, skipping\n" ); |
| 760 | return; |
| 761 | } |
| 762 | |
| 763 | // Literals used for acceleration must be limited to max_len, as that's all |
| 764 | // we can see in history. |
| 765 | string s_final = lit.s.get_string(); |
| 766 | trim_to_suffix(s_final, max_len); |
| 767 | trim_to_suffix(msk, max_len); |
| 768 | trim_to_suffix(cmp, max_len); |
| 769 | |
| 770 | mp.accel_lits.emplace_back(s_final, lit.s.any_nocase(), msk, cmp, |
| 771 | info.group_mask); |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * \brief Build up a vector of literals (and associated other data) for the |
| 776 | * given table. |
| 777 | * |
| 778 | * If max_offset is specified (and not ROSE_BOUND_INF), then literals that can |
| 779 | * only lead to a pattern match after max_offset may be excluded. |
| 780 | */ |
| 781 | static |
| 782 | MatcherProto makeMatcherProto(const RoseBuildImpl &build, |
| 783 | const vector<LitFragment> &fragments, |
| 784 | rose_literal_table table, bool delay_rebuild, |
| 785 | size_t max_len, u32 max_offset = ROSE_BOUND_INF) { |
| 786 | MatcherProto mp; |
| 787 | |
| 788 | if (delay_rebuild) { |
| 789 | assert(table == ROSE_FLOATING); |
| 790 | assert(build.cc.streaming); |
| 791 | } |
| 792 | |
| 793 | vector<u32> used_lit_ids; |
| 794 | |
| 795 | for (const auto &f : fragments) { |
| 796 | assert(!f.lit_ids.empty()); |
| 797 | |
| 798 | // All literals that share a fragment are in the same table. |
| 799 | if (build.literals.at(f.lit_ids.front()).table != table) { |
| 800 | continue; // next fragment. |
| 801 | } |
| 802 | |
| 803 | DEBUG_PRINTF("fragment %u, %zu lit_ids\n" , f.fragment_id, |
| 804 | f.lit_ids.size()); |
| 805 | |
| 806 | used_lit_ids.clear(); |
| 807 | for (u32 id : f.lit_ids) { |
| 808 | const rose_literal_id &lit = build.literals.at(id); |
| 809 | assert(id < build.literal_info.size()); |
| 810 | const auto &info = build.literal_info.at(id); |
| 811 | if (lit.delay) { |
| 812 | continue; /* delay id's are virtual-ish */ |
| 813 | } |
| 814 | |
| 815 | // When building the delay rebuild table, we only want to include |
| 816 | // literals that have delayed variants. |
| 817 | if (delay_rebuild && info.delayed_ids.empty()) { |
| 818 | DEBUG_PRINTF("not needed for delay rebuild\n" ); |
| 819 | continue; |
| 820 | } |
| 821 | |
| 822 | if (max_offset != ROSE_BOUND_INF) { |
| 823 | u64a min_report = literalMinReportOffset(build, lit, info); |
| 824 | if (min_report > max_offset) { |
| 825 | DEBUG_PRINTF("min report offset=%llu exceeds " |
| 826 | "max_offset=%u\n" , min_report, max_offset); |
| 827 | continue; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | used_lit_ids.push_back(id); |
| 832 | } |
| 833 | |
| 834 | if (used_lit_ids.empty()) { |
| 835 | continue; // next fragment. |
| 836 | } |
| 837 | |
| 838 | // Build our fragment (for the HWLM matcher) from the first literal. |
| 839 | addFragmentLiteral(build, mp, f, used_lit_ids.front(), max_len); |
| 840 | |
| 841 | for (u32 id : used_lit_ids) { |
| 842 | const rose_literal_id &lit = build.literals.at(id); |
| 843 | assert(id < build.literal_info.size()); |
| 844 | const auto &info = build.literal_info.at(id); |
| 845 | |
| 846 | // All literals contribute accel information. |
| 847 | addAccelLiteral(mp, lit, info, max_len); |
| 848 | |
| 849 | // All literals contribute to history requirement in streaming mode. |
| 850 | if (build.cc.streaming) { |
| 851 | size_t lit_hist_len = |
| 852 | max(lit.msk.size(), min(lit.s.length(), max_len)); |
| 853 | lit_hist_len = lit_hist_len ? lit_hist_len - 1 : 0; |
| 854 | DEBUG_PRINTF("lit requires %zu bytes of history\n" , |
| 855 | lit_hist_len); |
| 856 | assert(lit_hist_len <= build.cc.grey.maxHistoryAvailable); |
| 857 | mp.history_required = max(mp.history_required, lit_hist_len); |
| 858 | } |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | sort_and_unique(mp.lits); |
| 863 | sort_and_unique(mp.accel_lits); |
| 864 | |
| 865 | return mp; |
| 866 | } |
| 867 | |
| 868 | void MatcherProto::insert(const MatcherProto &a) { |
| 869 | ::ue2::insert(&lits, lits.end(), a.lits); |
| 870 | ::ue2::insert(&accel_lits, accel_lits.end(), a.accel_lits); |
| 871 | sort_and_unique(lits); |
| 872 | sort_and_unique(accel_lits); |
| 873 | history_required = max(history_required, a.history_required); |
| 874 | } |
| 875 | |
| 876 | static |
| 877 | void buildAccel(const RoseBuildImpl &build, |
| 878 | const vector<AccelString> &accel_lits, HWLM &hwlm) { |
| 879 | if (!build.cc.grey.hamsterAccelForward) { |
| 880 | return; |
| 881 | } |
| 882 | |
| 883 | if (hwlm.type == HWLM_ENGINE_NOOD) { |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | buildForwardAccel(&hwlm, accel_lits, build.getInitialGroups()); |
| 888 | } |
| 889 | |
| 890 | bytecode_ptr<HWLM> |
| 891 | buildHWLMMatcher(const RoseBuildImpl &build, LitProto *litProto) { |
| 892 | if (!litProto) { |
| 893 | return nullptr; |
| 894 | } |
| 895 | auto hwlm = hwlmBuild(*litProto->hwlmProto, build.cc, |
| 896 | build.getInitialGroups()); |
| 897 | if (!hwlm) { |
| 898 | throw CompileError("Unable to generate bytecode." ); |
| 899 | } |
| 900 | |
| 901 | buildAccel(build, litProto->accel_lits, *hwlm); |
| 902 | |
| 903 | DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n" , |
| 904 | hwlm.size()); |
| 905 | return hwlm; |
| 906 | } |
| 907 | |
| 908 | unique_ptr<LitProto> |
| 909 | buildFloatingMatcherProto(const RoseBuildImpl &build, |
| 910 | const vector<LitFragment> &fragments, |
| 911 | size_t longLitLengthThreshold, |
| 912 | rose_group *fgroups, |
| 913 | size_t *historyRequired) { |
| 914 | DEBUG_PRINTF("Floating literal matcher\n" ); |
| 915 | *fgroups = 0; |
| 916 | |
| 917 | auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false, |
| 918 | longLitLengthThreshold); |
| 919 | if (mp.lits.empty()) { |
| 920 | DEBUG_PRINTF("empty floating matcher\n" ); |
| 921 | return nullptr; |
| 922 | } |
| 923 | dumpMatcherLiterals(mp.lits, "floating" , build.cc.grey); |
| 924 | |
| 925 | for (const hwlmLiteral &lit : mp.lits) { |
| 926 | *fgroups |= lit.groups; |
| 927 | } |
| 928 | |
| 929 | if (build.cc.streaming) { |
| 930 | DEBUG_PRINTF("history_required=%zu\n" , mp.history_required); |
| 931 | assert(mp.history_required <= build.cc.grey.maxHistoryAvailable); |
| 932 | *historyRequired = max(*historyRequired, mp.history_required); |
| 933 | } |
| 934 | |
| 935 | auto proto = hwlmBuildProto(mp.lits, false, build.cc); |
| 936 | |
| 937 | if (!proto) { |
| 938 | throw CompileError("Unable to generate literal matcher proto." ); |
| 939 | } |
| 940 | |
| 941 | return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); |
| 942 | } |
| 943 | |
| 944 | unique_ptr<LitProto> |
| 945 | buildDelayRebuildMatcherProto(const RoseBuildImpl &build, |
| 946 | const vector<LitFragment> &fragments, |
| 947 | size_t longLitLengthThreshold) { |
| 948 | DEBUG_PRINTF("Delay literal matcher\n" ); |
| 949 | if (!build.cc.streaming) { |
| 950 | DEBUG_PRINTF("not streaming\n" ); |
| 951 | return nullptr; |
| 952 | } |
| 953 | |
| 954 | auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, true, |
| 955 | longLitLengthThreshold); |
| 956 | if (mp.lits.empty()) { |
| 957 | DEBUG_PRINTF("empty delay rebuild matcher\n" ); |
| 958 | return nullptr; |
| 959 | } |
| 960 | dumpMatcherLiterals(mp.lits, "delay_rebuild" , build.cc.grey); |
| 961 | |
| 962 | |
| 963 | auto proto = hwlmBuildProto(mp.lits, false, build.cc); |
| 964 | |
| 965 | if (!proto) { |
| 966 | throw CompileError("Unable to generate literal matcher proto." ); |
| 967 | } |
| 968 | |
| 969 | return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); |
| 970 | } |
| 971 | |
| 972 | unique_ptr<LitProto> |
| 973 | buildSmallBlockMatcherProto(const RoseBuildImpl &build, |
| 974 | const vector<LitFragment> &fragments) { |
| 975 | DEBUG_PRINTF("Small block literal matcher\n" ); |
| 976 | if (build.cc.streaming) { |
| 977 | DEBUG_PRINTF("streaming mode\n" ); |
| 978 | return nullptr; |
| 979 | } |
| 980 | |
| 981 | u32 float_min = findMinWidth(build, ROSE_FLOATING); |
| 982 | if (float_min > ROSE_SMALL_BLOCK_LEN) { |
| 983 | DEBUG_PRINTF("floating table has large min width %u, fail\n" , |
| 984 | float_min); |
| 985 | return nullptr; |
| 986 | } |
| 987 | |
| 988 | auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false, |
| 989 | ROSE_SMALL_BLOCK_LEN, ROSE_SMALL_BLOCK_LEN); |
| 990 | if (mp.lits.empty()) { |
| 991 | DEBUG_PRINTF("no floating table\n" ); |
| 992 | return nullptr; |
| 993 | } else if (mp.lits.size() == 1) { |
| 994 | DEBUG_PRINTF("single floating literal, noodle will be fast enough\n" ); |
| 995 | return nullptr; |
| 996 | } |
| 997 | |
| 998 | auto mp_anchored = makeMatcherProto(build, fragments, |
| 999 | ROSE_ANCHORED_SMALL_BLOCK, false, |
| 1000 | ROSE_SMALL_BLOCK_LEN, |
| 1001 | ROSE_SMALL_BLOCK_LEN); |
| 1002 | if (mp_anchored.lits.empty()) { |
| 1003 | DEBUG_PRINTF("no small-block anchored literals\n" ); |
| 1004 | return nullptr; |
| 1005 | } |
| 1006 | |
| 1007 | mp.insert(mp_anchored); |
| 1008 | dumpMatcherLiterals(mp.lits, "smallblock" , build.cc.grey); |
| 1009 | |
| 1010 | // None of our literals should be longer than the small block limit. |
| 1011 | assert(all_of(begin(mp.lits), end(mp.lits), [](const hwlmLiteral &lit) { |
| 1012 | return lit.s.length() <= ROSE_SMALL_BLOCK_LEN; |
| 1013 | })); |
| 1014 | |
| 1015 | if (mp.lits.empty()) { |
| 1016 | DEBUG_PRINTF("no literals shorter than small block len\n" ); |
| 1017 | return nullptr; |
| 1018 | } |
| 1019 | |
| 1020 | auto proto = hwlmBuildProto(mp.lits, false, build.cc); |
| 1021 | |
| 1022 | if (!proto) { |
| 1023 | throw CompileError("Unable to generate literal matcher proto." ); |
| 1024 | } |
| 1025 | |
| 1026 | return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); |
| 1027 | } |
| 1028 | |
| 1029 | unique_ptr<LitProto> |
| 1030 | buildEodAnchoredMatcherProto(const RoseBuildImpl &build, |
| 1031 | const vector<LitFragment> &fragments) { |
| 1032 | DEBUG_PRINTF("Eod anchored literal matcher\n" ); |
| 1033 | auto mp = makeMatcherProto(build, fragments, ROSE_EOD_ANCHORED, false, |
| 1034 | build.ematcher_region_size); |
| 1035 | |
| 1036 | if (mp.lits.empty()) { |
| 1037 | DEBUG_PRINTF("no eod anchored literals\n" ); |
| 1038 | assert(!build.ematcher_region_size); |
| 1039 | return nullptr; |
| 1040 | } |
| 1041 | dumpMatcherLiterals(mp.lits, "eod" , build.cc.grey); |
| 1042 | |
| 1043 | assert(build.ematcher_region_size); |
| 1044 | |
| 1045 | auto proto = hwlmBuildProto(mp.lits, false, build.cc); |
| 1046 | |
| 1047 | if (!proto) { |
| 1048 | throw CompileError("Unable to generate literal matcher proto." ); |
| 1049 | } |
| 1050 | |
| 1051 | return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); |
| 1052 | } |
| 1053 | |
| 1054 | } // namespace ue2 |
| 1055 | |