| 1 | /* |
| 2 | * Copyright (c) 2015-2018, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Rose Build: functions for reducing the size of the Rose graph |
| 31 | * through merging. |
| 32 | */ |
| 33 | #include "rose_build_merge.h" |
| 34 | |
| 35 | #include "grey.h" |
| 36 | #include "rose_build.h" |
| 37 | #include "rose_build_impl.h" |
| 38 | #include "rose_build_util.h" |
| 39 | #include "ue2common.h" |
| 40 | #include "nfa/castlecompile.h" |
| 41 | #include "nfa/goughcompile.h" |
| 42 | #include "nfa/limex_limits.h" |
| 43 | #include "nfa/mcclellancompile.h" |
| 44 | #include "nfa/nfa_build_util.h" |
| 45 | #include "nfa/rdfa_merge.h" |
| 46 | #include "nfagraph/ng_holder.h" |
| 47 | #include "nfagraph/ng_haig.h" |
| 48 | #include "nfagraph/ng_is_equal.h" |
| 49 | #include "nfagraph/ng_lbr.h" |
| 50 | #include "nfagraph/ng_limex.h" |
| 51 | #include "nfagraph/ng_mcclellan.h" |
| 52 | #include "nfagraph/ng_puff.h" |
| 53 | #include "nfagraph/ng_redundancy.h" |
| 54 | #include "nfagraph/ng_repeat.h" |
| 55 | #include "nfagraph/ng_reports.h" |
| 56 | #include "nfagraph/ng_stop.h" |
| 57 | #include "nfagraph/ng_uncalc_components.h" |
| 58 | #include "nfagraph/ng_util.h" |
| 59 | #include "nfagraph/ng_width.h" |
| 60 | #include "util/bitutils.h" |
| 61 | #include "util/charreach.h" |
| 62 | #include "util/compile_context.h" |
| 63 | #include "util/container.h" |
| 64 | #include "util/dump_charclass.h" |
| 65 | #include "util/graph_range.h" |
| 66 | #include "util/hash.h" |
| 67 | #include "util/insertion_ordered.h" |
| 68 | #include "util/order_check.h" |
| 69 | #include "util/report_manager.h" |
| 70 | #include "util/ue2string.h" |
| 71 | #include "util/unordered.h" |
| 72 | |
| 73 | #include <algorithm> |
| 74 | #include <functional> |
| 75 | #include <list> |
| 76 | #include <map> |
| 77 | #include <queue> |
| 78 | #include <set> |
| 79 | #include <string> |
| 80 | #include <vector> |
| 81 | #include <utility> |
| 82 | |
| 83 | #include <boost/range/adaptor/map.hpp> |
| 84 | |
| 85 | using namespace std; |
| 86 | using boost::adaptors::map_values; |
| 87 | using boost::adaptors::map_keys; |
| 88 | |
| 89 | namespace ue2 { |
| 90 | |
| 91 | static const size_t NARROW_START_MAX = 10; |
| 92 | static const size_t SMALL_MERGE_MAX_VERTICES_STREAM = 128; |
| 93 | static const size_t SMALL_MERGE_MAX_VERTICES_BLOCK = 64; |
| 94 | static const size_t SMALL_ROSE_THRESHOLD_STREAM = 32; |
| 95 | static const size_t SMALL_ROSE_THRESHOLD_BLOCK = 10; |
| 96 | static const size_t MERGE_GROUP_SIZE_MAX = 200; |
| 97 | static const size_t MERGE_CASTLE_GROUP_SIZE_MAX = 1000; |
| 98 | |
| 99 | /** \brief Max number of DFAs (McClellan, Haig) to pairwise merge together. */ |
| 100 | static const size_t DFA_CHUNK_SIZE_MAX = 200; |
| 101 | |
| 102 | /** \brief Max DFA states in a merged DFA. */ |
| 103 | static const size_t DFA_MERGE_MAX_STATES = 8000; |
| 104 | |
| 105 | /** \brief In block mode, merge two prefixes even if they don't have identical |
| 106 | * literal sets if they have fewer than this many states and the merged graph |
| 107 | * is also small. */ |
| 108 | static constexpr size_t MAX_BLOCK_PREFIX_MERGE_VERTICES = 32; |
| 109 | |
| 110 | static |
| 111 | size_t small_merge_max_vertices(const CompileContext &cc) { |
| 112 | return cc.streaming ? SMALL_MERGE_MAX_VERTICES_STREAM |
| 113 | : SMALL_MERGE_MAX_VERTICES_BLOCK; |
| 114 | } |
| 115 | |
| 116 | static |
| 117 | size_t small_rose_threshold(const CompileContext &cc) { |
| 118 | return cc.streaming ? SMALL_ROSE_THRESHOLD_STREAM |
| 119 | : SMALL_ROSE_THRESHOLD_BLOCK; |
| 120 | } |
| 121 | |
| 122 | /** |
| 123 | * Returns a loose hash of a leftfix for use in dedupeLeftfixes. Note that |
| 124 | * reports should not contribute to the hash. |
| 125 | */ |
| 126 | static |
| 127 | size_t hashLeftfix(const left_id &left) { |
| 128 | size_t val = 0; |
| 129 | |
| 130 | if (left.castle()) { |
| 131 | hash_combine(val, left.castle()->reach()); |
| 132 | for (const auto &pr : left.castle()->repeats) { |
| 133 | hash_combine(val, pr.first); // top |
| 134 | hash_combine(val, pr.second.bounds); |
| 135 | } |
| 136 | } else if (left.graph()) { |
| 137 | hash_combine(val, hash_holder(*left.graph())); |
| 138 | } |
| 139 | |
| 140 | return val; |
| 141 | } |
| 142 | |
| 143 | namespace { |
| 144 | |
| 145 | /** Key used to group sets of leftfixes by the dedupeLeftfixes path. */ |
| 146 | struct RoseGroup { |
| 147 | RoseGroup(const RoseBuildImpl &build, RoseVertex v) |
| 148 | : left_hash(hashLeftfix(build.g[v].left)), |
| 149 | lag(build.g[v].left.lag), eod_table(build.isInETable(v)) { |
| 150 | const RoseGraph &g = build.g; |
| 151 | assert(in_degree(v, g) == 1); |
| 152 | RoseVertex u = *inv_adjacent_vertices(v, g).first; |
| 153 | parent = g[u].index; |
| 154 | } |
| 155 | |
| 156 | bool operator<(const RoseGroup &b) const { |
| 157 | const RoseGroup &a = *this; |
| 158 | ORDER_CHECK(parent); |
| 159 | ORDER_CHECK(left_hash); |
| 160 | ORDER_CHECK(lag); |
| 161 | ORDER_CHECK(eod_table); |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | private: |
| 166 | /** Parent vertex index. We must use the index, rather than the descriptor, |
| 167 | * for compile determinism. */ |
| 168 | size_t parent; |
| 169 | |
| 170 | /** Quick hash of the leftfix itself. Must be identical for a given pair of |
| 171 | * graphs if is_equal would return true. */ |
| 172 | size_t left_hash; |
| 173 | |
| 174 | /** Leftfix lag value. */ |
| 175 | u32 lag; |
| 176 | |
| 177 | /** True if associated vertex (successor) is in the EOD table. We don't |
| 178 | * allow sharing of leftfix engines between "normal" and EOD operation. */ |
| 179 | bool eod_table; |
| 180 | }; |
| 181 | |
| 182 | /** |
| 183 | * Intended to find graphs that are identical except for their report |
| 184 | * IDs. Relies on vertex and edge indices to pick up graphs that have been |
| 185 | * messily put together in different orderings. Only implemented for castles and |
| 186 | * holders. |
| 187 | */ |
| 188 | static |
| 189 | bool is_equal(const left_id &u_left, ReportID u_report, |
| 190 | const left_id &v_left, ReportID v_report) { |
| 191 | if (u_left.castle() && v_left.castle()) { |
| 192 | return is_equal(*u_left.castle(), u_report, *v_left.castle(), v_report); |
| 193 | } |
| 194 | |
| 195 | if (!u_left.graph() || !v_left.graph()) { |
| 196 | return false; |
| 197 | } |
| 198 | |
| 199 | return is_equal(*u_left.graph(), u_report, *v_left.graph(), v_report); |
| 200 | } |
| 201 | |
| 202 | } // namespace |
| 203 | |
| 204 | /** |
| 205 | * This pass performs work similar to \ref dedupeSuffixes - it removes |
| 206 | * duplicate prefix/infixes (that is, leftfixes) which are identical graphs and |
| 207 | * share the same trigger vertex and lag. Leftfixes are first grouped by |
| 208 | * parent role and lag to reduce the number of candidates to be inspected |
| 209 | * for each leftfix. The graphs in each cluster are then compared with each |
| 210 | * other and the graph is updated to only refer to a canonical version of each |
| 211 | * graph. |
| 212 | * |
| 213 | * Note: only roles with a single predecessor vertex are considered for this |
| 214 | * transform - it should probably be generalised to work for roles which share |
| 215 | * the same set of predecessor roles as for \ref dedupeLeftfixesVariableLag or |
| 216 | * it should be retired entirely. |
| 217 | */ |
| 218 | bool dedupeLeftfixes(RoseBuildImpl &tbi) { |
| 219 | DEBUG_PRINTF("deduping leftfixes\n" ); |
| 220 | map<RoseGroup, deque<RoseVertex>> roses; |
| 221 | bool work_done = false; |
| 222 | |
| 223 | /* Note: a leftfix's transientness will not be altered by deduping */ |
| 224 | |
| 225 | // Collect leftfixes into groups. |
| 226 | RoseGraph &g = tbi.g; |
| 227 | for (auto v : vertices_range(g)) { |
| 228 | if (!g[v].left) { |
| 229 | continue; |
| 230 | } |
| 231 | const left_id left(g[v].left); |
| 232 | |
| 233 | if (left.haig()) { |
| 234 | /* TODO: allow merging of identical haigs */ |
| 235 | continue; |
| 236 | } |
| 237 | |
| 238 | if (in_degree(v, g) != 1) { |
| 239 | continue; |
| 240 | } |
| 241 | |
| 242 | roses[RoseGroup(tbi, v)].push_back(v); |
| 243 | } |
| 244 | |
| 245 | DEBUG_PRINTF("collected %zu rose groups\n" , roses.size()); |
| 246 | |
| 247 | // Walk groups and dedupe the roses therein. |
| 248 | for (deque<RoseVertex> &verts : roses | map_values) { |
| 249 | DEBUG_PRINTF("group has %zu vertices\n" , verts.size()); |
| 250 | |
| 251 | unordered_set<left_id> seen; |
| 252 | |
| 253 | for (auto jt = verts.begin(), jte = verts.end(); jt != jte; ++jt) { |
| 254 | RoseVertex v = *jt; |
| 255 | left_id left(g[v].left); |
| 256 | |
| 257 | // Skip cases we've already handled, and mark as seen otherwise. |
| 258 | if (!seen.insert(left).second) { |
| 259 | continue; |
| 260 | } |
| 261 | |
| 262 | // Scan the rest of the list for dupes. |
| 263 | for (auto kt = std::next(jt); kt != jte; ++kt) { |
| 264 | if (g[v].left == g[*kt].left |
| 265 | || !is_equal(g[v].left, g[v].left.leftfix_report, |
| 266 | g[*kt].left, g[*kt].left.leftfix_report)) { |
| 267 | continue; |
| 268 | } |
| 269 | |
| 270 | // Dupe found. |
| 271 | DEBUG_PRINTF("rose at vertex %zu is a dupe of %zu\n" , |
| 272 | g[*kt].index, g[v].index); |
| 273 | assert(g[v].left.lag == g[*kt].left.lag); |
| 274 | g[*kt].left = g[v].left; |
| 275 | work_done = true; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | return work_done; |
| 281 | } |
| 282 | |
| 283 | /** |
| 284 | * \brief Returns a numeric key that can be used to group this suffix with |
| 285 | * others that may be its duplicate. |
| 286 | */ |
| 287 | static |
| 288 | size_t suffix_size_key(const suffix_id &s) { |
| 289 | if (s.graph()) { |
| 290 | return num_vertices(*s.graph()); |
| 291 | } |
| 292 | if (s.castle()) { |
| 293 | return s.castle()->repeats.size(); |
| 294 | } |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | static |
| 299 | bool is_equal(const suffix_id &s1, const suffix_id &s2) { |
| 300 | if (s1.graph() && s2.graph()) { |
| 301 | return is_equal(*s1.graph(), *s2.graph()); |
| 302 | } else if (s1.castle() && s2.castle()) { |
| 303 | return is_equal(*s1.castle(), *s2.castle()); |
| 304 | } |
| 305 | return false; |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * This function simply looks for suffix NGHolder graphs which are identical |
| 310 | * and updates the roles in the RoseGraph to refer to only a single copy. This |
| 311 | * obviously has benefits in terms of both performance (as we don't run |
| 312 | * multiple engines doing the same work) and stream state. This function first |
| 313 | * groups all suffixes by number of vertices and report set to restrict the set |
| 314 | * of possible candidates. Each group is then walked to find duplicates using |
| 315 | * the \ref is_equal comparator for NGHolders and updating the RoseGraph as it |
| 316 | * goes. |
| 317 | * |
| 318 | * Note: does not dedupe suffixes of vertices in the EOD table. |
| 319 | */ |
| 320 | void dedupeSuffixes(RoseBuildImpl &tbi) { |
| 321 | DEBUG_PRINTF("deduping suffixes\n" ); |
| 322 | |
| 323 | unordered_map<suffix_id, set<RoseVertex>> suffix_map; |
| 324 | map<pair<size_t, set<ReportID>>, vector<suffix_id>> part; |
| 325 | |
| 326 | // Collect suffixes into groups. |
| 327 | RoseGraph &g = tbi.g; |
| 328 | for (auto v : vertices_range(g)) { |
| 329 | if (!g[v].suffix || tbi.isInETable(v)) { |
| 330 | continue; |
| 331 | } |
| 332 | |
| 333 | const suffix_id s(g[v].suffix); |
| 334 | |
| 335 | if (!(s.graph() || s.castle())) { |
| 336 | continue; // e.g. Haig |
| 337 | } |
| 338 | |
| 339 | set<RoseVertex> &verts = suffix_map[s]; |
| 340 | if (verts.empty()) { |
| 341 | part[make_pair(suffix_size_key(s), all_reports(s))].push_back(s); |
| 342 | } |
| 343 | verts.insert(v); |
| 344 | } |
| 345 | |
| 346 | DEBUG_PRINTF("collected %zu groups\n" , part.size()); |
| 347 | |
| 348 | for (const auto &cand : part | map_values) { |
| 349 | if (cand.size() <= 1) { |
| 350 | continue; |
| 351 | } |
| 352 | DEBUG_PRINTF("deduping cand set of size %zu\n" , cand.size()); |
| 353 | |
| 354 | for (auto jt = cand.begin(); jt != cand.end(); ++jt) { |
| 355 | if (suffix_map[*jt].empty()) { |
| 356 | continue; |
| 357 | } |
| 358 | for (auto kt = next(jt); kt != cand.end(); ++kt) { |
| 359 | if (suffix_map[*kt].empty() || !is_equal(*jt, *kt)) { |
| 360 | continue; |
| 361 | } |
| 362 | DEBUG_PRINTF("found dupe\n" ); |
| 363 | for (auto v : suffix_map[*kt]) { |
| 364 | RoseVertex dupe = *suffix_map[*jt].begin(); |
| 365 | assert(dupe != v); |
| 366 | g[v].suffix.graph = g[dupe].suffix.graph; |
| 367 | g[v].suffix.castle = g[dupe].suffix.castle; |
| 368 | assert(suffix_id(g[v].suffix) == |
| 369 | suffix_id(g[dupe].suffix)); |
| 370 | suffix_map[*jt].insert(v); |
| 371 | } |
| 372 | suffix_map[*kt].clear(); |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | namespace { |
| 379 | |
| 380 | /** |
| 381 | * This class stores a mapping from an engine reference (left_id, suffix_id, |
| 382 | * etc) to a list of vertices, and also allows us to iterate over the set of |
| 383 | * engine references in insertion order -- we add to the mapping in vertex |
| 384 | * iteration order, so this allows us to provide a consistent ordering. |
| 385 | */ |
| 386 | template<class EngineRef> |
| 387 | class Bouquet { |
| 388 | private: |
| 389 | list<EngineRef> ordering; // Unique list in insert order. |
| 390 | using BouquetMap = ue2_unordered_map<EngineRef, deque<RoseVertex>>; |
| 391 | BouquetMap bouquet; |
| 392 | public: |
| 393 | void insert(const EngineRef &h, RoseVertex v) { |
| 394 | typename BouquetMap::iterator f = bouquet.find(h); |
| 395 | if (f == bouquet.end()) { |
| 396 | ordering.push_back(h); |
| 397 | bouquet[h].push_back(v); |
| 398 | } else { |
| 399 | f->second.push_back(v); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | void insert(const EngineRef &h, const deque<RoseVertex> &verts) { |
| 404 | typename BouquetMap::iterator f = bouquet.find(h); |
| 405 | if (f == bouquet.end()) { |
| 406 | ordering.push_back(h); |
| 407 | bouquet.insert(make_pair(h, verts)); |
| 408 | } else { |
| 409 | f->second.insert(f->second.end(), verts.begin(), verts.end()); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | const deque<RoseVertex> &vertices(const EngineRef &h) const { |
| 414 | typename BouquetMap::const_iterator it = bouquet.find(h); |
| 415 | assert(it != bouquet.end()); // must be present |
| 416 | return it->second; |
| 417 | } |
| 418 | |
| 419 | void erase(const EngineRef &h) { |
| 420 | assert(bouquet.find(h) != bouquet.end()); |
| 421 | bouquet.erase(h); |
| 422 | ordering.remove(h); |
| 423 | } |
| 424 | |
| 425 | /** Remove all the elements in the given iterator range. */ |
| 426 | template <class Iter> |
| 427 | void erase_all(Iter erase_begin, Iter erase_end) { |
| 428 | for (Iter it = erase_begin; it != erase_end; ++it) { |
| 429 | bouquet.erase(*it); |
| 430 | } |
| 431 | |
| 432 | // Use a quick-lookup container so that we only have to traverse the |
| 433 | // 'ordering' list once. |
| 434 | const set<EngineRef> dead(erase_begin, erase_end); |
| 435 | for (iterator it = begin(); it != end(); /* incremented inside */) { |
| 436 | if (contains(dead, *it)) { |
| 437 | ordering.erase(it++); |
| 438 | } else { |
| 439 | ++it; |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | void clear() { |
| 445 | ordering.clear(); |
| 446 | bouquet.clear(); |
| 447 | } |
| 448 | |
| 449 | size_t size() const { return bouquet.size(); } |
| 450 | |
| 451 | // iterate over holders in insert order |
| 452 | typedef typename list<EngineRef>::iterator iterator; |
| 453 | iterator begin() { return ordering.begin(); } |
| 454 | iterator end() { return ordering.end(); } |
| 455 | |
| 456 | // const iterate over holders in insert order |
| 457 | typedef typename list<EngineRef>::const_iterator const_iterator; |
| 458 | const_iterator begin() const { return ordering.begin(); } |
| 459 | const_iterator end() const { return ordering.end(); } |
| 460 | }; |
| 461 | |
| 462 | typedef Bouquet<left_id> LeftfixBouquet; |
| 463 | typedef Bouquet<suffix_id> SuffixBouquet; |
| 464 | |
| 465 | } // namespace |
| 466 | |
| 467 | /** |
| 468 | * Split a \ref Bouquet of some type into several smaller ones. |
| 469 | */ |
| 470 | template <class EngineRef> |
| 471 | static void chunkBouquets(const Bouquet<EngineRef> &in, |
| 472 | deque<Bouquet<EngineRef>> &out, |
| 473 | const size_t chunk_size) { |
| 474 | if (in.size() <= chunk_size) { |
| 475 | out.push_back(in); |
| 476 | return; |
| 477 | } |
| 478 | |
| 479 | out.push_back(Bouquet<EngineRef>()); |
| 480 | for (const auto &engine : in) { |
| 481 | if (out.back().size() >= chunk_size) { |
| 482 | out.push_back(Bouquet<EngineRef>()); |
| 483 | } |
| 484 | out.back().insert(engine, in.vertices(engine)); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | static |
| 489 | bool stringsCanFinishAtSameSpot(const ue2_literal &u, |
| 490 | ue2_literal::const_iterator v_b, |
| 491 | ue2_literal::const_iterator v_e) { |
| 492 | ue2_literal::const_iterator u_e = u.end(); |
| 493 | ue2_literal::const_iterator u_b = u.begin(); |
| 494 | |
| 495 | while (u_e != u_b && v_e != v_b) { |
| 496 | --u_e; |
| 497 | --v_e; |
| 498 | |
| 499 | if (!overlaps(*u_e, *v_e)) { |
| 500 | return false; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | return true; |
| 505 | } |
| 506 | |
| 507 | /** |
| 508 | * Check that if after u has been seen, that it is impossible for the arrival of |
| 509 | * v to require the inspection of an engine earlier than u did. |
| 510 | * |
| 511 | * Let delta be the earliest that v can be seen after u (may be zero) |
| 512 | * |
| 513 | * ie, we require u_loc - ulag <= v_loc - vlag (v_loc = u_loc + delta) |
| 514 | * ==> - ulag <= delta - vlag |
| 515 | * ==> vlag - ulag <= delta |
| 516 | */ |
| 517 | static |
| 518 | bool checkPrefix(const rose_literal_id &ul, const u32 ulag, |
| 519 | const rose_literal_id &vl, const u32 vlag) { |
| 520 | DEBUG_PRINTF("'%s'-%u '%s'-%u\n" , escapeString(ul.s).c_str(), ulag, |
| 521 | escapeString(vl.s).c_str(), vlag); |
| 522 | |
| 523 | if (vl.delay || ul.delay) { |
| 524 | /* engine related literals should not be delayed anyway */ |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | if (ulag >= vlag) { |
| 529 | assert(maxOverlap(ul, vl) <= vl.elength() - vlag + ulag); |
| 530 | return true; |
| 531 | } |
| 532 | |
| 533 | size_t min_allowed_delta = vlag - ulag; |
| 534 | DEBUG_PRINTF("min allow distace %zu\n" , min_allowed_delta); |
| 535 | |
| 536 | for (size_t i = 0; i < min_allowed_delta; i++) { |
| 537 | if (stringsCanFinishAtSameSpot(ul.s, vl.s.begin(), vl.s.end() - i)) { |
| 538 | DEBUG_PRINTF("v can follow u at a (too close) distance of %zu\n" , i); |
| 539 | return false; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | DEBUG_PRINTF("OK\n" ); |
| 544 | return true; |
| 545 | } |
| 546 | |
| 547 | static |
| 548 | bool hasSameEngineType(const RoseVertexProps &u_prop, |
| 549 | const RoseVertexProps &v_prop) { |
| 550 | const left_id u_left = u_prop.left; |
| 551 | const left_id v_left = v_prop.left; |
| 552 | |
| 553 | return !u_left.haig() == !v_left.haig() |
| 554 | && !u_left.dfa() == !v_left.dfa() |
| 555 | && !u_left.castle() == !v_left.castle() |
| 556 | && !u_left.graph() == !v_left.graph(); |
| 557 | } |
| 558 | |
| 559 | /** |
| 560 | * Verifies that merging the leftfix of vertices does not cause conflicts due |
| 561 | * to the literals on the right. |
| 562 | * |
| 563 | * The main concern is that the lags of the literals and overlap between them |
| 564 | * allow the engine check offset to potentially regress. |
| 565 | * |
| 566 | * Parameters are vectors of literals + lag pairs. |
| 567 | * |
| 568 | * Note: if more constraints of when the leftfixes were going to be checked |
| 569 | * (mandatory lookarounds passing, offset checks), more merges may be allowed. |
| 570 | */ |
| 571 | static |
| 572 | bool compatibleLiteralsForMerge( |
| 573 | const vector<pair<const rose_literal_id *, u32>> &ulits, |
| 574 | const vector<pair<const rose_literal_id *, u32>> &vlits) { |
| 575 | assert(!ulits.empty()); |
| 576 | assert(!vlits.empty()); |
| 577 | |
| 578 | // We cannot merge engines that prefix literals in different tables. |
| 579 | if (ulits[0].first->table != vlits[0].first->table) { |
| 580 | DEBUG_PRINTF("literals in different tables\n" ); |
| 581 | return false; |
| 582 | } |
| 583 | |
| 584 | // We don't handle delayed cases yet. |
| 585 | for (const auto &ue : ulits) { |
| 586 | const rose_literal_id &ul = *ue.first; |
| 587 | if (ul.delay) { |
| 588 | return false; |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | for (const auto &ve : vlits) { |
| 593 | const rose_literal_id &vl = *ve.first; |
| 594 | if (vl.delay) { |
| 595 | return false; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | /* An engine requires that all accesses to it are ordered by offsets. (ie, |
| 600 | we can not check an engine's state at offset Y, if we have already |
| 601 | checked its status at offset X and X > Y). If we can not establish that |
| 602 | the literals used for triggering will satisfy this property, then it is |
| 603 | not safe to merge the engine. */ |
| 604 | for (const auto &ue : ulits) { |
| 605 | const rose_literal_id &ul = *ue.first; |
| 606 | u32 ulag = ue.second; |
| 607 | |
| 608 | for (const auto &ve : vlits) { |
| 609 | const rose_literal_id &vl = *ve.first; |
| 610 | u32 vlag = ve.second; |
| 611 | |
| 612 | if (!checkPrefix(ul, ulag, vl, vlag) |
| 613 | || !checkPrefix(vl, vlag, ul, ulag)) { |
| 614 | DEBUG_PRINTF("prefix check failed\n" ); |
| 615 | return false; |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | return true; |
| 621 | } |
| 622 | |
| 623 | /** |
| 624 | * True if this graph has few enough accel states to be implemented as an NFA |
| 625 | * with all of those states actually becoming accel schemes. |
| 626 | */ |
| 627 | static |
| 628 | bool isAccelerableLeftfix(const RoseBuildImpl &build, const NGHolder &g) { |
| 629 | u32 num = countAccelStates(g, &build.rm, build.cc); |
| 630 | DEBUG_PRINTF("graph with %zu vertices has %u accel states\n" , |
| 631 | num_vertices(g), num); |
| 632 | return num <= NFA_MAX_ACCEL_STATES; |
| 633 | } |
| 634 | |
| 635 | /** |
| 636 | * In block mode, we want to be a little more selective -- We will only merge |
| 637 | * prefix engines when the literal sets are the same or if the merged graph |
| 638 | * has only grown by a small amount. |
| 639 | */ |
| 640 | static |
| 641 | bool safeBlockModeMerge(const RoseBuildImpl &build, RoseVertex u, |
| 642 | RoseVertex v) { |
| 643 | assert(!build.cc.streaming); |
| 644 | assert(build.isRootSuccessor(u) == build.isRootSuccessor(v)); |
| 645 | |
| 646 | // Always merge infixes if we can (subject to the other criteria in |
| 647 | // mergeableRoseVertices). |
| 648 | if (!build.isRootSuccessor(u)) { |
| 649 | return true; |
| 650 | } |
| 651 | |
| 652 | const RoseGraph &g = build.g; |
| 653 | |
| 654 | // Merge prefixes with identical literal sets (as we'd have to run them |
| 655 | // both when we see those literals anyway). |
| 656 | if (g[u].literals == g[v].literals) { |
| 657 | return true; |
| 658 | } |
| 659 | |
| 660 | // The rest of this function only deals with the case when both vertices |
| 661 | // have graph leftfixes. |
| 662 | if (!g[u].left.graph || !g[v].left.graph) { |
| 663 | return false; |
| 664 | } |
| 665 | |
| 666 | const size_t u_count = num_vertices(*g[u].left.graph); |
| 667 | const size_t v_count = num_vertices(*g[v].left.graph); |
| 668 | DEBUG_PRINTF("u prefix has %zu vertices, v prefix has %zu vertices\n" , |
| 669 | u_count, v_count); |
| 670 | if (u_count > MAX_BLOCK_PREFIX_MERGE_VERTICES || |
| 671 | v_count > MAX_BLOCK_PREFIX_MERGE_VERTICES) { |
| 672 | DEBUG_PRINTF("prefixes too big already\n" ); |
| 673 | return false; |
| 674 | } |
| 675 | |
| 676 | DEBUG_PRINTF("trying merge\n" ); |
| 677 | NGHolder h; |
| 678 | cloneHolder(h, *g[v].left.graph); |
| 679 | if (!mergeNfaPair(*g[u].left.graph, h, nullptr, build.cc)) { |
| 680 | DEBUG_PRINTF("couldn't merge\n" ); |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | const size_t merged_count = num_vertices(h); |
| 685 | DEBUG_PRINTF("merged result has %zu vertices\n" , merged_count); |
| 686 | if (merged_count > MAX_BLOCK_PREFIX_MERGE_VERTICES) { |
| 687 | DEBUG_PRINTF("exceeded limit\n" ); |
| 688 | return false; |
| 689 | } |
| 690 | |
| 691 | // We want to only perform merges that take advantage of some |
| 692 | // commonality in the two input graphs, so we check that the number of |
| 693 | // vertices has only grown a small amount: somewhere between the sum |
| 694 | // (no commonality) and the max (no growth at all) of the vertex counts |
| 695 | // of the input graphs. |
| 696 | const size_t max_size = u_count + v_count; |
| 697 | const size_t min_size = max(u_count, v_count); |
| 698 | const size_t max_growth = ((max_size - min_size) * 25) / 100; |
| 699 | if (merged_count > min_size + max_growth) { |
| 700 | DEBUG_PRINTF("grew too much\n" ); |
| 701 | return false; |
| 702 | } |
| 703 | |
| 704 | // We don't want to squander any chances at accelerating. |
| 705 | if (!isAccelerableLeftfix(build, h) && |
| 706 | (isAccelerableLeftfix(build, *g[u].left.graph) || |
| 707 | isAccelerableLeftfix(build, *g[v].left.graph))) { |
| 708 | DEBUG_PRINTF("would lose accel property\n" ); |
| 709 | return false; |
| 710 | } |
| 711 | |
| 712 | DEBUG_PRINTF("safe to merge\n" ); |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | bool mergeableRoseVertices(const RoseBuildImpl &tbi, RoseVertex u, |
| 717 | RoseVertex v) { |
| 718 | assert(u != v); |
| 719 | |
| 720 | if (!hasSameEngineType(tbi.g[u], tbi.g[v])) { |
| 721 | return false; |
| 722 | } |
| 723 | |
| 724 | if (!tbi.cc.streaming && !safeBlockModeMerge(tbi, u, v)) { |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | /* We cannot merge prefixes/vertices if they are successors of different |
| 729 | * root vertices */ |
| 730 | if (tbi.isRootSuccessor(u)) { |
| 731 | assert(tbi.isRootSuccessor(v)); |
| 732 | set<RoseVertex> u_preds; |
| 733 | set<RoseVertex> v_preds; |
| 734 | insert(&u_preds, inv_adjacent_vertices(u, tbi.g)); |
| 735 | insert(&v_preds, inv_adjacent_vertices(v, tbi.g)); |
| 736 | |
| 737 | if (u_preds != v_preds) { |
| 738 | return false; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | u32 ulag = tbi.g[u].left.lag; |
| 743 | vector<pair<const rose_literal_id *, u32>> ulits; |
| 744 | ulits.reserve(tbi.g[u].literals.size()); |
| 745 | for (u32 id : tbi.g[u].literals) { |
| 746 | ulits.emplace_back(&tbi.literals.at(id), ulag); |
| 747 | } |
| 748 | |
| 749 | u32 vlag = tbi.g[v].left.lag; |
| 750 | vector<pair<const rose_literal_id *, u32>> vlits; |
| 751 | vlits.reserve(tbi.g[v].literals.size()); |
| 752 | for (u32 id : tbi.g[v].literals) { |
| 753 | vlits.emplace_back(&tbi.literals.at(id), vlag); |
| 754 | } |
| 755 | |
| 756 | if (!compatibleLiteralsForMerge(ulits, vlits)) { |
| 757 | return false; |
| 758 | } |
| 759 | |
| 760 | DEBUG_PRINTF("roses on %zu and %zu are mergeable\n" , tbi.g[u].index, |
| 761 | tbi.g[v].index); |
| 762 | return true; |
| 763 | } |
| 764 | |
| 765 | /* We cannot merge an engine, if a trigger literal and a post literal overlap |
| 766 | * in such a way that engine status needs to be check at a point before the |
| 767 | * engine's current location. |
| 768 | * |
| 769 | * i.e., for a trigger literal u and a pos literal v, |
| 770 | * where delta is the earliest v can appear after t, |
| 771 | * we require that v_loc - v_lag >= u_loc |
| 772 | * ==> u_loc + delta - v_lag >= u_loc |
| 773 | * ==> delta >= v_lag |
| 774 | * |
| 775 | */ |
| 776 | static |
| 777 | bool checkPredDelay(const rose_literal_id &ul, const rose_literal_id &vl, |
| 778 | u32 vlag) { |
| 779 | DEBUG_PRINTF("%s %s (lag %u)\n" , escapeString(ul.s).c_str(), |
| 780 | escapeString(vl.s).c_str(), vlag); |
| 781 | |
| 782 | for (size_t i = 0; i < vlag; i++) { |
| 783 | if (stringsCanFinishAtSameSpot(ul.s, vl.s.begin(), vl.s.end() - i)) { |
| 784 | DEBUG_PRINTF("v can follow u at a (too close) distance of %zu\n" , i); |
| 785 | return false; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | DEBUG_PRINTF("OK\n" ); |
| 790 | return true; |
| 791 | } |
| 792 | |
| 793 | template<typename VertexCont> |
| 794 | static never_inline |
| 795 | bool checkPredDelays(const RoseBuildImpl &build, const VertexCont &v1, |
| 796 | const VertexCont &v2) { |
| 797 | flat_set<RoseVertex> preds; |
| 798 | for (auto v : v1) { |
| 799 | insert(&preds, inv_adjacent_vertices(v, build.g)); |
| 800 | } |
| 801 | |
| 802 | flat_set<u32> pred_lits; |
| 803 | |
| 804 | /* No need to examine delays of a common pred - as it must already have |
| 805 | * survived the delay checks. |
| 806 | * |
| 807 | * This is important when the pred is in the anchored table as |
| 808 | * the literal is no longer available. */ |
| 809 | flat_set<RoseVertex> known_good_preds; |
| 810 | for (auto v : v2) { |
| 811 | insert(&known_good_preds, inv_adjacent_vertices(v, build.g)); |
| 812 | } |
| 813 | |
| 814 | for (auto u : preds) { |
| 815 | if (!contains(known_good_preds, u)) { |
| 816 | insert(&pred_lits, build.g[u].literals); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | vector<const rose_literal_id *> pred_rose_lits; |
| 821 | pred_rose_lits.reserve(pred_lits.size()); |
| 822 | for (const auto &p : pred_lits) { |
| 823 | pred_rose_lits.push_back(&build.literals.at(p)); |
| 824 | } |
| 825 | |
| 826 | for (auto v : v2) { |
| 827 | u32 vlag = build.g[v].left.lag; |
| 828 | if (!vlag) { |
| 829 | continue; |
| 830 | } |
| 831 | |
| 832 | for (const u32 vlit : build.g[v].literals) { |
| 833 | const rose_literal_id &vl = build.literals.at(vlit); |
| 834 | assert(!vl.delay); // this should never have got this far? |
| 835 | for (const auto &ul : pred_rose_lits) { |
| 836 | assert(!ul->delay); // this should never have got this far? |
| 837 | |
| 838 | if (!checkPredDelay(*ul, vl, vlag)) { |
| 839 | return false; |
| 840 | } |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | return true; |
| 846 | } |
| 847 | |
| 848 | static |
| 849 | bool mergeableRoseVertices(const RoseBuildImpl &tbi, |
| 850 | const deque<RoseVertex> &verts1, |
| 851 | const deque<RoseVertex> &verts2) { |
| 852 | assert(!verts1.empty()); |
| 853 | assert(!verts2.empty()); |
| 854 | |
| 855 | RoseVertex u_front = verts1.front(); |
| 856 | RoseVertex v_front = verts2.front(); |
| 857 | |
| 858 | /* all vertices must have the same engine type: assume all verts in each |
| 859 | * group are already of the same type */ |
| 860 | if (!hasSameEngineType(tbi.g[u_front], tbi.g[v_front])) { |
| 861 | return false; |
| 862 | } |
| 863 | |
| 864 | bool is_prefix = tbi.isRootSuccessor(u_front); |
| 865 | |
| 866 | /* We cannot merge prefixes/vertices if they are successors of different |
| 867 | * root vertices: similarly, assume the grouped vertices are compatible */ |
| 868 | if (is_prefix) { |
| 869 | assert(tbi.isRootSuccessor(v_front)); |
| 870 | set<RoseVertex> u_preds; |
| 871 | set<RoseVertex> v_preds; |
| 872 | insert(&u_preds, inv_adjacent_vertices(u_front, tbi.g)); |
| 873 | insert(&v_preds, inv_adjacent_vertices(v_front, tbi.g)); |
| 874 | |
| 875 | if (u_preds != v_preds) { |
| 876 | return false; |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | vector<pair<const rose_literal_id *, u32>> ulits; /* lit + lag pairs */ |
| 881 | for (auto a : verts1) { |
| 882 | if (!tbi.cc.streaming && !safeBlockModeMerge(tbi, v_front, a)) { |
| 883 | return false; |
| 884 | } |
| 885 | |
| 886 | u32 ulag = tbi.g[a].left.lag; |
| 887 | for (u32 id : tbi.g[a].literals) { |
| 888 | ulits.emplace_back(&tbi.literals.at(id), ulag); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | vector<pair<const rose_literal_id *, u32>> vlits; |
| 893 | for (auto a : verts2) { |
| 894 | if (!tbi.cc.streaming && !safeBlockModeMerge(tbi, u_front, a)) { |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | u32 vlag = tbi.g[a].left.lag; |
| 899 | for (u32 id : tbi.g[a].literals) { |
| 900 | vlits.emplace_back(&tbi.literals.at(id), vlag); |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | if (!compatibleLiteralsForMerge(ulits, vlits)) { |
| 905 | return false; |
| 906 | } |
| 907 | |
| 908 | // Check preds are compatible as well. |
| 909 | if (!checkPredDelays(tbi, verts1, verts2) |
| 910 | || !checkPredDelays(tbi, verts2, verts1)) { |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | DEBUG_PRINTF("vertex sets are mergeable\n" ); |
| 915 | return true; |
| 916 | } |
| 917 | |
| 918 | bool mergeableRoseVertices(const RoseBuildImpl &tbi, const set<RoseVertex> &v1, |
| 919 | const set<RoseVertex> &v2) { |
| 920 | const deque<RoseVertex> vv1(v1.begin(), v1.end()); |
| 921 | const deque<RoseVertex> vv2(v2.begin(), v2.end()); |
| 922 | return mergeableRoseVertices(tbi, vv1, vv2); |
| 923 | } |
| 924 | |
| 925 | /** \brief Priority queue element for Rose merges. */ |
| 926 | namespace { |
| 927 | struct RoseMergeCandidate { |
| 928 | RoseMergeCandidate(const left_id &r1_in, const left_id &r2_in, u32 cpl_in, |
| 929 | u32 tb) |
| 930 | : r1(r1_in), r2(r2_in), stopxor(0), cpl(cpl_in), states(0), |
| 931 | tie_breaker(tb) { |
| 932 | if (r1.graph() && r2.graph()) { |
| 933 | const NGHolder &h1 = *r1.graph(), &h2 = *r2.graph(); |
| 934 | /* som_none as haigs don't merge and just a guiding heuristic */ |
| 935 | CharReach stop1 = findStopAlphabet(h1, SOM_NONE); |
| 936 | CharReach stop2 = findStopAlphabet(h2, SOM_NONE); |
| 937 | stopxor = (stop1 ^ stop2).count(); |
| 938 | |
| 939 | // We use the number of vertices as an approximation of the state |
| 940 | // count here, as this is just feeding a comparison. |
| 941 | u32 vertex_count = num_vertices(h1) + num_vertices(h2); |
| 942 | states = vertex_count - min(vertex_count, cpl); |
| 943 | } else if (r1.castle() && r2.castle()) { |
| 944 | // FIXME |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | bool operator<(const RoseMergeCandidate &a) const { |
| 949 | if (stopxor != a.stopxor) { |
| 950 | return stopxor > a.stopxor; |
| 951 | } |
| 952 | if (cpl != a.cpl) { |
| 953 | return cpl < a.cpl; |
| 954 | } |
| 955 | if (states != a.states) { |
| 956 | return states > a.states; |
| 957 | } |
| 958 | return tie_breaker < a.tie_breaker; |
| 959 | } |
| 960 | |
| 961 | left_id r1; |
| 962 | left_id r2; |
| 963 | u32 stopxor; |
| 964 | u32 cpl; //!< common prefix length |
| 965 | u32 states; |
| 966 | u32 tie_breaker; //!< determinism |
| 967 | }; |
| 968 | } |
| 969 | |
| 970 | static |
| 971 | bool mergeLeftfixPair(RoseBuildImpl &build, left_id &r1, left_id &r2, |
| 972 | const vector<RoseVertex> &verts1, |
| 973 | const vector<RoseVertex> &verts2) { |
| 974 | assert(!verts1.empty() && !verts2.empty()); |
| 975 | |
| 976 | DEBUG_PRINTF("merging pair of leftfixes:\n" ); |
| 977 | DEBUG_PRINTF(" A:%016zx: tops %s\n" , r1.hash(), |
| 978 | as_string_list(all_tops(r1)).c_str()); |
| 979 | DEBUG_PRINTF(" B:%016zx: tops %s\n" , r2.hash(), |
| 980 | as_string_list(all_tops(r2)).c_str()); |
| 981 | |
| 982 | RoseGraph &g = build.g; |
| 983 | |
| 984 | if (r1.graph()) { |
| 985 | assert(r2.graph()); |
| 986 | assert(r1.graph()->kind == r2.graph()->kind); |
| 987 | if (!mergeNfaPair(*r1.graph(), *r2.graph(), nullptr, build.cc)) { |
| 988 | DEBUG_PRINTF("nfa merge failed\n" ); |
| 989 | return false; |
| 990 | } |
| 991 | |
| 992 | /* The graph in r1 has been merged into the graph in r2. Update r1's |
| 993 | * vertices with the new graph ptr. mergeNfaPair() does not alter the |
| 994 | * tops from the input graph so no need to update top values. |
| 995 | * |
| 996 | * It is the responsibility of the caller to ensure that the tops are |
| 997 | * distinct when they have different trigger conditions. |
| 998 | * [Note: mergeLeftfixesVariableLag() should have a common parent set] |
| 999 | */ |
| 1000 | shared_ptr<NGHolder> &h = g[verts2.front()].left.graph; |
| 1001 | for (RoseVertex v : verts1) { |
| 1002 | g[v].left.graph = h; |
| 1003 | } |
| 1004 | |
| 1005 | return true; |
| 1006 | } else if (r1.castle()) { |
| 1007 | assert(r2.castle()); |
| 1008 | assert(build.cc.grey.allowCastle); |
| 1009 | |
| 1010 | map<u32, u32> top_map; |
| 1011 | if (!mergeCastle(*r2.castle(), *r1.castle(), top_map)) { |
| 1012 | DEBUG_PRINTF("castle merge failed\n" ); |
| 1013 | return false; |
| 1014 | } |
| 1015 | |
| 1016 | // The castle in r1 has been merged into the castle in r2, with tops |
| 1017 | // remapped as per top_map. |
| 1018 | const shared_ptr<CastleProto> &c = g[verts2.front()].left.castle; |
| 1019 | for (RoseVertex v : verts1) { |
| 1020 | g[v].left.castle = c; |
| 1021 | for (const auto &e : in_edges_range(v, g)) { |
| 1022 | g[e].rose_top = top_map.at(g[e].rose_top); |
| 1023 | } |
| 1024 | } |
| 1025 | return true; |
| 1026 | } |
| 1027 | |
| 1028 | assert(0); |
| 1029 | return false; |
| 1030 | } |
| 1031 | |
| 1032 | /** |
| 1033 | * Checks that there is no problem due to the involved vertices if we merge two |
| 1034 | * leftfix engines. |
| 1035 | * |
| 1036 | * This functions takes the vertices on the right of the two engines. |
| 1037 | * |
| 1038 | * Unlike mergeableRoseVertices(), this does not: |
| 1039 | * - check that engines themselves can be merged |
| 1040 | * - use heuristics to find out if merging the engines is wise. |
| 1041 | */ |
| 1042 | static |
| 1043 | bool checkVerticesOkForLeftfixMerge(const RoseBuildImpl &build, |
| 1044 | const vector<RoseVertex> &targets_1, |
| 1045 | const vector<RoseVertex> &targets_2) { |
| 1046 | assert(!targets_1.empty()); |
| 1047 | assert(!targets_2.empty()); |
| 1048 | |
| 1049 | vector<pair<const rose_literal_id *, u32>> ulits; /* lit + lag pairs */ |
| 1050 | for (auto a : targets_1) { |
| 1051 | u32 ulag = build.g[a].left.lag; |
| 1052 | for (u32 id : build.g[a].literals) { |
| 1053 | ulits.emplace_back(&build.literals.at(id), ulag); |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | vector<pair<const rose_literal_id *, u32>> vlits; |
| 1058 | for (auto a : targets_2) { |
| 1059 | u32 vlag = build.g[a].left.lag; |
| 1060 | for (u32 id : build.g[a].literals) { |
| 1061 | vlits.emplace_back(&build.literals.at(id), vlag); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | if (!compatibleLiteralsForMerge(ulits, vlits)) { |
| 1066 | return false; |
| 1067 | } |
| 1068 | |
| 1069 | // Check preds are compatible as well. |
| 1070 | if (!checkPredDelays(build, targets_1, targets_2) |
| 1071 | || !checkPredDelays(build, targets_2, targets_1)) { |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | DEBUG_PRINTF("vertex sets are mergeable\n" ); |
| 1076 | return true; |
| 1077 | } |
| 1078 | |
| 1079 | /** |
| 1080 | * In block mode, we want to be a little more selective -- we will only merge |
| 1081 | * prefix engines when the literal sets are the same or if the merged graph |
| 1082 | * has only grown by a small amount. |
| 1083 | */ |
| 1084 | static |
| 1085 | bool goodBlockModeMerge(const RoseBuildImpl &build, |
| 1086 | const vector<RoseVertex> &u_verts, const left_id &u_eng, |
| 1087 | const vector<RoseVertex> &v_verts, |
| 1088 | const left_id &v_eng) { |
| 1089 | assert(!build.cc.streaming); |
| 1090 | |
| 1091 | // Always merge infixes if we can (subject to the other criteria in |
| 1092 | // mergeableRoseVertices). |
| 1093 | if (!build.isRootSuccessor(u_verts.front())) { |
| 1094 | return true; |
| 1095 | } |
| 1096 | |
| 1097 | const RoseGraph &g = build.g; |
| 1098 | |
| 1099 | flat_set<u32> u_lits; |
| 1100 | for (RoseVertex u : u_verts) { |
| 1101 | insert(&u_lits, g[u].literals); |
| 1102 | } |
| 1103 | |
| 1104 | flat_set<u32> v_lits; |
| 1105 | for (RoseVertex v : v_verts) { |
| 1106 | insert(&v_lits, g[v].literals); |
| 1107 | } |
| 1108 | |
| 1109 | // Merge prefixes with identical literal sets (as we'd have to run them |
| 1110 | // both when we see those literals anyway). |
| 1111 | if (u_lits == v_lits) { |
| 1112 | return true; |
| 1113 | } |
| 1114 | |
| 1115 | // The rest of this function only deals with the case when have graph |
| 1116 | // leftfixes. |
| 1117 | if (!u_eng.graph()) { |
| 1118 | return false; |
| 1119 | } |
| 1120 | assert(v_eng.graph()); |
| 1121 | const NGHolder &ug = *u_eng.graph(); |
| 1122 | const NGHolder &vg = *v_eng.graph(); |
| 1123 | |
| 1124 | size_t u_count = num_vertices(ug); |
| 1125 | size_t v_count = num_vertices(vg); |
| 1126 | DEBUG_PRINTF("u prefix has %zu vertices, v prefix has %zu vertices\n" , |
| 1127 | u_count, v_count); |
| 1128 | if (u_count > MAX_BLOCK_PREFIX_MERGE_VERTICES || |
| 1129 | v_count > MAX_BLOCK_PREFIX_MERGE_VERTICES) { |
| 1130 | DEBUG_PRINTF("prefixes too big already\n" ); |
| 1131 | return false; |
| 1132 | } |
| 1133 | |
| 1134 | DEBUG_PRINTF("trying merge\n" ); |
| 1135 | NGHolder h; |
| 1136 | cloneHolder(h, vg); |
| 1137 | if (!mergeNfaPair(ug, h, nullptr, build.cc)) { |
| 1138 | DEBUG_PRINTF("couldn't merge\n" ); |
| 1139 | return false; |
| 1140 | } |
| 1141 | |
| 1142 | const size_t merged_count = num_vertices(h); |
| 1143 | DEBUG_PRINTF("merged result has %zu vertices\n" , merged_count); |
| 1144 | if (merged_count > MAX_BLOCK_PREFIX_MERGE_VERTICES) { |
| 1145 | DEBUG_PRINTF("exceeded limit\n" ); |
| 1146 | return false; |
| 1147 | } |
| 1148 | |
| 1149 | // We want to only perform merges that take advantage of some |
| 1150 | // commonality in the two input graphs, so we check that the number of |
| 1151 | // vertices has only grown a small amount: somewhere between the sum |
| 1152 | // (no commonality) and the max (no growth at all) of the vertex counts |
| 1153 | // of the input graphs. |
| 1154 | size_t max_size = u_count + v_count; |
| 1155 | size_t min_size = max(u_count, v_count); |
| 1156 | size_t max_growth = ((max_size - min_size) * 25) / 100; |
| 1157 | if (merged_count > min_size + max_growth) { |
| 1158 | DEBUG_PRINTF("grew too much\n" ); |
| 1159 | return false; |
| 1160 | } |
| 1161 | |
| 1162 | // We don't want to squander any chances at accelerating. |
| 1163 | if (!isAccelerableLeftfix(build, h) |
| 1164 | && (isAccelerableLeftfix(build, ug) |
| 1165 | || isAccelerableLeftfix(build, vg))) { |
| 1166 | DEBUG_PRINTF("would lose accel property\n" ); |
| 1167 | return false; |
| 1168 | } |
| 1169 | |
| 1170 | DEBUG_PRINTF("safe to merge\n" ); |
| 1171 | return true; |
| 1172 | } |
| 1173 | |
| 1174 | /** |
| 1175 | * Merge r1 into r2 if safe and appropriate. Returns true on success. |
| 1176 | */ |
| 1177 | static |
| 1178 | bool mergeLeftVL_tryMergeCandidate(RoseBuildImpl &build, left_id &r1, |
| 1179 | const vector<RoseVertex> &targets_1, |
| 1180 | left_id &r2, |
| 1181 | const vector<RoseVertex> &targets_2) { |
| 1182 | if (targets_1.empty() || targets_2.empty()) { |
| 1183 | /* one of the engines has already been merged away */ |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | assert(!r1.graph() == !r2.graph()); |
| 1188 | if (r1.graph()) { |
| 1189 | NGHolder *h1 = r1.graph(); |
| 1190 | NGHolder *h2 = r2.graph(); |
| 1191 | CharReach stop1 = findStopAlphabet(*h1, SOM_NONE); |
| 1192 | CharReach stop2 = findStopAlphabet(*h2, SOM_NONE); |
| 1193 | CharReach stopboth = stop1 & stop2; |
| 1194 | DEBUG_PRINTF("stop1=%zu, stop2=%zu, stopboth=%zu\n" , stop1.count(), |
| 1195 | stop2.count(), stopboth.count()); |
| 1196 | if (stopboth.count() < 10 |
| 1197 | && (stop1.count() > 10 || stop2.count() > 10)) { |
| 1198 | DEBUG_PRINTF("skip merge, would kill stop alphabet\n" ); |
| 1199 | return false; |
| 1200 | } |
| 1201 | size_t maxstop = max(stop1.count(), stop2.count()); |
| 1202 | if (maxstop > 200 && stopboth.count() < 200) { |
| 1203 | DEBUG_PRINTF("skip merge, would reduce stop alphabet\n" ); |
| 1204 | return false; |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | /* Rechecking that the targets are compatible, as we may have already |
| 1209 | * merged new states into r1 or r2 and we need to verify that this |
| 1210 | * candidate is still ok. */ |
| 1211 | if (!checkVerticesOkForLeftfixMerge(build, targets_1, targets_2)) { |
| 1212 | return false; |
| 1213 | } |
| 1214 | |
| 1215 | if (!build.cc.streaming |
| 1216 | && !goodBlockModeMerge(build, targets_1, r1, targets_2, r2)) { |
| 1217 | return false; |
| 1218 | } |
| 1219 | |
| 1220 | return mergeLeftfixPair(build, r1, r2, targets_1, targets_2); |
| 1221 | } |
| 1222 | |
| 1223 | static |
| 1224 | bool nfaHasNarrowStart(const NGHolder &g) { |
| 1225 | if (out_degree(g.startDs, g) > 1) { |
| 1226 | return false; // unanchored |
| 1227 | } |
| 1228 | |
| 1229 | CharReach cr; |
| 1230 | |
| 1231 | for (auto v : adjacent_vertices_range(g.start, g)) { |
| 1232 | if (v == g.startDs) { |
| 1233 | continue; |
| 1234 | } |
| 1235 | cr |= g[v].char_reach; |
| 1236 | } |
| 1237 | return cr.count() <= NARROW_START_MAX; |
| 1238 | } |
| 1239 | |
| 1240 | static |
| 1241 | bool nfaHasFiniteMaxWidth(const NGHolder &g) { |
| 1242 | return findMaxWidth(g).is_finite(); |
| 1243 | } |
| 1244 | |
| 1245 | static |
| 1246 | bool hasReformedStartDotStar(const NGHolder &h, const Grey &grey) { |
| 1247 | if (!proper_out_degree(h.startDs, h)) { |
| 1248 | return false; |
| 1249 | } |
| 1250 | |
| 1251 | assert(!is_triggered(h)); |
| 1252 | |
| 1253 | NGHolder h_temp; |
| 1254 | cloneHolder(h_temp, h); |
| 1255 | |
| 1256 | vector<BoundedRepeatData> repeats; |
| 1257 | bool suitable_for_sds_reforming = false; |
| 1258 | const map<u32, u32> fixed_depth_tops; /* not relevant for cfa check */ |
| 1259 | const map<u32, vector<vector<CharReach>>> triggers; /* not for cfa check */ |
| 1260 | const bool simple_model_selection = true; // FIRST is considered simple |
| 1261 | analyseRepeats(h_temp, nullptr, fixed_depth_tops, triggers, &repeats, true, |
| 1262 | simple_model_selection, grey, &suitable_for_sds_reforming); |
| 1263 | |
| 1264 | return suitable_for_sds_reforming; |
| 1265 | } |
| 1266 | |
| 1267 | static |
| 1268 | u32 commonPrefixLength(left_id &r1, left_id &r2) { |
| 1269 | if (r1.graph() && r2.graph()) { |
| 1270 | return commonPrefixLength(*r1.graph(), *r2.graph()); |
| 1271 | } else if (r1.castle() && r2.castle()) { |
| 1272 | return min(findMinWidth(*r1.castle()), findMinWidth(*r2.castle())); |
| 1273 | } |
| 1274 | return 0; |
| 1275 | } |
| 1276 | |
| 1277 | namespace { |
| 1278 | struct MergeKey { |
| 1279 | MergeKey(const left_id &left, flat_set<RoseVertex> parents_in) : |
| 1280 | parents(std::move(parents_in)) { |
| 1281 | |
| 1282 | // We want to distinguish prefixes (but not infixes) on whether they |
| 1283 | // have a narrow start or max width. |
| 1284 | if (left.graph() && !is_triggered(*left.graph())) { |
| 1285 | const NGHolder &h = *left.graph(); |
| 1286 | narrowStart = nfaHasNarrowStart(h); |
| 1287 | hasMaxWidth = nfaHasFiniteMaxWidth(h); |
| 1288 | } else { |
| 1289 | narrowStart = false; |
| 1290 | hasMaxWidth = false; |
| 1291 | } |
| 1292 | |
| 1293 | if (left.castle()) { |
| 1294 | /* castles should have a non-empty reach */ |
| 1295 | assert(left.castle()->reach().any()); |
| 1296 | castle_cr = left.castle()->reach(); |
| 1297 | } else { |
| 1298 | assert(left.graph()); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | bool operator<(const MergeKey &b) const { |
| 1303 | const MergeKey &a = *this; |
| 1304 | ORDER_CHECK(narrowStart); |
| 1305 | ORDER_CHECK(hasMaxWidth); |
| 1306 | ORDER_CHECK(castle_cr); |
| 1307 | ORDER_CHECK(parents); |
| 1308 | return false; |
| 1309 | } |
| 1310 | |
| 1311 | // NOTE: these two bool discriminators are only used for prefixes, not |
| 1312 | // infixes. |
| 1313 | bool narrowStart; |
| 1314 | bool hasMaxWidth; |
| 1315 | CharReach castle_cr; /* empty for graphs, reach (non-empty) for castles. */ |
| 1316 | |
| 1317 | flat_set<RoseVertex> parents; |
| 1318 | }; |
| 1319 | } |
| 1320 | |
| 1321 | template <typename T> |
| 1322 | static |
| 1323 | void chunk(vector<T> in, vector<vector<T>> *out, size_t chunk_size) { |
| 1324 | if (in.size() <= chunk_size) { |
| 1325 | out->push_back(std::move(in)); |
| 1326 | return; |
| 1327 | } |
| 1328 | |
| 1329 | out->push_back(vector<T>()); |
| 1330 | out->back().reserve(chunk_size); |
| 1331 | for (const auto &t : in) { |
| 1332 | if (out->back().size() >= chunk_size) { |
| 1333 | out->push_back(vector<T>()); |
| 1334 | out->back().reserve(chunk_size); |
| 1335 | } |
| 1336 | out->back().push_back(std::move(t)); |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | static |
| 1341 | insertion_ordered_map<left_id, vector<RoseVertex>> get_eng_verts(RoseGraph &g) { |
| 1342 | insertion_ordered_map<left_id, vector<RoseVertex>> eng_verts; |
| 1343 | for (auto v : vertices_range(g)) { |
| 1344 | const auto &left = g[v].left; |
| 1345 | if (!left) { |
| 1346 | continue; |
| 1347 | } |
| 1348 | assert(contains(all_reports(left), left.leftfix_report)); |
| 1349 | eng_verts[left].push_back(v); |
| 1350 | } |
| 1351 | |
| 1352 | return eng_verts; |
| 1353 | } |
| 1354 | |
| 1355 | /** |
| 1356 | * This pass attempts to merge prefix/infix engines which share a common set of |
| 1357 | * parent vertices. |
| 1358 | * |
| 1359 | * Engines are greedily merged pairwise by this process based on a priority |
| 1360 | * queue keyed off the common prefix length. |
| 1361 | * |
| 1362 | * Engines are not merged if the lags are not compatible or if it would damage |
| 1363 | * the stop alphabet. |
| 1364 | * |
| 1365 | * Infixes: |
| 1366 | * - It is expected that when this is run all infixes are still at the single |
| 1367 | * top stage as we have not yet merged unrelated infixes together. After |
| 1368 | * execution, castles may have multiple (but equivalent) tops. |
| 1369 | * |
| 1370 | * Prefixes: |
| 1371 | * - transient prefixes are not considered. |
| 1372 | * - with a max width or a narrow start are kept segregated by |
| 1373 | * this phase and can only be merged with similar infixes. |
| 1374 | * - in block mode, merges are only performed if literal sets are the same. |
| 1375 | * - merges are not considered in cases where dot star start state will be |
| 1376 | * reformed to optimise a leading repeat. |
| 1377 | */ |
| 1378 | void mergeLeftfixesVariableLag(RoseBuildImpl &build) { |
| 1379 | if (!build.cc.grey.mergeRose) { |
| 1380 | return; |
| 1381 | } |
| 1382 | assert(!hasOrphanedTops(build)); |
| 1383 | |
| 1384 | RoseGraph &g = build.g; |
| 1385 | |
| 1386 | DEBUG_PRINTF("-----\n" ); |
| 1387 | DEBUG_PRINTF("entry\n" ); |
| 1388 | DEBUG_PRINTF("-----\n" ); |
| 1389 | |
| 1390 | auto eng_verts = get_eng_verts(g); |
| 1391 | |
| 1392 | map<MergeKey, vector<left_id>> engine_groups; |
| 1393 | for (const auto &e : eng_verts) { |
| 1394 | const left_id &left = e.first; |
| 1395 | const auto &verts = e.second; |
| 1396 | // Only non-transient for the moment. |
| 1397 | if (contains(build.transient, left)) { |
| 1398 | continue; |
| 1399 | } |
| 1400 | |
| 1401 | // No forced McClellan or Haig infix merges. |
| 1402 | if (left.dfa() || left.haig()) { |
| 1403 | continue; |
| 1404 | } |
| 1405 | assert(left.graph() || left.castle()); |
| 1406 | |
| 1407 | if (left.graph()) { |
| 1408 | const NGHolder &h = *left.graph(); |
| 1409 | /* we should not have merged yet */ |
| 1410 | assert(!is_triggered(h) || onlyOneTop(h)); |
| 1411 | |
| 1412 | if (hasReformedStartDotStar(h, build.cc.grey)) { |
| 1413 | continue; // preserve the optimisation of the leading repeat |
| 1414 | } |
| 1415 | } else { |
| 1416 | assert(left.castle()); |
| 1417 | |
| 1418 | if (!build.cc.grey.allowCastle) { |
| 1419 | DEBUG_PRINTF("castle merging disallowed by greybox\n" ); |
| 1420 | continue; |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | // We collapse the anchored root into the root vertex when calculating |
| 1425 | // parents, so that we can merge differently-anchored prefix roses |
| 1426 | // together. (Prompted by UE-2100) |
| 1427 | |
| 1428 | flat_set<RoseVertex> parents; |
| 1429 | for (RoseVertex v : verts) { |
| 1430 | insert(&parents, inv_adjacent_vertices_range(v, g)); |
| 1431 | } |
| 1432 | |
| 1433 | if (contains(parents, build.anchored_root)) { |
| 1434 | parents.erase(build.anchored_root); |
| 1435 | parents.insert(build.root); |
| 1436 | } |
| 1437 | |
| 1438 | assert(!parents.empty()); |
| 1439 | |
| 1440 | #ifndef _WIN32 |
| 1441 | engine_groups[MergeKey(left, parents)].push_back(left); |
| 1442 | #else |
| 1443 | // On windows, when passing MergeKey object into map 'engine_groups', |
| 1444 | // it will not be copied, but will be freed along with |
| 1445 | // engine_groups.clear(). |
| 1446 | // If we construct MergeKey object on the stack, it will be destructed |
| 1447 | // on its life cycle ending, then on engine_groups.clear(), which |
| 1448 | // will cause is_block_type_valid() assertion error in MergeKey |
| 1449 | // destructor. |
| 1450 | MergeKey *mk = new MergeKey(left, parents); |
| 1451 | engine_groups[*mk].push_back(left); |
| 1452 | #endif |
| 1453 | } |
| 1454 | |
| 1455 | vector<vector<left_id>> chunks; |
| 1456 | for (auto &raw_group : engine_groups | map_values) { |
| 1457 | chunk(move(raw_group), &chunks, MERGE_GROUP_SIZE_MAX); |
| 1458 | } |
| 1459 | engine_groups.clear(); |
| 1460 | |
| 1461 | DEBUG_PRINTF("chunked roses into %zu groups\n" , chunks.size()); |
| 1462 | |
| 1463 | for (auto &roses : chunks) { |
| 1464 | if (roses.size() < 2) { |
| 1465 | continue; |
| 1466 | } |
| 1467 | // All pairs on the prio queue. |
| 1468 | u32 tie_breaker = 0; |
| 1469 | priority_queue<RoseMergeCandidate> pq; |
| 1470 | for (auto it = roses.begin(), ite = roses.end(); it != ite; ++it) { |
| 1471 | left_id r1 = *it; |
| 1472 | const vector<RoseVertex> &targets_1 = eng_verts[r1]; |
| 1473 | |
| 1474 | for (auto jt = next(it); jt != ite; ++jt) { |
| 1475 | left_id r2 = *jt; |
| 1476 | |
| 1477 | /* we should have already split on engine types and reach */ |
| 1478 | assert(!r1.castle() == !r2.castle()); |
| 1479 | assert(!r1.graph() == !r2.graph()); |
| 1480 | assert(!r1.castle() |
| 1481 | || r1.castle()->reach() == r2.castle()->reach()); |
| 1482 | |
| 1483 | const vector<RoseVertex> &targets_2 = eng_verts[r2]; |
| 1484 | if (!checkVerticesOkForLeftfixMerge(build, targets_1, |
| 1485 | targets_2)) { |
| 1486 | continue; // No point queueing unmergeable cases. |
| 1487 | } |
| 1488 | |
| 1489 | u32 cpl = commonPrefixLength(r1, r2); |
| 1490 | pq.push(RoseMergeCandidate(r1, r2, cpl, tie_breaker++)); |
| 1491 | } |
| 1492 | } |
| 1493 | |
| 1494 | DEBUG_PRINTF("merge queue has %zu entries\n" , pq.size()); |
| 1495 | |
| 1496 | while (!pq.empty()) { |
| 1497 | left_id r1 = pq.top().r1; |
| 1498 | left_id r2 = pq.top().r2; |
| 1499 | DEBUG_PRINTF("pq pop h1=%p, h2=%p, cpl=%u, states=%u\n" , |
| 1500 | r1.graph(), r2.graph(), pq.top().cpl, pq.top().states); |
| 1501 | pq.pop(); |
| 1502 | vector<RoseVertex> &targets_1 = eng_verts[r1]; |
| 1503 | vector<RoseVertex> &targets_2 = eng_verts[r2]; |
| 1504 | if (mergeLeftVL_tryMergeCandidate(build, r1, targets_1, r2, |
| 1505 | targets_2)) { |
| 1506 | insert(&targets_2, targets_2.end(), targets_1); |
| 1507 | targets_1.clear(); |
| 1508 | } |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | DEBUG_PRINTF("-----\n" ); |
| 1513 | DEBUG_PRINTF("exit\n" ); |
| 1514 | DEBUG_PRINTF("-----\n" ); |
| 1515 | assert(!hasOrphanedTops(build)); |
| 1516 | } |
| 1517 | |
| 1518 | namespace { |
| 1519 | |
| 1520 | /** |
| 1521 | * Key used to group sets of leftfixes for the dedupeLeftfixesVariableLag path. |
| 1522 | */ |
| 1523 | struct DedupeLeftKey { |
| 1524 | DedupeLeftKey(const RoseBuildImpl &build, |
| 1525 | flat_set<pair<size_t, u32>> preds_in, const left_id &left) |
| 1526 | : left_hash(hashLeftfix(left)), preds(move(preds_in)), |
| 1527 | transient(contains(build.transient, left)) { |
| 1528 | } |
| 1529 | |
| 1530 | bool operator<(const DedupeLeftKey &b) const { |
| 1531 | return tie(left_hash, preds, transient) |
| 1532 | < tie(b.left_hash, b.preds, b.transient); |
| 1533 | } |
| 1534 | |
| 1535 | private: |
| 1536 | /** Quick hash of the leftfix itself. Must be identical for a given pair of |
| 1537 | * graphs if is_equal would return true. */ |
| 1538 | size_t left_hash; |
| 1539 | |
| 1540 | /** For each in-edge, the pair of (parent index, edge top). */ |
| 1541 | flat_set<pair<size_t, u32>> preds; |
| 1542 | |
| 1543 | /** We don't want to combine transient with non-transient. */ |
| 1544 | bool transient; |
| 1545 | }; |
| 1546 | |
| 1547 | } // namespace |
| 1548 | |
| 1549 | static |
| 1550 | flat_set<pair<size_t, u32>> get_pred_tops(RoseVertex v, const RoseGraph &g) { |
| 1551 | flat_set<pair<size_t, u32>> preds; |
| 1552 | for (const auto &e : in_edges_range(v, g)) { |
| 1553 | preds.emplace(g[source(e, g)].index, g[e].rose_top); |
| 1554 | } |
| 1555 | return preds; |
| 1556 | } |
| 1557 | |
| 1558 | /** |
| 1559 | * This is a generalisation of \ref dedupeLeftfixes which relaxes two |
| 1560 | * restrictions: multiple predecessor roles are allowed and the delay used by |
| 1561 | * each vertex may not be the same for each vertex. Like \ref dedupeLeftfixes, |
| 1562 | * the leftfixes' successor vertices are first grouped to reduce the number of |
| 1563 | * potential candidates - the grouping in this case is by the set of |
| 1564 | * predecessor roles with their associated top events. For the dedupe to be |
| 1565 | * possible, it is required that: |
| 1566 | * |
| 1567 | * 1. the nfa graphs with respect to the relevant reports are identical |
| 1568 | * 2. the nfa graphs are triggered by the same roles with same events (ensured |
| 1569 | * by the initial grouping pass) |
| 1570 | * 3. all the successor roles of either graph can inspect the combined leftfix |
| 1571 | * without advancing the state of the leftfix past the point that another |
| 1572 | * successor may want to inspect it; the overlap relationships between the |
| 1573 | * involved literals are examined to ensure that this property holds. |
| 1574 | * |
| 1575 | * Note: this is unable to dedupe when delayed literals are involved unlike |
| 1576 | * dedupeLeftfixes. |
| 1577 | */ |
| 1578 | void dedupeLeftfixesVariableLag(RoseBuildImpl &build) { |
| 1579 | DEBUG_PRINTF("entry\n" ); |
| 1580 | |
| 1581 | RoseGraph &g = build.g; |
| 1582 | auto eng_verts = get_eng_verts(g); |
| 1583 | |
| 1584 | map<DedupeLeftKey, vector<left_id>> engine_groups; |
| 1585 | for (const auto &e : eng_verts) { |
| 1586 | const left_id &left = e.first; |
| 1587 | const auto &verts = e.second; |
| 1588 | |
| 1589 | /* There should only be one report on an engine as no merges have |
| 1590 | * happened yet. (aside from eod prefixes) */ |
| 1591 | if (all_reports(left).size() != 1) { |
| 1592 | assert(any_of_in(adjacent_vertices_range(verts.front(), g), |
| 1593 | [&](RoseVertex w) { return g[w].eod_accept; })); |
| 1594 | continue; |
| 1595 | } |
| 1596 | |
| 1597 | if (left.haig()) { |
| 1598 | /* TODO: allow deduping of identical haigs */ |
| 1599 | continue; |
| 1600 | } |
| 1601 | |
| 1602 | if (left.graph()) { |
| 1603 | /* we should not have merged yet */ |
| 1604 | assert(!is_triggered(*left.graph()) || onlyOneTop(*left.graph())); |
| 1605 | } |
| 1606 | |
| 1607 | auto preds = get_pred_tops(verts.front(), g); |
| 1608 | for (RoseVertex v : verts) { |
| 1609 | if (preds != get_pred_tops(v, g)) { |
| 1610 | DEBUG_PRINTF("distinct pred sets\n" ); |
| 1611 | continue; |
| 1612 | } |
| 1613 | } |
| 1614 | engine_groups[DedupeLeftKey(build, move(preds), left)].push_back(left); |
| 1615 | } |
| 1616 | |
| 1617 | /* We don't bother chunking as we expect deduping to be successful if the |
| 1618 | * hashes match */ |
| 1619 | |
| 1620 | for (auto &group : engine_groups | map_values) { |
| 1621 | DEBUG_PRINTF("group of %zu roses\n" , group.size()); |
| 1622 | |
| 1623 | if (group.size() < 2) { |
| 1624 | continue; |
| 1625 | } |
| 1626 | |
| 1627 | for (auto it = group.begin(); it != group.end(); ++it) { |
| 1628 | left_id r1 = *it; |
| 1629 | vector<RoseVertex> &verts1 = eng_verts[r1]; |
| 1630 | assert(!verts1.empty()); /* cleared engines should be behind us */ |
| 1631 | |
| 1632 | assert(all_reports(r1).size() == 1); |
| 1633 | ReportID r1_report = *all_reports(r1).begin(); |
| 1634 | |
| 1635 | for (auto jt = next(it); jt != group.end(); ++jt) { |
| 1636 | left_id r2 = *jt; |
| 1637 | vector<RoseVertex> &verts2 = eng_verts[r2]; |
| 1638 | assert(!verts2.empty()); |
| 1639 | assert(all_reports(r2).size() == 1); |
| 1640 | ReportID r2_report = *all_reports(r2).begin(); |
| 1641 | |
| 1642 | if (!is_equal(r1, r1_report, r2, r2_report)) { |
| 1643 | continue; |
| 1644 | } |
| 1645 | |
| 1646 | if (!checkVerticesOkForLeftfixMerge(build, verts1, verts2)) { |
| 1647 | continue; |
| 1648 | } |
| 1649 | |
| 1650 | DEBUG_PRINTF("%p and %p are dupes\n" , r1.graph(), r2.graph()); |
| 1651 | |
| 1652 | // Replace r1 with r2. |
| 1653 | |
| 1654 | for (auto v : verts1) { |
| 1655 | DEBUG_PRINTF("replacing report %u with %u on %zu\n" , |
| 1656 | r2_report, r1_report, g[v].index); |
| 1657 | u32 orig_lag = g[v].left.lag; |
| 1658 | g[v].left = g[verts2.front()].left; |
| 1659 | g[v].left.lag = orig_lag; |
| 1660 | } |
| 1661 | |
| 1662 | insert(&verts2, verts2.end(), verts1); |
| 1663 | verts1.clear(); |
| 1664 | |
| 1665 | /* remove stale entry from transient set, if present */ |
| 1666 | build.transient.erase(r1); |
| 1667 | |
| 1668 | break; |
| 1669 | } |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | static |
| 1675 | u32 findUnusedTop(const flat_set<u32> &tops) { |
| 1676 | u32 i = 0; |
| 1677 | while (contains(tops, i)) { |
| 1678 | i++; |
| 1679 | } |
| 1680 | return i; |
| 1681 | } |
| 1682 | |
| 1683 | // Replace top 't' on edges with new top 'u'. |
| 1684 | static |
| 1685 | void replaceTops(NGHolder &h, const map<u32, u32> &top_mapping) { |
| 1686 | for (const auto &e : out_edges_range(h.start, h)) { |
| 1687 | NFAVertex v = target(e, h); |
| 1688 | if (v == h.startDs) { |
| 1689 | continue; |
| 1690 | } |
| 1691 | flat_set<u32> new_tops; |
| 1692 | for (u32 t : h[e].tops) { |
| 1693 | DEBUG_PRINTF("vertex %zu has top %u\n" , h[v].index, t); |
| 1694 | new_tops.insert(top_mapping.at(t)); |
| 1695 | } |
| 1696 | h[e].tops = std::move(new_tops); |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | static |
| 1701 | bool setDistinctTops(NGHolder &h1, const NGHolder &h2, |
| 1702 | map<u32, u32> &top_mapping) { |
| 1703 | flat_set<u32> tops1 = getTops(h1), tops2 = getTops(h2); |
| 1704 | |
| 1705 | DEBUG_PRINTF("before: h1 has %zu tops, h2 has %zu tops\n" , tops1.size(), |
| 1706 | tops2.size()); |
| 1707 | |
| 1708 | // If our tops don't intersect, we're OK to merge with no changes. |
| 1709 | if (!has_intersection(tops1, tops2)) { |
| 1710 | DEBUG_PRINTF("tops don't intersect\n" ); |
| 1711 | return true; |
| 1712 | } |
| 1713 | |
| 1714 | // Otherwise, we have to renumber the tops in h1 so that they don't overlap |
| 1715 | // with the tops in h2. |
| 1716 | top_mapping.clear(); |
| 1717 | for (u32 t : tops1) { |
| 1718 | u32 u = findUnusedTop(tops2); |
| 1719 | DEBUG_PRINTF("replacing top %u with %u in h1\n" , t, u); |
| 1720 | top_mapping.insert(make_pair(t, u)); |
| 1721 | assert(!contains(tops2, u)); |
| 1722 | tops2.insert(u); |
| 1723 | } |
| 1724 | |
| 1725 | replaceTops(h1, top_mapping); |
| 1726 | return true; |
| 1727 | } |
| 1728 | |
| 1729 | bool setDistinctRoseTops(RoseGraph &g, NGHolder &h1, const NGHolder &h2, |
| 1730 | const deque<RoseVertex> &verts1) { |
| 1731 | map<u32, u32> top_mapping; |
| 1732 | if (!setDistinctTops(h1, h2, top_mapping)) { |
| 1733 | return false; |
| 1734 | } |
| 1735 | |
| 1736 | if (top_mapping.empty()) { |
| 1737 | return true; // No remapping necessary. |
| 1738 | } |
| 1739 | |
| 1740 | for (auto v : verts1) { |
| 1741 | DEBUG_PRINTF("vertex %zu\n" , g[v].index); |
| 1742 | assert(!g[v].left.haig); |
| 1743 | assert(!g[v].left.dfa); |
| 1744 | for (const auto &e : in_edges_range(v, g)) { |
| 1745 | u32 t = g[e].rose_top; |
| 1746 | DEBUG_PRINTF("t=%u\n" , t); |
| 1747 | assert(contains(top_mapping, t)); |
| 1748 | g[e].rose_top = top_mapping[t]; |
| 1749 | DEBUG_PRINTF("edge (%zu,%zu) went from top %u to %u\n" , |
| 1750 | g[source(e, g)].index, g[target(e, g)].index, t, |
| 1751 | top_mapping[t]); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | return true; |
| 1756 | } |
| 1757 | |
| 1758 | static |
| 1759 | bool setDistinctSuffixTops(RoseGraph &g, NGHolder &h1, const NGHolder &h2, |
| 1760 | const deque<RoseVertex> &verts1) { |
| 1761 | map<u32, u32> top_mapping; |
| 1762 | if (!setDistinctTops(h1, h2, top_mapping)) { |
| 1763 | return false; |
| 1764 | } |
| 1765 | |
| 1766 | if (top_mapping.empty()) { |
| 1767 | return true; // No remapping necessary. |
| 1768 | } |
| 1769 | |
| 1770 | for (auto v : verts1) { |
| 1771 | DEBUG_PRINTF("vertex %zu\n" , g[v].index); |
| 1772 | u32 t = g[v].suffix.top; |
| 1773 | assert(contains(top_mapping, t)); |
| 1774 | g[v].suffix.top = top_mapping[t]; |
| 1775 | } |
| 1776 | |
| 1777 | return true; |
| 1778 | } |
| 1779 | |
| 1780 | /** \brief Estimate the number of accel states in the given graph when built as |
| 1781 | * an NFA. |
| 1782 | * |
| 1783 | * (The easiest way to estimate something like this is to actually build it: |
| 1784 | * the criteria for NFA acceleration are quite complicated and buried in |
| 1785 | * limex_compile.) |
| 1786 | */ |
| 1787 | static |
| 1788 | u32 estimatedAccelStates(const RoseBuildImpl &tbi, const NGHolder &h) { |
| 1789 | return countAccelStates(h, &tbi.rm, tbi.cc); |
| 1790 | } |
| 1791 | |
| 1792 | static |
| 1793 | void mergeNfaLeftfixes(RoseBuildImpl &tbi, LeftfixBouquet &roses) { |
| 1794 | RoseGraph &g = tbi.g; |
| 1795 | DEBUG_PRINTF("%zu nfa rose merge candidates\n" , roses.size()); |
| 1796 | |
| 1797 | // We track the number of accelerable states for each graph in a map and |
| 1798 | // only recompute them when the graph is modified. |
| 1799 | unordered_map<left_id, u32> accel_count; |
| 1800 | for (const auto &rose : roses) { |
| 1801 | assert(rose.graph()->kind == NFA_INFIX); |
| 1802 | accel_count[rose] = estimatedAccelStates(tbi, *rose.graph()); |
| 1803 | } |
| 1804 | |
| 1805 | for (auto it = roses.begin(); it != roses.end(); ++it) { |
| 1806 | left_id r1 = *it; |
| 1807 | const deque<RoseVertex> &verts1 = roses.vertices(r1); |
| 1808 | |
| 1809 | deque<left_id> merged; |
| 1810 | for (auto jt = next(it); jt != roses.end(); ++jt) { |
| 1811 | left_id r2 = *jt; |
| 1812 | const deque<RoseVertex> &verts2 = roses.vertices(r2); |
| 1813 | |
| 1814 | DEBUG_PRINTF("consider merging rose %p (%zu verts) " |
| 1815 | "with %p (%zu verts)\n" , |
| 1816 | r1.graph(), verts1.size(), r2.graph(), verts2.size()); |
| 1817 | |
| 1818 | u32 accel1 = accel_count[r1]; |
| 1819 | if (accel1 >= NFA_MAX_ACCEL_STATES) { |
| 1820 | DEBUG_PRINTF("h1 has hit max accel\n" ); |
| 1821 | break; // next h1 |
| 1822 | } |
| 1823 | |
| 1824 | u32 accel2 = accel_count[r2]; |
| 1825 | if (accel1 + accel2 > NFA_MAX_ACCEL_STATES) { |
| 1826 | DEBUG_PRINTF("not merging, might make unaccel (accel1=%u, " |
| 1827 | "accel2=%u)\n" , |
| 1828 | accel1, accel2); |
| 1829 | continue; // next h2 |
| 1830 | } |
| 1831 | |
| 1832 | if (!mergeableRoseVertices(tbi, verts1, verts2)) { |
| 1833 | DEBUG_PRINTF("not mergeable\n" ); |
| 1834 | continue; // next h2 |
| 1835 | } |
| 1836 | |
| 1837 | // Attempt to merge h2 into h1. |
| 1838 | |
| 1839 | NGHolder victim; |
| 1840 | cloneHolder(victim, *r2.graph()); |
| 1841 | |
| 1842 | // Store a copy of the in-edge properties in case we have to roll |
| 1843 | // back. |
| 1844 | map<RoseEdge, RoseEdgeProps> edge_props; |
| 1845 | for (auto v : verts2) { |
| 1846 | for (const auto &e : in_edges_range(v, g)) { |
| 1847 | edge_props[e] = g[e]; |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | if (!setDistinctRoseTops(g, victim, *r1.graph(), verts2)) { |
| 1852 | DEBUG_PRINTF("can't set distinct tops\n" ); |
| 1853 | continue; // next h2 |
| 1854 | } |
| 1855 | |
| 1856 | assert(victim.kind == r1.graph()->kind); |
| 1857 | assert(!generates_callbacks(*r1.graph())); |
| 1858 | if (!mergeNfaPair(victim, *r1.graph(), nullptr, tbi.cc)) { |
| 1859 | DEBUG_PRINTF("merge failed\n" ); |
| 1860 | // Roll back in-edge properties. |
| 1861 | for (const auto &m : edge_props) { |
| 1862 | g[m.first] = m.second; |
| 1863 | } |
| 1864 | continue; // next h2 |
| 1865 | } |
| 1866 | |
| 1867 | // Update h2's roses to point to h1 now |
| 1868 | shared_ptr<NGHolder> winner = g[verts1.front()].left.graph; |
| 1869 | for (auto v : verts2) { |
| 1870 | g[v].left.graph = winner; |
| 1871 | } |
| 1872 | roses.insert(r1, verts2); |
| 1873 | |
| 1874 | merged.push_back(r2); |
| 1875 | |
| 1876 | if (num_vertices(*winner) >= small_merge_max_vertices(tbi.cc)) { |
| 1877 | DEBUG_PRINTF("h1 now has %zu vertices, proceeding to next\n" , |
| 1878 | num_vertices(*winner)); |
| 1879 | break; // next h1 |
| 1880 | } |
| 1881 | |
| 1882 | // Update h1's accel count estimate. |
| 1883 | accel_count[r1] = estimatedAccelStates(tbi, *winner); |
| 1884 | } |
| 1885 | |
| 1886 | DEBUG_PRINTF("%zu roses merged\n" , merged.size()); |
| 1887 | roses.erase_all(merged.begin(), merged.end()); |
| 1888 | } |
| 1889 | } |
| 1890 | |
| 1891 | /** |
| 1892 | * This pass attempts to merge prefix/infix engines with a small number of |
| 1893 | * vertices together into larger engines. The engines must not be have a |
| 1894 | * reformed start dot star (due to a leading repeat) nor an infix LBR. Engines |
| 1895 | * that have compatible lag are greedily grouped such that they remain |
| 1896 | * accelerable and only have a small number of states. Note: if a role has an |
| 1897 | * infix with multiple trigger vertices, the role will be left unchanged by this |
| 1898 | * pass and will remain using an unmerged graph. |
| 1899 | */ |
| 1900 | void mergeSmallLeftfixes(RoseBuildImpl &tbi) { |
| 1901 | DEBUG_PRINTF("entry\n" ); |
| 1902 | |
| 1903 | if (!tbi.cc.grey.mergeRose || !tbi.cc.grey.roseMultiTopRoses) { |
| 1904 | return; |
| 1905 | } |
| 1906 | |
| 1907 | RoseGraph &g = tbi.g; |
| 1908 | |
| 1909 | LeftfixBouquet nfa_leftfixes; |
| 1910 | |
| 1911 | for (auto v : vertices_range(g)) { |
| 1912 | if (!g[v].left) { |
| 1913 | continue; |
| 1914 | } |
| 1915 | |
| 1916 | // Handle single-parent infixes only. |
| 1917 | if (tbi.isRootSuccessor(v)) { |
| 1918 | continue; |
| 1919 | } |
| 1920 | |
| 1921 | left_id left(g[v].left); |
| 1922 | |
| 1923 | // Only non-transient for the moment. |
| 1924 | if (contains(tbi.transient, left)) { |
| 1925 | continue; |
| 1926 | } |
| 1927 | |
| 1928 | // No DFAs or Haigs right now. |
| 1929 | if (left.dfa() || left.haig()) { |
| 1930 | continue; |
| 1931 | } |
| 1932 | |
| 1933 | // Castles are handled by a different pass. |
| 1934 | if (left.castle()) { |
| 1935 | continue; |
| 1936 | } |
| 1937 | |
| 1938 | assert(left.graph()); |
| 1939 | NGHolder &h = *left.graph(); |
| 1940 | |
| 1941 | /* Ensure that kind on the graph is correct */ |
| 1942 | assert(h.kind == (tbi.isRootSuccessor(v) ? NFA_PREFIX : NFA_INFIX)); |
| 1943 | |
| 1944 | if (hasReformedStartDotStar(h, tbi.cc.grey)) { |
| 1945 | /* We would lose optimisations of the leading repeat by merging. */ |
| 1946 | continue; |
| 1947 | } |
| 1948 | |
| 1949 | // Small roses only. |
| 1950 | if (num_vertices(h) > small_rose_threshold(tbi.cc)) { |
| 1951 | continue; |
| 1952 | } |
| 1953 | |
| 1954 | nfa_leftfixes.insert(left, v); |
| 1955 | } |
| 1956 | |
| 1957 | deque<LeftfixBouquet> leftfix_groups; |
| 1958 | chunkBouquets(nfa_leftfixes, leftfix_groups, MERGE_GROUP_SIZE_MAX); |
| 1959 | nfa_leftfixes.clear(); |
| 1960 | DEBUG_PRINTF("chunked nfa leftfixes into %zu groups\n" , |
| 1961 | leftfix_groups.size()); |
| 1962 | |
| 1963 | for (auto &group : leftfix_groups) { |
| 1964 | mergeNfaLeftfixes(tbi, group); |
| 1965 | } |
| 1966 | } |
| 1967 | |
| 1968 | static |
| 1969 | void mergeCastleChunk(RoseBuildImpl &build, vector<left_id> &cands, |
| 1970 | insertion_ordered_map<left_id, vector<RoseVertex>> &eng_verts) { |
| 1971 | /* caller must have already ensured that candidates have the same reach */ |
| 1972 | RoseGraph &g = build.g; |
| 1973 | DEBUG_PRINTF("%zu castle leftfix merge candidates\n" , cands.size()); |
| 1974 | |
| 1975 | for (auto it = cands.begin(); it != cands.end(); ++it) { |
| 1976 | left_id &cand_1 = *it; |
| 1977 | vector<RoseVertex> &verts_1 = eng_verts[cand_1]; |
| 1978 | if (verts_1.empty()) { |
| 1979 | continue; |
| 1980 | } |
| 1981 | |
| 1982 | for (auto jt = next(it); jt != cands.end(); ++jt) { |
| 1983 | const left_id &cand_2 = *jt; |
| 1984 | vector<RoseVertex> &verts_2 = eng_verts[cand_2]; |
| 1985 | if (verts_2.empty()) { |
| 1986 | continue; |
| 1987 | } |
| 1988 | |
| 1989 | assert(cand_1.castle()->reach() == cand_2.castle()->reach()); |
| 1990 | |
| 1991 | if (!checkVerticesOkForLeftfixMerge(build, verts_1, verts_2)) { |
| 1992 | DEBUG_PRINTF("not mergeable\n" ); |
| 1993 | continue; // next cand_2 |
| 1994 | } |
| 1995 | |
| 1996 | DEBUG_PRINTF("castle1=%p (size %zu)\n" , cand_1.castle(), |
| 1997 | cand_1.castle()->repeats.size()); |
| 1998 | DEBUG_PRINTF("castle2=%p (size %zu)\n" , cand_2.castle(), |
| 1999 | cand_2.castle()->repeats.size()); |
| 2000 | |
| 2001 | map<u32, u32> top_map; |
| 2002 | if (!mergeCastle(*cand_1.castle(), *cand_2.castle(), top_map)) { |
| 2003 | DEBUG_PRINTF("couldn't merge\n" ); |
| 2004 | continue; // next cand_2 |
| 2005 | } |
| 2006 | |
| 2007 | // Update castle2's roses to point to castle1 now. |
| 2008 | shared_ptr<CastleProto> winner = g[verts_1.front()].left.castle; |
| 2009 | for (auto v : verts_2) { |
| 2010 | assert(g[v].left.castle.get() == cand_2.castle()); |
| 2011 | g[v].left.castle = winner; |
| 2012 | for (const auto &e : in_edges_range(v, g)) { |
| 2013 | g[e].rose_top = top_map.at(g[e].rose_top); |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | insert(&verts_1, verts_1.end(), verts_2); |
| 2018 | verts_2.clear(); |
| 2019 | } |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | /** |
| 2024 | * Merges castles with the same reach together regardless of where in the rose |
| 2025 | * graph they are. Note: there is no requirement for the castles to have common |
| 2026 | * parent or target vertices. |
| 2027 | * |
| 2028 | * There are no heuristics for reducing block mode merges as castle speed |
| 2029 | * mainly depends on the reach being scanned. |
| 2030 | */ |
| 2031 | void mergeCastleLeftfixes(RoseBuildImpl &build) { |
| 2032 | DEBUG_PRINTF("entry\n" ); |
| 2033 | |
| 2034 | if (!build.cc.grey.mergeRose || !build.cc.grey.roseMultiTopRoses |
| 2035 | || !build.cc.grey.allowCastle) { |
| 2036 | return; |
| 2037 | } |
| 2038 | |
| 2039 | RoseGraph &g = build.g; |
| 2040 | |
| 2041 | insertion_ordered_map<left_id, vector<RoseVertex>> eng_verts; |
| 2042 | |
| 2043 | for (auto v : vertices_range(g)) { |
| 2044 | if (!g[v].left.castle) { |
| 2045 | continue; |
| 2046 | } |
| 2047 | |
| 2048 | // Handle infixes only. |
| 2049 | if (build.isRootSuccessor(v)) { |
| 2050 | continue; |
| 2051 | } |
| 2052 | |
| 2053 | eng_verts[g[v].left].push_back(v); |
| 2054 | } |
| 2055 | |
| 2056 | map<CharReach, vector<left_id>> by_reach; |
| 2057 | for (const auto &left : eng_verts | map_keys) { |
| 2058 | by_reach[left.castle()->reach()].push_back(left); |
| 2059 | } |
| 2060 | |
| 2061 | vector<vector<left_id>> chunks; |
| 2062 | for (auto &raw_group : by_reach | map_values) { |
| 2063 | chunk(move(raw_group), &chunks, MERGE_CASTLE_GROUP_SIZE_MAX); |
| 2064 | } |
| 2065 | by_reach.clear(); |
| 2066 | |
| 2067 | DEBUG_PRINTF("chunked castles into %zu groups\n" , chunks.size()); |
| 2068 | |
| 2069 | for (auto &chunk : chunks) { |
| 2070 | mergeCastleChunk(build, chunk, eng_verts); |
| 2071 | } |
| 2072 | } |
| 2073 | |
| 2074 | static |
| 2075 | void mergeSuffixes(RoseBuildImpl &tbi, SuffixBouquet &suffixes, |
| 2076 | const bool acyclic) { |
| 2077 | RoseGraph &g = tbi.g; |
| 2078 | |
| 2079 | DEBUG_PRINTF("group has %zu suffixes\n" , suffixes.size()); |
| 2080 | |
| 2081 | // If this isn't an acyclic case, we track the number of accelerable states |
| 2082 | // for each graph in a map and only recompute them when the graph is |
| 2083 | // modified. |
| 2084 | unordered_map<suffix_id, u32> accel_count; |
| 2085 | if (!acyclic) { |
| 2086 | for (const auto &suffix : suffixes) { |
| 2087 | assert(suffix.graph() && suffix.graph()->kind == NFA_SUFFIX); |
| 2088 | accel_count[suffix] = estimatedAccelStates(tbi, *suffix.graph()); |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | for (auto it = suffixes.begin(); it != suffixes.end(); ++it) { |
| 2093 | suffix_id s1 = *it; |
| 2094 | const deque<RoseVertex> &verts1 = suffixes.vertices(s1); |
| 2095 | assert(s1.graph() && s1.graph()->kind == NFA_SUFFIX); |
| 2096 | |
| 2097 | // Caller should ensure that we don't propose merges of graphs that are |
| 2098 | // already too big. |
| 2099 | assert(num_vertices(*s1.graph()) < small_merge_max_vertices(tbi.cc)); |
| 2100 | |
| 2101 | deque<suffix_id> merged; |
| 2102 | for (auto jt = next(it); jt != suffixes.end(); ++jt) { |
| 2103 | suffix_id s2 = *jt; |
| 2104 | const deque<RoseVertex> &verts2 = suffixes.vertices(s2); |
| 2105 | assert(s2.graph() && s2.graph()->kind == NFA_SUFFIX); |
| 2106 | |
| 2107 | if (!acyclic) { |
| 2108 | u32 accel1 = accel_count[s1]; |
| 2109 | if (accel1 >= NFA_MAX_ACCEL_STATES) { |
| 2110 | DEBUG_PRINTF("h1 has hit max accel\n" ); |
| 2111 | break; // next h1 |
| 2112 | } |
| 2113 | |
| 2114 | u32 accel2 = accel_count[s2]; |
| 2115 | if (accel1 + accel2 > NFA_MAX_ACCEL_STATES) { |
| 2116 | DEBUG_PRINTF("not merging, might make unaccel (accel1=%u, " |
| 2117 | "accel2=%u)\n" , |
| 2118 | accel1, accel2); |
| 2119 | continue; // next h2 |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | // Attempt to merge h2 into h1. |
| 2124 | |
| 2125 | NGHolder victim; |
| 2126 | cloneHolder(victim, *s2.graph()); |
| 2127 | |
| 2128 | // Store a copy of the suffix tops in case we have to roll back. |
| 2129 | map<RoseVertex, u32> old_tops; |
| 2130 | for (auto v : verts2) { |
| 2131 | old_tops[v] = g[v].suffix.top; |
| 2132 | } |
| 2133 | |
| 2134 | if (!setDistinctSuffixTops(g, victim, *s1.graph(), verts2)) { |
| 2135 | DEBUG_PRINTF("can't set distinct tops\n" ); |
| 2136 | continue; // next h2 |
| 2137 | } |
| 2138 | |
| 2139 | if (!mergeNfaPair(victim, *s1.graph(), &tbi.rm, tbi.cc)) { |
| 2140 | DEBUG_PRINTF("merge failed\n" ); |
| 2141 | // Roll back in-edge properties. |
| 2142 | for (const auto &m : old_tops) { |
| 2143 | g[m.first].suffix.top = m.second; |
| 2144 | } |
| 2145 | continue; // next h2 |
| 2146 | } |
| 2147 | |
| 2148 | // Update h2's roses to point to h1 now |
| 2149 | shared_ptr<NGHolder> winner = g[verts1.front()].suffix.graph; |
| 2150 | for (auto v : verts2) { |
| 2151 | g[v].suffix.graph = winner; |
| 2152 | } |
| 2153 | suffixes.insert(s1, verts2); |
| 2154 | merged.push_back(s2); |
| 2155 | |
| 2156 | if (num_vertices(*s1.graph()) >= small_merge_max_vertices(tbi.cc)) { |
| 2157 | DEBUG_PRINTF("h1 now has %zu vertices, proceeding to next\n" , |
| 2158 | num_vertices(*s1.graph())); |
| 2159 | break; // next h1 |
| 2160 | } |
| 2161 | |
| 2162 | if (!acyclic) { |
| 2163 | // Update h1's accel count estimate. |
| 2164 | accel_count[s1] = estimatedAccelStates(tbi, *s1.graph()); |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | DEBUG_PRINTF("%zu suffixes merged\n" , merged.size()); |
| 2169 | suffixes.erase_all(merged.begin(), merged.end()); |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | /** |
| 2174 | * This merge pass combines suffixes from unrelated roles into a single |
| 2175 | * suffix with multiple top events in order to distinguish the triggers |
| 2176 | * from differing roles. mergeAcyclicSuffixes only considers acyclic suffixes |
| 2177 | * while mergeSmallSuffixes only considers small suffixes. The merges will |
| 2178 | * group roles with suffixes in the graph into clusters of at most |
| 2179 | * \ref MERGE_GROUP_SIZE_MAX. Each cluster is processed by iterating over the |
| 2180 | * suffixes and attempting to pairwise merge it with another member. Merges |
| 2181 | * will fail if the result is not implementable, requires too many distinct top |
| 2182 | * events, or if it losses the ability to be accelerated. The merge will modify |
| 2183 | * the existing suffix graph of the one member (g1), the other member updates |
| 2184 | * it graph to refer to g1 instead of its previous graph (g2) and use the new |
| 2185 | * tops created. Other roles may have been sharing g1 - these are unaffected by |
| 2186 | * the change as the existing top events are left untouched. Other roles using |
| 2187 | * g2 are also unaffected as g2 will continue to exist until while it has any |
| 2188 | * roles triggering it. |
| 2189 | * |
| 2190 | * Note: suffixes destined for the LBR are not considered for these merges as |
| 2191 | * the LBR can only handle a single repeat and this type of repeat is ideally |
| 2192 | * handled outside of an NFA or DFA. |
| 2193 | */ |
| 2194 | void mergeAcyclicSuffixes(RoseBuildImpl &tbi) { |
| 2195 | DEBUG_PRINTF("entry\n" ); |
| 2196 | |
| 2197 | if (!tbi.cc.grey.mergeSuffixes) { |
| 2198 | return; |
| 2199 | } |
| 2200 | |
| 2201 | SuffixBouquet suffixes; |
| 2202 | |
| 2203 | RoseGraph &g = tbi.g; |
| 2204 | |
| 2205 | for (auto v : vertices_range(g)) { |
| 2206 | shared_ptr<NGHolder> h = g[v].suffix.graph; |
| 2207 | if (!h || tbi.isInETable(v)) { |
| 2208 | continue; |
| 2209 | } |
| 2210 | |
| 2211 | assert(!g[v].suffix.haig); |
| 2212 | |
| 2213 | if (num_vertices(*h) >= small_merge_max_vertices(tbi.cc)) { |
| 2214 | continue; |
| 2215 | } |
| 2216 | |
| 2217 | if (!isAcyclic(*h)) { |
| 2218 | continue; |
| 2219 | } |
| 2220 | |
| 2221 | suffixes.insert(g[v].suffix, v); |
| 2222 | } |
| 2223 | |
| 2224 | deque<SuffixBouquet> suff_groups; |
| 2225 | chunkBouquets(suffixes, suff_groups, MERGE_GROUP_SIZE_MAX); |
| 2226 | DEBUG_PRINTF("chunked %zu suffixes into %zu groups\n" , suffixes.size(), |
| 2227 | suff_groups.size()); |
| 2228 | suffixes.clear(); |
| 2229 | |
| 2230 | for (auto &group : suff_groups) { |
| 2231 | mergeSuffixes(tbi, group, true); |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | /** |
| 2236 | * This merge pass combines suffixes from unrelated roles into a single |
| 2237 | * suffix with multiple top events in order to distinguish the triggers |
| 2238 | * from differing roles. mergeAcyclicSuffixes only considers acyclic suffixes |
| 2239 | * while mergeSmallSuffixes only considers small suffixes. The merges will |
| 2240 | * group roles with suffixes in the graph into clusters of at most |
| 2241 | * \ref MERGE_GROUP_SIZE_MAX. Each cluster is processed by iterating over the |
| 2242 | * suffixes and attempting to pairwise merge it with another member. Merges |
| 2243 | * will fail if the result is not implementable, requires too many distinct top |
| 2244 | * events, or if it losses the ability to be accelerated. The merge will modify |
| 2245 | * the existing suffix graph of the one member (g1), the other member updates |
| 2246 | * it graph to refer to g1 instead of its previous graph (g2) and use the new |
| 2247 | * tops created. Other roles may have been sharing g1 - these are unaffected by |
| 2248 | * the change as the existing top events are left untouched. Other roles using |
| 2249 | * g2 are also unaffected as g2 will continue to exist until while it has any |
| 2250 | * roles triggering it. |
| 2251 | * |
| 2252 | * Note: suffixes destined for the LBR are not considered for these merges as |
| 2253 | * the LBR can only handle a single repeat and this type of repeat is ideally |
| 2254 | * handled outside of an NFA or DFA. |
| 2255 | */ |
| 2256 | void mergeSmallSuffixes(RoseBuildImpl &tbi) { |
| 2257 | DEBUG_PRINTF("entry\n" ); |
| 2258 | |
| 2259 | if (!tbi.cc.grey.mergeSuffixes) { |
| 2260 | return; |
| 2261 | } |
| 2262 | |
| 2263 | RoseGraph &g = tbi.g; |
| 2264 | SuffixBouquet suffixes; |
| 2265 | |
| 2266 | for (auto v : vertices_range(g)) { |
| 2267 | shared_ptr<NGHolder> h = g[v].suffix.graph; |
| 2268 | if (!h || tbi.isInETable(v)) { |
| 2269 | continue; |
| 2270 | } |
| 2271 | assert(!g[v].suffix.haig); |
| 2272 | |
| 2273 | // Leave acyclics out for the moment. |
| 2274 | if (isAcyclic(*h)) { |
| 2275 | continue; |
| 2276 | } |
| 2277 | |
| 2278 | // Small-ish suffixes only. |
| 2279 | if (num_vertices(*h) > 32) { |
| 2280 | continue; |
| 2281 | } |
| 2282 | |
| 2283 | suffixes.insert(g[v].suffix, v); |
| 2284 | } |
| 2285 | |
| 2286 | deque<SuffixBouquet> suff_groups; |
| 2287 | chunkBouquets(suffixes, suff_groups, MERGE_GROUP_SIZE_MAX); |
| 2288 | DEBUG_PRINTF("chunked %zu suffixes into %zu groups\n" , suffixes.size(), |
| 2289 | suff_groups.size()); |
| 2290 | suffixes.clear(); |
| 2291 | |
| 2292 | for (auto &group : suff_groups) { |
| 2293 | mergeSuffixes(tbi, group, false); |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | static |
| 2298 | void removeDeadOutfixes(vector<OutfixInfo> &outfixes) { |
| 2299 | auto is_dead = [](const OutfixInfo &outfix) { return outfix.is_dead(); }; |
| 2300 | outfixes.erase(remove_if(begin(outfixes), end(outfixes), is_dead), |
| 2301 | end(outfixes)); |
| 2302 | } |
| 2303 | |
| 2304 | static |
| 2305 | void mergeOutfixInfo(OutfixInfo &winner, const OutfixInfo &victim) { |
| 2306 | assert(!winner.is_dead()); |
| 2307 | |
| 2308 | winner.maxBAWidth = max(winner.maxBAWidth, victim.maxBAWidth); |
| 2309 | winner.minWidth = min(winner.minWidth, victim.minWidth); |
| 2310 | winner.maxWidth = max(winner.maxWidth, victim.maxWidth); |
| 2311 | winner.maxOffset = max(winner.maxOffset, victim.maxOffset); |
| 2312 | mergeReverseAccelerationInfo(winner.rev_info, victim.rev_info); |
| 2313 | |
| 2314 | // This outfix can be ignored in small block mode if both were. The dedupe |
| 2315 | // layer at runtime will protect us from extra matches if only one was in |
| 2316 | // the small block matcher. |
| 2317 | winner.in_sbmatcher &= victim.in_sbmatcher; |
| 2318 | } |
| 2319 | |
| 2320 | static |
| 2321 | map<NGHolder *, NGHolder *> chunkedNfaMerge(RoseBuildImpl &build, |
| 2322 | const vector<NGHolder *> &nfas) { |
| 2323 | map<NGHolder *, NGHolder *> merged; |
| 2324 | |
| 2325 | vector<NGHolder *> batch; |
| 2326 | for (auto it = begin(nfas), ite = end(nfas); it != ite; ++it) { |
| 2327 | batch.push_back(*it); |
| 2328 | assert((*it)->kind == NFA_OUTFIX); |
| 2329 | if (batch.size() == MERGE_GROUP_SIZE_MAX || next(it) == ite) { |
| 2330 | auto batch_merged = mergeNfaCluster(batch, &build.rm, build.cc); |
| 2331 | insert(&merged, batch_merged); |
| 2332 | batch.clear(); |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | return merged; |
| 2337 | } |
| 2338 | |
| 2339 | static |
| 2340 | void mergeOutfixNfas(RoseBuildImpl &tbi, vector<NGHolder *> &nfas) { |
| 2341 | DEBUG_PRINTF("merging %zu nfas\n" , nfas.size()); |
| 2342 | if (nfas.size() < 2) { |
| 2343 | return; |
| 2344 | } |
| 2345 | |
| 2346 | vector<OutfixInfo> &outfixes = tbi.outfixes; |
| 2347 | |
| 2348 | map<NGHolder *, size_t> nfa_mapping; |
| 2349 | for (size_t i = 0; i < outfixes.size(); i++) { |
| 2350 | auto *holder = outfixes[i].holder(); |
| 2351 | if (holder) { |
| 2352 | nfa_mapping[holder] = i; |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | map<NGHolder *, NGHolder *> merged = chunkedNfaMerge(tbi, nfas); |
| 2357 | if (merged.empty()) { |
| 2358 | return; |
| 2359 | } |
| 2360 | |
| 2361 | DEBUG_PRINTF("%zu nfas merged\n" , merged.size()); |
| 2362 | |
| 2363 | // Update the outfix info for merged holders. |
| 2364 | for (const auto &m : merged) { |
| 2365 | OutfixInfo &victim = outfixes.at(nfa_mapping[m.first]); |
| 2366 | OutfixInfo &winner = outfixes.at(nfa_mapping[m.second]); |
| 2367 | mergeOutfixInfo(winner, victim); |
| 2368 | victim.clear(); |
| 2369 | } |
| 2370 | |
| 2371 | removeDeadOutfixes(outfixes); |
| 2372 | } |
| 2373 | |
| 2374 | namespace { |
| 2375 | struct MergeMcClellan { |
| 2376 | MergeMcClellan(const ReportManager &rm_in, const Grey &grey_in) |
| 2377 | : rm(rm_in), grey(grey_in) {} |
| 2378 | |
| 2379 | unique_ptr<raw_dfa> operator()(const raw_dfa *d1, const raw_dfa *d2) const { |
| 2380 | assert(d1 && d2); |
| 2381 | return mergeTwoDfas(d1, d2, DFA_MERGE_MAX_STATES, &rm, grey); |
| 2382 | } |
| 2383 | |
| 2384 | private: |
| 2385 | const ReportManager &rm; |
| 2386 | const Grey &grey; |
| 2387 | }; |
| 2388 | |
| 2389 | struct MergeHaig { |
| 2390 | explicit MergeHaig(u32 limit_in) : limit(limit_in) {} |
| 2391 | |
| 2392 | unique_ptr<raw_som_dfa> operator()(const raw_som_dfa *d1, |
| 2393 | const raw_som_dfa *d2) const { |
| 2394 | assert(d1 && d2); |
| 2395 | return attemptToMergeHaig({d1, d2}, limit); |
| 2396 | } |
| 2397 | |
| 2398 | private: |
| 2399 | const u32 limit; //!< state limit for merged result. |
| 2400 | }; |
| 2401 | } |
| 2402 | |
| 2403 | /** |
| 2404 | * Generic pairwise merge algorithm that can be used for either McClellan |
| 2405 | * (RawDfa=raw_dfa) or Haig (RawDfa=raw_som_dfa). Delegates the actual merge |
| 2406 | * operation to a merge functor, which allows the caller to set some policy |
| 2407 | * (state limits, etc). |
| 2408 | * |
| 2409 | * This is currently astonishingly simple and just considers every pair of |
| 2410 | * DFAs, slow and steady. We may wish to actually apply a merge ordering |
| 2411 | * strategy in the future. |
| 2412 | */ |
| 2413 | template<class RawDfa, class MergeFunctor> |
| 2414 | static |
| 2415 | void pairwiseDfaMerge(vector<RawDfa *> &dfas, |
| 2416 | unordered_map<RawDfa *, size_t> &dfa_mapping, |
| 2417 | vector<OutfixInfo> &outfixes, |
| 2418 | MergeFunctor merge_func) { |
| 2419 | DEBUG_PRINTF("merging group of size %zu\n" , dfas.size()); |
| 2420 | |
| 2421 | for (auto it = dfas.begin(), ite = dfas.end(); it != ite; ++it) { |
| 2422 | if (!*it) { |
| 2423 | continue; |
| 2424 | } |
| 2425 | for (auto jt = next(it); jt != ite; ++jt) { |
| 2426 | if (!*jt) { |
| 2427 | continue; |
| 2428 | } |
| 2429 | |
| 2430 | DEBUG_PRINTF("try merge %p and %p\n" , *it, *jt); |
| 2431 | unique_ptr<RawDfa> rdfa = merge_func(*it, *jt); |
| 2432 | if (!rdfa) { |
| 2433 | continue; // Merge failed. |
| 2434 | } |
| 2435 | |
| 2436 | DEBUG_PRINTF("merge succeeded, built %p\n" , rdfa.get()); |
| 2437 | OutfixInfo &winner = outfixes.at(dfa_mapping[*it]); |
| 2438 | OutfixInfo &victim = outfixes.at(dfa_mapping[*jt]); |
| 2439 | assert(!winner.is_dead() && !victim.is_dead()); |
| 2440 | |
| 2441 | RawDfa *dfa_ptr = rdfa.get(); |
| 2442 | dfa_mapping[dfa_ptr] = dfa_mapping[*it]; |
| 2443 | dfa_mapping.erase(*it); |
| 2444 | winner.proto = move(rdfa); |
| 2445 | |
| 2446 | mergeOutfixInfo(winner, victim); |
| 2447 | |
| 2448 | victim.clear(); |
| 2449 | *jt = nullptr; // to be deleted. |
| 2450 | *it = dfa_ptr; |
| 2451 | } |
| 2452 | } |
| 2453 | } |
| 2454 | |
| 2455 | template<class RawDfa, class MergeFunctor> |
| 2456 | static |
| 2457 | void chunkedDfaMerge(vector<RawDfa *> &dfas, |
| 2458 | unordered_map<RawDfa *, size_t> &dfa_mapping, |
| 2459 | vector<OutfixInfo> &outfixes, |
| 2460 | MergeFunctor merge_func) { |
| 2461 | DEBUG_PRINTF("begin merge of %zu dfas\n" , dfas.size()); |
| 2462 | |
| 2463 | vector<RawDfa *> out_dfas; |
| 2464 | vector<RawDfa *> chunk; |
| 2465 | for (auto it = begin(dfas), ite = end(dfas); it != ite; ++it) { |
| 2466 | chunk.push_back(*it); |
| 2467 | if (chunk.size() >= DFA_CHUNK_SIZE_MAX || next(it) == ite) { |
| 2468 | pairwiseDfaMerge(chunk, dfa_mapping, outfixes, merge_func); |
| 2469 | out_dfas.insert(end(out_dfas), begin(chunk), end(chunk)); |
| 2470 | chunk.clear(); |
| 2471 | } |
| 2472 | } |
| 2473 | |
| 2474 | // Remove null (merged) DFAs and update vector for subsequent use. |
| 2475 | out_dfas.erase(remove(out_dfas.begin(), out_dfas.end(), nullptr), |
| 2476 | out_dfas.end()); |
| 2477 | dfas.swap(out_dfas); |
| 2478 | DEBUG_PRINTF("after merge there are %zu dfas\n" , dfas.size()); |
| 2479 | } |
| 2480 | |
| 2481 | static |
| 2482 | void mergeOutfixDfas(RoseBuildImpl &tbi, vector<raw_dfa *> &dfas) { |
| 2483 | DEBUG_PRINTF("merging %zu nfas\n" , dfas.size()); |
| 2484 | if (dfas.size() < 2) { |
| 2485 | return; |
| 2486 | } |
| 2487 | |
| 2488 | vector<OutfixInfo> &outfixes = tbi.outfixes; |
| 2489 | |
| 2490 | /* key is index into outfix array as iterators, etc may be invalidated by |
| 2491 | * element addition. */ |
| 2492 | unordered_map<raw_dfa *, size_t> dfa_mapping; |
| 2493 | for (size_t i = 0; i < outfixes.size(); i++) { |
| 2494 | auto *rdfa = outfixes[i].rdfa(); |
| 2495 | if (rdfa) { |
| 2496 | dfa_mapping[rdfa] = i; |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | chunkedDfaMerge(dfas, dfa_mapping, outfixes, |
| 2501 | MergeMcClellan(tbi.rm, tbi.cc.grey)); |
| 2502 | removeDeadOutfixes(outfixes); |
| 2503 | } |
| 2504 | |
| 2505 | static |
| 2506 | void mergeOutfixCombo(RoseBuildImpl &tbi, const ReportManager &rm, |
| 2507 | const Grey &grey) { |
| 2508 | if (!grey.roseMcClellanOutfix) { |
| 2509 | return; |
| 2510 | } |
| 2511 | |
| 2512 | DEBUG_PRINTF("merge combo\n" ); |
| 2513 | |
| 2514 | bool seen_dfa = false; |
| 2515 | u32 nfa_count = 0; |
| 2516 | for (const auto &outfix : tbi.outfixes) { |
| 2517 | if (outfix.holder()) { |
| 2518 | DEBUG_PRINTF("nfa\n" ); |
| 2519 | nfa_count++; |
| 2520 | } else if (outfix.rdfa()) { |
| 2521 | DEBUG_PRINTF("dfa\n" ); |
| 2522 | seen_dfa = true; |
| 2523 | } |
| 2524 | } |
| 2525 | |
| 2526 | DEBUG_PRINTF("nfa %u dfas present %d\n" , nfa_count, |
| 2527 | (int)seen_dfa); |
| 2528 | if (!nfa_count || (nfa_count == 1 && !seen_dfa)) { |
| 2529 | DEBUG_PRINTF("no combo merges possible\n" ); |
| 2530 | return; |
| 2531 | } |
| 2532 | |
| 2533 | /* key is index into outfix array as iterators, etc may be invalidated by |
| 2534 | * element addition. */ |
| 2535 | size_t new_dfas = 0; |
| 2536 | unordered_map<raw_dfa *, size_t> dfa_mapping; |
| 2537 | vector<raw_dfa *> dfas; |
| 2538 | |
| 2539 | for (auto it = tbi.outfixes.begin(); it != tbi.outfixes.end(); ++it) { |
| 2540 | auto &outfix = *it; |
| 2541 | assert(!outfix.is_dead()); |
| 2542 | |
| 2543 | if (outfix.rdfa()) { |
| 2544 | auto *rdfa = outfix.rdfa(); |
| 2545 | dfas.push_back(rdfa); |
| 2546 | dfa_mapping[rdfa] = it - tbi.outfixes.begin(); |
| 2547 | continue; |
| 2548 | } |
| 2549 | |
| 2550 | if (!outfix.holder()) { |
| 2551 | continue; |
| 2552 | } |
| 2553 | |
| 2554 | NGHolder *h = outfix.holder(); |
| 2555 | assert(h->kind == NFA_OUTFIX); |
| 2556 | auto rdfa = buildMcClellan(*h, &rm, grey); |
| 2557 | if (rdfa) { |
| 2558 | // Transform this outfix into a DFA and add it to the merge set. |
| 2559 | dfa_mapping[rdfa.get()] = it - tbi.outfixes.begin(); |
| 2560 | dfas.push_back(rdfa.get()); |
| 2561 | outfix.proto = move(rdfa); |
| 2562 | new_dfas++; |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | DEBUG_PRINTF("constructed %zu new dfas\n" , new_dfas); |
| 2567 | |
| 2568 | if (!new_dfas) { |
| 2569 | /* assumes normal dfas have already been fully merged */ |
| 2570 | return; |
| 2571 | } |
| 2572 | |
| 2573 | chunkedDfaMerge(dfas, dfa_mapping, tbi.outfixes, |
| 2574 | MergeMcClellan(tbi.rm, tbi.cc.grey)); |
| 2575 | removeDeadOutfixes(tbi.outfixes); |
| 2576 | } |
| 2577 | |
| 2578 | static |
| 2579 | void mergeOutfixHaigs(RoseBuildImpl &tbi, vector<raw_som_dfa *> &dfas, |
| 2580 | u32 limit) { |
| 2581 | if (dfas.size() < 2) { |
| 2582 | return; |
| 2583 | } |
| 2584 | |
| 2585 | vector<OutfixInfo> &outfixes = tbi.outfixes; |
| 2586 | |
| 2587 | unordered_map<raw_som_dfa *, size_t> dfa_mapping; |
| 2588 | for (size_t i = 0; i < outfixes.size(); i++) { |
| 2589 | auto *haig = outfixes[i].haig(); |
| 2590 | if (haig) { |
| 2591 | dfa_mapping[haig] = i; |
| 2592 | } |
| 2593 | } |
| 2594 | |
| 2595 | chunkedDfaMerge(dfas, dfa_mapping, outfixes, MergeHaig(limit)); |
| 2596 | removeDeadOutfixes(outfixes); |
| 2597 | } |
| 2598 | |
| 2599 | /** |
| 2600 | * This pass attempts to merge outfix engines together. At this point in time, |
| 2601 | * the engine type (NFA, DFA, Haig) has already been decided for each outfix |
| 2602 | * and outfixes can only merged with others of their same type. NFAs are merged |
| 2603 | * in a priority order based on common prefix length. The other types are |
| 2604 | * merged blindly. Engines are merged to the extent that they can still be |
| 2605 | * implemented efficiently. |
| 2606 | */ |
| 2607 | void mergeOutfixes(RoseBuildImpl &tbi) { |
| 2608 | if (!tbi.cc.grey.mergeOutfixes) { |
| 2609 | return; |
| 2610 | } |
| 2611 | |
| 2612 | vector<NGHolder *> nfas; |
| 2613 | vector<raw_dfa *> dfas; |
| 2614 | vector<raw_som_dfa *> som_dfas; |
| 2615 | |
| 2616 | for (auto &outfix : tbi.outfixes) { |
| 2617 | if (outfix.rdfa()) { |
| 2618 | dfas.push_back(outfix.rdfa()); |
| 2619 | } else if (outfix.holder()) { |
| 2620 | nfas.push_back(outfix.holder()); |
| 2621 | } else if (outfix.haig()) { |
| 2622 | som_dfas.push_back(outfix.haig()); |
| 2623 | } |
| 2624 | } |
| 2625 | |
| 2626 | DEBUG_PRINTF("merging %zu dfas, %zu nfas\n" , |
| 2627 | dfas.size(), nfas.size()); |
| 2628 | |
| 2629 | mergeOutfixNfas(tbi, nfas); |
| 2630 | mergeOutfixDfas(tbi, dfas); |
| 2631 | mergeOutfixHaigs(tbi, som_dfas, 255); |
| 2632 | mergeOutfixHaigs(tbi, som_dfas, 8192); |
| 2633 | mergeOutfixCombo(tbi, tbi.rm, tbi.cc.grey); |
| 2634 | } |
| 2635 | |
| 2636 | static |
| 2637 | u32 allowedSquashDistance(const CharReach &cr, u32 min_width, |
| 2638 | const RoseBuildImpl &tbi, |
| 2639 | RoseVertex tv) { |
| 2640 | CharReach accept_cr; |
| 2641 | DEBUG_PRINTF("hello |cr|=%zu\n" , cr.count()); |
| 2642 | |
| 2643 | const RoseGraph &g = tbi.g; |
| 2644 | |
| 2645 | /* TODO: inspect further back in the pattern */ |
| 2646 | for (u32 lit_id : g[tv].literals) { |
| 2647 | const rose_literal_id &lit = tbi.literals.at(lit_id); |
| 2648 | if (lit.delay) { |
| 2649 | return 0; /* TODO: better */ |
| 2650 | } |
| 2651 | if (lit.table != ROSE_FLOATING && lit.table != ROSE_EOD_ANCHORED) { |
| 2652 | return 0; |
| 2653 | } |
| 2654 | assert(!lit.s.empty()); |
| 2655 | accept_cr |= *lit.s.rbegin(); |
| 2656 | } |
| 2657 | |
| 2658 | DEBUG_PRINTF("|accept_cr|=%zu\n" , accept_cr.count()); |
| 2659 | |
| 2660 | if ((accept_cr & cr).any()) { |
| 2661 | DEBUG_PRINTF("no squash\n" ); |
| 2662 | return 0; /* the accept byte doesn't always kill the puffette. TODO: |
| 2663 | * maybe if we look further back we could find something that |
| 2664 | * would kill the puffette... */ |
| 2665 | } |
| 2666 | |
| 2667 | DEBUG_PRINTF("allowed to squash %u\n" , min_width); |
| 2668 | return min_width; |
| 2669 | } |
| 2670 | |
| 2671 | void mergePuffixes(RoseBuildImpl &tbi) { |
| 2672 | DEBUG_PRINTF("entry\n" ); |
| 2673 | |
| 2674 | if (!tbi.cc.grey.mergeSuffixes) { |
| 2675 | return; |
| 2676 | } |
| 2677 | |
| 2678 | RoseGraph &g = tbi.g; |
| 2679 | |
| 2680 | for (auto v : vertices_range(g)) { |
| 2681 | shared_ptr<NGHolder> h = g[v].suffix.graph; |
| 2682 | if (!h) { |
| 2683 | continue; |
| 2684 | } |
| 2685 | assert(!g[v].suffix.haig); |
| 2686 | assert(!g[v].eod_accept); |
| 2687 | |
| 2688 | assert(onlyOneTop(*h)); /* we should not have merged yet */ |
| 2689 | bool fixed_depth = g[v].min_offset == g[v].max_offset; |
| 2690 | |
| 2691 | if (!isPuffable(*h, fixed_depth, tbi.rm, tbi.cc.grey)) { |
| 2692 | continue; |
| 2693 | } |
| 2694 | |
| 2695 | PureRepeat repeat; |
| 2696 | if (!isPureRepeat(*h, repeat)) { |
| 2697 | assert(0); |
| 2698 | continue; |
| 2699 | } |
| 2700 | |
| 2701 | if (repeat.bounds.min == depth(0)) { |
| 2702 | assert(0); // No vacuous puffs allowed. |
| 2703 | continue; |
| 2704 | } |
| 2705 | |
| 2706 | assert(repeat.bounds.min.is_finite() && |
| 2707 | repeat.bounds.max.is_reachable()); |
| 2708 | assert(repeat.bounds.max == repeat.bounds.min || |
| 2709 | repeat.bounds.max.is_infinite()); |
| 2710 | |
| 2711 | const bool unbounded = repeat.bounds.max.is_infinite(); |
| 2712 | const set<ReportID> reports = all_reports(*h); |
| 2713 | assert(reports.size() == 1); |
| 2714 | ReportID report = *reports.begin(); |
| 2715 | |
| 2716 | DEBUG_PRINTF("got puffette candidate %u:%s\n" , report, |
| 2717 | repeat.bounds.str().c_str()); |
| 2718 | |
| 2719 | raw_puff rp(repeat.bounds.min, unbounded, report, repeat.reach); |
| 2720 | |
| 2721 | u32 queue; |
| 2722 | u32 event; |
| 2723 | tbi.addChainTail(rp, &queue, &event); |
| 2724 | u32 squashDistance = |
| 2725 | allowedSquashDistance(repeat.reach, repeat.bounds.min, tbi, v); |
| 2726 | |
| 2727 | Report ir = makeMpvTrigger(event, squashDistance); |
| 2728 | ReportID id = tbi.rm.getInternalId(ir); |
| 2729 | |
| 2730 | DEBUG_PRINTF("puffette event q%u t%u\n" , queue, event); |
| 2731 | g[v].suffix.reset(); |
| 2732 | g[v].reports.insert(id); |
| 2733 | } |
| 2734 | } |
| 2735 | |
| 2736 | static |
| 2737 | void updateCastleSuffix(RoseGraph &g, const shared_ptr<CastleProto> &m, |
| 2738 | u32 top, const vector<RoseVertex> &verts) { |
| 2739 | DEBUG_PRINTF("merged in as top %u of %p, updating %zu vertices\n" , top, |
| 2740 | m.get(), verts.size()); |
| 2741 | |
| 2742 | for (auto v : verts) { |
| 2743 | assert(g[v].suffix.castle); |
| 2744 | g[v].suffix.castle = m; |
| 2745 | g[v].suffix.top = top; |
| 2746 | } |
| 2747 | } |
| 2748 | |
| 2749 | static |
| 2750 | void mergeCastleSuffixChunk(RoseGraph &g, const vector<CastleProto *> &castles, |
| 2751 | const unordered_map<CastleProto *, vector<RoseVertex>> &eng_verts) { |
| 2752 | if (castles.size() <= 1) { |
| 2753 | return; |
| 2754 | } |
| 2755 | |
| 2756 | DEBUG_PRINTF("merging reach %s, %zu elements\n" , |
| 2757 | describeClass(castles[0]->reach()).c_str(), castles.size()); |
| 2758 | |
| 2759 | CastleProto *m = nullptr; |
| 2760 | |
| 2761 | for (CastleProto *c : castles) { |
| 2762 | assert(c->repeats.size() == 1); // Not yet merged. |
| 2763 | assert(g[eng_verts.at(c).front()].suffix.castle.get() == c); |
| 2764 | if (!m) { |
| 2765 | m = c; |
| 2766 | continue; |
| 2767 | } |
| 2768 | |
| 2769 | u32 top = m->merge(c->repeats[0]); |
| 2770 | if (top == CastleProto::max_occupancy) { |
| 2771 | // No room left to merge into 'm'. This one becomes the new 'm'. |
| 2772 | DEBUG_PRINTF("next mergee\n" ); |
| 2773 | m = c; |
| 2774 | continue; |
| 2775 | } |
| 2776 | updateCastleSuffix(g, g[eng_verts.at(m).front()].suffix.castle, top, |
| 2777 | eng_verts.at(c)); |
| 2778 | DEBUG_PRINTF("added to %p, top %u\n" , m, top); |
| 2779 | } |
| 2780 | } |
| 2781 | |
| 2782 | void mergeCastleSuffixes(RoseBuildImpl &build) { |
| 2783 | DEBUG_PRINTF("entry\n" ); |
| 2784 | |
| 2785 | if (!build.cc.grey.allowCastle || !build.cc.grey.mergeSuffixes) { |
| 2786 | return; |
| 2787 | } |
| 2788 | |
| 2789 | unordered_map<CastleProto *, vector<RoseVertex>> eng_verts; |
| 2790 | map<CharReach, vector<CastleProto *>> by_reach; |
| 2791 | |
| 2792 | RoseGraph &g = build.g; |
| 2793 | |
| 2794 | for (auto v : vertices_range(g)) { |
| 2795 | if (!g[v].suffix.castle) { |
| 2796 | continue; |
| 2797 | } |
| 2798 | |
| 2799 | CastleProto *c = g[v].suffix.castle.get(); |
| 2800 | |
| 2801 | if (c->repeats.size() != 1) { |
| 2802 | // This code assumes it's the only place merging is being done. |
| 2803 | assert(0); |
| 2804 | continue; |
| 2805 | } |
| 2806 | |
| 2807 | if (!contains(eng_verts, c)) { |
| 2808 | by_reach[c->reach()].push_back(c); |
| 2809 | } |
| 2810 | eng_verts[c].push_back(v); |
| 2811 | } |
| 2812 | |
| 2813 | for (auto &chunk : by_reach | map_values) { |
| 2814 | mergeCastleSuffixChunk(g, chunk, eng_verts); |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | } // namespace ue2 |
| 2819 | |