| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief Small-write engine build code. |
| 32 | */ |
| 33 | |
| 34 | #include "smallwrite/smallwrite_build.h" |
| 35 | |
| 36 | #include "grey.h" |
| 37 | #include "ue2common.h" |
| 38 | #include "compiler/compiler.h" |
| 39 | #include "nfa/dfa_min.h" |
| 40 | #include "nfa/mcclellancompile.h" |
| 41 | #include "nfa/mcclellancompile_util.h" |
| 42 | #include "nfa/nfa_internal.h" |
| 43 | #include "nfa/rdfa_merge.h" |
| 44 | #include "nfa/shengcompile.h" |
| 45 | #include "nfagraph/ng.h" |
| 46 | #include "nfagraph/ng_depth.h" |
| 47 | #include "nfagraph/ng_holder.h" |
| 48 | #include "nfagraph/ng_mcclellan.h" |
| 49 | #include "nfagraph/ng_reports.h" |
| 50 | #include "nfagraph/ng_prune.h" |
| 51 | #include "nfagraph/ng_util.h" |
| 52 | #include "smallwrite/smallwrite_internal.h" |
| 53 | #include "util/alloc.h" |
| 54 | #include "util/bytecode_ptr.h" |
| 55 | #include "util/charreach.h" |
| 56 | #include "util/compare.h" |
| 57 | #include "util/compile_context.h" |
| 58 | #include "util/container.h" |
| 59 | #include "util/make_unique.h" |
| 60 | #include "util/ue2_graph.h" |
| 61 | #include "util/ue2string.h" |
| 62 | #include "util/verify_types.h" |
| 63 | |
| 64 | #include <map> |
| 65 | #include <set> |
| 66 | #include <vector> |
| 67 | #include <utility> |
| 68 | |
| 69 | #include <boost/graph/breadth_first_search.hpp> |
| 70 | |
| 71 | using namespace std; |
| 72 | |
| 73 | namespace ue2 { |
| 74 | |
| 75 | #define DFA_MERGE_MAX_STATES 8000 |
| 76 | #define MAX_TRIE_VERTICES 8000 |
| 77 | |
| 78 | struct LitTrieVertexProps { |
| 79 | LitTrieVertexProps() = default; |
| 80 | explicit LitTrieVertexProps(u8 c_in) : c(c_in) {} |
| 81 | size_t index; // managed by ue2_graph |
| 82 | u8 c = 0; //!< character reached on this vertex |
| 83 | flat_set<ReportID> reports; //!< managed reports fired on this vertex |
| 84 | }; |
| 85 | |
| 86 | struct LitTrieEdgeProps { |
| 87 | size_t index; // managed by ue2_graph |
| 88 | }; |
| 89 | |
| 90 | /** |
| 91 | * \brief BGL graph used to store a trie of literals (for later AC construction |
| 92 | * into a DFA). |
| 93 | */ |
| 94 | struct LitTrie |
| 95 | : public ue2_graph<LitTrie, LitTrieVertexProps, LitTrieEdgeProps> { |
| 96 | |
| 97 | LitTrie() : root(add_vertex(*this)) {} |
| 98 | |
| 99 | const vertex_descriptor root; //!< Root vertex for the trie. |
| 100 | }; |
| 101 | |
| 102 | static |
| 103 | bool is_empty(const LitTrie &trie) { |
| 104 | return num_vertices(trie) <= 1; |
| 105 | } |
| 106 | |
| 107 | static |
| 108 | std::set<ReportID> all_reports(const LitTrie &trie) { |
| 109 | std::set<ReportID> reports; |
| 110 | for (auto v : vertices_range(trie)) { |
| 111 | insert(&reports, trie[v].reports); |
| 112 | } |
| 113 | return reports; |
| 114 | } |
| 115 | |
| 116 | using LitTrieVertex = LitTrie::vertex_descriptor; |
| 117 | using LitTrieEdge = LitTrie::edge_descriptor; |
| 118 | |
| 119 | namespace { // unnamed |
| 120 | |
| 121 | // Concrete impl class |
| 122 | class SmallWriteBuildImpl : public SmallWriteBuild { |
| 123 | public: |
| 124 | SmallWriteBuildImpl(size_t num_patterns, const ReportManager &rm, |
| 125 | const CompileContext &cc); |
| 126 | |
| 127 | // Construct a runtime implementation. |
| 128 | bytecode_ptr<SmallWriteEngine> build(u32 roseQuality) override; |
| 129 | |
| 130 | void add(const NGHolder &g, const ExpressionInfo &expr) override; |
| 131 | void add(const ue2_literal &literal, ReportID r) override; |
| 132 | |
| 133 | set<ReportID> all_reports() const override; |
| 134 | |
| 135 | const ReportManager &rm; |
| 136 | const CompileContext &cc; |
| 137 | |
| 138 | vector<unique_ptr<raw_dfa>> dfas; |
| 139 | LitTrie lit_trie; |
| 140 | LitTrie lit_trie_nocase; |
| 141 | size_t num_literals = 0; |
| 142 | bool poisoned; |
| 143 | }; |
| 144 | |
| 145 | } // namespace |
| 146 | |
| 147 | SmallWriteBuild::~SmallWriteBuild() = default; |
| 148 | |
| 149 | SmallWriteBuildImpl::SmallWriteBuildImpl(size_t num_patterns, |
| 150 | const ReportManager &rm_in, |
| 151 | const CompileContext &cc_in) |
| 152 | : rm(rm_in), cc(cc_in), |
| 153 | /* small write is block mode only */ |
| 154 | poisoned(!cc.grey.allowSmallWrite |
| 155 | || cc.streaming |
| 156 | || num_patterns > cc.grey.smallWriteMaxPatterns) { |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * \brief Remove any reports from the given vertex that cannot match within |
| 161 | * max_depth due to their constraints. |
| 162 | */ |
| 163 | static |
| 164 | bool pruneOverlongReports(NFAVertex v, NGHolder &g, const depth &max_depth, |
| 165 | const ReportManager &rm) { |
| 166 | assert(!g[v].reports.empty()); |
| 167 | |
| 168 | vector<ReportID> bad_reports; |
| 169 | |
| 170 | for (ReportID id : g[v].reports) { |
| 171 | const auto &report = rm.getReport(id); |
| 172 | if (report.minOffset > max_depth) { |
| 173 | bad_reports.push_back(id); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | for (ReportID id : bad_reports) { |
| 178 | g[v].reports.erase(id); |
| 179 | } |
| 180 | |
| 181 | if (g[v].reports.empty()) { |
| 182 | DEBUG_PRINTF("none of vertex %zu's reports can match, cut accepts\n" , |
| 183 | g[v].index); |
| 184 | remove_edge(v, g.accept, g); |
| 185 | remove_edge(v, g.acceptEod, g); |
| 186 | } |
| 187 | |
| 188 | return !bad_reports.empty(); |
| 189 | } |
| 190 | |
| 191 | /** |
| 192 | * \brief Prune vertices and reports from the graph that cannot match within |
| 193 | * max_depth. |
| 194 | */ |
| 195 | static |
| 196 | bool pruneOverlong(NGHolder &g, const depth &max_depth, |
| 197 | const ReportManager &rm) { |
| 198 | bool modified = false; |
| 199 | auto depths = calcBidiDepths(g); |
| 200 | |
| 201 | for (auto v : vertices_range(g)) { |
| 202 | if (is_special(v, g)) { |
| 203 | continue; |
| 204 | } |
| 205 | const auto &d = depths.at(g[v].index); |
| 206 | depth min_match_offset = min(d.fromStart.min, d.fromStartDotStar.min) |
| 207 | + min(d.toAccept.min, d.toAcceptEod.min); |
| 208 | if (min_match_offset > max_depth) { |
| 209 | clear_vertex(v, g); |
| 210 | modified = true; |
| 211 | continue; |
| 212 | } |
| 213 | |
| 214 | if (is_match_vertex(v, g)) { |
| 215 | modified |= pruneOverlongReports(v, g, max_depth, rm); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | if (modified) { |
| 220 | pruneUseless(g); |
| 221 | DEBUG_PRINTF("pruned graph down to %zu vertices\n" , num_vertices(g)); |
| 222 | } |
| 223 | |
| 224 | return modified; |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * \brief Attempt to merge the set of DFAs given down into a single raw_dfa. |
| 229 | * Returns false on failure. |
| 230 | */ |
| 231 | static |
| 232 | bool mergeDfas(vector<unique_ptr<raw_dfa>> &dfas, const ReportManager &rm, |
| 233 | const CompileContext &cc) { |
| 234 | assert(!dfas.empty()); |
| 235 | |
| 236 | if (dfas.size() == 1) { |
| 237 | return true; |
| 238 | } |
| 239 | |
| 240 | DEBUG_PRINTF("attempting to merge %zu DFAs\n" , dfas.size()); |
| 241 | |
| 242 | vector<const raw_dfa *> dfa_ptrs; |
| 243 | dfa_ptrs.reserve(dfas.size()); |
| 244 | for (auto &d : dfas) { |
| 245 | dfa_ptrs.push_back(d.get()); |
| 246 | } |
| 247 | |
| 248 | auto merged = mergeAllDfas(dfa_ptrs, DFA_MERGE_MAX_STATES, &rm, cc.grey); |
| 249 | if (!merged) { |
| 250 | DEBUG_PRINTF("merge failed\n" ); |
| 251 | return false; |
| 252 | } |
| 253 | |
| 254 | DEBUG_PRINTF("merge succeeded, result has %zu states\n" , |
| 255 | merged->states.size()); |
| 256 | dfas.clear(); |
| 257 | dfas.push_back(std::move(merged)); |
| 258 | return true; |
| 259 | } |
| 260 | |
| 261 | void SmallWriteBuildImpl::add(const NGHolder &g, const ExpressionInfo &expr) { |
| 262 | // If the graph is poisoned (i.e. we can't build a SmallWrite version), |
| 263 | // we don't even try. |
| 264 | if (poisoned) { |
| 265 | return; |
| 266 | } |
| 267 | |
| 268 | if (expr.som) { |
| 269 | DEBUG_PRINTF("no SOM support in small-write engine\n" ); |
| 270 | poisoned = true; |
| 271 | return; |
| 272 | } |
| 273 | |
| 274 | if (isVacuous(g)) { |
| 275 | DEBUG_PRINTF("no vacuous graph support in small-write engine\n" ); |
| 276 | poisoned = true; |
| 277 | return; |
| 278 | } |
| 279 | |
| 280 | if (any_of_in(::ue2::all_reports(g), [&](ReportID id) { |
| 281 | return rm.getReport(id).minLength > 0; |
| 282 | })) { |
| 283 | DEBUG_PRINTF("no min_length extparam support in small-write engine\n" ); |
| 284 | poisoned = true; |
| 285 | return; |
| 286 | } |
| 287 | |
| 288 | DEBUG_PRINTF("g=%p\n" , &g); |
| 289 | |
| 290 | // make a copy of the graph so that we can modify it for our purposes |
| 291 | unique_ptr<NGHolder> h = cloneHolder(g); |
| 292 | |
| 293 | pruneOverlong(*h, depth(cc.grey.smallWriteLargestBuffer), rm); |
| 294 | |
| 295 | reduceGraph(*h, SOM_NONE, expr.utf8, cc); |
| 296 | |
| 297 | if (can_never_match(*h)) { |
| 298 | DEBUG_PRINTF("graph can never match in small block\n" ); |
| 299 | return; |
| 300 | } |
| 301 | |
| 302 | // Now we can actually build the McClellan DFA |
| 303 | assert(h->kind == NFA_OUTFIX); |
| 304 | auto r = buildMcClellan(*h, &rm, cc.grey); |
| 305 | |
| 306 | // If we couldn't build a McClellan DFA for this portion, we won't be able |
| 307 | // build a smwr which represents the pattern set |
| 308 | if (!r) { |
| 309 | DEBUG_PRINTF("failed to determinise\n" ); |
| 310 | poisoned = true; |
| 311 | return; |
| 312 | } |
| 313 | |
| 314 | if (clear_deeper_reports(*r, cc.grey.smallWriteLargestBuffer)) { |
| 315 | minimize_hopcroft(*r, cc.grey); |
| 316 | } |
| 317 | |
| 318 | dfas.push_back(std::move(r)); |
| 319 | |
| 320 | if (dfas.size() >= cc.grey.smallWriteMergeBatchSize) { |
| 321 | if (!mergeDfas(dfas, rm, cc)) { |
| 322 | dfas.clear(); |
| 323 | poisoned = true; |
| 324 | return; |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | static |
| 330 | bool add_to_trie(const ue2_literal &literal, ReportID report, LitTrie &trie) { |
| 331 | auto u = trie.root; |
| 332 | for (const auto &c : literal) { |
| 333 | auto next = LitTrie::null_vertex(); |
| 334 | for (auto v : adjacent_vertices_range(u, trie)) { |
| 335 | if (trie[v].c == (u8)c.c) { |
| 336 | next = v; |
| 337 | break; |
| 338 | } |
| 339 | } |
| 340 | if (!next) { |
| 341 | next = add_vertex(LitTrieVertexProps((u8)c.c), trie); |
| 342 | add_edge(u, next, trie); |
| 343 | } |
| 344 | u = next; |
| 345 | } |
| 346 | |
| 347 | trie[u].reports.insert(report); |
| 348 | |
| 349 | DEBUG_PRINTF("added '%s' (report %u) to trie, now %zu vertices\n" , |
| 350 | escapeString(literal).c_str(), report, num_vertices(trie)); |
| 351 | return num_vertices(trie) <= MAX_TRIE_VERTICES; |
| 352 | } |
| 353 | |
| 354 | void SmallWriteBuildImpl::add(const ue2_literal &literal, ReportID r) { |
| 355 | // If the graph is poisoned (i.e. we can't build a SmallWrite version), |
| 356 | // we don't even try. |
| 357 | if (poisoned) { |
| 358 | DEBUG_PRINTF("poisoned\n" ); |
| 359 | return; |
| 360 | } |
| 361 | |
| 362 | if (literal.length() > cc.grey.smallWriteLargestBuffer) { |
| 363 | DEBUG_PRINTF("exceeded length limit\n" ); |
| 364 | return; /* too long */ |
| 365 | } |
| 366 | |
| 367 | if (++num_literals > cc.grey.smallWriteMaxLiterals) { |
| 368 | DEBUG_PRINTF("exceeded literal limit\n" ); |
| 369 | poisoned = true; |
| 370 | return; |
| 371 | } |
| 372 | |
| 373 | auto &trie = literal.any_nocase() ? lit_trie_nocase : lit_trie; |
| 374 | if (!add_to_trie(literal, r, trie)) { |
| 375 | DEBUG_PRINTF("trie add failed\n" ); |
| 376 | poisoned = true; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | namespace { |
| 381 | |
| 382 | /** |
| 383 | * \brief BFS visitor for Aho-Corasick automaton construction. |
| 384 | * |
| 385 | * This is doing two things: |
| 386 | * |
| 387 | * - Computing the failure edges (also called fall or supply edges) for each |
| 388 | * vertex, giving the longest suffix of the path to that point that is also |
| 389 | * a prefix in the trie reached on the same character. The BFS traversal |
| 390 | * makes it possible to build these from earlier failure paths. |
| 391 | * |
| 392 | * - Computing the output function for each vertex, which is done by |
| 393 | * propagating the reports from failure paths as well. This ensures that |
| 394 | * substrings of the current path also report correctly. |
| 395 | */ |
| 396 | struct ACVisitor : public boost::default_bfs_visitor { |
| 397 | ACVisitor(LitTrie &trie_in, |
| 398 | unordered_map<LitTrieVertex, LitTrieVertex> &failure_map_in, |
| 399 | vector<LitTrieVertex> &ordering_in) |
| 400 | : mutable_trie(trie_in), failure_map(failure_map_in), |
| 401 | ordering(ordering_in) {} |
| 402 | |
| 403 | LitTrieVertex find_failure_target(LitTrieVertex u, LitTrieVertex v, |
| 404 | const LitTrie &trie) { |
| 405 | assert(u == trie.root || contains(failure_map, u)); |
| 406 | assert(!contains(failure_map, v)); |
| 407 | |
| 408 | const auto &c = trie[v].c; |
| 409 | |
| 410 | while (u != trie.root) { |
| 411 | auto f = failure_map.at(u); |
| 412 | for (auto w : adjacent_vertices_range(f, trie)) { |
| 413 | if (trie[w].c == c) { |
| 414 | return w; |
| 415 | } |
| 416 | } |
| 417 | u = f; |
| 418 | } |
| 419 | |
| 420 | DEBUG_PRINTF("no failure edge\n" ); |
| 421 | return LitTrie::null_vertex(); |
| 422 | } |
| 423 | |
| 424 | void tree_edge(LitTrieEdge e, const LitTrie &trie) { |
| 425 | auto u = source(e, trie); |
| 426 | auto v = target(e, trie); |
| 427 | DEBUG_PRINTF("bfs (%zu, %zu) on '%c'\n" , trie[u].index, trie[v].index, |
| 428 | trie[v].c); |
| 429 | ordering.push_back(v); |
| 430 | |
| 431 | auto f = find_failure_target(u, v, trie); |
| 432 | |
| 433 | if (f) { |
| 434 | DEBUG_PRINTF("final failure vertex %zu\n" , trie[f].index); |
| 435 | failure_map.emplace(v, f); |
| 436 | |
| 437 | // Propagate reports from failure path to ensure we correctly |
| 438 | // report substrings. |
| 439 | insert(&mutable_trie[v].reports, mutable_trie[f].reports); |
| 440 | } else { |
| 441 | DEBUG_PRINTF("final failure vertex root\n" ); |
| 442 | failure_map.emplace(v, trie.root); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | private: |
| 447 | LitTrie &mutable_trie; //!< For setting reports property. |
| 448 | unordered_map<LitTrieVertex, LitTrieVertex> &failure_map; |
| 449 | vector<LitTrieVertex> &ordering; //!< BFS ordering for vertices. |
| 450 | }; |
| 451 | } |
| 452 | |
| 453 | static UNUSED |
| 454 | bool isSaneTrie(const LitTrie &trie) { |
| 455 | CharReach seen; |
| 456 | for (auto u : vertices_range(trie)) { |
| 457 | seen.clear(); |
| 458 | for (auto v : adjacent_vertices_range(u, trie)) { |
| 459 | if (seen.test(trie[v].c)) { |
| 460 | return false; |
| 461 | } |
| 462 | seen.set(trie[v].c); |
| 463 | } |
| 464 | } |
| 465 | return true; |
| 466 | } |
| 467 | |
| 468 | /** |
| 469 | * \brief Turn the given literal trie into an AC automaton by adding additional |
| 470 | * edges and reports. |
| 471 | */ |
| 472 | static |
| 473 | void buildAutomaton(LitTrie &trie, |
| 474 | unordered_map<LitTrieVertex, LitTrieVertex> &failure_map, |
| 475 | vector<LitTrieVertex> &ordering) { |
| 476 | assert(isSaneTrie(trie)); |
| 477 | |
| 478 | // Find our failure transitions and reports. |
| 479 | failure_map.reserve(num_vertices(trie)); |
| 480 | ordering.reserve(num_vertices(trie)); |
| 481 | ACVisitor ac_vis(trie, failure_map, ordering); |
| 482 | boost::breadth_first_search(trie, trie.root, visitor(ac_vis)); |
| 483 | |
| 484 | // Compute missing edges from failure map. |
| 485 | for (auto v : ordering) { |
| 486 | DEBUG_PRINTF("vertex %zu\n" , trie[v].index); |
| 487 | CharReach seen; |
| 488 | for (auto w : adjacent_vertices_range(v, trie)) { |
| 489 | DEBUG_PRINTF("edge to %zu with reach 0x%02x\n" , trie[w].index, |
| 490 | trie[w].c); |
| 491 | assert(!seen.test(trie[w].c)); |
| 492 | seen.set(trie[w].c); |
| 493 | } |
| 494 | auto parent = failure_map.at(v); |
| 495 | for (auto w : adjacent_vertices_range(parent, trie)) { |
| 496 | if (!seen.test(trie[w].c)) { |
| 497 | add_edge(v, w, trie); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | static |
| 504 | vector<u32> findDistFromRoot(const LitTrie &trie) { |
| 505 | vector<u32> dist(num_vertices(trie), UINT32_MAX); |
| 506 | dist[trie[trie.root].index] = 0; |
| 507 | |
| 508 | // BFS to find dist from root. |
| 509 | breadth_first_search( |
| 510 | trie, trie.root, |
| 511 | visitor(make_bfs_visitor(record_distances( |
| 512 | make_iterator_property_map(dist.begin(), |
| 513 | get(&LitTrieVertexProps::index, trie)), |
| 514 | boost::on_tree_edge())))); |
| 515 | |
| 516 | return dist; |
| 517 | } |
| 518 | |
| 519 | static |
| 520 | vector<u32> findDistToAccept(const LitTrie &trie) { |
| 521 | vector<u32> dist(num_vertices(trie), UINT32_MAX); |
| 522 | |
| 523 | // Start with all reporting vertices. |
| 524 | deque<LitTrieVertex> q; |
| 525 | for (auto v : vertices_range(trie)) { |
| 526 | if (!trie[v].reports.empty()) { |
| 527 | q.push_back(v); |
| 528 | dist[trie[v].index] = 0; |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | // Custom BFS, since we have a pile of sources. |
| 533 | while (!q.empty()) { |
| 534 | auto v = q.front(); |
| 535 | q.pop_front(); |
| 536 | u32 d = dist[trie[v].index]; |
| 537 | |
| 538 | for (auto u : inv_adjacent_vertices_range(v, trie)) { |
| 539 | auto &u_dist = dist[trie[u].index]; |
| 540 | if (u_dist == UINT32_MAX) { |
| 541 | q.push_back(u); |
| 542 | u_dist = d + 1; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | return dist; |
| 548 | } |
| 549 | |
| 550 | /** |
| 551 | * \brief Prune all vertices from the trie that do not lie on a path from root |
| 552 | * to accept of length <= max_depth. |
| 553 | */ |
| 554 | static |
| 555 | void pruneTrie(LitTrie &trie, u32 max_depth) { |
| 556 | DEBUG_PRINTF("pruning trie to %u\n" , max_depth); |
| 557 | |
| 558 | auto dist_from_root = findDistFromRoot(trie); |
| 559 | auto dist_to_accept = findDistToAccept(trie); |
| 560 | |
| 561 | vector<LitTrieVertex> dead; |
| 562 | for (auto v : vertices_range(trie)) { |
| 563 | if (v == trie.root) { |
| 564 | continue; |
| 565 | } |
| 566 | auto v_index = trie[v].index; |
| 567 | DEBUG_PRINTF("vertex %zu: from_start=%u, to_accept=%u\n" , trie[v].index, |
| 568 | dist_from_root[v_index], dist_to_accept[v_index]); |
| 569 | assert(dist_from_root[v_index] != UINT32_MAX); |
| 570 | assert(dist_to_accept[v_index] != UINT32_MAX); |
| 571 | u32 min_path_len = dist_from_root[v_index] + dist_to_accept[v_index]; |
| 572 | if (min_path_len > max_depth) { |
| 573 | DEBUG_PRINTF("pruning vertex %zu (min path len %u)\n" , |
| 574 | trie[v].index, min_path_len); |
| 575 | clear_vertex(v, trie); |
| 576 | dead.push_back(v); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | if (dead.empty()) { |
| 581 | return; |
| 582 | } |
| 583 | |
| 584 | for (auto v : dead) { |
| 585 | remove_vertex(v, trie); |
| 586 | } |
| 587 | |
| 588 | DEBUG_PRINTF("%zu vertices remain\n" , num_vertices(trie)); |
| 589 | |
| 590 | renumber_edges(trie); |
| 591 | renumber_vertices(trie); |
| 592 | } |
| 593 | |
| 594 | static |
| 595 | vector<CharReach> getAlphabet(const LitTrie &trie, bool nocase) { |
| 596 | vector<CharReach> esets = {CharReach::dot()}; |
| 597 | for (auto v : vertices_range(trie)) { |
| 598 | if (v == trie.root) { |
| 599 | continue; |
| 600 | } |
| 601 | |
| 602 | CharReach cr; |
| 603 | if (nocase) { |
| 604 | cr.set(mytoupper(trie[v].c)); |
| 605 | cr.set(mytolower(trie[v].c)); |
| 606 | } else { |
| 607 | cr.set(trie[v].c); |
| 608 | } |
| 609 | |
| 610 | for (size_t i = 0; i < esets.size(); i++) { |
| 611 | if (esets[i].count() == 1) { |
| 612 | continue; |
| 613 | } |
| 614 | |
| 615 | CharReach t = cr & esets[i]; |
| 616 | if (t.any() && t != esets[i]) { |
| 617 | esets[i] &= ~t; |
| 618 | esets.push_back(t); |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | // For deterministic compiles. |
| 624 | sort(esets.begin(), esets.end()); |
| 625 | return esets; |
| 626 | } |
| 627 | |
| 628 | static |
| 629 | u16 buildAlphabet(const LitTrie &trie, bool nocase, |
| 630 | array<u16, ALPHABET_SIZE> &alpha, |
| 631 | array<u16, ALPHABET_SIZE> &unalpha) { |
| 632 | const auto &esets = getAlphabet(trie, nocase); |
| 633 | |
| 634 | u16 i = 0; |
| 635 | for (const auto &cr : esets) { |
| 636 | u16 leader = cr.find_first(); |
| 637 | for (size_t s = cr.find_first(); s != cr.npos; s = cr.find_next(s)) { |
| 638 | alpha[s] = i; |
| 639 | } |
| 640 | unalpha[i] = leader; |
| 641 | i++; |
| 642 | } |
| 643 | |
| 644 | for (u16 j = N_CHARS; j < ALPHABET_SIZE; j++, i++) { |
| 645 | alpha[j] = i; |
| 646 | unalpha[i] = j; |
| 647 | } |
| 648 | |
| 649 | DEBUG_PRINTF("alphabet size %u\n" , i); |
| 650 | return i; |
| 651 | } |
| 652 | |
| 653 | /** |
| 654 | * \brief Calculate state mapping, from vertex in trie to state index in BFS |
| 655 | * ordering. |
| 656 | */ |
| 657 | static |
| 658 | unordered_map<LitTrieVertex, u32> |
| 659 | makeStateMap(const LitTrie &trie, const vector<LitTrieVertex> &ordering) { |
| 660 | unordered_map<LitTrieVertex, u32> state_ids; |
| 661 | state_ids.reserve(num_vertices(trie)); |
| 662 | u32 idx = DEAD_STATE + 1; |
| 663 | state_ids.emplace(trie.root, idx++); |
| 664 | for (auto v : ordering) { |
| 665 | state_ids.emplace(v, idx++); |
| 666 | } |
| 667 | assert(state_ids.size() == num_vertices(trie)); |
| 668 | return state_ids; |
| 669 | } |
| 670 | |
| 671 | /** \brief Construct a raw_dfa from a literal trie. */ |
| 672 | static |
| 673 | unique_ptr<raw_dfa> buildDfa(LitTrie &trie, bool nocase) { |
| 674 | DEBUG_PRINTF("trie has %zu states\n" , num_vertices(trie)); |
| 675 | |
| 676 | vector<LitTrieVertex> ordering; |
| 677 | unordered_map<LitTrieVertex, LitTrieVertex> failure_map; |
| 678 | buildAutomaton(trie, failure_map, ordering); |
| 679 | |
| 680 | // Construct DFA states in BFS order. |
| 681 | const auto state_ids = makeStateMap(trie, ordering); |
| 682 | |
| 683 | auto rdfa = make_unique<raw_dfa>(NFA_OUTFIX); |
| 684 | |
| 685 | // Calculate alphabet. |
| 686 | array<u16, ALPHABET_SIZE> unalpha; |
| 687 | auto &alpha = rdfa->alpha_remap; |
| 688 | rdfa->alpha_size = buildAlphabet(trie, nocase, alpha, unalpha); |
| 689 | |
| 690 | // Construct states and transitions. |
| 691 | const u16 root_state = state_ids.at(trie.root); |
| 692 | assert(root_state == DEAD_STATE + 1); |
| 693 | rdfa->start_anchored = root_state; |
| 694 | rdfa->start_floating = root_state; |
| 695 | rdfa->states.resize(num_vertices(trie) + 1, dstate(rdfa->alpha_size)); |
| 696 | |
| 697 | // Dead state. |
| 698 | fill(rdfa->states[DEAD_STATE].next.begin(), |
| 699 | rdfa->states[DEAD_STATE].next.end(), DEAD_STATE); |
| 700 | |
| 701 | for (auto u : vertices_range(trie)) { |
| 702 | auto u_state = state_ids.at(u); |
| 703 | DEBUG_PRINTF("state %u\n" , u_state); |
| 704 | assert(u_state < rdfa->states.size()); |
| 705 | auto &ds = rdfa->states[u_state]; |
| 706 | ds.reports = trie[u].reports; |
| 707 | if (!ds.reports.empty()) { |
| 708 | DEBUG_PRINTF("reports: %s\n" , as_string_list(ds.reports).c_str()); |
| 709 | } |
| 710 | |
| 711 | // Set daddy state from failure map. |
| 712 | if (u == trie.root) { |
| 713 | ds.daddy = DEAD_STATE; |
| 714 | } else { |
| 715 | assert(contains(failure_map, u)); |
| 716 | ds.daddy = state_ids.at(failure_map.at(u)); |
| 717 | } |
| 718 | |
| 719 | // By default, transition back to the root. |
| 720 | fill(ds.next.begin(), ds.next.end(), root_state); |
| 721 | // TOP should be a self-loop. |
| 722 | ds.next[alpha[TOP]] = u_state; |
| 723 | |
| 724 | // Add in the real transitions. |
| 725 | for (auto v : adjacent_vertices_range(u, trie)) { |
| 726 | if (v == trie.root) { |
| 727 | continue; |
| 728 | } |
| 729 | auto v_state = state_ids.at(v); |
| 730 | u16 sym = alpha[trie[v].c]; |
| 731 | DEBUG_PRINTF("edge to %u on 0x%02x (sym %u)\n" , v_state, |
| 732 | trie[v].c, sym); |
| 733 | assert(sym < ds.next.size()); |
| 734 | assert(ds.next[sym] == root_state); |
| 735 | ds.next[sym] = v_state; |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | return rdfa; |
| 740 | } |
| 741 | |
| 742 | #define MAX_GOOD_ACCEL_DEPTH 4 |
| 743 | |
| 744 | static |
| 745 | bool is_slow(const raw_dfa &rdfa, const set<dstate_id_t> &accel, |
| 746 | u32 roseQuality) { |
| 747 | /* we consider a dfa as slow if there is no way to quickly get into an accel |
| 748 | * state/dead state. In these cases, it is more likely that we will be |
| 749 | * running at our unaccelerated dfa speeds so the small write engine is only |
| 750 | * competitive over a small region where start up costs are dominant. */ |
| 751 | |
| 752 | if (roseQuality) { |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | set<dstate_id_t> visited; |
| 757 | set<dstate_id_t> next; |
| 758 | set<dstate_id_t> curr; |
| 759 | curr.insert(rdfa.start_anchored); |
| 760 | |
| 761 | u32 ialpha_size = rdfa.getImplAlphaSize(); |
| 762 | |
| 763 | for (u32 i = 0; i < MAX_GOOD_ACCEL_DEPTH; i++) { |
| 764 | next.clear(); |
| 765 | for (dstate_id_t s : curr) { |
| 766 | if (contains(visited, s)) { |
| 767 | continue; |
| 768 | } |
| 769 | visited.insert(s); |
| 770 | if (s == DEAD_STATE || contains(accel, s)) { |
| 771 | return false; |
| 772 | } |
| 773 | |
| 774 | for (size_t j = 0; j < ialpha_size; j++) { |
| 775 | next.insert(rdfa.states[s].next[j]); |
| 776 | } |
| 777 | } |
| 778 | curr.swap(next); |
| 779 | } |
| 780 | |
| 781 | return true; |
| 782 | } |
| 783 | |
| 784 | static |
| 785 | bytecode_ptr<NFA> getDfa(raw_dfa &rdfa, const CompileContext &cc, |
| 786 | const ReportManager &rm, bool has_non_literals, |
| 787 | set<dstate_id_t> &accel_states) { |
| 788 | // If we determinised only literals, then we only need to consider the init |
| 789 | // states for acceleration. |
| 790 | bool only_accel_init = !has_non_literals; |
| 791 | bool trust_daddy_states = !has_non_literals; |
| 792 | |
| 793 | bytecode_ptr<NFA> dfa = nullptr; |
| 794 | if (cc.grey.allowSmallWriteSheng) { |
| 795 | dfa = shengCompile(rdfa, cc, rm, only_accel_init, &accel_states); |
| 796 | } |
| 797 | if (!dfa) { |
| 798 | dfa = mcclellanCompile(rdfa, cc, rm, only_accel_init, |
| 799 | trust_daddy_states, &accel_states); |
| 800 | } |
| 801 | return dfa; |
| 802 | } |
| 803 | |
| 804 | static |
| 805 | bytecode_ptr<NFA> prepEngine(raw_dfa &rdfa, u32 roseQuality, |
| 806 | const CompileContext &cc, const ReportManager &rm, |
| 807 | bool has_non_literals, u32 *start_offset, |
| 808 | u32 *small_region) { |
| 809 | *start_offset = remove_leading_dots(rdfa); |
| 810 | |
| 811 | // Unleash the McClellan! |
| 812 | set<dstate_id_t> accel_states; |
| 813 | |
| 814 | auto nfa = getDfa(rdfa, cc, rm, has_non_literals, accel_states); |
| 815 | if (!nfa) { |
| 816 | DEBUG_PRINTF("DFA compile failed for smallwrite NFA\n" ); |
| 817 | return nullptr; |
| 818 | } |
| 819 | |
| 820 | if (is_slow(rdfa, accel_states, roseQuality)) { |
| 821 | DEBUG_PRINTF("is slow\n" ); |
| 822 | *small_region = cc.grey.smallWriteLargestBufferBad; |
| 823 | if (*small_region <= *start_offset) { |
| 824 | return nullptr; |
| 825 | } |
| 826 | if (clear_deeper_reports(rdfa, *small_region - *start_offset)) { |
| 827 | minimize_hopcroft(rdfa, cc.grey); |
| 828 | if (rdfa.start_anchored == DEAD_STATE) { |
| 829 | DEBUG_PRINTF("all patterns pruned out\n" ); |
| 830 | return nullptr; |
| 831 | } |
| 832 | |
| 833 | nfa = getDfa(rdfa, cc, rm, has_non_literals, accel_states); |
| 834 | if (!nfa) { |
| 835 | DEBUG_PRINTF("DFA compile failed for smallwrite NFA\n" ); |
| 836 | assert(0); /* able to build orig dfa but not the trimmed? */ |
| 837 | return nullptr; |
| 838 | } |
| 839 | } |
| 840 | } else { |
| 841 | *small_region = cc.grey.smallWriteLargestBuffer; |
| 842 | } |
| 843 | |
| 844 | assert(isDfaType(nfa->type)); |
| 845 | if (nfa->length > cc.grey.limitSmallWriteOutfixSize |
| 846 | || nfa->length > cc.grey.limitDFASize) { |
| 847 | DEBUG_PRINTF("smallwrite outfix size too large\n" ); |
| 848 | return nullptr; /* this is just a soft failure - don't build smwr */ |
| 849 | } |
| 850 | |
| 851 | nfa->queueIndex = 0; /* dummy, small write API does not use queue */ |
| 852 | return nfa; |
| 853 | } |
| 854 | |
| 855 | // SmallWriteBuild factory |
| 856 | unique_ptr<SmallWriteBuild> makeSmallWriteBuilder(size_t num_patterns, |
| 857 | const ReportManager &rm, |
| 858 | const CompileContext &cc) { |
| 859 | return ue2::make_unique<SmallWriteBuildImpl>(num_patterns, rm, cc); |
| 860 | } |
| 861 | |
| 862 | bytecode_ptr<SmallWriteEngine> SmallWriteBuildImpl::build(u32 roseQuality) { |
| 863 | const bool has_literals = !is_empty(lit_trie) || !is_empty(lit_trie_nocase); |
| 864 | const bool has_non_literals = !dfas.empty(); |
| 865 | if (dfas.empty() && !has_literals) { |
| 866 | DEBUG_PRINTF("no smallwrite engine\n" ); |
| 867 | poisoned = true; |
| 868 | return nullptr; |
| 869 | } |
| 870 | |
| 871 | if (poisoned) { |
| 872 | DEBUG_PRINTF("some pattern could not be made into a smallwrite dfa\n" ); |
| 873 | return nullptr; |
| 874 | } |
| 875 | |
| 876 | // We happen to know that if the rose is high quality, we're going to limit |
| 877 | // depth further. |
| 878 | if (roseQuality) { |
| 879 | u32 max_depth = cc.grey.smallWriteLargestBufferBad; |
| 880 | if (!is_empty(lit_trie)) { |
| 881 | pruneTrie(lit_trie, max_depth); |
| 882 | } |
| 883 | if (!is_empty(lit_trie_nocase)) { |
| 884 | pruneTrie(lit_trie_nocase, max_depth); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | if (!is_empty(lit_trie)) { |
| 889 | dfas.push_back(buildDfa(lit_trie, false)); |
| 890 | DEBUG_PRINTF("caseful literal dfa with %zu states\n" , |
| 891 | dfas.back()->states.size()); |
| 892 | } |
| 893 | if (!is_empty(lit_trie_nocase)) { |
| 894 | dfas.push_back(buildDfa(lit_trie_nocase, true)); |
| 895 | DEBUG_PRINTF("nocase literal dfa with %zu states\n" , |
| 896 | dfas.back()->states.size()); |
| 897 | } |
| 898 | |
| 899 | if (dfas.empty()) { |
| 900 | DEBUG_PRINTF("no dfa, pruned everything away\n" ); |
| 901 | return nullptr; |
| 902 | } |
| 903 | |
| 904 | if (!mergeDfas(dfas, rm, cc)) { |
| 905 | dfas.clear(); |
| 906 | return nullptr; |
| 907 | } |
| 908 | |
| 909 | assert(dfas.size() == 1); |
| 910 | auto rdfa = std::move(dfas.front()); |
| 911 | dfas.clear(); |
| 912 | |
| 913 | DEBUG_PRINTF("building rdfa %p\n" , rdfa.get()); |
| 914 | |
| 915 | u32 start_offset; |
| 916 | u32 small_region; |
| 917 | auto nfa = prepEngine(*rdfa, roseQuality, cc, rm, has_non_literals, |
| 918 | &start_offset, &small_region); |
| 919 | if (!nfa) { |
| 920 | DEBUG_PRINTF("some smallwrite outfix could not be prepped\n" ); |
| 921 | /* just skip the smallwrite optimization */ |
| 922 | poisoned = true; |
| 923 | return nullptr; |
| 924 | } |
| 925 | |
| 926 | u32 size = sizeof(SmallWriteEngine) + nfa->length; |
| 927 | auto smwr = make_zeroed_bytecode_ptr<SmallWriteEngine>(size); |
| 928 | |
| 929 | smwr->size = size; |
| 930 | smwr->start_offset = start_offset; |
| 931 | smwr->largestBuffer = small_region; |
| 932 | |
| 933 | /* copy in nfa after the smwr */ |
| 934 | assert(ISALIGNED_CL(smwr.get() + 1)); |
| 935 | memcpy(smwr.get() + 1, nfa.get(), nfa->length); |
| 936 | |
| 937 | DEBUG_PRINTF("smallwrite done %p\n" , smwr.get()); |
| 938 | return smwr; |
| 939 | } |
| 940 | |
| 941 | set<ReportID> SmallWriteBuildImpl::all_reports() const { |
| 942 | set<ReportID> reports; |
| 943 | if (poisoned) { |
| 944 | return reports; |
| 945 | } |
| 946 | |
| 947 | for (const auto &rdfa : dfas) { |
| 948 | insert(&reports, ::ue2::all_reports(*rdfa)); |
| 949 | } |
| 950 | |
| 951 | insert(&reports, ::ue2::all_reports(lit_trie)); |
| 952 | insert(&reports, ::ue2::all_reports(lit_trie_nocase)); |
| 953 | |
| 954 | return reports; |
| 955 | } |
| 956 | |
| 957 | } // namespace ue2 |
| 958 | |