1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX FlowGraph XX |
9 | XX XX |
10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
12 | */ |
13 | |
14 | #include "jitpch.h" |
15 | #ifdef _MSC_VER |
16 | #pragma hdrstop |
17 | #endif |
18 | |
19 | #include "allocacheck.h" // for alloca |
20 | #include "lower.h" // for LowerRange() |
21 | |
22 | /*****************************************************************************/ |
23 | |
24 | void Compiler::fgInit() |
25 | { |
26 | impInit(); |
27 | |
28 | /* Initialization for fgWalkTreePre() and fgWalkTreePost() */ |
29 | |
30 | fgFirstBBScratch = nullptr; |
31 | |
32 | #ifdef DEBUG |
33 | fgPrintInlinedMethods = JitConfig.JitPrintInlinedMethods() == 1; |
34 | #endif // DEBUG |
35 | |
36 | /* We haven't yet computed the bbPreds lists */ |
37 | fgComputePredsDone = false; |
38 | |
39 | /* We haven't yet computed the bbCheapPreds lists */ |
40 | fgCheapPredsValid = false; |
41 | |
42 | /* We haven't yet computed the edge weight */ |
43 | fgEdgeWeightsComputed = false; |
44 | fgHaveValidEdgeWeights = false; |
45 | fgSlopUsedInEdgeWeights = false; |
46 | fgRangeUsedInEdgeWeights = true; |
47 | fgNeedsUpdateFlowGraph = false; |
48 | fgCalledCount = BB_ZERO_WEIGHT; |
49 | |
50 | /* We haven't yet computed the dominator sets */ |
51 | fgDomsComputed = false; |
52 | |
53 | #ifdef DEBUG |
54 | fgReachabilitySetsValid = false; |
55 | #endif // DEBUG |
56 | |
57 | /* We don't know yet which loops will always execute calls */ |
58 | fgLoopCallMarked = false; |
59 | |
60 | /* We haven't created GC Poll blocks yet. */ |
61 | fgGCPollsCreated = false; |
62 | |
63 | /* Initialize the basic block list */ |
64 | |
65 | fgFirstBB = nullptr; |
66 | fgLastBB = nullptr; |
67 | fgFirstColdBlock = nullptr; |
68 | |
69 | #if FEATURE_EH_FUNCLETS |
70 | fgFirstFuncletBB = nullptr; |
71 | fgFuncletsCreated = false; |
72 | #endif // FEATURE_EH_FUNCLETS |
73 | |
74 | fgBBcount = 0; |
75 | |
76 | #ifdef DEBUG |
77 | fgBBcountAtCodegen = 0; |
78 | #endif // DEBUG |
79 | |
80 | fgBBNumMax = 0; |
81 | fgEdgeCount = 0; |
82 | fgDomBBcount = 0; |
83 | fgBBVarSetsInited = false; |
84 | fgReturnCount = 0; |
85 | |
86 | // Initialize BlockSet data. |
87 | fgCurBBEpoch = 0; |
88 | fgCurBBEpochSize = 0; |
89 | fgBBSetCountInSizeTUnits = 0; |
90 | |
91 | genReturnBB = nullptr; |
92 | |
93 | /* We haven't reached the global morphing phase */ |
94 | fgGlobalMorph = false; |
95 | fgModified = false; |
96 | |
97 | #ifdef DEBUG |
98 | fgSafeBasicBlockCreation = true; |
99 | #endif // DEBUG |
100 | |
101 | fgLocalVarLivenessDone = false; |
102 | |
103 | /* Statement list is not threaded yet */ |
104 | |
105 | fgStmtListThreaded = false; |
106 | |
107 | // Initialize the logic for adding code. This is used to insert code such |
108 | // as the code that raises an exception when an array range check fails. |
109 | |
110 | fgAddCodeList = nullptr; |
111 | fgAddCodeModf = false; |
112 | |
113 | for (int i = 0; i < SCK_COUNT; i++) |
114 | { |
115 | fgExcptnTargetCache[i] = nullptr; |
116 | } |
117 | |
118 | /* Keep track of the max count of pointer arguments */ |
119 | fgPtrArgCntMax = 0; |
120 | |
121 | /* This global flag is set whenever we remove a statement */ |
122 | fgStmtRemoved = false; |
123 | |
124 | /* This global flag is set whenever we add a throw block for a RngChk */ |
125 | fgRngChkThrowAdded = false; /* reset flag for fgIsCodeAdded() */ |
126 | |
127 | /* We will record a list of all BBJ_RETURN blocks here */ |
128 | fgReturnBlocks = nullptr; |
129 | |
130 | /* This is set by fgComputeReachability */ |
131 | fgEnterBlks = BlockSetOps::UninitVal(); |
132 | |
133 | #ifdef DEBUG |
134 | fgEnterBlksSetValid = false; |
135 | #endif // DEBUG |
136 | |
137 | #if !FEATURE_EH_FUNCLETS |
138 | ehMaxHndNestingCount = 0; |
139 | #endif // !FEATURE_EH_FUNCLETS |
140 | |
141 | /* Init the fgBigOffsetMorphingTemps to be BAD_VAR_NUM. */ |
142 | for (int i = 0; i < TYP_COUNT; i++) |
143 | { |
144 | fgBigOffsetMorphingTemps[i] = BAD_VAR_NUM; |
145 | } |
146 | |
147 | fgNoStructPromotion = false; |
148 | fgNoStructParamPromotion = false; |
149 | |
150 | optValnumCSE_phase = false; // referenced in fgMorphSmpOp() |
151 | |
152 | #ifdef DEBUG |
153 | fgNormalizeEHDone = false; |
154 | #endif // DEBUG |
155 | |
156 | #ifdef DEBUG |
157 | if (!compIsForInlining()) |
158 | { |
159 | if ((JitConfig.JitNoStructPromotion() & 1) == 1) |
160 | { |
161 | fgNoStructPromotion = true; |
162 | } |
163 | if ((JitConfig.JitNoStructPromotion() & 2) == 2) |
164 | { |
165 | fgNoStructParamPromotion = true; |
166 | } |
167 | } |
168 | #endif // DEBUG |
169 | |
170 | if (!compIsForInlining()) |
171 | { |
172 | m_promotedStructDeathVars = nullptr; |
173 | } |
174 | #ifdef FEATURE_SIMD |
175 | fgPreviousCandidateSIMDFieldAsgStmt = nullptr; |
176 | #endif |
177 | } |
178 | |
179 | bool Compiler::fgHaveProfileData() |
180 | { |
181 | if (compIsForInlining() || compIsForImportOnly()) |
182 | { |
183 | return false; |
184 | } |
185 | |
186 | return (fgProfileBuffer != nullptr); |
187 | } |
188 | |
189 | bool Compiler::fgGetProfileWeightForBasicBlock(IL_OFFSET offset, unsigned* weightWB) |
190 | { |
191 | noway_assert(weightWB != nullptr); |
192 | unsigned weight = 0; |
193 | |
194 | #ifdef DEBUG |
195 | unsigned hashSeed = fgStressBBProf(); |
196 | if (hashSeed != 0) |
197 | { |
198 | unsigned hash = (info.compMethodHash() * hashSeed) ^ (offset * 1027); |
199 | |
200 | // We need to especially stress the procedure splitting codepath. Therefore |
201 | // one third the time we should return a weight of zero. |
202 | // Otherwise we should return some random weight (usually between 0 and 288). |
203 | // The below gives a weight of zero, 44% of the time |
204 | |
205 | if (hash % 3 == 0) |
206 | { |
207 | weight = 0; |
208 | } |
209 | else if (hash % 11 == 0) |
210 | { |
211 | weight = (hash % 23) * (hash % 29) * (hash % 31); |
212 | } |
213 | else |
214 | { |
215 | weight = (hash % 17) * (hash % 19); |
216 | } |
217 | |
218 | // The first block is never given a weight of zero |
219 | if ((offset == 0) && (weight == 0)) |
220 | { |
221 | weight = 1 + (hash % 5); |
222 | } |
223 | |
224 | *weightWB = weight; |
225 | return true; |
226 | } |
227 | #endif // DEBUG |
228 | |
229 | if (fgHaveProfileData() == false) |
230 | { |
231 | return false; |
232 | } |
233 | |
234 | noway_assert(!compIsForInlining()); |
235 | for (unsigned i = 0; i < fgProfileBufferCount; i++) |
236 | { |
237 | if (fgProfileBuffer[i].ILOffset == offset) |
238 | { |
239 | weight = fgProfileBuffer[i].ExecutionCount; |
240 | |
241 | *weightWB = weight; |
242 | return true; |
243 | } |
244 | } |
245 | |
246 | *weightWB = 0; |
247 | return true; |
248 | } |
249 | |
250 | void Compiler::fgInstrumentMethod() |
251 | { |
252 | noway_assert(!compIsForInlining()); |
253 | |
254 | // Count the number of basic blocks in the method |
255 | |
256 | int countOfBlocks = 0; |
257 | BasicBlock* block; |
258 | for (block = fgFirstBB; (block != nullptr); block = block->bbNext) |
259 | { |
260 | if (!(block->bbFlags & BBF_IMPORTED) || (block->bbFlags & BBF_INTERNAL)) |
261 | { |
262 | continue; |
263 | } |
264 | countOfBlocks++; |
265 | } |
266 | |
267 | // Allocate the profile buffer |
268 | |
269 | ICorJitInfo::ProfileBuffer* bbProfileBufferStart; |
270 | |
271 | HRESULT res = info.compCompHnd->allocBBProfileBuffer(countOfBlocks, &bbProfileBufferStart); |
272 | |
273 | GenTree* stmt; |
274 | |
275 | if (!SUCCEEDED(res)) |
276 | { |
277 | // The E_NOTIMPL status is returned when we are profiling a generic method from a different assembly |
278 | if (res == E_NOTIMPL) |
279 | { |
280 | // In such cases we still want to add the method entry callback node |
281 | |
282 | GenTreeArgList* args = gtNewArgList(gtNewIconEmbMethHndNode(info.compMethodHnd)); |
283 | GenTree* call = gtNewHelperCallNode(CORINFO_HELP_BBT_FCN_ENTER, TYP_VOID, args); |
284 | |
285 | stmt = gtNewStmt(call); |
286 | } |
287 | else |
288 | { |
289 | noway_assert(!"Error: failed to allocate bbProfileBuffer" ); |
290 | return; |
291 | } |
292 | } |
293 | else |
294 | { |
295 | // For each BasicBlock (non-Internal) |
296 | // 1. Assign the blocks bbCodeOffs to the ILOffset field of this blocks profile data. |
297 | // 2. Add an operation that increments the ExecutionCount field at the beginning of the block. |
298 | |
299 | // Each (non-Internal) block has it own ProfileBuffer tuple [ILOffset, ExecutionCount] |
300 | // To start we initialize our current one with the first one that we allocated |
301 | // |
302 | ICorJitInfo::ProfileBuffer* bbCurrentBlockProfileBuffer = bbProfileBufferStart; |
303 | |
304 | for (block = fgFirstBB; (block != nullptr); block = block->bbNext) |
305 | { |
306 | if (!(block->bbFlags & BBF_IMPORTED) || (block->bbFlags & BBF_INTERNAL)) |
307 | { |
308 | continue; |
309 | } |
310 | |
311 | // Assign the current block's IL offset into the profile data |
312 | bbCurrentBlockProfileBuffer->ILOffset = block->bbCodeOffs; |
313 | assert(bbCurrentBlockProfileBuffer->ExecutionCount == 0); // This value should already be zero-ed out |
314 | |
315 | size_t addrOfCurrentExecutionCount = (size_t)&bbCurrentBlockProfileBuffer->ExecutionCount; |
316 | |
317 | // Read Basic-Block count value |
318 | GenTree* valueNode = |
319 | gtNewIndOfIconHandleNode(TYP_INT, addrOfCurrentExecutionCount, GTF_ICON_BBC_PTR, false); |
320 | |
321 | // Increment value by 1 |
322 | GenTree* rhsNode = gtNewOperNode(GT_ADD, TYP_INT, valueNode, gtNewIconNode(1)); |
323 | |
324 | // Write new Basic-Block count value |
325 | GenTree* lhsNode = gtNewIndOfIconHandleNode(TYP_INT, addrOfCurrentExecutionCount, GTF_ICON_BBC_PTR, false); |
326 | GenTree* asgNode = gtNewAssignNode(lhsNode, rhsNode); |
327 | |
328 | fgInsertStmtAtBeg(block, asgNode); |
329 | |
330 | // Advance to the next ProfileBuffer tuple [ILOffset, ExecutionCount] |
331 | bbCurrentBlockProfileBuffer++; |
332 | |
333 | // One less block |
334 | countOfBlocks--; |
335 | } |
336 | // Check that we allocated and initialized the same number of ProfileBuffer tuples |
337 | noway_assert(countOfBlocks == 0); |
338 | |
339 | // Add the method entry callback node |
340 | |
341 | GenTree* arg; |
342 | |
343 | #ifdef FEATURE_READYTORUN_COMPILER |
344 | if (opts.IsReadyToRun()) |
345 | { |
346 | mdMethodDef currentMethodToken = info.compCompHnd->getMethodDefFromMethod(info.compMethodHnd); |
347 | |
348 | CORINFO_RESOLVED_TOKEN resolvedToken; |
349 | resolvedToken.tokenContext = MAKE_METHODCONTEXT(info.compMethodHnd); |
350 | resolvedToken.tokenScope = info.compScopeHnd; |
351 | resolvedToken.token = currentMethodToken; |
352 | resolvedToken.tokenType = CORINFO_TOKENKIND_Method; |
353 | |
354 | info.compCompHnd->resolveToken(&resolvedToken); |
355 | |
356 | arg = impTokenToHandle(&resolvedToken); |
357 | } |
358 | else |
359 | #endif |
360 | { |
361 | arg = gtNewIconEmbMethHndNode(info.compMethodHnd); |
362 | } |
363 | |
364 | GenTreeArgList* args = gtNewArgList(arg); |
365 | GenTree* call = gtNewHelperCallNode(CORINFO_HELP_BBT_FCN_ENTER, TYP_VOID, args); |
366 | |
367 | // Get the address of the first blocks ExecutionCount |
368 | size_t addrOfFirstExecutionCount = (size_t)&bbProfileBufferStart->ExecutionCount; |
369 | |
370 | // Read Basic-Block count value |
371 | GenTree* valueNode = gtNewIndOfIconHandleNode(TYP_INT, addrOfFirstExecutionCount, GTF_ICON_BBC_PTR, false); |
372 | |
373 | // Compare Basic-Block count value against zero |
374 | GenTree* relop = gtNewOperNode(GT_NE, TYP_INT, valueNode, gtNewIconNode(0, TYP_INT)); |
375 | GenTree* colon = new (this, GT_COLON) GenTreeColon(TYP_VOID, gtNewNothingNode(), call); |
376 | GenTree* cond = gtNewQmarkNode(TYP_VOID, relop, colon); |
377 | stmt = gtNewStmt(cond); |
378 | } |
379 | |
380 | fgEnsureFirstBBisScratch(); |
381 | |
382 | fgInsertStmtAtEnd(fgFirstBB, stmt); |
383 | } |
384 | |
385 | /***************************************************************************** |
386 | * |
387 | * Create a basic block and append it to the current BB list. |
388 | */ |
389 | |
390 | BasicBlock* Compiler::fgNewBasicBlock(BBjumpKinds jumpKind) |
391 | { |
392 | // This method must not be called after the exception table has been |
393 | // constructed, because it doesn't not provide support for patching |
394 | // the exception table. |
395 | |
396 | noway_assert(compHndBBtabCount == 0); |
397 | |
398 | BasicBlock* block; |
399 | |
400 | /* Allocate the block descriptor */ |
401 | |
402 | block = bbNewBasicBlock(jumpKind); |
403 | noway_assert(block->bbJumpKind == jumpKind); |
404 | |
405 | /* Append the block to the end of the global basic block list */ |
406 | |
407 | if (fgFirstBB) |
408 | { |
409 | fgLastBB->setNext(block); |
410 | } |
411 | else |
412 | { |
413 | fgFirstBB = block; |
414 | block->bbPrev = nullptr; |
415 | } |
416 | |
417 | fgLastBB = block; |
418 | |
419 | return block; |
420 | } |
421 | |
422 | /***************************************************************************** |
423 | * |
424 | * Ensures that fgFirstBB is a scratch BasicBlock that we have added. |
425 | * This can be used to add initialization code (without worrying |
426 | * about other blocks jumping to it). |
427 | * |
428 | * Callers have to be careful that they do not mess up the order of things |
429 | * added to fgEnsureFirstBBisScratch in a way as to change semantics. |
430 | */ |
431 | |
432 | void Compiler::fgEnsureFirstBBisScratch() |
433 | { |
434 | // This method does not update predecessor lists and so must only be called before they are computed. |
435 | assert(!fgComputePredsDone); |
436 | |
437 | // Have we already allocated a scratch block? |
438 | |
439 | if (fgFirstBBisScratch()) |
440 | { |
441 | return; |
442 | } |
443 | |
444 | assert(fgFirstBBScratch == nullptr); |
445 | |
446 | BasicBlock* block = bbNewBasicBlock(BBJ_NONE); |
447 | |
448 | if (fgFirstBB != nullptr) |
449 | { |
450 | // If we have profile data the new block will inherit fgFirstBlock's weight |
451 | if (fgFirstBB->hasProfileWeight()) |
452 | { |
453 | block->inheritWeight(fgFirstBB); |
454 | } |
455 | |
456 | fgInsertBBbefore(fgFirstBB, block); |
457 | } |
458 | else |
459 | { |
460 | noway_assert(fgLastBB == nullptr); |
461 | fgFirstBB = block; |
462 | fgLastBB = block; |
463 | } |
464 | |
465 | noway_assert(fgLastBB != nullptr); |
466 | |
467 | block->bbFlags |= (BBF_INTERNAL | BBF_IMPORTED); |
468 | |
469 | fgFirstBBScratch = fgFirstBB; |
470 | |
471 | #ifdef DEBUG |
472 | if (verbose) |
473 | { |
474 | printf("New scratch " FMT_BB "\n" , block->bbNum); |
475 | } |
476 | #endif |
477 | } |
478 | |
479 | bool Compiler::fgFirstBBisScratch() |
480 | { |
481 | if (fgFirstBBScratch != nullptr) |
482 | { |
483 | assert(fgFirstBBScratch == fgFirstBB); |
484 | assert(fgFirstBBScratch->bbFlags & BBF_INTERNAL); |
485 | assert(fgFirstBBScratch->countOfInEdges() == 1); |
486 | |
487 | // Normally, the first scratch block is a fall-through block. However, if the block after it was an empty |
488 | // BBJ_ALWAYS block, it might get removed, and the code that removes it will make the first scratch block |
489 | // a BBJ_ALWAYS block. |
490 | assert((fgFirstBBScratch->bbJumpKind == BBJ_NONE) || (fgFirstBBScratch->bbJumpKind == BBJ_ALWAYS)); |
491 | |
492 | return true; |
493 | } |
494 | else |
495 | { |
496 | return false; |
497 | } |
498 | } |
499 | |
500 | bool Compiler::fgBBisScratch(BasicBlock* block) |
501 | { |
502 | return fgFirstBBisScratch() && (block == fgFirstBB); |
503 | } |
504 | |
505 | #ifdef DEBUG |
506 | // Check to see if block contains a statement but don't spend more than a certain |
507 | // budget doing this per method compiled. |
508 | // If the budget is exceeded, return 'answerOnBoundExceeded' as the answer. |
509 | /* static */ |
510 | bool Compiler::fgBlockContainsStatementBounded(BasicBlock* block, GenTree* stmt, bool answerOnBoundExceeded /*= true*/) |
511 | { |
512 | const __int64 maxLinks = 1000000000; |
513 | |
514 | assert(stmt->gtOper == GT_STMT); |
515 | |
516 | __int64* numTraversed = &JitTls::GetCompiler()->compNumStatementLinksTraversed; |
517 | |
518 | if (*numTraversed > maxLinks) |
519 | { |
520 | return answerOnBoundExceeded; |
521 | } |
522 | |
523 | GenTree* curr = block->firstStmt(); |
524 | do |
525 | { |
526 | (*numTraversed)++; |
527 | if (curr == stmt) |
528 | { |
529 | break; |
530 | } |
531 | curr = curr->gtNext; |
532 | } while (curr); |
533 | return curr != nullptr; |
534 | } |
535 | #endif // DEBUG |
536 | |
537 | //------------------------------------------------------------------------ |
538 | // fgInsertStmtAtBeg: Insert the given tree or statement at the start of the given basic block. |
539 | // |
540 | // Arguments: |
541 | // block - The block into which 'stmt' will be inserted. |
542 | // stmt - The statement to be inserted. |
543 | // |
544 | // Return Value: |
545 | // Returns the new (potentially) GT_STMT node. |
546 | // |
547 | // Notes: |
548 | // If 'stmt' is not already a statement, a new statement is created from it. |
549 | // We always insert phi statements at the beginning. |
550 | // In other cases, if there are any phi assignments and/or an assignment of |
551 | // the GT_CATCH_ARG, we insert after those. |
552 | |
553 | GenTree* Compiler::fgInsertStmtAtBeg(BasicBlock* block, GenTree* stmt) |
554 | { |
555 | if (stmt->gtOper != GT_STMT) |
556 | { |
557 | stmt = gtNewStmt(stmt); |
558 | } |
559 | |
560 | GenTree* list = block->firstStmt(); |
561 | |
562 | if (!stmt->IsPhiDefnStmt()) |
563 | { |
564 | GenTree* insertBeforeStmt = block->FirstNonPhiDefOrCatchArgAsg(); |
565 | if (insertBeforeStmt != nullptr) |
566 | { |
567 | return fgInsertStmtBefore(block, insertBeforeStmt, stmt); |
568 | } |
569 | else if (list != nullptr) |
570 | { |
571 | return fgInsertStmtAtEnd(block, stmt); |
572 | } |
573 | // Otherwise, we will simply insert at the beginning, below. |
574 | } |
575 | |
576 | /* The new tree will now be the first one of the block */ |
577 | |
578 | block->bbTreeList = stmt; |
579 | stmt->gtNext = list; |
580 | |
581 | /* Are there any statements in the block? */ |
582 | |
583 | if (list) |
584 | { |
585 | GenTree* last; |
586 | |
587 | /* There is at least one statement already */ |
588 | |
589 | last = list->gtPrev; |
590 | noway_assert(last && last->gtNext == nullptr); |
591 | |
592 | /* Insert the statement in front of the first one */ |
593 | |
594 | list->gtPrev = stmt; |
595 | stmt->gtPrev = last; |
596 | } |
597 | else |
598 | { |
599 | /* The block was completely empty */ |
600 | |
601 | stmt->gtPrev = stmt; |
602 | } |
603 | |
604 | return stmt; |
605 | } |
606 | |
607 | /***************************************************************************** |
608 | * |
609 | * Insert the given tree or statement at the end of the given basic block. |
610 | * Returns the (potentially) new GT_STMT node. |
611 | * If the block can be a conditional block, use fgInsertStmtNearEnd. |
612 | */ |
613 | |
614 | GenTreeStmt* Compiler::fgInsertStmtAtEnd(BasicBlock* block, GenTree* node) |
615 | { |
616 | GenTree* list = block->firstStmt(); |
617 | GenTreeStmt* stmt; |
618 | |
619 | if (node->gtOper != GT_STMT) |
620 | { |
621 | stmt = gtNewStmt(node); |
622 | } |
623 | else |
624 | { |
625 | stmt = node->AsStmt(); |
626 | } |
627 | |
628 | assert(stmt->gtNext == nullptr); // We don't set it, and it needs to be this after the insert |
629 | |
630 | if (list) |
631 | { |
632 | GenTree* last; |
633 | |
634 | /* There is at least one statement already */ |
635 | |
636 | last = list->gtPrev; |
637 | noway_assert(last && last->gtNext == nullptr); |
638 | |
639 | /* Append the statement after the last one */ |
640 | |
641 | last->gtNext = stmt; |
642 | stmt->gtPrev = last; |
643 | list->gtPrev = stmt; |
644 | } |
645 | else |
646 | { |
647 | /* The block is completely empty */ |
648 | |
649 | block->bbTreeList = stmt; |
650 | stmt->gtPrev = stmt; |
651 | } |
652 | |
653 | return stmt; |
654 | } |
655 | |
656 | /***************************************************************************** |
657 | * |
658 | * Insert the given tree or statement at the end of the given basic block, but before |
659 | * the GT_JTRUE, if present. |
660 | * Returns the (potentially) new GT_STMT node. |
661 | */ |
662 | |
663 | GenTreeStmt* Compiler::fgInsertStmtNearEnd(BasicBlock* block, GenTree* node) |
664 | { |
665 | GenTreeStmt* stmt; |
666 | |
667 | // This routine can only be used when in tree order. |
668 | assert(fgOrder == FGOrderTree); |
669 | |
670 | if ((block->bbJumpKind == BBJ_COND) || (block->bbJumpKind == BBJ_SWITCH) || (block->bbJumpKind == BBJ_RETURN)) |
671 | { |
672 | if (node->gtOper != GT_STMT) |
673 | { |
674 | stmt = gtNewStmt(node); |
675 | } |
676 | else |
677 | { |
678 | stmt = node->AsStmt(); |
679 | } |
680 | |
681 | GenTreeStmt* first = block->firstStmt(); |
682 | noway_assert(first); |
683 | GenTreeStmt* last = block->lastStmt(); |
684 | noway_assert(last && last->gtNext == nullptr); |
685 | GenTree* after = last->gtPrev; |
686 | |
687 | #if DEBUG |
688 | if (block->bbJumpKind == BBJ_COND) |
689 | { |
690 | noway_assert(last->gtStmtExpr->gtOper == GT_JTRUE); |
691 | } |
692 | else if (block->bbJumpKind == BBJ_RETURN) |
693 | { |
694 | noway_assert((last->gtStmtExpr->gtOper == GT_RETURN) || (last->gtStmtExpr->gtOper == GT_JMP) || |
695 | // BBJ_RETURN blocks in functions returning void do not get a GT_RETURN node if they |
696 | // have a .tail prefix (even if canTailCall returns false for these calls) |
697 | // code:Compiler::impImportBlockCode (search for the RET: label) |
698 | // Ditto for real tail calls (all code after them has been removed) |
699 | ((last->gtStmtExpr->gtOper == GT_CALL) && |
700 | ((info.compRetType == TYP_VOID) || last->gtStmtExpr->AsCall()->IsTailCall()))); |
701 | } |
702 | else |
703 | { |
704 | noway_assert(block->bbJumpKind == BBJ_SWITCH); |
705 | noway_assert(last->gtStmtExpr->gtOper == GT_SWITCH); |
706 | } |
707 | #endif // DEBUG |
708 | |
709 | /* Append 'stmt' before 'last' */ |
710 | |
711 | stmt->gtNext = last; |
712 | last->gtPrev = stmt; |
713 | |
714 | if (first == last) |
715 | { |
716 | /* There is only one stmt in the block */ |
717 | |
718 | block->bbTreeList = stmt; |
719 | stmt->gtPrev = last; |
720 | } |
721 | else |
722 | { |
723 | noway_assert(after && (after->gtNext == last)); |
724 | |
725 | /* Append 'stmt' after 'after' */ |
726 | |
727 | after->gtNext = stmt; |
728 | stmt->gtPrev = after; |
729 | } |
730 | |
731 | return stmt; |
732 | } |
733 | else |
734 | { |
735 | return fgInsertStmtAtEnd(block, node); |
736 | } |
737 | } |
738 | |
739 | /***************************************************************************** |
740 | * |
741 | * Insert the given statement "stmt" after GT_STMT node "insertionPoint". |
742 | * Returns the newly inserted GT_STMT node. |
743 | * Note that the gtPrev list of statement nodes is circular, but the gtNext list is not. |
744 | */ |
745 | |
746 | GenTree* Compiler::fgInsertStmtAfter(BasicBlock* block, GenTree* insertionPoint, GenTree* stmt) |
747 | { |
748 | assert(block->bbTreeList != nullptr); |
749 | noway_assert(insertionPoint->gtOper == GT_STMT); |
750 | noway_assert(stmt->gtOper == GT_STMT); |
751 | assert(fgBlockContainsStatementBounded(block, insertionPoint)); |
752 | assert(!fgBlockContainsStatementBounded(block, stmt, false)); |
753 | |
754 | if (insertionPoint->gtNext == nullptr) |
755 | { |
756 | // Ok, we want to insert after the last statement of the block. |
757 | stmt->gtNext = nullptr; |
758 | stmt->gtPrev = insertionPoint; |
759 | |
760 | insertionPoint->gtNext = stmt; |
761 | |
762 | // Update the backward link of the first statement of the block |
763 | // to point to the new last statement. |
764 | assert(block->bbTreeList->gtPrev == insertionPoint); |
765 | block->bbTreeList->gtPrev = stmt; |
766 | } |
767 | else |
768 | { |
769 | stmt->gtNext = insertionPoint->gtNext; |
770 | stmt->gtPrev = insertionPoint; |
771 | |
772 | insertionPoint->gtNext->gtPrev = stmt; |
773 | insertionPoint->gtNext = stmt; |
774 | } |
775 | |
776 | return stmt; |
777 | } |
778 | |
779 | // Insert the given tree or statement before GT_STMT node "insertionPoint". |
780 | // Returns the newly inserted GT_STMT node. |
781 | |
782 | GenTree* Compiler::fgInsertStmtBefore(BasicBlock* block, GenTree* insertionPoint, GenTree* stmt) |
783 | { |
784 | assert(block->bbTreeList != nullptr); |
785 | noway_assert(insertionPoint->gtOper == GT_STMT); |
786 | noway_assert(stmt->gtOper == GT_STMT); |
787 | assert(fgBlockContainsStatementBounded(block, insertionPoint)); |
788 | assert(!fgBlockContainsStatementBounded(block, stmt, false)); |
789 | |
790 | if (insertionPoint == block->bbTreeList) |
791 | { |
792 | // We're inserting before the first statement in the block. |
793 | GenTree* list = block->bbTreeList; |
794 | GenTree* last = list->gtPrev; |
795 | |
796 | stmt->gtNext = list; |
797 | stmt->gtPrev = last; |
798 | |
799 | block->bbTreeList = stmt; |
800 | list->gtPrev = stmt; |
801 | } |
802 | else |
803 | { |
804 | stmt->gtNext = insertionPoint; |
805 | stmt->gtPrev = insertionPoint->gtPrev; |
806 | |
807 | insertionPoint->gtPrev->gtNext = stmt; |
808 | insertionPoint->gtPrev = stmt; |
809 | } |
810 | |
811 | return stmt; |
812 | } |
813 | |
814 | /***************************************************************************** |
815 | * |
816 | * Insert the list of statements stmtList after the stmtAfter in block. |
817 | * Return the last statement stmtList. |
818 | */ |
819 | |
820 | GenTree* Compiler::fgInsertStmtListAfter(BasicBlock* block, // the block where stmtAfter is in. |
821 | GenTree* stmtAfter, // the statement where stmtList should be inserted |
822 | // after. |
823 | GenTree* stmtList) |
824 | { |
825 | // Currently we can handle when stmtAfter and stmtList are non-NULL. This makes everything easy. |
826 | noway_assert(stmtAfter && stmtAfter->gtOper == GT_STMT); |
827 | noway_assert(stmtList && stmtList->gtOper == GT_STMT); |
828 | |
829 | GenTree* stmtLast = stmtList->gtPrev; // Last statement in a non-empty list, circular in the gtPrev list. |
830 | noway_assert(stmtLast); |
831 | noway_assert(stmtLast->gtNext == nullptr); |
832 | |
833 | GenTree* stmtNext = stmtAfter->gtNext; |
834 | |
835 | if (!stmtNext) |
836 | { |
837 | stmtAfter->gtNext = stmtList; |
838 | stmtList->gtPrev = stmtAfter; |
839 | block->bbTreeList->gtPrev = stmtLast; |
840 | goto _Done; |
841 | } |
842 | |
843 | stmtAfter->gtNext = stmtList; |
844 | stmtList->gtPrev = stmtAfter; |
845 | |
846 | stmtLast->gtNext = stmtNext; |
847 | stmtNext->gtPrev = stmtLast; |
848 | |
849 | _Done: |
850 | |
851 | noway_assert(block->bbTreeList == nullptr || block->bbTreeList->gtPrev->gtNext == nullptr); |
852 | |
853 | return stmtLast; |
854 | } |
855 | |
856 | /* |
857 | Removes a block from the return block list |
858 | */ |
859 | void Compiler::fgRemoveReturnBlock(BasicBlock* block) |
860 | { |
861 | if (fgReturnBlocks == nullptr) |
862 | { |
863 | return; |
864 | } |
865 | |
866 | if (fgReturnBlocks->block == block) |
867 | { |
868 | // It's the 1st entry, assign new head of list. |
869 | fgReturnBlocks = fgReturnBlocks->next; |
870 | return; |
871 | } |
872 | |
873 | for (BasicBlockList* retBlocks = fgReturnBlocks; retBlocks->next != nullptr; retBlocks = retBlocks->next) |
874 | { |
875 | if (retBlocks->next->block == block) |
876 | { |
877 | // Found it; splice it out. |
878 | retBlocks->next = retBlocks->next->next; |
879 | return; |
880 | } |
881 | } |
882 | } |
883 | |
884 | //------------------------------------------------------------------------ |
885 | // fgGetPredForBlock: Find and return the predecessor edge corresponding to a given predecessor block. |
886 | // |
887 | // Arguments: |
888 | // block -- The block with the predecessor list to operate on. |
889 | // blockPred -- The predecessor block to find in the predecessor list. |
890 | // |
891 | // Return Value: |
892 | // The flowList edge corresponding to "blockPred". If "blockPred" is not in the predecessor list of "block", |
893 | // then returns nullptr. |
894 | // |
895 | // Assumptions: |
896 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
897 | |
898 | flowList* Compiler::fgGetPredForBlock(BasicBlock* block, BasicBlock* blockPred) |
899 | { |
900 | assert(block); |
901 | assert(blockPred); |
902 | assert(!fgCheapPredsValid); |
903 | |
904 | flowList* pred; |
905 | |
906 | for (pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
907 | { |
908 | if (blockPred == pred->flBlock) |
909 | { |
910 | return pred; |
911 | } |
912 | } |
913 | |
914 | return nullptr; |
915 | } |
916 | |
917 | //------------------------------------------------------------------------ |
918 | // fgGetPredForBlock: Find and return the predecessor edge corresponding to a given predecessor block. |
919 | // Also returns the address of the pointer that points to this edge, to make it possible to remove this edge from the |
920 | // predecessor list without doing another linear search over the edge list. |
921 | // |
922 | // Arguments: |
923 | // block -- The block with the predecessor list to operate on. |
924 | // blockPred -- The predecessor block to find in the predecessor list. |
925 | // ptrToPred -- Out parameter: set to the address of the pointer that points to the returned predecessor edge. |
926 | // |
927 | // Return Value: |
928 | // The flowList edge corresponding to "blockPred". If "blockPred" is not in the predecessor list of "block", |
929 | // then returns nullptr. |
930 | // |
931 | // Assumptions: |
932 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
933 | |
934 | flowList* Compiler::fgGetPredForBlock(BasicBlock* block, BasicBlock* blockPred, flowList*** ptrToPred) |
935 | { |
936 | assert(block); |
937 | assert(blockPred); |
938 | assert(ptrToPred); |
939 | assert(!fgCheapPredsValid); |
940 | |
941 | flowList** predPrevAddr; |
942 | flowList* pred; |
943 | |
944 | for (predPrevAddr = &block->bbPreds, pred = *predPrevAddr; pred != nullptr; |
945 | predPrevAddr = &pred->flNext, pred = *predPrevAddr) |
946 | { |
947 | if (blockPred == pred->flBlock) |
948 | { |
949 | *ptrToPred = predPrevAddr; |
950 | return pred; |
951 | } |
952 | } |
953 | |
954 | *ptrToPred = nullptr; |
955 | return nullptr; |
956 | } |
957 | |
958 | //------------------------------------------------------------------------ |
959 | // fgSpliceOutPred: Removes a predecessor edge for a block from the predecessor list. |
960 | // |
961 | // Arguments: |
962 | // block -- The block with the predecessor list to operate on. |
963 | // blockPred -- The predecessor block to remove from the predecessor list. It must be a predecessor of "block". |
964 | // |
965 | // Return Value: |
966 | // The flowList edge that was removed. |
967 | // |
968 | // Assumptions: |
969 | // -- "blockPred" must be a predecessor block of "block". |
970 | // -- This simply splices out the flowList object. It doesn't update block ref counts, handle duplicate counts, etc. |
971 | // For that, use fgRemoveRefPred() or fgRemoveAllRefPred(). |
972 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
973 | // |
974 | // Notes: |
975 | // -- This must walk the predecessor list to find the block in question. If the predecessor edge |
976 | // is found using fgGetPredForBlock(), consider using the version that hands back the predecessor pointer |
977 | // address instead, to avoid this search. |
978 | // -- Marks fgModified = true, since the flow graph has changed. |
979 | |
980 | flowList* Compiler::fgSpliceOutPred(BasicBlock* block, BasicBlock* blockPred) |
981 | { |
982 | assert(!fgCheapPredsValid); |
983 | noway_assert(block->bbPreds); |
984 | |
985 | flowList* oldEdge = nullptr; |
986 | |
987 | // Is this the first block in the pred list? |
988 | if (blockPred == block->bbPreds->flBlock) |
989 | { |
990 | oldEdge = block->bbPreds; |
991 | block->bbPreds = block->bbPreds->flNext; |
992 | } |
993 | else |
994 | { |
995 | flowList* pred; |
996 | for (pred = block->bbPreds; (pred->flNext != nullptr) && (blockPred != pred->flNext->flBlock); |
997 | pred = pred->flNext) |
998 | { |
999 | // empty |
1000 | } |
1001 | oldEdge = pred->flNext; |
1002 | if (oldEdge == nullptr) |
1003 | { |
1004 | noway_assert(!"Should always find the blockPred" ); |
1005 | } |
1006 | pred->flNext = pred->flNext->flNext; |
1007 | } |
1008 | |
1009 | // Any changes to the flow graph invalidate the dominator sets. |
1010 | fgModified = true; |
1011 | |
1012 | return oldEdge; |
1013 | } |
1014 | |
1015 | //------------------------------------------------------------------------ |
1016 | // fgAddRefPred: Increment block->bbRefs by one and add "blockPred" to the predecessor list of "block". |
1017 | // |
1018 | // Arguments: |
1019 | // block -- A block to operate on. |
1020 | // blockPred -- The predecessor block to add to the predecessor list. |
1021 | // oldEdge -- Optional (default: nullptr). If non-nullptr, and a new edge is created (and the dup count |
1022 | // of an existing edge is not just incremented), the edge weights are copied from this edge. |
1023 | // initializingPreds -- Optional (default: false). Only set to "true" when the initial preds computation is |
1024 | // happening. |
1025 | // |
1026 | // Return Value: |
1027 | // The flow edge representing the predecessor. |
1028 | // |
1029 | // Assumptions: |
1030 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
1031 | // |
1032 | // Notes: |
1033 | // -- block->bbRefs is incremented by one to account for the reduction in incoming edges. |
1034 | // -- block->bbRefs is adjusted even if preds haven't been computed. If preds haven't been computed, |
1035 | // the preds themselves aren't touched. |
1036 | // -- fgModified is set if a new flow edge is created (but not if an existing flow edge dup count is incremented), |
1037 | // indicating that the flow graph shape has changed. |
1038 | |
1039 | flowList* Compiler::fgAddRefPred(BasicBlock* block, |
1040 | BasicBlock* blockPred, |
1041 | flowList* oldEdge /* = nullptr */, |
1042 | bool initializingPreds /* = false */) |
1043 | { |
1044 | assert(block != nullptr); |
1045 | assert(blockPred != nullptr); |
1046 | |
1047 | block->bbRefs++; |
1048 | |
1049 | if (!fgComputePredsDone && !initializingPreds) |
1050 | { |
1051 | // Why is someone trying to update the preds list when the preds haven't been created? |
1052 | // Ignore them! This can happen when fgMorph is called before the preds list is created. |
1053 | return nullptr; |
1054 | } |
1055 | |
1056 | assert(!fgCheapPredsValid); |
1057 | |
1058 | flowList* flow; |
1059 | |
1060 | // Keep the predecessor list in lowest to highest bbNum order. This allows us to discover the loops in |
1061 | // optFindNaturalLoops from innermost to outermost. |
1062 | // |
1063 | // TODO-Throughput: Inserting an edge for a block in sorted order requires searching every existing edge. |
1064 | // Thus, inserting all the edges for a block is quadratic in the number of edges. We need to either |
1065 | // not bother sorting for debuggable code, or sort in optFindNaturalLoops, or better, make the code in |
1066 | // optFindNaturalLoops not depend on order. This also requires ensuring that nobody else has taken a |
1067 | // dependency on this order. Note also that we don't allow duplicates in the list; we maintain a flDupCount |
1068 | // count of duplication. This also necessitates walking the flow list for every edge we add. |
1069 | |
1070 | flowList** listp = &block->bbPreds; |
1071 | while ((*listp != nullptr) && ((*listp)->flBlock->bbNum < blockPred->bbNum)) |
1072 | { |
1073 | listp = &(*listp)->flNext; |
1074 | } |
1075 | |
1076 | if ((*listp != nullptr) && ((*listp)->flBlock == blockPred)) |
1077 | { |
1078 | // The predecessor block already exists in the flow list; simply add to its duplicate count. |
1079 | flow = *listp; |
1080 | noway_assert(flow->flDupCount > 0); |
1081 | flow->flDupCount++; |
1082 | } |
1083 | else |
1084 | { |
1085 | flow = new (this, CMK_FlowList) flowList(); |
1086 | |
1087 | #if MEASURE_BLOCK_SIZE |
1088 | genFlowNodeCnt += 1; |
1089 | genFlowNodeSize += sizeof(flowList); |
1090 | #endif // MEASURE_BLOCK_SIZE |
1091 | |
1092 | // Any changes to the flow graph invalidate the dominator sets. |
1093 | fgModified = true; |
1094 | |
1095 | // Insert the new edge in the list in the correct ordered location. |
1096 | flow->flNext = *listp; |
1097 | *listp = flow; |
1098 | |
1099 | flow->flBlock = blockPred; |
1100 | flow->flDupCount = 1; |
1101 | |
1102 | if (fgHaveValidEdgeWeights) |
1103 | { |
1104 | // We are creating an edge from blockPred to block |
1105 | // and we have already computed the edge weights, so |
1106 | // we will try to setup this new edge with valid edge weights. |
1107 | // |
1108 | if (oldEdge != nullptr) |
1109 | { |
1110 | // If our caller has given us the old edge weights |
1111 | // then we will use them. |
1112 | // |
1113 | flow->flEdgeWeightMin = oldEdge->flEdgeWeightMin; |
1114 | flow->flEdgeWeightMax = oldEdge->flEdgeWeightMax; |
1115 | } |
1116 | else |
1117 | { |
1118 | // Set the max edge weight to be the minimum of block's or blockPred's weight |
1119 | // |
1120 | flow->flEdgeWeightMax = min(block->bbWeight, blockPred->bbWeight); |
1121 | |
1122 | // If we are inserting a conditional block the minimum weight is zero, |
1123 | // otherwise it is the same as the edge's max weight. |
1124 | if (blockPred->NumSucc() > 1) |
1125 | { |
1126 | flow->flEdgeWeightMin = BB_ZERO_WEIGHT; |
1127 | } |
1128 | else |
1129 | { |
1130 | flow->flEdgeWeightMin = flow->flEdgeWeightMax; |
1131 | } |
1132 | } |
1133 | } |
1134 | else |
1135 | { |
1136 | flow->flEdgeWeightMin = BB_ZERO_WEIGHT; |
1137 | flow->flEdgeWeightMax = BB_MAX_WEIGHT; |
1138 | } |
1139 | } |
1140 | return flow; |
1141 | } |
1142 | |
1143 | //------------------------------------------------------------------------ |
1144 | // fgRemoveRefPred: Decrements the reference count of a predecessor edge from "blockPred" to "block", |
1145 | // removing the edge if it is no longer necessary. |
1146 | // |
1147 | // Arguments: |
1148 | // block -- A block to operate on. |
1149 | // blockPred -- The predecessor block to remove from the predecessor list. It must be a predecessor of "block". |
1150 | // |
1151 | // Return Value: |
1152 | // If the flow edge was removed (the predecessor has a "dup count" of 1), |
1153 | // returns the flow graph edge that was removed. This means "blockPred" is no longer a predecessor of "block". |
1154 | // Otherwise, returns nullptr. This means that "blockPred" is still a predecessor of "block" (because "blockPred" |
1155 | // is a switch with multiple cases jumping to "block", or a BBJ_COND with both conditional and fall-through |
1156 | // paths leading to "block"). |
1157 | // |
1158 | // Assumptions: |
1159 | // -- "blockPred" must be a predecessor block of "block". |
1160 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
1161 | // |
1162 | // Notes: |
1163 | // -- block->bbRefs is decremented by one to account for the reduction in incoming edges. |
1164 | // -- block->bbRefs is adjusted even if preds haven't been computed. If preds haven't been computed, |
1165 | // the preds themselves aren't touched. |
1166 | // -- fgModified is set if a flow edge is removed (but not if an existing flow edge dup count is decremented), |
1167 | // indicating that the flow graph shape has changed. |
1168 | |
1169 | flowList* Compiler::fgRemoveRefPred(BasicBlock* block, BasicBlock* blockPred) |
1170 | { |
1171 | noway_assert(block != nullptr); |
1172 | noway_assert(blockPred != nullptr); |
1173 | |
1174 | noway_assert(block->countOfInEdges() > 0); |
1175 | block->bbRefs--; |
1176 | |
1177 | // Do nothing if we haven't calculated the predecessor list yet. |
1178 | // Yes, this does happen. |
1179 | // For example the predecessor lists haven't been created yet when we do fgMorph. |
1180 | // But fgMorph calls fgFoldConditional, which in turn calls fgRemoveRefPred. |
1181 | if (!fgComputePredsDone) |
1182 | { |
1183 | return nullptr; |
1184 | } |
1185 | |
1186 | assert(!fgCheapPredsValid); |
1187 | |
1188 | flowList** ptrToPred; |
1189 | flowList* pred = fgGetPredForBlock(block, blockPred, &ptrToPred); |
1190 | noway_assert(pred); |
1191 | noway_assert(pred->flDupCount > 0); |
1192 | |
1193 | pred->flDupCount--; |
1194 | |
1195 | if (pred->flDupCount == 0) |
1196 | { |
1197 | // Splice out the predecessor edge since it's no longer necessary. |
1198 | *ptrToPred = pred->flNext; |
1199 | |
1200 | // Any changes to the flow graph invalidate the dominator sets. |
1201 | fgModified = true; |
1202 | |
1203 | return pred; |
1204 | } |
1205 | else |
1206 | { |
1207 | return nullptr; |
1208 | } |
1209 | } |
1210 | |
1211 | //------------------------------------------------------------------------ |
1212 | // fgRemoveAllRefPreds: Removes a predecessor edge from one block to another, no matter what the "dup count" is. |
1213 | // |
1214 | // Arguments: |
1215 | // block -- A block to operate on. |
1216 | // blockPred -- The predecessor block to remove from the predecessor list. It must be a predecessor of "block". |
1217 | // |
1218 | // Return Value: |
1219 | // Returns the flow graph edge that was removed. The dup count on the edge is no longer valid. |
1220 | // |
1221 | // Assumptions: |
1222 | // -- "blockPred" must be a predecessor block of "block". |
1223 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
1224 | // |
1225 | // Notes: |
1226 | // block->bbRefs is decremented to account for the reduction in incoming edges. |
1227 | |
1228 | flowList* Compiler::fgRemoveAllRefPreds(BasicBlock* block, BasicBlock* blockPred) |
1229 | { |
1230 | assert(block != nullptr); |
1231 | assert(blockPred != nullptr); |
1232 | assert(fgComputePredsDone); |
1233 | assert(!fgCheapPredsValid); |
1234 | assert(block->countOfInEdges() > 0); |
1235 | |
1236 | flowList** ptrToPred; |
1237 | flowList* pred = fgGetPredForBlock(block, blockPred, &ptrToPred); |
1238 | assert(pred != nullptr); |
1239 | assert(pred->flDupCount > 0); |
1240 | |
1241 | assert(block->bbRefs >= pred->flDupCount); |
1242 | block->bbRefs -= pred->flDupCount; |
1243 | |
1244 | // Now splice out the predecessor edge. |
1245 | *ptrToPred = pred->flNext; |
1246 | |
1247 | // Any changes to the flow graph invalidate the dominator sets. |
1248 | fgModified = true; |
1249 | |
1250 | return pred; |
1251 | } |
1252 | |
1253 | //------------------------------------------------------------------------ |
1254 | // fgRemoveAllRefPreds: Remove a predecessor edge, given the address of a pointer to it in the |
1255 | // predecessor list, no matter what the "dup count" is. |
1256 | // |
1257 | // Arguments: |
1258 | // block -- A block with the predecessor list to operate on. |
1259 | // ptrToPred -- The address of a pointer to the predecessor to remove. |
1260 | // |
1261 | // Return Value: |
1262 | // The removed predecessor edge. The dup count on the edge is no longer valid. |
1263 | // |
1264 | // Assumptions: |
1265 | // -- The predecessor edge must be in the predecessor list for "block". |
1266 | // -- This only works on the full predecessor lists, not the cheap preds lists. |
1267 | // |
1268 | // Notes: |
1269 | // block->bbRefs is decremented by the dup count of the predecessor edge, to account for the reduction in incoming |
1270 | // edges. |
1271 | |
1272 | flowList* Compiler::fgRemoveAllRefPreds(BasicBlock* block, flowList** ptrToPred) |
1273 | { |
1274 | assert(block != nullptr); |
1275 | assert(ptrToPred != nullptr); |
1276 | assert(fgComputePredsDone); |
1277 | assert(!fgCheapPredsValid); |
1278 | assert(block->countOfInEdges() > 0); |
1279 | |
1280 | flowList* pred = *ptrToPred; |
1281 | assert(pred != nullptr); |
1282 | assert(pred->flDupCount > 0); |
1283 | |
1284 | assert(block->bbRefs >= pred->flDupCount); |
1285 | block->bbRefs -= pred->flDupCount; |
1286 | |
1287 | // Now splice out the predecessor edge. |
1288 | *ptrToPred = pred->flNext; |
1289 | |
1290 | // Any changes to the flow graph invalidate the dominator sets. |
1291 | fgModified = true; |
1292 | |
1293 | return pred; |
1294 | } |
1295 | |
1296 | /* |
1297 | Removes all the appearances of block as predecessor of others |
1298 | */ |
1299 | |
1300 | void Compiler::fgRemoveBlockAsPred(BasicBlock* block) |
1301 | { |
1302 | assert(!fgCheapPredsValid); |
1303 | |
1304 | PREFIX_ASSUME(block != nullptr); |
1305 | |
1306 | BasicBlock* bNext; |
1307 | |
1308 | switch (block->bbJumpKind) |
1309 | { |
1310 | case BBJ_CALLFINALLY: |
1311 | if (!(block->bbFlags & BBF_RETLESS_CALL)) |
1312 | { |
1313 | assert(block->isBBCallAlwaysPair()); |
1314 | |
1315 | /* The block after the BBJ_CALLFINALLY block is not reachable */ |
1316 | bNext = block->bbNext; |
1317 | |
1318 | /* bNext is an unreachable BBJ_ALWAYS block */ |
1319 | noway_assert(bNext->bbJumpKind == BBJ_ALWAYS); |
1320 | |
1321 | while (bNext->countOfInEdges() > 0) |
1322 | { |
1323 | fgRemoveRefPred(bNext, bNext->bbPreds->flBlock); |
1324 | } |
1325 | } |
1326 | |
1327 | __fallthrough; |
1328 | |
1329 | case BBJ_COND: |
1330 | case BBJ_ALWAYS: |
1331 | case BBJ_EHCATCHRET: |
1332 | |
1333 | /* Update the predecessor list for 'block->bbJumpDest' and 'block->bbNext' */ |
1334 | fgRemoveRefPred(block->bbJumpDest, block); |
1335 | |
1336 | if (block->bbJumpKind != BBJ_COND) |
1337 | { |
1338 | break; |
1339 | } |
1340 | |
1341 | /* If BBJ_COND fall through */ |
1342 | __fallthrough; |
1343 | |
1344 | case BBJ_NONE: |
1345 | |
1346 | /* Update the predecessor list for 'block->bbNext' */ |
1347 | fgRemoveRefPred(block->bbNext, block); |
1348 | break; |
1349 | |
1350 | case BBJ_EHFILTERRET: |
1351 | |
1352 | block->bbJumpDest->bbRefs++; // To compensate the bbRefs-- inside fgRemoveRefPred |
1353 | fgRemoveRefPred(block->bbJumpDest, block); |
1354 | break; |
1355 | |
1356 | case BBJ_EHFINALLYRET: |
1357 | { |
1358 | /* Remove block as the predecessor of the bbNext of all |
1359 | BBJ_CALLFINALLY blocks calling this finally. No need |
1360 | to look for BBJ_CALLFINALLY for fault handlers. */ |
1361 | |
1362 | unsigned hndIndex = block->getHndIndex(); |
1363 | EHblkDsc* ehDsc = ehGetDsc(hndIndex); |
1364 | |
1365 | if (ehDsc->HasFinallyHandler()) |
1366 | { |
1367 | BasicBlock* begBlk; |
1368 | BasicBlock* endBlk; |
1369 | ehGetCallFinallyBlockRange(hndIndex, &begBlk, &endBlk); |
1370 | |
1371 | BasicBlock* finBeg = ehDsc->ebdHndBeg; |
1372 | |
1373 | for (BasicBlock* bcall = begBlk; bcall != endBlk; bcall = bcall->bbNext) |
1374 | { |
1375 | if ((bcall->bbFlags & BBF_REMOVED) || bcall->bbJumpKind != BBJ_CALLFINALLY || |
1376 | bcall->bbJumpDest != finBeg) |
1377 | { |
1378 | continue; |
1379 | } |
1380 | |
1381 | assert(bcall->isBBCallAlwaysPair()); |
1382 | fgRemoveRefPred(bcall->bbNext, block); |
1383 | } |
1384 | } |
1385 | } |
1386 | break; |
1387 | |
1388 | case BBJ_THROW: |
1389 | case BBJ_RETURN: |
1390 | break; |
1391 | |
1392 | case BBJ_SWITCH: |
1393 | { |
1394 | unsigned jumpCnt = block->bbJumpSwt->bbsCount; |
1395 | BasicBlock** jumpTab = block->bbJumpSwt->bbsDstTab; |
1396 | |
1397 | do |
1398 | { |
1399 | fgRemoveRefPred(*jumpTab, block); |
1400 | } while (++jumpTab, --jumpCnt); |
1401 | |
1402 | break; |
1403 | } |
1404 | |
1405 | default: |
1406 | noway_assert(!"Block doesn't have a valid bbJumpKind!!!!" ); |
1407 | break; |
1408 | } |
1409 | } |
1410 | |
1411 | /***************************************************************************** |
1412 | * fgChangeSwitchBlock: |
1413 | * |
1414 | * We have a BBJ_SWITCH jump at 'oldSwitchBlock' and we want to move this |
1415 | * switch jump over to 'newSwitchBlock'. All of the blocks that are jumped |
1416 | * to from jumpTab[] need to have their predecessor lists updated by removing |
1417 | * the 'oldSwitchBlock' and adding 'newSwitchBlock'. |
1418 | */ |
1419 | |
1420 | void Compiler::fgChangeSwitchBlock(BasicBlock* oldSwitchBlock, BasicBlock* newSwitchBlock) |
1421 | { |
1422 | noway_assert(oldSwitchBlock != nullptr); |
1423 | noway_assert(newSwitchBlock != nullptr); |
1424 | noway_assert(oldSwitchBlock->bbJumpKind == BBJ_SWITCH); |
1425 | |
1426 | unsigned jumpCnt = oldSwitchBlock->bbJumpSwt->bbsCount; |
1427 | BasicBlock** jumpTab = oldSwitchBlock->bbJumpSwt->bbsDstTab; |
1428 | |
1429 | unsigned i; |
1430 | |
1431 | // Walk the switch's jump table, updating the predecessor for each branch. |
1432 | for (i = 0; i < jumpCnt; i++) |
1433 | { |
1434 | BasicBlock* bJump = jumpTab[i]; |
1435 | noway_assert(bJump != nullptr); |
1436 | |
1437 | // Note that if there are duplicate branch targets in the switch jump table, |
1438 | // fgRemoveRefPred()/fgAddRefPred() will do the right thing: the second and |
1439 | // subsequent duplicates will simply subtract from and add to the duplicate |
1440 | // count (respectively). |
1441 | |
1442 | // |
1443 | // Remove the old edge [oldSwitchBlock => bJump] |
1444 | // |
1445 | fgRemoveRefPred(bJump, oldSwitchBlock); |
1446 | |
1447 | // |
1448 | // Create the new edge [newSwitchBlock => bJump] |
1449 | // |
1450 | fgAddRefPred(bJump, newSwitchBlock); |
1451 | } |
1452 | |
1453 | if (m_switchDescMap != nullptr) |
1454 | { |
1455 | SwitchUniqueSuccSet uniqueSuccSet; |
1456 | |
1457 | // If already computed and cached the unique descriptors for the old block, let's |
1458 | // update those for the new block. |
1459 | if (m_switchDescMap->Lookup(oldSwitchBlock, &uniqueSuccSet)) |
1460 | { |
1461 | m_switchDescMap->Set(newSwitchBlock, uniqueSuccSet); |
1462 | } |
1463 | else |
1464 | { |
1465 | fgInvalidateSwitchDescMapEntry(newSwitchBlock); |
1466 | } |
1467 | fgInvalidateSwitchDescMapEntry(oldSwitchBlock); |
1468 | } |
1469 | } |
1470 | |
1471 | /***************************************************************************** |
1472 | * fgReplaceSwitchJumpTarget: |
1473 | * |
1474 | * We have a BBJ_SWITCH at 'blockSwitch' and we want to replace all entries |
1475 | * in the jumpTab[] such that so that jumps that previously went to |
1476 | * 'oldTarget' now go to 'newTarget'. |
1477 | * We also must update the predecessor lists for 'oldTarget' and 'newPred'. |
1478 | */ |
1479 | |
1480 | void Compiler::fgReplaceSwitchJumpTarget(BasicBlock* blockSwitch, BasicBlock* newTarget, BasicBlock* oldTarget) |
1481 | { |
1482 | noway_assert(blockSwitch != nullptr); |
1483 | noway_assert(newTarget != nullptr); |
1484 | noway_assert(oldTarget != nullptr); |
1485 | noway_assert(blockSwitch->bbJumpKind == BBJ_SWITCH); |
1486 | |
1487 | // For the jump targets values that match oldTarget of our BBJ_SWITCH |
1488 | // replace predecessor 'blockSwitch' with 'newTarget' |
1489 | // |
1490 | |
1491 | unsigned jumpCnt = blockSwitch->bbJumpSwt->bbsCount; |
1492 | BasicBlock** jumpTab = blockSwitch->bbJumpSwt->bbsDstTab; |
1493 | |
1494 | unsigned i = 0; |
1495 | |
1496 | // Walk the switch's jump table looking for blocks to update the preds for |
1497 | while (i < jumpCnt) |
1498 | { |
1499 | if (jumpTab[i] == oldTarget) // We will update when jumpTab[i] matches |
1500 | { |
1501 | // Remove the old edge [oldTarget from blockSwitch] |
1502 | // |
1503 | fgRemoveAllRefPreds(oldTarget, blockSwitch); |
1504 | |
1505 | // |
1506 | // Change the jumpTab entry to branch to the new location |
1507 | // |
1508 | jumpTab[i] = newTarget; |
1509 | |
1510 | // |
1511 | // Create the new edge [newTarget from blockSwitch] |
1512 | // |
1513 | flowList* newEdge = fgAddRefPred(newTarget, blockSwitch); |
1514 | |
1515 | // Now set the correct value of newEdge->flDupCount |
1516 | // and replace any other jumps in jumpTab[] that go to oldTarget. |
1517 | // |
1518 | i++; |
1519 | while (i < jumpCnt) |
1520 | { |
1521 | if (jumpTab[i] == oldTarget) |
1522 | { |
1523 | // |
1524 | // We also must update this entry in the jumpTab |
1525 | // |
1526 | jumpTab[i] = newTarget; |
1527 | newTarget->bbRefs++; |
1528 | |
1529 | // |
1530 | // Increment the flDupCount |
1531 | // |
1532 | newEdge->flDupCount++; |
1533 | } |
1534 | i++; // Check the next entry in jumpTab[] |
1535 | } |
1536 | |
1537 | // Maintain, if necessary, the set of unique targets of "block." |
1538 | UpdateSwitchTableTarget(blockSwitch, oldTarget, newTarget); |
1539 | |
1540 | // Make sure the new target has the proper bits set for being a branch target. |
1541 | newTarget->bbFlags |= BBF_HAS_LABEL | BBF_JMP_TARGET; |
1542 | |
1543 | return; // We have replaced the jumps to oldTarget with newTarget |
1544 | } |
1545 | i++; // Check the next entry in jumpTab[] for a match |
1546 | } |
1547 | noway_assert(!"Did not find oldTarget in jumpTab[]" ); |
1548 | } |
1549 | |
1550 | //------------------------------------------------------------------------ |
1551 | // Compiler::fgReplaceJumpTarget: For a given block, replace the target 'oldTarget' with 'newTarget'. |
1552 | // |
1553 | // Arguments: |
1554 | // block - the block in which a jump target will be replaced. |
1555 | // newTarget - the new branch target of the block. |
1556 | // oldTarget - the old branch target of the block. |
1557 | // |
1558 | // Notes: |
1559 | // 1. Only branches are changed: BBJ_ALWAYS, the non-fallthrough path of BBJ_COND, BBJ_SWITCH, etc. |
1560 | // We ignore other block types. |
1561 | // 2. Only the first target found is updated. If there are multiple ways for a block |
1562 | // to reach 'oldTarget' (e.g., multiple arms of a switch), only the first one found is changed. |
1563 | // 3. The predecessor lists are not changed. |
1564 | // 4. The switch table "unique successor" cache is invalidated. |
1565 | // |
1566 | // This function is most useful early, before the full predecessor lists have been computed. |
1567 | // |
1568 | void Compiler::fgReplaceJumpTarget(BasicBlock* block, BasicBlock* newTarget, BasicBlock* oldTarget) |
1569 | { |
1570 | assert(block != nullptr); |
1571 | |
1572 | switch (block->bbJumpKind) |
1573 | { |
1574 | case BBJ_CALLFINALLY: |
1575 | case BBJ_COND: |
1576 | case BBJ_ALWAYS: |
1577 | case BBJ_EHCATCHRET: |
1578 | case BBJ_EHFILTERRET: |
1579 | case BBJ_LEAVE: // This function will be called before import, so we still have BBJ_LEAVE |
1580 | |
1581 | if (block->bbJumpDest == oldTarget) |
1582 | { |
1583 | block->bbJumpDest = newTarget; |
1584 | } |
1585 | break; |
1586 | |
1587 | case BBJ_NONE: |
1588 | case BBJ_EHFINALLYRET: |
1589 | case BBJ_THROW: |
1590 | case BBJ_RETURN: |
1591 | break; |
1592 | |
1593 | case BBJ_SWITCH: |
1594 | unsigned jumpCnt; |
1595 | jumpCnt = block->bbJumpSwt->bbsCount; |
1596 | BasicBlock** jumpTab; |
1597 | jumpTab = block->bbJumpSwt->bbsDstTab; |
1598 | |
1599 | for (unsigned i = 0; i < jumpCnt; i++) |
1600 | { |
1601 | if (jumpTab[i] == oldTarget) |
1602 | { |
1603 | jumpTab[i] = newTarget; |
1604 | break; |
1605 | } |
1606 | } |
1607 | break; |
1608 | |
1609 | default: |
1610 | assert(!"Block doesn't have a valid bbJumpKind!!!!" ); |
1611 | unreached(); |
1612 | break; |
1613 | } |
1614 | } |
1615 | |
1616 | /***************************************************************************** |
1617 | * Updates the predecessor list for 'block' by replacing 'oldPred' with 'newPred'. |
1618 | * Note that a block can only appear once in the preds list (for normal preds, not |
1619 | * cheap preds): if a predecessor has multiple ways to get to this block, then |
1620 | * flDupCount will be >1, but the block will still appear exactly once. Thus, this |
1621 | * function assumes that all branches from the predecessor (practically, that all |
1622 | * switch cases that target this block) are changed to branch from the new predecessor, |
1623 | * with the same dup count. |
1624 | * |
1625 | * Note that the block bbRefs is not changed, since 'block' has the same number of |
1626 | * references as before, just from a different predecessor block. |
1627 | */ |
1628 | |
1629 | void Compiler::fgReplacePred(BasicBlock* block, BasicBlock* oldPred, BasicBlock* newPred) |
1630 | { |
1631 | noway_assert(block != nullptr); |
1632 | noway_assert(oldPred != nullptr); |
1633 | noway_assert(newPred != nullptr); |
1634 | assert(!fgCheapPredsValid); |
1635 | |
1636 | flowList* pred; |
1637 | |
1638 | for (pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
1639 | { |
1640 | if (oldPred == pred->flBlock) |
1641 | { |
1642 | pred->flBlock = newPred; |
1643 | break; |
1644 | } |
1645 | } |
1646 | } |
1647 | |
1648 | /***************************************************************************** |
1649 | * |
1650 | * Returns true if block b1 dominates block b2. |
1651 | */ |
1652 | |
1653 | bool Compiler::fgDominate(BasicBlock* b1, BasicBlock* b2) |
1654 | { |
1655 | noway_assert(fgDomsComputed); |
1656 | assert(!fgCheapPredsValid); |
1657 | |
1658 | // |
1659 | // If the fgModified flag is false then we made some modifications to |
1660 | // the flow graph, like adding a new block or changing a conditional branch |
1661 | // into an unconditional branch. |
1662 | // |
1663 | // We can continue to use the dominator and reachable information to |
1664 | // unmark loops as long as we haven't renumbered the blocks or we aren't |
1665 | // asking for information about a new block |
1666 | // |
1667 | |
1668 | if (b2->bbNum > fgDomBBcount) |
1669 | { |
1670 | if (b1 == b2) |
1671 | { |
1672 | return true; |
1673 | } |
1674 | |
1675 | for (flowList* pred = b2->bbPreds; pred != nullptr; pred = pred->flNext) |
1676 | { |
1677 | if (!fgDominate(b1, pred->flBlock)) |
1678 | { |
1679 | return false; |
1680 | } |
1681 | } |
1682 | |
1683 | return b2->bbPreds != nullptr; |
1684 | } |
1685 | |
1686 | if (b1->bbNum > fgDomBBcount) |
1687 | { |
1688 | // if b1 is a loop preheader and Succ is its only successor, then all predecessors of |
1689 | // Succ either are b1 itself or are dominated by Succ. Under these conditions, b1 |
1690 | // dominates b2 if and only if Succ dominates b2 (or if b2 == b1, but we already tested |
1691 | // for this case) |
1692 | if (b1->bbFlags & BBF_LOOP_PREHEADER) |
1693 | { |
1694 | noway_assert(b1->bbFlags & BBF_INTERNAL); |
1695 | noway_assert(b1->bbJumpKind == BBJ_NONE); |
1696 | return fgDominate(b1->bbNext, b2); |
1697 | } |
1698 | |
1699 | // unknown dominators; err on the safe side and return false |
1700 | return false; |
1701 | } |
1702 | |
1703 | /* Check if b1 dominates b2 */ |
1704 | unsigned numA = b1->bbNum; |
1705 | noway_assert(numA <= fgDomBBcount); |
1706 | unsigned numB = b2->bbNum; |
1707 | noway_assert(numB <= fgDomBBcount); |
1708 | |
1709 | // What we want to ask here is basically if A is in the middle of the path from B to the root (the entry node) |
1710 | // in the dominator tree. Turns out that can be translated as: |
1711 | // |
1712 | // A dom B <-> preorder(A) <= preorder(B) && postorder(A) >= postorder(B) |
1713 | // |
1714 | // where the equality holds when you ask if A dominates itself. |
1715 | bool treeDom = |
1716 | fgDomTreePreOrder[numA] <= fgDomTreePreOrder[numB] && fgDomTreePostOrder[numA] >= fgDomTreePostOrder[numB]; |
1717 | |
1718 | return treeDom; |
1719 | } |
1720 | |
1721 | /***************************************************************************** |
1722 | * |
1723 | * Returns true if block b1 can reach block b2. |
1724 | */ |
1725 | |
1726 | bool Compiler::fgReachable(BasicBlock* b1, BasicBlock* b2) |
1727 | { |
1728 | noway_assert(fgDomsComputed); |
1729 | assert(!fgCheapPredsValid); |
1730 | |
1731 | // |
1732 | // If the fgModified flag is false then we made some modifications to |
1733 | // the flow graph, like adding a new block or changing a conditional branch |
1734 | // into an unconditional branch. |
1735 | // |
1736 | // We can continue to use the dominator and reachable information to |
1737 | // unmark loops as long as we haven't renumbered the blocks or we aren't |
1738 | // asking for information about a new block |
1739 | // |
1740 | |
1741 | if (b2->bbNum > fgDomBBcount) |
1742 | { |
1743 | if (b1 == b2) |
1744 | { |
1745 | return true; |
1746 | } |
1747 | |
1748 | for (flowList* pred = b2->bbPreds; pred != nullptr; pred = pred->flNext) |
1749 | { |
1750 | if (fgReachable(b1, pred->flBlock)) |
1751 | { |
1752 | return true; |
1753 | } |
1754 | } |
1755 | |
1756 | return false; |
1757 | } |
1758 | |
1759 | if (b1->bbNum > fgDomBBcount) |
1760 | { |
1761 | noway_assert(b1->bbJumpKind == BBJ_NONE || b1->bbJumpKind == BBJ_ALWAYS || b1->bbJumpKind == BBJ_COND); |
1762 | |
1763 | if (b1->bbFallsThrough() && fgReachable(b1->bbNext, b2)) |
1764 | { |
1765 | return true; |
1766 | } |
1767 | |
1768 | if (b1->bbJumpKind == BBJ_ALWAYS || b1->bbJumpKind == BBJ_COND) |
1769 | { |
1770 | return fgReachable(b1->bbJumpDest, b2); |
1771 | } |
1772 | |
1773 | return false; |
1774 | } |
1775 | |
1776 | /* Check if b1 can reach b2 */ |
1777 | assert(fgReachabilitySetsValid); |
1778 | assert(BasicBlockBitSetTraits::GetSize(this) == fgDomBBcount + 1); |
1779 | return BlockSetOps::IsMember(this, b2->bbReach, b1->bbNum); |
1780 | } |
1781 | |
1782 | /***************************************************************************** |
1783 | * Update changed flow graph information. |
1784 | * |
1785 | * If the flow graph has changed, we need to recompute various information if we want to use |
1786 | * it again. |
1787 | */ |
1788 | |
1789 | void Compiler::fgUpdateChangedFlowGraph() |
1790 | { |
1791 | // We need to clear this so we don't hit an assert calling fgRenumberBlocks(). |
1792 | fgDomsComputed = false; |
1793 | |
1794 | JITDUMP("\nRenumbering the basic blocks for fgUpdateChangeFlowGraph\n" ); |
1795 | fgRenumberBlocks(); |
1796 | |
1797 | fgComputePreds(); |
1798 | fgComputeEnterBlocksSet(); |
1799 | fgComputeReachabilitySets(); |
1800 | fgComputeDoms(); |
1801 | } |
1802 | |
1803 | /***************************************************************************** |
1804 | * Compute the bbReach sets. |
1805 | * |
1806 | * This can be called to recompute the bbReach sets after the flow graph changes, such as when the |
1807 | * number of BasicBlocks change (and thus, the BlockSet epoch changes). |
1808 | * |
1809 | * Finally, this also sets the BBF_GC_SAFE_POINT flag on blocks. |
1810 | * |
1811 | * Assumes the predecessor lists are correct. |
1812 | * |
1813 | * TODO-Throughput: This algorithm consumes O(n^2) because we're using dense bitsets to |
1814 | * represent reachability. While this yields O(1) time queries, it bloats the memory usage |
1815 | * for large code. We can do better if we try to approach reachability by |
1816 | * computing the strongly connected components of the flow graph. That way we only need |
1817 | * linear memory to label every block with its SCC. |
1818 | */ |
1819 | |
1820 | void Compiler::fgComputeReachabilitySets() |
1821 | { |
1822 | assert(fgComputePredsDone); |
1823 | assert(!fgCheapPredsValid); |
1824 | |
1825 | #ifdef DEBUG |
1826 | fgReachabilitySetsValid = false; |
1827 | #endif // DEBUG |
1828 | |
1829 | BasicBlock* block; |
1830 | |
1831 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
1832 | { |
1833 | // Initialize the per-block bbReach sets. It creates a new empty set, |
1834 | // because the block epoch could change since the previous initialization |
1835 | // and the old set could have wrong size. |
1836 | block->bbReach = BlockSetOps::MakeEmpty(this); |
1837 | |
1838 | /* Mark block as reaching itself */ |
1839 | BlockSetOps::AddElemD(this, block->bbReach, block->bbNum); |
1840 | } |
1841 | |
1842 | /* Find the reachable blocks */ |
1843 | // Also, set BBF_GC_SAFE_POINT. |
1844 | |
1845 | bool change; |
1846 | BlockSet newReach(BlockSetOps::MakeEmpty(this)); |
1847 | do |
1848 | { |
1849 | change = false; |
1850 | |
1851 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
1852 | { |
1853 | BlockSetOps::Assign(this, newReach, block->bbReach); |
1854 | |
1855 | bool predGcSafe = (block->bbPreds != nullptr); // Do all of our predecessor blocks have a GC safe bit? |
1856 | |
1857 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
1858 | { |
1859 | BasicBlock* predBlock = pred->flBlock; |
1860 | |
1861 | /* Union the predecessor's reachability set into newReach */ |
1862 | BlockSetOps::UnionD(this, newReach, predBlock->bbReach); |
1863 | |
1864 | if (!(predBlock->bbFlags & BBF_GC_SAFE_POINT)) |
1865 | { |
1866 | predGcSafe = false; |
1867 | } |
1868 | } |
1869 | |
1870 | if (predGcSafe) |
1871 | { |
1872 | block->bbFlags |= BBF_GC_SAFE_POINT; |
1873 | } |
1874 | |
1875 | if (!BlockSetOps::Equal(this, newReach, block->bbReach)) |
1876 | { |
1877 | BlockSetOps::Assign(this, block->bbReach, newReach); |
1878 | change = true; |
1879 | } |
1880 | } |
1881 | } while (change); |
1882 | |
1883 | #ifdef DEBUG |
1884 | if (verbose) |
1885 | { |
1886 | printf("\nAfter computing reachability sets:\n" ); |
1887 | fgDispReach(); |
1888 | } |
1889 | |
1890 | fgReachabilitySetsValid = true; |
1891 | #endif // DEBUG |
1892 | } |
1893 | |
1894 | /***************************************************************************** |
1895 | * Compute the entry blocks set. |
1896 | * |
1897 | * Initialize fgEnterBlks to the set of blocks for which we don't have explicit control |
1898 | * flow edges. These are the entry basic block and each of the EH handler blocks. |
1899 | * For ARM, also include the BBJ_ALWAYS block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair, |
1900 | * to avoid creating "retless" calls, since we need the BBJ_ALWAYS for the purpose |
1901 | * of unwinding, even if the call doesn't return (due to an explicit throw, for example). |
1902 | */ |
1903 | |
1904 | void Compiler::fgComputeEnterBlocksSet() |
1905 | { |
1906 | #ifdef DEBUG |
1907 | fgEnterBlksSetValid = false; |
1908 | #endif // DEBUG |
1909 | |
1910 | fgEnterBlks = BlockSetOps::MakeEmpty(this); |
1911 | |
1912 | /* Now set the entry basic block */ |
1913 | BlockSetOps::AddElemD(this, fgEnterBlks, fgFirstBB->bbNum); |
1914 | assert(fgFirstBB->bbNum == 1); |
1915 | |
1916 | if (compHndBBtabCount > 0) |
1917 | { |
1918 | /* Also 'or' in the handler basic blocks */ |
1919 | EHblkDsc* HBtab; |
1920 | EHblkDsc* HBtabEnd; |
1921 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
1922 | { |
1923 | if (HBtab->HasFilter()) |
1924 | { |
1925 | BlockSetOps::AddElemD(this, fgEnterBlks, HBtab->ebdFilter->bbNum); |
1926 | } |
1927 | BlockSetOps::AddElemD(this, fgEnterBlks, HBtab->ebdHndBeg->bbNum); |
1928 | } |
1929 | } |
1930 | |
1931 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
1932 | // TODO-ARM-Cleanup: The ARM code here to prevent creating retless calls by adding the BBJ_ALWAYS |
1933 | // to the enter blocks is a bit of a compromise, because sometimes the blocks are already reachable, |
1934 | // and it messes up DFS ordering to have them marked as enter block. We should prevent the |
1935 | // creation of retless calls some other way. |
1936 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
1937 | { |
1938 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
1939 | { |
1940 | assert(block->isBBCallAlwaysPair()); |
1941 | |
1942 | // Don't remove the BBJ_ALWAYS block that is only here for the unwinder. It might be dead |
1943 | // if the finally is no-return, so mark it as an entry point. |
1944 | BlockSetOps::AddElemD(this, fgEnterBlks, block->bbNext->bbNum); |
1945 | } |
1946 | } |
1947 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
1948 | |
1949 | #ifdef DEBUG |
1950 | if (verbose) |
1951 | { |
1952 | printf("Enter blocks: " ); |
1953 | BlockSetOps::Iter iter(this, fgEnterBlks); |
1954 | unsigned bbNum = 0; |
1955 | while (iter.NextElem(&bbNum)) |
1956 | { |
1957 | printf(FMT_BB " " , bbNum); |
1958 | } |
1959 | printf("\n" ); |
1960 | } |
1961 | #endif // DEBUG |
1962 | |
1963 | #ifdef DEBUG |
1964 | fgEnterBlksSetValid = true; |
1965 | #endif // DEBUG |
1966 | } |
1967 | |
1968 | /***************************************************************************** |
1969 | * Remove unreachable blocks. |
1970 | * |
1971 | * Return true if any unreachable blocks were removed. |
1972 | */ |
1973 | |
1974 | bool Compiler::fgRemoveUnreachableBlocks() |
1975 | { |
1976 | assert(!fgCheapPredsValid); |
1977 | assert(fgReachabilitySetsValid); |
1978 | |
1979 | bool hasLoops = false; |
1980 | bool hasUnreachableBlocks = false; |
1981 | BasicBlock* block; |
1982 | |
1983 | /* Record unreachable blocks */ |
1984 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
1985 | { |
1986 | /* Internal throw blocks are also reachable */ |
1987 | if (fgIsThrowHlpBlk(block)) |
1988 | { |
1989 | goto SKIP_BLOCK; |
1990 | } |
1991 | else if (block == genReturnBB) |
1992 | { |
1993 | // Don't remove statements for the genReturnBB block, as we might have special hookups there. |
1994 | // For example, <BUGNUM> in VSW 364383, </BUGNUM> |
1995 | // the profiler hookup needs to have the "void GT_RETURN" statement |
1996 | // to properly set the info.compProfilerCallback flag. |
1997 | goto SKIP_BLOCK; |
1998 | } |
1999 | else |
2000 | { |
2001 | // If any of the entry blocks can reach this block, then we skip it. |
2002 | if (!BlockSetOps::IsEmptyIntersection(this, fgEnterBlks, block->bbReach)) |
2003 | { |
2004 | goto SKIP_BLOCK; |
2005 | } |
2006 | } |
2007 | |
2008 | // Remove all the code for the block |
2009 | fgUnreachableBlock(block); |
2010 | |
2011 | // Make sure that the block was marked as removed */ |
2012 | noway_assert(block->bbFlags & BBF_REMOVED); |
2013 | |
2014 | // Some blocks mark the end of trys and catches |
2015 | // and can't be removed. We convert these into |
2016 | // empty blocks of type BBJ_THROW |
2017 | |
2018 | if (block->bbFlags & BBF_DONT_REMOVE) |
2019 | { |
2020 | bool bIsBBCallAlwaysPair = block->isBBCallAlwaysPair(); |
2021 | |
2022 | /* Unmark the block as removed, */ |
2023 | /* clear BBF_INTERNAL as well and set BBJ_IMPORTED */ |
2024 | |
2025 | block->bbFlags &= ~(BBF_REMOVED | BBF_INTERNAL | BBF_NEEDS_GCPOLL); |
2026 | block->bbFlags |= BBF_IMPORTED; |
2027 | block->bbJumpKind = BBJ_THROW; |
2028 | block->bbSetRunRarely(); |
2029 | |
2030 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
2031 | // If this is a <BBJ_CALLFINALLY, BBJ_ALWAYS> pair, we have to clear BBF_FINALLY_TARGET flag on |
2032 | // the target node (of BBJ_ALWAYS) since BBJ_CALLFINALLY node is getting converted to a BBJ_THROW. |
2033 | if (bIsBBCallAlwaysPair) |
2034 | { |
2035 | noway_assert(block->bbNext->bbJumpKind == BBJ_ALWAYS); |
2036 | fgClearFinallyTargetBit(block->bbNext->bbJumpDest); |
2037 | } |
2038 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
2039 | } |
2040 | else |
2041 | { |
2042 | /* We have to call fgRemoveBlock next */ |
2043 | hasUnreachableBlocks = true; |
2044 | } |
2045 | continue; |
2046 | |
2047 | SKIP_BLOCK:; |
2048 | |
2049 | // if (block->isRunRarely()) |
2050 | // continue; |
2051 | if (block->bbJumpKind == BBJ_RETURN) |
2052 | { |
2053 | continue; |
2054 | } |
2055 | |
2056 | /* Set BBF_LOOP_HEAD if we have backwards branches to this block */ |
2057 | |
2058 | unsigned blockNum = block->bbNum; |
2059 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
2060 | { |
2061 | BasicBlock* predBlock = pred->flBlock; |
2062 | if (blockNum <= predBlock->bbNum) |
2063 | { |
2064 | if (predBlock->bbJumpKind == BBJ_CALLFINALLY) |
2065 | { |
2066 | continue; |
2067 | } |
2068 | |
2069 | /* If block can reach predBlock then we have a loop head */ |
2070 | if (BlockSetOps::IsMember(this, predBlock->bbReach, blockNum)) |
2071 | { |
2072 | hasLoops = true; |
2073 | |
2074 | /* Set the BBF_LOOP_HEAD flag */ |
2075 | block->bbFlags |= BBF_LOOP_HEAD; |
2076 | break; |
2077 | } |
2078 | } |
2079 | } |
2080 | } |
2081 | |
2082 | fgHasLoops = hasLoops; |
2083 | |
2084 | if (hasUnreachableBlocks) |
2085 | { |
2086 | // Now remove the unreachable blocks |
2087 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
2088 | { |
2089 | // If we mark the block with BBF_REMOVED then |
2090 | // we need to call fgRemovedBlock() on it |
2091 | |
2092 | if (block->bbFlags & BBF_REMOVED) |
2093 | { |
2094 | fgRemoveBlock(block, true); |
2095 | |
2096 | // When we have a BBJ_CALLFINALLY, BBJ_ALWAYS pair; fgRemoveBlock will remove |
2097 | // both blocks, so we must advance 1 extra place in the block list |
2098 | // |
2099 | if (block->isBBCallAlwaysPair()) |
2100 | { |
2101 | block = block->bbNext; |
2102 | } |
2103 | } |
2104 | } |
2105 | } |
2106 | |
2107 | return hasUnreachableBlocks; |
2108 | } |
2109 | |
2110 | /***************************************************************************** |
2111 | * |
2112 | * Function called to compute the dominator and reachable sets. |
2113 | * |
2114 | * Assumes the predecessor lists are computed and correct. |
2115 | */ |
2116 | |
2117 | void Compiler::fgComputeReachability() |
2118 | { |
2119 | #ifdef DEBUG |
2120 | if (verbose) |
2121 | { |
2122 | printf("*************** In fgComputeReachability\n" ); |
2123 | } |
2124 | |
2125 | fgVerifyHandlerTab(); |
2126 | |
2127 | // Make sure that the predecessor lists are accurate |
2128 | assert(fgComputePredsDone); |
2129 | fgDebugCheckBBlist(); |
2130 | #endif // DEBUG |
2131 | |
2132 | /* Create a list of all BBJ_RETURN blocks. The head of the list is 'fgReturnBlocks'. */ |
2133 | fgReturnBlocks = nullptr; |
2134 | |
2135 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
2136 | { |
2137 | // If this is a BBJ_RETURN block, add it to our list of all BBJ_RETURN blocks. This list is only |
2138 | // used to find return blocks. |
2139 | if (block->bbJumpKind == BBJ_RETURN) |
2140 | { |
2141 | fgReturnBlocks = new (this, CMK_Reachability) BasicBlockList(block, fgReturnBlocks); |
2142 | } |
2143 | } |
2144 | |
2145 | // Compute reachability and then delete blocks determined to be unreachable. If we delete blocks, we |
2146 | // need to loop, as that might have caused more blocks to become unreachable. This can happen in the |
2147 | // case where a call to a finally is unreachable and deleted (maybe the call to the finally is |
2148 | // preceded by a throw or an infinite loop), making the blocks following the finally unreachable. |
2149 | // However, all EH entry blocks are considered global entry blocks, causing the blocks following the |
2150 | // call to the finally to stay rooted, until a second round of reachability is done. |
2151 | // The dominator algorithm expects that all blocks can be reached from the fgEnterBlks set. |
2152 | unsigned passNum = 1; |
2153 | bool changed; |
2154 | do |
2155 | { |
2156 | // Just to be paranoid, avoid infinite loops; fall back to minopts. |
2157 | if (passNum > 10) |
2158 | { |
2159 | noway_assert(!"Too many unreachable block removal loops" ); |
2160 | } |
2161 | |
2162 | /* Walk the flow graph, reassign block numbers to keep them in ascending order */ |
2163 | JITDUMP("\nRenumbering the basic blocks for fgComputeReachability pass #%u\n" , passNum); |
2164 | passNum++; |
2165 | fgRenumberBlocks(); |
2166 | |
2167 | // |
2168 | // Compute fgEnterBlks |
2169 | // |
2170 | |
2171 | fgComputeEnterBlocksSet(); |
2172 | |
2173 | // |
2174 | // Compute bbReach |
2175 | // |
2176 | |
2177 | fgComputeReachabilitySets(); |
2178 | |
2179 | // |
2180 | // Use reachability information to delete unreachable blocks. |
2181 | // Also, determine if the flow graph has loops and set 'fgHasLoops' accordingly. |
2182 | // Set the BBF_LOOP_HEAD flag on the block target of backwards branches. |
2183 | // |
2184 | |
2185 | changed = fgRemoveUnreachableBlocks(); |
2186 | |
2187 | } while (changed); |
2188 | |
2189 | #ifdef DEBUG |
2190 | if (verbose) |
2191 | { |
2192 | printf("\nAfter computing reachability:\n" ); |
2193 | fgDispBasicBlocks(verboseTrees); |
2194 | printf("\n" ); |
2195 | } |
2196 | |
2197 | fgVerifyHandlerTab(); |
2198 | fgDebugCheckBBlist(true); |
2199 | #endif // DEBUG |
2200 | |
2201 | // |
2202 | // Now, compute the dominators |
2203 | // |
2204 | |
2205 | fgComputeDoms(); |
2206 | } |
2207 | |
2208 | /** In order to be able to compute dominance, we need to first get a DFS reverse post order sort on the basic flow graph |
2209 | * for the dominance algorithm to operate correctly. The reason why we need the DFS sort is because |
2210 | * we will build the dominance sets using the partial order induced by the DFS sorting. With this |
2211 | * precondition not holding true, the algorithm doesn't work properly. |
2212 | */ |
2213 | void Compiler::fgDfsInvPostOrder() |
2214 | { |
2215 | // NOTE: This algorithm only pays attention to the actual blocks. It ignores the imaginary entry block. |
2216 | |
2217 | // visited : Once we run the DFS post order sort recursive algorithm, we mark the nodes we visited to avoid |
2218 | // backtracking. |
2219 | BlockSet visited(BlockSetOps::MakeEmpty(this)); |
2220 | |
2221 | // We begin by figuring out which basic blocks don't have incoming edges and mark them as |
2222 | // start nodes. Later on we run the recursive algorithm for each node that we |
2223 | // mark in this step. |
2224 | BlockSet_ValRet_T startNodes = fgDomFindStartNodes(); |
2225 | |
2226 | // Make sure fgEnterBlks are still there in startNodes, even if they participate in a loop (i.e., there is |
2227 | // an incoming edge into the block). |
2228 | assert(fgEnterBlksSetValid); |
2229 | |
2230 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
2231 | // |
2232 | // BlockSetOps::UnionD(this, startNodes, fgEnterBlks); |
2233 | // |
2234 | // This causes problems on ARM, because we for BBJ_CALLFINALLY/BBJ_ALWAYS pairs, we add the BBJ_ALWAYS |
2235 | // to the enter blocks set to prevent flow graph optimizations from removing it and creating retless call finallies |
2236 | // (BBF_RETLESS_CALL). This leads to an incorrect DFS ordering in some cases, because we start the recursive walk |
2237 | // from the BBJ_ALWAYS, which is reachable from other blocks. A better solution would be to change ARM to avoid |
2238 | // creating retless calls in a different way, not by adding BBJ_ALWAYS to fgEnterBlks. |
2239 | // |
2240 | // So, let us make sure at least fgFirstBB is still there, even if it participates in a loop. |
2241 | BlockSetOps::AddElemD(this, startNodes, 1); |
2242 | assert(fgFirstBB->bbNum == 1); |
2243 | #else |
2244 | BlockSetOps::UnionD(this, startNodes, fgEnterBlks); |
2245 | #endif |
2246 | |
2247 | assert(BlockSetOps::IsMember(this, startNodes, fgFirstBB->bbNum)); |
2248 | |
2249 | // Call the flowgraph DFS traversal helper. |
2250 | unsigned postIndex = 1; |
2251 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
2252 | { |
2253 | // If the block has no predecessors, and we haven't already visited it (because it's in fgEnterBlks but also |
2254 | // reachable from the first block), go ahead and traverse starting from this block. |
2255 | if (BlockSetOps::IsMember(this, startNodes, block->bbNum) && |
2256 | !BlockSetOps::IsMember(this, visited, block->bbNum)) |
2257 | { |
2258 | fgDfsInvPostOrderHelper(block, visited, &postIndex); |
2259 | } |
2260 | } |
2261 | |
2262 | // After the DFS reverse postorder is completed, we must have visited all the basic blocks. |
2263 | noway_assert(postIndex == fgBBcount + 1); |
2264 | noway_assert(fgBBNumMax == fgBBcount); |
2265 | |
2266 | #ifdef DEBUG |
2267 | if (0 && verbose) |
2268 | { |
2269 | printf("\nAfter doing a post order traversal of the BB graph, this is the ordering:\n" ); |
2270 | for (unsigned i = 1; i <= fgBBNumMax; ++i) |
2271 | { |
2272 | printf("%02u -> " FMT_BB "\n" , i, fgBBInvPostOrder[i]->bbNum); |
2273 | } |
2274 | printf("\n" ); |
2275 | } |
2276 | #endif // DEBUG |
2277 | } |
2278 | |
2279 | BlockSet_ValRet_T Compiler::fgDomFindStartNodes() |
2280 | { |
2281 | unsigned j; |
2282 | BasicBlock* block; |
2283 | |
2284 | // startNodes :: A set that represents which basic blocks in the flow graph don't have incoming edges. |
2285 | // We begin assuming everything is a start block and remove any block that is being referenced by another in its |
2286 | // successor list. |
2287 | |
2288 | BlockSet startNodes(BlockSetOps::MakeFull(this)); |
2289 | |
2290 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
2291 | { |
2292 | unsigned cSucc = block->NumSucc(this); |
2293 | for (j = 0; j < cSucc; ++j) |
2294 | { |
2295 | BasicBlock* succ = block->GetSucc(j, this); |
2296 | BlockSetOps::RemoveElemD(this, startNodes, succ->bbNum); |
2297 | } |
2298 | } |
2299 | |
2300 | #ifdef DEBUG |
2301 | if (verbose) |
2302 | { |
2303 | printf("\nDominator computation start blocks (those blocks with no incoming edges):\n" ); |
2304 | BlockSetOps::Iter iter(this, startNodes); |
2305 | unsigned bbNum = 0; |
2306 | while (iter.NextElem(&bbNum)) |
2307 | { |
2308 | printf(FMT_BB " " , bbNum); |
2309 | } |
2310 | printf("\n" ); |
2311 | } |
2312 | #endif // DEBUG |
2313 | |
2314 | return startNodes; |
2315 | } |
2316 | |
2317 | //------------------------------------------------------------------------ |
2318 | // fgDfsInvPostOrderHelper: Helper to assign post-order numbers to blocks. |
2319 | // |
2320 | // Arguments: |
2321 | // block - The starting entry block |
2322 | // visited - The set of visited blocks |
2323 | // count - Pointer to the Dfs counter |
2324 | // |
2325 | // Notes: |
2326 | // Compute a non-recursive DFS traversal of the flow graph using an |
2327 | // evaluation stack to assign post-order numbers. |
2328 | |
2329 | void Compiler::fgDfsInvPostOrderHelper(BasicBlock* block, BlockSet& visited, unsigned* count) |
2330 | { |
2331 | // Assume we haven't visited this node yet (callers ensure this). |
2332 | assert(!BlockSetOps::IsMember(this, visited, block->bbNum)); |
2333 | |
2334 | // Allocate a local stack to hold the DFS traversal actions necessary |
2335 | // to compute pre/post-ordering of the control flowgraph. |
2336 | ArrayStack<DfsBlockEntry> stack(getAllocator(CMK_ArrayStack)); |
2337 | |
2338 | // Push the first block on the stack to seed the traversal. |
2339 | stack.Push(DfsBlockEntry(DSS_Pre, block)); |
2340 | // Flag the node we just visited to avoid backtracking. |
2341 | BlockSetOps::AddElemD(this, visited, block->bbNum); |
2342 | |
2343 | // The search is terminated once all the actions have been processed. |
2344 | while (!stack.Empty()) |
2345 | { |
2346 | DfsBlockEntry current = stack.Pop(); |
2347 | BasicBlock* currentBlock = current.dfsBlock; |
2348 | |
2349 | if (current.dfsStackState == DSS_Pre) |
2350 | { |
2351 | // This is a pre-visit that corresponds to the first time the |
2352 | // node is encountered in the spanning tree and receives pre-order |
2353 | // numberings. By pushing the post-action on the stack here we |
2354 | // are guaranteed to only process it after all of its successors |
2355 | // pre and post actions are processed. |
2356 | stack.Push(DfsBlockEntry(DSS_Post, currentBlock)); |
2357 | |
2358 | unsigned cSucc = currentBlock->NumSucc(this); |
2359 | for (unsigned j = 0; j < cSucc; ++j) |
2360 | { |
2361 | BasicBlock* succ = currentBlock->GetSucc(j, this); |
2362 | |
2363 | // If this is a node we haven't seen before, go ahead and process |
2364 | if (!BlockSetOps::IsMember(this, visited, succ->bbNum)) |
2365 | { |
2366 | // Push a pre-visit action for this successor onto the stack and |
2367 | // mark it as visited in case this block has multiple successors |
2368 | // to the same node (multi-graph). |
2369 | stack.Push(DfsBlockEntry(DSS_Pre, succ)); |
2370 | BlockSetOps::AddElemD(this, visited, succ->bbNum); |
2371 | } |
2372 | } |
2373 | } |
2374 | else |
2375 | { |
2376 | // This is a post-visit that corresponds to the last time the |
2377 | // node is visited in the spanning tree and only happens after |
2378 | // all descendents in the spanning tree have had pre and post |
2379 | // actions applied. |
2380 | |
2381 | assert(current.dfsStackState == DSS_Post); |
2382 | |
2383 | unsigned invCount = fgBBcount - *count + 1; |
2384 | assert(1 <= invCount && invCount <= fgBBNumMax); |
2385 | fgBBInvPostOrder[invCount] = currentBlock; |
2386 | currentBlock->bbDfsNum = invCount; |
2387 | ++(*count); |
2388 | } |
2389 | } |
2390 | } |
2391 | |
2392 | void Compiler::fgComputeDoms() |
2393 | { |
2394 | assert(!fgCheapPredsValid); |
2395 | |
2396 | #ifdef DEBUG |
2397 | if (verbose) |
2398 | { |
2399 | printf("*************** In fgComputeDoms\n" ); |
2400 | } |
2401 | |
2402 | fgVerifyHandlerTab(); |
2403 | |
2404 | // Make sure that the predecessor lists are accurate. |
2405 | // Also check that the blocks are properly, densely numbered (so calling fgRenumberBlocks is not necessary). |
2406 | fgDebugCheckBBlist(true); |
2407 | |
2408 | // Assert things related to the BlockSet epoch. |
2409 | assert(fgBBcount == fgBBNumMax); |
2410 | assert(BasicBlockBitSetTraits::GetSize(this) == fgBBNumMax + 1); |
2411 | #endif // DEBUG |
2412 | |
2413 | BlockSet processedBlks(BlockSetOps::MakeEmpty(this)); |
2414 | |
2415 | fgBBInvPostOrder = new (this, CMK_DominatorMemory) BasicBlock*[fgBBNumMax + 1]; |
2416 | memset(fgBBInvPostOrder, 0, sizeof(BasicBlock*) * (fgBBNumMax + 1)); |
2417 | |
2418 | fgDfsInvPostOrder(); |
2419 | noway_assert(fgBBInvPostOrder[0] == nullptr); |
2420 | |
2421 | // flRoot and bbRoot represent an imaginary unique entry point in the flow graph. |
2422 | // All the orphaned EH blocks and fgFirstBB will temporarily have its predecessors list |
2423 | // (with bbRoot as the only basic block in it) set as flRoot. |
2424 | // Later on, we clear their predecessors and let them to be nullptr again. |
2425 | // Since we number basic blocks starting at one, the imaginary entry block is conveniently numbered as zero. |
2426 | flowList flRoot; |
2427 | BasicBlock bbRoot; |
2428 | |
2429 | bbRoot.bbPreds = nullptr; |
2430 | bbRoot.bbNum = 0; |
2431 | bbRoot.bbIDom = &bbRoot; |
2432 | bbRoot.bbDfsNum = 0; |
2433 | bbRoot.bbFlags = 0; |
2434 | flRoot.flNext = nullptr; |
2435 | flRoot.flBlock = &bbRoot; |
2436 | |
2437 | fgBBInvPostOrder[0] = &bbRoot; |
2438 | |
2439 | // Mark both bbRoot and fgFirstBB processed |
2440 | BlockSetOps::AddElemD(this, processedBlks, 0); // bbRoot == block #0 |
2441 | BlockSetOps::AddElemD(this, processedBlks, 1); // fgFirstBB == block #1 |
2442 | assert(fgFirstBB->bbNum == 1); |
2443 | |
2444 | // Special case fgFirstBB to say its IDom is bbRoot. |
2445 | fgFirstBB->bbIDom = &bbRoot; |
2446 | |
2447 | BasicBlock* block = nullptr; |
2448 | |
2449 | for (block = fgFirstBB->bbNext; block != nullptr; block = block->bbNext) |
2450 | { |
2451 | // If any basic block has no predecessors then we flag it as processed and temporarily |
2452 | // mark its precedessor list to be flRoot. This makes the flowgraph connected, |
2453 | // a precondition that is needed by the dominance algorithm to operate properly. |
2454 | if (block->bbPreds == nullptr) |
2455 | { |
2456 | block->bbPreds = &flRoot; |
2457 | block->bbIDom = &bbRoot; |
2458 | BlockSetOps::AddElemD(this, processedBlks, block->bbNum); |
2459 | } |
2460 | else |
2461 | { |
2462 | block->bbIDom = nullptr; |
2463 | } |
2464 | } |
2465 | |
2466 | // Mark the EH blocks as entry blocks and also flag them as processed. |
2467 | if (compHndBBtabCount > 0) |
2468 | { |
2469 | EHblkDsc* HBtab; |
2470 | EHblkDsc* HBtabEnd; |
2471 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
2472 | { |
2473 | if (HBtab->HasFilter()) |
2474 | { |
2475 | HBtab->ebdFilter->bbIDom = &bbRoot; |
2476 | BlockSetOps::AddElemD(this, processedBlks, HBtab->ebdFilter->bbNum); |
2477 | } |
2478 | HBtab->ebdHndBeg->bbIDom = &bbRoot; |
2479 | BlockSetOps::AddElemD(this, processedBlks, HBtab->ebdHndBeg->bbNum); |
2480 | } |
2481 | } |
2482 | |
2483 | // Now proceed to compute the immediate dominators for each basic block. |
2484 | bool changed = true; |
2485 | while (changed) |
2486 | { |
2487 | changed = false; |
2488 | for (unsigned i = 1; i <= fgBBNumMax; |
2489 | ++i) // Process each actual block; don't process the imaginary predecessor block. |
2490 | { |
2491 | flowList* first = nullptr; |
2492 | BasicBlock* newidom = nullptr; |
2493 | block = fgBBInvPostOrder[i]; |
2494 | |
2495 | // If we have a block that has bbRoot as its bbIDom |
2496 | // it means we flag it as processed and as an entry block so |
2497 | // in this case we're all set. |
2498 | if (block->bbIDom == &bbRoot) |
2499 | { |
2500 | continue; |
2501 | } |
2502 | |
2503 | // Pick up the first processed predecesor of the current block. |
2504 | for (first = block->bbPreds; first != nullptr; first = first->flNext) |
2505 | { |
2506 | if (BlockSetOps::IsMember(this, processedBlks, first->flBlock->bbNum)) |
2507 | { |
2508 | break; |
2509 | } |
2510 | } |
2511 | noway_assert(first != nullptr); |
2512 | |
2513 | // We assume the first processed predecessor will be the |
2514 | // immediate dominator and then compute the forward flow analysis. |
2515 | newidom = first->flBlock; |
2516 | for (flowList* p = block->bbPreds; p != nullptr; p = p->flNext) |
2517 | { |
2518 | if (p->flBlock == first->flBlock) |
2519 | { |
2520 | continue; |
2521 | } |
2522 | if (p->flBlock->bbIDom != nullptr) |
2523 | { |
2524 | // fgIntersectDom is basically the set intersection between |
2525 | // the dominance sets of the new IDom and the current predecessor |
2526 | // Since the nodes are ordered in DFS inverse post order and |
2527 | // IDom induces a tree, fgIntersectDom actually computes |
2528 | // the lowest common ancestor in the dominator tree. |
2529 | newidom = fgIntersectDom(p->flBlock, newidom); |
2530 | } |
2531 | } |
2532 | |
2533 | // If the Immediate dominator changed, assign the new one |
2534 | // to the current working basic block. |
2535 | if (block->bbIDom != newidom) |
2536 | { |
2537 | noway_assert(newidom != nullptr); |
2538 | block->bbIDom = newidom; |
2539 | changed = true; |
2540 | } |
2541 | BlockSetOps::AddElemD(this, processedBlks, block->bbNum); |
2542 | } |
2543 | } |
2544 | |
2545 | // As stated before, once we have computed immediate dominance we need to clear |
2546 | // all the basic blocks whose predecessor list was set to flRoot. This |
2547 | // reverts that and leaves the blocks the same as before. |
2548 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
2549 | { |
2550 | if (block->bbPreds == &flRoot) |
2551 | { |
2552 | block->bbPreds = nullptr; |
2553 | } |
2554 | } |
2555 | |
2556 | fgCompDominatedByExceptionalEntryBlocks(); |
2557 | |
2558 | #ifdef DEBUG |
2559 | if (verbose) |
2560 | { |
2561 | fgDispDoms(); |
2562 | } |
2563 | #endif |
2564 | |
2565 | fgBuildDomTree(); |
2566 | |
2567 | fgModified = false; |
2568 | fgDomBBcount = fgBBcount; |
2569 | assert(fgBBcount == fgBBNumMax); |
2570 | assert(BasicBlockBitSetTraits::GetSize(this) == fgDomBBcount + 1); |
2571 | |
2572 | fgDomsComputed = true; |
2573 | } |
2574 | |
2575 | void Compiler::fgBuildDomTree() |
2576 | { |
2577 | unsigned i; |
2578 | BasicBlock* block; |
2579 | |
2580 | #ifdef DEBUG |
2581 | if (verbose) |
2582 | { |
2583 | printf("\nInside fgBuildDomTree\n" ); |
2584 | } |
2585 | #endif // DEBUG |
2586 | |
2587 | // domTree :: The dominance tree represented using adjacency lists. We use BasicBlockList to represent edges. |
2588 | // Indexed by basic block number. |
2589 | unsigned bbArraySize = fgBBNumMax + 1; |
2590 | BasicBlockList** domTree = new (this, CMK_DominatorMemory) BasicBlockList*[bbArraySize]; |
2591 | |
2592 | fgDomTreePreOrder = new (this, CMK_DominatorMemory) unsigned[bbArraySize]; |
2593 | fgDomTreePostOrder = new (this, CMK_DominatorMemory) unsigned[bbArraySize]; |
2594 | |
2595 | // Initialize all the data structures. |
2596 | for (i = 0; i < bbArraySize; ++i) |
2597 | { |
2598 | domTree[i] = nullptr; |
2599 | fgDomTreePreOrder[i] = fgDomTreePostOrder[i] = 0; |
2600 | } |
2601 | |
2602 | // Build the dominance tree. |
2603 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
2604 | { |
2605 | // If the immediate dominator is not the imaginary root (bbRoot) |
2606 | // we proceed to append this block to the children of the dominator node. |
2607 | if (block->bbIDom->bbNum != 0) |
2608 | { |
2609 | int bbNum = block->bbIDom->bbNum; |
2610 | domTree[bbNum] = new (this, CMK_DominatorMemory) BasicBlockList(block, domTree[bbNum]); |
2611 | } |
2612 | else |
2613 | { |
2614 | // This means this block had bbRoot set as its IDom. We clear it out |
2615 | // and convert the tree back to a forest. |
2616 | block->bbIDom = nullptr; |
2617 | } |
2618 | } |
2619 | |
2620 | #ifdef DEBUG |
2621 | if (verbose) |
2622 | { |
2623 | printf("\nAfter computing the Dominance Tree:\n" ); |
2624 | fgDispDomTree(domTree); |
2625 | } |
2626 | #endif // DEBUG |
2627 | |
2628 | // Get the bitset that represents the roots of the dominance tree. |
2629 | // Something to note here is that the dominance tree has been converted from a forest to a tree |
2630 | // by using the bbRoot trick on fgComputeDoms. The reason we have a forest instead of a real tree |
2631 | // is because we treat the EH blocks as entry nodes so the real dominance tree is not necessarily connected. |
2632 | BlockSet_ValRet_T domTreeEntryNodes = fgDomTreeEntryNodes(domTree); |
2633 | |
2634 | // The preorder and postorder numbers. |
2635 | // We start from 1 to match the bbNum ordering. |
2636 | unsigned preNum = 1; |
2637 | unsigned postNum = 1; |
2638 | |
2639 | // There will be nodes in the dominance tree that will not be reachable: |
2640 | // the catch blocks that return since they don't have any predecessor. |
2641 | // For that matter we'll keep track of how many nodes we can |
2642 | // reach and assert at the end that we visited all of them. |
2643 | unsigned domTreeReachable = fgBBcount; |
2644 | |
2645 | // Once we have the dominance tree computed, we need to traverse it |
2646 | // to get the preorder and postorder numbers for each node. The purpose of |
2647 | // this is to achieve O(1) queries for of the form A dominates B. |
2648 | for (i = 1; i <= fgBBNumMax; ++i) |
2649 | { |
2650 | if (BlockSetOps::IsMember(this, domTreeEntryNodes, i)) |
2651 | { |
2652 | if (domTree[i] == nullptr) |
2653 | { |
2654 | // If this is an entry node but there's no children on this |
2655 | // node, it means it's unreachable so we decrement the reachable |
2656 | // counter. |
2657 | --domTreeReachable; |
2658 | } |
2659 | else |
2660 | { |
2661 | // Otherwise, we do a DFS traversal of the dominator tree. |
2662 | fgTraverseDomTree(i, domTree, &preNum, &postNum); |
2663 | } |
2664 | } |
2665 | } |
2666 | |
2667 | noway_assert(preNum == domTreeReachable + 1); |
2668 | noway_assert(postNum == domTreeReachable + 1); |
2669 | |
2670 | // Once we have all the reachable nodes numbered, we proceed to |
2671 | // assign numbers to the non-reachable ones, just assign incrementing |
2672 | // values. We must reach fgBBcount at the end. |
2673 | |
2674 | for (i = 1; i <= fgBBNumMax; ++i) |
2675 | { |
2676 | if (BlockSetOps::IsMember(this, domTreeEntryNodes, i)) |
2677 | { |
2678 | if (domTree[i] == nullptr) |
2679 | { |
2680 | fgDomTreePreOrder[i] = preNum++; |
2681 | fgDomTreePostOrder[i] = postNum++; |
2682 | } |
2683 | } |
2684 | } |
2685 | |
2686 | noway_assert(preNum == fgBBNumMax + 1); |
2687 | noway_assert(postNum == fgBBNumMax + 1); |
2688 | noway_assert(fgDomTreePreOrder[0] == 0); // Unused first element |
2689 | noway_assert(fgDomTreePostOrder[0] == 0); // Unused first element |
2690 | |
2691 | #ifdef DEBUG |
2692 | if (0 && verbose) |
2693 | { |
2694 | printf("\nAfter traversing the dominance tree:\n" ); |
2695 | printf("PreOrder:\n" ); |
2696 | for (i = 1; i <= fgBBNumMax; ++i) |
2697 | { |
2698 | printf(FMT_BB " : %02u\n" , i, fgDomTreePreOrder[i]); |
2699 | } |
2700 | printf("PostOrder:\n" ); |
2701 | for (i = 1; i <= fgBBNumMax; ++i) |
2702 | { |
2703 | printf(FMT_BB " : %02u\n" , i, fgDomTreePostOrder[i]); |
2704 | } |
2705 | } |
2706 | #endif // DEBUG |
2707 | } |
2708 | |
2709 | BlockSet_ValRet_T Compiler::fgDomTreeEntryNodes(BasicBlockList** domTree) |
2710 | { |
2711 | // domTreeEntryNodes :: Set that represents which basic blocks are roots of the dominator forest. |
2712 | |
2713 | BlockSet domTreeEntryNodes(BlockSetOps::MakeFull(this)); |
2714 | |
2715 | // First of all we need to find all the roots of the dominance forest. |
2716 | |
2717 | for (unsigned i = 1; i <= fgBBNumMax; ++i) |
2718 | { |
2719 | for (BasicBlockList* current = domTree[i]; current != nullptr; current = current->next) |
2720 | { |
2721 | BlockSetOps::RemoveElemD(this, domTreeEntryNodes, current->block->bbNum); |
2722 | } |
2723 | } |
2724 | |
2725 | return domTreeEntryNodes; |
2726 | } |
2727 | |
2728 | #ifdef DEBUG |
2729 | void Compiler::fgDispDomTree(BasicBlockList** domTree) |
2730 | { |
2731 | for (unsigned i = 1; i <= fgBBNumMax; ++i) |
2732 | { |
2733 | if (domTree[i] != nullptr) |
2734 | { |
2735 | printf(FMT_BB " : " , i); |
2736 | for (BasicBlockList* current = domTree[i]; current != nullptr; current = current->next) |
2737 | { |
2738 | assert(current->block); |
2739 | printf(FMT_BB " " , current->block->bbNum); |
2740 | } |
2741 | printf("\n" ); |
2742 | } |
2743 | } |
2744 | printf("\n" ); |
2745 | } |
2746 | #endif // DEBUG |
2747 | |
2748 | //------------------------------------------------------------------------ |
2749 | // fgTraverseDomTree: Assign pre/post-order numbers to the dominator tree. |
2750 | // |
2751 | // Arguments: |
2752 | // bbNum - The basic block number of the starting block |
2753 | // domTree - The dominator tree (as child block lists) |
2754 | // preNum - Pointer to the pre-number counter |
2755 | // postNum - Pointer to the post-number counter |
2756 | // |
2757 | // Notes: |
2758 | // Runs a non-recursive DFS traversal of the dominator tree using an |
2759 | // evaluation stack to assign pre-order and post-order numbers. |
2760 | // These numberings are used to provide constant time lookup for |
2761 | // ancestor/descendent tests between pairs of nodes in the tree. |
2762 | |
2763 | void Compiler::fgTraverseDomTree(unsigned bbNum, BasicBlockList** domTree, unsigned* preNum, unsigned* postNum) |
2764 | { |
2765 | noway_assert(bbNum <= fgBBNumMax); |
2766 | |
2767 | // If the block preorder number is not zero it means we already visited |
2768 | // that node, so we skip it. |
2769 | if (fgDomTreePreOrder[bbNum] == 0) |
2770 | { |
2771 | // If this is the first time we visit this node, both preorder and postnumber |
2772 | // values must be zero. |
2773 | noway_assert(fgDomTreePostOrder[bbNum] == 0); |
2774 | |
2775 | // Allocate a local stack to hold the Dfs traversal actions necessary |
2776 | // to compute pre/post-ordering of the dominator tree. |
2777 | ArrayStack<DfsNumEntry> stack(getAllocator(CMK_ArrayStack)); |
2778 | |
2779 | // Push the first entry number on the stack to seed the traversal. |
2780 | stack.Push(DfsNumEntry(DSS_Pre, bbNum)); |
2781 | |
2782 | // The search is terminated once all the actions have been processed. |
2783 | while (!stack.Empty()) |
2784 | { |
2785 | DfsNumEntry current = stack.Pop(); |
2786 | unsigned currentNum = current.dfsNum; |
2787 | |
2788 | if (current.dfsStackState == DSS_Pre) |
2789 | { |
2790 | // This pre-visit action corresponds to the first time the |
2791 | // node is encountered during the spanning traversal. |
2792 | noway_assert(fgDomTreePreOrder[currentNum] == 0); |
2793 | noway_assert(fgDomTreePostOrder[currentNum] == 0); |
2794 | |
2795 | // Assign the preorder number on the first visit. |
2796 | fgDomTreePreOrder[currentNum] = (*preNum)++; |
2797 | |
2798 | // Push this nodes post-action on the stack such that all successors |
2799 | // pre-order visits occur before this nodes post-action. We will assign |
2800 | // its post-order numbers when we pop off the stack. |
2801 | stack.Push(DfsNumEntry(DSS_Post, currentNum)); |
2802 | |
2803 | // For each child in the dominator tree process its pre-actions. |
2804 | for (BasicBlockList* child = domTree[currentNum]; child != nullptr; child = child->next) |
2805 | { |
2806 | unsigned childNum = child->block->bbNum; |
2807 | |
2808 | // This is a tree so never could have been visited |
2809 | assert(fgDomTreePreOrder[childNum] == 0); |
2810 | |
2811 | // Push the successor in the dominator tree for pre-actions. |
2812 | stack.Push(DfsNumEntry(DSS_Pre, childNum)); |
2813 | } |
2814 | } |
2815 | else |
2816 | { |
2817 | // This post-visit action corresponds to the last time the node |
2818 | // is encountered and only after all descendents in the spanning |
2819 | // tree have had pre and post-order numbers assigned. |
2820 | |
2821 | assert(current.dfsStackState == DSS_Post); |
2822 | assert(fgDomTreePreOrder[currentNum] != 0); |
2823 | assert(fgDomTreePostOrder[currentNum] == 0); |
2824 | |
2825 | // Now assign this nodes post-order number. |
2826 | fgDomTreePostOrder[currentNum] = (*postNum)++; |
2827 | } |
2828 | } |
2829 | } |
2830 | } |
2831 | |
2832 | // This code finds the lowest common ancestor in the |
2833 | // dominator tree between two basic blocks. The LCA in the Dominance tree |
2834 | // represents the closest dominator between the two basic blocks. Used to |
2835 | // adjust the IDom value in fgComputDoms. |
2836 | BasicBlock* Compiler::fgIntersectDom(BasicBlock* a, BasicBlock* b) |
2837 | { |
2838 | BasicBlock* finger1 = a; |
2839 | BasicBlock* finger2 = b; |
2840 | while (finger1 != finger2) |
2841 | { |
2842 | while (finger1->bbDfsNum > finger2->bbDfsNum) |
2843 | { |
2844 | finger1 = finger1->bbIDom; |
2845 | } |
2846 | while (finger2->bbDfsNum > finger1->bbDfsNum) |
2847 | { |
2848 | finger2 = finger2->bbIDom; |
2849 | } |
2850 | } |
2851 | return finger1; |
2852 | } |
2853 | |
2854 | // Return a BlockSet containing all the blocks that dominate 'block'. |
2855 | BlockSet_ValRet_T Compiler::fgGetDominatorSet(BasicBlock* block) |
2856 | { |
2857 | assert(block != nullptr); |
2858 | |
2859 | BlockSet domSet(BlockSetOps::MakeEmpty(this)); |
2860 | |
2861 | do |
2862 | { |
2863 | BlockSetOps::AddElemD(this, domSet, block->bbNum); |
2864 | if (block == block->bbIDom) |
2865 | { |
2866 | break; // We found a cycle in the IDom list, so we're done. |
2867 | } |
2868 | block = block->bbIDom; |
2869 | } while (block != nullptr); |
2870 | |
2871 | return domSet; |
2872 | } |
2873 | |
2874 | /***************************************************************************** |
2875 | * |
2876 | * fgComputeCheapPreds: Function called to compute the BasicBlock::bbCheapPreds lists. |
2877 | * |
2878 | * No other block data is changed (e.g., bbRefs, bbFlags). |
2879 | * |
2880 | * The cheap preds lists are similar to the normal (bbPreds) predecessor lists, but are cheaper to |
2881 | * compute and store, as follows: |
2882 | * 1. A flow edge is typed BasicBlockList, which only has a block pointer and 'next' pointer. It doesn't |
2883 | * have weights or a dup count. |
2884 | * 2. The preds list for a block is not sorted by block number. |
2885 | * 3. The predecessors of the block following a BBJ_CALLFINALLY (the corresponding BBJ_ALWAYS, |
2886 | * for normal, non-retless calls to the finally) are not computed. |
2887 | * 4. The cheap preds lists will contain duplicates if a single switch table has multiple branches |
2888 | * to the same block. Thus, we don't spend the time looking for duplicates for every edge we insert. |
2889 | */ |
2890 | void Compiler::fgComputeCheapPreds() |
2891 | { |
2892 | noway_assert(!fgComputePredsDone); // We can't do this if we've got the full preds. |
2893 | noway_assert(fgFirstBB != nullptr); |
2894 | |
2895 | BasicBlock* block; |
2896 | |
2897 | #ifdef DEBUG |
2898 | if (verbose) |
2899 | { |
2900 | printf("\n*************** In fgComputeCheapPreds()\n" ); |
2901 | fgDispBasicBlocks(); |
2902 | printf("\n" ); |
2903 | } |
2904 | #endif // DEBUG |
2905 | |
2906 | // Clear out the cheap preds lists. |
2907 | fgRemovePreds(); |
2908 | |
2909 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
2910 | { |
2911 | switch (block->bbJumpKind) |
2912 | { |
2913 | case BBJ_COND: |
2914 | fgAddCheapPred(block->bbJumpDest, block); |
2915 | fgAddCheapPred(block->bbNext, block); |
2916 | break; |
2917 | |
2918 | case BBJ_CALLFINALLY: |
2919 | case BBJ_LEAVE: // If fgComputeCheapPreds is called before all blocks are imported, BBJ_LEAVE blocks are |
2920 | // still in the BB list. |
2921 | case BBJ_ALWAYS: |
2922 | case BBJ_EHCATCHRET: |
2923 | fgAddCheapPred(block->bbJumpDest, block); |
2924 | break; |
2925 | |
2926 | case BBJ_NONE: |
2927 | fgAddCheapPred(block->bbNext, block); |
2928 | break; |
2929 | |
2930 | case BBJ_EHFILTERRET: |
2931 | // Connect end of filter to catch handler. |
2932 | // In a well-formed program, this cannot be null. Tolerate here, so that we can call |
2933 | // fgComputeCheapPreds before fgImport on an ill-formed program; the problem will be detected in |
2934 | // fgImport. |
2935 | if (block->bbJumpDest != nullptr) |
2936 | { |
2937 | fgAddCheapPred(block->bbJumpDest, block); |
2938 | } |
2939 | break; |
2940 | |
2941 | case BBJ_SWITCH: |
2942 | unsigned jumpCnt; |
2943 | jumpCnt = block->bbJumpSwt->bbsCount; |
2944 | BasicBlock** jumpTab; |
2945 | jumpTab = block->bbJumpSwt->bbsDstTab; |
2946 | |
2947 | do |
2948 | { |
2949 | fgAddCheapPred(*jumpTab, block); |
2950 | } while (++jumpTab, --jumpCnt); |
2951 | |
2952 | break; |
2953 | |
2954 | case BBJ_EHFINALLYRET: // It's expensive to compute the preds for this case, so we don't for the cheap |
2955 | // preds. |
2956 | case BBJ_THROW: |
2957 | case BBJ_RETURN: |
2958 | break; |
2959 | |
2960 | default: |
2961 | noway_assert(!"Unexpected bbJumpKind" ); |
2962 | break; |
2963 | } |
2964 | } |
2965 | |
2966 | fgCheapPredsValid = true; |
2967 | |
2968 | #ifdef DEBUG |
2969 | if (verbose) |
2970 | { |
2971 | printf("\n*************** After fgComputeCheapPreds()\n" ); |
2972 | fgDispBasicBlocks(); |
2973 | printf("\n" ); |
2974 | } |
2975 | #endif |
2976 | } |
2977 | |
2978 | /***************************************************************************** |
2979 | * Add 'blockPred' to the cheap predecessor list of 'block'. |
2980 | */ |
2981 | |
2982 | void Compiler::fgAddCheapPred(BasicBlock* block, BasicBlock* blockPred) |
2983 | { |
2984 | assert(!fgComputePredsDone); |
2985 | assert(block != nullptr); |
2986 | assert(blockPred != nullptr); |
2987 | |
2988 | block->bbCheapPreds = new (this, CMK_FlowList) BasicBlockList(blockPred, block->bbCheapPreds); |
2989 | |
2990 | #if MEASURE_BLOCK_SIZE |
2991 | genFlowNodeCnt += 1; |
2992 | genFlowNodeSize += sizeof(BasicBlockList); |
2993 | #endif // MEASURE_BLOCK_SIZE |
2994 | } |
2995 | |
2996 | /***************************************************************************** |
2997 | * Remove 'blockPred' from the cheap predecessor list of 'block'. |
2998 | * If there are duplicate edges, only remove one of them. |
2999 | */ |
3000 | void Compiler::fgRemoveCheapPred(BasicBlock* block, BasicBlock* blockPred) |
3001 | { |
3002 | assert(!fgComputePredsDone); |
3003 | assert(fgCheapPredsValid); |
3004 | |
3005 | flowList* oldEdge = nullptr; |
3006 | |
3007 | assert(block != nullptr); |
3008 | assert(blockPred != nullptr); |
3009 | assert(block->bbCheapPreds != nullptr); |
3010 | |
3011 | /* Is this the first block in the pred list? */ |
3012 | if (blockPred == block->bbCheapPreds->block) |
3013 | { |
3014 | block->bbCheapPreds = block->bbCheapPreds->next; |
3015 | } |
3016 | else |
3017 | { |
3018 | BasicBlockList* pred; |
3019 | for (pred = block->bbCheapPreds; pred->next != nullptr; pred = pred->next) |
3020 | { |
3021 | if (blockPred == pred->next->block) |
3022 | { |
3023 | break; |
3024 | } |
3025 | } |
3026 | noway_assert(pred->next != nullptr); // we better have found it! |
3027 | pred->next = pred->next->next; // splice it out |
3028 | } |
3029 | } |
3030 | |
3031 | void Compiler::fgRemovePreds() |
3032 | { |
3033 | C_ASSERT(offsetof(BasicBlock, bbPreds) == |
3034 | offsetof(BasicBlock, bbCheapPreds)); // bbPreds and bbCheapPreds are at the same place in a union, |
3035 | C_ASSERT(sizeof(((BasicBlock*)nullptr)->bbPreds) == |
3036 | sizeof(((BasicBlock*)nullptr)->bbCheapPreds)); // and are the same size. So, this function removes both. |
3037 | |
3038 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
3039 | { |
3040 | block->bbPreds = nullptr; |
3041 | } |
3042 | fgComputePredsDone = false; |
3043 | fgCheapPredsValid = false; |
3044 | } |
3045 | |
3046 | /***************************************************************************** |
3047 | * |
3048 | * Function called to compute the bbPreds lists. |
3049 | */ |
3050 | void Compiler::fgComputePreds() |
3051 | { |
3052 | noway_assert(fgFirstBB); |
3053 | |
3054 | BasicBlock* block; |
3055 | |
3056 | #ifdef DEBUG |
3057 | if (verbose) |
3058 | { |
3059 | printf("\n*************** In fgComputePreds()\n" ); |
3060 | fgDispBasicBlocks(); |
3061 | printf("\n" ); |
3062 | } |
3063 | #endif // DEBUG |
3064 | |
3065 | // reset the refs count for each basic block |
3066 | |
3067 | for (block = fgFirstBB; block; block = block->bbNext) |
3068 | { |
3069 | block->bbRefs = 0; |
3070 | } |
3071 | |
3072 | /* the first block is always reachable! */ |
3073 | fgFirstBB->bbRefs = 1; |
3074 | |
3075 | /* Treat the initial block as a jump target */ |
3076 | fgFirstBB->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
3077 | |
3078 | fgRemovePreds(); |
3079 | |
3080 | for (block = fgFirstBB; block; block = block->bbNext) |
3081 | { |
3082 | switch (block->bbJumpKind) |
3083 | { |
3084 | case BBJ_CALLFINALLY: |
3085 | if (!(block->bbFlags & BBF_RETLESS_CALL)) |
3086 | { |
3087 | assert(block->isBBCallAlwaysPair()); |
3088 | |
3089 | /* Mark the next block as being a jump target, |
3090 | since the call target will return there */ |
3091 | PREFIX_ASSUME(block->bbNext != nullptr); |
3092 | block->bbNext->bbFlags |= (BBF_JMP_TARGET | BBF_HAS_LABEL); |
3093 | } |
3094 | |
3095 | __fallthrough; |
3096 | |
3097 | case BBJ_LEAVE: // Sometimes fgComputePreds is called before all blocks are imported, so BBJ_LEAVE |
3098 | // blocks are still in the BB list. |
3099 | case BBJ_COND: |
3100 | case BBJ_ALWAYS: |
3101 | case BBJ_EHCATCHRET: |
3102 | |
3103 | /* Mark the jump dest block as being a jump target */ |
3104 | block->bbJumpDest->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
3105 | |
3106 | fgAddRefPred(block->bbJumpDest, block, nullptr, true); |
3107 | |
3108 | /* Is the next block reachable? */ |
3109 | |
3110 | if (block->bbJumpKind != BBJ_COND) |
3111 | { |
3112 | break; |
3113 | } |
3114 | |
3115 | noway_assert(block->bbNext); |
3116 | |
3117 | /* Fall through, the next block is also reachable */ |
3118 | __fallthrough; |
3119 | |
3120 | case BBJ_NONE: |
3121 | |
3122 | fgAddRefPred(block->bbNext, block, nullptr, true); |
3123 | break; |
3124 | |
3125 | case BBJ_EHFILTERRET: |
3126 | |
3127 | // Connect end of filter to catch handler. |
3128 | // In a well-formed program, this cannot be null. Tolerate here, so that we can call |
3129 | // fgComputePreds before fgImport on an ill-formed program; the problem will be detected in fgImport. |
3130 | if (block->bbJumpDest != nullptr) |
3131 | { |
3132 | fgAddRefPred(block->bbJumpDest, block, nullptr, true); |
3133 | } |
3134 | break; |
3135 | |
3136 | case BBJ_EHFINALLYRET: |
3137 | { |
3138 | /* Connect the end of the finally to the successor of |
3139 | the call to this finally */ |
3140 | |
3141 | if (!block->hasHndIndex()) |
3142 | { |
3143 | NO_WAY("endfinally outside a finally/fault block." ); |
3144 | } |
3145 | |
3146 | unsigned hndIndex = block->getHndIndex(); |
3147 | EHblkDsc* ehDsc = ehGetDsc(hndIndex); |
3148 | |
3149 | if (!ehDsc->HasFinallyOrFaultHandler()) |
3150 | { |
3151 | NO_WAY("endfinally outside a finally/fault block." ); |
3152 | } |
3153 | |
3154 | if (ehDsc->HasFinallyHandler()) |
3155 | { |
3156 | // Find all BBJ_CALLFINALLY that branched to this finally handler. |
3157 | BasicBlock* begBlk; |
3158 | BasicBlock* endBlk; |
3159 | ehGetCallFinallyBlockRange(hndIndex, &begBlk, &endBlk); |
3160 | |
3161 | BasicBlock* finBeg = ehDsc->ebdHndBeg; |
3162 | for (BasicBlock* bcall = begBlk; bcall != endBlk; bcall = bcall->bbNext) |
3163 | { |
3164 | if (bcall->bbJumpKind != BBJ_CALLFINALLY || bcall->bbJumpDest != finBeg) |
3165 | { |
3166 | continue; |
3167 | } |
3168 | |
3169 | noway_assert(bcall->isBBCallAlwaysPair()); |
3170 | fgAddRefPred(bcall->bbNext, block, nullptr, true); |
3171 | } |
3172 | } |
3173 | } |
3174 | break; |
3175 | |
3176 | case BBJ_THROW: |
3177 | case BBJ_RETURN: |
3178 | break; |
3179 | |
3180 | case BBJ_SWITCH: |
3181 | unsigned jumpCnt; |
3182 | jumpCnt = block->bbJumpSwt->bbsCount; |
3183 | BasicBlock** jumpTab; |
3184 | jumpTab = block->bbJumpSwt->bbsDstTab; |
3185 | |
3186 | do |
3187 | { |
3188 | /* Mark the target block as being a jump target */ |
3189 | (*jumpTab)->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
3190 | |
3191 | fgAddRefPred(*jumpTab, block, nullptr, true); |
3192 | } while (++jumpTab, --jumpCnt); |
3193 | |
3194 | break; |
3195 | |
3196 | default: |
3197 | noway_assert(!"Unexpected bbJumpKind" ); |
3198 | break; |
3199 | } |
3200 | } |
3201 | |
3202 | for (unsigned EHnum = 0; EHnum < compHndBBtabCount; EHnum++) |
3203 | { |
3204 | EHblkDsc* ehDsc = ehGetDsc(EHnum); |
3205 | |
3206 | if (ehDsc->HasFilter()) |
3207 | { |
3208 | ehDsc->ebdFilter->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
3209 | |
3210 | // The first block of a filter has an artifical extra refcount. |
3211 | ehDsc->ebdFilter->bbRefs++; |
3212 | } |
3213 | |
3214 | ehDsc->ebdHndBeg->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
3215 | |
3216 | // The first block of a handler has an artificial extra refcount. |
3217 | ehDsc->ebdHndBeg->bbRefs++; |
3218 | } |
3219 | |
3220 | fgModified = false; |
3221 | fgComputePredsDone = true; |
3222 | |
3223 | #ifdef DEBUG |
3224 | if (verbose) |
3225 | { |
3226 | printf("\n*************** After fgComputePreds()\n" ); |
3227 | fgDispBasicBlocks(); |
3228 | printf("\n" ); |
3229 | } |
3230 | #endif |
3231 | } |
3232 | |
3233 | unsigned Compiler::fgNSuccsOfFinallyRet(BasicBlock* block) |
3234 | { |
3235 | BasicBlock* bb; |
3236 | unsigned res; |
3237 | fgSuccOfFinallyRetWork(block, ~0, &bb, &res); |
3238 | return res; |
3239 | } |
3240 | |
3241 | BasicBlock* Compiler::fgSuccOfFinallyRet(BasicBlock* block, unsigned i) |
3242 | { |
3243 | BasicBlock* bb; |
3244 | unsigned res; |
3245 | fgSuccOfFinallyRetWork(block, i, &bb, &res); |
3246 | return bb; |
3247 | } |
3248 | |
3249 | void Compiler::fgSuccOfFinallyRetWork(BasicBlock* block, unsigned i, BasicBlock** bres, unsigned* nres) |
3250 | { |
3251 | assert(block->hasHndIndex()); // Otherwise, endfinally outside a finally/fault block? |
3252 | |
3253 | unsigned hndIndex = block->getHndIndex(); |
3254 | EHblkDsc* ehDsc = ehGetDsc(hndIndex); |
3255 | |
3256 | assert(ehDsc->HasFinallyOrFaultHandler()); // Otherwise, endfinally outside a finally/fault block. |
3257 | |
3258 | *bres = nullptr; |
3259 | unsigned succNum = 0; |
3260 | |
3261 | if (ehDsc->HasFinallyHandler()) |
3262 | { |
3263 | BasicBlock* begBlk; |
3264 | BasicBlock* endBlk; |
3265 | ehGetCallFinallyBlockRange(hndIndex, &begBlk, &endBlk); |
3266 | |
3267 | BasicBlock* finBeg = ehDsc->ebdHndBeg; |
3268 | |
3269 | for (BasicBlock* bcall = begBlk; bcall != endBlk; bcall = bcall->bbNext) |
3270 | { |
3271 | if (bcall->bbJumpKind != BBJ_CALLFINALLY || bcall->bbJumpDest != finBeg) |
3272 | { |
3273 | continue; |
3274 | } |
3275 | |
3276 | assert(bcall->isBBCallAlwaysPair()); |
3277 | |
3278 | if (succNum == i) |
3279 | { |
3280 | *bres = bcall->bbNext; |
3281 | return; |
3282 | } |
3283 | succNum++; |
3284 | } |
3285 | } |
3286 | assert(i == ~0u || ehDsc->HasFaultHandler()); // Should reach here only for fault blocks. |
3287 | if (i == ~0u) |
3288 | { |
3289 | *nres = succNum; |
3290 | } |
3291 | } |
3292 | |
3293 | Compiler::SwitchUniqueSuccSet Compiler::GetDescriptorForSwitch(BasicBlock* switchBlk) |
3294 | { |
3295 | assert(switchBlk->bbJumpKind == BBJ_SWITCH); |
3296 | BlockToSwitchDescMap* switchMap = GetSwitchDescMap(); |
3297 | SwitchUniqueSuccSet res; |
3298 | if (switchMap->Lookup(switchBlk, &res)) |
3299 | { |
3300 | return res; |
3301 | } |
3302 | else |
3303 | { |
3304 | // We must compute the descriptor. Find which are dups, by creating a bit set with the unique successors. |
3305 | // We create a temporary bitset of blocks to compute the unique set of successor blocks, |
3306 | // since adding a block's number twice leaves just one "copy" in the bitset. Note that |
3307 | // we specifically don't use the BlockSet type, because doing so would require making a |
3308 | // call to EnsureBasicBlockEpoch() to make sure the epoch is up-to-date. However, that |
3309 | // can create a new epoch, thus invalidating all existing BlockSet objects, such as |
3310 | // reachability information stored in the blocks. To avoid that, we just use a local BitVec. |
3311 | |
3312 | BitVecTraits blockVecTraits(fgBBNumMax + 1, this); |
3313 | BitVec uniqueSuccBlocks(BitVecOps::MakeEmpty(&blockVecTraits)); |
3314 | BasicBlock** jumpTable = switchBlk->bbJumpSwt->bbsDstTab; |
3315 | unsigned jumpCount = switchBlk->bbJumpSwt->bbsCount; |
3316 | for (unsigned i = 0; i < jumpCount; i++) |
3317 | { |
3318 | BasicBlock* targ = jumpTable[i]; |
3319 | BitVecOps::AddElemD(&blockVecTraits, uniqueSuccBlocks, targ->bbNum); |
3320 | } |
3321 | // Now we have a set of unique successors. |
3322 | unsigned numNonDups = BitVecOps::Count(&blockVecTraits, uniqueSuccBlocks); |
3323 | |
3324 | BasicBlock** nonDups = new (getAllocator()) BasicBlock*[numNonDups]; |
3325 | |
3326 | unsigned nonDupInd = 0; |
3327 | // At this point, all unique targets are in "uniqueSuccBlocks". As we encounter each, |
3328 | // add to nonDups, remove from "uniqueSuccBlocks". |
3329 | for (unsigned i = 0; i < jumpCount; i++) |
3330 | { |
3331 | BasicBlock* targ = jumpTable[i]; |
3332 | if (BitVecOps::IsMember(&blockVecTraits, uniqueSuccBlocks, targ->bbNum)) |
3333 | { |
3334 | nonDups[nonDupInd] = targ; |
3335 | nonDupInd++; |
3336 | BitVecOps::RemoveElemD(&blockVecTraits, uniqueSuccBlocks, targ->bbNum); |
3337 | } |
3338 | } |
3339 | |
3340 | assert(nonDupInd == numNonDups); |
3341 | assert(BitVecOps::Count(&blockVecTraits, uniqueSuccBlocks) == 0); |
3342 | res.numDistinctSuccs = numNonDups; |
3343 | res.nonDuplicates = nonDups; |
3344 | switchMap->Set(switchBlk, res); |
3345 | return res; |
3346 | } |
3347 | } |
3348 | |
3349 | void Compiler::SwitchUniqueSuccSet::UpdateTarget(CompAllocator alloc, |
3350 | BasicBlock* switchBlk, |
3351 | BasicBlock* from, |
3352 | BasicBlock* to) |
3353 | { |
3354 | assert(switchBlk->bbJumpKind == BBJ_SWITCH); // Precondition. |
3355 | unsigned jmpTabCnt = switchBlk->bbJumpSwt->bbsCount; |
3356 | BasicBlock** jmpTab = switchBlk->bbJumpSwt->bbsDstTab; |
3357 | |
3358 | // Is "from" still in the switch table (because it had more than one entry before?) |
3359 | bool fromStillPresent = false; |
3360 | for (unsigned i = 0; i < jmpTabCnt; i++) |
3361 | { |
3362 | if (jmpTab[i] == from) |
3363 | { |
3364 | fromStillPresent = true; |
3365 | break; |
3366 | } |
3367 | } |
3368 | |
3369 | // Is "to" already in "this"? |
3370 | bool toAlreadyPresent = false; |
3371 | for (unsigned i = 0; i < numDistinctSuccs; i++) |
3372 | { |
3373 | if (nonDuplicates[i] == to) |
3374 | { |
3375 | toAlreadyPresent = true; |
3376 | break; |
3377 | } |
3378 | } |
3379 | |
3380 | // Four cases: |
3381 | // If "from" is still present, and "to" is already present, do nothing |
3382 | // If "from" is still present, and "to" is not, must reallocate to add an entry. |
3383 | // If "from" is not still present, and "to" is not present, write "to" where "from" was. |
3384 | // If "from" is not still present, but "to" is present, remove "from". |
3385 | if (fromStillPresent && toAlreadyPresent) |
3386 | { |
3387 | return; |
3388 | } |
3389 | else if (fromStillPresent && !toAlreadyPresent) |
3390 | { |
3391 | // reallocate to add an entry |
3392 | BasicBlock** newNonDups = new (alloc) BasicBlock*[numDistinctSuccs + 1]; |
3393 | memcpy(newNonDups, nonDuplicates, numDistinctSuccs * sizeof(BasicBlock*)); |
3394 | newNonDups[numDistinctSuccs] = to; |
3395 | numDistinctSuccs++; |
3396 | nonDuplicates = newNonDups; |
3397 | } |
3398 | else if (!fromStillPresent && !toAlreadyPresent) |
3399 | { |
3400 | #ifdef DEBUG |
3401 | // write "to" where "from" was |
3402 | bool foundFrom = false; |
3403 | #endif // DEBUG |
3404 | for (unsigned i = 0; i < numDistinctSuccs; i++) |
3405 | { |
3406 | if (nonDuplicates[i] == from) |
3407 | { |
3408 | nonDuplicates[i] = to; |
3409 | #ifdef DEBUG |
3410 | foundFrom = true; |
3411 | #endif // DEBUG |
3412 | break; |
3413 | } |
3414 | } |
3415 | assert(foundFrom); |
3416 | } |
3417 | else |
3418 | { |
3419 | assert(!fromStillPresent && toAlreadyPresent); |
3420 | #ifdef DEBUG |
3421 | // remove "from". |
3422 | bool foundFrom = false; |
3423 | #endif // DEBUG |
3424 | for (unsigned i = 0; i < numDistinctSuccs; i++) |
3425 | { |
3426 | if (nonDuplicates[i] == from) |
3427 | { |
3428 | nonDuplicates[i] = nonDuplicates[numDistinctSuccs - 1]; |
3429 | numDistinctSuccs--; |
3430 | #ifdef DEBUG |
3431 | foundFrom = true; |
3432 | #endif // DEBUG |
3433 | break; |
3434 | } |
3435 | } |
3436 | assert(foundFrom); |
3437 | } |
3438 | } |
3439 | |
3440 | /***************************************************************************** |
3441 | * |
3442 | * Simple utility function to remove an entry for a block in the switch desc |
3443 | * map. So it can be called from other phases. |
3444 | * |
3445 | */ |
3446 | void Compiler::fgInvalidateSwitchDescMapEntry(BasicBlock* block) |
3447 | { |
3448 | // Check if map has no entries yet. |
3449 | if (m_switchDescMap != nullptr) |
3450 | { |
3451 | m_switchDescMap->Remove(block); |
3452 | } |
3453 | } |
3454 | |
3455 | void Compiler::UpdateSwitchTableTarget(BasicBlock* switchBlk, BasicBlock* from, BasicBlock* to) |
3456 | { |
3457 | if (m_switchDescMap == nullptr) |
3458 | { |
3459 | return; // No mappings, nothing to do. |
3460 | } |
3461 | |
3462 | // Otherwise... |
3463 | BlockToSwitchDescMap* switchMap = GetSwitchDescMap(); |
3464 | SwitchUniqueSuccSet* res = switchMap->LookupPointer(switchBlk); |
3465 | if (res != nullptr) |
3466 | { |
3467 | // If no result, nothing to do. Otherwise, update it. |
3468 | res->UpdateTarget(getAllocator(), switchBlk, from, to); |
3469 | } |
3470 | } |
3471 | |
3472 | /***************************************************************************** |
3473 | * For a block that is in a handler region, find the first block of the most-nested |
3474 | * handler containing the block. |
3475 | */ |
3476 | BasicBlock* Compiler::fgFirstBlockOfHandler(BasicBlock* block) |
3477 | { |
3478 | assert(block->hasHndIndex()); |
3479 | return ehGetDsc(block->getHndIndex())->ebdHndBeg; |
3480 | } |
3481 | |
3482 | /***************************************************************************** |
3483 | * |
3484 | * Function called to find back edges and return blocks and mark them as needing GC Polls. This marks all |
3485 | * blocks. |
3486 | */ |
3487 | void Compiler::fgMarkGCPollBlocks() |
3488 | { |
3489 | if (GCPOLL_NONE == opts.compGCPollType) |
3490 | { |
3491 | return; |
3492 | } |
3493 | |
3494 | #ifdef DEBUG |
3495 | /* Check that the flowgraph data (bbNum, bbRefs, bbPreds) is up-to-date */ |
3496 | fgDebugCheckBBlist(); |
3497 | #endif |
3498 | |
3499 | BasicBlock* block; |
3500 | |
3501 | // Return blocks always need GC polls. In addition, all back edges (including those from switch |
3502 | // statements) need GC polls. The poll is on the block with the outgoing back edge (or ret), rather than |
3503 | // on the destination or on the edge itself. |
3504 | for (block = fgFirstBB; block; block = block->bbNext) |
3505 | { |
3506 | bool blockNeedsPoll = false; |
3507 | switch (block->bbJumpKind) |
3508 | { |
3509 | case BBJ_COND: |
3510 | case BBJ_ALWAYS: |
3511 | blockNeedsPoll = (block->bbJumpDest->bbNum <= block->bbNum); |
3512 | break; |
3513 | |
3514 | case BBJ_RETURN: |
3515 | blockNeedsPoll = true; |
3516 | break; |
3517 | |
3518 | case BBJ_SWITCH: |
3519 | unsigned jumpCnt; |
3520 | jumpCnt = block->bbJumpSwt->bbsCount; |
3521 | BasicBlock** jumpTab; |
3522 | jumpTab = block->bbJumpSwt->bbsDstTab; |
3523 | |
3524 | do |
3525 | { |
3526 | if ((*jumpTab)->bbNum <= block->bbNum) |
3527 | { |
3528 | blockNeedsPoll = true; |
3529 | break; |
3530 | } |
3531 | } while (++jumpTab, --jumpCnt); |
3532 | break; |
3533 | |
3534 | default: |
3535 | break; |
3536 | } |
3537 | |
3538 | if (blockNeedsPoll) |
3539 | { |
3540 | block->bbFlags |= BBF_NEEDS_GCPOLL; |
3541 | } |
3542 | } |
3543 | } |
3544 | |
3545 | void Compiler::fgInitBlockVarSets() |
3546 | { |
3547 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
3548 | { |
3549 | block->InitVarSets(this); |
3550 | } |
3551 | |
3552 | fgBBVarSetsInited = true; |
3553 | } |
3554 | |
3555 | /***************************************************************************** |
3556 | * |
3557 | * The following does the final pass on BBF_NEEDS_GCPOLL and then actually creates the GC Polls. |
3558 | */ |
3559 | void Compiler::fgCreateGCPolls() |
3560 | { |
3561 | if (GCPOLL_NONE == opts.compGCPollType) |
3562 | { |
3563 | return; |
3564 | } |
3565 | |
3566 | bool createdPollBlocks = false; |
3567 | |
3568 | #ifdef DEBUG |
3569 | if (verbose) |
3570 | { |
3571 | printf("*************** In fgCreateGCPolls() for %s\n" , info.compFullName); |
3572 | } |
3573 | #endif // DEBUG |
3574 | |
3575 | if (opts.OptimizationEnabled()) |
3576 | { |
3577 | // Remove polls from well formed loops with a constant upper bound. |
3578 | for (unsigned lnum = 0; lnum < optLoopCount; ++lnum) |
3579 | { |
3580 | // Look for constant counted loops that run for a short duration. This logic is very similar to |
3581 | // what's in code:Compiler::optUnrollLoops, since they have similar constraints. However, this |
3582 | // logic is much more permissive since we're not doing a complex transformation. |
3583 | |
3584 | /* TODO-Cleanup: |
3585 | * I feel bad cloning so much logic from optUnrollLoops |
3586 | */ |
3587 | |
3588 | // Filter out loops not meeting the obvious preconditions. |
3589 | // |
3590 | if (optLoopTable[lnum].lpFlags & LPFLG_REMOVED) |
3591 | { |
3592 | continue; |
3593 | } |
3594 | |
3595 | if (!(optLoopTable[lnum].lpFlags & LPFLG_CONST)) |
3596 | { |
3597 | continue; |
3598 | } |
3599 | |
3600 | BasicBlock* head = optLoopTable[lnum].lpHead; |
3601 | BasicBlock* bottom = optLoopTable[lnum].lpBottom; |
3602 | |
3603 | // Loops dominated by GC_SAFE_POINT won't have this set. |
3604 | if (!(bottom->bbFlags & BBF_NEEDS_GCPOLL)) |
3605 | { |
3606 | continue; |
3607 | } |
3608 | |
3609 | /* Get the loop data: |
3610 | - initial constant |
3611 | - limit constant |
3612 | - iterator |
3613 | - iterator increment |
3614 | - increment operation type (i.e. ASG_ADD, ASG_SUB, etc...) |
3615 | - loop test type (i.e. GT_GE, GT_LT, etc...) |
3616 | */ |
3617 | |
3618 | int lbeg = optLoopTable[lnum].lpConstInit; |
3619 | int llim = optLoopTable[lnum].lpConstLimit(); |
3620 | genTreeOps testOper = optLoopTable[lnum].lpTestOper(); |
3621 | |
3622 | int lvar = optLoopTable[lnum].lpIterVar(); |
3623 | int iterInc = optLoopTable[lnum].lpIterConst(); |
3624 | genTreeOps iterOper = optLoopTable[lnum].lpIterOper(); |
3625 | |
3626 | var_types iterOperType = optLoopTable[lnum].lpIterOperType(); |
3627 | bool unsTest = (optLoopTable[lnum].lpTestTree->gtFlags & GTF_UNSIGNED) != 0; |
3628 | if (lvaTable[lvar].lvAddrExposed) |
3629 | { // Can't reason about the value of the iteration variable. |
3630 | continue; |
3631 | } |
3632 | |
3633 | unsigned totalIter; |
3634 | |
3635 | /* Find the number of iterations - the function returns false if not a constant number */ |
3636 | |
3637 | if (!optComputeLoopRep(lbeg, llim, iterInc, iterOper, iterOperType, testOper, unsTest, |
3638 | // The value here doesn't matter for this variation of the optimization |
3639 | true, &totalIter)) |
3640 | { |
3641 | #ifdef DEBUG |
3642 | if (verbose) |
3643 | { |
3644 | printf("Could not compute loop iterations for loop from " FMT_BB " to " FMT_BB, head->bbNum, |
3645 | bottom->bbNum); |
3646 | } |
3647 | #endif // DEBUG |
3648 | (void)head; // suppress gcc error. |
3649 | |
3650 | continue; |
3651 | } |
3652 | |
3653 | /* Forget it if there are too many repetitions or not a constant loop */ |
3654 | |
3655 | static const unsigned ITER_LIMIT = 256; |
3656 | if (totalIter > ITER_LIMIT) |
3657 | { |
3658 | continue; |
3659 | } |
3660 | |
3661 | // It is safe to elminate the poll from this loop. |
3662 | bottom->bbFlags &= ~BBF_NEEDS_GCPOLL; |
3663 | |
3664 | #ifdef DEBUG |
3665 | if (verbose) |
3666 | { |
3667 | printf("Removing poll in block " FMT_BB " because it forms a bounded counted loop\n" , bottom->bbNum); |
3668 | } |
3669 | #endif // DEBUG |
3670 | } |
3671 | } |
3672 | |
3673 | // Final chance to optimize the polls. Move all polls in loops from the bottom of the loop up to the |
3674 | // loop head. Also eliminate all epilog polls in non-leaf methods. This only works if we have dominator |
3675 | // information. |
3676 | if (fgDomsComputed) |
3677 | { |
3678 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
3679 | { |
3680 | if (!(block->bbFlags & BBF_NEEDS_GCPOLL)) |
3681 | { |
3682 | continue; |
3683 | } |
3684 | |
3685 | if (block->bbJumpKind == BBJ_COND || block->bbJumpKind == BBJ_ALWAYS) |
3686 | { |
3687 | // make sure that this is loop-like |
3688 | if (!fgReachable(block->bbJumpDest, block)) |
3689 | { |
3690 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
3691 | #ifdef DEBUG |
3692 | if (verbose) |
3693 | { |
3694 | printf("Removing poll in block " FMT_BB " because it is not loop\n" , block->bbNum); |
3695 | } |
3696 | #endif // DEBUG |
3697 | continue; |
3698 | } |
3699 | } |
3700 | else if (!(block->bbJumpKind == BBJ_RETURN || block->bbJumpKind == BBJ_SWITCH)) |
3701 | { |
3702 | noway_assert(!"GC Poll on a block that has no control transfer." ); |
3703 | #ifdef DEBUG |
3704 | if (verbose) |
3705 | { |
3706 | printf("Removing poll in block " FMT_BB " because it is not a jump\n" , block->bbNum); |
3707 | } |
3708 | #endif // DEBUG |
3709 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
3710 | continue; |
3711 | } |
3712 | |
3713 | // Because of block compaction, it's possible to end up with a block that is both poll and safe. |
3714 | // Clean those up now. |
3715 | |
3716 | if (block->bbFlags & BBF_GC_SAFE_POINT) |
3717 | { |
3718 | #ifdef DEBUG |
3719 | if (verbose) |
3720 | { |
3721 | printf("Removing poll in return block " FMT_BB " because it is GC Safe\n" , block->bbNum); |
3722 | } |
3723 | #endif // DEBUG |
3724 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
3725 | continue; |
3726 | } |
3727 | |
3728 | if (block->bbJumpKind == BBJ_RETURN) |
3729 | { |
3730 | if (!optReachWithoutCall(fgFirstBB, block)) |
3731 | { |
3732 | // check to see if there is a call along the path between the first block and the return |
3733 | // block. |
3734 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
3735 | #ifdef DEBUG |
3736 | if (verbose) |
3737 | { |
3738 | printf("Removing poll in return block " FMT_BB " because it dominated by a call\n" , |
3739 | block->bbNum); |
3740 | } |
3741 | #endif // DEBUG |
3742 | continue; |
3743 | } |
3744 | } |
3745 | } |
3746 | } |
3747 | |
3748 | noway_assert(!fgGCPollsCreated); |
3749 | BasicBlock* block; |
3750 | fgGCPollsCreated = true; |
3751 | |
3752 | // Walk through the blocks and hunt for a block that has BBF_NEEDS_GCPOLL |
3753 | for (block = fgFirstBB; block; block = block->bbNext) |
3754 | { |
3755 | // Because of block compaction, it's possible to end up with a block that is both poll and safe. |
3756 | // And if !fgDomsComputed, we won't have cleared them, so skip them now |
3757 | if (!(block->bbFlags & BBF_NEEDS_GCPOLL) || (block->bbFlags & BBF_GC_SAFE_POINT)) |
3758 | { |
3759 | continue; |
3760 | } |
3761 | |
3762 | // This block needs a poll. We either just insert a callout or we split the block and inline part of |
3763 | // the test. This depends on the value of opts.compGCPollType. |
3764 | |
3765 | // If we're doing GCPOLL_CALL, just insert a GT_CALL node before the last node in the block. |
3766 | CLANG_FORMAT_COMMENT_ANCHOR; |
3767 | |
3768 | #ifdef DEBUG |
3769 | switch (block->bbJumpKind) |
3770 | { |
3771 | case BBJ_RETURN: |
3772 | case BBJ_ALWAYS: |
3773 | case BBJ_COND: |
3774 | case BBJ_SWITCH: |
3775 | break; |
3776 | default: |
3777 | noway_assert(!"Unknown block type for BBF_NEEDS_GCPOLL" ); |
3778 | } |
3779 | #endif // DEBUG |
3780 | |
3781 | noway_assert(opts.compGCPollType); |
3782 | |
3783 | GCPollType pollType = opts.compGCPollType; |
3784 | // pollType is set to either CALL or INLINE at this point. Below is the list of places where we |
3785 | // can't or don't want to emit an inline check. Check all of those. If after all of that we still |
3786 | // have INLINE, then emit an inline check. |
3787 | |
3788 | if (opts.OptimizationDisabled()) |
3789 | { |
3790 | #ifdef DEBUG |
3791 | if (verbose) |
3792 | { |
3793 | printf("Selecting CALL poll in block " FMT_BB " because of debug/minopts\n" , block->bbNum); |
3794 | } |
3795 | #endif // DEBUG |
3796 | |
3797 | // Don't split blocks and create inlined polls unless we're optimizing. |
3798 | pollType = GCPOLL_CALL; |
3799 | } |
3800 | else if (genReturnBB == block) |
3801 | { |
3802 | #ifdef DEBUG |
3803 | if (verbose) |
3804 | { |
3805 | printf("Selecting CALL poll in block " FMT_BB " because it is the single return block\n" , block->bbNum); |
3806 | } |
3807 | #endif // DEBUG |
3808 | |
3809 | // we don't want to split the single return block |
3810 | pollType = GCPOLL_CALL; |
3811 | } |
3812 | else if (BBJ_SWITCH == block->bbJumpKind) |
3813 | { |
3814 | #ifdef DEBUG |
3815 | if (verbose) |
3816 | { |
3817 | printf("Selecting CALL poll in block " FMT_BB " because it is a loop formed by a SWITCH\n" , |
3818 | block->bbNum); |
3819 | } |
3820 | #endif // DEBUG |
3821 | |
3822 | // I don't want to deal with all the outgoing edges of a switch block. |
3823 | pollType = GCPOLL_CALL; |
3824 | } |
3825 | |
3826 | // TODO-Cleanup: potentially don't split if we're in an EH region. |
3827 | |
3828 | createdPollBlocks |= fgCreateGCPoll(pollType, block); |
3829 | } |
3830 | |
3831 | // If we split a block to create a GC Poll, then rerun fgReorderBlocks to push the rarely run blocks out |
3832 | // past the epilog. We should never split blocks unless we're optimizing. |
3833 | if (createdPollBlocks) |
3834 | { |
3835 | noway_assert(opts.OptimizationEnabled()); |
3836 | fgReorderBlocks(); |
3837 | } |
3838 | } |
3839 | |
3840 | /***************************************************************************** |
3841 | * |
3842 | * Actually create a GCPoll in the given block. Returns true if it created |
3843 | * a basic block. |
3844 | */ |
3845 | |
3846 | bool Compiler::fgCreateGCPoll(GCPollType pollType, BasicBlock* block) |
3847 | { |
3848 | assert(!(block->bbFlags & BBF_GC_SAFE_POINT)); |
3849 | bool createdPollBlocks; |
3850 | |
3851 | void* addrTrap; |
3852 | void* pAddrOfCaptureThreadGlobal; |
3853 | |
3854 | addrTrap = info.compCompHnd->getAddrOfCaptureThreadGlobal(&pAddrOfCaptureThreadGlobal); |
3855 | |
3856 | #ifdef ENABLE_FAST_GCPOLL_HELPER |
3857 | // I never want to split blocks if we've got two indirections here. |
3858 | // This is a size trade-off assuming the VM has ENABLE_FAST_GCPOLL_HELPER. |
3859 | // So don't do it when that is off |
3860 | if (pAddrOfCaptureThreadGlobal != NULL) |
3861 | { |
3862 | pollType = GCPOLL_CALL; |
3863 | } |
3864 | #endif // ENABLE_FAST_GCPOLL_HELPER |
3865 | |
3866 | if (GCPOLL_CALL == pollType) |
3867 | { |
3868 | createdPollBlocks = false; |
3869 | GenTreeCall* call = gtNewHelperCallNode(CORINFO_HELP_POLL_GC, TYP_VOID); |
3870 | |
3871 | // for BBJ_ALWAYS I don't need to insert it before the condition. Just append it. |
3872 | if (block->bbJumpKind == BBJ_ALWAYS) |
3873 | { |
3874 | fgInsertStmtAtEnd(block, call); |
3875 | } |
3876 | else |
3877 | { |
3878 | GenTreeStmt* newStmt = fgInsertStmtNearEnd(block, call); |
3879 | // For DDB156656, we need to associate the GC Poll with the IL offset (and therefore sequence |
3880 | // point) of the tree before which we inserted the poll. One example of when this is a |
3881 | // problem: |
3882 | // if (...) { //1 |
3883 | // ... |
3884 | // } //2 |
3885 | // else { //3 |
3886 | // ... |
3887 | // } |
3888 | // (gcpoll) //4 |
3889 | // return. //5 |
3890 | // |
3891 | // If we take the if statement at 1, we encounter a jump at 2. This jumps over the else |
3892 | // and lands at 4. 4 is where we inserted the gcpoll. However, that is associated with |
3893 | // the sequence point a 3. Therefore, the debugger displays the wrong source line at the |
3894 | // gc poll location. |
3895 | // |
3896 | // More formally, if control flow targets an instruction, that instruction must be the |
3897 | // start of a new sequence point. |
3898 | if (newStmt->gtNext) |
3899 | { |
3900 | // Is it possible for gtNext to be NULL? |
3901 | noway_assert(newStmt->gtNext->gtOper == GT_STMT); |
3902 | newStmt->gtStmtILoffsx = newStmt->gtNextStmt->gtStmtILoffsx; |
3903 | } |
3904 | } |
3905 | |
3906 | block->bbFlags |= BBF_GC_SAFE_POINT; |
3907 | #ifdef DEBUG |
3908 | if (verbose) |
3909 | { |
3910 | printf("*** creating GC Poll in block " FMT_BB "\n" , block->bbNum); |
3911 | gtDispTreeList(block->bbTreeList); |
3912 | } |
3913 | #endif // DEBUG |
3914 | } |
3915 | else |
3916 | { |
3917 | createdPollBlocks = true; |
3918 | // if we're doing GCPOLL_INLINE, then: |
3919 | // 1) Create two new blocks: Poll and Bottom. The original block is called Top. |
3920 | |
3921 | // I want to create: |
3922 | // top -> poll -> bottom (lexically) |
3923 | // so that we jump over poll to get to bottom. |
3924 | BasicBlock* top = block; |
3925 | BasicBlock* poll = fgNewBBafter(BBJ_NONE, top, true); |
3926 | BasicBlock* bottom = fgNewBBafter(top->bbJumpKind, poll, true); |
3927 | BBjumpKinds oldJumpKind = top->bbJumpKind; |
3928 | |
3929 | // Update block flags |
3930 | const unsigned __int64 originalFlags = top->bbFlags | BBF_GC_SAFE_POINT; |
3931 | |
3932 | // Unlike Fei's inliner from puclr, I'm allowed to split loops. |
3933 | // And we keep a few other flags... |
3934 | noway_assert((originalFlags & (BBF_SPLIT_NONEXIST & ~(BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1))) == 0); |
3935 | top->bbFlags = originalFlags & (~BBF_SPLIT_LOST | BBF_GC_SAFE_POINT); |
3936 | bottom->bbFlags |= originalFlags & (BBF_SPLIT_GAINED | BBF_IMPORTED | BBF_GC_SAFE_POINT); |
3937 | bottom->inheritWeight(top); |
3938 | poll->bbFlags |= originalFlags & (BBF_SPLIT_GAINED | BBF_IMPORTED | BBF_GC_SAFE_POINT); |
3939 | |
3940 | // 9) Mark Poll as rarely run. |
3941 | poll->bbSetRunRarely(); |
3942 | |
3943 | // 5) Bottom gets all the outgoing edges and inherited flags of Original. |
3944 | bottom->bbJumpDest = top->bbJumpDest; |
3945 | |
3946 | // 2) Add a GC_CALL node to Poll. |
3947 | GenTreeCall* call = gtNewHelperCallNode(CORINFO_HELP_POLL_GC, TYP_VOID); |
3948 | fgInsertStmtAtEnd(poll, call); |
3949 | |
3950 | // 3) Remove the last statement from Top and add it to Bottom. |
3951 | if (oldJumpKind != BBJ_ALWAYS) |
3952 | { |
3953 | // if I'm always jumping to the target, then this is not a condition that needs moving. |
3954 | GenTreeStmt* stmt = top->firstStmt(); |
3955 | while (stmt->gtNext) |
3956 | { |
3957 | stmt = stmt->gtNextStmt; |
3958 | } |
3959 | fgRemoveStmt(top, stmt); |
3960 | fgInsertStmtAtEnd(bottom, stmt); |
3961 | } |
3962 | |
3963 | // for BBJ_ALWAYS blocks, bottom is an empty block. |
3964 | |
3965 | // 4) Create a GT_EQ node that checks against g_TrapReturningThreads. True jumps to Bottom, |
3966 | // false falls through to poll. Add this to the end of Top. Top is now BBJ_COND. Bottom is |
3967 | // now a jump target |
3968 | CLANG_FORMAT_COMMENT_ANCHOR; |
3969 | |
3970 | #ifdef ENABLE_FAST_GCPOLL_HELPER |
3971 | // Prefer the fast gc poll helepr over the double indirection |
3972 | noway_assert(pAddrOfCaptureThreadGlobal == nullptr); |
3973 | #endif |
3974 | |
3975 | GenTree* value; // The value of g_TrapReturningThreads |
3976 | if (pAddrOfCaptureThreadGlobal != nullptr) |
3977 | { |
3978 | // Use a double indirection |
3979 | GenTree* addr = |
3980 | gtNewIndOfIconHandleNode(TYP_I_IMPL, (size_t)pAddrOfCaptureThreadGlobal, GTF_ICON_PTR_HDL, true); |
3981 | |
3982 | value = gtNewOperNode(GT_IND, TYP_INT, addr); |
3983 | // This indirection won't cause an exception. |
3984 | value->gtFlags |= GTF_IND_NONFAULTING; |
3985 | } |
3986 | else |
3987 | { |
3988 | // Use a single indirection |
3989 | value = gtNewIndOfIconHandleNode(TYP_INT, (size_t)addrTrap, GTF_ICON_PTR_HDL, false); |
3990 | } |
3991 | |
3992 | // Treat the reading of g_TrapReturningThreads as volatile. |
3993 | value->gtFlags |= GTF_IND_VOLATILE; |
3994 | |
3995 | // Compare for equal to zero |
3996 | GenTree* trapRelop = gtNewOperNode(GT_EQ, TYP_INT, value, gtNewIconNode(0, TYP_INT)); |
3997 | |
3998 | trapRelop->gtFlags |= GTF_RELOP_JMP_USED | GTF_DONT_CSE; |
3999 | GenTree* trapCheck = gtNewOperNode(GT_JTRUE, TYP_VOID, trapRelop); |
4000 | fgInsertStmtAtEnd(top, trapCheck); |
4001 | top->bbJumpDest = bottom; |
4002 | top->bbJumpKind = BBJ_COND; |
4003 | bottom->bbFlags |= BBF_JMP_TARGET; |
4004 | |
4005 | // 7) Bottom has Top and Poll as its predecessors. Poll has just Top as a predecessor. |
4006 | fgAddRefPred(bottom, poll); |
4007 | fgAddRefPred(bottom, top); |
4008 | fgAddRefPred(poll, top); |
4009 | |
4010 | // 8) Replace Top with Bottom in the predecessor list of all outgoing edges from Bottom (1 for |
4011 | // jumps, 2 for conditional branches, N for switches). |
4012 | switch (oldJumpKind) |
4013 | { |
4014 | case BBJ_RETURN: |
4015 | // no successors |
4016 | break; |
4017 | case BBJ_COND: |
4018 | // replace predecessor in the fall through block. |
4019 | noway_assert(bottom->bbNext); |
4020 | fgReplacePred(bottom->bbNext, top, bottom); |
4021 | |
4022 | // fall through for the jump target |
4023 | __fallthrough; |
4024 | |
4025 | case BBJ_ALWAYS: |
4026 | fgReplacePred(bottom->bbJumpDest, top, bottom); |
4027 | break; |
4028 | case BBJ_SWITCH: |
4029 | NO_WAY("SWITCH should be a call rather than an inlined poll." ); |
4030 | break; |
4031 | default: |
4032 | NO_WAY("Unknown block type for updating predecessor lists." ); |
4033 | } |
4034 | |
4035 | top->bbFlags &= ~BBF_NEEDS_GCPOLL; |
4036 | noway_assert(!(poll->bbFlags & BBF_NEEDS_GCPOLL)); |
4037 | noway_assert(!(bottom->bbFlags & BBF_NEEDS_GCPOLL)); |
4038 | |
4039 | if (compCurBB == top) |
4040 | { |
4041 | compCurBB = bottom; |
4042 | } |
4043 | |
4044 | #ifdef DEBUG |
4045 | if (verbose) |
4046 | { |
4047 | printf("*** creating inlined GC Poll in top block " FMT_BB "\n" , top->bbNum); |
4048 | gtDispTreeList(top->bbTreeList); |
4049 | printf(" poll block is " FMT_BB "\n" , poll->bbNum); |
4050 | gtDispTreeList(poll->bbTreeList); |
4051 | printf(" bottom block is " FMT_BB "\n" , bottom->bbNum); |
4052 | gtDispTreeList(bottom->bbTreeList); |
4053 | } |
4054 | #endif // DEBUG |
4055 | } |
4056 | |
4057 | return createdPollBlocks; |
4058 | } |
4059 | |
4060 | /***************************************************************************** |
4061 | * |
4062 | * The following helps find a basic block given its PC offset. |
4063 | */ |
4064 | |
4065 | void Compiler::fgInitBBLookup() |
4066 | { |
4067 | BasicBlock** dscBBptr; |
4068 | BasicBlock* tmpBBdesc; |
4069 | |
4070 | /* Allocate the basic block table */ |
4071 | |
4072 | dscBBptr = fgBBs = new (this, CMK_BasicBlock) BasicBlock*[fgBBcount]; |
4073 | |
4074 | /* Walk all the basic blocks, filling in the table */ |
4075 | |
4076 | for (tmpBBdesc = fgFirstBB; tmpBBdesc; tmpBBdesc = tmpBBdesc->bbNext) |
4077 | { |
4078 | *dscBBptr++ = tmpBBdesc; |
4079 | } |
4080 | |
4081 | noway_assert(dscBBptr == fgBBs + fgBBcount); |
4082 | } |
4083 | |
4084 | BasicBlock* Compiler::fgLookupBB(unsigned addr) |
4085 | { |
4086 | unsigned lo; |
4087 | unsigned hi; |
4088 | |
4089 | /* Do a binary search */ |
4090 | |
4091 | for (lo = 0, hi = fgBBcount - 1;;) |
4092 | { |
4093 | |
4094 | AGAIN:; |
4095 | |
4096 | if (lo > hi) |
4097 | { |
4098 | break; |
4099 | } |
4100 | |
4101 | unsigned mid = (lo + hi) / 2; |
4102 | BasicBlock* dsc = fgBBs[mid]; |
4103 | |
4104 | // We introduce internal blocks for BBJ_CALLFINALLY. Skip over these. |
4105 | |
4106 | while (dsc->bbFlags & BBF_INTERNAL) |
4107 | { |
4108 | dsc = dsc->bbNext; |
4109 | mid++; |
4110 | |
4111 | // We skipped over too many, Set hi back to the original mid - 1 |
4112 | |
4113 | if (mid > hi) |
4114 | { |
4115 | mid = (lo + hi) / 2; |
4116 | hi = mid - 1; |
4117 | goto AGAIN; |
4118 | } |
4119 | } |
4120 | |
4121 | unsigned pos = dsc->bbCodeOffs; |
4122 | |
4123 | if (pos < addr) |
4124 | { |
4125 | if ((lo == hi) && (lo == (fgBBcount - 1))) |
4126 | { |
4127 | noway_assert(addr == dsc->bbCodeOffsEnd); |
4128 | return nullptr; // NULL means the end of method |
4129 | } |
4130 | lo = mid + 1; |
4131 | continue; |
4132 | } |
4133 | |
4134 | if (pos > addr) |
4135 | { |
4136 | hi = mid - 1; |
4137 | continue; |
4138 | } |
4139 | |
4140 | return dsc; |
4141 | } |
4142 | #ifdef DEBUG |
4143 | printf("ERROR: Couldn't find basic block at offset %04X\n" , addr); |
4144 | #endif // DEBUG |
4145 | NO_WAY("fgLookupBB failed." ); |
4146 | } |
4147 | |
4148 | //------------------------------------------------------------------------ |
4149 | // FgStack: simple stack model for the inlinee's evaluation stack. |
4150 | // |
4151 | // Model the inputs available to various operations in the inline body. |
4152 | // Tracks constants, arguments, array lengths. |
4153 | |
4154 | class FgStack |
4155 | { |
4156 | public: |
4157 | FgStack() : slot0(SLOT_INVALID), slot1(SLOT_INVALID), depth(0) |
4158 | { |
4159 | // Empty |
4160 | } |
4161 | |
4162 | void Clear() |
4163 | { |
4164 | depth = 0; |
4165 | } |
4166 | void PushUnknown() |
4167 | { |
4168 | Push(SLOT_UNKNOWN); |
4169 | } |
4170 | void PushConstant() |
4171 | { |
4172 | Push(SLOT_CONSTANT); |
4173 | } |
4174 | void PushArrayLen() |
4175 | { |
4176 | Push(SLOT_ARRAYLEN); |
4177 | } |
4178 | void PushArgument(unsigned arg) |
4179 | { |
4180 | Push(SLOT_ARGUMENT + arg); |
4181 | } |
4182 | unsigned GetSlot0() const |
4183 | { |
4184 | assert(depth >= 1); |
4185 | return slot0; |
4186 | } |
4187 | unsigned GetSlot1() const |
4188 | { |
4189 | assert(depth >= 2); |
4190 | return slot1; |
4191 | } |
4192 | static bool IsConstant(unsigned value) |
4193 | { |
4194 | return value == SLOT_CONSTANT; |
4195 | } |
4196 | static bool IsArrayLen(unsigned value) |
4197 | { |
4198 | return value == SLOT_ARRAYLEN; |
4199 | } |
4200 | static bool IsArgument(unsigned value) |
4201 | { |
4202 | return value >= SLOT_ARGUMENT; |
4203 | } |
4204 | static unsigned SlotTypeToArgNum(unsigned value) |
4205 | { |
4206 | assert(IsArgument(value)); |
4207 | return value - SLOT_ARGUMENT; |
4208 | } |
4209 | bool IsStackTwoDeep() const |
4210 | { |
4211 | return depth == 2; |
4212 | } |
4213 | bool IsStackOneDeep() const |
4214 | { |
4215 | return depth == 1; |
4216 | } |
4217 | bool IsStackAtLeastOneDeep() const |
4218 | { |
4219 | return depth >= 1; |
4220 | } |
4221 | |
4222 | private: |
4223 | enum |
4224 | { |
4225 | SLOT_INVALID = UINT_MAX, |
4226 | SLOT_UNKNOWN = 0, |
4227 | SLOT_CONSTANT = 1, |
4228 | SLOT_ARRAYLEN = 2, |
4229 | SLOT_ARGUMENT = 3 |
4230 | }; |
4231 | |
4232 | void Push(int type) |
4233 | { |
4234 | switch (depth) |
4235 | { |
4236 | case 0: |
4237 | ++depth; |
4238 | slot0 = type; |
4239 | break; |
4240 | case 1: |
4241 | ++depth; |
4242 | __fallthrough; |
4243 | case 2: |
4244 | slot1 = slot0; |
4245 | slot0 = type; |
4246 | } |
4247 | } |
4248 | |
4249 | unsigned slot0; |
4250 | unsigned slot1; |
4251 | unsigned depth; |
4252 | }; |
4253 | |
4254 | //------------------------------------------------------------------------ |
4255 | // fgFindJumpTargets: walk the IL stream, determining jump target offsets |
4256 | // |
4257 | // Arguments: |
4258 | // codeAddr - base address of the IL code buffer |
4259 | // codeSize - number of bytes in the IL code buffer |
4260 | // jumpTarget - [OUT] bit vector for flagging jump targets |
4261 | // |
4262 | // Notes: |
4263 | // If inlining or prejitting the root, this method also makes |
4264 | // various observations about the method that factor into inline |
4265 | // decisions. |
4266 | // |
4267 | // May throw an exception if the IL is malformed. |
4268 | // |
4269 | // jumpTarget[N] is set to 1 if IL offset N is a jump target in the method. |
4270 | // |
4271 | // Also sets lvAddrExposed and lvHasILStoreOp, ilHasMultipleILStoreOp in lvaTable[]. |
4272 | |
4273 | #ifdef _PREFAST_ |
4274 | #pragma warning(push) |
4275 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
4276 | #endif |
4277 | |
4278 | void Compiler::fgFindJumpTargets(const BYTE* codeAddr, IL_OFFSET codeSize, FixedBitVect* jumpTarget) |
4279 | { |
4280 | const BYTE* codeBegp = codeAddr; |
4281 | const BYTE* codeEndp = codeAddr + codeSize; |
4282 | unsigned varNum; |
4283 | bool seenJump = false; |
4284 | var_types varType = DUMMY_INIT(TYP_UNDEF); // TYP_ type |
4285 | typeInfo ti; // Verifier type. |
4286 | bool typeIsNormed = false; |
4287 | FgStack pushedStack; |
4288 | const bool isForceInline = (info.compFlags & CORINFO_FLG_FORCEINLINE) != 0; |
4289 | const bool makeInlineObservations = (compInlineResult != nullptr); |
4290 | const bool isInlining = compIsForInlining(); |
4291 | unsigned retBlocks = 0; |
4292 | |
4293 | if (makeInlineObservations) |
4294 | { |
4295 | // Observe force inline state and code size. |
4296 | compInlineResult->NoteBool(InlineObservation::CALLEE_IS_FORCE_INLINE, isForceInline); |
4297 | compInlineResult->NoteInt(InlineObservation::CALLEE_IL_CODE_SIZE, codeSize); |
4298 | |
4299 | // Determine if call site is within a try. |
4300 | if (isInlining && impInlineInfo->iciBlock->hasTryIndex()) |
4301 | { |
4302 | compInlineResult->Note(InlineObservation::CALLSITE_IN_TRY_REGION); |
4303 | } |
4304 | |
4305 | // Determine if the call site is in a loop. |
4306 | if (isInlining && ((impInlineInfo->iciBlock->bbFlags & BBF_BACKWARD_JUMP) != 0)) |
4307 | { |
4308 | compInlineResult->Note(InlineObservation::CALLSITE_IN_LOOP); |
4309 | } |
4310 | |
4311 | #ifdef DEBUG |
4312 | |
4313 | // If inlining, this method should still be a candidate. |
4314 | if (isInlining) |
4315 | { |
4316 | assert(compInlineResult->IsCandidate()); |
4317 | } |
4318 | |
4319 | #endif // DEBUG |
4320 | |
4321 | // note that we're starting to look at the opcodes. |
4322 | compInlineResult->Note(InlineObservation::CALLEE_BEGIN_OPCODE_SCAN); |
4323 | } |
4324 | |
4325 | while (codeAddr < codeEndp) |
4326 | { |
4327 | OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr); |
4328 | codeAddr += sizeof(__int8); |
4329 | opts.instrCount++; |
4330 | typeIsNormed = false; |
4331 | |
4332 | DECODE_OPCODE: |
4333 | |
4334 | if ((unsigned)opcode >= CEE_COUNT) |
4335 | { |
4336 | BADCODE3("Illegal opcode" , ": %02X" , (int)opcode); |
4337 | } |
4338 | |
4339 | if ((opcode >= CEE_LDARG_0 && opcode <= CEE_STLOC_S) || (opcode >= CEE_LDARG && opcode <= CEE_STLOC)) |
4340 | { |
4341 | opts.lvRefCount++; |
4342 | } |
4343 | |
4344 | if (makeInlineObservations && (opcode >= CEE_LDNULL) && (opcode <= CEE_LDC_R8)) |
4345 | { |
4346 | pushedStack.PushConstant(); |
4347 | } |
4348 | |
4349 | unsigned sz = opcodeSizes[opcode]; |
4350 | |
4351 | switch (opcode) |
4352 | { |
4353 | case CEE_PREFIX1: |
4354 | { |
4355 | if (codeAddr >= codeEndp) |
4356 | { |
4357 | goto TOO_FAR; |
4358 | } |
4359 | opcode = (OPCODE)(256 + getU1LittleEndian(codeAddr)); |
4360 | codeAddr += sizeof(__int8); |
4361 | goto DECODE_OPCODE; |
4362 | } |
4363 | |
4364 | case CEE_PREFIX2: |
4365 | case CEE_PREFIX3: |
4366 | case CEE_PREFIX4: |
4367 | case CEE_PREFIX5: |
4368 | case CEE_PREFIX6: |
4369 | case CEE_PREFIX7: |
4370 | case CEE_PREFIXREF: |
4371 | { |
4372 | BADCODE3("Illegal opcode" , ": %02X" , (int)opcode); |
4373 | } |
4374 | |
4375 | case CEE_CALL: |
4376 | case CEE_CALLVIRT: |
4377 | { |
4378 | // There has to be code after the call, otherwise the inlinee is unverifiable. |
4379 | if (isInlining) |
4380 | { |
4381 | |
4382 | noway_assert(codeAddr < codeEndp - sz); |
4383 | } |
4384 | |
4385 | // If the method has a call followed by a ret, assume that |
4386 | // it is a wrapper method. |
4387 | if (makeInlineObservations) |
4388 | { |
4389 | if ((OPCODE)getU1LittleEndian(codeAddr + sz) == CEE_RET) |
4390 | { |
4391 | compInlineResult->Note(InlineObservation::CALLEE_LOOKS_LIKE_WRAPPER); |
4392 | } |
4393 | } |
4394 | } |
4395 | break; |
4396 | |
4397 | case CEE_LEAVE: |
4398 | case CEE_LEAVE_S: |
4399 | case CEE_BR: |
4400 | case CEE_BR_S: |
4401 | case CEE_BRFALSE: |
4402 | case CEE_BRFALSE_S: |
4403 | case CEE_BRTRUE: |
4404 | case CEE_BRTRUE_S: |
4405 | case CEE_BEQ: |
4406 | case CEE_BEQ_S: |
4407 | case CEE_BGE: |
4408 | case CEE_BGE_S: |
4409 | case CEE_BGE_UN: |
4410 | case CEE_BGE_UN_S: |
4411 | case CEE_BGT: |
4412 | case CEE_BGT_S: |
4413 | case CEE_BGT_UN: |
4414 | case CEE_BGT_UN_S: |
4415 | case CEE_BLE: |
4416 | case CEE_BLE_S: |
4417 | case CEE_BLE_UN: |
4418 | case CEE_BLE_UN_S: |
4419 | case CEE_BLT: |
4420 | case CEE_BLT_S: |
4421 | case CEE_BLT_UN: |
4422 | case CEE_BLT_UN_S: |
4423 | case CEE_BNE_UN: |
4424 | case CEE_BNE_UN_S: |
4425 | { |
4426 | seenJump = true; |
4427 | |
4428 | if (codeAddr > codeEndp - sz) |
4429 | { |
4430 | goto TOO_FAR; |
4431 | } |
4432 | |
4433 | // Compute jump target address |
4434 | signed jmpDist = (sz == 1) ? getI1LittleEndian(codeAddr) : getI4LittleEndian(codeAddr); |
4435 | |
4436 | if (compIsForInlining() && jmpDist == 0 && |
4437 | (opcode == CEE_LEAVE || opcode == CEE_LEAVE_S || opcode == CEE_BR || opcode == CEE_BR_S)) |
4438 | { |
4439 | break; /* NOP */ |
4440 | } |
4441 | |
4442 | unsigned jmpAddr = (IL_OFFSET)(codeAddr - codeBegp) + sz + jmpDist; |
4443 | |
4444 | // Make sure target is reasonable |
4445 | if (jmpAddr >= codeSize) |
4446 | { |
4447 | BADCODE3("code jumps to outer space" , " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
4448 | } |
4449 | |
4450 | // Mark the jump target |
4451 | jumpTarget->bitVectSet(jmpAddr); |
4452 | |
4453 | // See if jump might be sensitive to inlining |
4454 | if (makeInlineObservations && (opcode != CEE_BR_S) && (opcode != CEE_BR)) |
4455 | { |
4456 | fgObserveInlineConstants(opcode, pushedStack, isInlining); |
4457 | } |
4458 | } |
4459 | break; |
4460 | |
4461 | case CEE_SWITCH: |
4462 | { |
4463 | seenJump = true; |
4464 | |
4465 | if (makeInlineObservations) |
4466 | { |
4467 | compInlineResult->Note(InlineObservation::CALLEE_HAS_SWITCH); |
4468 | |
4469 | // Fail fast, if we're inlining and can't handle this. |
4470 | if (isInlining && compInlineResult->IsFailure()) |
4471 | { |
4472 | return; |
4473 | } |
4474 | } |
4475 | |
4476 | // Make sure we don't go past the end reading the number of cases |
4477 | if (codeAddr > codeEndp - sizeof(DWORD)) |
4478 | { |
4479 | goto TOO_FAR; |
4480 | } |
4481 | |
4482 | // Read the number of cases |
4483 | unsigned jmpCnt = getU4LittleEndian(codeAddr); |
4484 | codeAddr += sizeof(DWORD); |
4485 | |
4486 | if (jmpCnt > codeSize / sizeof(DWORD)) |
4487 | { |
4488 | goto TOO_FAR; |
4489 | } |
4490 | |
4491 | // Find the end of the switch table |
4492 | unsigned jmpBase = (unsigned)((codeAddr - codeBegp) + jmpCnt * sizeof(DWORD)); |
4493 | |
4494 | // Make sure there is more code after the switch |
4495 | if (jmpBase >= codeSize) |
4496 | { |
4497 | goto TOO_FAR; |
4498 | } |
4499 | |
4500 | // jmpBase is also the target of the default case, so mark it |
4501 | jumpTarget->bitVectSet(jmpBase); |
4502 | |
4503 | // Process table entries |
4504 | while (jmpCnt > 0) |
4505 | { |
4506 | unsigned jmpAddr = jmpBase + getI4LittleEndian(codeAddr); |
4507 | codeAddr += 4; |
4508 | |
4509 | if (jmpAddr >= codeSize) |
4510 | { |
4511 | BADCODE3("jump target out of range" , " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
4512 | } |
4513 | |
4514 | jumpTarget->bitVectSet(jmpAddr); |
4515 | jmpCnt--; |
4516 | } |
4517 | |
4518 | // We've advanced past all the bytes in this instruction |
4519 | sz = 0; |
4520 | } |
4521 | break; |
4522 | |
4523 | case CEE_UNALIGNED: |
4524 | case CEE_CONSTRAINED: |
4525 | case CEE_READONLY: |
4526 | case CEE_VOLATILE: |
4527 | case CEE_TAILCALL: |
4528 | { |
4529 | if (codeAddr >= codeEndp) |
4530 | { |
4531 | goto TOO_FAR; |
4532 | } |
4533 | } |
4534 | break; |
4535 | |
4536 | case CEE_STARG: |
4537 | case CEE_STARG_S: |
4538 | { |
4539 | noway_assert(sz == sizeof(BYTE) || sz == sizeof(WORD)); |
4540 | |
4541 | if (codeAddr > codeEndp - sz) |
4542 | { |
4543 | goto TOO_FAR; |
4544 | } |
4545 | |
4546 | varNum = (sz == sizeof(BYTE)) ? getU1LittleEndian(codeAddr) : getU2LittleEndian(codeAddr); |
4547 | |
4548 | if (isInlining) |
4549 | { |
4550 | if (varNum < impInlineInfo->argCnt) |
4551 | { |
4552 | impInlineInfo->inlArgInfo[varNum].argHasStargOp = true; |
4553 | } |
4554 | } |
4555 | else |
4556 | { |
4557 | // account for possible hidden param |
4558 | varNum = compMapILargNum(varNum); |
4559 | |
4560 | // This check is only intended to prevent an AV. Bad varNum values will later |
4561 | // be handled properly by the verifier. |
4562 | if (varNum < lvaTableCnt) |
4563 | { |
4564 | // In non-inline cases, note written-to arguments. |
4565 | lvaTable[varNum].lvHasILStoreOp = 1; |
4566 | } |
4567 | } |
4568 | } |
4569 | break; |
4570 | |
4571 | case CEE_STLOC_0: |
4572 | case CEE_STLOC_1: |
4573 | case CEE_STLOC_2: |
4574 | case CEE_STLOC_3: |
4575 | varNum = (opcode - CEE_STLOC_0); |
4576 | goto STLOC; |
4577 | |
4578 | case CEE_STLOC: |
4579 | case CEE_STLOC_S: |
4580 | { |
4581 | noway_assert(sz == sizeof(BYTE) || sz == sizeof(WORD)); |
4582 | |
4583 | if (codeAddr > codeEndp - sz) |
4584 | { |
4585 | goto TOO_FAR; |
4586 | } |
4587 | |
4588 | varNum = (sz == sizeof(BYTE)) ? getU1LittleEndian(codeAddr) : getU2LittleEndian(codeAddr); |
4589 | |
4590 | STLOC: |
4591 | if (isInlining) |
4592 | { |
4593 | InlLclVarInfo& lclInfo = impInlineInfo->lclVarInfo[varNum + impInlineInfo->argCnt]; |
4594 | |
4595 | if (lclInfo.lclHasStlocOp) |
4596 | { |
4597 | lclInfo.lclHasMultipleStlocOp = 1; |
4598 | } |
4599 | else |
4600 | { |
4601 | lclInfo.lclHasStlocOp = 1; |
4602 | } |
4603 | } |
4604 | else |
4605 | { |
4606 | varNum += info.compArgsCount; |
4607 | |
4608 | // This check is only intended to prevent an AV. Bad varNum values will later |
4609 | // be handled properly by the verifier. |
4610 | if (varNum < lvaTableCnt) |
4611 | { |
4612 | // In non-inline cases, note written-to locals. |
4613 | if (lvaTable[varNum].lvHasILStoreOp) |
4614 | { |
4615 | lvaTable[varNum].lvHasMultipleILStoreOp = 1; |
4616 | } |
4617 | else |
4618 | { |
4619 | lvaTable[varNum].lvHasILStoreOp = 1; |
4620 | } |
4621 | } |
4622 | } |
4623 | } |
4624 | break; |
4625 | |
4626 | case CEE_LDARGA: |
4627 | case CEE_LDARGA_S: |
4628 | case CEE_LDLOCA: |
4629 | case CEE_LDLOCA_S: |
4630 | { |
4631 | // Handle address-taken args or locals |
4632 | noway_assert(sz == sizeof(BYTE) || sz == sizeof(WORD)); |
4633 | |
4634 | if (codeAddr > codeEndp - sz) |
4635 | { |
4636 | goto TOO_FAR; |
4637 | } |
4638 | |
4639 | varNum = (sz == sizeof(BYTE)) ? getU1LittleEndian(codeAddr) : getU2LittleEndian(codeAddr); |
4640 | |
4641 | if (isInlining) |
4642 | { |
4643 | if (opcode == CEE_LDLOCA || opcode == CEE_LDLOCA_S) |
4644 | { |
4645 | varType = impInlineInfo->lclVarInfo[varNum + impInlineInfo->argCnt].lclTypeInfo; |
4646 | ti = impInlineInfo->lclVarInfo[varNum + impInlineInfo->argCnt].lclVerTypeInfo; |
4647 | |
4648 | impInlineInfo->lclVarInfo[varNum + impInlineInfo->argCnt].lclHasLdlocaOp = true; |
4649 | } |
4650 | else |
4651 | { |
4652 | noway_assert(opcode == CEE_LDARGA || opcode == CEE_LDARGA_S); |
4653 | |
4654 | varType = impInlineInfo->lclVarInfo[varNum].lclTypeInfo; |
4655 | ti = impInlineInfo->lclVarInfo[varNum].lclVerTypeInfo; |
4656 | |
4657 | impInlineInfo->inlArgInfo[varNum].argHasLdargaOp = true; |
4658 | |
4659 | pushedStack.PushArgument(varNum); |
4660 | } |
4661 | } |
4662 | else |
4663 | { |
4664 | if (opcode == CEE_LDLOCA || opcode == CEE_LDLOCA_S) |
4665 | { |
4666 | if (varNum >= info.compMethodInfo->locals.numArgs) |
4667 | { |
4668 | BADCODE("bad local number" ); |
4669 | } |
4670 | |
4671 | varNum += info.compArgsCount; |
4672 | } |
4673 | else |
4674 | { |
4675 | noway_assert(opcode == CEE_LDARGA || opcode == CEE_LDARGA_S); |
4676 | |
4677 | if (varNum >= info.compILargsCount) |
4678 | { |
4679 | BADCODE("bad argument number" ); |
4680 | } |
4681 | |
4682 | varNum = compMapILargNum(varNum); // account for possible hidden param |
4683 | } |
4684 | |
4685 | varType = (var_types)lvaTable[varNum].lvType; |
4686 | ti = lvaTable[varNum].lvVerTypeInfo; |
4687 | |
4688 | // Determine if the next instruction will consume |
4689 | // the address. If so we won't mark this var as |
4690 | // address taken. |
4691 | // |
4692 | // We will put structs on the stack and changing |
4693 | // the addrTaken of a local requires an extra pass |
4694 | // in the morpher so we won't apply this |
4695 | // optimization to structs. |
4696 | // |
4697 | // Debug code spills for every IL instruction, and |
4698 | // therefore it will split statements, so we will |
4699 | // need the address. Note that this optimization |
4700 | // is based in that we know what trees we will |
4701 | // generate for this ldfld, and we require that we |
4702 | // won't need the address of this local at all |
4703 | noway_assert(varNum < lvaTableCnt); |
4704 | |
4705 | const bool notStruct = !varTypeIsStruct(&lvaTable[varNum]); |
4706 | const bool notLastInstr = (codeAddr < codeEndp - sz); |
4707 | const bool notDebugCode = !opts.compDbgCode; |
4708 | |
4709 | if (notStruct && notLastInstr && notDebugCode && |
4710 | impILConsumesAddr(codeAddr + sz, impTokenLookupContextHandle, info.compScopeHnd)) |
4711 | { |
4712 | // We can skip the addrtaken, as next IL instruction consumes |
4713 | // the address. |
4714 | } |
4715 | else |
4716 | { |
4717 | lvaTable[varNum].lvHasLdAddrOp = 1; |
4718 | if (!info.compIsStatic && (varNum == 0)) |
4719 | { |
4720 | // Addr taken on "this" pointer is significant, |
4721 | // go ahead to mark it as permanently addr-exposed here. |
4722 | lvaSetVarAddrExposed(0); |
4723 | // This may be conservative, but probably not very. |
4724 | } |
4725 | } |
4726 | } // isInlining |
4727 | |
4728 | typeIsNormed = ti.IsValueClass() && !varTypeIsStruct(varType); |
4729 | } |
4730 | break; |
4731 | |
4732 | #if !defined(FEATURE_CORECLR) |
4733 | case CEE_CALLI: |
4734 | |
4735 | // CEE_CALLI should not be inlined if the call indirect target has a calling convention other than |
4736 | // CORINFO_CALLCONV_DEFAULT. In the case where we have a no-marshal CALLI P/Invoke we end up calling |
4737 | // the IL stub. We don't NGEN these stubs, so we'll have to JIT an IL stub for a trivial func. |
4738 | // It's almost certainly a better choice to leave out the inline candidate so we can generate an inlined |
4739 | // call frame. |
4740 | |
4741 | // Consider skipping this bail-out for force inlines. |
4742 | if (makeInlineObservations) |
4743 | { |
4744 | if (codeAddr > codeEndp - sizeof(DWORD)) |
4745 | { |
4746 | goto TOO_FAR; |
4747 | } |
4748 | |
4749 | CORINFO_SIG_INFO calliSig; |
4750 | eeGetSig(getU4LittleEndian(codeAddr), info.compScopeHnd, impTokenLookupContextHandle, &calliSig); |
4751 | |
4752 | if (calliSig.getCallConv() != CORINFO_CALLCONV_DEFAULT) |
4753 | { |
4754 | compInlineResult->Note(InlineObservation::CALLEE_UNSUPPORTED_OPCODE); |
4755 | |
4756 | // Fail fast if we're inlining |
4757 | if (isInlining) |
4758 | { |
4759 | assert(compInlineResult->IsFailure()); |
4760 | return; |
4761 | } |
4762 | } |
4763 | } |
4764 | break; |
4765 | #endif // FEATURE_CORECLR |
4766 | |
4767 | case CEE_JMP: |
4768 | retBlocks++; |
4769 | |
4770 | #if !defined(_TARGET_X86_) && !defined(_TARGET_ARM_) |
4771 | if (!isInlining) |
4772 | { |
4773 | // We transform this into a set of ldarg's + tail call and |
4774 | // thus may push more onto the stack than originally thought. |
4775 | // This doesn't interfere with verification because CEE_JMP |
4776 | // is never verifiable, and there's nothing unsafe you can |
4777 | // do with a an IL stack overflow if the JIT is expecting it. |
4778 | info.compMaxStack = max(info.compMaxStack, info.compILargsCount); |
4779 | break; |
4780 | } |
4781 | #endif // !_TARGET_X86_ && !_TARGET_ARM_ |
4782 | |
4783 | // If we are inlining, we need to fail for a CEE_JMP opcode, just like |
4784 | // the list of other opcodes (for all platforms). |
4785 | |
4786 | __fallthrough; |
4787 | case CEE_MKREFANY: |
4788 | case CEE_RETHROW: |
4789 | if (makeInlineObservations) |
4790 | { |
4791 | // Arguably this should be NoteFatal, but the legacy behavior is |
4792 | // to ignore this for the prejit root. |
4793 | compInlineResult->Note(InlineObservation::CALLEE_UNSUPPORTED_OPCODE); |
4794 | |
4795 | // Fail fast if we're inlining... |
4796 | if (isInlining) |
4797 | { |
4798 | assert(compInlineResult->IsFailure()); |
4799 | return; |
4800 | } |
4801 | } |
4802 | break; |
4803 | |
4804 | case CEE_LOCALLOC: |
4805 | |
4806 | // We now allow localloc callees to become candidates in some cases. |
4807 | if (makeInlineObservations) |
4808 | { |
4809 | compInlineResult->Note(InlineObservation::CALLEE_HAS_LOCALLOC); |
4810 | if (isInlining && compInlineResult->IsFailure()) |
4811 | { |
4812 | return; |
4813 | } |
4814 | } |
4815 | break; |
4816 | |
4817 | case CEE_LDARG_0: |
4818 | case CEE_LDARG_1: |
4819 | case CEE_LDARG_2: |
4820 | case CEE_LDARG_3: |
4821 | if (makeInlineObservations) |
4822 | { |
4823 | pushedStack.PushArgument(opcode - CEE_LDARG_0); |
4824 | } |
4825 | break; |
4826 | |
4827 | case CEE_LDARG_S: |
4828 | case CEE_LDARG: |
4829 | { |
4830 | if (codeAddr > codeEndp - sz) |
4831 | { |
4832 | goto TOO_FAR; |
4833 | } |
4834 | |
4835 | varNum = (sz == sizeof(BYTE)) ? getU1LittleEndian(codeAddr) : getU2LittleEndian(codeAddr); |
4836 | |
4837 | if (makeInlineObservations) |
4838 | { |
4839 | pushedStack.PushArgument(varNum); |
4840 | } |
4841 | } |
4842 | break; |
4843 | |
4844 | case CEE_LDLEN: |
4845 | if (makeInlineObservations) |
4846 | { |
4847 | pushedStack.PushArrayLen(); |
4848 | } |
4849 | break; |
4850 | |
4851 | case CEE_CEQ: |
4852 | case CEE_CGT: |
4853 | case CEE_CGT_UN: |
4854 | case CEE_CLT: |
4855 | case CEE_CLT_UN: |
4856 | if (makeInlineObservations) |
4857 | { |
4858 | fgObserveInlineConstants(opcode, pushedStack, isInlining); |
4859 | } |
4860 | break; |
4861 | case CEE_RET: |
4862 | retBlocks++; |
4863 | |
4864 | default: |
4865 | break; |
4866 | } |
4867 | |
4868 | // Skip any remaining operands this opcode may have |
4869 | codeAddr += sz; |
4870 | |
4871 | // Note the opcode we just saw |
4872 | if (makeInlineObservations) |
4873 | { |
4874 | InlineObservation obs = |
4875 | typeIsNormed ? InlineObservation::CALLEE_OPCODE_NORMED : InlineObservation::CALLEE_OPCODE; |
4876 | compInlineResult->NoteInt(obs, opcode); |
4877 | } |
4878 | } |
4879 | |
4880 | if (codeAddr != codeEndp) |
4881 | { |
4882 | TOO_FAR: |
4883 | BADCODE3("Code ends in the middle of an opcode, or there is a branch past the end of the method" , |
4884 | " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
4885 | } |
4886 | |
4887 | if (makeInlineObservations) |
4888 | { |
4889 | compInlineResult->Note(InlineObservation::CALLEE_END_OPCODE_SCAN); |
4890 | |
4891 | // If there are no return blocks we know it does not return, however if there |
4892 | // return blocks we don't know it returns as it may be counting unreachable code. |
4893 | // However we will still make the CALLEE_DOES_NOT_RETURN observation. |
4894 | |
4895 | compInlineResult->NoteBool(InlineObservation::CALLEE_DOES_NOT_RETURN, retBlocks == 0); |
4896 | |
4897 | if (retBlocks == 0 && isInlining) |
4898 | { |
4899 | // Mark the call node as "no return" as it can impact caller's code quality. |
4900 | impInlineInfo->iciCall->gtCallMoreFlags |= GTF_CALL_M_DOES_NOT_RETURN; |
4901 | } |
4902 | |
4903 | // If the inline is viable and discretionary, do the |
4904 | // profitability screening. |
4905 | if (compInlineResult->IsDiscretionaryCandidate()) |
4906 | { |
4907 | // Make some callsite specific observations that will feed |
4908 | // into the profitability model. |
4909 | impMakeDiscretionaryInlineObservations(impInlineInfo, compInlineResult); |
4910 | |
4911 | // None of those observations should have changed the |
4912 | // inline's viability. |
4913 | assert(compInlineResult->IsCandidate()); |
4914 | |
4915 | if (isInlining) |
4916 | { |
4917 | // Assess profitability... |
4918 | CORINFO_METHOD_INFO* methodInfo = &impInlineInfo->inlineCandidateInfo->methInfo; |
4919 | compInlineResult->DetermineProfitability(methodInfo); |
4920 | |
4921 | if (compInlineResult->IsFailure()) |
4922 | { |
4923 | impInlineRoot()->m_inlineStrategy->NoteUnprofitable(); |
4924 | JITDUMP("\n\nInline expansion aborted, inline not profitable\n" ); |
4925 | return; |
4926 | } |
4927 | else |
4928 | { |
4929 | // The inline is still viable. |
4930 | assert(compInlineResult->IsCandidate()); |
4931 | } |
4932 | } |
4933 | else |
4934 | { |
4935 | // Prejit root case. Profitability assessment for this |
4936 | // is done over in compCompileHelper. |
4937 | } |
4938 | } |
4939 | } |
4940 | |
4941 | // None of the local vars in the inlinee should have address taken or been written to. |
4942 | // Therefore we should NOT need to enter this "if" statement. |
4943 | if (!isInlining && !info.compIsStatic) |
4944 | { |
4945 | fgAdjustForAddressExposedOrWrittenThis(); |
4946 | } |
4947 | |
4948 | // Now that we've seen the IL, set lvSingleDef for root method |
4949 | // locals. |
4950 | // |
4951 | // We could also do this for root method arguments but single-def |
4952 | // arguments are set by the caller and so we don't know anything |
4953 | // about the possible values or types. |
4954 | // |
4955 | // For inlinees we do this over in impInlineFetchLocal and |
4956 | // impInlineFetchArg (here args are included as we somtimes get |
4957 | // new information about the types of inlinee args). |
4958 | if (!isInlining) |
4959 | { |
4960 | const unsigned firstLcl = info.compArgsCount; |
4961 | const unsigned lastLcl = firstLcl + info.compMethodInfo->locals.numArgs; |
4962 | for (unsigned lclNum = firstLcl; lclNum < lastLcl; lclNum++) |
4963 | { |
4964 | LclVarDsc* lclDsc = lvaGetDesc(lclNum); |
4965 | assert(lclDsc->lvSingleDef == 0); |
4966 | // could restrict this to TYP_REF |
4967 | lclDsc->lvSingleDef = !lclDsc->lvHasMultipleILStoreOp && !lclDsc->lvHasLdAddrOp; |
4968 | |
4969 | if (lclDsc->lvSingleDef) |
4970 | { |
4971 | JITDUMP("Marked V%02u as a single def local\n" , lclNum); |
4972 | } |
4973 | } |
4974 | } |
4975 | } |
4976 | |
4977 | #ifdef _PREFAST_ |
4978 | #pragma warning(pop) |
4979 | #endif |
4980 | |
4981 | //------------------------------------------------------------------------ |
4982 | // fgAdjustForAddressExposedOrWrittenThis: update var table for cases |
4983 | // where the this pointer value can change. |
4984 | // |
4985 | // Notes: |
4986 | // Modifies lvaArg0Var to refer to a temp if the value of 'this' can |
4987 | // change. The original this (info.compThisArg) then remains |
4988 | // unmodified in the method. fgAddInternal is reponsible for |
4989 | // adding the code to copy the initial this into the temp. |
4990 | |
4991 | void Compiler::fgAdjustForAddressExposedOrWrittenThis() |
4992 | { |
4993 | // Optionally enable adjustment during stress. |
4994 | if (!tiVerificationNeeded && compStressCompile(STRESS_GENERIC_VARN, 15)) |
4995 | { |
4996 | lvaTable[info.compThisArg].lvHasILStoreOp = true; |
4997 | } |
4998 | |
4999 | // If this is exposed or written to, create a temp for the modifiable this |
5000 | if (lvaTable[info.compThisArg].lvAddrExposed || lvaTable[info.compThisArg].lvHasILStoreOp) |
5001 | { |
5002 | // If there is a "ldarga 0" or "starg 0", grab and use the temp. |
5003 | lvaArg0Var = lvaGrabTemp(false DEBUGARG("Address-exposed, or written this pointer" )); |
5004 | noway_assert(lvaArg0Var > (unsigned)info.compThisArg); |
5005 | lvaTable[lvaArg0Var].lvType = lvaTable[info.compThisArg].TypeGet(); |
5006 | lvaTable[lvaArg0Var].lvAddrExposed = lvaTable[info.compThisArg].lvAddrExposed; |
5007 | lvaTable[lvaArg0Var].lvDoNotEnregister = lvaTable[info.compThisArg].lvDoNotEnregister; |
5008 | #ifdef DEBUG |
5009 | lvaTable[lvaArg0Var].lvVMNeedsStackAddr = lvaTable[info.compThisArg].lvVMNeedsStackAddr; |
5010 | lvaTable[lvaArg0Var].lvLiveInOutOfHndlr = lvaTable[info.compThisArg].lvLiveInOutOfHndlr; |
5011 | lvaTable[lvaArg0Var].lvLclFieldExpr = lvaTable[info.compThisArg].lvLclFieldExpr; |
5012 | lvaTable[lvaArg0Var].lvLiveAcrossUCall = lvaTable[info.compThisArg].lvLiveAcrossUCall; |
5013 | #endif |
5014 | lvaTable[lvaArg0Var].lvHasILStoreOp = lvaTable[info.compThisArg].lvHasILStoreOp; |
5015 | lvaTable[lvaArg0Var].lvVerTypeInfo = lvaTable[info.compThisArg].lvVerTypeInfo; |
5016 | |
5017 | // Clear the TI_FLAG_THIS_PTR in the original 'this' pointer. |
5018 | noway_assert(lvaTable[lvaArg0Var].lvVerTypeInfo.IsThisPtr()); |
5019 | lvaTable[info.compThisArg].lvVerTypeInfo.ClearThisPtr(); |
5020 | lvaTable[info.compThisArg].lvAddrExposed = false; |
5021 | lvaTable[info.compThisArg].lvHasILStoreOp = false; |
5022 | } |
5023 | } |
5024 | |
5025 | //------------------------------------------------------------------------ |
5026 | // fgObserveInlineConstants: look for operations that might get optimized |
5027 | // if this method were to be inlined, and report these to the inliner. |
5028 | // |
5029 | // Arguments: |
5030 | // opcode -- MSIL opcode under consideration |
5031 | // stack -- abstract stack model at this point in the IL |
5032 | // isInlining -- true if we're inlining (vs compiling a prejit root) |
5033 | // |
5034 | // Notes: |
5035 | // Currently only invoked on compare and branch opcodes. |
5036 | // |
5037 | // If we're inlining we also look at the argument values supplied by |
5038 | // the caller at this call site. |
5039 | // |
5040 | // The crude stack model may overestimate stack depth. |
5041 | |
5042 | void Compiler::fgObserveInlineConstants(OPCODE opcode, const FgStack& stack, bool isInlining) |
5043 | { |
5044 | // We should be able to record inline observations. |
5045 | assert(compInlineResult != nullptr); |
5046 | |
5047 | // The stack only has to be 1 deep for BRTRUE/FALSE |
5048 | bool lookForBranchCases = stack.IsStackAtLeastOneDeep(); |
5049 | |
5050 | if (lookForBranchCases) |
5051 | { |
5052 | if (opcode == CEE_BRFALSE || opcode == CEE_BRFALSE_S || opcode == CEE_BRTRUE || opcode == CEE_BRTRUE_S) |
5053 | { |
5054 | unsigned slot0 = stack.GetSlot0(); |
5055 | if (FgStack::IsArgument(slot0)) |
5056 | { |
5057 | compInlineResult->Note(InlineObservation::CALLEE_ARG_FEEDS_CONSTANT_TEST); |
5058 | |
5059 | if (isInlining) |
5060 | { |
5061 | // Check for the double whammy of an incoming constant argument |
5062 | // feeding a constant test. |
5063 | unsigned varNum = FgStack::SlotTypeToArgNum(slot0); |
5064 | if (impInlineInfo->inlArgInfo[varNum].argNode->OperIsConst()) |
5065 | { |
5066 | compInlineResult->Note(InlineObservation::CALLSITE_CONSTANT_ARG_FEEDS_TEST); |
5067 | } |
5068 | } |
5069 | } |
5070 | |
5071 | return; |
5072 | } |
5073 | } |
5074 | |
5075 | // Remaining cases require at least two things on the stack. |
5076 | if (!stack.IsStackTwoDeep()) |
5077 | { |
5078 | return; |
5079 | } |
5080 | |
5081 | unsigned slot0 = stack.GetSlot0(); |
5082 | unsigned slot1 = stack.GetSlot1(); |
5083 | |
5084 | // Arg feeds constant test |
5085 | if ((FgStack::IsConstant(slot0) && FgStack::IsArgument(slot1)) || |
5086 | (FgStack::IsConstant(slot1) && FgStack::IsArgument(slot0))) |
5087 | { |
5088 | compInlineResult->Note(InlineObservation::CALLEE_ARG_FEEDS_CONSTANT_TEST); |
5089 | } |
5090 | |
5091 | // Arg feeds range check |
5092 | if ((FgStack::IsArrayLen(slot0) && FgStack::IsArgument(slot1)) || |
5093 | (FgStack::IsArrayLen(slot1) && FgStack::IsArgument(slot0))) |
5094 | { |
5095 | compInlineResult->Note(InlineObservation::CALLEE_ARG_FEEDS_RANGE_CHECK); |
5096 | } |
5097 | |
5098 | // Check for an incoming arg that's a constant |
5099 | if (isInlining) |
5100 | { |
5101 | if (FgStack::IsArgument(slot0)) |
5102 | { |
5103 | compInlineResult->Note(InlineObservation::CALLEE_ARG_FEEDS_TEST); |
5104 | |
5105 | unsigned varNum = FgStack::SlotTypeToArgNum(slot0); |
5106 | if (impInlineInfo->inlArgInfo[varNum].argNode->OperIsConst()) |
5107 | { |
5108 | compInlineResult->Note(InlineObservation::CALLSITE_CONSTANT_ARG_FEEDS_TEST); |
5109 | } |
5110 | } |
5111 | |
5112 | if (FgStack::IsArgument(slot1)) |
5113 | { |
5114 | compInlineResult->Note(InlineObservation::CALLEE_ARG_FEEDS_TEST); |
5115 | |
5116 | unsigned varNum = FgStack::SlotTypeToArgNum(slot1); |
5117 | if (impInlineInfo->inlArgInfo[varNum].argNode->OperIsConst()) |
5118 | { |
5119 | compInlineResult->Note(InlineObservation::CALLSITE_CONSTANT_ARG_FEEDS_TEST); |
5120 | } |
5121 | } |
5122 | } |
5123 | } |
5124 | |
5125 | /***************************************************************************** |
5126 | * |
5127 | * Finally link up the bbJumpDest of the blocks together |
5128 | */ |
5129 | |
5130 | void Compiler::fgMarkBackwardJump(BasicBlock* startBlock, BasicBlock* endBlock) |
5131 | { |
5132 | noway_assert(startBlock->bbNum <= endBlock->bbNum); |
5133 | |
5134 | for (BasicBlock* block = startBlock; block != endBlock->bbNext; block = block->bbNext) |
5135 | { |
5136 | if ((block->bbFlags & BBF_BACKWARD_JUMP) == 0) |
5137 | { |
5138 | block->bbFlags |= BBF_BACKWARD_JUMP; |
5139 | } |
5140 | } |
5141 | } |
5142 | |
5143 | /***************************************************************************** |
5144 | * |
5145 | * Finally link up the bbJumpDest of the blocks together |
5146 | */ |
5147 | |
5148 | void Compiler::fgLinkBasicBlocks() |
5149 | { |
5150 | /* Create the basic block lookup tables */ |
5151 | |
5152 | fgInitBBLookup(); |
5153 | |
5154 | /* First block is always reachable */ |
5155 | |
5156 | fgFirstBB->bbRefs = 1; |
5157 | |
5158 | /* Walk all the basic blocks, filling in the target addresses */ |
5159 | |
5160 | for (BasicBlock* curBBdesc = fgFirstBB; curBBdesc; curBBdesc = curBBdesc->bbNext) |
5161 | { |
5162 | switch (curBBdesc->bbJumpKind) |
5163 | { |
5164 | case BBJ_COND: |
5165 | case BBJ_ALWAYS: |
5166 | case BBJ_LEAVE: |
5167 | curBBdesc->bbJumpDest = fgLookupBB(curBBdesc->bbJumpOffs); |
5168 | curBBdesc->bbJumpDest->bbRefs++; |
5169 | if (curBBdesc->bbJumpDest->bbNum <= curBBdesc->bbNum) |
5170 | { |
5171 | fgMarkBackwardJump(curBBdesc->bbJumpDest, curBBdesc); |
5172 | } |
5173 | |
5174 | /* Is the next block reachable? */ |
5175 | |
5176 | if (curBBdesc->bbJumpKind == BBJ_ALWAYS || curBBdesc->bbJumpKind == BBJ_LEAVE) |
5177 | { |
5178 | break; |
5179 | } |
5180 | |
5181 | if (!curBBdesc->bbNext) |
5182 | { |
5183 | BADCODE("Fall thru the end of a method" ); |
5184 | } |
5185 | |
5186 | // Fall through, the next block is also reachable |
5187 | |
5188 | case BBJ_NONE: |
5189 | curBBdesc->bbNext->bbRefs++; |
5190 | break; |
5191 | |
5192 | case BBJ_EHFINALLYRET: |
5193 | case BBJ_EHFILTERRET: |
5194 | case BBJ_THROW: |
5195 | case BBJ_RETURN: |
5196 | break; |
5197 | |
5198 | case BBJ_SWITCH: |
5199 | |
5200 | unsigned jumpCnt; |
5201 | jumpCnt = curBBdesc->bbJumpSwt->bbsCount; |
5202 | BasicBlock** jumpPtr; |
5203 | jumpPtr = curBBdesc->bbJumpSwt->bbsDstTab; |
5204 | |
5205 | do |
5206 | { |
5207 | *jumpPtr = fgLookupBB((unsigned)*(size_t*)jumpPtr); |
5208 | (*jumpPtr)->bbRefs++; |
5209 | if ((*jumpPtr)->bbNum <= curBBdesc->bbNum) |
5210 | { |
5211 | fgMarkBackwardJump(*jumpPtr, curBBdesc); |
5212 | } |
5213 | } while (++jumpPtr, --jumpCnt); |
5214 | |
5215 | /* Default case of CEE_SWITCH (next block), is at end of jumpTab[] */ |
5216 | |
5217 | noway_assert(*(jumpPtr - 1) == curBBdesc->bbNext); |
5218 | break; |
5219 | |
5220 | case BBJ_CALLFINALLY: // BBJ_CALLFINALLY and BBJ_EHCATCHRET don't appear until later |
5221 | case BBJ_EHCATCHRET: |
5222 | default: |
5223 | noway_assert(!"Unexpected bbJumpKind" ); |
5224 | break; |
5225 | } |
5226 | } |
5227 | } |
5228 | |
5229 | //------------------------------------------------------------------------ |
5230 | // fgMakeBasicBlocks: walk the IL creating basic blocks, and look for |
5231 | // operations that might get optimized if this method were to be inlined. |
5232 | // |
5233 | // Arguments: |
5234 | // codeAddr -- starting address of the method's IL stream |
5235 | // codeSize -- length of the IL stream |
5236 | // jumpTarget -- [in] bit vector of jump targets found by fgFindJumpTargets |
5237 | // |
5238 | // Returns: |
5239 | // number of return blocks (BBJ_RETURN) in the method (may be zero) |
5240 | // |
5241 | // Notes: |
5242 | // Invoked for prejited and jitted methods, and for all inlinees |
5243 | |
5244 | unsigned Compiler::fgMakeBasicBlocks(const BYTE* codeAddr, IL_OFFSET codeSize, FixedBitVect* jumpTarget) |
5245 | { |
5246 | unsigned retBlocks = 0; |
5247 | const BYTE* codeBegp = codeAddr; |
5248 | const BYTE* codeEndp = codeAddr + codeSize; |
5249 | bool tailCall = false; |
5250 | unsigned curBBoffs = 0; |
5251 | BasicBlock* curBBdesc; |
5252 | |
5253 | // Keep track of where we are in the scope lists, as we will also |
5254 | // create blocks at scope boundaries. |
5255 | if (opts.compDbgCode && (info.compVarScopesCount > 0)) |
5256 | { |
5257 | compResetScopeLists(); |
5258 | |
5259 | // Ignore scopes beginning at offset 0 |
5260 | while (compGetNextEnterScope(0)) |
5261 | { /* do nothing */ |
5262 | } |
5263 | while (compGetNextExitScope(0)) |
5264 | { /* do nothing */ |
5265 | } |
5266 | } |
5267 | |
5268 | do |
5269 | { |
5270 | unsigned jmpAddr = DUMMY_INIT(BAD_IL_OFFSET); |
5271 | unsigned bbFlags = 0; |
5272 | BBswtDesc* swtDsc = nullptr; |
5273 | unsigned nxtBBoffs; |
5274 | OPCODE opcode = (OPCODE)getU1LittleEndian(codeAddr); |
5275 | codeAddr += sizeof(__int8); |
5276 | BBjumpKinds jmpKind = BBJ_NONE; |
5277 | |
5278 | DECODE_OPCODE: |
5279 | |
5280 | /* Get the size of additional parameters */ |
5281 | |
5282 | noway_assert((unsigned)opcode < CEE_COUNT); |
5283 | |
5284 | unsigned sz = opcodeSizes[opcode]; |
5285 | |
5286 | switch (opcode) |
5287 | { |
5288 | signed jmpDist; |
5289 | |
5290 | case CEE_PREFIX1: |
5291 | if (jumpTarget->bitVectTest((UINT)(codeAddr - codeBegp))) |
5292 | { |
5293 | BADCODE3("jump target between prefix 0xFE and opcode" , " at offset %04X" , |
5294 | (IL_OFFSET)(codeAddr - codeBegp)); |
5295 | } |
5296 | |
5297 | opcode = (OPCODE)(256 + getU1LittleEndian(codeAddr)); |
5298 | codeAddr += sizeof(__int8); |
5299 | goto DECODE_OPCODE; |
5300 | |
5301 | /* Check to see if we have a jump/return opcode */ |
5302 | |
5303 | case CEE_BRFALSE: |
5304 | case CEE_BRFALSE_S: |
5305 | case CEE_BRTRUE: |
5306 | case CEE_BRTRUE_S: |
5307 | |
5308 | case CEE_BEQ: |
5309 | case CEE_BEQ_S: |
5310 | case CEE_BGE: |
5311 | case CEE_BGE_S: |
5312 | case CEE_BGE_UN: |
5313 | case CEE_BGE_UN_S: |
5314 | case CEE_BGT: |
5315 | case CEE_BGT_S: |
5316 | case CEE_BGT_UN: |
5317 | case CEE_BGT_UN_S: |
5318 | case CEE_BLE: |
5319 | case CEE_BLE_S: |
5320 | case CEE_BLE_UN: |
5321 | case CEE_BLE_UN_S: |
5322 | case CEE_BLT: |
5323 | case CEE_BLT_S: |
5324 | case CEE_BLT_UN: |
5325 | case CEE_BLT_UN_S: |
5326 | case CEE_BNE_UN: |
5327 | case CEE_BNE_UN_S: |
5328 | |
5329 | jmpKind = BBJ_COND; |
5330 | goto JMP; |
5331 | |
5332 | case CEE_LEAVE: |
5333 | case CEE_LEAVE_S: |
5334 | |
5335 | // We need to check if we are jumping out of a finally-protected try. |
5336 | jmpKind = BBJ_LEAVE; |
5337 | goto JMP; |
5338 | |
5339 | case CEE_BR: |
5340 | case CEE_BR_S: |
5341 | jmpKind = BBJ_ALWAYS; |
5342 | goto JMP; |
5343 | |
5344 | JMP: |
5345 | |
5346 | /* Compute the target address of the jump */ |
5347 | |
5348 | jmpDist = (sz == 1) ? getI1LittleEndian(codeAddr) : getI4LittleEndian(codeAddr); |
5349 | |
5350 | if (compIsForInlining() && jmpDist == 0 && (opcode == CEE_BR || opcode == CEE_BR_S)) |
5351 | { |
5352 | continue; /* NOP */ |
5353 | } |
5354 | |
5355 | jmpAddr = (IL_OFFSET)(codeAddr - codeBegp) + sz + jmpDist; |
5356 | break; |
5357 | |
5358 | case CEE_SWITCH: |
5359 | { |
5360 | unsigned jmpBase; |
5361 | unsigned jmpCnt; // # of switch cases (excluding default) |
5362 | |
5363 | BasicBlock** jmpTab; |
5364 | BasicBlock** jmpPtr; |
5365 | |
5366 | /* Allocate the switch descriptor */ |
5367 | |
5368 | swtDsc = new (this, CMK_BasicBlock) BBswtDesc; |
5369 | |
5370 | /* Read the number of entries in the table */ |
5371 | |
5372 | jmpCnt = getU4LittleEndian(codeAddr); |
5373 | codeAddr += 4; |
5374 | |
5375 | /* Compute the base offset for the opcode */ |
5376 | |
5377 | jmpBase = (IL_OFFSET)((codeAddr - codeBegp) + jmpCnt * sizeof(DWORD)); |
5378 | |
5379 | /* Allocate the jump table */ |
5380 | |
5381 | jmpPtr = jmpTab = new (this, CMK_BasicBlock) BasicBlock*[jmpCnt + 1]; |
5382 | |
5383 | /* Fill in the jump table */ |
5384 | |
5385 | for (unsigned count = jmpCnt; count; count--) |
5386 | { |
5387 | jmpDist = getI4LittleEndian(codeAddr); |
5388 | codeAddr += 4; |
5389 | |
5390 | // store the offset in the pointer. We change these in fgLinkBasicBlocks(). |
5391 | *jmpPtr++ = (BasicBlock*)(size_t)(jmpBase + jmpDist); |
5392 | } |
5393 | |
5394 | /* Append the default label to the target table */ |
5395 | |
5396 | *jmpPtr++ = (BasicBlock*)(size_t)jmpBase; |
5397 | |
5398 | /* Make sure we found the right number of labels */ |
5399 | |
5400 | noway_assert(jmpPtr == jmpTab + jmpCnt + 1); |
5401 | |
5402 | /* Compute the size of the switch opcode operands */ |
5403 | |
5404 | sz = sizeof(DWORD) + jmpCnt * sizeof(DWORD); |
5405 | |
5406 | /* Fill in the remaining fields of the switch descriptor */ |
5407 | |
5408 | swtDsc->bbsCount = jmpCnt + 1; |
5409 | swtDsc->bbsDstTab = jmpTab; |
5410 | |
5411 | /* This is definitely a jump */ |
5412 | |
5413 | jmpKind = BBJ_SWITCH; |
5414 | fgHasSwitch = true; |
5415 | |
5416 | if (opts.compProcedureSplitting) |
5417 | { |
5418 | // TODO-CQ: We might need to create a switch table; we won't know for sure until much later. |
5419 | // However, switch tables don't work with hot/cold splitting, currently. The switch table data needs |
5420 | // a relocation such that if the base (the first block after the prolog) and target of the switch |
5421 | // branch are put in different sections, the difference stored in the table is updated. However, our |
5422 | // relocation implementation doesn't support three different pointers (relocation address, base, and |
5423 | // target). So, we need to change our switch table implementation to be more like |
5424 | // JIT64: put the table in the code section, in the same hot/cold section as the switch jump itself |
5425 | // (maybe immediately after the switch jump), and make the "base" address be also in that section, |
5426 | // probably the address after the switch jump. |
5427 | opts.compProcedureSplitting = false; |
5428 | JITDUMP("Turning off procedure splitting for this method, as it might need switch tables; " |
5429 | "implementation limitation.\n" ); |
5430 | } |
5431 | } |
5432 | goto GOT_ENDP; |
5433 | |
5434 | case CEE_ENDFILTER: |
5435 | bbFlags |= BBF_DONT_REMOVE; |
5436 | jmpKind = BBJ_EHFILTERRET; |
5437 | break; |
5438 | |
5439 | case CEE_ENDFINALLY: |
5440 | jmpKind = BBJ_EHFINALLYRET; |
5441 | break; |
5442 | |
5443 | case CEE_TAILCALL: |
5444 | if (compIsForInlining()) |
5445 | { |
5446 | // TODO-CQ: We can inline some callees with explicit tail calls if we can guarantee that the calls |
5447 | // can be dispatched as tail calls from the caller. |
5448 | compInlineResult->NoteFatal(InlineObservation::CALLEE_EXPLICIT_TAIL_PREFIX); |
5449 | retBlocks++; |
5450 | return retBlocks; |
5451 | } |
5452 | |
5453 | __fallthrough; |
5454 | |
5455 | case CEE_READONLY: |
5456 | case CEE_CONSTRAINED: |
5457 | case CEE_VOLATILE: |
5458 | case CEE_UNALIGNED: |
5459 | // fgFindJumpTargets should have ruled out this possibility |
5460 | // (i.e. a prefix opcodes as last intruction in a block) |
5461 | noway_assert(codeAddr < codeEndp); |
5462 | |
5463 | if (jumpTarget->bitVectTest((UINT)(codeAddr - codeBegp))) |
5464 | { |
5465 | BADCODE3("jump target between prefix and an opcode" , " at offset %04X" , |
5466 | (IL_OFFSET)(codeAddr - codeBegp)); |
5467 | } |
5468 | break; |
5469 | |
5470 | case CEE_CALL: |
5471 | case CEE_CALLVIRT: |
5472 | case CEE_CALLI: |
5473 | { |
5474 | if (compIsForInlining() || // Ignore tail call in the inlinee. Period. |
5475 | (!tailCall && !compTailCallStress()) // A new BB with BBJ_RETURN would have been created |
5476 | |
5477 | // after a tailcall statement. |
5478 | // We need to keep this invariant if we want to stress the tailcall. |
5479 | // That way, the potential (tail)call statement is always the last |
5480 | // statement in the block. |
5481 | // Otherwise, we will assert at the following line in fgMorphCall() |
5482 | // noway_assert(fgMorphStmt->gtNext == NULL); |
5483 | ) |
5484 | { |
5485 | // Neither .tailcall prefix, no tailcall stress. So move on. |
5486 | break; |
5487 | } |
5488 | |
5489 | // Make sure the code sequence is legal for the tail call. |
5490 | // If so, mark this BB as having a BBJ_RETURN. |
5491 | |
5492 | if (codeAddr >= codeEndp - sz) |
5493 | { |
5494 | BADCODE3("No code found after the call instruction" , " at offset %04X" , |
5495 | (IL_OFFSET)(codeAddr - codeBegp)); |
5496 | } |
5497 | |
5498 | if (tailCall) |
5499 | { |
5500 | bool isCallPopAndRet = false; |
5501 | |
5502 | // impIsTailCallILPattern uses isRecursive flag to determine whether ret in a fallthrough block is |
5503 | // allowed. We don't know at this point whether the call is recursive so we conservatively pass |
5504 | // false. This will only affect explicit tail calls when IL verification is not needed for the |
5505 | // method. |
5506 | bool isRecursive = false; |
5507 | if (!impIsTailCallILPattern(tailCall, opcode, codeAddr + sz, codeEndp, isRecursive, |
5508 | &isCallPopAndRet)) |
5509 | { |
5510 | #if !defined(FEATURE_CORECLR) && defined(_TARGET_AMD64_) |
5511 | BADCODE3("tail call not followed by ret or pop+ret" , " at offset %04X" , |
5512 | (IL_OFFSET)(codeAddr - codeBegp)); |
5513 | #else |
5514 | BADCODE3("tail call not followed by ret" , " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
5515 | #endif // !FEATURE_CORECLR && _TARGET_AMD64_ |
5516 | } |
5517 | |
5518 | #if !defined(FEATURE_CORECLR) && defined(_TARGET_AMD64_) |
5519 | if (isCallPopAndRet) |
5520 | { |
5521 | // By breaking here, we let pop and ret opcodes to be |
5522 | // imported after tail call. If tail prefix is honored, |
5523 | // stmts corresponding to pop and ret will be removed |
5524 | // in fgMorphCall(). |
5525 | break; |
5526 | } |
5527 | #endif // !FEATURE_CORECLR && _TARGET_AMD64_ |
5528 | } |
5529 | else |
5530 | { |
5531 | OPCODE nextOpcode = (OPCODE)getU1LittleEndian(codeAddr + sz); |
5532 | |
5533 | if (nextOpcode != CEE_RET) |
5534 | { |
5535 | noway_assert(compTailCallStress()); |
5536 | // Next OPCODE is not a CEE_RET, bail the attempt to stress the tailcall. |
5537 | // (I.e. We will not make a new BB after the "call" statement.) |
5538 | break; |
5539 | } |
5540 | } |
5541 | } |
5542 | |
5543 | /* For tail call, we just call CORINFO_HELP_TAILCALL, and it jumps to the |
5544 | target. So we don't need an epilog - just like CORINFO_HELP_THROW. |
5545 | Make the block BBJ_RETURN, but we will change it to BBJ_THROW |
5546 | if the tailness of the call is satisfied. |
5547 | NOTE : The next instruction is guaranteed to be a CEE_RET |
5548 | and it will create another BasicBlock. But there may be an |
5549 | jump directly to that CEE_RET. If we want to avoid creating |
5550 | an unnecessary block, we need to check if the CEE_RETURN is |
5551 | the target of a jump. |
5552 | */ |
5553 | |
5554 | // fall-through |
5555 | |
5556 | case CEE_JMP: |
5557 | /* These are equivalent to a return from the current method |
5558 | But instead of directly returning to the caller we jump and |
5559 | execute something else in between */ |
5560 | case CEE_RET: |
5561 | retBlocks++; |
5562 | jmpKind = BBJ_RETURN; |
5563 | break; |
5564 | |
5565 | case CEE_THROW: |
5566 | case CEE_RETHROW: |
5567 | jmpKind = BBJ_THROW; |
5568 | break; |
5569 | |
5570 | #ifdef DEBUG |
5571 | // make certain we did not forget any flow of control instructions |
5572 | // by checking the 'ctrl' field in opcode.def. First filter out all |
5573 | // non-ctrl instructions |
5574 | #define BREAK(name) \ |
5575 | case name: \ |
5576 | break; |
5577 | #define NEXT(name) \ |
5578 | case name: \ |
5579 | break; |
5580 | #define CALL(name) |
5581 | #define THROW(name) |
5582 | #undef RETURN // undef contract RETURN macro |
5583 | #define RETURN(name) |
5584 | #define META(name) |
5585 | #define BRANCH(name) |
5586 | #define COND_BRANCH(name) |
5587 | #define PHI(name) |
5588 | |
5589 | #define OPDEF(name, string, pop, push, oprType, opcType, l, s1, s2, ctrl) ctrl(name) |
5590 | #include "opcode.def" |
5591 | #undef OPDEF |
5592 | |
5593 | #undef PHI |
5594 | #undef BREAK |
5595 | #undef CALL |
5596 | #undef NEXT |
5597 | #undef THROW |
5598 | #undef RETURN |
5599 | #undef META |
5600 | #undef BRANCH |
5601 | #undef COND_BRANCH |
5602 | |
5603 | // These ctrl-flow opcodes don't need any special handling |
5604 | case CEE_NEWOBJ: // CTRL_CALL |
5605 | break; |
5606 | |
5607 | // what's left are forgotten instructions |
5608 | default: |
5609 | BADCODE("Unrecognized control Opcode" ); |
5610 | break; |
5611 | #else // !DEBUG |
5612 | default: |
5613 | break; |
5614 | #endif // !DEBUG |
5615 | } |
5616 | |
5617 | /* Jump over the operand */ |
5618 | |
5619 | codeAddr += sz; |
5620 | |
5621 | GOT_ENDP: |
5622 | |
5623 | tailCall = (opcode == CEE_TAILCALL); |
5624 | |
5625 | /* Make sure a jump target isn't in the middle of our opcode */ |
5626 | |
5627 | if (sz) |
5628 | { |
5629 | IL_OFFSET offs = (IL_OFFSET)(codeAddr - codeBegp) - sz; // offset of the operand |
5630 | |
5631 | for (unsigned i = 0; i < sz; i++, offs++) |
5632 | { |
5633 | if (jumpTarget->bitVectTest(offs)) |
5634 | { |
5635 | BADCODE3("jump into the middle of an opcode" , " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
5636 | } |
5637 | } |
5638 | } |
5639 | |
5640 | /* Compute the offset of the next opcode */ |
5641 | |
5642 | nxtBBoffs = (IL_OFFSET)(codeAddr - codeBegp); |
5643 | |
5644 | bool foundScope = false; |
5645 | |
5646 | if (opts.compDbgCode && (info.compVarScopesCount > 0)) |
5647 | { |
5648 | while (compGetNextEnterScope(nxtBBoffs)) |
5649 | { |
5650 | foundScope = true; |
5651 | } |
5652 | while (compGetNextExitScope(nxtBBoffs)) |
5653 | { |
5654 | foundScope = true; |
5655 | } |
5656 | } |
5657 | |
5658 | /* Do we have a jump? */ |
5659 | |
5660 | if (jmpKind == BBJ_NONE) |
5661 | { |
5662 | /* No jump; make sure we don't fall off the end of the function */ |
5663 | |
5664 | if (codeAddr == codeEndp) |
5665 | { |
5666 | BADCODE3("missing return opcode" , " at offset %04X" , (IL_OFFSET)(codeAddr - codeBegp)); |
5667 | } |
5668 | |
5669 | /* If a label follows this opcode, we'll have to make a new BB */ |
5670 | |
5671 | bool makeBlock = jumpTarget->bitVectTest(nxtBBoffs); |
5672 | |
5673 | if (!makeBlock && foundScope) |
5674 | { |
5675 | makeBlock = true; |
5676 | #ifdef DEBUG |
5677 | if (verbose) |
5678 | { |
5679 | printf("Splitting at BBoffs = %04u\n" , nxtBBoffs); |
5680 | } |
5681 | #endif // DEBUG |
5682 | } |
5683 | |
5684 | if (!makeBlock) |
5685 | { |
5686 | continue; |
5687 | } |
5688 | } |
5689 | |
5690 | /* We need to create a new basic block */ |
5691 | |
5692 | curBBdesc = fgNewBasicBlock(jmpKind); |
5693 | |
5694 | curBBdesc->bbFlags |= bbFlags; |
5695 | curBBdesc->bbRefs = 0; |
5696 | |
5697 | curBBdesc->bbCodeOffs = curBBoffs; |
5698 | curBBdesc->bbCodeOffsEnd = nxtBBoffs; |
5699 | |
5700 | unsigned profileWeight; |
5701 | if (fgGetProfileWeightForBasicBlock(curBBoffs, &profileWeight)) |
5702 | { |
5703 | curBBdesc->setBBProfileWeight(profileWeight); |
5704 | if (profileWeight == 0) |
5705 | { |
5706 | curBBdesc->bbSetRunRarely(); |
5707 | } |
5708 | else |
5709 | { |
5710 | // Note that bbNewBasicBlock (called from fgNewBasicBlock) may have |
5711 | // already marked the block as rarely run. In that case (and when we know |
5712 | // that the block profile weight is non-zero) we want to unmark that. |
5713 | |
5714 | curBBdesc->bbFlags &= ~BBF_RUN_RARELY; |
5715 | } |
5716 | } |
5717 | |
5718 | switch (jmpKind) |
5719 | { |
5720 | case BBJ_SWITCH: |
5721 | curBBdesc->bbJumpSwt = swtDsc; |
5722 | break; |
5723 | |
5724 | case BBJ_COND: |
5725 | case BBJ_ALWAYS: |
5726 | case BBJ_LEAVE: |
5727 | noway_assert(jmpAddr != DUMMY_INIT(BAD_IL_OFFSET)); |
5728 | curBBdesc->bbJumpOffs = jmpAddr; |
5729 | break; |
5730 | |
5731 | default: |
5732 | break; |
5733 | } |
5734 | |
5735 | DBEXEC(verbose, curBBdesc->dspBlockHeader(this, false, false, false)); |
5736 | |
5737 | /* Remember where the next BB will start */ |
5738 | |
5739 | curBBoffs = nxtBBoffs; |
5740 | } while (codeAddr < codeEndp); |
5741 | |
5742 | noway_assert(codeAddr == codeEndp); |
5743 | |
5744 | /* Finally link up the bbJumpDest of the blocks together */ |
5745 | |
5746 | fgLinkBasicBlocks(); |
5747 | |
5748 | return retBlocks; |
5749 | } |
5750 | |
5751 | /***************************************************************************** |
5752 | * |
5753 | * Main entry point to discover the basic blocks for the current function. |
5754 | */ |
5755 | |
5756 | void Compiler::fgFindBasicBlocks() |
5757 | { |
5758 | #ifdef DEBUG |
5759 | if (verbose) |
5760 | { |
5761 | printf("*************** In fgFindBasicBlocks() for %s\n" , info.compFullName); |
5762 | } |
5763 | #endif |
5764 | |
5765 | // Allocate the 'jump target' bit vector |
5766 | FixedBitVect* jumpTarget = FixedBitVect::bitVectInit(info.compILCodeSize + 1, this); |
5767 | |
5768 | // Walk the instrs to find all jump targets |
5769 | fgFindJumpTargets(info.compCode, info.compILCodeSize, jumpTarget); |
5770 | if (compDonotInline()) |
5771 | { |
5772 | return; |
5773 | } |
5774 | |
5775 | unsigned XTnum; |
5776 | |
5777 | /* Are there any exception handlers? */ |
5778 | |
5779 | if (info.compXcptnsCount > 0) |
5780 | { |
5781 | noway_assert(!compIsForInlining()); |
5782 | |
5783 | /* Check and mark all the exception handlers */ |
5784 | |
5785 | for (XTnum = 0; XTnum < info.compXcptnsCount; XTnum++) |
5786 | { |
5787 | CORINFO_EH_CLAUSE clause; |
5788 | info.compCompHnd->getEHinfo(info.compMethodHnd, XTnum, &clause); |
5789 | noway_assert(clause.HandlerLength != (unsigned)-1); |
5790 | |
5791 | if (clause.TryLength <= 0) |
5792 | { |
5793 | BADCODE("try block length <=0" ); |
5794 | } |
5795 | |
5796 | /* Mark the 'try' block extent and the handler itself */ |
5797 | |
5798 | if (clause.TryOffset > info.compILCodeSize) |
5799 | { |
5800 | BADCODE("try offset is > codesize" ); |
5801 | } |
5802 | jumpTarget->bitVectSet(clause.TryOffset); |
5803 | |
5804 | if (clause.TryOffset + clause.TryLength > info.compILCodeSize) |
5805 | { |
5806 | BADCODE("try end is > codesize" ); |
5807 | } |
5808 | jumpTarget->bitVectSet(clause.TryOffset + clause.TryLength); |
5809 | |
5810 | if (clause.HandlerOffset > info.compILCodeSize) |
5811 | { |
5812 | BADCODE("handler offset > codesize" ); |
5813 | } |
5814 | jumpTarget->bitVectSet(clause.HandlerOffset); |
5815 | |
5816 | if (clause.HandlerOffset + clause.HandlerLength > info.compILCodeSize) |
5817 | { |
5818 | BADCODE("handler end > codesize" ); |
5819 | } |
5820 | jumpTarget->bitVectSet(clause.HandlerOffset + clause.HandlerLength); |
5821 | |
5822 | if (clause.Flags & CORINFO_EH_CLAUSE_FILTER) |
5823 | { |
5824 | if (clause.FilterOffset > info.compILCodeSize) |
5825 | { |
5826 | BADCODE("filter offset > codesize" ); |
5827 | } |
5828 | jumpTarget->bitVectSet(clause.FilterOffset); |
5829 | } |
5830 | } |
5831 | } |
5832 | |
5833 | #ifdef DEBUG |
5834 | if (verbose) |
5835 | { |
5836 | bool anyJumpTargets = false; |
5837 | printf("Jump targets:\n" ); |
5838 | for (unsigned i = 0; i < info.compILCodeSize + 1; i++) |
5839 | { |
5840 | if (jumpTarget->bitVectTest(i)) |
5841 | { |
5842 | anyJumpTargets = true; |
5843 | printf(" IL_%04x\n" , i); |
5844 | } |
5845 | } |
5846 | |
5847 | if (!anyJumpTargets) |
5848 | { |
5849 | printf(" none\n" ); |
5850 | } |
5851 | } |
5852 | #endif // DEBUG |
5853 | |
5854 | /* Now create the basic blocks */ |
5855 | |
5856 | unsigned retBlocks = fgMakeBasicBlocks(info.compCode, info.compILCodeSize, jumpTarget); |
5857 | |
5858 | if (compIsForInlining()) |
5859 | { |
5860 | |
5861 | #ifdef DEBUG |
5862 | // If fgFindJumpTargets marked the call as "no return" there |
5863 | // really should be no BBJ_RETURN blocks in the method. |
5864 | bool markedNoReturn = (impInlineInfo->iciCall->gtCallMoreFlags & GTF_CALL_M_DOES_NOT_RETURN) != 0; |
5865 | assert((markedNoReturn && (retBlocks == 0)) || (!markedNoReturn && (retBlocks >= 1))); |
5866 | #endif // DEBUG |
5867 | |
5868 | if (compInlineResult->IsFailure()) |
5869 | { |
5870 | return; |
5871 | } |
5872 | |
5873 | noway_assert(info.compXcptnsCount == 0); |
5874 | compHndBBtab = impInlineInfo->InlinerCompiler->compHndBBtab; |
5875 | compHndBBtabAllocCount = |
5876 | impInlineInfo->InlinerCompiler->compHndBBtabAllocCount; // we probably only use the table, not add to it. |
5877 | compHndBBtabCount = impInlineInfo->InlinerCompiler->compHndBBtabCount; |
5878 | info.compXcptnsCount = impInlineInfo->InlinerCompiler->info.compXcptnsCount; |
5879 | |
5880 | // Use a spill temp for the return value if there are multiple return blocks, |
5881 | // or if the inlinee has GC ref locals. |
5882 | if ((info.compRetNativeType != TYP_VOID) && ((retBlocks > 1) || impInlineInfo->HasGcRefLocals())) |
5883 | { |
5884 | // If we've spilled the ret expr to a temp we can reuse the temp |
5885 | // as the inlinee return spill temp. |
5886 | // |
5887 | // Todo: see if it is even better to always use this existing temp |
5888 | // for return values, even if we otherwise wouldn't need a return spill temp... |
5889 | lvaInlineeReturnSpillTemp = impInlineInfo->inlineCandidateInfo->preexistingSpillTemp; |
5890 | |
5891 | if (lvaInlineeReturnSpillTemp != BAD_VAR_NUM) |
5892 | { |
5893 | // This temp should already have the type of the return value. |
5894 | JITDUMP("\nInliner: re-using pre-existing spill temp V%02u\n" , lvaInlineeReturnSpillTemp); |
5895 | |
5896 | if (info.compRetType == TYP_REF) |
5897 | { |
5898 | // We may have co-opted an existing temp for the return spill. |
5899 | // We likely assumed it was single-def at the time, but now |
5900 | // we can see it has multiple definitions. |
5901 | if ((retBlocks > 1) && (lvaTable[lvaInlineeReturnSpillTemp].lvSingleDef == 1)) |
5902 | { |
5903 | // Make sure it is no longer marked single def. This is only safe |
5904 | // to do if we haven't ever updated the type. |
5905 | assert(!lvaTable[lvaInlineeReturnSpillTemp].lvClassInfoUpdated); |
5906 | JITDUMP("Marked return spill temp V%02u as NOT single def temp\n" , lvaInlineeReturnSpillTemp); |
5907 | lvaTable[lvaInlineeReturnSpillTemp].lvSingleDef = 0; |
5908 | } |
5909 | } |
5910 | } |
5911 | else |
5912 | { |
5913 | // The lifetime of this var might expand multiple BBs. So it is a long lifetime compiler temp. |
5914 | lvaInlineeReturnSpillTemp = lvaGrabTemp(false DEBUGARG("Inline return value spill temp" )); |
5915 | lvaTable[lvaInlineeReturnSpillTemp].lvType = info.compRetNativeType; |
5916 | |
5917 | // If the method returns a ref class, set the class of the spill temp |
5918 | // to the method's return value. We may update this later if it turns |
5919 | // out we can prove the method returns a more specific type. |
5920 | if (info.compRetType == TYP_REF) |
5921 | { |
5922 | // The return spill temp is single def only if the method has a single return block. |
5923 | if (retBlocks == 1) |
5924 | { |
5925 | lvaTable[lvaInlineeReturnSpillTemp].lvSingleDef = 1; |
5926 | JITDUMP("Marked return spill temp V%02u as a single def temp\n" , lvaInlineeReturnSpillTemp); |
5927 | } |
5928 | |
5929 | CORINFO_CLASS_HANDLE retClassHnd = impInlineInfo->inlineCandidateInfo->methInfo.args.retTypeClass; |
5930 | if (retClassHnd != nullptr) |
5931 | { |
5932 | lvaSetClass(lvaInlineeReturnSpillTemp, retClassHnd); |
5933 | } |
5934 | } |
5935 | } |
5936 | } |
5937 | |
5938 | return; |
5939 | } |
5940 | |
5941 | /* Mark all blocks within 'try' blocks as such */ |
5942 | |
5943 | if (info.compXcptnsCount == 0) |
5944 | { |
5945 | return; |
5946 | } |
5947 | |
5948 | if (info.compXcptnsCount > MAX_XCPTN_INDEX) |
5949 | { |
5950 | IMPL_LIMITATION("too many exception clauses" ); |
5951 | } |
5952 | |
5953 | /* Allocate the exception handler table */ |
5954 | |
5955 | fgAllocEHTable(); |
5956 | |
5957 | /* Assume we don't need to sort the EH table (such that nested try/catch |
5958 | * appear before their try or handler parent). The EH verifier will notice |
5959 | * when we do need to sort it. |
5960 | */ |
5961 | |
5962 | fgNeedToSortEHTable = false; |
5963 | |
5964 | verInitEHTree(info.compXcptnsCount); |
5965 | EHNodeDsc* initRoot = ehnNext; // remember the original root since |
5966 | // it may get modified during insertion |
5967 | |
5968 | // Annotate BBs with exception handling information required for generating correct eh code |
5969 | // as well as checking for correct IL |
5970 | |
5971 | EHblkDsc* HBtab; |
5972 | |
5973 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
5974 | { |
5975 | CORINFO_EH_CLAUSE clause; |
5976 | info.compCompHnd->getEHinfo(info.compMethodHnd, XTnum, &clause); |
5977 | noway_assert(clause.HandlerLength != (unsigned)-1); // @DEPRECATED |
5978 | |
5979 | #ifdef DEBUG |
5980 | if (verbose) |
5981 | { |
5982 | dispIncomingEHClause(XTnum, clause); |
5983 | } |
5984 | #endif // DEBUG |
5985 | |
5986 | IL_OFFSET tryBegOff = clause.TryOffset; |
5987 | IL_OFFSET tryEndOff = tryBegOff + clause.TryLength; |
5988 | IL_OFFSET filterBegOff = 0; |
5989 | IL_OFFSET hndBegOff = clause.HandlerOffset; |
5990 | IL_OFFSET hndEndOff = hndBegOff + clause.HandlerLength; |
5991 | |
5992 | if (clause.Flags & CORINFO_EH_CLAUSE_FILTER) |
5993 | { |
5994 | filterBegOff = clause.FilterOffset; |
5995 | } |
5996 | |
5997 | if (tryEndOff > info.compILCodeSize) |
5998 | { |
5999 | BADCODE3("end of try block beyond end of method for try" , " at offset %04X" , tryBegOff); |
6000 | } |
6001 | if (hndEndOff > info.compILCodeSize) |
6002 | { |
6003 | BADCODE3("end of hnd block beyond end of method for try" , " at offset %04X" , tryBegOff); |
6004 | } |
6005 | |
6006 | HBtab->ebdTryBegOffset = tryBegOff; |
6007 | HBtab->ebdTryEndOffset = tryEndOff; |
6008 | HBtab->ebdFilterBegOffset = filterBegOff; |
6009 | HBtab->ebdHndBegOffset = hndBegOff; |
6010 | HBtab->ebdHndEndOffset = hndEndOff; |
6011 | |
6012 | /* Convert the various addresses to basic blocks */ |
6013 | |
6014 | BasicBlock* tryBegBB = fgLookupBB(tryBegOff); |
6015 | BasicBlock* tryEndBB = |
6016 | fgLookupBB(tryEndOff); // note: this can be NULL if the try region is at the end of the function |
6017 | BasicBlock* hndBegBB = fgLookupBB(hndBegOff); |
6018 | BasicBlock* hndEndBB = nullptr; |
6019 | BasicBlock* filtBB = nullptr; |
6020 | BasicBlock* block; |
6021 | |
6022 | // |
6023 | // Assert that the try/hnd beginning blocks are set up correctly |
6024 | // |
6025 | if (tryBegBB == nullptr) |
6026 | { |
6027 | BADCODE("Try Clause is invalid" ); |
6028 | } |
6029 | |
6030 | if (hndBegBB == nullptr) |
6031 | { |
6032 | BADCODE("Handler Clause is invalid" ); |
6033 | } |
6034 | |
6035 | tryBegBB->bbFlags |= BBF_HAS_LABEL; |
6036 | hndBegBB->bbFlags |= BBF_HAS_LABEL | BBF_JMP_TARGET; |
6037 | |
6038 | #if HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION |
6039 | // This will change the block weight from 0 to 1 |
6040 | // and clear the rarely run flag |
6041 | hndBegBB->makeBlockHot(); |
6042 | #else |
6043 | hndBegBB->bbSetRunRarely(); // handler entry points are rarely executed |
6044 | #endif |
6045 | |
6046 | if (hndEndOff < info.compILCodeSize) |
6047 | { |
6048 | hndEndBB = fgLookupBB(hndEndOff); |
6049 | } |
6050 | |
6051 | if (clause.Flags & CORINFO_EH_CLAUSE_FILTER) |
6052 | { |
6053 | filtBB = HBtab->ebdFilter = fgLookupBB(clause.FilterOffset); |
6054 | |
6055 | filtBB->bbCatchTyp = BBCT_FILTER; |
6056 | filtBB->bbFlags |= BBF_HAS_LABEL | BBF_JMP_TARGET; |
6057 | |
6058 | hndBegBB->bbCatchTyp = BBCT_FILTER_HANDLER; |
6059 | |
6060 | #if HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION |
6061 | // This will change the block weight from 0 to 1 |
6062 | // and clear the rarely run flag |
6063 | filtBB->makeBlockHot(); |
6064 | #else |
6065 | filtBB->bbSetRunRarely(); // filter entry points are rarely executed |
6066 | #endif |
6067 | |
6068 | // Mark all BBs that belong to the filter with the XTnum of the corresponding handler |
6069 | for (block = filtBB; /**/; block = block->bbNext) |
6070 | { |
6071 | if (block == nullptr) |
6072 | { |
6073 | BADCODE3("Missing endfilter for filter" , " at offset %04X" , filtBB->bbCodeOffs); |
6074 | return; |
6075 | } |
6076 | |
6077 | // Still inside the filter |
6078 | block->setHndIndex(XTnum); |
6079 | |
6080 | if (block->bbJumpKind == BBJ_EHFILTERRET) |
6081 | { |
6082 | // Mark catch handler as successor. |
6083 | block->bbJumpDest = hndBegBB; |
6084 | assert(block->bbJumpDest->bbCatchTyp == BBCT_FILTER_HANDLER); |
6085 | break; |
6086 | } |
6087 | } |
6088 | |
6089 | if (!block->bbNext || block->bbNext != hndBegBB) |
6090 | { |
6091 | BADCODE3("Filter does not immediately precede handler for filter" , " at offset %04X" , |
6092 | filtBB->bbCodeOffs); |
6093 | } |
6094 | } |
6095 | else |
6096 | { |
6097 | HBtab->ebdTyp = clause.ClassToken; |
6098 | |
6099 | /* Set bbCatchTyp as appropriate */ |
6100 | |
6101 | if (clause.Flags & CORINFO_EH_CLAUSE_FINALLY) |
6102 | { |
6103 | hndBegBB->bbCatchTyp = BBCT_FINALLY; |
6104 | } |
6105 | else |
6106 | { |
6107 | if (clause.Flags & CORINFO_EH_CLAUSE_FAULT) |
6108 | { |
6109 | hndBegBB->bbCatchTyp = BBCT_FAULT; |
6110 | } |
6111 | else |
6112 | { |
6113 | hndBegBB->bbCatchTyp = clause.ClassToken; |
6114 | |
6115 | // These values should be non-zero value that will |
6116 | // not collide with real tokens for bbCatchTyp |
6117 | if (clause.ClassToken == 0) |
6118 | { |
6119 | BADCODE("Exception catch type is Null" ); |
6120 | } |
6121 | |
6122 | noway_assert(clause.ClassToken != BBCT_FAULT); |
6123 | noway_assert(clause.ClassToken != BBCT_FINALLY); |
6124 | noway_assert(clause.ClassToken != BBCT_FILTER); |
6125 | noway_assert(clause.ClassToken != BBCT_FILTER_HANDLER); |
6126 | } |
6127 | } |
6128 | } |
6129 | |
6130 | /* Mark the initial block and last blocks in the 'try' region */ |
6131 | |
6132 | tryBegBB->bbFlags |= BBF_TRY_BEG | BBF_HAS_LABEL; |
6133 | |
6134 | /* Prevent future optimizations of removing the first block */ |
6135 | /* of a TRY block and the first block of an exception handler */ |
6136 | |
6137 | tryBegBB->bbFlags |= BBF_DONT_REMOVE; |
6138 | hndBegBB->bbFlags |= BBF_DONT_REMOVE; |
6139 | hndBegBB->bbRefs++; // The first block of a handler gets an extra, "artificial" reference count. |
6140 | |
6141 | if (clause.Flags & CORINFO_EH_CLAUSE_FILTER) |
6142 | { |
6143 | filtBB->bbFlags |= BBF_DONT_REMOVE; |
6144 | filtBB->bbRefs++; // The first block of a filter gets an extra, "artificial" reference count. |
6145 | } |
6146 | |
6147 | tryBegBB->bbFlags |= BBF_DONT_REMOVE; |
6148 | hndBegBB->bbFlags |= BBF_DONT_REMOVE; |
6149 | |
6150 | // |
6151 | // Store the info to the table of EH block handlers |
6152 | // |
6153 | |
6154 | HBtab->ebdHandlerType = ToEHHandlerType(clause.Flags); |
6155 | |
6156 | HBtab->ebdTryBeg = tryBegBB; |
6157 | HBtab->ebdTryLast = (tryEndBB == nullptr) ? fgLastBB : tryEndBB->bbPrev; |
6158 | |
6159 | HBtab->ebdHndBeg = hndBegBB; |
6160 | HBtab->ebdHndLast = (hndEndBB == nullptr) ? fgLastBB : hndEndBB->bbPrev; |
6161 | |
6162 | // |
6163 | // Assert that all of our try/hnd blocks are setup correctly. |
6164 | // |
6165 | if (HBtab->ebdTryLast == nullptr) |
6166 | { |
6167 | BADCODE("Try Clause is invalid" ); |
6168 | } |
6169 | |
6170 | if (HBtab->ebdHndLast == nullptr) |
6171 | { |
6172 | BADCODE("Handler Clause is invalid" ); |
6173 | } |
6174 | |
6175 | // |
6176 | // Verify that it's legal |
6177 | // |
6178 | |
6179 | verInsertEhNode(&clause, HBtab); |
6180 | |
6181 | } // end foreach handler table entry |
6182 | |
6183 | fgSortEHTable(); |
6184 | |
6185 | // Next, set things related to nesting that depend on the sorting being complete. |
6186 | |
6187 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
6188 | { |
6189 | /* Mark all blocks in the finally/fault or catch clause */ |
6190 | |
6191 | BasicBlock* tryBegBB = HBtab->ebdTryBeg; |
6192 | BasicBlock* hndBegBB = HBtab->ebdHndBeg; |
6193 | |
6194 | IL_OFFSET tryBegOff = HBtab->ebdTryBegOffset; |
6195 | IL_OFFSET tryEndOff = HBtab->ebdTryEndOffset; |
6196 | |
6197 | IL_OFFSET hndBegOff = HBtab->ebdHndBegOffset; |
6198 | IL_OFFSET hndEndOff = HBtab->ebdHndEndOffset; |
6199 | |
6200 | BasicBlock* block; |
6201 | |
6202 | for (block = hndBegBB; block && (block->bbCodeOffs < hndEndOff); block = block->bbNext) |
6203 | { |
6204 | if (!block->hasHndIndex()) |
6205 | { |
6206 | block->setHndIndex(XTnum); |
6207 | } |
6208 | |
6209 | // All blocks in a catch handler or filter are rarely run, except the entry |
6210 | if ((block != hndBegBB) && (hndBegBB->bbCatchTyp != BBCT_FINALLY)) |
6211 | { |
6212 | block->bbSetRunRarely(); |
6213 | } |
6214 | } |
6215 | |
6216 | /* Mark all blocks within the covered range of the try */ |
6217 | |
6218 | for (block = tryBegBB; block && (block->bbCodeOffs < tryEndOff); block = block->bbNext) |
6219 | { |
6220 | /* Mark this BB as belonging to a 'try' block */ |
6221 | |
6222 | if (!block->hasTryIndex()) |
6223 | { |
6224 | block->setTryIndex(XTnum); |
6225 | } |
6226 | |
6227 | #ifdef DEBUG |
6228 | /* Note: the BB can't span the 'try' block */ |
6229 | |
6230 | if (!(block->bbFlags & BBF_INTERNAL)) |
6231 | { |
6232 | noway_assert(tryBegOff <= block->bbCodeOffs); |
6233 | noway_assert(tryEndOff >= block->bbCodeOffsEnd || tryEndOff == tryBegOff); |
6234 | } |
6235 | #endif |
6236 | } |
6237 | |
6238 | /* Init ebdHandlerNestingLevel of current clause, and bump up value for all |
6239 | * enclosed clauses (which have to be before it in the table). |
6240 | * Innermost try-finally blocks must precede outermost |
6241 | * try-finally blocks. |
6242 | */ |
6243 | |
6244 | #if !FEATURE_EH_FUNCLETS |
6245 | HBtab->ebdHandlerNestingLevel = 0; |
6246 | #endif // !FEATURE_EH_FUNCLETS |
6247 | |
6248 | HBtab->ebdEnclosingTryIndex = EHblkDsc::NO_ENCLOSING_INDEX; |
6249 | HBtab->ebdEnclosingHndIndex = EHblkDsc::NO_ENCLOSING_INDEX; |
6250 | |
6251 | noway_assert(XTnum < compHndBBtabCount); |
6252 | noway_assert(XTnum == ehGetIndex(HBtab)); |
6253 | |
6254 | for (EHblkDsc* xtab = compHndBBtab; xtab < HBtab; xtab++) |
6255 | { |
6256 | #if !FEATURE_EH_FUNCLETS |
6257 | if (jitIsBetween(xtab->ebdHndBegOffs(), hndBegOff, hndEndOff)) |
6258 | { |
6259 | xtab->ebdHandlerNestingLevel++; |
6260 | } |
6261 | #endif // !FEATURE_EH_FUNCLETS |
6262 | |
6263 | /* If we haven't recorded an enclosing try index for xtab then see |
6264 | * if this EH region should be recorded. We check if the |
6265 | * first offset in the xtab lies within our region. If so, |
6266 | * the last offset also must lie within the region, due to |
6267 | * nesting rules. verInsertEhNode(), below, will check for proper nesting. |
6268 | */ |
6269 | if (xtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
6270 | { |
6271 | bool begBetween = jitIsBetween(xtab->ebdTryBegOffs(), tryBegOff, tryEndOff); |
6272 | if (begBetween) |
6273 | { |
6274 | // Record the enclosing scope link |
6275 | xtab->ebdEnclosingTryIndex = (unsigned short)XTnum; |
6276 | } |
6277 | } |
6278 | |
6279 | /* Do the same for the enclosing handler index. |
6280 | */ |
6281 | if (xtab->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
6282 | { |
6283 | bool begBetween = jitIsBetween(xtab->ebdTryBegOffs(), hndBegOff, hndEndOff); |
6284 | if (begBetween) |
6285 | { |
6286 | // Record the enclosing scope link |
6287 | xtab->ebdEnclosingHndIndex = (unsigned short)XTnum; |
6288 | } |
6289 | } |
6290 | } |
6291 | |
6292 | } // end foreach handler table entry |
6293 | |
6294 | #if !FEATURE_EH_FUNCLETS |
6295 | |
6296 | EHblkDsc* HBtabEnd; |
6297 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
6298 | { |
6299 | if (ehMaxHndNestingCount <= HBtab->ebdHandlerNestingLevel) |
6300 | ehMaxHndNestingCount = HBtab->ebdHandlerNestingLevel + 1; |
6301 | } |
6302 | |
6303 | #endif // !FEATURE_EH_FUNCLETS |
6304 | |
6305 | #ifndef DEBUG |
6306 | if (tiVerificationNeeded) |
6307 | #endif |
6308 | { |
6309 | // always run these checks for a debug build |
6310 | verCheckNestingLevel(initRoot); |
6311 | } |
6312 | |
6313 | #ifndef DEBUG |
6314 | // fgNormalizeEH assumes that this test has been passed. And Ssa assumes that fgNormalizeEHTable |
6315 | // has been run. So do this unless we're in minOpts mode (and always in debug). |
6316 | if (tiVerificationNeeded || !opts.MinOpts()) |
6317 | #endif |
6318 | { |
6319 | fgCheckBasicBlockControlFlow(); |
6320 | } |
6321 | |
6322 | #ifdef DEBUG |
6323 | if (verbose) |
6324 | { |
6325 | JITDUMP("*************** After fgFindBasicBlocks() has created the EH table\n" ); |
6326 | fgDispHandlerTab(); |
6327 | } |
6328 | |
6329 | // We can't verify the handler table until all the IL legality checks have been done (above), since bad IL |
6330 | // (such as illegal nesting of regions) will trigger asserts here. |
6331 | fgVerifyHandlerTab(); |
6332 | #endif |
6333 | |
6334 | fgNormalizeEH(); |
6335 | } |
6336 | |
6337 | /***************************************************************************** |
6338 | * Check control flow constraints for well formed IL. Bail if any of the constraints |
6339 | * are violated. |
6340 | */ |
6341 | |
6342 | void Compiler::fgCheckBasicBlockControlFlow() |
6343 | { |
6344 | assert(!fgNormalizeEHDone); // These rules aren't quite correct after EH normalization has introduced new blocks |
6345 | |
6346 | EHblkDsc* HBtab; |
6347 | |
6348 | for (BasicBlock* blk = fgFirstBB; blk; blk = blk->bbNext) |
6349 | { |
6350 | if (blk->bbFlags & BBF_INTERNAL) |
6351 | { |
6352 | continue; |
6353 | } |
6354 | |
6355 | switch (blk->bbJumpKind) |
6356 | { |
6357 | case BBJ_NONE: // block flows into the next one (no jump) |
6358 | |
6359 | fgControlFlowPermitted(blk, blk->bbNext); |
6360 | |
6361 | break; |
6362 | |
6363 | case BBJ_ALWAYS: // block does unconditional jump to target |
6364 | |
6365 | fgControlFlowPermitted(blk, blk->bbJumpDest); |
6366 | |
6367 | break; |
6368 | |
6369 | case BBJ_COND: // block conditionally jumps to the target |
6370 | |
6371 | fgControlFlowPermitted(blk, blk->bbNext); |
6372 | |
6373 | fgControlFlowPermitted(blk, blk->bbJumpDest); |
6374 | |
6375 | break; |
6376 | |
6377 | case BBJ_RETURN: // block ends with 'ret' |
6378 | |
6379 | if (blk->hasTryIndex() || blk->hasHndIndex()) |
6380 | { |
6381 | BADCODE3("Return from a protected block" , ". Before offset %04X" , blk->bbCodeOffsEnd); |
6382 | } |
6383 | break; |
6384 | |
6385 | case BBJ_EHFINALLYRET: |
6386 | case BBJ_EHFILTERRET: |
6387 | |
6388 | if (!blk->hasHndIndex()) // must be part of a handler |
6389 | { |
6390 | BADCODE3("Missing handler" , ". Before offset %04X" , blk->bbCodeOffsEnd); |
6391 | } |
6392 | |
6393 | HBtab = ehGetDsc(blk->getHndIndex()); |
6394 | |
6395 | // Endfilter allowed only in a filter block |
6396 | if (blk->bbJumpKind == BBJ_EHFILTERRET) |
6397 | { |
6398 | if (!HBtab->HasFilter()) |
6399 | { |
6400 | BADCODE("Unexpected endfilter" ); |
6401 | } |
6402 | } |
6403 | // endfinally allowed only in a finally/fault block |
6404 | else if (!HBtab->HasFinallyOrFaultHandler()) |
6405 | { |
6406 | BADCODE("Unexpected endfinally" ); |
6407 | } |
6408 | |
6409 | // The handler block should be the innermost block |
6410 | // Exception blocks are listed, innermost first. |
6411 | if (blk->hasTryIndex() && (blk->getTryIndex() < blk->getHndIndex())) |
6412 | { |
6413 | BADCODE("endfinally / endfilter in nested try block" ); |
6414 | } |
6415 | |
6416 | break; |
6417 | |
6418 | case BBJ_THROW: // block ends with 'throw' |
6419 | /* throw is permitted from every BB, so nothing to check */ |
6420 | /* importer makes sure that rethrow is done from a catch */ |
6421 | break; |
6422 | |
6423 | case BBJ_LEAVE: // block always jumps to the target, maybe out of guarded |
6424 | // region. Used temporarily until importing |
6425 | fgControlFlowPermitted(blk, blk->bbJumpDest, TRUE); |
6426 | |
6427 | break; |
6428 | |
6429 | case BBJ_SWITCH: // block ends with a switch statement |
6430 | |
6431 | BBswtDesc* swtDesc; |
6432 | swtDesc = blk->bbJumpSwt; |
6433 | |
6434 | assert(swtDesc); |
6435 | |
6436 | unsigned i; |
6437 | for (i = 0; i < swtDesc->bbsCount; i++) |
6438 | { |
6439 | fgControlFlowPermitted(blk, swtDesc->bbsDstTab[i]); |
6440 | } |
6441 | |
6442 | break; |
6443 | |
6444 | case BBJ_EHCATCHRET: // block ends with a leave out of a catch (only #if FEATURE_EH_FUNCLETS) |
6445 | case BBJ_CALLFINALLY: // block always calls the target finally |
6446 | default: |
6447 | noway_assert(!"Unexpected bbJumpKind" ); // these blocks don't get created until importing |
6448 | break; |
6449 | } |
6450 | } |
6451 | } |
6452 | |
6453 | /**************************************************************************** |
6454 | * Check that the leave from the block is legal. |
6455 | * Consider removing this check here if we can do it cheaply during importing |
6456 | */ |
6457 | |
6458 | void Compiler::fgControlFlowPermitted(BasicBlock* blkSrc, BasicBlock* blkDest, BOOL isLeave) |
6459 | { |
6460 | assert(!fgNormalizeEHDone); // These rules aren't quite correct after EH normalization has introduced new blocks |
6461 | |
6462 | unsigned srcHndBeg, destHndBeg; |
6463 | unsigned srcHndEnd, destHndEnd; |
6464 | bool srcInFilter, destInFilter; |
6465 | bool srcInCatch = false; |
6466 | |
6467 | EHblkDsc* srcHndTab; |
6468 | |
6469 | srcHndTab = ehInitHndRange(blkSrc, &srcHndBeg, &srcHndEnd, &srcInFilter); |
6470 | ehInitHndRange(blkDest, &destHndBeg, &destHndEnd, &destInFilter); |
6471 | |
6472 | /* Impose the rules for leaving or jumping from handler blocks */ |
6473 | |
6474 | if (blkSrc->hasHndIndex()) |
6475 | { |
6476 | srcInCatch = srcHndTab->HasCatchHandler() && srcHndTab->InHndRegionILRange(blkSrc); |
6477 | |
6478 | /* Are we jumping within the same handler index? */ |
6479 | if (BasicBlock::sameHndRegion(blkSrc, blkDest)) |
6480 | { |
6481 | /* Do we have a filter clause? */ |
6482 | if (srcHndTab->HasFilter()) |
6483 | { |
6484 | /* filters and catch handlers share same eh index */ |
6485 | /* we need to check for control flow between them. */ |
6486 | if (srcInFilter != destInFilter) |
6487 | { |
6488 | if (!jitIsBetween(blkDest->bbCodeOffs, srcHndBeg, srcHndEnd)) |
6489 | { |
6490 | BADCODE3("Illegal control flow between filter and handler" , ". Before offset %04X" , |
6491 | blkSrc->bbCodeOffsEnd); |
6492 | } |
6493 | } |
6494 | } |
6495 | } |
6496 | else |
6497 | { |
6498 | /* The handler indexes of blkSrc and blkDest are different */ |
6499 | if (isLeave) |
6500 | { |
6501 | /* Any leave instructions must not enter the dest handler from outside*/ |
6502 | if (!jitIsBetween(srcHndBeg, destHndBeg, destHndEnd)) |
6503 | { |
6504 | BADCODE3("Illegal use of leave to enter handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6505 | } |
6506 | } |
6507 | else |
6508 | { |
6509 | /* We must use a leave to exit a handler */ |
6510 | BADCODE3("Illegal control flow out of a handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6511 | } |
6512 | |
6513 | /* Do we have a filter clause? */ |
6514 | if (srcHndTab->HasFilter()) |
6515 | { |
6516 | /* It is ok to leave from the handler block of a filter, */ |
6517 | /* but not from the filter block of a filter */ |
6518 | if (srcInFilter != destInFilter) |
6519 | { |
6520 | BADCODE3("Illegal to leave a filter handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6521 | } |
6522 | } |
6523 | |
6524 | /* We should never leave a finally handler */ |
6525 | if (srcHndTab->HasFinallyHandler()) |
6526 | { |
6527 | BADCODE3("Illegal to leave a finally handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6528 | } |
6529 | |
6530 | /* We should never leave a fault handler */ |
6531 | if (srcHndTab->HasFaultHandler()) |
6532 | { |
6533 | BADCODE3("Illegal to leave a fault handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6534 | } |
6535 | } |
6536 | } |
6537 | else if (blkDest->hasHndIndex()) |
6538 | { |
6539 | /* blkSrc was not inside a handler, but blkDst is inside a handler */ |
6540 | BADCODE3("Illegal control flow into a handler" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6541 | } |
6542 | |
6543 | /* Are we jumping from a catch handler into the corresponding try? */ |
6544 | /* VB uses this for "on error goto " */ |
6545 | |
6546 | if (isLeave && srcInCatch) |
6547 | { |
6548 | // inspect all handlers containing the jump source |
6549 | |
6550 | bool bValidJumpToTry = false; // are we jumping in a valid way from a catch to the corresponding try? |
6551 | bool bCatchHandlerOnly = true; // false if we are jumping out of a non-catch handler |
6552 | EHblkDsc* ehTableEnd; |
6553 | EHblkDsc* ehDsc; |
6554 | |
6555 | for (ehDsc = compHndBBtab, ehTableEnd = compHndBBtab + compHndBBtabCount; |
6556 | bCatchHandlerOnly && ehDsc < ehTableEnd; ehDsc++) |
6557 | { |
6558 | if (ehDsc->InHndRegionILRange(blkSrc)) |
6559 | { |
6560 | if (ehDsc->HasCatchHandler()) |
6561 | { |
6562 | if (ehDsc->InTryRegionILRange(blkDest)) |
6563 | { |
6564 | // If we already considered the jump for a different try/catch, |
6565 | // we would have two overlapping try regions with two overlapping catch |
6566 | // regions, which is illegal. |
6567 | noway_assert(!bValidJumpToTry); |
6568 | |
6569 | // Allowed if it is the first instruction of an inner try |
6570 | // (and all trys in between) |
6571 | // |
6572 | // try { |
6573 | // .. |
6574 | // _tryAgain: |
6575 | // .. |
6576 | // try { |
6577 | // _tryNestedInner: |
6578 | // .. |
6579 | // try { |
6580 | // _tryNestedIllegal: |
6581 | // .. |
6582 | // } catch { |
6583 | // .. |
6584 | // } |
6585 | // .. |
6586 | // } catch { |
6587 | // .. |
6588 | // } |
6589 | // .. |
6590 | // } catch { |
6591 | // .. |
6592 | // leave _tryAgain // Allowed |
6593 | // .. |
6594 | // leave _tryNestedInner // Allowed |
6595 | // .. |
6596 | // leave _tryNestedIllegal // Not Allowed |
6597 | // .. |
6598 | // } |
6599 | // |
6600 | // Note: The leave is allowed also from catches nested inside the catch shown above. |
6601 | |
6602 | /* The common case where leave is to the corresponding try */ |
6603 | if (ehDsc->ebdIsSameTry(this, blkDest->getTryIndex()) || |
6604 | /* Also allowed is a leave to the start of a try which starts in the handler's try */ |
6605 | fgFlowToFirstBlockOfInnerTry(ehDsc->ebdTryBeg, blkDest, false)) |
6606 | { |
6607 | bValidJumpToTry = true; |
6608 | } |
6609 | } |
6610 | } |
6611 | else |
6612 | { |
6613 | // We are jumping from a handler which is not a catch handler. |
6614 | |
6615 | // If it's a handler, but not a catch handler, it must be either a finally or fault |
6616 | if (!ehDsc->HasFinallyOrFaultHandler()) |
6617 | { |
6618 | BADCODE3("Handlers must be catch, finally, or fault" , ". Before offset %04X" , |
6619 | blkSrc->bbCodeOffsEnd); |
6620 | } |
6621 | |
6622 | // Are we jumping out of this handler? |
6623 | if (!ehDsc->InHndRegionILRange(blkDest)) |
6624 | { |
6625 | bCatchHandlerOnly = false; |
6626 | } |
6627 | } |
6628 | } |
6629 | else if (ehDsc->InFilterRegionILRange(blkSrc)) |
6630 | { |
6631 | // Are we jumping out of a filter? |
6632 | if (!ehDsc->InFilterRegionILRange(blkDest)) |
6633 | { |
6634 | bCatchHandlerOnly = false; |
6635 | } |
6636 | } |
6637 | } |
6638 | |
6639 | if (bCatchHandlerOnly) |
6640 | { |
6641 | if (bValidJumpToTry) |
6642 | { |
6643 | return; |
6644 | } |
6645 | else |
6646 | { |
6647 | // FALL THROUGH |
6648 | // This is either the case of a leave to outside the try/catch, |
6649 | // or a leave to a try not nested in this try/catch. |
6650 | // The first case is allowed, the second one will be checked |
6651 | // later when we check the try block rules (it is illegal if we |
6652 | // jump to the middle of the destination try). |
6653 | } |
6654 | } |
6655 | else |
6656 | { |
6657 | BADCODE3("illegal leave to exit a finally, fault or filter" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6658 | } |
6659 | } |
6660 | |
6661 | /* Check all the try block rules */ |
6662 | |
6663 | IL_OFFSET srcTryBeg; |
6664 | IL_OFFSET srcTryEnd; |
6665 | IL_OFFSET destTryBeg; |
6666 | IL_OFFSET destTryEnd; |
6667 | |
6668 | ehInitTryRange(blkSrc, &srcTryBeg, &srcTryEnd); |
6669 | ehInitTryRange(blkDest, &destTryBeg, &destTryEnd); |
6670 | |
6671 | /* Are we jumping between try indexes? */ |
6672 | if (!BasicBlock::sameTryRegion(blkSrc, blkDest)) |
6673 | { |
6674 | // Are we exiting from an inner to outer try? |
6675 | if (jitIsBetween(srcTryBeg, destTryBeg, destTryEnd) && jitIsBetween(srcTryEnd - 1, destTryBeg, destTryEnd)) |
6676 | { |
6677 | if (!isLeave) |
6678 | { |
6679 | BADCODE3("exit from try block without a leave" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6680 | } |
6681 | } |
6682 | else if (jitIsBetween(destTryBeg, srcTryBeg, srcTryEnd)) |
6683 | { |
6684 | // check that the dest Try is first instruction of an inner try |
6685 | if (!fgFlowToFirstBlockOfInnerTry(blkSrc, blkDest, false)) |
6686 | { |
6687 | BADCODE3("control flow into middle of try" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6688 | } |
6689 | } |
6690 | else // there is no nesting relationship between src and dest |
6691 | { |
6692 | if (isLeave) |
6693 | { |
6694 | // check that the dest Try is first instruction of an inner try sibling |
6695 | if (!fgFlowToFirstBlockOfInnerTry(blkSrc, blkDest, true)) |
6696 | { |
6697 | BADCODE3("illegal leave into middle of try" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6698 | } |
6699 | } |
6700 | else |
6701 | { |
6702 | BADCODE3("illegal control flow in to/out of try block" , ". Before offset %04X" , blkSrc->bbCodeOffsEnd); |
6703 | } |
6704 | } |
6705 | } |
6706 | } |
6707 | |
6708 | /***************************************************************************** |
6709 | * Check that blkDest is the first block of an inner try or a sibling |
6710 | * with no intervening trys in between |
6711 | */ |
6712 | |
6713 | bool Compiler::fgFlowToFirstBlockOfInnerTry(BasicBlock* blkSrc, BasicBlock* blkDest, bool sibling) |
6714 | { |
6715 | assert(!fgNormalizeEHDone); // These rules aren't quite correct after EH normalization has introduced new blocks |
6716 | |
6717 | noway_assert(blkDest->hasTryIndex()); |
6718 | |
6719 | unsigned XTnum = blkDest->getTryIndex(); |
6720 | unsigned lastXTnum = blkSrc->hasTryIndex() ? blkSrc->getTryIndex() : compHndBBtabCount; |
6721 | noway_assert(XTnum < compHndBBtabCount); |
6722 | noway_assert(lastXTnum <= compHndBBtabCount); |
6723 | |
6724 | EHblkDsc* HBtab = ehGetDsc(XTnum); |
6725 | |
6726 | // check that we are not jumping into middle of try |
6727 | if (HBtab->ebdTryBeg != blkDest) |
6728 | { |
6729 | return false; |
6730 | } |
6731 | |
6732 | if (sibling) |
6733 | { |
6734 | noway_assert(!BasicBlock::sameTryRegion(blkSrc, blkDest)); |
6735 | |
6736 | // find the l.u.b of the two try ranges |
6737 | // Set lastXTnum to the l.u.b. |
6738 | |
6739 | HBtab = ehGetDsc(lastXTnum); |
6740 | |
6741 | for (lastXTnum++, HBtab++; lastXTnum < compHndBBtabCount; lastXTnum++, HBtab++) |
6742 | { |
6743 | if (jitIsBetweenInclusive(blkDest->bbNum, HBtab->ebdTryBeg->bbNum, HBtab->ebdTryLast->bbNum)) |
6744 | { |
6745 | break; |
6746 | } |
6747 | } |
6748 | } |
6749 | |
6750 | // now check there are no intervening trys between dest and l.u.b |
6751 | // (it is ok to have intervening trys as long as they all start at |
6752 | // the same code offset) |
6753 | |
6754 | HBtab = ehGetDsc(XTnum); |
6755 | |
6756 | for (XTnum++, HBtab++; XTnum < lastXTnum; XTnum++, HBtab++) |
6757 | { |
6758 | if (HBtab->ebdTryBeg->bbNum < blkDest->bbNum && blkDest->bbNum <= HBtab->ebdTryLast->bbNum) |
6759 | { |
6760 | return false; |
6761 | } |
6762 | } |
6763 | |
6764 | return true; |
6765 | } |
6766 | |
6767 | /***************************************************************************** |
6768 | * Returns the handler nesting level of the block. |
6769 | * *pFinallyNesting is set to the nesting level of the inner-most |
6770 | * finally-protected try the block is in. |
6771 | */ |
6772 | |
6773 | unsigned Compiler::fgGetNestingLevel(BasicBlock* block, unsigned* pFinallyNesting) |
6774 | { |
6775 | unsigned curNesting = 0; // How many handlers is the block in |
6776 | unsigned tryFin = (unsigned)-1; // curNesting when we see innermost finally-protected try |
6777 | unsigned XTnum; |
6778 | EHblkDsc* HBtab; |
6779 | |
6780 | /* We find the block's handler nesting level by walking over the |
6781 | complete exception table and find enclosing clauses. */ |
6782 | |
6783 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
6784 | { |
6785 | noway_assert(HBtab->ebdTryBeg && HBtab->ebdHndBeg); |
6786 | |
6787 | if (HBtab->HasFinallyHandler() && (tryFin == (unsigned)-1) && bbInTryRegions(XTnum, block)) |
6788 | { |
6789 | tryFin = curNesting; |
6790 | } |
6791 | else if (bbInHandlerRegions(XTnum, block)) |
6792 | { |
6793 | curNesting++; |
6794 | } |
6795 | } |
6796 | |
6797 | if (tryFin == (unsigned)-1) |
6798 | { |
6799 | tryFin = curNesting; |
6800 | } |
6801 | |
6802 | if (pFinallyNesting) |
6803 | { |
6804 | *pFinallyNesting = curNesting - tryFin; |
6805 | } |
6806 | |
6807 | return curNesting; |
6808 | } |
6809 | |
6810 | /***************************************************************************** |
6811 | * |
6812 | * Import the basic blocks of the procedure. |
6813 | */ |
6814 | |
6815 | void Compiler::fgImport() |
6816 | { |
6817 | impImport(fgFirstBB); |
6818 | |
6819 | if (!opts.jitFlags->IsSet(JitFlags::JIT_FLAG_SKIP_VERIFICATION)) |
6820 | { |
6821 | CorInfoMethodRuntimeFlags verFlag; |
6822 | verFlag = tiIsVerifiableCode ? CORINFO_FLG_VERIFIABLE : CORINFO_FLG_UNVERIFIABLE; |
6823 | info.compCompHnd->setMethodAttribs(info.compMethodHnd, verFlag); |
6824 | } |
6825 | } |
6826 | |
6827 | /***************************************************************************** |
6828 | * This function returns true if tree is a node with a call |
6829 | * that unconditionally throws an exception |
6830 | */ |
6831 | |
6832 | bool Compiler::fgIsThrow(GenTree* tree) |
6833 | { |
6834 | if ((tree->gtOper != GT_CALL) || (tree->gtCall.gtCallType != CT_HELPER)) |
6835 | { |
6836 | return false; |
6837 | } |
6838 | |
6839 | // TODO-Throughput: Replace all these calls to eeFindHelper() with a table based lookup |
6840 | |
6841 | if ((tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_OVERFLOW)) || |
6842 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_VERIFICATION)) || |
6843 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_RNGCHKFAIL)) || |
6844 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_THROWDIVZERO)) || |
6845 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_THROWNULLREF)) || |
6846 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_THROW)) || |
6847 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_RETHROW)) || |
6848 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_THROW_TYPE_NOT_SUPPORTED)) || |
6849 | (tree->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_THROW_PLATFORM_NOT_SUPPORTED))) |
6850 | { |
6851 | noway_assert(tree->gtFlags & GTF_CALL); |
6852 | noway_assert(tree->gtFlags & GTF_EXCEPT); |
6853 | return true; |
6854 | } |
6855 | |
6856 | // TODO-CQ: there are a bunch of managed methods in [mscorlib]System.ThrowHelper |
6857 | // that would be nice to recognize. |
6858 | |
6859 | return false; |
6860 | } |
6861 | |
6862 | /***************************************************************************** |
6863 | * This function returns true for blocks that are in different hot-cold regions. |
6864 | * It returns false when the blocks are both in the same regions |
6865 | */ |
6866 | |
6867 | bool Compiler::fgInDifferentRegions(BasicBlock* blk1, BasicBlock* blk2) |
6868 | { |
6869 | noway_assert(blk1 != nullptr); |
6870 | noway_assert(blk2 != nullptr); |
6871 | |
6872 | if (fgFirstColdBlock == nullptr) |
6873 | { |
6874 | return false; |
6875 | } |
6876 | |
6877 | // If one block is Hot and the other is Cold then we are in different regions |
6878 | return ((blk1->bbFlags & BBF_COLD) != (blk2->bbFlags & BBF_COLD)); |
6879 | } |
6880 | |
6881 | bool Compiler::fgIsBlockCold(BasicBlock* blk) |
6882 | { |
6883 | noway_assert(blk != nullptr); |
6884 | |
6885 | if (fgFirstColdBlock == nullptr) |
6886 | { |
6887 | return false; |
6888 | } |
6889 | |
6890 | return ((blk->bbFlags & BBF_COLD) != 0); |
6891 | } |
6892 | |
6893 | /***************************************************************************** |
6894 | * This function returns true if tree is a GT_COMMA node with a call |
6895 | * that unconditionally throws an exception |
6896 | */ |
6897 | |
6898 | bool Compiler::fgIsCommaThrow(GenTree* tree, bool forFolding /* = false */) |
6899 | { |
6900 | // Instead of always folding comma throws, |
6901 | // with stress enabled we only fold half the time |
6902 | |
6903 | if (forFolding && compStressCompile(STRESS_FOLD, 50)) |
6904 | { |
6905 | return false; /* Don't fold */ |
6906 | } |
6907 | |
6908 | /* Check for cast of a GT_COMMA with a throw overflow */ |
6909 | if ((tree->gtOper == GT_COMMA) && (tree->gtFlags & GTF_CALL) && (tree->gtFlags & GTF_EXCEPT)) |
6910 | { |
6911 | return (fgIsThrow(tree->gtOp.gtOp1)); |
6912 | } |
6913 | return false; |
6914 | } |
6915 | |
6916 | //------------------------------------------------------------------------ |
6917 | // fgIsIndirOfAddrOfLocal: Determine whether "tree" is an indirection of a local. |
6918 | // |
6919 | // Arguments: |
6920 | // tree - The tree node under consideration |
6921 | // |
6922 | // Return Value: |
6923 | // If "tree" is a indirection (GT_IND, GT_BLK, or GT_OBJ) whose arg is an ADDR, |
6924 | // whose arg in turn is a LCL_VAR, return that LCL_VAR node, else nullptr. |
6925 | // |
6926 | // static |
6927 | GenTree* Compiler::fgIsIndirOfAddrOfLocal(GenTree* tree) |
6928 | { |
6929 | GenTree* res = nullptr; |
6930 | if (tree->OperIsIndir()) |
6931 | { |
6932 | GenTree* addr = tree->AsIndir()->Addr(); |
6933 | |
6934 | // Post rationalization, we can have Indir(Lea(..) trees. Therefore to recognize |
6935 | // Indir of addr of a local, skip over Lea in Indir(Lea(base, index, scale, offset)) |
6936 | // to get to base variable. |
6937 | if (addr->OperGet() == GT_LEA) |
6938 | { |
6939 | // We use this method in backward dataflow after liveness computation - fgInterBlockLocalVarLiveness(). |
6940 | // Therefore it is critical that we don't miss 'uses' of any local. It may seem this method overlooks |
6941 | // if the index part of the LEA has indir( someAddrOperator ( lclVar ) ) to search for a use but it's |
6942 | // covered by the fact we're traversing the expression in execution order and we also visit the index. |
6943 | GenTreeAddrMode* lea = addr->AsAddrMode(); |
6944 | GenTree* base = lea->Base(); |
6945 | |
6946 | if (base != nullptr) |
6947 | { |
6948 | if (base->OperGet() == GT_IND) |
6949 | { |
6950 | return fgIsIndirOfAddrOfLocal(base); |
6951 | } |
6952 | // else use base as addr |
6953 | addr = base; |
6954 | } |
6955 | } |
6956 | |
6957 | if (addr->OperGet() == GT_ADDR) |
6958 | { |
6959 | GenTree* lclvar = addr->gtOp.gtOp1; |
6960 | if (lclvar->OperGet() == GT_LCL_VAR) |
6961 | { |
6962 | res = lclvar; |
6963 | } |
6964 | } |
6965 | else if (addr->OperGet() == GT_LCL_VAR_ADDR) |
6966 | { |
6967 | res = addr; |
6968 | } |
6969 | } |
6970 | return res; |
6971 | } |
6972 | |
6973 | GenTreeCall* Compiler::fgGetStaticsCCtorHelper(CORINFO_CLASS_HANDLE cls, CorInfoHelpFunc helper) |
6974 | { |
6975 | bool bNeedClassID = true; |
6976 | unsigned callFlags = 0; |
6977 | |
6978 | var_types type = TYP_BYREF; |
6979 | |
6980 | // This is sort of ugly, as we have knowledge of what the helper is returning. |
6981 | // We need the return type. |
6982 | switch (helper) |
6983 | { |
6984 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_NOCTOR: |
6985 | bNeedClassID = false; |
6986 | __fallthrough; |
6987 | |
6988 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_NOCTOR: |
6989 | callFlags |= GTF_CALL_HOISTABLE; |
6990 | __fallthrough; |
6991 | |
6992 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE: |
6993 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_DYNAMICCLASS: |
6994 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE_DYNAMICCLASS: |
6995 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE: |
6996 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_DYNAMICCLASS: |
6997 | // type = TYP_BYREF; |
6998 | break; |
6999 | |
7000 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE_NOCTOR: |
7001 | bNeedClassID = false; |
7002 | __fallthrough; |
7003 | |
7004 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE_NOCTOR: |
7005 | callFlags |= GTF_CALL_HOISTABLE; |
7006 | __fallthrough; |
7007 | |
7008 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE: |
7009 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE: |
7010 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE_DYNAMICCLASS: |
7011 | case CORINFO_HELP_CLASSINIT_SHARED_DYNAMICCLASS: |
7012 | type = TYP_I_IMPL; |
7013 | break; |
7014 | |
7015 | default: |
7016 | assert(!"unknown shared statics helper" ); |
7017 | break; |
7018 | } |
7019 | |
7020 | GenTreeArgList* argList = nullptr; |
7021 | |
7022 | GenTree* opModuleIDArg; |
7023 | GenTree* opClassIDArg; |
7024 | |
7025 | // Get the class ID |
7026 | unsigned clsID; |
7027 | size_t moduleID; |
7028 | void* pclsID; |
7029 | void* pmoduleID; |
7030 | |
7031 | clsID = info.compCompHnd->getClassDomainID(cls, &pclsID); |
7032 | |
7033 | moduleID = info.compCompHnd->getClassModuleIdForStatics(cls, nullptr, &pmoduleID); |
7034 | |
7035 | if (!(callFlags & GTF_CALL_HOISTABLE)) |
7036 | { |
7037 | if (info.compCompHnd->getClassAttribs(cls) & CORINFO_FLG_BEFOREFIELDINIT) |
7038 | { |
7039 | callFlags |= GTF_CALL_HOISTABLE; |
7040 | } |
7041 | } |
7042 | |
7043 | if (pmoduleID) |
7044 | { |
7045 | opModuleIDArg = gtNewIndOfIconHandleNode(TYP_I_IMPL, (size_t)pmoduleID, GTF_ICON_CIDMID_HDL, true); |
7046 | } |
7047 | else |
7048 | { |
7049 | opModuleIDArg = gtNewIconNode((size_t)moduleID, TYP_I_IMPL); |
7050 | } |
7051 | |
7052 | if (bNeedClassID) |
7053 | { |
7054 | if (pclsID) |
7055 | { |
7056 | opClassIDArg = gtNewIndOfIconHandleNode(TYP_INT, (size_t)pclsID, GTF_ICON_CIDMID_HDL, true); |
7057 | } |
7058 | else |
7059 | { |
7060 | opClassIDArg = gtNewIconNode(clsID, TYP_INT); |
7061 | } |
7062 | |
7063 | // call the helper to get the base |
7064 | argList = gtNewArgList(opModuleIDArg, opClassIDArg); |
7065 | } |
7066 | else |
7067 | { |
7068 | argList = gtNewArgList(opModuleIDArg); |
7069 | } |
7070 | |
7071 | GenTreeCall* result = gtNewHelperCallNode(helper, type, argList); |
7072 | result->gtFlags |= callFlags; |
7073 | |
7074 | // If we're importing the special EqualityComparer<T>.Default |
7075 | // intrinsic, flag the helper call. Later during inlining, we can |
7076 | // remove the helper call if the associated field lookup is unused. |
7077 | if ((info.compFlags & CORINFO_FLG_JIT_INTRINSIC) != 0) |
7078 | { |
7079 | NamedIntrinsic ni = lookupNamedIntrinsic(info.compMethodHnd); |
7080 | if (ni == NI_System_Collections_Generic_EqualityComparer_get_Default) |
7081 | { |
7082 | JITDUMP("\nmarking helper call [06%u] as special dce...\n" , result->gtTreeID); |
7083 | result->gtCallMoreFlags |= GTF_CALL_M_HELPER_SPECIAL_DCE; |
7084 | } |
7085 | } |
7086 | |
7087 | return result; |
7088 | } |
7089 | |
7090 | GenTreeCall* Compiler::fgGetSharedCCtor(CORINFO_CLASS_HANDLE cls) |
7091 | { |
7092 | #ifdef FEATURE_READYTORUN_COMPILER |
7093 | if (opts.IsReadyToRun()) |
7094 | { |
7095 | CORINFO_RESOLVED_TOKEN resolvedToken; |
7096 | memset(&resolvedToken, 0, sizeof(resolvedToken)); |
7097 | resolvedToken.hClass = cls; |
7098 | |
7099 | return impReadyToRunHelperToTree(&resolvedToken, CORINFO_HELP_READYTORUN_STATIC_BASE, TYP_BYREF); |
7100 | } |
7101 | #endif |
7102 | |
7103 | // Call the shared non gc static helper, as its the fastest |
7104 | return fgGetStaticsCCtorHelper(cls, info.compCompHnd->getSharedCCtorHelper(cls)); |
7105 | } |
7106 | |
7107 | //------------------------------------------------------------------------------ |
7108 | // fgAddrCouldBeNull : Check whether the address tree can represent null. |
7109 | // |
7110 | // |
7111 | // Arguments: |
7112 | // addr - Address to check |
7113 | // |
7114 | // Return Value: |
7115 | // True if address could be null; false otherwise |
7116 | |
7117 | bool Compiler::fgAddrCouldBeNull(GenTree* addr) |
7118 | { |
7119 | addr = addr->gtEffectiveVal(); |
7120 | if ((addr->gtOper == GT_CNS_INT) && addr->IsIconHandle()) |
7121 | { |
7122 | return false; |
7123 | } |
7124 | else if (addr->gtOper == GT_LCL_VAR) |
7125 | { |
7126 | unsigned varNum = addr->AsLclVarCommon()->GetLclNum(); |
7127 | |
7128 | if (lvaIsImplicitByRefLocal(varNum)) |
7129 | { |
7130 | return false; |
7131 | } |
7132 | |
7133 | LclVarDsc* varDsc = &lvaTable[varNum]; |
7134 | |
7135 | if (varDsc->lvStackByref) |
7136 | { |
7137 | return false; |
7138 | } |
7139 | } |
7140 | else if (addr->gtOper == GT_ADDR) |
7141 | { |
7142 | if (addr->gtOp.gtOp1->gtOper == GT_CNS_INT) |
7143 | { |
7144 | GenTree* cns1Tree = addr->gtOp.gtOp1; |
7145 | if (!cns1Tree->IsIconHandle()) |
7146 | { |
7147 | // Indirection of some random constant... |
7148 | // It is safest just to return true |
7149 | return true; |
7150 | } |
7151 | } |
7152 | |
7153 | return false; // we can't have a null address |
7154 | } |
7155 | else if (addr->gtOper == GT_ADD) |
7156 | { |
7157 | if (addr->gtOp.gtOp1->gtOper == GT_CNS_INT) |
7158 | { |
7159 | GenTree* cns1Tree = addr->gtOp.gtOp1; |
7160 | if (!cns1Tree->IsIconHandle()) |
7161 | { |
7162 | if (!fgIsBigOffset(cns1Tree->gtIntCon.gtIconVal)) |
7163 | { |
7164 | // Op1 was an ordinary small constant |
7165 | return fgAddrCouldBeNull(addr->gtOp.gtOp2); |
7166 | } |
7167 | } |
7168 | else // Op1 was a handle represented as a constant |
7169 | { |
7170 | // Is Op2 also a constant? |
7171 | if (addr->gtOp.gtOp2->gtOper == GT_CNS_INT) |
7172 | { |
7173 | GenTree* cns2Tree = addr->gtOp.gtOp2; |
7174 | // Is this an addition of a handle and constant |
7175 | if (!cns2Tree->IsIconHandle()) |
7176 | { |
7177 | if (!fgIsBigOffset(cns2Tree->gtIntCon.gtIconVal)) |
7178 | { |
7179 | // Op2 was an ordinary small constant |
7180 | return false; // we can't have a null address |
7181 | } |
7182 | } |
7183 | } |
7184 | } |
7185 | } |
7186 | else |
7187 | { |
7188 | // Op1 is not a constant |
7189 | // What about Op2? |
7190 | if (addr->gtOp.gtOp2->gtOper == GT_CNS_INT) |
7191 | { |
7192 | GenTree* cns2Tree = addr->gtOp.gtOp2; |
7193 | // Is this an addition of a small constant |
7194 | if (!cns2Tree->IsIconHandle()) |
7195 | { |
7196 | if (!fgIsBigOffset(cns2Tree->gtIntCon.gtIconVal)) |
7197 | { |
7198 | // Op2 was an ordinary small constant |
7199 | return fgAddrCouldBeNull(addr->gtOp.gtOp1); |
7200 | } |
7201 | } |
7202 | } |
7203 | } |
7204 | } |
7205 | return true; // default result: addr could be null |
7206 | } |
7207 | |
7208 | //------------------------------------------------------------------------------ |
7209 | // fgOptimizeDelegateConstructor: try and optimize construction of a delegate |
7210 | // |
7211 | // Arguments: |
7212 | // call -- call to original delegate constructor |
7213 | // exactContextHnd -- [out] context handle to update |
7214 | // ldftnToken -- [in] resolved token for the method the delegate will invoke, |
7215 | // if known, or nullptr if not known |
7216 | // |
7217 | // Return Value: |
7218 | // Original call tree if no optimization applies. |
7219 | // Updated call tree if optimized. |
7220 | |
7221 | GenTree* Compiler::fgOptimizeDelegateConstructor(GenTreeCall* call, |
7222 | CORINFO_CONTEXT_HANDLE* ExactContextHnd, |
7223 | CORINFO_RESOLVED_TOKEN* ldftnToken) |
7224 | { |
7225 | JITDUMP("\nfgOptimizeDelegateConstructor: " ); |
7226 | noway_assert(call->gtCallType == CT_USER_FUNC); |
7227 | CORINFO_METHOD_HANDLE methHnd = call->gtCallMethHnd; |
7228 | CORINFO_CLASS_HANDLE clsHnd = info.compCompHnd->getMethodClass(methHnd); |
7229 | |
7230 | GenTree* targetMethod = call->gtCallArgs->Rest()->Current(); |
7231 | noway_assert(targetMethod->TypeGet() == TYP_I_IMPL); |
7232 | genTreeOps oper = targetMethod->OperGet(); |
7233 | CORINFO_METHOD_HANDLE targetMethodHnd = nullptr; |
7234 | GenTree* qmarkNode = nullptr; |
7235 | if (oper == GT_FTN_ADDR) |
7236 | { |
7237 | targetMethodHnd = targetMethod->gtFptrVal.gtFptrMethod; |
7238 | } |
7239 | else if (oper == GT_CALL && targetMethod->gtCall.gtCallMethHnd == eeFindHelper(CORINFO_HELP_VIRTUAL_FUNC_PTR)) |
7240 | { |
7241 | GenTree* handleNode = targetMethod->gtCall.gtCallArgs->Rest()->Rest()->Current(); |
7242 | |
7243 | if (handleNode->OperGet() == GT_CNS_INT) |
7244 | { |
7245 | // it's a ldvirtftn case, fetch the methodhandle off the helper for ldvirtftn. It's the 3rd arg |
7246 | targetMethodHnd = CORINFO_METHOD_HANDLE(handleNode->gtIntCon.gtCompileTimeHandle); |
7247 | } |
7248 | // Sometimes the argument to this is the result of a generic dictionary lookup, which shows |
7249 | // up as a GT_QMARK. |
7250 | else if (handleNode->OperGet() == GT_QMARK) |
7251 | { |
7252 | qmarkNode = handleNode; |
7253 | } |
7254 | } |
7255 | // Sometimes we don't call CORINFO_HELP_VIRTUAL_FUNC_PTR but instead just call |
7256 | // CORINFO_HELP_RUNTIMEHANDLE_METHOD directly. |
7257 | else if (oper == GT_QMARK) |
7258 | { |
7259 | qmarkNode = targetMethod; |
7260 | } |
7261 | if (qmarkNode) |
7262 | { |
7263 | noway_assert(qmarkNode->OperGet() == GT_QMARK); |
7264 | // The argument is actually a generic dictionary lookup. For delegate creation it looks |
7265 | // like: |
7266 | // GT_QMARK |
7267 | // GT_COLON |
7268 | // op1 -> call |
7269 | // Arg 1 -> token (has compile time handle) |
7270 | // op2 -> lclvar |
7271 | // |
7272 | // |
7273 | // In this case I can find the token (which is a method handle) and that is the compile time |
7274 | // handle. |
7275 | noway_assert(qmarkNode->gtOp.gtOp2->OperGet() == GT_COLON); |
7276 | noway_assert(qmarkNode->gtOp.gtOp2->gtOp.gtOp1->OperGet() == GT_CALL); |
7277 | GenTreeCall* runtimeLookupCall = qmarkNode->gtOp.gtOp2->gtOp.gtOp1->AsCall(); |
7278 | |
7279 | // This could be any of CORINFO_HELP_RUNTIMEHANDLE_(METHOD|CLASS)(_LOG?) |
7280 | GenTree* tokenNode = runtimeLookupCall->gtCallArgs->gtOp.gtOp2->gtOp.gtOp1; |
7281 | noway_assert(tokenNode->OperGet() == GT_CNS_INT); |
7282 | targetMethodHnd = CORINFO_METHOD_HANDLE(tokenNode->gtIntCon.gtCompileTimeHandle); |
7283 | } |
7284 | |
7285 | // Verify using the ldftnToken gives us all of what we used to get |
7286 | // via the above pattern match, and more... |
7287 | if (ldftnToken != nullptr) |
7288 | { |
7289 | assert(ldftnToken->hMethod != nullptr); |
7290 | |
7291 | if (targetMethodHnd != nullptr) |
7292 | { |
7293 | assert(targetMethodHnd == ldftnToken->hMethod); |
7294 | } |
7295 | |
7296 | targetMethodHnd = ldftnToken->hMethod; |
7297 | } |
7298 | else |
7299 | { |
7300 | assert(targetMethodHnd == nullptr); |
7301 | } |
7302 | |
7303 | #ifdef FEATURE_READYTORUN_COMPILER |
7304 | if (opts.IsReadyToRun()) |
7305 | { |
7306 | if (IsTargetAbi(CORINFO_CORERT_ABI)) |
7307 | { |
7308 | if (ldftnToken != nullptr) |
7309 | { |
7310 | JITDUMP("optimized\n" ); |
7311 | |
7312 | GenTree* thisPointer = call->gtCallObjp; |
7313 | GenTree* targetObjPointers = call->gtCallArgs->Current(); |
7314 | GenTreeArgList* helperArgs = nullptr; |
7315 | CORINFO_LOOKUP pLookup; |
7316 | CORINFO_CONST_LOOKUP entryPoint; |
7317 | info.compCompHnd->getReadyToRunDelegateCtorHelper(ldftnToken, clsHnd, &pLookup); |
7318 | if (!pLookup.lookupKind.needsRuntimeLookup) |
7319 | { |
7320 | helperArgs = gtNewArgList(thisPointer, targetObjPointers); |
7321 | entryPoint = pLookup.constLookup; |
7322 | } |
7323 | else |
7324 | { |
7325 | assert(oper != GT_FTN_ADDR); |
7326 | CORINFO_CONST_LOOKUP genericLookup; |
7327 | info.compCompHnd->getReadyToRunHelper(ldftnToken, &pLookup.lookupKind, |
7328 | CORINFO_HELP_READYTORUN_GENERIC_HANDLE, &genericLookup); |
7329 | GenTree* ctxTree = getRuntimeContextTree(pLookup.lookupKind.runtimeLookupKind); |
7330 | helperArgs = gtNewArgList(thisPointer, targetObjPointers, ctxTree); |
7331 | entryPoint = genericLookup; |
7332 | } |
7333 | call = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_DELEGATE_CTOR, TYP_VOID, helperArgs); |
7334 | call->setEntryPoint(entryPoint); |
7335 | } |
7336 | else |
7337 | { |
7338 | JITDUMP("not optimized, CORERT no ldftnToken\n" ); |
7339 | } |
7340 | } |
7341 | // ReadyToRun has this optimization for a non-virtual function pointers only for now. |
7342 | else if (oper == GT_FTN_ADDR) |
7343 | { |
7344 | JITDUMP("optimized\n" ); |
7345 | |
7346 | GenTree* thisPointer = call->gtCallObjp; |
7347 | GenTree* targetObjPointers = call->gtCallArgs->Current(); |
7348 | GenTreeArgList* helperArgs = gtNewArgList(thisPointer, targetObjPointers); |
7349 | |
7350 | call = gtNewHelperCallNode(CORINFO_HELP_READYTORUN_DELEGATE_CTOR, TYP_VOID, helperArgs); |
7351 | |
7352 | CORINFO_LOOKUP entryPoint; |
7353 | info.compCompHnd->getReadyToRunDelegateCtorHelper(ldftnToken, clsHnd, &entryPoint); |
7354 | assert(!entryPoint.lookupKind.needsRuntimeLookup); |
7355 | call->setEntryPoint(entryPoint.constLookup); |
7356 | } |
7357 | else |
7358 | { |
7359 | JITDUMP("not optimized, R2R virtual case\n" ); |
7360 | } |
7361 | } |
7362 | else |
7363 | #endif |
7364 | if (targetMethodHnd != nullptr) |
7365 | { |
7366 | CORINFO_METHOD_HANDLE alternateCtor = nullptr; |
7367 | DelegateCtorArgs ctorData; |
7368 | ctorData.pMethod = info.compMethodHnd; |
7369 | ctorData.pArg3 = nullptr; |
7370 | ctorData.pArg4 = nullptr; |
7371 | ctorData.pArg5 = nullptr; |
7372 | |
7373 | alternateCtor = info.compCompHnd->GetDelegateCtor(methHnd, clsHnd, targetMethodHnd, &ctorData); |
7374 | if (alternateCtor != methHnd) |
7375 | { |
7376 | JITDUMP("optimized\n" ); |
7377 | // we erase any inline info that may have been set for generics has it is not needed here, |
7378 | // and in fact it will pass the wrong info to the inliner code |
7379 | *ExactContextHnd = nullptr; |
7380 | |
7381 | call->gtCallMethHnd = alternateCtor; |
7382 | |
7383 | noway_assert(call->gtCallArgs->Rest()->Rest() == nullptr); |
7384 | GenTreeArgList* addArgs = nullptr; |
7385 | if (ctorData.pArg5) |
7386 | { |
7387 | GenTree* arg5 = gtNewIconHandleNode(size_t(ctorData.pArg5), GTF_ICON_FTN_ADDR); |
7388 | addArgs = gtNewListNode(arg5, addArgs); |
7389 | } |
7390 | if (ctorData.pArg4) |
7391 | { |
7392 | GenTree* arg4 = gtNewIconHandleNode(size_t(ctorData.pArg4), GTF_ICON_FTN_ADDR); |
7393 | addArgs = gtNewListNode(arg4, addArgs); |
7394 | } |
7395 | if (ctorData.pArg3) |
7396 | { |
7397 | GenTree* arg3 = gtNewIconHandleNode(size_t(ctorData.pArg3), GTF_ICON_FTN_ADDR); |
7398 | addArgs = gtNewListNode(arg3, addArgs); |
7399 | } |
7400 | call->gtCallArgs->Rest()->Rest() = addArgs; |
7401 | } |
7402 | else |
7403 | { |
7404 | JITDUMP("not optimized, no alternate ctor\n" ); |
7405 | } |
7406 | } |
7407 | else |
7408 | { |
7409 | JITDUMP("not optimized, no target method\n" ); |
7410 | } |
7411 | return call; |
7412 | } |
7413 | |
7414 | bool Compiler::fgCastNeeded(GenTree* tree, var_types toType) |
7415 | { |
7416 | // |
7417 | // If tree is a relop and we need an 4-byte integer |
7418 | // then we never need to insert a cast |
7419 | // |
7420 | if ((tree->OperKind() & GTK_RELOP) && (genActualType(toType) == TYP_INT)) |
7421 | { |
7422 | return false; |
7423 | } |
7424 | |
7425 | var_types fromType; |
7426 | |
7427 | // |
7428 | // Is the tree as GT_CAST or a GT_CALL ? |
7429 | // |
7430 | if (tree->OperGet() == GT_CAST) |
7431 | { |
7432 | fromType = tree->CastToType(); |
7433 | } |
7434 | else if (tree->OperGet() == GT_CALL) |
7435 | { |
7436 | fromType = (var_types)tree->gtCall.gtReturnType; |
7437 | } |
7438 | else |
7439 | { |
7440 | fromType = tree->TypeGet(); |
7441 | } |
7442 | |
7443 | // |
7444 | // If both types are the same then an additional cast is not necessary |
7445 | // |
7446 | if (toType == fromType) |
7447 | { |
7448 | return false; |
7449 | } |
7450 | // |
7451 | // If the sign-ness of the two types are different then a cast is necessary |
7452 | // |
7453 | if (varTypeIsUnsigned(toType) != varTypeIsUnsigned(fromType)) |
7454 | { |
7455 | return true; |
7456 | } |
7457 | // |
7458 | // If the from type is the same size or smaller then an additional cast is not necessary |
7459 | // |
7460 | if (genTypeSize(toType) >= genTypeSize(fromType)) |
7461 | { |
7462 | return false; |
7463 | } |
7464 | |
7465 | // |
7466 | // Looks like we will need the cast |
7467 | // |
7468 | return true; |
7469 | } |
7470 | |
7471 | // If assigning to a local var, add a cast if the target is |
7472 | // marked as NormalizedOnStore. Returns true if any change was made |
7473 | GenTree* Compiler::fgDoNormalizeOnStore(GenTree* tree) |
7474 | { |
7475 | // |
7476 | // Only normalize the stores in the global morph phase |
7477 | // |
7478 | if (fgGlobalMorph) |
7479 | { |
7480 | noway_assert(tree->OperGet() == GT_ASG); |
7481 | |
7482 | GenTree* op1 = tree->gtOp.gtOp1; |
7483 | GenTree* op2 = tree->gtOp.gtOp2; |
7484 | |
7485 | if (op1->gtOper == GT_LCL_VAR && genActualType(op1->TypeGet()) == TYP_INT) |
7486 | { |
7487 | // Small-typed arguments and aliased locals are normalized on load. |
7488 | // Other small-typed locals are normalized on store. |
7489 | // If it is an assignment to one of the latter, insert the cast on RHS |
7490 | unsigned varNum = op1->gtLclVarCommon.gtLclNum; |
7491 | LclVarDsc* varDsc = &lvaTable[varNum]; |
7492 | |
7493 | if (varDsc->lvNormalizeOnStore()) |
7494 | { |
7495 | noway_assert(op1->gtType <= TYP_INT); |
7496 | op1->gtType = TYP_INT; |
7497 | |
7498 | if (fgCastNeeded(op2, varDsc->TypeGet())) |
7499 | { |
7500 | op2 = gtNewCastNode(TYP_INT, op2, false, varDsc->TypeGet()); |
7501 | tree->gtOp.gtOp2 = op2; |
7502 | |
7503 | // Propagate GTF_COLON_COND |
7504 | op2->gtFlags |= (tree->gtFlags & GTF_COLON_COND); |
7505 | } |
7506 | } |
7507 | } |
7508 | } |
7509 | |
7510 | return tree; |
7511 | } |
7512 | |
7513 | /***************************************************************************** |
7514 | * |
7515 | * Mark whether the edge "srcBB -> dstBB" forms a loop that will always |
7516 | * execute a call or not. |
7517 | */ |
7518 | |
7519 | inline void Compiler::fgLoopCallTest(BasicBlock* srcBB, BasicBlock* dstBB) |
7520 | { |
7521 | /* Bail if this is not a backward edge */ |
7522 | |
7523 | if (srcBB->bbNum < dstBB->bbNum) |
7524 | { |
7525 | return; |
7526 | } |
7527 | |
7528 | /* Unless we already know that there is a loop without a call here ... */ |
7529 | |
7530 | if (!(dstBB->bbFlags & BBF_LOOP_CALL0)) |
7531 | { |
7532 | /* Check whether there is a loop path that doesn't call */ |
7533 | |
7534 | if (optReachWithoutCall(dstBB, srcBB)) |
7535 | { |
7536 | dstBB->bbFlags |= BBF_LOOP_CALL0; |
7537 | dstBB->bbFlags &= ~BBF_LOOP_CALL1; |
7538 | } |
7539 | else |
7540 | { |
7541 | dstBB->bbFlags |= BBF_LOOP_CALL1; |
7542 | } |
7543 | } |
7544 | // if this loop will always call, then we can omit the GC Poll |
7545 | if ((GCPOLL_NONE != opts.compGCPollType) && (dstBB->bbFlags & BBF_LOOP_CALL1)) |
7546 | { |
7547 | srcBB->bbFlags &= ~BBF_NEEDS_GCPOLL; |
7548 | } |
7549 | } |
7550 | |
7551 | /***************************************************************************** |
7552 | * |
7553 | * Mark which loops are guaranteed to execute a call. |
7554 | */ |
7555 | |
7556 | void Compiler::fgLoopCallMark() |
7557 | { |
7558 | BasicBlock* block; |
7559 | |
7560 | /* If we've already marked all the block, bail */ |
7561 | |
7562 | if (fgLoopCallMarked) |
7563 | { |
7564 | return; |
7565 | } |
7566 | |
7567 | fgLoopCallMarked = true; |
7568 | |
7569 | /* Walk the blocks, looking for backward edges */ |
7570 | |
7571 | for (block = fgFirstBB; block; block = block->bbNext) |
7572 | { |
7573 | switch (block->bbJumpKind) |
7574 | { |
7575 | case BBJ_COND: |
7576 | case BBJ_CALLFINALLY: |
7577 | case BBJ_ALWAYS: |
7578 | case BBJ_EHCATCHRET: |
7579 | fgLoopCallTest(block, block->bbJumpDest); |
7580 | break; |
7581 | |
7582 | case BBJ_SWITCH: |
7583 | |
7584 | unsigned jumpCnt; |
7585 | jumpCnt = block->bbJumpSwt->bbsCount; |
7586 | BasicBlock** jumpPtr; |
7587 | jumpPtr = block->bbJumpSwt->bbsDstTab; |
7588 | |
7589 | do |
7590 | { |
7591 | fgLoopCallTest(block, *jumpPtr); |
7592 | } while (++jumpPtr, --jumpCnt); |
7593 | |
7594 | break; |
7595 | |
7596 | default: |
7597 | break; |
7598 | } |
7599 | } |
7600 | } |
7601 | |
7602 | /***************************************************************************** |
7603 | * |
7604 | * Note the fact that the given block is a loop header. |
7605 | */ |
7606 | |
7607 | inline void Compiler::fgMarkLoopHead(BasicBlock* block) |
7608 | { |
7609 | #ifdef DEBUG |
7610 | if (verbose) |
7611 | { |
7612 | printf("fgMarkLoopHead: Checking loop head block " FMT_BB ": " , block->bbNum); |
7613 | } |
7614 | #endif |
7615 | |
7616 | /* Have we decided to generate fully interruptible code already? */ |
7617 | |
7618 | if (genInterruptible) |
7619 | { |
7620 | #ifdef DEBUG |
7621 | if (verbose) |
7622 | { |
7623 | printf("method is already fully interruptible\n" ); |
7624 | } |
7625 | #endif |
7626 | return; |
7627 | } |
7628 | |
7629 | /* Is the loop head block known to execute a method call? */ |
7630 | |
7631 | if (block->bbFlags & BBF_GC_SAFE_POINT) |
7632 | { |
7633 | #ifdef DEBUG |
7634 | if (verbose) |
7635 | { |
7636 | printf("this block will execute a call\n" ); |
7637 | } |
7638 | #endif |
7639 | // single block loops that contain GC safe points don't need polls. |
7640 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
7641 | return; |
7642 | } |
7643 | |
7644 | /* Are dominator sets available? */ |
7645 | |
7646 | if (fgDomsComputed) |
7647 | { |
7648 | /* Make sure that we know which loops will always execute calls */ |
7649 | |
7650 | if (!fgLoopCallMarked) |
7651 | { |
7652 | fgLoopCallMark(); |
7653 | } |
7654 | |
7655 | /* Will every trip through our loop execute a call? */ |
7656 | |
7657 | if (block->bbFlags & BBF_LOOP_CALL1) |
7658 | { |
7659 | #ifdef DEBUG |
7660 | if (verbose) |
7661 | { |
7662 | printf("this block dominates a block that will execute a call\n" ); |
7663 | } |
7664 | #endif |
7665 | return; |
7666 | } |
7667 | } |
7668 | |
7669 | /* |
7670 | * We have to make this method fully interruptible since we can not |
7671 | * ensure that this loop will execute a call every time it loops. |
7672 | * |
7673 | * We'll also need to generate a full register map for this method. |
7674 | */ |
7675 | |
7676 | assert(!codeGen->isGCTypeFixed()); |
7677 | |
7678 | if (!compCanEncodePtrArgCntMax()) |
7679 | { |
7680 | #ifdef DEBUG |
7681 | if (verbose) |
7682 | { |
7683 | printf("a callsite with more than 1023 pushed args exists\n" ); |
7684 | } |
7685 | #endif |
7686 | return; |
7687 | } |
7688 | |
7689 | #ifdef DEBUG |
7690 | if (verbose) |
7691 | { |
7692 | printf("no guaranteed callsite exits, marking method as fully interruptible\n" ); |
7693 | } |
7694 | #endif |
7695 | |
7696 | // only enable fully interruptible code for if we're hijacking. |
7697 | if (GCPOLL_NONE == opts.compGCPollType) |
7698 | { |
7699 | genInterruptible = true; |
7700 | } |
7701 | } |
7702 | |
7703 | GenTree* Compiler::fgGetCritSectOfStaticMethod() |
7704 | { |
7705 | noway_assert(!compIsForInlining()); |
7706 | |
7707 | noway_assert(info.compIsStatic); // This method should only be called for static methods. |
7708 | |
7709 | GenTree* tree = nullptr; |
7710 | |
7711 | CORINFO_LOOKUP_KIND kind = info.compCompHnd->getLocationOfThisType(info.compMethodHnd); |
7712 | |
7713 | if (!kind.needsRuntimeLookup) |
7714 | { |
7715 | void *critSect = nullptr, **pCrit = nullptr; |
7716 | critSect = info.compCompHnd->getMethodSync(info.compMethodHnd, (void**)&pCrit); |
7717 | noway_assert((!critSect) != (!pCrit)); |
7718 | |
7719 | tree = gtNewIconEmbHndNode(critSect, pCrit, GTF_ICON_METHOD_HDL, info.compMethodHnd); |
7720 | } |
7721 | else |
7722 | { |
7723 | // Collectible types requires that for shared generic code, if we use the generic context paramter |
7724 | // that we report it. (This is a conservative approach, we could detect some cases particularly when the |
7725 | // context parameter is this that we don't need the eager reporting logic.) |
7726 | lvaGenericsContextUseCount++; |
7727 | |
7728 | switch (kind.runtimeLookupKind) |
7729 | { |
7730 | case CORINFO_LOOKUP_THISOBJ: |
7731 | { |
7732 | noway_assert(!"Should never get this for static method." ); |
7733 | break; |
7734 | } |
7735 | |
7736 | case CORINFO_LOOKUP_CLASSPARAM: |
7737 | { |
7738 | // In this case, the hidden param is the class handle. |
7739 | tree = gtNewLclvNode(info.compTypeCtxtArg, TYP_I_IMPL); |
7740 | break; |
7741 | } |
7742 | |
7743 | case CORINFO_LOOKUP_METHODPARAM: |
7744 | { |
7745 | // In this case, the hidden param is the method handle. |
7746 | tree = gtNewLclvNode(info.compTypeCtxtArg, TYP_I_IMPL); |
7747 | // Call helper CORINFO_HELP_GETCLASSFROMMETHODPARAM to get the class handle |
7748 | // from the method handle. |
7749 | tree = gtNewHelperCallNode(CORINFO_HELP_GETCLASSFROMMETHODPARAM, TYP_I_IMPL, gtNewArgList(tree)); |
7750 | break; |
7751 | } |
7752 | |
7753 | default: |
7754 | { |
7755 | noway_assert(!"Unknown LOOKUP_KIND" ); |
7756 | break; |
7757 | } |
7758 | } |
7759 | |
7760 | noway_assert(tree); // tree should now contain the CORINFO_CLASS_HANDLE for the exact class. |
7761 | |
7762 | // Given the class handle, get the pointer to the Monitor. |
7763 | tree = gtNewHelperCallNode(CORINFO_HELP_GETSYNCFROMCLASSHANDLE, TYP_I_IMPL, gtNewArgList(tree)); |
7764 | } |
7765 | |
7766 | noway_assert(tree); |
7767 | return tree; |
7768 | } |
7769 | |
7770 | #if FEATURE_EH_FUNCLETS |
7771 | |
7772 | /***************************************************************************** |
7773 | * |
7774 | * Add monitor enter/exit calls for synchronized methods, and a try/fault |
7775 | * to ensure the 'exit' is called if the 'enter' was successful. On x86, we |
7776 | * generate monitor enter/exit calls and tell the VM the code location of |
7777 | * these calls. When an exception occurs between those locations, the VM |
7778 | * automatically releases the lock. For non-x86 platforms, the JIT is |
7779 | * responsible for creating a try/finally to protect the monitor enter/exit, |
7780 | * and the VM doesn't need to know anything special about the method during |
7781 | * exception processing -- it's just a normal try/finally. |
7782 | * |
7783 | * We generate the following code: |
7784 | * |
7785 | * void Foo() |
7786 | * { |
7787 | * unsigned byte acquired = 0; |
7788 | * try { |
7789 | * JIT_MonEnterWorker(<lock object>, &acquired); |
7790 | * |
7791 | * *** all the preexisting user code goes here *** |
7792 | * |
7793 | * JIT_MonExitWorker(<lock object>, &acquired); |
7794 | * } fault { |
7795 | * JIT_MonExitWorker(<lock object>, &acquired); |
7796 | * } |
7797 | * L_return: |
7798 | * ret |
7799 | * } |
7800 | * |
7801 | * If the lock is actually acquired, then the 'acquired' variable is set to 1 |
7802 | * by the helper call. During normal exit, the finally is called, 'acquired' |
7803 | * is 1, and the lock is released. If an exception occurs before the lock is |
7804 | * acquired, but within the 'try' (extremely unlikely, but possible), 'acquired' |
7805 | * will be 0, and the monitor exit call will quickly return without attempting |
7806 | * to release the lock. Otherwise, 'acquired' will be 1, and the lock will be |
7807 | * released during exception processing. |
7808 | * |
7809 | * For synchronized methods, we generate a single return block. |
7810 | * We can do this without creating additional "step" blocks because "ret" blocks |
7811 | * must occur at the top-level (of the original code), not nested within any EH |
7812 | * constructs. From the CLI spec, 12.4.2.8.2.3 "ret": "Shall not be enclosed in any |
7813 | * protected block, filter, or handler." Also, 3.57: "The ret instruction cannot be |
7814 | * used to transfer control out of a try, filter, catch, or finally block. From within |
7815 | * a try or catch, use the leave instruction with a destination of a ret instruction |
7816 | * that is outside all enclosing exception blocks." |
7817 | * |
7818 | * In addition, we can add a "fault" at the end of a method and be guaranteed that no |
7819 | * control falls through. From the CLI spec, section 12.4 "Control flow": "Control is not |
7820 | * permitted to simply fall through the end of a method. All paths shall terminate with one |
7821 | * of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt)." |
7822 | * |
7823 | * We only need to worry about "ret" and "throw", as the CLI spec prevents any other |
7824 | * alternatives. Section 15.4.3.3 "Implementation information" states about exiting |
7825 | * synchronized methods: "Exiting a synchronized method using a tail. call shall be |
7826 | * implemented as though the tail. had not been specified." Section 3.37 "jmp" states: |
7827 | * "The jmp instruction cannot be used to transferred control out of a try, filter, |
7828 | * catch, fault or finally block; or out of a synchronized region." And, "throw" will |
7829 | * be handled naturally; no additional work is required. |
7830 | */ |
7831 | |
7832 | void Compiler::fgAddSyncMethodEnterExit() |
7833 | { |
7834 | assert((info.compFlags & CORINFO_FLG_SYNCH) != 0); |
7835 | |
7836 | // We need to do this transformation before funclets are created. |
7837 | assert(!fgFuncletsCreated); |
7838 | |
7839 | // Assume we don't need to update the bbPreds lists. |
7840 | assert(!fgComputePredsDone); |
7841 | |
7842 | #if !FEATURE_EH |
7843 | // If we don't support EH, we can't add the EH needed by synchronized methods. |
7844 | // Of course, we could simply ignore adding the EH constructs, since we don't |
7845 | // support exceptions being thrown in this mode, but we would still need to add |
7846 | // the monitor enter/exit, and that doesn't seem worth it for this minor case. |
7847 | // By the time EH is working, we can just enable the whole thing. |
7848 | NYI("No support for synchronized methods" ); |
7849 | #endif // !FEATURE_EH |
7850 | |
7851 | // Create a scratch first BB where we can put the new variable initialization. |
7852 | // Don't put the scratch BB in the protected region. |
7853 | |
7854 | fgEnsureFirstBBisScratch(); |
7855 | |
7856 | // Create a block for the start of the try region, where the monitor enter call |
7857 | // will go. |
7858 | |
7859 | assert(fgFirstBB->bbFallsThrough()); |
7860 | |
7861 | BasicBlock* tryBegBB = fgNewBBafter(BBJ_NONE, fgFirstBB, false); |
7862 | BasicBlock* tryNextBB = tryBegBB->bbNext; |
7863 | BasicBlock* tryLastBB = fgLastBB; |
7864 | |
7865 | // If we have profile data the new block will inherit the next block's weight |
7866 | if (tryNextBB->hasProfileWeight()) |
7867 | { |
7868 | tryBegBB->inheritWeight(tryNextBB); |
7869 | } |
7870 | |
7871 | // Create a block for the fault. |
7872 | |
7873 | assert(!tryLastBB->bbFallsThrough()); |
7874 | BasicBlock* faultBB = fgNewBBafter(BBJ_EHFINALLYRET, tryLastBB, false); |
7875 | |
7876 | assert(tryLastBB->bbNext == faultBB); |
7877 | assert(faultBB->bbNext == nullptr); |
7878 | assert(faultBB == fgLastBB); |
7879 | |
7880 | { // Scope the EH region creation |
7881 | |
7882 | // Add the new EH region at the end, since it is the least nested, |
7883 | // and thus should be last. |
7884 | |
7885 | EHblkDsc* newEntry; |
7886 | unsigned XTnew = compHndBBtabCount; |
7887 | |
7888 | newEntry = fgAddEHTableEntry(XTnew); |
7889 | |
7890 | // Initialize the new entry |
7891 | |
7892 | newEntry->ebdHandlerType = EH_HANDLER_FAULT; |
7893 | |
7894 | newEntry->ebdTryBeg = tryBegBB; |
7895 | newEntry->ebdTryLast = tryLastBB; |
7896 | |
7897 | newEntry->ebdHndBeg = faultBB; |
7898 | newEntry->ebdHndLast = faultBB; |
7899 | |
7900 | newEntry->ebdTyp = 0; // unused for fault |
7901 | |
7902 | newEntry->ebdEnclosingTryIndex = EHblkDsc::NO_ENCLOSING_INDEX; |
7903 | newEntry->ebdEnclosingHndIndex = EHblkDsc::NO_ENCLOSING_INDEX; |
7904 | |
7905 | newEntry->ebdTryBegOffset = tryBegBB->bbCodeOffs; |
7906 | newEntry->ebdTryEndOffset = tryLastBB->bbCodeOffsEnd; |
7907 | newEntry->ebdFilterBegOffset = 0; |
7908 | newEntry->ebdHndBegOffset = 0; // handler doesn't correspond to any IL |
7909 | newEntry->ebdHndEndOffset = 0; // handler doesn't correspond to any IL |
7910 | |
7911 | // Set some flags on the new region. This is the same as when we set up |
7912 | // EH regions in fgFindBasicBlocks(). Note that the try has no enclosing |
7913 | // handler, and the fault has no enclosing try. |
7914 | |
7915 | tryBegBB->bbFlags |= BBF_HAS_LABEL | BBF_DONT_REMOVE | BBF_TRY_BEG | BBF_IMPORTED; |
7916 | |
7917 | faultBB->bbFlags |= BBF_HAS_LABEL | BBF_DONT_REMOVE | BBF_IMPORTED; |
7918 | faultBB->bbCatchTyp = BBCT_FAULT; |
7919 | |
7920 | tryBegBB->setTryIndex(XTnew); |
7921 | tryBegBB->clearHndIndex(); |
7922 | |
7923 | faultBB->clearTryIndex(); |
7924 | faultBB->setHndIndex(XTnew); |
7925 | |
7926 | // Walk the user code blocks and set all blocks that don't already have a try handler |
7927 | // to point to the new try handler. |
7928 | |
7929 | BasicBlock* tmpBB; |
7930 | for (tmpBB = tryBegBB->bbNext; tmpBB != faultBB; tmpBB = tmpBB->bbNext) |
7931 | { |
7932 | if (!tmpBB->hasTryIndex()) |
7933 | { |
7934 | tmpBB->setTryIndex(XTnew); |
7935 | } |
7936 | } |
7937 | |
7938 | // Walk the EH table. Make every EH entry that doesn't already have an enclosing |
7939 | // try index mark this new entry as their enclosing try index. |
7940 | |
7941 | unsigned XTnum; |
7942 | EHblkDsc* HBtab; |
7943 | |
7944 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < XTnew; XTnum++, HBtab++) |
7945 | { |
7946 | if (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
7947 | { |
7948 | HBtab->ebdEnclosingTryIndex = |
7949 | (unsigned short)XTnew; // This EH region wasn't previously nested, but now it is. |
7950 | } |
7951 | } |
7952 | |
7953 | #ifdef DEBUG |
7954 | if (verbose) |
7955 | { |
7956 | JITDUMP("Synchronized method - created additional EH descriptor EH#%u for try/fault wrapping monitor " |
7957 | "enter/exit\n" , |
7958 | XTnew); |
7959 | fgDispBasicBlocks(); |
7960 | fgDispHandlerTab(); |
7961 | } |
7962 | |
7963 | fgVerifyHandlerTab(); |
7964 | #endif // DEBUG |
7965 | } |
7966 | |
7967 | // Create a 'monitor acquired' boolean (actually, an unsigned byte: 1 = acquired, 0 = not acquired). |
7968 | |
7969 | var_types typeMonAcquired = TYP_UBYTE; |
7970 | this->lvaMonAcquired = lvaGrabTemp(true DEBUGARG("Synchronized method monitor acquired boolean" )); |
7971 | |
7972 | lvaTable[lvaMonAcquired].lvType = typeMonAcquired; |
7973 | |
7974 | { // Scope the variables of the variable initialization |
7975 | |
7976 | // Initialize the 'acquired' boolean. |
7977 | |
7978 | GenTree* zero = gtNewZeroConNode(genActualType(typeMonAcquired)); |
7979 | GenTree* varNode = gtNewLclvNode(lvaMonAcquired, typeMonAcquired); |
7980 | GenTree* initNode = gtNewAssignNode(varNode, zero); |
7981 | |
7982 | fgInsertStmtAtEnd(fgFirstBB, initNode); |
7983 | |
7984 | #ifdef DEBUG |
7985 | if (verbose) |
7986 | { |
7987 | printf("\nSynchronized method - Add 'acquired' initialization in first block %s\n" , |
7988 | fgFirstBB->dspToString()); |
7989 | gtDispTree(initNode); |
7990 | printf("\n" ); |
7991 | } |
7992 | #endif |
7993 | } |
7994 | |
7995 | // Make a copy of the 'this' pointer to be used in the handler so it does not inhibit enregistration |
7996 | // of all uses of the variable. |
7997 | unsigned lvaCopyThis = 0; |
7998 | if (!info.compIsStatic) |
7999 | { |
8000 | lvaCopyThis = lvaGrabTemp(true DEBUGARG("Synchronized method monitor acquired boolean" )); |
8001 | lvaTable[lvaCopyThis].lvType = TYP_REF; |
8002 | |
8003 | GenTree* thisNode = gtNewLclvNode(info.compThisArg, TYP_REF); |
8004 | GenTree* copyNode = gtNewLclvNode(lvaCopyThis, TYP_REF); |
8005 | GenTree* initNode = gtNewAssignNode(copyNode, thisNode); |
8006 | |
8007 | fgInsertStmtAtEnd(tryBegBB, initNode); |
8008 | } |
8009 | |
8010 | fgCreateMonitorTree(lvaMonAcquired, info.compThisArg, tryBegBB, true /*enter*/); |
8011 | |
8012 | // exceptional case |
8013 | fgCreateMonitorTree(lvaMonAcquired, lvaCopyThis, faultBB, false /*exit*/); |
8014 | |
8015 | // non-exceptional cases |
8016 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
8017 | { |
8018 | if (block->bbJumpKind == BBJ_RETURN) |
8019 | { |
8020 | fgCreateMonitorTree(lvaMonAcquired, info.compThisArg, block, false /*exit*/); |
8021 | } |
8022 | } |
8023 | } |
8024 | |
8025 | // fgCreateMonitorTree: Create tree to execute a monitor enter or exit operation for synchronized methods |
8026 | // lvaMonAcquired: lvaNum of boolean variable that tracks if monitor has been acquired. |
8027 | // lvaThisVar: lvaNum of variable being used as 'this' pointer, may not be the original one. Is only used for |
8028 | // nonstatic methods |
8029 | // block: block to insert the tree in. It is inserted at the end or in the case of a return, immediately before the |
8030 | // GT_RETURN |
8031 | // enter: whether to create a monitor enter or exit |
8032 | |
8033 | GenTree* Compiler::fgCreateMonitorTree(unsigned lvaMonAcquired, unsigned lvaThisVar, BasicBlock* block, bool enter) |
8034 | { |
8035 | // Insert the expression "enter/exitCrit(this, &acquired)" or "enter/exitCrit(handle, &acquired)" |
8036 | |
8037 | var_types typeMonAcquired = TYP_UBYTE; |
8038 | GenTree* varNode = gtNewLclvNode(lvaMonAcquired, typeMonAcquired); |
8039 | GenTree* varAddrNode = gtNewOperNode(GT_ADDR, TYP_BYREF, varNode); |
8040 | GenTree* tree; |
8041 | |
8042 | if (info.compIsStatic) |
8043 | { |
8044 | tree = fgGetCritSectOfStaticMethod(); |
8045 | tree = gtNewHelperCallNode(enter ? CORINFO_HELP_MON_ENTER_STATIC : CORINFO_HELP_MON_EXIT_STATIC, TYP_VOID, |
8046 | gtNewArgList(tree, varAddrNode)); |
8047 | } |
8048 | else |
8049 | { |
8050 | tree = gtNewLclvNode(lvaThisVar, TYP_REF); |
8051 | tree = gtNewHelperCallNode(enter ? CORINFO_HELP_MON_ENTER : CORINFO_HELP_MON_EXIT, TYP_VOID, |
8052 | gtNewArgList(tree, varAddrNode)); |
8053 | } |
8054 | |
8055 | #ifdef DEBUG |
8056 | if (verbose) |
8057 | { |
8058 | printf("\nSynchronized method - Add monitor %s call to block %s\n" , enter ? "enter" : "exit" , |
8059 | block->dspToString()); |
8060 | gtDispTree(tree); |
8061 | printf("\n" ); |
8062 | } |
8063 | #endif |
8064 | |
8065 | if (block->bbJumpKind == BBJ_RETURN && block->lastStmt()->gtStmtExpr->gtOper == GT_RETURN) |
8066 | { |
8067 | GenTree* retNode = block->lastStmt()->gtStmtExpr; |
8068 | GenTree* retExpr = retNode->gtOp.gtOp1; |
8069 | |
8070 | if (retExpr != nullptr) |
8071 | { |
8072 | // have to insert this immediately before the GT_RETURN so we transform: |
8073 | // ret(...) -> |
8074 | // ret(comma(comma(tmp=...,call mon_exit), tmp) |
8075 | // |
8076 | // |
8077 | // Before morph stage, it is possible to have a case of GT_RETURN(TYP_LONG, op1) where op1's type is |
8078 | // TYP_STRUCT (of 8-bytes) and op1 is call node. See the big comment block in impReturnInstruction() |
8079 | // for details for the case where info.compRetType is not the same as info.compRetNativeType. For |
8080 | // this reason pass compMethodInfo->args.retTypeClass which is guaranteed to be a valid class handle |
8081 | // if the return type is a value class. Note that fgInsertCommFormTemp() in turn uses this class handle |
8082 | // if the type of op1 is TYP_STRUCT to perform lvaSetStruct() on the new temp that is created, which |
8083 | // in turn passes it to VM to know the size of value type. |
8084 | GenTree* temp = fgInsertCommaFormTemp(&retNode->gtOp.gtOp1, info.compMethodInfo->args.retTypeClass); |
8085 | |
8086 | GenTree* lclVar = retNode->gtOp.gtOp1->gtOp.gtOp2; |
8087 | |
8088 | // The return can't handle all of the trees that could be on the right-hand-side of an assignment, |
8089 | // especially in the case of a struct. Therefore, we need to propagate GTF_DONT_CSE. |
8090 | // If we don't, assertion propagation may, e.g., change a return of a local to a return of "CNS_INT struct |
8091 | // 0", |
8092 | // which downstream phases can't handle. |
8093 | lclVar->gtFlags |= (retExpr->gtFlags & GTF_DONT_CSE); |
8094 | retNode->gtOp.gtOp1->gtOp.gtOp2 = gtNewOperNode(GT_COMMA, retExpr->TypeGet(), tree, lclVar); |
8095 | } |
8096 | else |
8097 | { |
8098 | // Insert this immediately before the GT_RETURN |
8099 | fgInsertStmtNearEnd(block, tree); |
8100 | } |
8101 | } |
8102 | else |
8103 | { |
8104 | fgInsertStmtAtEnd(block, tree); |
8105 | } |
8106 | |
8107 | return tree; |
8108 | } |
8109 | |
8110 | // Convert a BBJ_RETURN block in a synchronized method to a BBJ_ALWAYS. |
8111 | // We've previously added a 'try' block around the original program code using fgAddSyncMethodEnterExit(). |
8112 | // Thus, we put BBJ_RETURN blocks inside a 'try'. In IL this is illegal. Instead, we would |
8113 | // see a 'leave' inside a 'try' that would get transformed into BBJ_CALLFINALLY/BBJ_ALWAYS blocks |
8114 | // during importing, and the BBJ_ALWAYS would point at an outer block with the BBJ_RETURN. |
8115 | // Here, we mimic some of the logic of importing a LEAVE to get the same effect for synchronized methods. |
8116 | void Compiler::fgConvertSyncReturnToLeave(BasicBlock* block) |
8117 | { |
8118 | assert(!fgFuncletsCreated); |
8119 | assert(info.compFlags & CORINFO_FLG_SYNCH); |
8120 | assert(genReturnBB != nullptr); |
8121 | assert(genReturnBB != block); |
8122 | assert(fgReturnCount <= 1); // We have a single return for synchronized methods |
8123 | assert(block->bbJumpKind == BBJ_RETURN); |
8124 | assert((block->bbFlags & BBF_HAS_JMP) == 0); |
8125 | assert(block->hasTryIndex()); |
8126 | assert(!block->hasHndIndex()); |
8127 | assert(compHndBBtabCount >= 1); |
8128 | |
8129 | unsigned tryIndex = block->getTryIndex(); |
8130 | assert(tryIndex == compHndBBtabCount - 1); // The BBJ_RETURN must be at the top-level before we inserted the |
8131 | // try/finally, which must be the last EH region. |
8132 | |
8133 | EHblkDsc* ehDsc = ehGetDsc(tryIndex); |
8134 | assert(ehDsc->ebdEnclosingTryIndex == |
8135 | EHblkDsc::NO_ENCLOSING_INDEX); // There are no enclosing regions of the BBJ_RETURN block |
8136 | assert(ehDsc->ebdEnclosingHndIndex == EHblkDsc::NO_ENCLOSING_INDEX); |
8137 | |
8138 | // Convert the BBJ_RETURN to BBJ_ALWAYS, jumping to genReturnBB. |
8139 | block->bbJumpKind = BBJ_ALWAYS; |
8140 | block->bbJumpDest = genReturnBB; |
8141 | block->bbJumpDest->bbRefs++; |
8142 | |
8143 | #ifdef DEBUG |
8144 | if (verbose) |
8145 | { |
8146 | printf("Synchronized method - convert block " FMT_BB " to BBJ_ALWAYS [targets " FMT_BB "]\n" , block->bbNum, |
8147 | block->bbJumpDest->bbNum); |
8148 | } |
8149 | #endif |
8150 | } |
8151 | |
8152 | #endif // FEATURE_EH_FUNCLETS |
8153 | |
8154 | //------------------------------------------------------------------------ |
8155 | // fgAddReversePInvokeEnterExit: Add enter/exit calls for reverse PInvoke methods |
8156 | // |
8157 | // Arguments: |
8158 | // None. |
8159 | // |
8160 | // Return Value: |
8161 | // None. |
8162 | |
8163 | void Compiler::fgAddReversePInvokeEnterExit() |
8164 | { |
8165 | assert(opts.IsReversePInvoke()); |
8166 | |
8167 | lvaReversePInvokeFrameVar = lvaGrabTempWithImplicitUse(false DEBUGARG("Reverse Pinvoke FrameVar" )); |
8168 | |
8169 | LclVarDsc* varDsc = &lvaTable[lvaReversePInvokeFrameVar]; |
8170 | varDsc->lvType = TYP_BLK; |
8171 | varDsc->lvExactSize = eeGetEEInfo()->sizeOfReversePInvokeFrame; |
8172 | |
8173 | GenTree* tree; |
8174 | |
8175 | // Add enter pinvoke exit callout at the start of prolog |
8176 | |
8177 | tree = gtNewOperNode(GT_ADDR, TYP_I_IMPL, gtNewLclvNode(lvaReversePInvokeFrameVar, TYP_BLK)); |
8178 | |
8179 | tree = gtNewHelperCallNode(CORINFO_HELP_JIT_REVERSE_PINVOKE_ENTER, TYP_VOID, gtNewArgList(tree)); |
8180 | |
8181 | fgEnsureFirstBBisScratch(); |
8182 | |
8183 | fgInsertStmtAtBeg(fgFirstBB, tree); |
8184 | |
8185 | #ifdef DEBUG |
8186 | if (verbose) |
8187 | { |
8188 | printf("\nReverse PInvoke method - Add reverse pinvoke enter in first basic block %s\n" , |
8189 | fgFirstBB->dspToString()); |
8190 | gtDispTree(tree); |
8191 | printf("\n" ); |
8192 | } |
8193 | #endif |
8194 | |
8195 | // Add reverse pinvoke exit callout at the end of epilog |
8196 | |
8197 | tree = gtNewOperNode(GT_ADDR, TYP_I_IMPL, gtNewLclvNode(lvaReversePInvokeFrameVar, TYP_BLK)); |
8198 | |
8199 | tree = gtNewHelperCallNode(CORINFO_HELP_JIT_REVERSE_PINVOKE_EXIT, TYP_VOID, gtNewArgList(tree)); |
8200 | |
8201 | assert(genReturnBB != nullptr); |
8202 | |
8203 | fgInsertStmtNearEnd(genReturnBB, tree); |
8204 | |
8205 | #ifdef DEBUG |
8206 | if (verbose) |
8207 | { |
8208 | printf("\nReverse PInvoke method - Add reverse pinvoke exit in return basic block %s\n" , |
8209 | genReturnBB->dspToString()); |
8210 | gtDispTree(tree); |
8211 | printf("\n" ); |
8212 | } |
8213 | #endif |
8214 | } |
8215 | |
8216 | /***************************************************************************** |
8217 | * |
8218 | * Return 'true' if there is more than one BBJ_RETURN block. |
8219 | */ |
8220 | |
8221 | bool Compiler::fgMoreThanOneReturnBlock() |
8222 | { |
8223 | unsigned retCnt = 0; |
8224 | |
8225 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
8226 | { |
8227 | if (block->bbJumpKind == BBJ_RETURN) |
8228 | { |
8229 | retCnt++; |
8230 | if (retCnt > 1) |
8231 | { |
8232 | return true; |
8233 | } |
8234 | } |
8235 | } |
8236 | |
8237 | return false; |
8238 | } |
8239 | |
8240 | namespace |
8241 | { |
8242 | // Define a helper class for merging return blocks (which we do when the input has |
8243 | // more than the limit for this configuration). |
8244 | // |
8245 | // Notes: sets fgReturnCount, genReturnBB, and genReturnLocal. |
8246 | class MergedReturns |
8247 | { |
8248 | public: |
8249 | #ifdef JIT32_GCENCODER |
8250 | |
8251 | // X86 GC encoding has a hard limit of SET_EPILOGCNT_MAX epilogs. |
8252 | const static unsigned ReturnCountHardLimit = SET_EPILOGCNT_MAX; |
8253 | #else // JIT32_GCENCODER |
8254 | |
8255 | // We currently apply a hard limit of '4' to all other targets (see |
8256 | // the other uses of SET_EPILOGCNT_MAX), though it would be good |
8257 | // to revisit that decision based on CQ analysis. |
8258 | const static unsigned ReturnCountHardLimit = 4; |
8259 | #endif // JIT32_GCENCODER |
8260 | |
8261 | private: |
8262 | Compiler* comp; |
8263 | |
8264 | // As we discover returns, we'll record them in `returnBlocks`, until |
8265 | // the limit is reached, at which point we'll keep track of the merged |
8266 | // return blocks in `returnBlocks`. |
8267 | BasicBlock* returnBlocks[ReturnCountHardLimit]; |
8268 | |
8269 | // Each constant value returned gets its own merged return block that |
8270 | // returns that constant (up to the limit on number of returns); in |
8271 | // `returnConstants` we track the constant values returned by these |
8272 | // merged constant return blocks. |
8273 | INT64 returnConstants[ReturnCountHardLimit]; |
8274 | |
8275 | // Indicators of where in the lexical block list we'd like to place |
8276 | // each constant return block. |
8277 | BasicBlock* insertionPoints[ReturnCountHardLimit]; |
8278 | |
8279 | // Number of return blocks allowed |
8280 | PhasedVar<unsigned> maxReturns; |
8281 | |
8282 | // Flag to keep track of when we've hit the limit of returns and are |
8283 | // actively merging returns together. |
8284 | bool mergingReturns = false; |
8285 | |
8286 | public: |
8287 | MergedReturns(Compiler* comp) : comp(comp) |
8288 | { |
8289 | comp->fgReturnCount = 0; |
8290 | } |
8291 | |
8292 | void SetMaxReturns(unsigned value) |
8293 | { |
8294 | maxReturns = value; |
8295 | maxReturns.MarkAsReadOnly(); |
8296 | } |
8297 | |
8298 | //------------------------------------------------------------------------ |
8299 | // Record: Make note of a return block in the input program. |
8300 | // |
8301 | // Arguments: |
8302 | // returnBlock - Block in the input that has jump kind BBJ_RETURN |
8303 | // |
8304 | // Notes: |
8305 | // Updates fgReturnCount appropriately, and generates a merged return |
8306 | // block if necessary. If a constant merged return block is used, |
8307 | // `returnBlock` is rewritten to jump to it. If a non-constant return |
8308 | // block is used, `genReturnBB` is set to that block, and `genReturnLocal` |
8309 | // is set to the lclvar that it returns; morph will need to rewrite |
8310 | // `returnBlock` to set the local and jump to the return block in such |
8311 | // cases, which it will do after some key transformations like rewriting |
8312 | // tail calls and calls that return to hidden buffers. In either of these |
8313 | // cases, `fgReturnCount` and the merged return block's profile information |
8314 | // will be updated to reflect or anticipate the rewrite of `returnBlock`. |
8315 | // |
8316 | void Record(BasicBlock* returnBlock) |
8317 | { |
8318 | // Add this return to our tally |
8319 | unsigned oldReturnCount = comp->fgReturnCount++; |
8320 | |
8321 | if (!mergingReturns) |
8322 | { |
8323 | if (oldReturnCount < maxReturns) |
8324 | { |
8325 | // No need to merge just yet; simply record this return. |
8326 | returnBlocks[oldReturnCount] = returnBlock; |
8327 | return; |
8328 | } |
8329 | |
8330 | // We'e reached our threshold |
8331 | mergingReturns = true; |
8332 | |
8333 | // Merge any returns we've already identified |
8334 | for (unsigned i = 0, searchLimit = 0; i < oldReturnCount; ++i) |
8335 | { |
8336 | BasicBlock* mergedReturnBlock = Merge(returnBlocks[i], searchLimit); |
8337 | if (returnBlocks[searchLimit] == mergedReturnBlock) |
8338 | { |
8339 | // We've added a new block to the searchable set |
8340 | ++searchLimit; |
8341 | } |
8342 | } |
8343 | } |
8344 | |
8345 | // We have too many returns, so merge this one in. |
8346 | // Search limit is new return count minus one (to exclude this block). |
8347 | unsigned searchLimit = comp->fgReturnCount - 1; |
8348 | Merge(returnBlock, searchLimit); |
8349 | } |
8350 | |
8351 | //------------------------------------------------------------------------ |
8352 | // EagerCreate: Force creation of a non-constant merged return block `genReturnBB`. |
8353 | // |
8354 | // Return Value: |
8355 | // The newly-created block which returns `genReturnLocal`. |
8356 | // |
8357 | BasicBlock* EagerCreate() |
8358 | { |
8359 | mergingReturns = true; |
8360 | return Merge(nullptr, 0); |
8361 | } |
8362 | |
8363 | //------------------------------------------------------------------------ |
8364 | // PlaceReturns: Move any generated const return blocks to an appropriate |
8365 | // spot in the lexical block list. |
8366 | // |
8367 | // Notes: |
8368 | // The goal is to set things up favorably for a reasonable layout without |
8369 | // putting too much burden on fgReorderBlocks; in particular, since that |
8370 | // method doesn't (currently) shuffle non-profile, non-rare code to create |
8371 | // fall-through and reduce gotos, this method places each const return |
8372 | // block immediately after its last predecessor, so that the flow from |
8373 | // there to it can become fallthrough without requiring any motion to be |
8374 | // performed by fgReorderBlocks. |
8375 | // |
8376 | void PlaceReturns() |
8377 | { |
8378 | if (!mergingReturns) |
8379 | { |
8380 | // No returns generated => no returns to place. |
8381 | return; |
8382 | } |
8383 | |
8384 | for (unsigned index = 0; index < comp->fgReturnCount; ++index) |
8385 | { |
8386 | BasicBlock* returnBlock = returnBlocks[index]; |
8387 | BasicBlock* genReturnBlock = comp->genReturnBB; |
8388 | if (returnBlock == genReturnBlock) |
8389 | { |
8390 | continue; |
8391 | } |
8392 | |
8393 | BasicBlock* insertionPoint = insertionPoints[index]; |
8394 | assert(insertionPoint != nullptr); |
8395 | |
8396 | comp->fgUnlinkBlock(returnBlock); |
8397 | comp->fgMoveBlocksAfter(returnBlock, returnBlock, insertionPoint); |
8398 | // Treat the merged return block as belonging to the same EH region |
8399 | // as the insertion point block, to make sure we don't break up |
8400 | // EH regions; since returning a constant won't throw, this won't |
8401 | // affect program behavior. |
8402 | comp->fgExtendEHRegionAfter(insertionPoint); |
8403 | } |
8404 | } |
8405 | |
8406 | private: |
8407 | //------------------------------------------------------------------------ |
8408 | // CreateReturnBB: Create a basic block to serve as a merged return point, stored to |
8409 | // `returnBlocks` at the given index, and optionally returning the given constant. |
8410 | // |
8411 | // Arguments: |
8412 | // index - Index into `returnBlocks` to store the new block into. |
8413 | // returnConst - Constant that the new block should return; may be nullptr to |
8414 | // indicate that the new merged return is for the non-constant case, in which |
8415 | // case, if the method's return type is non-void, `comp->genReturnLocal` will |
8416 | // be initialized to a new local of the appropriate type, and the new block will |
8417 | // return it. |
8418 | // |
8419 | // Return Value: |
8420 | // The new merged return block. |
8421 | // |
8422 | BasicBlock* CreateReturnBB(unsigned index, GenTreeIntConCommon* returnConst = nullptr) |
8423 | { |
8424 | BasicBlock* newReturnBB = comp->fgNewBBinRegion(BBJ_RETURN); |
8425 | newReturnBB->bbRefs = 1; // bbRefs gets update later, for now it should be 1 |
8426 | comp->fgReturnCount++; |
8427 | |
8428 | newReturnBB->bbFlags |= BBF_INTERNAL; |
8429 | |
8430 | noway_assert(newReturnBB->bbNext == nullptr); |
8431 | |
8432 | #ifdef DEBUG |
8433 | if (comp->verbose) |
8434 | { |
8435 | printf("\n newReturnBB [" FMT_BB "] created\n" , newReturnBB->bbNum); |
8436 | } |
8437 | #endif |
8438 | |
8439 | // We have profile weight, the weight is zero, and the block is run rarely, |
8440 | // until we prove otherwise by merging other returns into this one. |
8441 | newReturnBB->bbFlags |= (BBF_PROF_WEIGHT | BBF_RUN_RARELY); |
8442 | newReturnBB->bbWeight = 0; |
8443 | |
8444 | GenTree* returnExpr; |
8445 | |
8446 | if (returnConst != nullptr) |
8447 | { |
8448 | returnExpr = comp->gtNewOperNode(GT_RETURN, returnConst->gtType, returnConst); |
8449 | returnConstants[index] = returnConst->IntegralValue(); |
8450 | } |
8451 | else if (comp->compMethodHasRetVal()) |
8452 | { |
8453 | // There is a return value, so create a temp for it. Real returns will store the value in there and |
8454 | // it'll be reloaded by the single return. |
8455 | unsigned returnLocalNum = comp->lvaGrabTemp(true DEBUGARG("Single return block return value" )); |
8456 | comp->genReturnLocal = returnLocalNum; |
8457 | LclVarDsc& returnLocalDsc = comp->lvaTable[returnLocalNum]; |
8458 | |
8459 | if (comp->compMethodReturnsNativeScalarType()) |
8460 | { |
8461 | returnLocalDsc.lvType = genActualType(comp->info.compRetNativeType); |
8462 | } |
8463 | else if (comp->compMethodReturnsRetBufAddr()) |
8464 | { |
8465 | returnLocalDsc.lvType = TYP_BYREF; |
8466 | } |
8467 | else if (comp->compMethodReturnsMultiRegRetType()) |
8468 | { |
8469 | returnLocalDsc.lvType = TYP_STRUCT; |
8470 | comp->lvaSetStruct(returnLocalNum, comp->info.compMethodInfo->args.retTypeClass, true); |
8471 | returnLocalDsc.lvIsMultiRegRet = true; |
8472 | } |
8473 | else |
8474 | { |
8475 | assert(!"unreached" ); |
8476 | } |
8477 | |
8478 | if (varTypeIsFloating(returnLocalDsc.lvType)) |
8479 | { |
8480 | comp->compFloatingPointUsed = true; |
8481 | } |
8482 | |
8483 | #ifdef DEBUG |
8484 | // This temporary should not be converted to a double in stress mode, |
8485 | // because we introduce assigns to it after the stress conversion |
8486 | returnLocalDsc.lvKeepType = 1; |
8487 | #endif |
8488 | |
8489 | GenTree* retTemp = comp->gtNewLclvNode(returnLocalNum, returnLocalDsc.TypeGet()); |
8490 | |
8491 | // make sure copy prop ignores this node (make sure it always does a reload from the temp). |
8492 | retTemp->gtFlags |= GTF_DONT_CSE; |
8493 | returnExpr = comp->gtNewOperNode(GT_RETURN, retTemp->gtType, retTemp); |
8494 | } |
8495 | else |
8496 | { |
8497 | // return void |
8498 | noway_assert(comp->info.compRetType == TYP_VOID || varTypeIsStruct(comp->info.compRetType)); |
8499 | comp->genReturnLocal = BAD_VAR_NUM; |
8500 | |
8501 | returnExpr = new (comp, GT_RETURN) GenTreeOp(GT_RETURN, TYP_VOID); |
8502 | } |
8503 | |
8504 | // Add 'return' expression to the return block |
8505 | comp->fgInsertStmtAtEnd(newReturnBB, returnExpr); |
8506 | // Flag that this 'return' was generated by return merging so that subsequent |
8507 | // return block morhping will know to leave it alone. |
8508 | returnExpr->gtFlags |= GTF_RET_MERGED; |
8509 | |
8510 | #ifdef DEBUG |
8511 | if (comp->verbose) |
8512 | { |
8513 | printf("\nmergeReturns statement tree " ); |
8514 | Compiler::printTreeID(returnExpr); |
8515 | printf(" added to genReturnBB %s\n" , newReturnBB->dspToString()); |
8516 | comp->gtDispTree(returnExpr); |
8517 | printf("\n" ); |
8518 | } |
8519 | #endif |
8520 | assert(index < maxReturns); |
8521 | returnBlocks[index] = newReturnBB; |
8522 | return newReturnBB; |
8523 | } |
8524 | |
8525 | //------------------------------------------------------------------------ |
8526 | // Merge: Find or create an appropriate merged return block for the given input block. |
8527 | // |
8528 | // Arguments: |
8529 | // returnBlock - Return block from the input program to find a merged return for. |
8530 | // May be nullptr to indicate that new block suitable for non-constant |
8531 | // returns should be generated but no existing block modified. |
8532 | // searchLimit - Blocks in `returnBlocks` up to but not including index `searchLimit` |
8533 | // will be checked to see if we already have an appropriate merged return |
8534 | // block for this case. If a new block must be created, it will be stored |
8535 | // to `returnBlocks` at index `searchLimit`. |
8536 | // |
8537 | // Return Value: |
8538 | // Merged return block suitable for handling this return value. May be newly-created |
8539 | // or pre-existing. |
8540 | // |
8541 | // Notes: |
8542 | // If a constant-valued merged return block is used, `returnBlock` will be rewritten to |
8543 | // jump to the merged return block and its `GT_RETURN` statement will be removed. If |
8544 | // a non-constant-valued merged return block is used, `genReturnBB` and `genReturnLocal` |
8545 | // will be set so that Morph can perform that rewrite, which it will do after some key |
8546 | // transformations like rewriting tail calls and calls that return to hidden buffers. |
8547 | // In either of these cases, `fgReturnCount` and the merged return block's profile |
8548 | // information will be updated to reflect or anticipate the rewrite of `returnBlock`. |
8549 | // |
8550 | BasicBlock* Merge(BasicBlock* returnBlock, unsigned searchLimit) |
8551 | { |
8552 | assert(mergingReturns); |
8553 | |
8554 | BasicBlock* mergedReturnBlock = nullptr; |
8555 | |
8556 | // Do not look for mergable constant returns in debug codegen as |
8557 | // we may lose track of sequence points. |
8558 | if ((returnBlock != nullptr) && (maxReturns > 1) && !comp->opts.compDbgCode) |
8559 | { |
8560 | // Check to see if this is a constant return so that we can search |
8561 | // for and/or create a constant return block for it. |
8562 | |
8563 | GenTreeIntConCommon* retConst = GetReturnConst(returnBlock); |
8564 | if (retConst != nullptr) |
8565 | { |
8566 | // We have a constant. Now find or create a corresponding return block. |
8567 | |
8568 | unsigned index; |
8569 | BasicBlock* constReturnBlock = FindConstReturnBlock(retConst, searchLimit, &index); |
8570 | |
8571 | if (constReturnBlock == nullptr) |
8572 | { |
8573 | // We didn't find a const return block. See if we have space left |
8574 | // to make one. |
8575 | |
8576 | // We have already allocated `searchLimit` slots. |
8577 | unsigned slotsReserved = searchLimit; |
8578 | if (comp->genReturnBB == nullptr) |
8579 | { |
8580 | // We haven't made a non-const return yet, so we have to reserve |
8581 | // a slot for one. |
8582 | ++slotsReserved; |
8583 | } |
8584 | |
8585 | if (slotsReserved < maxReturns) |
8586 | { |
8587 | // We have enough space to allocate a slot for this constant. |
8588 | constReturnBlock = CreateReturnBB(searchLimit, retConst); |
8589 | } |
8590 | } |
8591 | |
8592 | if (constReturnBlock != nullptr) |
8593 | { |
8594 | // Found a constant merged return block. |
8595 | mergedReturnBlock = constReturnBlock; |
8596 | |
8597 | // Change BBJ_RETURN to BBJ_ALWAYS targeting const return block. |
8598 | assert((comp->info.compFlags & CORINFO_FLG_SYNCH) == 0); |
8599 | returnBlock->bbJumpKind = BBJ_ALWAYS; |
8600 | returnBlock->bbJumpDest = constReturnBlock; |
8601 | |
8602 | // Remove GT_RETURN since constReturnBlock returns the constant. |
8603 | assert(returnBlock->lastStmt()->gtStmtExpr->OperIs(GT_RETURN)); |
8604 | assert(returnBlock->lastStmt()->gtStmtExpr->gtGetOp1()->IsIntegralConst()); |
8605 | comp->fgRemoveStmt(returnBlock, returnBlock->lastStmt()); |
8606 | |
8607 | // Using 'returnBlock' as the insertion point for 'mergedReturnBlock' |
8608 | // will give it a chance to use fallthrough rather than BBJ_ALWAYS. |
8609 | // Resetting this after each merge ensures that any branches to the |
8610 | // merged return block are lexically forward. |
8611 | |
8612 | insertionPoints[index] = returnBlock; |
8613 | } |
8614 | } |
8615 | } |
8616 | |
8617 | if (mergedReturnBlock == nullptr) |
8618 | { |
8619 | // No constant return block for this return; use the general one. |
8620 | mergedReturnBlock = comp->genReturnBB; |
8621 | if (mergedReturnBlock == nullptr) |
8622 | { |
8623 | // No general merged return for this function yet; create one. |
8624 | // There had better still be room left in the array. |
8625 | assert(searchLimit < maxReturns); |
8626 | mergedReturnBlock = CreateReturnBB(searchLimit); |
8627 | comp->genReturnBB = mergedReturnBlock; |
8628 | // Downstream code expects the `genReturnBB` to always remain |
8629 | // once created, so that it can redirect flow edges to it. |
8630 | mergedReturnBlock->bbFlags |= BBF_DONT_REMOVE; |
8631 | } |
8632 | } |
8633 | |
8634 | if (returnBlock != nullptr) |
8635 | { |
8636 | // Propagate profile weight and related annotations to the merged block. |
8637 | // Return weight should never exceed entry weight, so cap it to avoid nonsensical |
8638 | // hot returns in synthetic profile settings. |
8639 | mergedReturnBlock->bbWeight = |
8640 | min(mergedReturnBlock->bbWeight + returnBlock->bbWeight, comp->fgFirstBB->bbWeight); |
8641 | if (!returnBlock->hasProfileWeight()) |
8642 | { |
8643 | mergedReturnBlock->bbFlags &= ~BBF_PROF_WEIGHT; |
8644 | } |
8645 | if (mergedReturnBlock->bbWeight > 0) |
8646 | { |
8647 | mergedReturnBlock->bbFlags &= ~BBF_RUN_RARELY; |
8648 | } |
8649 | |
8650 | // Update fgReturnCount to reflect or anticipate that `returnBlock` will no longer |
8651 | // be a return point. |
8652 | comp->fgReturnCount--; |
8653 | } |
8654 | |
8655 | return mergedReturnBlock; |
8656 | } |
8657 | |
8658 | //------------------------------------------------------------------------ |
8659 | // GetReturnConst: If the given block returns an integral constant, return the |
8660 | // GenTreeIntConCommon that represents the constant. |
8661 | // |
8662 | // Arguments: |
8663 | // returnBlock - Block whose return value is to be inspected. |
8664 | // |
8665 | // Return Value: |
8666 | // GenTreeIntCommon that is the argument of `returnBlock`'s `GT_RETURN` if |
8667 | // such exists; nullptr otherwise. |
8668 | // |
8669 | static GenTreeIntConCommon* GetReturnConst(BasicBlock* returnBlock) |
8670 | { |
8671 | GenTreeStmt* lastStmt = returnBlock->lastStmt(); |
8672 | if (lastStmt == nullptr) |
8673 | { |
8674 | return nullptr; |
8675 | } |
8676 | |
8677 | GenTree* lastExpr = lastStmt->gtStmtExpr; |
8678 | if (!lastExpr->OperIs(GT_RETURN)) |
8679 | { |
8680 | return nullptr; |
8681 | } |
8682 | |
8683 | GenTree* retExpr = lastExpr->gtGetOp1(); |
8684 | if ((retExpr == nullptr) || !retExpr->IsIntegralConst()) |
8685 | { |
8686 | return nullptr; |
8687 | } |
8688 | |
8689 | return retExpr->AsIntConCommon(); |
8690 | } |
8691 | |
8692 | //------------------------------------------------------------------------ |
8693 | // FindConstReturnBlock: Scan the already-created merged return blocks, up to `searchLimit`, |
8694 | // and return the one corresponding to the given const expression if it exists. |
8695 | // |
8696 | // Arguments: |
8697 | // constExpr - GenTreeIntCommon representing the constant return value we're |
8698 | // searching for. |
8699 | // searchLimit - Check `returnBlocks`/`returnConstants` up to but not including |
8700 | // this index. |
8701 | // index - [out] Index of return block in the `returnBlocks` array, if found; |
8702 | // searchLimit otherwise. |
8703 | // |
8704 | // Return Value: |
8705 | // A block that returns the same constant, if one is found; otherwise nullptr. |
8706 | // |
8707 | BasicBlock* FindConstReturnBlock(GenTreeIntConCommon* constExpr, unsigned searchLimit, unsigned* index) |
8708 | { |
8709 | INT64 constVal = constExpr->IntegralValue(); |
8710 | |
8711 | for (unsigned i = 0; i < searchLimit; ++i) |
8712 | { |
8713 | // Need to check both for matching const val and for genReturnBB |
8714 | // because genReturnBB is used for non-constant returns and its |
8715 | // corresponding entry in the returnConstants array is garbage. |
8716 | if (returnConstants[i] == constVal) |
8717 | { |
8718 | BasicBlock* returnBlock = returnBlocks[i]; |
8719 | |
8720 | if (returnBlock == comp->genReturnBB) |
8721 | { |
8722 | // This is the block used for non-constant returns, so |
8723 | // its returnConstants entry is just garbage; don't be |
8724 | // fooled. |
8725 | continue; |
8726 | } |
8727 | |
8728 | *index = i; |
8729 | return returnBlock; |
8730 | } |
8731 | } |
8732 | |
8733 | *index = searchLimit; |
8734 | return nullptr; |
8735 | } |
8736 | }; |
8737 | } |
8738 | |
8739 | /***************************************************************************** |
8740 | * |
8741 | * Add any internal blocks/trees we may need |
8742 | */ |
8743 | |
8744 | void Compiler::fgAddInternal() |
8745 | { |
8746 | noway_assert(!compIsForInlining()); |
8747 | |
8748 | // The backend requires a scratch BB into which it can safely insert a P/Invoke method prolog if one is |
8749 | // required. Create it here. |
8750 | if (info.compCallUnmanaged != 0) |
8751 | { |
8752 | fgEnsureFirstBBisScratch(); |
8753 | fgFirstBB->bbFlags |= BBF_DONT_REMOVE; |
8754 | } |
8755 | |
8756 | /* |
8757 | <BUGNUM> VSW441487 </BUGNUM> |
8758 | |
8759 | The "this" pointer is implicitly used in the following cases: |
8760 | 1. Locking of synchronized methods |
8761 | 2. Dictionary access of shared generics code |
8762 | 3. If a method has "catch(FooException<T>)", the EH code accesses "this" to determine T. |
8763 | 4. Initializing the type from generic methods which require precise cctor semantics |
8764 | 5. Verifier does special handling of "this" in the .ctor |
8765 | |
8766 | However, we might overwrite it with a "starg 0". |
8767 | In this case, we will redirect all "ldarg(a)/starg(a) 0" to a temp lvaTable[lvaArg0Var] |
8768 | */ |
8769 | |
8770 | if (!info.compIsStatic) |
8771 | { |
8772 | if (lvaArg0Var != info.compThisArg) |
8773 | { |
8774 | // When we're using the general encoder, we mark compThisArg address-taken to ensure that it is not |
8775 | // enregistered (since the decoder always reports a stack location for "this" for generics |
8776 | // context vars). |
8777 | bool lva0CopiedForGenericsCtxt; |
8778 | #ifndef JIT32_GCENCODER |
8779 | lva0CopiedForGenericsCtxt = ((info.compMethodInfo->options & CORINFO_GENERICS_CTXT_FROM_THIS) != 0); |
8780 | #else // JIT32_GCENCODER |
8781 | lva0CopiedForGenericsCtxt = false; |
8782 | #endif // JIT32_GCENCODER |
8783 | noway_assert(lva0CopiedForGenericsCtxt || !lvaTable[info.compThisArg].lvAddrExposed); |
8784 | noway_assert(!lvaTable[info.compThisArg].lvHasILStoreOp); |
8785 | noway_assert(lvaTable[lvaArg0Var].lvAddrExposed || lvaTable[lvaArg0Var].lvHasILStoreOp || |
8786 | lva0CopiedForGenericsCtxt); |
8787 | |
8788 | var_types thisType = lvaTable[info.compThisArg].TypeGet(); |
8789 | |
8790 | // Now assign the original input "this" to the temp |
8791 | |
8792 | GenTree* tree; |
8793 | |
8794 | tree = gtNewLclvNode(lvaArg0Var, thisType); |
8795 | |
8796 | tree = gtNewAssignNode(tree, // dst |
8797 | gtNewLclvNode(info.compThisArg, thisType) // src |
8798 | ); |
8799 | |
8800 | /* Create a new basic block and stick the assignment in it */ |
8801 | |
8802 | fgEnsureFirstBBisScratch(); |
8803 | |
8804 | fgInsertStmtAtEnd(fgFirstBB, tree); |
8805 | |
8806 | #ifdef DEBUG |
8807 | if (verbose) |
8808 | { |
8809 | printf("\nCopy \"this\" to lvaArg0Var in first basic block %s\n" , fgFirstBB->dspToString()); |
8810 | gtDispTree(tree); |
8811 | printf("\n" ); |
8812 | } |
8813 | #endif |
8814 | } |
8815 | } |
8816 | |
8817 | // Grab a temp for the security object. |
8818 | // (Note: opts.compDbgEnC currently also causes the security object to be generated. See Compiler::compCompile) |
8819 | if (opts.compNeedSecurityCheck) |
8820 | { |
8821 | noway_assert(lvaSecurityObject == BAD_VAR_NUM); |
8822 | lvaSecurityObject = lvaGrabTempWithImplicitUse(false DEBUGARG("security check" )); |
8823 | lvaTable[lvaSecurityObject].lvType = TYP_REF; |
8824 | } |
8825 | |
8826 | // Merge return points if required or beneficial |
8827 | MergedReturns merger(this); |
8828 | |
8829 | #if FEATURE_EH_FUNCLETS |
8830 | // Add the synchronized method enter/exit calls and try/finally protection. Note |
8831 | // that this must happen before the one BBJ_RETURN block is created below, so the |
8832 | // BBJ_RETURN block gets placed at the top-level, not within an EH region. (Otherwise, |
8833 | // we'd have to be really careful when creating the synchronized method try/finally |
8834 | // not to include the BBJ_RETURN block.) |
8835 | if ((info.compFlags & CORINFO_FLG_SYNCH) != 0) |
8836 | { |
8837 | fgAddSyncMethodEnterExit(); |
8838 | } |
8839 | #endif // FEATURE_EH_FUNCLETS |
8840 | |
8841 | // |
8842 | // We will generate just one epilog (return block) |
8843 | // when we are asked to generate enter/leave callbacks |
8844 | // or for methods with PInvoke |
8845 | // or for methods calling into unmanaged code |
8846 | // or for synchronized methods. |
8847 | // |
8848 | BasicBlock* lastBlockBeforeGenReturns = fgLastBB; |
8849 | if (compIsProfilerHookNeeded() || (info.compCallUnmanaged != 0) || opts.IsReversePInvoke() || |
8850 | ((info.compFlags & CORINFO_FLG_SYNCH) != 0)) |
8851 | { |
8852 | // We will generate only one return block |
8853 | // We will transform the BBJ_RETURN blocks |
8854 | // into jumps to the one return block |
8855 | // |
8856 | merger.SetMaxReturns(1); |
8857 | |
8858 | // Eagerly create the genReturnBB since the lowering of these constructs |
8859 | // will expect to find it. |
8860 | BasicBlock* mergedReturn = merger.EagerCreate(); |
8861 | assert(mergedReturn == genReturnBB); |
8862 | // Assume weight equal to entry weight for this BB. |
8863 | mergedReturn->bbFlags &= ~BBF_PROF_WEIGHT; |
8864 | mergedReturn->bbWeight = fgFirstBB->bbWeight; |
8865 | if (mergedReturn->bbWeight > 0) |
8866 | { |
8867 | mergedReturn->bbFlags &= ~BBF_RUN_RARELY; |
8868 | } |
8869 | } |
8870 | else |
8871 | { |
8872 | // |
8873 | // We are allowed to have multiple individual exits |
8874 | // However we can still decide to have a single return |
8875 | // |
8876 | if (compCodeOpt() == SMALL_CODE) |
8877 | { |
8878 | // For the Small_Code case we always generate a |
8879 | // single return block when we have multiple |
8880 | // return points |
8881 | // |
8882 | merger.SetMaxReturns(1); |
8883 | } |
8884 | else |
8885 | { |
8886 | merger.SetMaxReturns(MergedReturns::ReturnCountHardLimit); |
8887 | } |
8888 | } |
8889 | |
8890 | // Visit the BBJ_RETURN blocks and merge as necessary. |
8891 | |
8892 | for (BasicBlock* block = fgFirstBB; block != lastBlockBeforeGenReturns->bbNext; block = block->bbNext) |
8893 | { |
8894 | if ((block->bbJumpKind == BBJ_RETURN) && ((block->bbFlags & BBF_HAS_JMP) == 0)) |
8895 | { |
8896 | merger.Record(block); |
8897 | } |
8898 | } |
8899 | |
8900 | merger.PlaceReturns(); |
8901 | |
8902 | if (info.compCallUnmanaged != 0) |
8903 | { |
8904 | // The P/Invoke helpers only require a frame variable, so only allocate the |
8905 | // TCB variable if we're not using them. |
8906 | if (!opts.ShouldUsePInvokeHelpers()) |
8907 | { |
8908 | info.compLvFrameListRoot = lvaGrabTemp(false DEBUGARG("Pinvoke FrameListRoot" )); |
8909 | LclVarDsc* rootVarDsc = &lvaTable[info.compLvFrameListRoot]; |
8910 | rootVarDsc->lvType = TYP_I_IMPL; |
8911 | rootVarDsc->lvImplicitlyReferenced = 1; |
8912 | } |
8913 | |
8914 | lvaInlinedPInvokeFrameVar = lvaGrabTempWithImplicitUse(false DEBUGARG("Pinvoke FrameVar" )); |
8915 | |
8916 | LclVarDsc* varDsc = &lvaTable[lvaInlinedPInvokeFrameVar]; |
8917 | varDsc->lvType = TYP_BLK; |
8918 | // Make room for the inlined frame. |
8919 | varDsc->lvExactSize = eeGetEEInfo()->inlinedCallFrameInfo.size; |
8920 | #if FEATURE_FIXED_OUT_ARGS |
8921 | // Grab and reserve space for TCB, Frame regs used in PInvoke epilog to pop the inlined frame. |
8922 | // See genPInvokeMethodEpilog() for use of the grabbed var. This is only necessary if we are |
8923 | // not using the P/Invoke helpers. |
8924 | if (!opts.ShouldUsePInvokeHelpers() && compJmpOpUsed) |
8925 | { |
8926 | lvaPInvokeFrameRegSaveVar = lvaGrabTempWithImplicitUse(false DEBUGARG("PInvokeFrameRegSave Var" )); |
8927 | varDsc = &lvaTable[lvaPInvokeFrameRegSaveVar]; |
8928 | varDsc->lvType = TYP_BLK; |
8929 | varDsc->lvExactSize = 2 * REGSIZE_BYTES; |
8930 | } |
8931 | #endif |
8932 | } |
8933 | |
8934 | // Do we need to insert a "JustMyCode" callback? |
8935 | |
8936 | CORINFO_JUST_MY_CODE_HANDLE* pDbgHandle = nullptr; |
8937 | CORINFO_JUST_MY_CODE_HANDLE dbgHandle = nullptr; |
8938 | if (opts.compDbgCode && !opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB)) |
8939 | { |
8940 | dbgHandle = info.compCompHnd->getJustMyCodeHandle(info.compMethodHnd, &pDbgHandle); |
8941 | } |
8942 | |
8943 | noway_assert(!dbgHandle || !pDbgHandle); |
8944 | |
8945 | if (dbgHandle || pDbgHandle) |
8946 | { |
8947 | GenTree* embNode = gtNewIconEmbHndNode(dbgHandle, pDbgHandle, GTF_ICON_TOKEN_HDL, info.compMethodHnd); |
8948 | GenTree* guardCheckVal = gtNewOperNode(GT_IND, TYP_INT, embNode); |
8949 | GenTree* guardCheckCond = gtNewOperNode(GT_EQ, TYP_INT, guardCheckVal, gtNewZeroConNode(TYP_INT)); |
8950 | |
8951 | // Create the callback which will yield the final answer |
8952 | |
8953 | GenTree* callback = gtNewHelperCallNode(CORINFO_HELP_DBG_IS_JUST_MY_CODE, TYP_VOID); |
8954 | callback = new (this, GT_COLON) GenTreeColon(TYP_VOID, gtNewNothingNode(), callback); |
8955 | |
8956 | // Stick the conditional call at the start of the method |
8957 | |
8958 | fgEnsureFirstBBisScratch(); |
8959 | fgInsertStmtAtEnd(fgFirstBB, gtNewQmarkNode(TYP_VOID, guardCheckCond, callback)); |
8960 | } |
8961 | |
8962 | /* Do we need to call out for security ? */ |
8963 | |
8964 | if (tiSecurityCalloutNeeded) |
8965 | { |
8966 | // We must have grabbed this local. |
8967 | noway_assert(opts.compNeedSecurityCheck); |
8968 | noway_assert(lvaSecurityObject != BAD_VAR_NUM); |
8969 | |
8970 | GenTree* tree; |
8971 | |
8972 | /* Insert the expression "call JIT_Security_Prolog(MethodHnd, &SecurityObject)" */ |
8973 | |
8974 | tree = gtNewIconEmbMethHndNode(info.compMethodHnd); |
8975 | |
8976 | tree = gtNewHelperCallNode(info.compCompHnd->getSecurityPrologHelper(info.compMethodHnd), TYP_VOID, |
8977 | gtNewArgList(tree, gtNewOperNode(GT_ADDR, TYP_BYREF, |
8978 | gtNewLclvNode(lvaSecurityObject, TYP_REF)))); |
8979 | |
8980 | /* Create a new basic block and stick the call in it */ |
8981 | |
8982 | fgEnsureFirstBBisScratch(); |
8983 | |
8984 | fgInsertStmtAtEnd(fgFirstBB, tree); |
8985 | |
8986 | #ifdef DEBUG |
8987 | if (verbose) |
8988 | { |
8989 | printf("\ntiSecurityCalloutNeeded - Add call JIT_Security_Prolog(%08p) statement " , |
8990 | dspPtr(info.compMethodHnd)); |
8991 | printTreeID(tree); |
8992 | printf(" in first basic block %s\n" , fgFirstBB->dspToString()); |
8993 | gtDispTree(tree); |
8994 | printf("\n" ); |
8995 | } |
8996 | #endif |
8997 | } |
8998 | |
8999 | #if !FEATURE_EH_FUNCLETS |
9000 | |
9001 | /* Is this a 'synchronized' method? */ |
9002 | |
9003 | if (info.compFlags & CORINFO_FLG_SYNCH) |
9004 | { |
9005 | GenTree* tree = NULL; |
9006 | |
9007 | /* Insert the expression "enterCrit(this)" or "enterCrit(handle)" */ |
9008 | |
9009 | if (info.compIsStatic) |
9010 | { |
9011 | tree = fgGetCritSectOfStaticMethod(); |
9012 | |
9013 | tree = gtNewHelperCallNode(CORINFO_HELP_MON_ENTER_STATIC, TYP_VOID, gtNewArgList(tree)); |
9014 | } |
9015 | else |
9016 | { |
9017 | noway_assert(lvaTable[info.compThisArg].lvType == TYP_REF); |
9018 | |
9019 | tree = gtNewLclvNode(info.compThisArg, TYP_REF); |
9020 | |
9021 | tree = gtNewHelperCallNode(CORINFO_HELP_MON_ENTER, TYP_VOID, gtNewArgList(tree)); |
9022 | } |
9023 | |
9024 | /* Create a new basic block and stick the call in it */ |
9025 | |
9026 | fgEnsureFirstBBisScratch(); |
9027 | |
9028 | fgInsertStmtAtEnd(fgFirstBB, tree); |
9029 | |
9030 | #ifdef DEBUG |
9031 | if (verbose) |
9032 | { |
9033 | printf("\nSynchronized method - Add enterCrit statement in first basic block %s\n" , |
9034 | fgFirstBB->dspToString()); |
9035 | gtDispTree(tree); |
9036 | printf("\n" ); |
9037 | } |
9038 | #endif |
9039 | |
9040 | /* We must be generating a single exit point for this to work */ |
9041 | |
9042 | noway_assert(genReturnBB != nullptr); |
9043 | |
9044 | /* Create the expression "exitCrit(this)" or "exitCrit(handle)" */ |
9045 | |
9046 | if (info.compIsStatic) |
9047 | { |
9048 | tree = fgGetCritSectOfStaticMethod(); |
9049 | |
9050 | tree = gtNewHelperCallNode(CORINFO_HELP_MON_EXIT_STATIC, TYP_VOID, gtNewArgList(tree)); |
9051 | } |
9052 | else |
9053 | { |
9054 | tree = gtNewLclvNode(info.compThisArg, TYP_REF); |
9055 | |
9056 | tree = gtNewHelperCallNode(CORINFO_HELP_MON_EXIT, TYP_VOID, gtNewArgList(tree)); |
9057 | } |
9058 | |
9059 | fgInsertStmtNearEnd(genReturnBB, tree); |
9060 | |
9061 | #ifdef DEBUG |
9062 | if (verbose) |
9063 | { |
9064 | printf("\nSynchronized method - Add exit expression " ); |
9065 | printTreeID(tree); |
9066 | printf("\n" ); |
9067 | } |
9068 | #endif |
9069 | |
9070 | // Reset cookies used to track start and end of the protected region in synchronized methods |
9071 | syncStartEmitCookie = NULL; |
9072 | syncEndEmitCookie = NULL; |
9073 | } |
9074 | |
9075 | #endif // !FEATURE_EH_FUNCLETS |
9076 | |
9077 | /* Do we need to do runtime call out to check the security? */ |
9078 | |
9079 | if (tiRuntimeCalloutNeeded) |
9080 | { |
9081 | GenTree* tree; |
9082 | |
9083 | /* Insert the expression "call verificationRuntimeCheck(MethodHnd)" */ |
9084 | |
9085 | tree = gtNewIconEmbMethHndNode(info.compMethodHnd); |
9086 | |
9087 | tree = gtNewHelperCallNode(CORINFO_HELP_VERIFICATION_RUNTIME_CHECK, TYP_VOID, gtNewArgList(tree)); |
9088 | |
9089 | /* Create a new basic block and stick the call in it */ |
9090 | |
9091 | fgEnsureFirstBBisScratch(); |
9092 | |
9093 | fgInsertStmtAtEnd(fgFirstBB, tree); |
9094 | |
9095 | #ifdef DEBUG |
9096 | if (verbose) |
9097 | { |
9098 | printf("\ntiRuntimeCalloutNeeded - Call verificationRuntimeCheck(%08p) statement in first basic block %s\n" , |
9099 | dspPtr(info.compMethodHnd), fgFirstBB->dspToString()); |
9100 | gtDispTree(tree); |
9101 | printf("\n" ); |
9102 | } |
9103 | #endif |
9104 | } |
9105 | |
9106 | if (opts.IsReversePInvoke()) |
9107 | { |
9108 | fgAddReversePInvokeEnterExit(); |
9109 | } |
9110 | |
9111 | #ifdef DEBUG |
9112 | if (verbose) |
9113 | { |
9114 | printf("\n*************** After fgAddInternal()\n" ); |
9115 | fgDispBasicBlocks(); |
9116 | fgDispHandlerTab(); |
9117 | } |
9118 | #endif |
9119 | } |
9120 | |
9121 | /***************************************************************************** |
9122 | * |
9123 | * Create a new statement from tree and wire the links up. |
9124 | */ |
9125 | GenTreeStmt* Compiler::fgNewStmtFromTree(GenTree* tree, BasicBlock* block, IL_OFFSETX offs) |
9126 | { |
9127 | GenTreeStmt* stmt = gtNewStmt(tree, offs); |
9128 | |
9129 | if (fgStmtListThreaded) |
9130 | { |
9131 | gtSetStmtInfo(stmt); |
9132 | fgSetStmtSeq(stmt); |
9133 | } |
9134 | |
9135 | #if DEBUG |
9136 | if (block != nullptr) |
9137 | { |
9138 | fgDebugCheckNodeLinks(block, stmt); |
9139 | } |
9140 | #endif |
9141 | |
9142 | return stmt; |
9143 | } |
9144 | |
9145 | GenTreeStmt* Compiler::fgNewStmtFromTree(GenTree* tree) |
9146 | { |
9147 | return fgNewStmtFromTree(tree, nullptr, BAD_IL_OFFSET); |
9148 | } |
9149 | |
9150 | GenTreeStmt* Compiler::fgNewStmtFromTree(GenTree* tree, BasicBlock* block) |
9151 | { |
9152 | return fgNewStmtFromTree(tree, block, BAD_IL_OFFSET); |
9153 | } |
9154 | |
9155 | GenTreeStmt* Compiler::fgNewStmtFromTree(GenTree* tree, IL_OFFSETX offs) |
9156 | { |
9157 | return fgNewStmtFromTree(tree, nullptr, offs); |
9158 | } |
9159 | |
9160 | //------------------------------------------------------------------------ |
9161 | // fgFindBlockILOffset: Given a block, find the IL offset corresponding to the first statement |
9162 | // in the block with a legal IL offset. Skip any leading statements that have BAD_IL_OFFSET. |
9163 | // If no statement has an initialized statement offset (including the case where there are |
9164 | // no statements in the block), then return BAD_IL_OFFSET. This function is used when |
9165 | // blocks are split or modified, and we want to maintain the IL offset as much as possible |
9166 | // to preserve good debugging behavior. |
9167 | // |
9168 | // Arguments: |
9169 | // block - The block to check. |
9170 | // |
9171 | // Return Value: |
9172 | // The first good IL offset of a statement in the block, or BAD_IL_OFFSET if such an IL offset |
9173 | // cannot be found. |
9174 | // |
9175 | IL_OFFSET Compiler::fgFindBlockILOffset(BasicBlock* block) |
9176 | { |
9177 | // This function searches for IL offsets in statement nodes, so it can't be used in LIR. We |
9178 | // could have a similar function for LIR that searches for GT_IL_OFFSET nodes. |
9179 | assert(!block->IsLIR()); |
9180 | |
9181 | for (GenTree* stmt = block->bbTreeList; stmt != nullptr; stmt = stmt->gtNext) |
9182 | { |
9183 | assert(stmt->IsStatement()); |
9184 | if (stmt->gtStmt.gtStmtILoffsx != BAD_IL_OFFSET) |
9185 | { |
9186 | return jitGetILoffs(stmt->gtStmt.gtStmtILoffsx); |
9187 | } |
9188 | } |
9189 | |
9190 | return BAD_IL_OFFSET; |
9191 | } |
9192 | |
9193 | //------------------------------------------------------------------------------ |
9194 | // fgSplitBlockAtEnd - split the given block into two blocks. |
9195 | // All code in the block stays in the original block. |
9196 | // Control falls through from original to new block, and |
9197 | // the new block is returned. |
9198 | //------------------------------------------------------------------------------ |
9199 | BasicBlock* Compiler::fgSplitBlockAtEnd(BasicBlock* curr) |
9200 | { |
9201 | // We'd like to use fgNewBBafter(), but we need to update the preds list before linking in the new block. |
9202 | // (We need the successors of 'curr' to be correct when we do this.) |
9203 | BasicBlock* newBlock = bbNewBasicBlock(curr->bbJumpKind); |
9204 | |
9205 | // Start the new block with no refs. When we set the preds below, this will get updated correctly. |
9206 | newBlock->bbRefs = 0; |
9207 | |
9208 | // For each successor of the original block, set the new block as their predecessor. |
9209 | // Note we are using the "rational" version of the successor iterator that does not hide the finallyret arcs. |
9210 | // Without these arcs, a block 'b' may not be a member of succs(preds(b)) |
9211 | if (curr->bbJumpKind != BBJ_SWITCH) |
9212 | { |
9213 | unsigned numSuccs = curr->NumSucc(this); |
9214 | for (unsigned i = 0; i < numSuccs; i++) |
9215 | { |
9216 | BasicBlock* succ = curr->GetSucc(i, this); |
9217 | if (succ != newBlock) |
9218 | { |
9219 | JITDUMP(FMT_BB " previous predecessor was " FMT_BB ", now is " FMT_BB "\n" , succ->bbNum, curr->bbNum, |
9220 | newBlock->bbNum); |
9221 | fgReplacePred(succ, curr, newBlock); |
9222 | } |
9223 | } |
9224 | |
9225 | newBlock->bbJumpDest = curr->bbJumpDest; |
9226 | curr->bbJumpDest = nullptr; |
9227 | } |
9228 | else |
9229 | { |
9230 | // In the case of a switch statement there's more complicated logic in order to wire up the predecessor lists |
9231 | // but fortunately there's an existing method that implements this functionality. |
9232 | newBlock->bbJumpSwt = curr->bbJumpSwt; |
9233 | |
9234 | fgChangeSwitchBlock(curr, newBlock); |
9235 | |
9236 | curr->bbJumpSwt = nullptr; |
9237 | } |
9238 | |
9239 | newBlock->inheritWeight(curr); |
9240 | |
9241 | // Set the new block's flags. Note that the new block isn't BBF_INTERNAL unless the old block is. |
9242 | newBlock->bbFlags = curr->bbFlags; |
9243 | |
9244 | // Remove flags that the new block can't have. |
9245 | newBlock->bbFlags &= ~(BBF_TRY_BEG | BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1 | BBF_HAS_LABEL | |
9246 | BBF_JMP_TARGET | BBF_FUNCLET_BEG | BBF_LOOP_PREHEADER | BBF_KEEP_BBJ_ALWAYS); |
9247 | |
9248 | // Remove the GC safe bit on the new block. It seems clear that if we split 'curr' at the end, |
9249 | // such that all the code is left in 'curr', and 'newBlock' just gets the control flow, then |
9250 | // both 'curr' and 'newBlock' could accurately retain an existing GC safe bit. However, callers |
9251 | // use this function to split blocks in the middle, or at the beginning, and they don't seem to |
9252 | // be careful about updating this flag appropriately. So, removing the GC safe bit is simply |
9253 | // conservative: some functions might end up being fully interruptible that could be partially |
9254 | // interruptible if we exercised more care here. |
9255 | newBlock->bbFlags &= ~BBF_GC_SAFE_POINT; |
9256 | |
9257 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
9258 | newBlock->bbFlags &= ~(BBF_FINALLY_TARGET); |
9259 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
9260 | |
9261 | // The new block has no code, so we leave bbCodeOffs/bbCodeOffsEnd set to BAD_IL_OFFSET. If a caller |
9262 | // puts code in the block, then it needs to update these. |
9263 | |
9264 | // Insert the new block in the block list after the 'curr' block. |
9265 | fgInsertBBafter(curr, newBlock); |
9266 | fgExtendEHRegionAfter(curr); // The new block is in the same EH region as the old block. |
9267 | |
9268 | // Remove flags from the old block that are no longer possible. |
9269 | curr->bbFlags &= ~(BBF_HAS_JMP | BBF_RETLESS_CALL); |
9270 | |
9271 | // Default to fallthru, and add the arc for that. |
9272 | curr->bbJumpKind = BBJ_NONE; |
9273 | fgAddRefPred(newBlock, curr); |
9274 | |
9275 | return newBlock; |
9276 | } |
9277 | |
9278 | //------------------------------------------------------------------------------ |
9279 | // fgSplitBlockAfterStatement - Split the given block, with all code after |
9280 | // the given statement going into the second block. |
9281 | //------------------------------------------------------------------------------ |
9282 | BasicBlock* Compiler::fgSplitBlockAfterStatement(BasicBlock* curr, GenTree* stmt) |
9283 | { |
9284 | assert(!curr->IsLIR()); // No statements in LIR, so you can't use this function. |
9285 | |
9286 | BasicBlock* newBlock = fgSplitBlockAtEnd(curr); |
9287 | |
9288 | if (stmt) |
9289 | { |
9290 | newBlock->bbTreeList = stmt->gtNext; |
9291 | if (newBlock->bbTreeList) |
9292 | { |
9293 | newBlock->bbTreeList->gtPrev = curr->bbTreeList->gtPrev; |
9294 | } |
9295 | curr->bbTreeList->gtPrev = stmt; |
9296 | stmt->gtNext = nullptr; |
9297 | |
9298 | // Update the IL offsets of the blocks to match the split. |
9299 | |
9300 | assert(newBlock->bbCodeOffs == BAD_IL_OFFSET); |
9301 | assert(newBlock->bbCodeOffsEnd == BAD_IL_OFFSET); |
9302 | |
9303 | // curr->bbCodeOffs remains the same |
9304 | newBlock->bbCodeOffsEnd = curr->bbCodeOffsEnd; |
9305 | |
9306 | IL_OFFSET splitPointILOffset = fgFindBlockILOffset(newBlock); |
9307 | |
9308 | curr->bbCodeOffsEnd = splitPointILOffset; |
9309 | newBlock->bbCodeOffs = splitPointILOffset; |
9310 | } |
9311 | else |
9312 | { |
9313 | assert(curr->bbTreeList == nullptr); // if no tree was given then it better be an empty block |
9314 | } |
9315 | |
9316 | return newBlock; |
9317 | } |
9318 | |
9319 | //------------------------------------------------------------------------------ |
9320 | // fgSplitBlockAfterNode - Split the given block, with all code after |
9321 | // the given node going into the second block. |
9322 | // This function is only used in LIR. |
9323 | //------------------------------------------------------------------------------ |
9324 | BasicBlock* Compiler::fgSplitBlockAfterNode(BasicBlock* curr, GenTree* node) |
9325 | { |
9326 | assert(curr->IsLIR()); |
9327 | |
9328 | BasicBlock* newBlock = fgSplitBlockAtEnd(curr); |
9329 | |
9330 | if (node != nullptr) |
9331 | { |
9332 | LIR::Range& currBBRange = LIR::AsRange(curr); |
9333 | |
9334 | if (node != currBBRange.LastNode()) |
9335 | { |
9336 | LIR::Range nodesToMove = currBBRange.Remove(node->gtNext, currBBRange.LastNode()); |
9337 | LIR::AsRange(newBlock).InsertAtBeginning(std::move(nodesToMove)); |
9338 | } |
9339 | |
9340 | // Update the IL offsets of the blocks to match the split. |
9341 | |
9342 | assert(newBlock->bbCodeOffs == BAD_IL_OFFSET); |
9343 | assert(newBlock->bbCodeOffsEnd == BAD_IL_OFFSET); |
9344 | |
9345 | // curr->bbCodeOffs remains the same |
9346 | newBlock->bbCodeOffsEnd = curr->bbCodeOffsEnd; |
9347 | |
9348 | // Search backwards from the end of the current block looking for the IL offset to use |
9349 | // for the end IL offset for the original block. |
9350 | IL_OFFSET splitPointILOffset = BAD_IL_OFFSET; |
9351 | LIR::Range::ReverseIterator riter; |
9352 | LIR::Range::ReverseIterator riterEnd; |
9353 | for (riter = currBBRange.rbegin(), riterEnd = currBBRange.rend(); riter != riterEnd; ++riter) |
9354 | { |
9355 | if ((*riter)->gtOper == GT_IL_OFFSET) |
9356 | { |
9357 | GenTreeStmt* stmt = (*riter)->AsStmt(); |
9358 | if (stmt->gtStmtILoffsx != BAD_IL_OFFSET) |
9359 | { |
9360 | splitPointILOffset = jitGetILoffs(stmt->gtStmtILoffsx); |
9361 | break; |
9362 | } |
9363 | } |
9364 | } |
9365 | |
9366 | curr->bbCodeOffsEnd = splitPointILOffset; |
9367 | |
9368 | // Also use this as the beginning offset of the next block. Presumably we could/should |
9369 | // look to see if the first node is a GT_IL_OFFSET node, and use that instead. |
9370 | newBlock->bbCodeOffs = splitPointILOffset; |
9371 | } |
9372 | else |
9373 | { |
9374 | assert(curr->bbTreeList == nullptr); // if no node was given then it better be an empty block |
9375 | } |
9376 | |
9377 | return newBlock; |
9378 | } |
9379 | |
9380 | //------------------------------------------------------------------------------ |
9381 | // fgSplitBlockAtBeginning - Split the given block into two blocks. |
9382 | // Control falls through from original to new block, |
9383 | // and the new block is returned. |
9384 | // All code in the original block goes into the new block |
9385 | //------------------------------------------------------------------------------ |
9386 | BasicBlock* Compiler::fgSplitBlockAtBeginning(BasicBlock* curr) |
9387 | { |
9388 | BasicBlock* newBlock = fgSplitBlockAtEnd(curr); |
9389 | |
9390 | newBlock->bbTreeList = curr->bbTreeList; |
9391 | curr->bbTreeList = nullptr; |
9392 | |
9393 | // The new block now has all the code, and the old block has none. Update the |
9394 | // IL offsets for the block to reflect this. |
9395 | |
9396 | newBlock->bbCodeOffs = curr->bbCodeOffs; |
9397 | newBlock->bbCodeOffsEnd = curr->bbCodeOffsEnd; |
9398 | |
9399 | curr->bbCodeOffs = BAD_IL_OFFSET; |
9400 | curr->bbCodeOffsEnd = BAD_IL_OFFSET; |
9401 | |
9402 | return newBlock; |
9403 | } |
9404 | |
9405 | //------------------------------------------------------------------------ |
9406 | // fgSplitEdge: Splits the edge between a block 'curr' and its successor 'succ' by creating a new block |
9407 | // that replaces 'succ' as a successor of 'curr', and which branches unconditionally |
9408 | // to (or falls through to) 'succ'. Note that for a BBJ_COND block 'curr', |
9409 | // 'succ' might be the fall-through path or the branch path from 'curr'. |
9410 | // |
9411 | // Arguments: |
9412 | // curr - A block which branches conditionally to 'succ' |
9413 | // succ - The target block |
9414 | // |
9415 | // Return Value: |
9416 | // Returns a new block, that is a successor of 'curr' and which branches unconditionally to 'succ' |
9417 | // |
9418 | // Assumptions: |
9419 | // 'curr' must have a bbJumpKind of BBJ_COND or BBJ_SWITCH |
9420 | // |
9421 | // Notes: |
9422 | // The returned block is empty. |
9423 | |
9424 | BasicBlock* Compiler::fgSplitEdge(BasicBlock* curr, BasicBlock* succ) |
9425 | { |
9426 | assert(curr->bbJumpKind == BBJ_COND || curr->bbJumpKind == BBJ_SWITCH); |
9427 | assert(fgGetPredForBlock(succ, curr) != nullptr); |
9428 | |
9429 | BasicBlock* newBlock; |
9430 | if (succ == curr->bbNext) |
9431 | { |
9432 | // The successor is the fall-through path of a BBJ_COND, or |
9433 | // an immediately following block of a BBJ_SWITCH (which has |
9434 | // no fall-through path). For this case, simply insert a new |
9435 | // fall-through block after 'curr'. |
9436 | newBlock = fgNewBBafter(BBJ_NONE, curr, true /*extendRegion*/); |
9437 | } |
9438 | else |
9439 | { |
9440 | newBlock = fgNewBBinRegion(BBJ_ALWAYS, curr, curr->isRunRarely()); |
9441 | // The new block always jumps to 'succ' |
9442 | newBlock->bbJumpDest = succ; |
9443 | } |
9444 | newBlock->bbFlags |= (curr->bbFlags & succ->bbFlags & (BBF_BACKWARD_JUMP)); |
9445 | |
9446 | JITDUMP("Splitting edge from " FMT_BB " to " FMT_BB "; adding " FMT_BB "\n" , curr->bbNum, succ->bbNum, |
9447 | newBlock->bbNum); |
9448 | |
9449 | if (curr->bbJumpKind == BBJ_COND) |
9450 | { |
9451 | fgReplacePred(succ, curr, newBlock); |
9452 | if (curr->bbJumpDest == succ) |
9453 | { |
9454 | // Now 'curr' jumps to newBlock |
9455 | curr->bbJumpDest = newBlock; |
9456 | newBlock->bbFlags |= BBF_JMP_TARGET; |
9457 | } |
9458 | fgAddRefPred(newBlock, curr); |
9459 | } |
9460 | else |
9461 | { |
9462 | assert(curr->bbJumpKind == BBJ_SWITCH); |
9463 | |
9464 | // newBlock replaces 'succ' in the switch. |
9465 | fgReplaceSwitchJumpTarget(curr, newBlock, succ); |
9466 | |
9467 | // And 'succ' has 'newBlock' as a new predecessor. |
9468 | fgAddRefPred(succ, newBlock); |
9469 | } |
9470 | |
9471 | // This isn't accurate, but it is complex to compute a reasonable number so just assume that we take the |
9472 | // branch 50% of the time. |
9473 | newBlock->inheritWeightPercentage(curr, 50); |
9474 | |
9475 | // The bbLiveIn and bbLiveOut are both equal to the bbLiveIn of 'succ' |
9476 | if (fgLocalVarLivenessDone) |
9477 | { |
9478 | VarSetOps::Assign(this, newBlock->bbLiveIn, succ->bbLiveIn); |
9479 | VarSetOps::Assign(this, newBlock->bbLiveOut, succ->bbLiveIn); |
9480 | } |
9481 | |
9482 | return newBlock; |
9483 | } |
9484 | |
9485 | /*****************************************************************************/ |
9486 | /*****************************************************************************/ |
9487 | |
9488 | void Compiler::fgFindOperOrder() |
9489 | { |
9490 | #ifdef DEBUG |
9491 | if (verbose) |
9492 | { |
9493 | printf("*************** In fgFindOperOrder()\n" ); |
9494 | } |
9495 | #endif |
9496 | |
9497 | BasicBlock* block; |
9498 | GenTreeStmt* stmt; |
9499 | |
9500 | /* Walk the basic blocks and for each statement determine |
9501 | * the evaluation order, cost, FP levels, etc... */ |
9502 | |
9503 | for (block = fgFirstBB; block; block = block->bbNext) |
9504 | { |
9505 | compCurBB = block; |
9506 | for (stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
9507 | { |
9508 | /* Recursively process the statement */ |
9509 | |
9510 | compCurStmt = stmt; |
9511 | gtSetStmtInfo(stmt); |
9512 | } |
9513 | } |
9514 | } |
9515 | |
9516 | //------------------------------------------------------------------------ |
9517 | // fgSimpleLowering: do full walk of all IR, lowering selected operations |
9518 | // and computing lvaOutgoingArgumentAreaSize. |
9519 | // |
9520 | // Notes: |
9521 | // Lowers GT_ARR_LENGTH, GT_ARR_BOUNDS_CHECK, and GT_SIMD_CHK. |
9522 | // |
9523 | // For target ABIs with fixed out args area, computes upper bound on |
9524 | // the size of this area from the calls in the IR. |
9525 | // |
9526 | // Outgoing arg area size is computed here because we want to run it |
9527 | // after optimization (in case calls are removed) and need to look at |
9528 | // all possible calls in the method. |
9529 | |
9530 | void Compiler::fgSimpleLowering() |
9531 | { |
9532 | #if FEATURE_FIXED_OUT_ARGS |
9533 | unsigned outgoingArgSpaceSize = 0; |
9534 | #endif // FEATURE_FIXED_OUT_ARGS |
9535 | |
9536 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
9537 | { |
9538 | // Walk the statement trees in this basic block. |
9539 | compCurBB = block; // Used in fgRngChkTarget. |
9540 | |
9541 | LIR::Range& range = LIR::AsRange(block); |
9542 | for (GenTree* tree : range) |
9543 | { |
9544 | switch (tree->OperGet()) |
9545 | { |
9546 | case GT_ARR_LENGTH: |
9547 | { |
9548 | GenTreeArrLen* arrLen = tree->AsArrLen(); |
9549 | GenTree* arr = arrLen->gtArrLen.ArrRef(); |
9550 | GenTree* add; |
9551 | GenTree* con; |
9552 | |
9553 | /* Create the expression "*(array_addr + ArrLenOffs)" */ |
9554 | |
9555 | noway_assert(arr->gtNext == tree); |
9556 | |
9557 | noway_assert(arrLen->ArrLenOffset() == OFFSETOF__CORINFO_Array__length || |
9558 | arrLen->ArrLenOffset() == OFFSETOF__CORINFO_String__stringLen); |
9559 | |
9560 | if ((arr->gtOper == GT_CNS_INT) && (arr->gtIntCon.gtIconVal == 0)) |
9561 | { |
9562 | // If the array is NULL, then we should get a NULL reference |
9563 | // exception when computing its length. We need to maintain |
9564 | // an invariant where there is no sum of two constants node, so |
9565 | // let's simply return an indirection of NULL. |
9566 | |
9567 | add = arr; |
9568 | } |
9569 | else |
9570 | { |
9571 | con = gtNewIconNode(arrLen->ArrLenOffset(), TYP_I_IMPL); |
9572 | add = gtNewOperNode(GT_ADD, TYP_REF, arr, con); |
9573 | |
9574 | range.InsertAfter(arr, con, add); |
9575 | } |
9576 | |
9577 | // Change to a GT_IND. |
9578 | tree->ChangeOperUnchecked(GT_IND); |
9579 | |
9580 | tree->gtOp.gtOp1 = add; |
9581 | break; |
9582 | } |
9583 | |
9584 | case GT_ARR_BOUNDS_CHECK: |
9585 | #ifdef FEATURE_SIMD |
9586 | case GT_SIMD_CHK: |
9587 | #endif // FEATURE_SIMD |
9588 | #ifdef FEATURE_HW_INTRINSICS |
9589 | case GT_HW_INTRINSIC_CHK: |
9590 | #endif // FEATURE_HW_INTRINSICS |
9591 | { |
9592 | // Add in a call to an error routine. |
9593 | fgSetRngChkTarget(tree, false); |
9594 | break; |
9595 | } |
9596 | |
9597 | #if FEATURE_FIXED_OUT_ARGS |
9598 | case GT_CALL: |
9599 | { |
9600 | GenTreeCall* call = tree->AsCall(); |
9601 | // Fast tail calls use the caller-supplied scratch |
9602 | // space so have no impact on this method's outgoing arg size. |
9603 | if (!call->IsFastTailCall()) |
9604 | { |
9605 | // Update outgoing arg size to handle this call |
9606 | const unsigned thisCallOutAreaSize = call->fgArgInfo->GetOutArgSize(); |
9607 | assert(thisCallOutAreaSize >= MIN_ARG_AREA_FOR_CALL); |
9608 | |
9609 | if (thisCallOutAreaSize > outgoingArgSpaceSize) |
9610 | { |
9611 | outgoingArgSpaceSize = thisCallOutAreaSize; |
9612 | JITDUMP("Bumping outgoingArgSpaceSize to %u for call [%06d]\n" , outgoingArgSpaceSize, |
9613 | dspTreeID(tree)); |
9614 | } |
9615 | else |
9616 | { |
9617 | JITDUMP("outgoingArgSpaceSize %u sufficient for call [%06d], which needs %u\n" , |
9618 | outgoingArgSpaceSize, dspTreeID(tree), thisCallOutAreaSize); |
9619 | } |
9620 | } |
9621 | else |
9622 | { |
9623 | JITDUMP("outgoingArgSpaceSize not impacted by fast tail call [%06d]\n" , dspTreeID(tree)); |
9624 | } |
9625 | break; |
9626 | } |
9627 | #endif // FEATURE_FIXED_OUT_ARGS |
9628 | |
9629 | default: |
9630 | { |
9631 | // No other operators need processing. |
9632 | break; |
9633 | } |
9634 | } // switch on oper |
9635 | } // foreach tree |
9636 | } // foreach BB |
9637 | |
9638 | #if FEATURE_FIXED_OUT_ARGS |
9639 | // Finish computing the outgoing args area size |
9640 | // |
9641 | // Need to make sure the MIN_ARG_AREA_FOR_CALL space is added to the frame if: |
9642 | // 1. there are calls to THROW_HEPLPER methods. |
9643 | // 2. we are generating profiling Enter/Leave/TailCall hooks. This will ensure |
9644 | // that even methods without any calls will have outgoing arg area space allocated. |
9645 | // |
9646 | // An example for these two cases is Windows Amd64, where the ABI requires to have 4 slots for |
9647 | // the outgoing arg space if the method makes any calls. |
9648 | if (outgoingArgSpaceSize < MIN_ARG_AREA_FOR_CALL) |
9649 | { |
9650 | if (compUsesThrowHelper || compIsProfilerHookNeeded()) |
9651 | { |
9652 | outgoingArgSpaceSize = MIN_ARG_AREA_FOR_CALL; |
9653 | JITDUMP("Bumping outgoingArgSpaceSize to %u for throw helper or profile hook" , outgoingArgSpaceSize); |
9654 | } |
9655 | } |
9656 | |
9657 | // If a function has localloc, we will need to move the outgoing arg space when the |
9658 | // localloc happens. When we do this, we need to maintain stack alignment. To avoid |
9659 | // leaving alignment-related holes when doing this move, make sure the outgoing |
9660 | // argument space size is a multiple of the stack alignment by aligning up to the next |
9661 | // stack alignment boundary. |
9662 | if (compLocallocUsed) |
9663 | { |
9664 | outgoingArgSpaceSize = roundUp(outgoingArgSpaceSize, STACK_ALIGN); |
9665 | JITDUMP("Bumping outgoingArgSpaceSize to %u for localloc" , outgoingArgSpaceSize); |
9666 | } |
9667 | |
9668 | // Publish the final value and mark it as read only so any update |
9669 | // attempt later will cause an assert. |
9670 | lvaOutgoingArgSpaceSize = outgoingArgSpaceSize; |
9671 | lvaOutgoingArgSpaceSize.MarkAsReadOnly(); |
9672 | |
9673 | #endif // FEATURE_FIXED_OUT_ARGS |
9674 | |
9675 | #ifdef DEBUG |
9676 | if (verbose && fgRngChkThrowAdded) |
9677 | { |
9678 | printf("\nAfter fgSimpleLowering() added some RngChk throw blocks" ); |
9679 | fgDispBasicBlocks(); |
9680 | fgDispHandlerTab(); |
9681 | printf("\n" ); |
9682 | } |
9683 | #endif |
9684 | } |
9685 | |
9686 | VARSET_VALRET_TP Compiler::fgGetVarBits(GenTree* tree) |
9687 | { |
9688 | VARSET_TP varBits(VarSetOps::MakeEmpty(this)); |
9689 | |
9690 | assert(tree->gtOper == GT_LCL_VAR || tree->gtOper == GT_LCL_FLD); |
9691 | |
9692 | unsigned int lclNum = tree->gtLclVarCommon.gtLclNum; |
9693 | LclVarDsc* varDsc = lvaTable + lclNum; |
9694 | if (varDsc->lvTracked) |
9695 | { |
9696 | VarSetOps::AddElemD(this, varBits, varDsc->lvVarIndex); |
9697 | } |
9698 | // We have to check type of root tree, not Local Var descriptor because |
9699 | // for legacy backend we promote TYP_STRUCT to TYP_INT if it is an unused or |
9700 | // independently promoted non-argument struct local. |
9701 | // For more details see Compiler::raAssignVars() method. |
9702 | else if (tree->gtType == TYP_STRUCT && varDsc->lvPromoted) |
9703 | { |
9704 | assert(varDsc->lvType == TYP_STRUCT); |
9705 | for (unsigned i = varDsc->lvFieldLclStart; i < varDsc->lvFieldLclStart + varDsc->lvFieldCnt; ++i) |
9706 | { |
9707 | noway_assert(lvaTable[i].lvIsStructField); |
9708 | if (lvaTable[i].lvTracked) |
9709 | { |
9710 | unsigned varIndex = lvaTable[i].lvVarIndex; |
9711 | noway_assert(varIndex < lvaTrackedCount); |
9712 | VarSetOps::AddElemD(this, varBits, varIndex); |
9713 | } |
9714 | } |
9715 | } |
9716 | return varBits; |
9717 | } |
9718 | |
9719 | /***************************************************************************** |
9720 | * |
9721 | * Find and remove any basic blocks that are useless (e.g. they have not been |
9722 | * imported because they are not reachable, or they have been optimized away). |
9723 | */ |
9724 | |
9725 | void Compiler::fgRemoveEmptyBlocks() |
9726 | { |
9727 | BasicBlock* cur; |
9728 | BasicBlock* nxt; |
9729 | |
9730 | /* If we remove any blocks, we'll have to do additional work */ |
9731 | |
9732 | unsigned removedBlks = 0; |
9733 | |
9734 | for (cur = fgFirstBB; cur != nullptr; cur = nxt) |
9735 | { |
9736 | /* Get hold of the next block (in case we delete 'cur') */ |
9737 | |
9738 | nxt = cur->bbNext; |
9739 | |
9740 | /* Should this block be removed? */ |
9741 | |
9742 | if (!(cur->bbFlags & BBF_IMPORTED)) |
9743 | { |
9744 | noway_assert(cur->isEmpty()); |
9745 | |
9746 | if (ehCanDeleteEmptyBlock(cur)) |
9747 | { |
9748 | /* Mark the block as removed */ |
9749 | |
9750 | cur->bbFlags |= BBF_REMOVED; |
9751 | |
9752 | /* Remember that we've removed a block from the list */ |
9753 | |
9754 | removedBlks++; |
9755 | |
9756 | #ifdef DEBUG |
9757 | if (verbose) |
9758 | { |
9759 | printf(FMT_BB " was not imported, marked as removed (%d)\n" , cur->bbNum, removedBlks); |
9760 | } |
9761 | #endif // DEBUG |
9762 | |
9763 | /* Drop the block from the list */ |
9764 | |
9765 | fgUnlinkBlock(cur); |
9766 | } |
9767 | else |
9768 | { |
9769 | // We were prevented from deleting this block by EH normalization. Mark the block as imported. |
9770 | cur->bbFlags |= BBF_IMPORTED; |
9771 | } |
9772 | } |
9773 | } |
9774 | |
9775 | /* If no blocks were removed, we're done */ |
9776 | |
9777 | if (removedBlks == 0) |
9778 | { |
9779 | return; |
9780 | } |
9781 | |
9782 | /* Update all references in the exception handler table. |
9783 | * Mark the new blocks as non-removable. |
9784 | * |
9785 | * We may have made the entire try block unreachable. |
9786 | * Check for this case and remove the entry from the EH table. |
9787 | */ |
9788 | |
9789 | unsigned XTnum; |
9790 | EHblkDsc* HBtab; |
9791 | INDEBUG(unsigned delCnt = 0;) |
9792 | |
9793 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
9794 | { |
9795 | AGAIN: |
9796 | /* If the beginning of the try block was not imported, we |
9797 | * need to remove the entry from the EH table. */ |
9798 | |
9799 | if (HBtab->ebdTryBeg->bbFlags & BBF_REMOVED) |
9800 | { |
9801 | noway_assert(!(HBtab->ebdTryBeg->bbFlags & BBF_IMPORTED)); |
9802 | #ifdef DEBUG |
9803 | if (verbose) |
9804 | { |
9805 | printf("Beginning of try block (" FMT_BB ") not imported " |
9806 | "- remove index #%u from the EH table\n" , |
9807 | HBtab->ebdTryBeg->bbNum, XTnum + delCnt); |
9808 | } |
9809 | delCnt++; |
9810 | #endif // DEBUG |
9811 | |
9812 | fgRemoveEHTableEntry(XTnum); |
9813 | |
9814 | if (XTnum < compHndBBtabCount) |
9815 | { |
9816 | // There are more entries left to process, so do more. Note that |
9817 | // HBtab now points to the next entry, that we copied down to the |
9818 | // current slot. XTnum also stays the same. |
9819 | goto AGAIN; |
9820 | } |
9821 | |
9822 | break; // no more entries (we deleted the last one), so exit the loop |
9823 | } |
9824 | |
9825 | /* At this point we know we have a valid try block */ |
9826 | |
9827 | #ifdef DEBUG |
9828 | assert(HBtab->ebdTryBeg->bbFlags & BBF_IMPORTED); |
9829 | assert(HBtab->ebdTryBeg->bbFlags & BBF_DONT_REMOVE); |
9830 | |
9831 | assert(HBtab->ebdHndBeg->bbFlags & BBF_IMPORTED); |
9832 | assert(HBtab->ebdHndBeg->bbFlags & BBF_DONT_REMOVE); |
9833 | |
9834 | if (HBtab->HasFilter()) |
9835 | { |
9836 | assert(HBtab->ebdFilter->bbFlags & BBF_IMPORTED); |
9837 | assert(HBtab->ebdFilter->bbFlags & BBF_DONT_REMOVE); |
9838 | } |
9839 | #endif // DEBUG |
9840 | |
9841 | fgSkipRmvdBlocks(HBtab); |
9842 | } /* end of the for loop over XTnum */ |
9843 | |
9844 | // Renumber the basic blocks |
9845 | JITDUMP("\nRenumbering the basic blocks for fgRemoveEmptyBlocks\n" ); |
9846 | fgRenumberBlocks(); |
9847 | |
9848 | #ifdef DEBUG |
9849 | fgVerifyHandlerTab(); |
9850 | #endif // DEBUG |
9851 | } |
9852 | |
9853 | /***************************************************************************** |
9854 | * |
9855 | * Remove a useless statement from a basic block. |
9856 | * |
9857 | */ |
9858 | |
9859 | void Compiler::fgRemoveStmt(BasicBlock* block, GenTree* node) |
9860 | { |
9861 | noway_assert(node); |
9862 | assert(fgOrder == FGOrderTree); |
9863 | |
9864 | GenTreeStmt* tree = block->firstStmt(); |
9865 | GenTreeStmt* stmt = node->AsStmt(); |
9866 | |
9867 | #ifdef DEBUG |
9868 | if (verbose && |
9869 | stmt->gtStmtExpr->gtOper != GT_NOP) // Don't print if it is a GT_NOP. Too much noise from the inliner. |
9870 | { |
9871 | printf("\nRemoving statement " ); |
9872 | printTreeID(stmt); |
9873 | printf(" in " FMT_BB " as useless:\n" , block->bbNum); |
9874 | gtDispTree(stmt); |
9875 | } |
9876 | #endif // DEBUG |
9877 | |
9878 | if (opts.compDbgCode && stmt->gtPrev != stmt && stmt->gtStmtILoffsx != BAD_IL_OFFSET) |
9879 | { |
9880 | /* TODO: For debuggable code, should we remove significant |
9881 | statement boundaries. Or should we leave a GT_NO_OP in its place? */ |
9882 | } |
9883 | |
9884 | GenTreeStmt* firstStmt = block->firstStmt(); |
9885 | if (firstStmt == stmt) // Is it the first statement in the list? |
9886 | { |
9887 | if (firstStmt->gtNext == nullptr) |
9888 | { |
9889 | assert(firstStmt == block->lastStmt()); |
9890 | |
9891 | /* this is the only statement - basic block becomes empty */ |
9892 | block->bbTreeList = nullptr; |
9893 | } |
9894 | else |
9895 | { |
9896 | block->bbTreeList = tree->gtNext; |
9897 | block->bbTreeList->gtPrev = tree->gtPrev; |
9898 | } |
9899 | } |
9900 | else if (stmt == block->lastStmt()) // Is it the last statement in the list? |
9901 | { |
9902 | stmt->gtPrev->gtNext = nullptr; |
9903 | block->bbTreeList->gtPrev = stmt->gtPrev; |
9904 | } |
9905 | else // The statement is in the middle. |
9906 | { |
9907 | assert(stmt->gtPrevStmt != nullptr && stmt->gtNext != nullptr); |
9908 | |
9909 | tree = stmt->gtPrevStmt; |
9910 | |
9911 | tree->gtNext = stmt->gtNext; |
9912 | stmt->gtNext->gtPrev = tree; |
9913 | } |
9914 | |
9915 | noway_assert(!optValnumCSE_phase); |
9916 | |
9917 | fgStmtRemoved = true; |
9918 | |
9919 | #ifdef DEBUG |
9920 | if (verbose) |
9921 | { |
9922 | if (block->bbTreeList == nullptr) |
9923 | { |
9924 | printf("\n" FMT_BB " becomes empty" , block->bbNum); |
9925 | } |
9926 | printf("\n" ); |
9927 | } |
9928 | #endif // DEBUG |
9929 | } |
9930 | |
9931 | /******************************************************************************/ |
9932 | // Returns true if the operator is involved in control-flow |
9933 | // TODO-Cleanup: Move this into genTreeKinds in genTree.h |
9934 | |
9935 | inline bool OperIsControlFlow(genTreeOps oper) |
9936 | { |
9937 | switch (oper) |
9938 | { |
9939 | case GT_JTRUE: |
9940 | case GT_JCMP: |
9941 | case GT_JCC: |
9942 | case GT_SWITCH: |
9943 | case GT_LABEL: |
9944 | |
9945 | case GT_CALL: |
9946 | case GT_JMP: |
9947 | |
9948 | case GT_RETURN: |
9949 | case GT_RETFILT: |
9950 | #if !FEATURE_EH_FUNCLETS |
9951 | case GT_END_LFIN: |
9952 | #endif // !FEATURE_EH_FUNCLETS |
9953 | return true; |
9954 | |
9955 | default: |
9956 | return false; |
9957 | } |
9958 | } |
9959 | |
9960 | /****************************************************************************** |
9961 | * Tries to throw away a stmt. The statement can be anywhere in block->bbTreeList. |
9962 | * Returns true if it did remove the statement. |
9963 | */ |
9964 | |
9965 | bool Compiler::fgCheckRemoveStmt(BasicBlock* block, GenTree* node) |
9966 | { |
9967 | if (opts.compDbgCode) |
9968 | { |
9969 | return false; |
9970 | } |
9971 | |
9972 | GenTreeStmt* stmt = node->AsStmt(); |
9973 | |
9974 | GenTree* tree = stmt->gtStmtExpr; |
9975 | genTreeOps oper = tree->OperGet(); |
9976 | |
9977 | if (OperIsControlFlow(oper) || GenTree::OperIsHWIntrinsic(oper) || oper == GT_NO_OP) |
9978 | { |
9979 | return false; |
9980 | } |
9981 | |
9982 | // TODO: Use a recursive version of gtNodeHasSideEffects() |
9983 | if (tree->gtFlags & GTF_SIDE_EFFECT) |
9984 | { |
9985 | return false; |
9986 | } |
9987 | |
9988 | fgRemoveStmt(block, stmt); |
9989 | return true; |
9990 | } |
9991 | |
9992 | /**************************************************************************************************** |
9993 | * |
9994 | * |
9995 | */ |
9996 | bool Compiler::fgCanCompactBlocks(BasicBlock* block, BasicBlock* bNext) |
9997 | { |
9998 | if ((block == nullptr) || (bNext == nullptr)) |
9999 | { |
10000 | return false; |
10001 | } |
10002 | |
10003 | noway_assert(block->bbNext == bNext); |
10004 | |
10005 | if (block->bbJumpKind != BBJ_NONE) |
10006 | { |
10007 | return false; |
10008 | } |
10009 | |
10010 | // If the next block has multiple incoming edges, we can still compact if the first block is empty. |
10011 | // However, not if it is the beginning of a handler. |
10012 | if (bNext->countOfInEdges() != 1 && |
10013 | (!block->isEmpty() || (block->bbFlags & BBF_FUNCLET_BEG) || (block->bbCatchTyp != BBCT_NONE))) |
10014 | { |
10015 | return false; |
10016 | } |
10017 | |
10018 | if (bNext->bbFlags & BBF_DONT_REMOVE) |
10019 | { |
10020 | return false; |
10021 | } |
10022 | |
10023 | // Don't compact the first block if it was specially created as a scratch block. |
10024 | if (fgBBisScratch(block)) |
10025 | { |
10026 | return false; |
10027 | } |
10028 | |
10029 | #if defined(_TARGET_ARM_) |
10030 | // We can't compact a finally target block, as we need to generate special code for such blocks during code |
10031 | // generation |
10032 | if ((bNext->bbFlags & BBF_FINALLY_TARGET) != 0) |
10033 | return false; |
10034 | #endif |
10035 | |
10036 | // We don't want to compact blocks that are in different Hot/Cold regions |
10037 | // |
10038 | if (fgInDifferentRegions(block, bNext)) |
10039 | { |
10040 | return false; |
10041 | } |
10042 | |
10043 | // We cannot compact two blocks in different EH regions. |
10044 | // |
10045 | if (fgCanRelocateEHRegions) |
10046 | { |
10047 | if (!BasicBlock::sameEHRegion(block, bNext)) |
10048 | { |
10049 | return false; |
10050 | } |
10051 | } |
10052 | // if there is a switch predecessor don't bother because we'd have to update the uniquesuccs as well |
10053 | // (if they are valid) |
10054 | for (flowList* pred = bNext->bbPreds; pred; pred = pred->flNext) |
10055 | { |
10056 | if (pred->flBlock->bbJumpKind == BBJ_SWITCH) |
10057 | { |
10058 | return false; |
10059 | } |
10060 | } |
10061 | |
10062 | return true; |
10063 | } |
10064 | |
10065 | /***************************************************************************************************** |
10066 | * |
10067 | * Function called to compact two given blocks in the flowgraph |
10068 | * Assumes that all necessary checks have been performed, |
10069 | * i.e. fgCanCompactBlocks returns true. |
10070 | * |
10071 | * Uses for this function - whenever we change links, insert blocks,... |
10072 | * It will keep the flowgraph data in synch - bbNum, bbRefs, bbPreds |
10073 | */ |
10074 | |
10075 | void Compiler::fgCompactBlocks(BasicBlock* block, BasicBlock* bNext) |
10076 | { |
10077 | noway_assert(block != nullptr); |
10078 | noway_assert((block->bbFlags & BBF_REMOVED) == 0); |
10079 | noway_assert(block->bbJumpKind == BBJ_NONE); |
10080 | |
10081 | noway_assert(bNext == block->bbNext); |
10082 | noway_assert(bNext != nullptr); |
10083 | noway_assert((bNext->bbFlags & BBF_REMOVED) == 0); |
10084 | noway_assert(bNext->countOfInEdges() == 1 || block->isEmpty()); |
10085 | noway_assert(bNext->bbPreds); |
10086 | |
10087 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10088 | noway_assert((bNext->bbFlags & BBF_FINALLY_TARGET) == 0); |
10089 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10090 | |
10091 | // Make sure the second block is not the start of a TRY block or an exception handler |
10092 | |
10093 | noway_assert(bNext->bbCatchTyp == BBCT_NONE); |
10094 | noway_assert((bNext->bbFlags & BBF_TRY_BEG) == 0); |
10095 | noway_assert((bNext->bbFlags & BBF_DONT_REMOVE) == 0); |
10096 | |
10097 | /* both or none must have an exception handler */ |
10098 | noway_assert(block->hasTryIndex() == bNext->hasTryIndex()); |
10099 | |
10100 | #ifdef DEBUG |
10101 | if (verbose) |
10102 | { |
10103 | printf("\nCompacting blocks " FMT_BB " and " FMT_BB ":\n" , block->bbNum, bNext->bbNum); |
10104 | } |
10105 | #endif |
10106 | |
10107 | if (bNext->countOfInEdges() > 1) |
10108 | { |
10109 | JITDUMP("Second block has multiple incoming edges\n" ); |
10110 | |
10111 | assert(block->isEmpty()); |
10112 | block->bbFlags |= BBF_JMP_TARGET; |
10113 | for (flowList* pred = bNext->bbPreds; pred; pred = pred->flNext) |
10114 | { |
10115 | fgReplaceJumpTarget(pred->flBlock, block, bNext); |
10116 | |
10117 | if (pred->flBlock != block) |
10118 | { |
10119 | fgAddRefPred(block, pred->flBlock); |
10120 | } |
10121 | } |
10122 | bNext->bbPreds = nullptr; |
10123 | } |
10124 | else |
10125 | { |
10126 | noway_assert(bNext->bbPreds->flNext == nullptr); |
10127 | noway_assert(bNext->bbPreds->flBlock == block); |
10128 | } |
10129 | |
10130 | /* Start compacting - move all the statements in the second block to the first block */ |
10131 | |
10132 | // First move any phi definitions of the second block after the phi defs of the first. |
10133 | // TODO-CQ: This may be the wrong thing to do. If we're compacting blocks, it's because a |
10134 | // control-flow choice was constant-folded away. So probably phi's need to go away, |
10135 | // as well, in favor of one of the incoming branches. Or at least be modified. |
10136 | |
10137 | assert(block->IsLIR() == bNext->IsLIR()); |
10138 | if (block->IsLIR()) |
10139 | { |
10140 | LIR::Range& blockRange = LIR::AsRange(block); |
10141 | LIR::Range& = LIR::AsRange(bNext); |
10142 | |
10143 | // Does the next block have any phis? |
10144 | GenTree* nextFirstNonPhi = nullptr; |
10145 | LIR::ReadOnlyRange nextPhis = nextRange.PhiNodes(); |
10146 | if (!nextPhis.IsEmpty()) |
10147 | { |
10148 | GenTree* blockLastPhi = blockRange.LastPhiNode(); |
10149 | nextFirstNonPhi = nextPhis.LastNode()->gtNext; |
10150 | |
10151 | LIR::Range phisToMove = nextRange.Remove(std::move(nextPhis)); |
10152 | blockRange.InsertAfter(blockLastPhi, std::move(phisToMove)); |
10153 | } |
10154 | else |
10155 | { |
10156 | nextFirstNonPhi = nextRange.FirstNode(); |
10157 | } |
10158 | |
10159 | // Does the block have any other code? |
10160 | if (nextFirstNonPhi != nullptr) |
10161 | { |
10162 | LIR::Range nextNodes = nextRange.Remove(nextFirstNonPhi, nextRange.LastNode()); |
10163 | blockRange.InsertAtEnd(std::move(nextNodes)); |
10164 | } |
10165 | } |
10166 | else |
10167 | { |
10168 | GenTree* blkNonPhi1 = block->FirstNonPhiDef(); |
10169 | GenTree* bNextNonPhi1 = bNext->FirstNonPhiDef(); |
10170 | GenTree* blkFirst = block->firstStmt(); |
10171 | GenTree* bNextFirst = bNext->firstStmt(); |
10172 | |
10173 | // Does the second have any phis? |
10174 | if (bNextFirst != nullptr && bNextFirst != bNextNonPhi1) |
10175 | { |
10176 | GenTree* bNextLast = bNextFirst->gtPrev; |
10177 | assert(bNextLast->gtNext == nullptr); |
10178 | |
10179 | // Does "blk" have phis? |
10180 | if (blkNonPhi1 != blkFirst) |
10181 | { |
10182 | // Yes, has phis. |
10183 | // Insert after the last phi of "block." |
10184 | // First, bNextPhis after last phi of block. |
10185 | GenTree* blkLastPhi; |
10186 | if (blkNonPhi1 != nullptr) |
10187 | { |
10188 | blkLastPhi = blkNonPhi1->gtPrev; |
10189 | } |
10190 | else |
10191 | { |
10192 | blkLastPhi = blkFirst->gtPrev; |
10193 | } |
10194 | |
10195 | blkLastPhi->gtNext = bNextFirst; |
10196 | bNextFirst->gtPrev = blkLastPhi; |
10197 | |
10198 | // Now, rest of "block" after last phi of "bNext". |
10199 | GenTree* bNextLastPhi = nullptr; |
10200 | if (bNextNonPhi1 != nullptr) |
10201 | { |
10202 | bNextLastPhi = bNextNonPhi1->gtPrev; |
10203 | } |
10204 | else |
10205 | { |
10206 | bNextLastPhi = bNextFirst->gtPrev; |
10207 | } |
10208 | |
10209 | bNextLastPhi->gtNext = blkNonPhi1; |
10210 | if (blkNonPhi1 != nullptr) |
10211 | { |
10212 | blkNonPhi1->gtPrev = bNextLastPhi; |
10213 | } |
10214 | else |
10215 | { |
10216 | // block has no non phis, so make the last statement be the last added phi. |
10217 | blkFirst->gtPrev = bNextLastPhi; |
10218 | } |
10219 | |
10220 | // Now update the bbTreeList of "bNext". |
10221 | bNext->bbTreeList = bNextNonPhi1; |
10222 | if (bNextNonPhi1 != nullptr) |
10223 | { |
10224 | bNextNonPhi1->gtPrev = bNextLast; |
10225 | } |
10226 | } |
10227 | else |
10228 | { |
10229 | if (blkFirst != nullptr) // If "block" has no statements, fusion will work fine... |
10230 | { |
10231 | // First, bNextPhis at start of block. |
10232 | GenTree* blkLast = blkFirst->gtPrev; |
10233 | block->bbTreeList = bNextFirst; |
10234 | // Now, rest of "block" (if it exists) after last phi of "bNext". |
10235 | GenTree* bNextLastPhi = nullptr; |
10236 | if (bNextNonPhi1 != nullptr) |
10237 | { |
10238 | // There is a first non phi, so the last phi is before it. |
10239 | bNextLastPhi = bNextNonPhi1->gtPrev; |
10240 | } |
10241 | else |
10242 | { |
10243 | // All the statements are phi defns, so the last one is the prev of the first. |
10244 | bNextLastPhi = bNextFirst->gtPrev; |
10245 | } |
10246 | bNextFirst->gtPrev = blkLast; |
10247 | bNextLastPhi->gtNext = blkFirst; |
10248 | blkFirst->gtPrev = bNextLastPhi; |
10249 | // Now update the bbTreeList of "bNext" |
10250 | bNext->bbTreeList = bNextNonPhi1; |
10251 | if (bNextNonPhi1 != nullptr) |
10252 | { |
10253 | bNextNonPhi1->gtPrev = bNextLast; |
10254 | } |
10255 | } |
10256 | } |
10257 | } |
10258 | |
10259 | // Now proceed with the updated bbTreeLists. |
10260 | GenTree* stmtList1 = block->firstStmt(); |
10261 | GenTree* stmtList2 = bNext->firstStmt(); |
10262 | |
10263 | /* the block may have an empty list */ |
10264 | |
10265 | if (stmtList1) |
10266 | { |
10267 | GenTree* stmtLast1 = block->lastStmt(); |
10268 | |
10269 | /* The second block may be a GOTO statement or something with an empty bbTreeList */ |
10270 | if (stmtList2) |
10271 | { |
10272 | GenTree* stmtLast2 = bNext->lastStmt(); |
10273 | |
10274 | /* append list2 to list 1 */ |
10275 | |
10276 | stmtLast1->gtNext = stmtList2; |
10277 | stmtList2->gtPrev = stmtLast1; |
10278 | stmtList1->gtPrev = stmtLast2; |
10279 | } |
10280 | } |
10281 | else |
10282 | { |
10283 | /* block was formerly empty and now has bNext's statements */ |
10284 | block->bbTreeList = stmtList2; |
10285 | } |
10286 | } |
10287 | |
10288 | // Note we could update the local variable weights here by |
10289 | // calling lvaMarkLocalVars, with the block and weight adjustment. |
10290 | |
10291 | // If either block or bNext has a profile weight |
10292 | // or if both block and bNext have non-zero weights |
10293 | // then we select the highest weight block. |
10294 | |
10295 | if (block->hasProfileWeight() || bNext->hasProfileWeight() || (block->bbWeight && bNext->bbWeight)) |
10296 | { |
10297 | // We are keeping block so update its fields |
10298 | // when bNext has a greater weight |
10299 | |
10300 | if (block->bbWeight < bNext->bbWeight) |
10301 | { |
10302 | block->bbWeight = bNext->bbWeight; |
10303 | |
10304 | block->bbFlags |= (bNext->bbFlags & BBF_PROF_WEIGHT); // Set the profile weight flag (if necessary) |
10305 | if (block->bbWeight != 0) |
10306 | { |
10307 | block->bbFlags &= ~BBF_RUN_RARELY; // Clear any RarelyRun flag |
10308 | } |
10309 | } |
10310 | } |
10311 | // otherwise if either block has a zero weight we select the zero weight |
10312 | else |
10313 | { |
10314 | noway_assert((block->bbWeight == BB_ZERO_WEIGHT) || (bNext->bbWeight == BB_ZERO_WEIGHT)); |
10315 | block->bbWeight = BB_ZERO_WEIGHT; |
10316 | block->bbFlags |= BBF_RUN_RARELY; // Set the RarelyRun flag |
10317 | } |
10318 | |
10319 | /* set the right links */ |
10320 | |
10321 | block->bbJumpKind = bNext->bbJumpKind; |
10322 | VarSetOps::AssignAllowUninitRhs(this, block->bbLiveOut, bNext->bbLiveOut); |
10323 | |
10324 | // Update the beginning and ending IL offsets (bbCodeOffs and bbCodeOffsEnd). |
10325 | // Set the beginning IL offset to the minimum, and the ending offset to the maximum, of the respective blocks. |
10326 | // If one block has an unknown offset, we take the other block. |
10327 | // We are merging into 'block', so if its values are correct, just leave them alone. |
10328 | // TODO: we should probably base this on the statements within. |
10329 | |
10330 | if (block->bbCodeOffs == BAD_IL_OFFSET) |
10331 | { |
10332 | block->bbCodeOffs = bNext->bbCodeOffs; // If they are both BAD_IL_OFFSET, this doesn't change anything. |
10333 | } |
10334 | else if (bNext->bbCodeOffs != BAD_IL_OFFSET) |
10335 | { |
10336 | // The are both valid offsets; compare them. |
10337 | if (block->bbCodeOffs > bNext->bbCodeOffs) |
10338 | { |
10339 | block->bbCodeOffs = bNext->bbCodeOffs; |
10340 | } |
10341 | } |
10342 | |
10343 | if (block->bbCodeOffsEnd == BAD_IL_OFFSET) |
10344 | { |
10345 | block->bbCodeOffsEnd = bNext->bbCodeOffsEnd; // If they are both BAD_IL_OFFSET, this doesn't change anything. |
10346 | } |
10347 | else if (bNext->bbCodeOffsEnd != BAD_IL_OFFSET) |
10348 | { |
10349 | // The are both valid offsets; compare them. |
10350 | if (block->bbCodeOffsEnd < bNext->bbCodeOffsEnd) |
10351 | { |
10352 | block->bbCodeOffsEnd = bNext->bbCodeOffsEnd; |
10353 | } |
10354 | } |
10355 | |
10356 | if (((block->bbFlags & BBF_INTERNAL) != 0) && ((bNext->bbFlags & BBF_INTERNAL) == 0)) |
10357 | { |
10358 | // If 'block' is an internal block and 'bNext' isn't, then adjust the flags set on 'block'. |
10359 | block->bbFlags &= ~BBF_INTERNAL; // Clear the BBF_INTERNAL flag |
10360 | block->bbFlags |= BBF_IMPORTED; // Set the BBF_IMPORTED flag |
10361 | } |
10362 | |
10363 | /* Update the flags for block with those found in bNext */ |
10364 | |
10365 | block->bbFlags |= (bNext->bbFlags & BBF_COMPACT_UPD); |
10366 | |
10367 | /* mark bNext as removed */ |
10368 | |
10369 | bNext->bbFlags |= BBF_REMOVED; |
10370 | |
10371 | /* Unlink bNext and update all the marker pointers if necessary */ |
10372 | |
10373 | fgUnlinkRange(block->bbNext, bNext); |
10374 | |
10375 | // If bNext was the last block of a try or handler, update the EH table. |
10376 | |
10377 | ehUpdateForDeletedBlock(bNext); |
10378 | |
10379 | /* If we're collapsing a block created after the dominators are |
10380 | computed, rename the block and reuse dominator information from |
10381 | the other block */ |
10382 | if (fgDomsComputed && block->bbNum > fgDomBBcount) |
10383 | { |
10384 | BlockSetOps::Assign(this, block->bbReach, bNext->bbReach); |
10385 | BlockSetOps::ClearD(this, bNext->bbReach); |
10386 | |
10387 | block->bbIDom = bNext->bbIDom; |
10388 | bNext->bbIDom = nullptr; |
10389 | |
10390 | // In this case, there's no need to update the preorder and postorder numbering |
10391 | // since we're changing the bbNum, this makes the basic block all set. |
10392 | block->bbNum = bNext->bbNum; |
10393 | } |
10394 | |
10395 | /* Set the jump targets */ |
10396 | |
10397 | switch (bNext->bbJumpKind) |
10398 | { |
10399 | case BBJ_CALLFINALLY: |
10400 | // Propagate RETLESS property |
10401 | block->bbFlags |= (bNext->bbFlags & BBF_RETLESS_CALL); |
10402 | |
10403 | __fallthrough; |
10404 | |
10405 | case BBJ_COND: |
10406 | case BBJ_ALWAYS: |
10407 | case BBJ_EHCATCHRET: |
10408 | block->bbJumpDest = bNext->bbJumpDest; |
10409 | |
10410 | /* Update the predecessor list for 'bNext->bbJumpDest' */ |
10411 | fgReplacePred(bNext->bbJumpDest, bNext, block); |
10412 | |
10413 | /* Update the predecessor list for 'bNext->bbNext' if it is different than 'bNext->bbJumpDest' */ |
10414 | if (bNext->bbJumpKind == BBJ_COND && bNext->bbJumpDest != bNext->bbNext) |
10415 | { |
10416 | fgReplacePred(bNext->bbNext, bNext, block); |
10417 | } |
10418 | break; |
10419 | |
10420 | case BBJ_NONE: |
10421 | /* Update the predecessor list for 'bNext->bbNext' */ |
10422 | fgReplacePred(bNext->bbNext, bNext, block); |
10423 | break; |
10424 | |
10425 | case BBJ_EHFILTERRET: |
10426 | fgReplacePred(bNext->bbJumpDest, bNext, block); |
10427 | break; |
10428 | |
10429 | case BBJ_EHFINALLYRET: |
10430 | { |
10431 | unsigned hndIndex = block->getHndIndex(); |
10432 | EHblkDsc* ehDsc = ehGetDsc(hndIndex); |
10433 | |
10434 | if (ehDsc->HasFinallyHandler()) // No need to do this for fault handlers |
10435 | { |
10436 | BasicBlock* begBlk; |
10437 | BasicBlock* endBlk; |
10438 | ehGetCallFinallyBlockRange(hndIndex, &begBlk, &endBlk); |
10439 | |
10440 | BasicBlock* finBeg = ehDsc->ebdHndBeg; |
10441 | |
10442 | for (BasicBlock* bcall = begBlk; bcall != endBlk; bcall = bcall->bbNext) |
10443 | { |
10444 | if (bcall->bbJumpKind != BBJ_CALLFINALLY || bcall->bbJumpDest != finBeg) |
10445 | { |
10446 | continue; |
10447 | } |
10448 | |
10449 | noway_assert(bcall->isBBCallAlwaysPair()); |
10450 | fgReplacePred(bcall->bbNext, bNext, block); |
10451 | } |
10452 | } |
10453 | } |
10454 | break; |
10455 | |
10456 | case BBJ_THROW: |
10457 | case BBJ_RETURN: |
10458 | /* no jumps or fall through blocks to set here */ |
10459 | break; |
10460 | |
10461 | case BBJ_SWITCH: |
10462 | block->bbJumpSwt = bNext->bbJumpSwt; |
10463 | // We are moving the switch jump from bNext to block. Examine the jump targets |
10464 | // of the BBJ_SWITCH at bNext and replace the predecessor to 'bNext' with ones to 'block' |
10465 | fgChangeSwitchBlock(bNext, block); |
10466 | break; |
10467 | |
10468 | default: |
10469 | noway_assert(!"Unexpected bbJumpKind" ); |
10470 | break; |
10471 | } |
10472 | |
10473 | fgUpdateLoopsAfterCompacting(block, bNext); |
10474 | |
10475 | #if DEBUG |
10476 | if (verbose && 0) |
10477 | { |
10478 | printf("\nAfter compacting:\n" ); |
10479 | fgDispBasicBlocks(false); |
10480 | } |
10481 | #endif |
10482 | |
10483 | #if DEBUG |
10484 | if (JitConfig.JitSlowDebugChecksEnabled() != 0) |
10485 | { |
10486 | // Make sure that the predecessor lists are accurate |
10487 | fgDebugCheckBBlist(); |
10488 | } |
10489 | #endif // DEBUG |
10490 | } |
10491 | |
10492 | void Compiler::fgUpdateLoopsAfterCompacting(BasicBlock* block, BasicBlock* bNext) |
10493 | { |
10494 | /* Check if the removed block is not part the loop table */ |
10495 | noway_assert(bNext); |
10496 | |
10497 | for (unsigned loopNum = 0; loopNum < optLoopCount; loopNum++) |
10498 | { |
10499 | /* Some loops may have been already removed by |
10500 | * loop unrolling or conditional folding */ |
10501 | |
10502 | if (optLoopTable[loopNum].lpFlags & LPFLG_REMOVED) |
10503 | { |
10504 | continue; |
10505 | } |
10506 | |
10507 | /* Check the loop head (i.e. the block preceding the loop) */ |
10508 | |
10509 | if (optLoopTable[loopNum].lpHead == bNext) |
10510 | { |
10511 | optLoopTable[loopNum].lpHead = block; |
10512 | } |
10513 | |
10514 | /* Check the loop bottom */ |
10515 | |
10516 | if (optLoopTable[loopNum].lpBottom == bNext) |
10517 | { |
10518 | optLoopTable[loopNum].lpBottom = block; |
10519 | } |
10520 | |
10521 | /* Check the loop exit */ |
10522 | |
10523 | if (optLoopTable[loopNum].lpExit == bNext) |
10524 | { |
10525 | noway_assert(optLoopTable[loopNum].lpExitCnt == 1); |
10526 | optLoopTable[loopNum].lpExit = block; |
10527 | } |
10528 | |
10529 | /* Check the loop entry */ |
10530 | |
10531 | if (optLoopTable[loopNum].lpEntry == bNext) |
10532 | { |
10533 | optLoopTable[loopNum].lpEntry = block; |
10534 | } |
10535 | } |
10536 | } |
10537 | |
10538 | /***************************************************************************************************** |
10539 | * |
10540 | * Function called to remove a block when it is unreachable. |
10541 | * |
10542 | * This function cannot remove the first block. |
10543 | */ |
10544 | |
10545 | void Compiler::fgUnreachableBlock(BasicBlock* block) |
10546 | { |
10547 | // genReturnBB should never be removed, as we might have special hookups there. |
10548 | // Therefore, we should never come here to remove the statements in the genReturnBB block. |
10549 | // For example, <BUGNUM> in VSW 364383, </BUGNUM> |
10550 | // the profiler hookup needs to have the "void GT_RETURN" statement |
10551 | // to properly set the info.compProfilerCallback flag. |
10552 | noway_assert(block != genReturnBB); |
10553 | |
10554 | if (block->bbFlags & BBF_REMOVED) |
10555 | { |
10556 | return; |
10557 | } |
10558 | |
10559 | /* Removing an unreachable block */ |
10560 | |
10561 | #ifdef DEBUG |
10562 | if (verbose) |
10563 | { |
10564 | printf("\nRemoving unreachable " FMT_BB "\n" , block->bbNum); |
10565 | } |
10566 | #endif // DEBUG |
10567 | |
10568 | noway_assert(block->bbPrev != nullptr); // Can use this function to remove the first block |
10569 | |
10570 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10571 | assert(!block->bbPrev->isBBCallAlwaysPair()); // can't remove the BBJ_ALWAYS of a BBJ_CALLFINALLY / BBJ_ALWAYS pair |
10572 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10573 | |
10574 | /* First walk the statement trees in this basic block and delete each stmt */ |
10575 | |
10576 | /* Make the block publicly available */ |
10577 | compCurBB = block; |
10578 | |
10579 | if (block->IsLIR()) |
10580 | { |
10581 | LIR::Range& blockRange = LIR::AsRange(block); |
10582 | if (!blockRange.IsEmpty()) |
10583 | { |
10584 | blockRange.Delete(this, block, blockRange.FirstNode(), blockRange.LastNode()); |
10585 | } |
10586 | } |
10587 | else |
10588 | { |
10589 | // TODO-Cleanup: I'm not sure why this happens -- if the block is unreachable, why does it have phis? |
10590 | // Anyway, remove any phis. |
10591 | |
10592 | GenTree* firstNonPhi = block->FirstNonPhiDef(); |
10593 | if (block->bbTreeList != firstNonPhi) |
10594 | { |
10595 | if (firstNonPhi != nullptr) |
10596 | { |
10597 | firstNonPhi->gtPrev = block->lastStmt(); |
10598 | } |
10599 | block->bbTreeList = firstNonPhi; |
10600 | } |
10601 | |
10602 | for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
10603 | { |
10604 | fgRemoveStmt(block, stmt); |
10605 | } |
10606 | noway_assert(block->bbTreeList == nullptr); |
10607 | } |
10608 | |
10609 | /* Next update the loop table and bbWeights */ |
10610 | optUpdateLoopsBeforeRemoveBlock(block); |
10611 | |
10612 | /* Mark the block as removed */ |
10613 | block->bbFlags |= BBF_REMOVED; |
10614 | |
10615 | /* update bbRefs and bbPreds for the blocks reached by this block */ |
10616 | fgRemoveBlockAsPred(block); |
10617 | } |
10618 | |
10619 | /***************************************************************************************************** |
10620 | * |
10621 | * Function called to remove or morph a jump when we jump to the same |
10622 | * block when both the condition is true or false. |
10623 | */ |
10624 | void Compiler::fgRemoveConditionalJump(BasicBlock* block) |
10625 | { |
10626 | noway_assert(block->bbJumpKind == BBJ_COND && block->bbJumpDest == block->bbNext); |
10627 | assert(compRationalIRForm == block->IsLIR()); |
10628 | |
10629 | flowList* flow = fgGetPredForBlock(block->bbNext, block); |
10630 | noway_assert(flow->flDupCount == 2); |
10631 | |
10632 | // Change the BBJ_COND to BBJ_NONE, and adjust the refCount and dupCount. |
10633 | block->bbJumpKind = BBJ_NONE; |
10634 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
10635 | --block->bbNext->bbRefs; |
10636 | --flow->flDupCount; |
10637 | |
10638 | #ifdef DEBUG |
10639 | block->bbJumpDest = nullptr; |
10640 | if (verbose) |
10641 | { |
10642 | printf("Block " FMT_BB " becoming a BBJ_NONE to " FMT_BB |
10643 | " (jump target is the same whether the condition is true or " |
10644 | "false)\n" , |
10645 | block->bbNum, block->bbNext->bbNum); |
10646 | } |
10647 | #endif |
10648 | |
10649 | /* Remove the block jump condition */ |
10650 | |
10651 | if (block->IsLIR()) |
10652 | { |
10653 | LIR::Range& blockRange = LIR::AsRange(block); |
10654 | |
10655 | GenTree* test = blockRange.LastNode(); |
10656 | assert(test->OperIsConditionalJump()); |
10657 | |
10658 | bool isClosed; |
10659 | unsigned sideEffects; |
10660 | LIR::ReadOnlyRange testRange = blockRange.GetTreeRange(test, &isClosed, &sideEffects); |
10661 | |
10662 | // TODO-LIR: this should really be checking GTF_ALL_EFFECT, but that produces unacceptable |
10663 | // diffs compared to the existing backend. |
10664 | if (isClosed && ((sideEffects & GTF_SIDE_EFFECT) == 0)) |
10665 | { |
10666 | // If the jump and its operands form a contiguous, side-effect-free range, |
10667 | // remove them. |
10668 | blockRange.Delete(this, block, std::move(testRange)); |
10669 | } |
10670 | else |
10671 | { |
10672 | // Otherwise, just remove the jump node itself. |
10673 | blockRange.Remove(test, true); |
10674 | } |
10675 | } |
10676 | else |
10677 | { |
10678 | GenTreeStmt* test = block->lastStmt(); |
10679 | GenTree* tree = test->gtStmtExpr; |
10680 | |
10681 | noway_assert(tree->gtOper == GT_JTRUE); |
10682 | |
10683 | GenTree* sideEffList = nullptr; |
10684 | |
10685 | if (tree->gtFlags & GTF_SIDE_EFFECT) |
10686 | { |
10687 | gtExtractSideEffList(tree, &sideEffList); |
10688 | |
10689 | if (sideEffList) |
10690 | { |
10691 | noway_assert(sideEffList->gtFlags & GTF_SIDE_EFFECT); |
10692 | #ifdef DEBUG |
10693 | if (verbose) |
10694 | { |
10695 | printf("Extracted side effects list from condition...\n" ); |
10696 | gtDispTree(sideEffList); |
10697 | printf("\n" ); |
10698 | } |
10699 | #endif |
10700 | } |
10701 | } |
10702 | |
10703 | // Delete the cond test or replace it with the side effect tree |
10704 | if (sideEffList == nullptr) |
10705 | { |
10706 | fgRemoveStmt(block, test); |
10707 | } |
10708 | else |
10709 | { |
10710 | test->gtStmtExpr = sideEffList; |
10711 | |
10712 | fgMorphBlockStmt(block, test DEBUGARG("fgRemoveConditionalJump" )); |
10713 | } |
10714 | } |
10715 | } |
10716 | |
10717 | /***************************************************************************************************** |
10718 | * |
10719 | * Function to return the last basic block in the main part of the function. With funclets, it is |
10720 | * the block immediately before the first funclet. |
10721 | * An inclusive end of the main method. |
10722 | */ |
10723 | |
10724 | BasicBlock* Compiler::fgLastBBInMainFunction() |
10725 | { |
10726 | #if FEATURE_EH_FUNCLETS |
10727 | |
10728 | if (fgFirstFuncletBB != nullptr) |
10729 | { |
10730 | return fgFirstFuncletBB->bbPrev; |
10731 | } |
10732 | |
10733 | #endif // FEATURE_EH_FUNCLETS |
10734 | |
10735 | assert(fgLastBB->bbNext == nullptr); |
10736 | |
10737 | return fgLastBB; |
10738 | } |
10739 | |
10740 | /***************************************************************************************************** |
10741 | * |
10742 | * Function to return the first basic block after the main part of the function. With funclets, it is |
10743 | * the block of the first funclet. Otherwise it is NULL if there are no funclets (fgLastBB->bbNext). |
10744 | * This is equivalent to fgLastBBInMainFunction()->bbNext |
10745 | * An exclusive end of the main method. |
10746 | */ |
10747 | |
10748 | BasicBlock* Compiler::fgEndBBAfterMainFunction() |
10749 | { |
10750 | #if FEATURE_EH_FUNCLETS |
10751 | |
10752 | if (fgFirstFuncletBB != nullptr) |
10753 | { |
10754 | return fgFirstFuncletBB; |
10755 | } |
10756 | |
10757 | #endif // FEATURE_EH_FUNCLETS |
10758 | |
10759 | assert(fgLastBB->bbNext == nullptr); |
10760 | |
10761 | return nullptr; |
10762 | } |
10763 | |
10764 | // Removes the block from the bbPrev/bbNext chain |
10765 | // Updates fgFirstBB and fgLastBB if necessary |
10766 | // Does not update fgFirstFuncletBB or fgFirstColdBlock (fgUnlinkRange does) |
10767 | |
10768 | void Compiler::fgUnlinkBlock(BasicBlock* block) |
10769 | { |
10770 | if (block->bbPrev) |
10771 | { |
10772 | block->bbPrev->bbNext = block->bbNext; |
10773 | if (block->bbNext) |
10774 | { |
10775 | block->bbNext->bbPrev = block->bbPrev; |
10776 | } |
10777 | else |
10778 | { |
10779 | fgLastBB = block->bbPrev; |
10780 | } |
10781 | } |
10782 | else |
10783 | { |
10784 | assert(block == fgFirstBB); |
10785 | assert(block != fgLastBB); |
10786 | assert((fgFirstBBScratch == nullptr) || (fgFirstBBScratch == fgFirstBB)); |
10787 | |
10788 | fgFirstBB = block->bbNext; |
10789 | fgFirstBB->bbPrev = nullptr; |
10790 | |
10791 | if (fgFirstBBScratch != nullptr) |
10792 | { |
10793 | #ifdef DEBUG |
10794 | // We had created an initial scratch BB, but now we're deleting it. |
10795 | if (verbose) |
10796 | { |
10797 | printf("Unlinking scratch " FMT_BB "\n" , block->bbNum); |
10798 | } |
10799 | #endif // DEBUG |
10800 | fgFirstBBScratch = nullptr; |
10801 | } |
10802 | } |
10803 | } |
10804 | |
10805 | /***************************************************************************************************** |
10806 | * |
10807 | * Function called to unlink basic block range [bBeg .. bEnd] from the basic block list. |
10808 | * |
10809 | * 'bBeg' can't be the first block. |
10810 | */ |
10811 | |
10812 | void Compiler::fgUnlinkRange(BasicBlock* bBeg, BasicBlock* bEnd) |
10813 | { |
10814 | assert(bBeg != nullptr); |
10815 | assert(bEnd != nullptr); |
10816 | |
10817 | BasicBlock* bPrev = bBeg->bbPrev; |
10818 | assert(bPrev != nullptr); // Can't unlink a range starting with the first block |
10819 | |
10820 | bPrev->setNext(bEnd->bbNext); |
10821 | |
10822 | /* If we removed the last block in the method then update fgLastBB */ |
10823 | if (fgLastBB == bEnd) |
10824 | { |
10825 | fgLastBB = bPrev; |
10826 | noway_assert(fgLastBB->bbNext == nullptr); |
10827 | } |
10828 | |
10829 | // If bEnd was the first Cold basic block update fgFirstColdBlock |
10830 | if (fgFirstColdBlock == bEnd) |
10831 | { |
10832 | fgFirstColdBlock = bPrev->bbNext; |
10833 | } |
10834 | |
10835 | #if FEATURE_EH_FUNCLETS |
10836 | #ifdef DEBUG |
10837 | // You can't unlink a range that includes the first funclet block. A range certainly |
10838 | // can't cross the non-funclet/funclet region. And you can't unlink the first block |
10839 | // of the first funclet with this, either. (If that's necessary, it could be allowed |
10840 | // by updating fgFirstFuncletBB to bEnd->bbNext.) |
10841 | for (BasicBlock* tempBB = bBeg; tempBB != bEnd->bbNext; tempBB = tempBB->bbNext) |
10842 | { |
10843 | assert(tempBB != fgFirstFuncletBB); |
10844 | } |
10845 | #endif // DEBUG |
10846 | #endif // FEATURE_EH_FUNCLETS |
10847 | } |
10848 | |
10849 | /***************************************************************************************************** |
10850 | * |
10851 | * Function called to remove a basic block |
10852 | */ |
10853 | |
10854 | void Compiler::fgRemoveBlock(BasicBlock* block, bool unreachable) |
10855 | { |
10856 | BasicBlock* bPrev = block->bbPrev; |
10857 | |
10858 | /* The block has to be either unreachable or empty */ |
10859 | |
10860 | PREFIX_ASSUME(block != nullptr); |
10861 | |
10862 | JITDUMP("fgRemoveBlock " FMT_BB "\n" , block->bbNum); |
10863 | |
10864 | // If we've cached any mappings from switch blocks to SwitchDesc's (which contain only the |
10865 | // *unique* successors of the switch block), invalidate that cache, since an entry in one of |
10866 | // the SwitchDescs might be removed. |
10867 | InvalidateUniqueSwitchSuccMap(); |
10868 | |
10869 | noway_assert((block == fgFirstBB) || (bPrev && (bPrev->bbNext == block))); |
10870 | noway_assert(!(block->bbFlags & BBF_DONT_REMOVE)); |
10871 | |
10872 | // Should never remove a genReturnBB, as we might have special hookups there. |
10873 | noway_assert(block != genReturnBB); |
10874 | |
10875 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10876 | // Don't remove a finally target |
10877 | assert(!(block->bbFlags & BBF_FINALLY_TARGET)); |
10878 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10879 | |
10880 | if (unreachable) |
10881 | { |
10882 | PREFIX_ASSUME(bPrev != nullptr); |
10883 | |
10884 | fgUnreachableBlock(block); |
10885 | |
10886 | /* If this is the last basic block update fgLastBB */ |
10887 | if (block == fgLastBB) |
10888 | { |
10889 | fgLastBB = bPrev; |
10890 | } |
10891 | |
10892 | #if FEATURE_EH_FUNCLETS |
10893 | // If block was the fgFirstFuncletBB then set fgFirstFuncletBB to block->bbNext |
10894 | if (block == fgFirstFuncletBB) |
10895 | { |
10896 | fgFirstFuncletBB = block->bbNext; |
10897 | } |
10898 | #endif // FEATURE_EH_FUNCLETS |
10899 | |
10900 | if (bPrev->bbJumpKind == BBJ_CALLFINALLY) |
10901 | { |
10902 | // bPrev CALL becomes RETLESS as the BBJ_ALWAYS block is unreachable |
10903 | bPrev->bbFlags |= BBF_RETLESS_CALL; |
10904 | |
10905 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10906 | NO_WAY("No retless call finally blocks; need unwind target instead" ); |
10907 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10908 | } |
10909 | else if (bPrev->bbJumpKind == BBJ_ALWAYS && bPrev->bbJumpDest == block->bbNext && |
10910 | !(bPrev->bbFlags & BBF_KEEP_BBJ_ALWAYS) && (block != fgFirstColdBlock) && |
10911 | (block->bbNext != fgFirstColdBlock)) |
10912 | { |
10913 | // previous block is a BBJ_ALWAYS to the next block: change to BBJ_NONE. |
10914 | // Note that we don't do it if bPrev follows a BBJ_CALLFINALLY block (BBF_KEEP_BBJ_ALWAYS), |
10915 | // because that would violate our invariant that BBJ_CALLFINALLY blocks are followed by |
10916 | // BBJ_ALWAYS blocks. |
10917 | bPrev->bbJumpKind = BBJ_NONE; |
10918 | bPrev->bbFlags &= ~BBF_NEEDS_GCPOLL; |
10919 | } |
10920 | |
10921 | // If this is the first Cold basic block update fgFirstColdBlock |
10922 | if (block == fgFirstColdBlock) |
10923 | { |
10924 | fgFirstColdBlock = block->bbNext; |
10925 | } |
10926 | |
10927 | /* Unlink this block from the bbNext chain */ |
10928 | fgUnlinkBlock(block); |
10929 | |
10930 | /* At this point the bbPreds and bbRefs had better be zero */ |
10931 | noway_assert((block->bbRefs == 0) && (block->bbPreds == nullptr)); |
10932 | |
10933 | /* A BBJ_CALLFINALLY is usually paired with a BBJ_ALWAYS. |
10934 | * If we delete such a BBJ_CALLFINALLY we also delete the BBJ_ALWAYS |
10935 | */ |
10936 | if (block->isBBCallAlwaysPair()) |
10937 | { |
10938 | BasicBlock* leaveBlk = block->bbNext; |
10939 | noway_assert(leaveBlk->bbJumpKind == BBJ_ALWAYS); |
10940 | |
10941 | leaveBlk->bbFlags &= ~BBF_DONT_REMOVE; |
10942 | leaveBlk->bbRefs = 0; |
10943 | leaveBlk->bbPreds = nullptr; |
10944 | |
10945 | fgRemoveBlock(leaveBlk, true); |
10946 | |
10947 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10948 | fgClearFinallyTargetBit(leaveBlk->bbJumpDest); |
10949 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
10950 | } |
10951 | else if (block->bbJumpKind == BBJ_RETURN) |
10952 | { |
10953 | fgRemoveReturnBlock(block); |
10954 | } |
10955 | } |
10956 | else // block is empty |
10957 | { |
10958 | noway_assert(block->isEmpty()); |
10959 | |
10960 | /* The block cannot follow a non-retless BBJ_CALLFINALLY (because we don't know who may jump to it) */ |
10961 | noway_assert((bPrev == nullptr) || !bPrev->isBBCallAlwaysPair()); |
10962 | |
10963 | /* This cannot be the last basic block */ |
10964 | noway_assert(block != fgLastBB); |
10965 | |
10966 | #ifdef DEBUG |
10967 | if (verbose) |
10968 | { |
10969 | printf("Removing empty " FMT_BB "\n" , block->bbNum); |
10970 | } |
10971 | #endif // DEBUG |
10972 | |
10973 | #ifdef DEBUG |
10974 | /* Some extra checks for the empty case */ |
10975 | |
10976 | switch (block->bbJumpKind) |
10977 | { |
10978 | case BBJ_NONE: |
10979 | break; |
10980 | |
10981 | case BBJ_ALWAYS: |
10982 | /* Do not remove a block that jumps to itself - used for while (true){} */ |
10983 | noway_assert(block->bbJumpDest != block); |
10984 | |
10985 | /* Empty GOTO can be removed iff bPrev is BBJ_NONE */ |
10986 | noway_assert(bPrev && bPrev->bbJumpKind == BBJ_NONE); |
10987 | break; |
10988 | |
10989 | default: |
10990 | noway_assert(!"Empty block of this type cannot be removed!" ); |
10991 | break; |
10992 | } |
10993 | #endif // DEBUG |
10994 | |
10995 | noway_assert(block->bbJumpKind == BBJ_NONE || block->bbJumpKind == BBJ_ALWAYS); |
10996 | |
10997 | /* Who is the "real" successor of this block? */ |
10998 | |
10999 | BasicBlock* succBlock; |
11000 | |
11001 | if (block->bbJumpKind == BBJ_ALWAYS) |
11002 | { |
11003 | succBlock = block->bbJumpDest; |
11004 | } |
11005 | else |
11006 | { |
11007 | succBlock = block->bbNext; |
11008 | } |
11009 | |
11010 | bool skipUnmarkLoop = false; |
11011 | |
11012 | // If block is the backedge for a loop and succBlock precedes block |
11013 | // then the succBlock becomes the new LOOP HEAD |
11014 | // NOTE: there's an assumption here that the blocks are numbered in increasing bbNext order. |
11015 | // NOTE 2: if fgDomsComputed is false, then we can't check reachability. However, if this is |
11016 | // the case, then the loop structures probably are also invalid, and shouldn't be used. This |
11017 | // can be the case late in compilation (such as Lower), where remnants of earlier created |
11018 | // structures exist, but haven't been maintained. |
11019 | if (block->isLoopHead() && (succBlock->bbNum <= block->bbNum)) |
11020 | { |
11021 | succBlock->bbFlags |= BBF_LOOP_HEAD; |
11022 | if (fgDomsComputed && fgReachable(succBlock, block)) |
11023 | { |
11024 | /* Mark all the reachable blocks between 'succBlock' and 'block', excluding 'block' */ |
11025 | optMarkLoopBlocks(succBlock, block, true); |
11026 | } |
11027 | } |
11028 | else if (succBlock->isLoopHead() && bPrev && (succBlock->bbNum <= bPrev->bbNum)) |
11029 | { |
11030 | skipUnmarkLoop = true; |
11031 | } |
11032 | |
11033 | noway_assert(succBlock); |
11034 | |
11035 | // If this is the first Cold basic block update fgFirstColdBlock |
11036 | if (block == fgFirstColdBlock) |
11037 | { |
11038 | fgFirstColdBlock = block->bbNext; |
11039 | } |
11040 | |
11041 | #if FEATURE_EH_FUNCLETS |
11042 | // Update fgFirstFuncletBB if necessary |
11043 | if (block == fgFirstFuncletBB) |
11044 | { |
11045 | fgFirstFuncletBB = block->bbNext; |
11046 | } |
11047 | #endif // FEATURE_EH_FUNCLETS |
11048 | |
11049 | /* First update the loop table and bbWeights */ |
11050 | optUpdateLoopsBeforeRemoveBlock(block, skipUnmarkLoop); |
11051 | |
11052 | // Update successor block start IL offset, if empty predecessor |
11053 | // covers the immediately preceding range. |
11054 | if ((block->bbCodeOffsEnd == succBlock->bbCodeOffs) && (block->bbCodeOffs != BAD_IL_OFFSET)) |
11055 | { |
11056 | assert(block->bbCodeOffs <= succBlock->bbCodeOffs); |
11057 | succBlock->bbCodeOffs = block->bbCodeOffs; |
11058 | } |
11059 | |
11060 | /* Remove the block */ |
11061 | |
11062 | if (bPrev == nullptr) |
11063 | { |
11064 | /* special case if this is the first BB */ |
11065 | |
11066 | noway_assert(block == fgFirstBB); |
11067 | |
11068 | /* Must be a fall through to next block */ |
11069 | |
11070 | noway_assert(block->bbJumpKind == BBJ_NONE); |
11071 | |
11072 | /* old block no longer gets the extra ref count for being the first block */ |
11073 | block->bbRefs--; |
11074 | succBlock->bbRefs++; |
11075 | |
11076 | /* Set the new firstBB */ |
11077 | fgUnlinkBlock(block); |
11078 | |
11079 | /* Always treat the initial block as a jump target */ |
11080 | fgFirstBB->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
11081 | } |
11082 | else |
11083 | { |
11084 | fgUnlinkBlock(block); |
11085 | } |
11086 | |
11087 | /* mark the block as removed and set the change flag */ |
11088 | |
11089 | block->bbFlags |= BBF_REMOVED; |
11090 | |
11091 | /* Update bbRefs and bbPreds. |
11092 | * All blocks jumping to 'block' now jump to 'succBlock'. |
11093 | * First, remove 'block' from the predecessor list of succBlock. |
11094 | */ |
11095 | |
11096 | fgRemoveRefPred(succBlock, block); |
11097 | |
11098 | for (flowList* pred = block->bbPreds; pred; pred = pred->flNext) |
11099 | { |
11100 | BasicBlock* predBlock = pred->flBlock; |
11101 | |
11102 | /* Are we changing a loop backedge into a forward jump? */ |
11103 | |
11104 | if (block->isLoopHead() && (predBlock->bbNum >= block->bbNum) && (predBlock->bbNum <= succBlock->bbNum)) |
11105 | { |
11106 | /* First update the loop table and bbWeights */ |
11107 | optUpdateLoopsBeforeRemoveBlock(predBlock); |
11108 | } |
11109 | |
11110 | /* If predBlock is a new predecessor, then add it to succBlock's |
11111 | predecessor's list. */ |
11112 | if (predBlock->bbJumpKind != BBJ_SWITCH) |
11113 | { |
11114 | // Even if the pred is not a switch, we could have a conditional branch |
11115 | // to the fallthrough, so duplicate there could be preds |
11116 | for (unsigned i = 0; i < pred->flDupCount; i++) |
11117 | { |
11118 | fgAddRefPred(succBlock, predBlock); |
11119 | } |
11120 | } |
11121 | |
11122 | /* change all jumps to the removed block */ |
11123 | switch (predBlock->bbJumpKind) |
11124 | { |
11125 | default: |
11126 | noway_assert(!"Unexpected bbJumpKind in fgRemoveBlock()" ); |
11127 | break; |
11128 | |
11129 | case BBJ_NONE: |
11130 | noway_assert(predBlock == bPrev); |
11131 | PREFIX_ASSUME(bPrev != nullptr); |
11132 | |
11133 | /* In the case of BBJ_ALWAYS we have to change the type of its predecessor */ |
11134 | if (block->bbJumpKind == BBJ_ALWAYS) |
11135 | { |
11136 | /* bPrev now becomes a BBJ_ALWAYS */ |
11137 | bPrev->bbJumpKind = BBJ_ALWAYS; |
11138 | bPrev->bbJumpDest = succBlock; |
11139 | } |
11140 | break; |
11141 | |
11142 | case BBJ_COND: |
11143 | /* The links for the direct predecessor case have already been updated above */ |
11144 | if (predBlock->bbJumpDest != block) |
11145 | { |
11146 | succBlock->bbFlags |= BBF_HAS_LABEL | BBF_JMP_TARGET; |
11147 | break; |
11148 | } |
11149 | |
11150 | /* Check if both side of the BBJ_COND now jump to the same block */ |
11151 | if (predBlock->bbNext == succBlock) |
11152 | { |
11153 | // Make sure we are replacing "block" with "succBlock" in predBlock->bbJumpDest. |
11154 | noway_assert(predBlock->bbJumpDest == block); |
11155 | predBlock->bbJumpDest = succBlock; |
11156 | fgRemoveConditionalJump(predBlock); |
11157 | break; |
11158 | } |
11159 | |
11160 | /* Fall through for the jump case */ |
11161 | __fallthrough; |
11162 | |
11163 | case BBJ_CALLFINALLY: |
11164 | case BBJ_ALWAYS: |
11165 | case BBJ_EHCATCHRET: |
11166 | noway_assert(predBlock->bbJumpDest == block); |
11167 | predBlock->bbJumpDest = succBlock; |
11168 | succBlock->bbFlags |= BBF_HAS_LABEL | BBF_JMP_TARGET; |
11169 | break; |
11170 | |
11171 | case BBJ_SWITCH: |
11172 | // Change any jumps from 'predBlock' (a BBJ_SWITCH) to 'block' to jump to 'succBlock' |
11173 | // |
11174 | // For the jump targets of 'predBlock' (a BBJ_SWITCH) that jump to 'block' |
11175 | // remove the old predecessor at 'block' from 'predBlock' and |
11176 | // add the new predecessor at 'succBlock' from 'predBlock' |
11177 | // |
11178 | fgReplaceSwitchJumpTarget(predBlock, succBlock, block); |
11179 | break; |
11180 | } |
11181 | } |
11182 | } |
11183 | |
11184 | if (bPrev != nullptr) |
11185 | { |
11186 | switch (bPrev->bbJumpKind) |
11187 | { |
11188 | case BBJ_CALLFINALLY: |
11189 | // If prev is a BBJ_CALLFINALLY it better be marked as RETLESS |
11190 | noway_assert(bPrev->bbFlags & BBF_RETLESS_CALL); |
11191 | break; |
11192 | |
11193 | case BBJ_ALWAYS: |
11194 | // Check for branch to next block. Just make sure the BBJ_ALWAYS block is not |
11195 | // part of a BBJ_CALLFINALLY/BBJ_ALWAYS pair. We do this here and don't rely on fgUpdateFlowGraph |
11196 | // because we can be called by ComputeDominators and it expects it to remove this jump to |
11197 | // the next block. This is the safest fix. We should remove all this BBJ_CALLFINALLY/BBJ_ALWAYS |
11198 | // pairing. |
11199 | |
11200 | if ((bPrev->bbJumpDest == bPrev->bbNext) && |
11201 | !fgInDifferentRegions(bPrev, bPrev->bbJumpDest)) // We don't remove a branch from Hot -> Cold |
11202 | { |
11203 | if ((bPrev == fgFirstBB) || !bPrev->bbPrev->isBBCallAlwaysPair()) |
11204 | { |
11205 | // It's safe to change the jump type |
11206 | bPrev->bbJumpKind = BBJ_NONE; |
11207 | bPrev->bbFlags &= ~BBF_NEEDS_GCPOLL; |
11208 | } |
11209 | } |
11210 | break; |
11211 | |
11212 | case BBJ_COND: |
11213 | /* Check for branch to next block */ |
11214 | if (bPrev->bbJumpDest == bPrev->bbNext) |
11215 | { |
11216 | fgRemoveConditionalJump(bPrev); |
11217 | } |
11218 | break; |
11219 | |
11220 | default: |
11221 | break; |
11222 | } |
11223 | |
11224 | ehUpdateForDeletedBlock(block); |
11225 | } |
11226 | } |
11227 | |
11228 | /***************************************************************************** |
11229 | * |
11230 | * Function called to connect to block that previously had a fall through |
11231 | */ |
11232 | |
11233 | BasicBlock* Compiler::fgConnectFallThrough(BasicBlock* bSrc, BasicBlock* bDst) |
11234 | { |
11235 | BasicBlock* jmpBlk = nullptr; |
11236 | |
11237 | /* If bSrc is non-NULL */ |
11238 | |
11239 | if (bSrc != nullptr) |
11240 | { |
11241 | /* If bSrc falls through to a block that is not bDst, we will insert a jump to bDst */ |
11242 | |
11243 | if (bSrc->bbFallsThrough() && (bSrc->bbNext != bDst)) |
11244 | { |
11245 | switch (bSrc->bbJumpKind) |
11246 | { |
11247 | |
11248 | case BBJ_NONE: |
11249 | bSrc->bbJumpKind = BBJ_ALWAYS; |
11250 | bSrc->bbJumpDest = bDst; |
11251 | bSrc->bbJumpDest->bbFlags |= (BBF_JMP_TARGET | BBF_HAS_LABEL); |
11252 | #ifdef DEBUG |
11253 | if (verbose) |
11254 | { |
11255 | printf("Block " FMT_BB " ended with a BBJ_NONE, Changed to an unconditional jump to " FMT_BB |
11256 | "\n" , |
11257 | bSrc->bbNum, bSrc->bbJumpDest->bbNum); |
11258 | } |
11259 | #endif |
11260 | break; |
11261 | |
11262 | case BBJ_CALLFINALLY: |
11263 | case BBJ_COND: |
11264 | |
11265 | // Add a new block after bSrc which jumps to 'bDst' |
11266 | jmpBlk = fgNewBBafter(BBJ_ALWAYS, bSrc, true); |
11267 | |
11268 | if (fgComputePredsDone) |
11269 | { |
11270 | fgAddRefPred(jmpBlk, bSrc, fgGetPredForBlock(bDst, bSrc)); |
11271 | } |
11272 | |
11273 | // When adding a new jmpBlk we will set the bbWeight and bbFlags |
11274 | // |
11275 | if (fgHaveValidEdgeWeights) |
11276 | { |
11277 | noway_assert(fgComputePredsDone); |
11278 | |
11279 | flowList* newEdge = fgGetPredForBlock(jmpBlk, bSrc); |
11280 | |
11281 | jmpBlk->bbWeight = (newEdge->flEdgeWeightMin + newEdge->flEdgeWeightMax) / 2; |
11282 | if (bSrc->bbWeight == 0) |
11283 | { |
11284 | jmpBlk->bbWeight = 0; |
11285 | } |
11286 | |
11287 | if (jmpBlk->bbWeight == 0) |
11288 | { |
11289 | jmpBlk->bbFlags |= BBF_RUN_RARELY; |
11290 | } |
11291 | |
11292 | BasicBlock::weight_t weightDiff = (newEdge->flEdgeWeightMax - newEdge->flEdgeWeightMin); |
11293 | BasicBlock::weight_t slop = BasicBlock::GetSlopFraction(bSrc, bDst); |
11294 | |
11295 | // |
11296 | // If the [min/max] values for our edge weight is within the slop factor |
11297 | // then we will set the BBF_PROF_WEIGHT flag for the block |
11298 | // |
11299 | if (weightDiff <= slop) |
11300 | { |
11301 | jmpBlk->bbFlags |= BBF_PROF_WEIGHT; |
11302 | } |
11303 | } |
11304 | else |
11305 | { |
11306 | // We set the bbWeight to the smaller of bSrc->bbWeight or bDst->bbWeight |
11307 | if (bSrc->bbWeight < bDst->bbWeight) |
11308 | { |
11309 | jmpBlk->bbWeight = bSrc->bbWeight; |
11310 | jmpBlk->bbFlags |= (bSrc->bbFlags & BBF_RUN_RARELY); |
11311 | } |
11312 | else |
11313 | { |
11314 | jmpBlk->bbWeight = bDst->bbWeight; |
11315 | jmpBlk->bbFlags |= (bDst->bbFlags & BBF_RUN_RARELY); |
11316 | } |
11317 | } |
11318 | |
11319 | jmpBlk->bbJumpDest = bDst; |
11320 | jmpBlk->bbJumpDest->bbFlags |= (BBF_JMP_TARGET | BBF_HAS_LABEL); |
11321 | |
11322 | if (fgComputePredsDone) |
11323 | { |
11324 | fgReplacePred(bDst, bSrc, jmpBlk); |
11325 | } |
11326 | else |
11327 | { |
11328 | jmpBlk->bbFlags |= BBF_IMPORTED; |
11329 | } |
11330 | |
11331 | #ifdef DEBUG |
11332 | if (verbose) |
11333 | { |
11334 | printf("Added an unconditional jump to " FMT_BB " after block " FMT_BB "\n" , |
11335 | jmpBlk->bbJumpDest->bbNum, bSrc->bbNum); |
11336 | } |
11337 | #endif // DEBUG |
11338 | break; |
11339 | |
11340 | default: |
11341 | noway_assert(!"Unexpected bbJumpKind" ); |
11342 | break; |
11343 | } |
11344 | } |
11345 | else |
11346 | { |
11347 | // If bSrc is an unconditional branch to the next block |
11348 | // then change it to a BBJ_NONE block |
11349 | // |
11350 | if ((bSrc->bbJumpKind == BBJ_ALWAYS) && !(bSrc->bbFlags & BBF_KEEP_BBJ_ALWAYS) && |
11351 | (bSrc->bbJumpDest == bSrc->bbNext)) |
11352 | { |
11353 | bSrc->bbJumpKind = BBJ_NONE; |
11354 | bSrc->bbFlags &= ~BBF_NEEDS_GCPOLL; |
11355 | #ifdef DEBUG |
11356 | if (verbose) |
11357 | { |
11358 | printf("Changed an unconditional jump from " FMT_BB " to the next block " FMT_BB |
11359 | " into a BBJ_NONE block\n" , |
11360 | bSrc->bbNum, bSrc->bbNext->bbNum); |
11361 | } |
11362 | #endif // DEBUG |
11363 | } |
11364 | } |
11365 | } |
11366 | |
11367 | return jmpBlk; |
11368 | } |
11369 | |
11370 | /***************************************************************************** |
11371 | Walk the flow graph, reassign block numbers to keep them in ascending order. |
11372 | Returns 'true' if any renumbering was actually done, OR if we change the |
11373 | maximum number of assigned basic blocks (this can happen if we do inlining, |
11374 | create a new, high-numbered block, then that block goes away. We go to |
11375 | renumber the blocks, none of them actually change number, but we shrink the |
11376 | maximum assigned block number. This affects the block set epoch). |
11377 | */ |
11378 | |
11379 | bool Compiler::fgRenumberBlocks() |
11380 | { |
11381 | // If we renumber the blocks the dominator information will be out-of-date |
11382 | if (fgDomsComputed) |
11383 | { |
11384 | noway_assert(!"Can't call Compiler::fgRenumberBlocks() when fgDomsComputed==true" ); |
11385 | } |
11386 | |
11387 | #ifdef DEBUG |
11388 | if (verbose) |
11389 | { |
11390 | printf("\n*************** Before renumbering the basic blocks\n" ); |
11391 | fgDispBasicBlocks(); |
11392 | fgDispHandlerTab(); |
11393 | } |
11394 | #endif // DEBUG |
11395 | |
11396 | bool renumbered = false; |
11397 | bool newMaxBBNum = false; |
11398 | BasicBlock* block; |
11399 | |
11400 | unsigned numStart = 1 + (compIsForInlining() ? impInlineInfo->InlinerCompiler->fgBBNumMax : 0); |
11401 | unsigned num; |
11402 | |
11403 | for (block = fgFirstBB, num = numStart; block != nullptr; block = block->bbNext, num++) |
11404 | { |
11405 | noway_assert((block->bbFlags & BBF_REMOVED) == 0); |
11406 | |
11407 | if (block->bbNum != num) |
11408 | { |
11409 | renumbered = true; |
11410 | #ifdef DEBUG |
11411 | if (verbose) |
11412 | { |
11413 | printf("Renumber " FMT_BB " to " FMT_BB "\n" , block->bbNum, num); |
11414 | } |
11415 | #endif // DEBUG |
11416 | block->bbNum = num; |
11417 | } |
11418 | |
11419 | if (block->bbNext == nullptr) |
11420 | { |
11421 | fgLastBB = block; |
11422 | fgBBcount = num - numStart + 1; |
11423 | if (compIsForInlining()) |
11424 | { |
11425 | if (impInlineInfo->InlinerCompiler->fgBBNumMax != num) |
11426 | { |
11427 | impInlineInfo->InlinerCompiler->fgBBNumMax = num; |
11428 | newMaxBBNum = true; |
11429 | } |
11430 | } |
11431 | else |
11432 | { |
11433 | if (fgBBNumMax != num) |
11434 | { |
11435 | fgBBNumMax = num; |
11436 | newMaxBBNum = true; |
11437 | } |
11438 | } |
11439 | } |
11440 | } |
11441 | |
11442 | #ifdef DEBUG |
11443 | if (verbose) |
11444 | { |
11445 | printf("\n*************** After renumbering the basic blocks\n" ); |
11446 | if (renumbered) |
11447 | { |
11448 | fgDispBasicBlocks(); |
11449 | fgDispHandlerTab(); |
11450 | } |
11451 | else |
11452 | { |
11453 | printf("=============== No blocks renumbered!\n" ); |
11454 | } |
11455 | } |
11456 | #endif // DEBUG |
11457 | |
11458 | // Now update the BlockSet epoch, which depends on the block numbers. |
11459 | // If any blocks have been renumbered then create a new BlockSet epoch. |
11460 | // Even if we have not renumbered any blocks, we might still need to force |
11461 | // a new BlockSet epoch, for one of several reasons. If there are any new |
11462 | // blocks with higher numbers than the former maximum numbered block, then we |
11463 | // need a new epoch with a new size matching the new largest numbered block. |
11464 | // Also, if the number of blocks is different from the last time we set the |
11465 | // BlockSet epoch, then we need a new epoch. This wouldn't happen if we |
11466 | // renumbered blocks after every block addition/deletion, but it might be |
11467 | // the case that we can change the number of blocks, then set the BlockSet |
11468 | // epoch without renumbering, then change the number of blocks again, then |
11469 | // renumber. |
11470 | if (renumbered || newMaxBBNum) |
11471 | { |
11472 | NewBasicBlockEpoch(); |
11473 | |
11474 | // The key in the unique switch successor map is dependent on the block number, so invalidate that cache. |
11475 | InvalidateUniqueSwitchSuccMap(); |
11476 | } |
11477 | else |
11478 | { |
11479 | EnsureBasicBlockEpoch(); |
11480 | } |
11481 | |
11482 | // Tell our caller if any blocks actually were renumbered. |
11483 | return renumbered || newMaxBBNum; |
11484 | } |
11485 | |
11486 | /***************************************************************************** |
11487 | * |
11488 | * Is the BasicBlock bJump a forward branch? |
11489 | * Optionally bSrc can be supplied to indicate that |
11490 | * bJump must be forward with respect to bSrc |
11491 | */ |
11492 | bool Compiler::fgIsForwardBranch(BasicBlock* bJump, BasicBlock* bSrc /* = NULL */) |
11493 | { |
11494 | bool result = false; |
11495 | |
11496 | if ((bJump->bbJumpKind == BBJ_COND) || (bJump->bbJumpKind == BBJ_ALWAYS)) |
11497 | { |
11498 | BasicBlock* bDest = bJump->bbJumpDest; |
11499 | BasicBlock* bTemp = (bSrc == nullptr) ? bJump : bSrc; |
11500 | |
11501 | while (true) |
11502 | { |
11503 | bTemp = bTemp->bbNext; |
11504 | |
11505 | if (bTemp == nullptr) |
11506 | { |
11507 | break; |
11508 | } |
11509 | |
11510 | if (bTemp == bDest) |
11511 | { |
11512 | result = true; |
11513 | break; |
11514 | } |
11515 | } |
11516 | } |
11517 | |
11518 | return result; |
11519 | } |
11520 | |
11521 | /***************************************************************************** |
11522 | * |
11523 | * Function called to expand the set of rarely run blocks |
11524 | */ |
11525 | |
11526 | bool Compiler::fgExpandRarelyRunBlocks() |
11527 | { |
11528 | bool result = false; |
11529 | |
11530 | #ifdef DEBUG |
11531 | if (verbose) |
11532 | { |
11533 | printf("\n*************** In fgExpandRarelyRunBlocks()\n" ); |
11534 | } |
11535 | |
11536 | const char* reason = nullptr; |
11537 | #endif |
11538 | |
11539 | // We expand the number of rarely run blocks by observing |
11540 | // that a block that falls into or jumps to a rarely run block, |
11541 | // must itself be rarely run and when we have a conditional |
11542 | // jump in which both branches go to rarely run blocks then |
11543 | // the block must itself be rarely run |
11544 | |
11545 | BasicBlock* block; |
11546 | BasicBlock* bPrev; |
11547 | |
11548 | for (bPrev = fgFirstBB, block = bPrev->bbNext; block != nullptr; bPrev = block, block = block->bbNext) |
11549 | { |
11550 | if (bPrev->isRunRarely()) |
11551 | { |
11552 | continue; |
11553 | } |
11554 | |
11555 | /* bPrev is known to be a normal block here */ |
11556 | switch (bPrev->bbJumpKind) |
11557 | { |
11558 | case BBJ_ALWAYS: |
11559 | |
11560 | /* Is the jump target rarely run? */ |
11561 | if (bPrev->bbJumpDest->isRunRarely()) |
11562 | { |
11563 | INDEBUG(reason = "Unconditional jump to a rarely run block" ;) |
11564 | goto NEW_RARELY_RUN; |
11565 | } |
11566 | break; |
11567 | |
11568 | case BBJ_CALLFINALLY: |
11569 | |
11570 | // Check for a BBJ_CALLFINALLY followed by a rarely run paired BBJ_ALWAYS |
11571 | // |
11572 | if (bPrev->isBBCallAlwaysPair()) |
11573 | { |
11574 | /* Is the next block rarely run? */ |
11575 | if (block->isRunRarely()) |
11576 | { |
11577 | INDEBUG(reason = "Call of finally followed by a rarely run block" ;) |
11578 | goto NEW_RARELY_RUN; |
11579 | } |
11580 | } |
11581 | break; |
11582 | |
11583 | case BBJ_NONE: |
11584 | |
11585 | /* is fall through target rarely run? */ |
11586 | if (block->isRunRarely()) |
11587 | { |
11588 | INDEBUG(reason = "Falling into a rarely run block" ;) |
11589 | goto NEW_RARELY_RUN; |
11590 | } |
11591 | break; |
11592 | |
11593 | case BBJ_COND: |
11594 | |
11595 | if (!block->isRunRarely()) |
11596 | { |
11597 | continue; |
11598 | } |
11599 | |
11600 | /* If both targets of the BBJ_COND are run rarely then don't reorder */ |
11601 | if (bPrev->bbJumpDest->isRunRarely()) |
11602 | { |
11603 | /* bPrev should also be marked as run rarely */ |
11604 | if (!bPrev->isRunRarely()) |
11605 | { |
11606 | INDEBUG(reason = "Both sides of a conditional jump are rarely run" ;) |
11607 | |
11608 | NEW_RARELY_RUN: |
11609 | /* If the weight of the block was obtained from a profile run, |
11610 | than it's more accurate than our static analysis */ |
11611 | if (bPrev->hasProfileWeight()) |
11612 | { |
11613 | continue; |
11614 | } |
11615 | result = true; |
11616 | |
11617 | #ifdef DEBUG |
11618 | assert(reason != nullptr); |
11619 | if (verbose) |
11620 | { |
11621 | printf("%s, marking " FMT_BB " as rarely run\n" , reason, bPrev->bbNum); |
11622 | } |
11623 | #endif // DEBUG |
11624 | |
11625 | /* Must not have previously been marked */ |
11626 | noway_assert(!bPrev->isRunRarely()); |
11627 | |
11628 | /* Mark bPrev as a new rarely run block */ |
11629 | bPrev->bbSetRunRarely(); |
11630 | |
11631 | BasicBlock* bPrevPrev = nullptr; |
11632 | BasicBlock* tmpbb; |
11633 | |
11634 | if ((bPrev->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0) |
11635 | { |
11636 | // If we've got a BBJ_CALLFINALLY/BBJ_ALWAYS pair, treat the BBJ_CALLFINALLY as an |
11637 | // additional predecessor for the BBJ_ALWAYS block |
11638 | tmpbb = bPrev->bbPrev; |
11639 | noway_assert(tmpbb != nullptr); |
11640 | #if FEATURE_EH_FUNCLETS |
11641 | noway_assert(tmpbb->isBBCallAlwaysPair()); |
11642 | bPrevPrev = tmpbb; |
11643 | #else |
11644 | if (tmpbb->bbJumpKind == BBJ_CALLFINALLY) |
11645 | { |
11646 | bPrevPrev = tmpbb; |
11647 | } |
11648 | #endif |
11649 | } |
11650 | |
11651 | /* Now go back to it's earliest predecessor to see */ |
11652 | /* if it too should now be marked as rarely run */ |
11653 | flowList* pred = bPrev->bbPreds; |
11654 | |
11655 | if ((pred != nullptr) || (bPrevPrev != nullptr)) |
11656 | { |
11657 | // bPrevPrev will be set to the lexically |
11658 | // earliest predecessor of bPrev. |
11659 | |
11660 | while (pred != nullptr) |
11661 | { |
11662 | if (bPrevPrev == nullptr) |
11663 | { |
11664 | // Initially we select the first block in the bbPreds list |
11665 | bPrevPrev = pred->flBlock; |
11666 | continue; |
11667 | } |
11668 | |
11669 | // Walk the flow graph lexically forward from pred->flBlock |
11670 | // if we find (block == bPrevPrev) then |
11671 | // pred->flBlock is an earlier predecessor. |
11672 | for (tmpbb = pred->flBlock; tmpbb != nullptr; tmpbb = tmpbb->bbNext) |
11673 | { |
11674 | if (tmpbb == bPrevPrev) |
11675 | { |
11676 | /* We found an ealier predecessor */ |
11677 | bPrevPrev = pred->flBlock; |
11678 | break; |
11679 | } |
11680 | else if (tmpbb == bPrev) |
11681 | { |
11682 | // We have reached bPrev so stop walking |
11683 | // as this cannot be an earlier predecessor |
11684 | break; |
11685 | } |
11686 | } |
11687 | |
11688 | // Onto the next predecessor |
11689 | pred = pred->flNext; |
11690 | } |
11691 | |
11692 | // Walk the flow graph forward from bPrevPrev |
11693 | // if we don't find (tmpbb == bPrev) then our candidate |
11694 | // bPrevPrev is lexically after bPrev and we do not |
11695 | // want to select it as our new block |
11696 | |
11697 | for (tmpbb = bPrevPrev; tmpbb != nullptr; tmpbb = tmpbb->bbNext) |
11698 | { |
11699 | if (tmpbb == bPrev) |
11700 | { |
11701 | // Set up block back to the lexically |
11702 | // earliest predecessor of pPrev |
11703 | |
11704 | block = bPrevPrev; |
11705 | } |
11706 | } |
11707 | } |
11708 | } |
11709 | break; |
11710 | |
11711 | default: |
11712 | break; |
11713 | } |
11714 | } |
11715 | } |
11716 | |
11717 | // Now iterate over every block to see if we can prove that a block is rarely run |
11718 | // (i.e. when all predecessors to the block are rarely run) |
11719 | // |
11720 | for (bPrev = fgFirstBB, block = bPrev->bbNext; block != nullptr; bPrev = block, block = block->bbNext) |
11721 | { |
11722 | // If block is not run rarely, then check to make sure that it has |
11723 | // at least one non-rarely run block. |
11724 | |
11725 | if (!block->isRunRarely()) |
11726 | { |
11727 | bool rare = true; |
11728 | |
11729 | /* Make sure that block has at least one normal predecessor */ |
11730 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
11731 | { |
11732 | /* Find the fall through predecessor, if any */ |
11733 | if (!pred->flBlock->isRunRarely()) |
11734 | { |
11735 | rare = false; |
11736 | break; |
11737 | } |
11738 | } |
11739 | |
11740 | if (rare) |
11741 | { |
11742 | // If 'block' is the start of a handler or filter then we cannot make it |
11743 | // rarely run because we may have an exceptional edge that |
11744 | // branches here. |
11745 | // |
11746 | if (bbIsHandlerBeg(block)) |
11747 | { |
11748 | rare = false; |
11749 | } |
11750 | } |
11751 | |
11752 | if (rare) |
11753 | { |
11754 | block->bbSetRunRarely(); |
11755 | result = true; |
11756 | |
11757 | #ifdef DEBUG |
11758 | if (verbose) |
11759 | { |
11760 | printf("All branches to " FMT_BB " are from rarely run blocks, marking as rarely run\n" , |
11761 | block->bbNum); |
11762 | } |
11763 | #endif // DEBUG |
11764 | |
11765 | // When marking a BBJ_CALLFINALLY as rarely run we also mark |
11766 | // the BBJ_ALWAYS that comes after it as rarely run |
11767 | // |
11768 | if (block->isBBCallAlwaysPair()) |
11769 | { |
11770 | BasicBlock* bNext = block->bbNext; |
11771 | PREFIX_ASSUME(bNext != nullptr); |
11772 | bNext->bbSetRunRarely(); |
11773 | #ifdef DEBUG |
11774 | if (verbose) |
11775 | { |
11776 | printf("Also marking the BBJ_ALWAYS at " FMT_BB " as rarely run\n" , bNext->bbNum); |
11777 | } |
11778 | #endif // DEBUG |
11779 | } |
11780 | } |
11781 | } |
11782 | |
11783 | /* COMPACT blocks if possible */ |
11784 | if (bPrev->bbJumpKind == BBJ_NONE) |
11785 | { |
11786 | if (fgCanCompactBlocks(bPrev, block)) |
11787 | { |
11788 | fgCompactBlocks(bPrev, block); |
11789 | |
11790 | block = bPrev; |
11791 | continue; |
11792 | } |
11793 | } |
11794 | // |
11795 | // if bPrev->bbWeight is not based upon profile data we can adjust |
11796 | // the weights of bPrev and block |
11797 | // |
11798 | else if (bPrev->isBBCallAlwaysPair() && // we must have a BBJ_CALLFINALLY and BBK_ALWAYS pair |
11799 | (bPrev->bbWeight != block->bbWeight) && // the weights are currently different |
11800 | !bPrev->hasProfileWeight()) // and the BBJ_CALLFINALLY block is not using profiled |
11801 | // weights |
11802 | { |
11803 | if (block->isRunRarely()) |
11804 | { |
11805 | bPrev->bbWeight = |
11806 | block->bbWeight; // the BBJ_CALLFINALLY block now has the same weight as the BBJ_ALWAYS block |
11807 | bPrev->bbFlags |= BBF_RUN_RARELY; // and is now rarely run |
11808 | #ifdef DEBUG |
11809 | if (verbose) |
11810 | { |
11811 | printf("Marking the BBJ_CALLFINALLY block at " FMT_BB " as rarely run because " FMT_BB |
11812 | " is rarely run\n" , |
11813 | bPrev->bbNum, block->bbNum); |
11814 | } |
11815 | #endif // DEBUG |
11816 | } |
11817 | else if (bPrev->isRunRarely()) |
11818 | { |
11819 | block->bbWeight = |
11820 | bPrev->bbWeight; // the BBJ_ALWAYS block now has the same weight as the BBJ_CALLFINALLY block |
11821 | block->bbFlags |= BBF_RUN_RARELY; // and is now rarely run |
11822 | #ifdef DEBUG |
11823 | if (verbose) |
11824 | { |
11825 | printf("Marking the BBJ_ALWAYS block at " FMT_BB " as rarely run because " FMT_BB |
11826 | " is rarely run\n" , |
11827 | block->bbNum, bPrev->bbNum); |
11828 | } |
11829 | #endif // DEBUG |
11830 | } |
11831 | else // Both blocks are hot, bPrev is known not to be using profiled weight |
11832 | { |
11833 | bPrev->bbWeight = |
11834 | block->bbWeight; // the BBJ_CALLFINALLY block now has the same weight as the BBJ_ALWAYS block |
11835 | } |
11836 | noway_assert(block->bbWeight == bPrev->bbWeight); |
11837 | } |
11838 | } |
11839 | |
11840 | return result; |
11841 | } |
11842 | |
11843 | /***************************************************************************** |
11844 | * |
11845 | * Returns true if it is allowable (based upon the EH regions) |
11846 | * to place block bAfter immediately after bBefore. It is allowable |
11847 | * if the 'bBefore' and 'bAfter' blocks are in the exact same EH region. |
11848 | */ |
11849 | |
11850 | bool Compiler::fgEhAllowsMoveBlock(BasicBlock* bBefore, BasicBlock* bAfter) |
11851 | { |
11852 | return BasicBlock::sameEHRegion(bBefore, bAfter); |
11853 | } |
11854 | |
11855 | /***************************************************************************** |
11856 | * |
11857 | * Function called to move the range of blocks [bStart .. bEnd]. |
11858 | * The blocks are placed immediately after the insertAfterBlk. |
11859 | * fgFirstFuncletBB is not updated; that is the responsibility of the caller, if necessary. |
11860 | */ |
11861 | |
11862 | void Compiler::fgMoveBlocksAfter(BasicBlock* bStart, BasicBlock* bEnd, BasicBlock* insertAfterBlk) |
11863 | { |
11864 | /* We have decided to insert the block(s) after 'insertAfterBlk' */ |
11865 | CLANG_FORMAT_COMMENT_ANCHOR; |
11866 | |
11867 | #ifdef DEBUG |
11868 | if (verbose) |
11869 | { |
11870 | printf("Relocated block%s [" FMT_BB ".." FMT_BB "] inserted after " FMT_BB "%s\n" , (bStart == bEnd) ? "" : "s" , |
11871 | bStart->bbNum, bEnd->bbNum, insertAfterBlk->bbNum, |
11872 | (insertAfterBlk->bbNext == nullptr) ? " at the end of method" : "" ); |
11873 | } |
11874 | #endif // DEBUG |
11875 | |
11876 | /* relink [bStart .. bEnd] into the flow graph */ |
11877 | |
11878 | bEnd->bbNext = insertAfterBlk->bbNext; |
11879 | if (insertAfterBlk->bbNext) |
11880 | { |
11881 | insertAfterBlk->bbNext->bbPrev = bEnd; |
11882 | } |
11883 | insertAfterBlk->setNext(bStart); |
11884 | |
11885 | /* If insertAfterBlk was fgLastBB then update fgLastBB */ |
11886 | if (insertAfterBlk == fgLastBB) |
11887 | { |
11888 | fgLastBB = bEnd; |
11889 | noway_assert(fgLastBB->bbNext == nullptr); |
11890 | } |
11891 | } |
11892 | |
11893 | /***************************************************************************** |
11894 | * |
11895 | * Function called to relocate a single range to the end of the method. |
11896 | * Only an entire consecutive region can be moved and it will be kept together. |
11897 | * Except for the first block, the range cannot have any blocks that jump into or out of the region. |
11898 | * When successful we return the bLast block which is the last block that we relocated. |
11899 | * When unsuccessful we return NULL. |
11900 | |
11901 | ============================================================= |
11902 | NOTE: This function can invalidate all pointers into the EH table, as well as change the size of the EH table! |
11903 | ============================================================= |
11904 | */ |
11905 | |
11906 | BasicBlock* Compiler::fgRelocateEHRange(unsigned regionIndex, FG_RELOCATE_TYPE relocateType) |
11907 | { |
11908 | INDEBUG(const char* reason = "None" ;) |
11909 | |
11910 | // Figure out the range of blocks we're going to move |
11911 | |
11912 | unsigned XTnum; |
11913 | EHblkDsc* HBtab; |
11914 | BasicBlock* bStart = nullptr; |
11915 | BasicBlock* bMiddle = nullptr; |
11916 | BasicBlock* bLast = nullptr; |
11917 | BasicBlock* bPrev = nullptr; |
11918 | |
11919 | #if FEATURE_EH_FUNCLETS |
11920 | // We don't support moving try regions... yet? |
11921 | noway_assert(relocateType == FG_RELOCATE_HANDLER); |
11922 | #endif // FEATURE_EH_FUNCLETS |
11923 | |
11924 | HBtab = ehGetDsc(regionIndex); |
11925 | |
11926 | if (relocateType == FG_RELOCATE_TRY) |
11927 | { |
11928 | bStart = HBtab->ebdTryBeg; |
11929 | bLast = HBtab->ebdTryLast; |
11930 | } |
11931 | else if (relocateType == FG_RELOCATE_HANDLER) |
11932 | { |
11933 | if (HBtab->HasFilter()) |
11934 | { |
11935 | // The filter and handler funclets must be moved together, and remain contiguous. |
11936 | bStart = HBtab->ebdFilter; |
11937 | bMiddle = HBtab->ebdHndBeg; |
11938 | bLast = HBtab->ebdHndLast; |
11939 | } |
11940 | else |
11941 | { |
11942 | bStart = HBtab->ebdHndBeg; |
11943 | bLast = HBtab->ebdHndLast; |
11944 | } |
11945 | } |
11946 | |
11947 | // Our range must contain either all rarely run blocks or all non-rarely run blocks |
11948 | bool inTheRange = false; |
11949 | bool validRange = false; |
11950 | |
11951 | BasicBlock* block; |
11952 | |
11953 | noway_assert(bStart != nullptr && bLast != nullptr); |
11954 | if (bStart == fgFirstBB) |
11955 | { |
11956 | INDEBUG(reason = "can not relocate first block" ;) |
11957 | goto FAILURE; |
11958 | } |
11959 | |
11960 | #if !FEATURE_EH_FUNCLETS |
11961 | // In the funclets case, we still need to set some information on the handler blocks |
11962 | if (bLast->bbNext == NULL) |
11963 | { |
11964 | INDEBUG(reason = "region is already at the end of the method" ;) |
11965 | goto FAILURE; |
11966 | } |
11967 | #endif // !FEATURE_EH_FUNCLETS |
11968 | |
11969 | // Walk the block list for this purpose: |
11970 | // 1. Verify that all the blocks in the range are either all rarely run or not rarely run. |
11971 | // When creating funclets, we ignore the run rarely flag, as we need to be able to move any blocks |
11972 | // in the range. |
11973 | CLANG_FORMAT_COMMENT_ANCHOR; |
11974 | |
11975 | #if !FEATURE_EH_FUNCLETS |
11976 | bool isRare; |
11977 | isRare = bStart->isRunRarely(); |
11978 | #endif // !FEATURE_EH_FUNCLETS |
11979 | block = fgFirstBB; |
11980 | while (true) |
11981 | { |
11982 | if (block == bStart) |
11983 | { |
11984 | noway_assert(inTheRange == false); |
11985 | inTheRange = true; |
11986 | } |
11987 | else if (block == bLast->bbNext) |
11988 | { |
11989 | noway_assert(inTheRange == true); |
11990 | inTheRange = false; |
11991 | break; // we found the end, so we're done |
11992 | } |
11993 | |
11994 | if (inTheRange) |
11995 | { |
11996 | #if !FEATURE_EH_FUNCLETS |
11997 | // Unless all blocks are (not) run rarely we must return false. |
11998 | if (isRare != block->isRunRarely()) |
11999 | { |
12000 | INDEBUG(reason = "this region contains both rarely run and non-rarely run blocks" ;) |
12001 | goto FAILURE; |
12002 | } |
12003 | #endif // !FEATURE_EH_FUNCLETS |
12004 | |
12005 | validRange = true; |
12006 | } |
12007 | |
12008 | if (block == nullptr) |
12009 | { |
12010 | break; |
12011 | } |
12012 | |
12013 | block = block->bbNext; |
12014 | } |
12015 | // Ensure that bStart .. bLast defined a valid range |
12016 | noway_assert((validRange == true) && (inTheRange == false)); |
12017 | |
12018 | bPrev = bStart->bbPrev; |
12019 | noway_assert(bPrev != nullptr); // Can't move a range that includes the first block of the function. |
12020 | |
12021 | JITDUMP("Relocating %s range " FMT_BB ".." FMT_BB " (EH#%u) to end of BBlist\n" , |
12022 | (relocateType == FG_RELOCATE_TRY) ? "try" : "handler" , bStart->bbNum, bLast->bbNum, regionIndex); |
12023 | |
12024 | #ifdef DEBUG |
12025 | if (verbose) |
12026 | { |
12027 | fgDispBasicBlocks(); |
12028 | fgDispHandlerTab(); |
12029 | } |
12030 | |
12031 | if (!FEATURE_EH_FUNCLETS) |
12032 | { |
12033 | // This is really expensive, and quickly becomes O(n^n) with funclets |
12034 | // so only do it once after we've created them (see fgCreateFunclets) |
12035 | if (expensiveDebugCheckLevel >= 2) |
12036 | { |
12037 | fgDebugCheckBBlist(); |
12038 | } |
12039 | } |
12040 | #endif // DEBUG |
12041 | |
12042 | #if FEATURE_EH_FUNCLETS |
12043 | |
12044 | bStart->bbFlags |= BBF_FUNCLET_BEG; // Mark the start block of the funclet |
12045 | |
12046 | if (bMiddle != nullptr) |
12047 | { |
12048 | bMiddle->bbFlags |= BBF_FUNCLET_BEG; // Also mark the start block of a filter handler as a funclet |
12049 | } |
12050 | |
12051 | #endif // FEATURE_EH_FUNCLETS |
12052 | |
12053 | BasicBlock* bNext; |
12054 | bNext = bLast->bbNext; |
12055 | |
12056 | /* Temporarily unlink [bStart .. bLast] from the flow graph */ |
12057 | fgUnlinkRange(bStart, bLast); |
12058 | |
12059 | BasicBlock* insertAfterBlk; |
12060 | insertAfterBlk = fgLastBB; |
12061 | |
12062 | #if FEATURE_EH_FUNCLETS |
12063 | |
12064 | // There are several cases we need to consider when moving an EH range. |
12065 | // If moving a range X, we must consider its relationship to every other EH |
12066 | // range A in the table. Note that each entry in the table represents both |
12067 | // a protected region and a handler region (possibly including a filter region |
12068 | // that must live before and adjacent to the handler region), so we must |
12069 | // consider try and handler regions independently. These are the cases: |
12070 | // 1. A is completely contained within X (where "completely contained" means |
12071 | // that the 'begin' and 'last' parts of A are strictly between the 'begin' |
12072 | // and 'end' parts of X, and aren't equal to either, for example, they don't |
12073 | // share 'last' blocks). In this case, when we move X, A moves with it, and |
12074 | // the EH table doesn't need to change. |
12075 | // 2. X is completely contained within A. In this case, X gets extracted from A, |
12076 | // and the range of A shrinks, but because A is strictly within X, the EH |
12077 | // table doesn't need to change. |
12078 | // 3. A and X have exactly the same range. In this case, A is moving with X and |
12079 | // the EH table doesn't need to change. |
12080 | // 4. A and X share the 'last' block. There are two sub-cases: |
12081 | // (a) A is a larger range than X (such that the beginning of A precedes the |
12082 | // beginning of X): in this case, we are moving the tail of A. We set the |
12083 | // 'last' block of A to the the block preceding the beginning block of X. |
12084 | // (b) A is a smaller range than X. Thus, we are moving the entirety of A along |
12085 | // with X. In this case, nothing in the EH record for A needs to change. |
12086 | // 5. A and X share the 'beginning' block (but aren't the same range, as in #3). |
12087 | // This can never happen here, because we are only moving handler ranges (we don't |
12088 | // move try ranges), and handler regions cannot start at the beginning of a try |
12089 | // range or handler range and be a subset. |
12090 | // |
12091 | // Note that A and X must properly nest for the table to be well-formed. For example, |
12092 | // the beginning of A can't be strictly within the range of X (that is, the beginning |
12093 | // of A isn't shared with the beginning of X) and the end of A outside the range. |
12094 | |
12095 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
12096 | { |
12097 | if (XTnum != regionIndex) // we don't need to update our 'last' pointer |
12098 | { |
12099 | if (HBtab->ebdTryLast == bLast) |
12100 | { |
12101 | // If we moved a set of blocks that were at the end of |
12102 | // a different try region then we may need to update ebdTryLast |
12103 | for (block = HBtab->ebdTryBeg; block != nullptr; block = block->bbNext) |
12104 | { |
12105 | if (block == bPrev) |
12106 | { |
12107 | // We were contained within it, so shrink its region by |
12108 | // setting its 'last' |
12109 | fgSetTryEnd(HBtab, bPrev); |
12110 | break; |
12111 | } |
12112 | else if (block == HBtab->ebdTryLast->bbNext) |
12113 | { |
12114 | // bPrev does not come after the TryBeg, thus we are larger, and |
12115 | // it is moving with us. |
12116 | break; |
12117 | } |
12118 | } |
12119 | } |
12120 | if (HBtab->ebdHndLast == bLast) |
12121 | { |
12122 | // If we moved a set of blocks that were at the end of |
12123 | // a different handler region then we must update ebdHndLast |
12124 | for (block = HBtab->ebdHndBeg; block != nullptr; block = block->bbNext) |
12125 | { |
12126 | if (block == bPrev) |
12127 | { |
12128 | fgSetHndEnd(HBtab, bPrev); |
12129 | break; |
12130 | } |
12131 | else if (block == HBtab->ebdHndLast->bbNext) |
12132 | { |
12133 | // bPrev does not come after the HndBeg |
12134 | break; |
12135 | } |
12136 | } |
12137 | } |
12138 | } |
12139 | } // end exception table iteration |
12140 | |
12141 | // Insert the block(s) we are moving after fgLastBlock |
12142 | fgMoveBlocksAfter(bStart, bLast, insertAfterBlk); |
12143 | |
12144 | if (fgFirstFuncletBB == nullptr) // The funclet region isn't set yet |
12145 | { |
12146 | fgFirstFuncletBB = bStart; |
12147 | } |
12148 | else |
12149 | { |
12150 | assert(fgFirstFuncletBB != |
12151 | insertAfterBlk->bbNext); // We insert at the end, not at the beginning, of the funclet region. |
12152 | } |
12153 | |
12154 | // These asserts assume we aren't moving try regions (which we might need to do). Only |
12155 | // try regions can have fall through into or out of the region. |
12156 | |
12157 | noway_assert(!bPrev->bbFallsThrough()); // There can be no fall through into a filter or handler region |
12158 | noway_assert(!bLast->bbFallsThrough()); // There can be no fall through out of a handler region |
12159 | |
12160 | #ifdef DEBUG |
12161 | if (verbose) |
12162 | { |
12163 | printf("Create funclets: moved region\n" ); |
12164 | fgDispHandlerTab(); |
12165 | } |
12166 | |
12167 | // We have to wait to do this until we've created all the additional regions |
12168 | // Because this relies on ebdEnclosingTryIndex and ebdEnclosingHndIndex |
12169 | if (!FEATURE_EH_FUNCLETS) |
12170 | { |
12171 | // This is really expensive, and quickly becomes O(n^n) with funclets |
12172 | // so only do it once after we've created them (see fgCreateFunclets) |
12173 | if (expensiveDebugCheckLevel >= 2) |
12174 | { |
12175 | fgDebugCheckBBlist(); |
12176 | } |
12177 | } |
12178 | #endif // DEBUG |
12179 | |
12180 | #else // FEATURE_EH_FUNCLETS |
12181 | |
12182 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
12183 | { |
12184 | if (XTnum == regionIndex) |
12185 | { |
12186 | // Don't update our handler's Last info |
12187 | continue; |
12188 | } |
12189 | |
12190 | if (HBtab->ebdTryLast == bLast) |
12191 | { |
12192 | // If we moved a set of blocks that were at the end of |
12193 | // a different try region then we may need to update ebdTryLast |
12194 | for (block = HBtab->ebdTryBeg; block != NULL; block = block->bbNext) |
12195 | { |
12196 | if (block == bPrev) |
12197 | { |
12198 | fgSetTryEnd(HBtab, bPrev); |
12199 | break; |
12200 | } |
12201 | else if (block == HBtab->ebdTryLast->bbNext) |
12202 | { |
12203 | // bPrev does not come after the TryBeg |
12204 | break; |
12205 | } |
12206 | } |
12207 | } |
12208 | if (HBtab->ebdHndLast == bLast) |
12209 | { |
12210 | // If we moved a set of blocks that were at the end of |
12211 | // a different handler region then we must update ebdHndLast |
12212 | for (block = HBtab->ebdHndBeg; block != NULL; block = block->bbNext) |
12213 | { |
12214 | if (block == bPrev) |
12215 | { |
12216 | fgSetHndEnd(HBtab, bPrev); |
12217 | break; |
12218 | } |
12219 | else if (block == HBtab->ebdHndLast->bbNext) |
12220 | { |
12221 | // bPrev does not come after the HndBeg |
12222 | break; |
12223 | } |
12224 | } |
12225 | } |
12226 | } // end exception table iteration |
12227 | |
12228 | // We have decided to insert the block(s) after fgLastBlock |
12229 | fgMoveBlocksAfter(bStart, bLast, insertAfterBlk); |
12230 | |
12231 | // If bPrev falls through, we will insert a jump to block |
12232 | fgConnectFallThrough(bPrev, bStart); |
12233 | |
12234 | // If bLast falls through, we will insert a jump to bNext |
12235 | fgConnectFallThrough(bLast, bNext); |
12236 | |
12237 | #endif // FEATURE_EH_FUNCLETS |
12238 | |
12239 | goto DONE; |
12240 | |
12241 | FAILURE: |
12242 | |
12243 | #ifdef DEBUG |
12244 | if (verbose) |
12245 | { |
12246 | printf("*************** Failed fgRelocateEHRange(" FMT_BB ".." FMT_BB ") because %s\n" , bStart->bbNum, |
12247 | bLast->bbNum, reason); |
12248 | } |
12249 | #endif // DEBUG |
12250 | |
12251 | bLast = nullptr; |
12252 | |
12253 | DONE: |
12254 | |
12255 | return bLast; |
12256 | } |
12257 | |
12258 | #if FEATURE_EH_FUNCLETS |
12259 | |
12260 | #if defined(_TARGET_ARM_) |
12261 | |
12262 | /***************************************************************************** |
12263 | * We just removed a BBJ_CALLFINALLY/BBJ_ALWAYS pair. If this was the only such pair |
12264 | * targeting the BBJ_ALWAYS target, then we need to clear the BBF_FINALLY_TARGET bit |
12265 | * so that target can also be removed. 'block' is the finally target. Since we just |
12266 | * removed the BBJ_ALWAYS, it better have the BBF_FINALLY_TARGET bit set. |
12267 | */ |
12268 | |
12269 | void Compiler::fgClearFinallyTargetBit(BasicBlock* block) |
12270 | { |
12271 | assert(fgComputePredsDone); |
12272 | assert((block->bbFlags & BBF_FINALLY_TARGET) != 0); |
12273 | |
12274 | for (flowList* pred = block->bbPreds; pred; pred = pred->flNext) |
12275 | { |
12276 | if (pred->flBlock->bbJumpKind == BBJ_ALWAYS && pred->flBlock->bbJumpDest == block) |
12277 | { |
12278 | BasicBlock* pPrev = pred->flBlock->bbPrev; |
12279 | if (pPrev != NULL) |
12280 | { |
12281 | if (pPrev->bbJumpKind == BBJ_CALLFINALLY) |
12282 | { |
12283 | // We found a BBJ_CALLFINALLY / BBJ_ALWAYS that still points to this finally target |
12284 | return; |
12285 | } |
12286 | } |
12287 | } |
12288 | } |
12289 | |
12290 | // Didn't find any BBJ_CALLFINALLY / BBJ_ALWAYS that still points here, so clear the bit |
12291 | |
12292 | block->bbFlags &= ~BBF_FINALLY_TARGET; |
12293 | } |
12294 | |
12295 | #endif // defined(_TARGET_ARM_) |
12296 | |
12297 | /***************************************************************************** |
12298 | * Is this an intra-handler control flow edge? |
12299 | * |
12300 | * 'block' is the head block of a funclet/handler region, or . |
12301 | * 'predBlock' is a predecessor block of 'block' in the predecessor list. |
12302 | * |
12303 | * 'predBlock' can legally only be one of three things: |
12304 | * 1. in the same handler region (e.g., the source of a back-edge of a loop from |
12305 | * 'predBlock' to 'block'), including in nested regions within the handler, |
12306 | * 2. if 'block' begins a handler that is a filter-handler, 'predBlock' must be in the 'filter' region, |
12307 | * 3. for other handlers, 'predBlock' must be in the 'try' region corresponding to handler (or any |
12308 | * region nested in the 'try' region). |
12309 | * |
12310 | * Note that on AMD64/ARM64, the BBJ_CALLFINALLY block that calls a finally handler is not |
12311 | * within the corresponding 'try' region: it is placed in the corresponding 'try' region's |
12312 | * parent (which might be the main function body). This is how it is represented to the VM |
12313 | * (with a special "cloned finally" EH table entry). |
12314 | * |
12315 | * Return 'true' for case #1, and 'false' otherwise. |
12316 | */ |
12317 | bool Compiler::fgIsIntraHandlerPred(BasicBlock* predBlock, BasicBlock* block) |
12318 | { |
12319 | // Some simple preconditions (as stated above) |
12320 | assert(!fgFuncletsCreated); |
12321 | assert(fgGetPredForBlock(block, predBlock) != nullptr); |
12322 | assert(block->hasHndIndex()); |
12323 | |
12324 | EHblkDsc* xtab = ehGetDsc(block->getHndIndex()); |
12325 | |
12326 | #if FEATURE_EH_CALLFINALLY_THUNKS |
12327 | if (xtab->HasFinallyHandler()) |
12328 | { |
12329 | assert((xtab->ebdHndBeg == block) || // The normal case |
12330 | ((xtab->ebdHndBeg->bbNext == block) && |
12331 | (xtab->ebdHndBeg->bbFlags & BBF_INTERNAL))); // After we've already inserted a header block, and we're |
12332 | // trying to decide how to split up the predecessor edges. |
12333 | if (predBlock->bbJumpKind == BBJ_CALLFINALLY) |
12334 | { |
12335 | assert(predBlock->bbJumpDest == block); |
12336 | |
12337 | // A BBJ_CALLFINALLY predecessor of the handler can only come from the corresponding try, |
12338 | // not from any EH clauses nested in this handler. However, we represent the BBJ_CALLFINALLY |
12339 | // as being in the 'try' region's parent EH region, which might be the main function body. |
12340 | |
12341 | unsigned tryIndex = xtab->ebdEnclosingTryIndex; |
12342 | if (tryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
12343 | { |
12344 | assert(!predBlock->hasTryIndex()); |
12345 | } |
12346 | else |
12347 | { |
12348 | assert(predBlock->hasTryIndex()); |
12349 | assert(tryIndex == predBlock->getTryIndex()); |
12350 | assert(ehGetDsc(tryIndex)->InTryRegionBBRange(predBlock)); |
12351 | } |
12352 | return false; |
12353 | } |
12354 | } |
12355 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
12356 | |
12357 | assert(predBlock->hasHndIndex() || predBlock->hasTryIndex()); |
12358 | |
12359 | // We could search the try region looking for predBlock by using bbInTryRegions |
12360 | // but that does a lexical search for the block, and then assumes funclets |
12361 | // have been created and does a lexical search of all funclets that were pulled |
12362 | // out of the parent try region. |
12363 | // First, funclets haven't been created yet, and even if they had been, we shouldn't |
12364 | // have any funclet directly branching to another funclet (they have to return first). |
12365 | // So we can safely use CheckIsTryRegion instead of bbInTryRegions. |
12366 | // Second, I believe the depth of any EH graph will on average be smaller than the |
12367 | // breadth of the blocks within a try body. Thus it is faster to get our answer by |
12368 | // looping outward over the region graph. However, I have added asserts, as a |
12369 | // precaution, to ensure both algorithms agree. The asserts also check that the only |
12370 | // way to reach the head of a funclet is from the corresponding try body or from |
12371 | // within the funclet (and *not* any nested funclets). |
12372 | |
12373 | if (predBlock->hasTryIndex()) |
12374 | { |
12375 | // Because the EH clauses are listed inside-out, any nested trys will be at a |
12376 | // lower index than the current try and if there's no enclosing try, tryIndex |
12377 | // will terminate at NO_ENCLOSING_INDEX |
12378 | |
12379 | unsigned tryIndex = predBlock->getTryIndex(); |
12380 | while (tryIndex < block->getHndIndex()) |
12381 | { |
12382 | tryIndex = ehGetEnclosingTryIndex(tryIndex); |
12383 | } |
12384 | // tryIndex should enclose predBlock |
12385 | assert((tryIndex == EHblkDsc::NO_ENCLOSING_INDEX) || ehGetDsc(tryIndex)->InTryRegionBBRange(predBlock)); |
12386 | |
12387 | // At this point tryIndex is either block's handler's corresponding try body |
12388 | // or some outer try region that contains both predBlock & block or |
12389 | // NO_ENCLOSING_REGION (because there was no try body that encloses both). |
12390 | if (tryIndex == block->getHndIndex()) |
12391 | { |
12392 | assert(xtab->InTryRegionBBRange(predBlock)); |
12393 | assert(!xtab->InHndRegionBBRange(predBlock)); |
12394 | return false; |
12395 | } |
12396 | // tryIndex should enclose block (and predBlock as previously asserted) |
12397 | assert((tryIndex == EHblkDsc::NO_ENCLOSING_INDEX) || ehGetDsc(tryIndex)->InTryRegionBBRange(block)); |
12398 | } |
12399 | if (xtab->HasFilter()) |
12400 | { |
12401 | // The block is a handler. Check if the pred block is from its filter. We only need to |
12402 | // check the end filter flag, as there is only a single filter for any handler, and we |
12403 | // already know predBlock is a predecessor of block. |
12404 | if (predBlock->bbJumpKind == BBJ_EHFILTERRET) |
12405 | { |
12406 | assert(!xtab->InHndRegionBBRange(predBlock)); |
12407 | return false; |
12408 | } |
12409 | } |
12410 | // It is not in our try region (or filter), so it must be within this handler (or try bodies |
12411 | // within this handler) |
12412 | assert(!xtab->InTryRegionBBRange(predBlock)); |
12413 | assert(xtab->InHndRegionBBRange(predBlock)); |
12414 | return true; |
12415 | } |
12416 | |
12417 | /***************************************************************************** |
12418 | * Does this block, first block of a handler region, have any predecessor edges |
12419 | * that are not from its corresponding try region? |
12420 | */ |
12421 | |
12422 | bool Compiler::fgAnyIntraHandlerPreds(BasicBlock* block) |
12423 | { |
12424 | assert(block->hasHndIndex()); |
12425 | assert(fgFirstBlockOfHandler(block) == block); // this block is the first block of a handler |
12426 | |
12427 | flowList* pred; |
12428 | |
12429 | for (pred = block->bbPreds; pred; pred = pred->flNext) |
12430 | { |
12431 | BasicBlock* predBlock = pred->flBlock; |
12432 | |
12433 | if (fgIsIntraHandlerPred(predBlock, block)) |
12434 | { |
12435 | // We have a predecessor that is not from our try region |
12436 | return true; |
12437 | } |
12438 | } |
12439 | |
12440 | return false; |
12441 | } |
12442 | |
12443 | /***************************************************************************** |
12444 | * Introduce a new head block of the handler for the prolog to be put in, ahead |
12445 | * of the current handler head 'block'. |
12446 | * Note that this code has some similarities to fgCreateLoopPreHeader(). |
12447 | */ |
12448 | |
12449 | void Compiler::fgInsertFuncletPrologBlock(BasicBlock* block) |
12450 | { |
12451 | #ifdef DEBUG |
12452 | if (verbose) |
12453 | { |
12454 | printf("\nCreating funclet prolog header for " FMT_BB "\n" , block->bbNum); |
12455 | } |
12456 | #endif |
12457 | |
12458 | assert(block->hasHndIndex()); |
12459 | assert(fgFirstBlockOfHandler(block) == block); // this block is the first block of a handler |
12460 | |
12461 | /* Allocate a new basic block */ |
12462 | |
12463 | BasicBlock* newHead = bbNewBasicBlock(BBJ_NONE); |
12464 | |
12465 | // In fgComputePreds() we set the BBF_JMP_TARGET and BBF_HAS_LABEL for all of the handler entry points |
12466 | // |
12467 | newHead->bbFlags |= (BBF_INTERNAL | BBF_JMP_TARGET | BBF_HAS_LABEL); |
12468 | newHead->inheritWeight(block); |
12469 | newHead->bbRefs = 0; |
12470 | |
12471 | fgInsertBBbefore(block, newHead); // insert the new block in the block list |
12472 | fgExtendEHRegionBefore(block); // Update the EH table to make the prolog block the first block in the block's EH |
12473 | // block. |
12474 | |
12475 | // Distribute the pred list between newHead and block. Incoming edges coming from outside |
12476 | // the handler go to the prolog. Edges coming from with the handler are back-edges, and |
12477 | // go to the existing 'block'. |
12478 | |
12479 | for (flowList* pred = block->bbPreds; pred; pred = pred->flNext) |
12480 | { |
12481 | BasicBlock* predBlock = pred->flBlock; |
12482 | if (!fgIsIntraHandlerPred(predBlock, block)) |
12483 | { |
12484 | // It's a jump from outside the handler; add it to the newHead preds list and remove |
12485 | // it from the block preds list. |
12486 | |
12487 | switch (predBlock->bbJumpKind) |
12488 | { |
12489 | case BBJ_CALLFINALLY: |
12490 | noway_assert(predBlock->bbJumpDest == block); |
12491 | predBlock->bbJumpDest = newHead; |
12492 | fgRemoveRefPred(block, predBlock); |
12493 | fgAddRefPred(newHead, predBlock); |
12494 | break; |
12495 | |
12496 | default: |
12497 | // The only way into the handler is via a BBJ_CALLFINALLY (to a finally handler), or |
12498 | // via exception handling. |
12499 | noway_assert(false); |
12500 | break; |
12501 | } |
12502 | } |
12503 | } |
12504 | |
12505 | assert(nullptr == fgGetPredForBlock(block, newHead)); |
12506 | fgAddRefPred(block, newHead); |
12507 | |
12508 | assert((newHead->bbFlags & (BBF_INTERNAL | BBF_JMP_TARGET | BBF_HAS_LABEL)) == |
12509 | (BBF_INTERNAL | BBF_JMP_TARGET | BBF_HAS_LABEL)); |
12510 | } |
12511 | |
12512 | /***************************************************************************** |
12513 | * |
12514 | * Every funclet will have a prolog. That prolog will be inserted as the first instructions |
12515 | * in the first block of the funclet. If the prolog is also the head block of a loop, we |
12516 | * would end up with the prolog instructions being executed more than once. |
12517 | * Check for this by searching the predecessor list for loops, and create a new prolog header |
12518 | * block when needed. We detect a loop by looking for any predecessor that isn't in the |
12519 | * handler's try region, since the only way to get into a handler is via that try region. |
12520 | */ |
12521 | |
12522 | void Compiler::fgCreateFuncletPrologBlocks() |
12523 | { |
12524 | noway_assert(fgComputePredsDone); |
12525 | noway_assert(!fgDomsComputed); // this function doesn't maintain the dom sets |
12526 | assert(!fgFuncletsCreated); |
12527 | |
12528 | bool prologBlocksCreated = false; |
12529 | EHblkDsc* HBtabEnd; |
12530 | EHblkDsc* HBtab; |
12531 | |
12532 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
12533 | { |
12534 | BasicBlock* head = HBtab->ebdHndBeg; |
12535 | |
12536 | if (fgAnyIntraHandlerPreds(head)) |
12537 | { |
12538 | // We need to create a new block in which to place the prolog, and split the existing |
12539 | // head block predecessor edges into those that should point to the prolog, and those |
12540 | // that shouldn't. |
12541 | // |
12542 | // It's arguable that we should just always do this, and not only when we "need to", |
12543 | // so there aren't two different code paths. However, it's unlikely to be necessary |
12544 | // for catch handlers because they have an incoming argument (the exception object) |
12545 | // that needs to get stored or saved, so back-arcs won't normally go to the head. It's |
12546 | // possible when writing in IL to generate a legal loop (e.g., push an Exception object |
12547 | // on the stack before jumping back to the catch head), but C# probably won't. This will |
12548 | // most commonly only be needed for finallys with a do/while loop at the top of the |
12549 | // finally. |
12550 | // |
12551 | // Note that we don't check filters. This might be a bug, but filters always have a filter |
12552 | // object live on entry, so it's at least unlikely (illegal?) that a loop edge targets the |
12553 | // filter head. |
12554 | |
12555 | fgInsertFuncletPrologBlock(head); |
12556 | prologBlocksCreated = true; |
12557 | } |
12558 | } |
12559 | |
12560 | if (prologBlocksCreated) |
12561 | { |
12562 | // If we've modified the graph, reset the 'modified' flag, since the dominators haven't |
12563 | // been computed. |
12564 | fgModified = false; |
12565 | |
12566 | #if DEBUG |
12567 | if (verbose) |
12568 | { |
12569 | JITDUMP("\nAfter fgCreateFuncletPrologBlocks()" ); |
12570 | fgDispBasicBlocks(); |
12571 | fgDispHandlerTab(); |
12572 | } |
12573 | |
12574 | fgVerifyHandlerTab(); |
12575 | fgDebugCheckBBlist(); |
12576 | #endif // DEBUG |
12577 | } |
12578 | } |
12579 | |
12580 | /***************************************************************************** |
12581 | * |
12582 | * Function to create funclets out of all EH catch/finally/fault blocks. |
12583 | * We only move filter and handler blocks, not try blocks. |
12584 | */ |
12585 | |
12586 | void Compiler::fgCreateFunclets() |
12587 | { |
12588 | assert(!fgFuncletsCreated); |
12589 | |
12590 | #ifdef DEBUG |
12591 | if (verbose) |
12592 | { |
12593 | printf("*************** In fgCreateFunclets()\n" ); |
12594 | } |
12595 | #endif |
12596 | |
12597 | fgCreateFuncletPrologBlocks(); |
12598 | |
12599 | unsigned XTnum; |
12600 | EHblkDsc* HBtab; |
12601 | const unsigned int funcCnt = ehFuncletCount() + 1; |
12602 | |
12603 | if (!FitsIn<unsigned short>(funcCnt)) |
12604 | { |
12605 | IMPL_LIMITATION("Too many funclets" ); |
12606 | } |
12607 | |
12608 | FuncInfoDsc* funcInfo = new (this, CMK_BasicBlock) FuncInfoDsc[funcCnt]; |
12609 | |
12610 | unsigned short funcIdx; |
12611 | |
12612 | // Setup the root FuncInfoDsc and prepare to start associating |
12613 | // FuncInfoDsc's with their corresponding EH region |
12614 | memset((void*)funcInfo, 0, funcCnt * sizeof(FuncInfoDsc)); |
12615 | assert(funcInfo[0].funKind == FUNC_ROOT); |
12616 | funcIdx = 1; |
12617 | |
12618 | // Because we iterate from the top to the bottom of the compHndBBtab array, we are iterating |
12619 | // from most nested (innermost) to least nested (outermost) EH region. It would be reasonable |
12620 | // to iterate in the opposite order, but the order of funclets shouldn't matter. |
12621 | // |
12622 | // We move every handler region to the end of the function: each handler will become a funclet. |
12623 | // |
12624 | // Note that fgRelocateEHRange() can add new entries to the EH table. However, they will always |
12625 | // be added *after* the current index, so our iteration here is not invalidated. |
12626 | // It *can* invalidate the compHndBBtab pointer itself, though, if it gets reallocated! |
12627 | |
12628 | for (XTnum = 0; XTnum < compHndBBtabCount; XTnum++) |
12629 | { |
12630 | HBtab = ehGetDsc(XTnum); // must re-compute this every loop, since fgRelocateEHRange changes the table |
12631 | if (HBtab->HasFilter()) |
12632 | { |
12633 | assert(funcIdx < funcCnt); |
12634 | funcInfo[funcIdx].funKind = FUNC_FILTER; |
12635 | funcInfo[funcIdx].funEHIndex = (unsigned short)XTnum; |
12636 | funcIdx++; |
12637 | } |
12638 | assert(funcIdx < funcCnt); |
12639 | funcInfo[funcIdx].funKind = FUNC_HANDLER; |
12640 | funcInfo[funcIdx].funEHIndex = (unsigned short)XTnum; |
12641 | HBtab->ebdFuncIndex = funcIdx; |
12642 | funcIdx++; |
12643 | fgRelocateEHRange(XTnum, FG_RELOCATE_HANDLER); |
12644 | } |
12645 | |
12646 | // We better have populated all of them by now |
12647 | assert(funcIdx == funcCnt); |
12648 | |
12649 | // Publish |
12650 | compCurrFuncIdx = 0; |
12651 | compFuncInfos = funcInfo; |
12652 | compFuncInfoCount = (unsigned short)funcCnt; |
12653 | |
12654 | fgFuncletsCreated = true; |
12655 | |
12656 | #if DEBUG |
12657 | if (verbose) |
12658 | { |
12659 | JITDUMP("\nAfter fgCreateFunclets()" ); |
12660 | fgDispBasicBlocks(); |
12661 | fgDispHandlerTab(); |
12662 | } |
12663 | |
12664 | fgVerifyHandlerTab(); |
12665 | fgDebugCheckBBlist(); |
12666 | #endif // DEBUG |
12667 | } |
12668 | |
12669 | #else // !FEATURE_EH_FUNCLETS |
12670 | |
12671 | /***************************************************************************** |
12672 | * |
12673 | * Function called to relocate any and all EH regions. |
12674 | * Only entire consecutive EH regions will be moved and they will be kept together. |
12675 | * Except for the first block, the range can not have any blocks that jump into or out of the region. |
12676 | */ |
12677 | |
12678 | bool Compiler::fgRelocateEHRegions() |
12679 | { |
12680 | bool result = false; // Our return value |
12681 | |
12682 | #ifdef DEBUG |
12683 | if (verbose) |
12684 | printf("*************** In fgRelocateEHRegions()\n" ); |
12685 | #endif |
12686 | |
12687 | if (fgCanRelocateEHRegions) |
12688 | { |
12689 | unsigned XTnum; |
12690 | EHblkDsc* HBtab; |
12691 | |
12692 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
12693 | { |
12694 | // Nested EH regions cannot be moved. |
12695 | // Also we don't want to relocate an EH region that has a filter |
12696 | if ((HBtab->ebdHandlerNestingLevel == 0) && !HBtab->HasFilter()) |
12697 | { |
12698 | bool movedTry = false; |
12699 | #if DEBUG |
12700 | bool movedHnd = false; |
12701 | #endif // DEBUG |
12702 | |
12703 | // Only try to move the outermost try region |
12704 | if (HBtab->ebdEnclosingTryIndex == EHblkDsc::NO_ENCLOSING_INDEX) |
12705 | { |
12706 | // Move the entire try region if it can be moved |
12707 | if (HBtab->ebdTryBeg->isRunRarely()) |
12708 | { |
12709 | BasicBlock* bTryLastBB = fgRelocateEHRange(XTnum, FG_RELOCATE_TRY); |
12710 | if (bTryLastBB != NULL) |
12711 | { |
12712 | result = true; |
12713 | movedTry = true; |
12714 | } |
12715 | } |
12716 | #if DEBUG |
12717 | if (verbose && movedTry) |
12718 | { |
12719 | printf("\nAfter relocating an EH try region" ); |
12720 | fgDispBasicBlocks(); |
12721 | fgDispHandlerTab(); |
12722 | |
12723 | // Make sure that the predecessor lists are accurate |
12724 | if (expensiveDebugCheckLevel >= 2) |
12725 | { |
12726 | fgDebugCheckBBlist(); |
12727 | } |
12728 | } |
12729 | #endif // DEBUG |
12730 | } |
12731 | |
12732 | // Currently it is not good to move the rarely run handler regions to the end of the method |
12733 | // because fgDetermineFirstColdBlock() must put the start of any handler region in the hot |
12734 | // section. |
12735 | CLANG_FORMAT_COMMENT_ANCHOR; |
12736 | |
12737 | #if 0 |
12738 | // Now try to move the entire handler region if it can be moved. |
12739 | // Don't try to move a finally handler unless we already moved the try region. |
12740 | if (HBtab->ebdHndBeg->isRunRarely() && |
12741 | !HBtab->ebdHndBeg->hasTryIndex() && |
12742 | (movedTry || !HBtab->HasFinallyHandler())) |
12743 | { |
12744 | BasicBlock* bHndLastBB = fgRelocateEHRange(XTnum, FG_RELOCATE_HANDLER); |
12745 | if (bHndLastBB != NULL) |
12746 | { |
12747 | result = true; |
12748 | movedHnd = true; |
12749 | } |
12750 | } |
12751 | #endif // 0 |
12752 | |
12753 | #if DEBUG |
12754 | if (verbose && movedHnd) |
12755 | { |
12756 | printf("\nAfter relocating an EH handler region" ); |
12757 | fgDispBasicBlocks(); |
12758 | fgDispHandlerTab(); |
12759 | |
12760 | // Make sure that the predecessor lists are accurate |
12761 | if (expensiveDebugCheckLevel >= 2) |
12762 | { |
12763 | fgDebugCheckBBlist(); |
12764 | } |
12765 | } |
12766 | #endif // DEBUG |
12767 | } |
12768 | } |
12769 | } |
12770 | |
12771 | #if DEBUG |
12772 | fgVerifyHandlerTab(); |
12773 | |
12774 | if (verbose && result) |
12775 | { |
12776 | printf("\nAfter fgRelocateEHRegions()" ); |
12777 | fgDispBasicBlocks(); |
12778 | fgDispHandlerTab(); |
12779 | // Make sure that the predecessor lists are accurate |
12780 | fgDebugCheckBBlist(); |
12781 | } |
12782 | #endif // DEBUG |
12783 | |
12784 | return result; |
12785 | } |
12786 | |
12787 | #endif // !FEATURE_EH_FUNCLETS |
12788 | |
12789 | bool flowList::setEdgeWeightMinChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop) |
12790 | { |
12791 | bool result = false; |
12792 | if ((newWeight <= flEdgeWeightMax) && (newWeight >= flEdgeWeightMin)) |
12793 | { |
12794 | flEdgeWeightMin = newWeight; |
12795 | result = true; |
12796 | } |
12797 | else if (slop > 0) |
12798 | { |
12799 | // We allow for a small amount of inaccuracy in block weight counts. |
12800 | if (flEdgeWeightMax < newWeight) |
12801 | { |
12802 | // We have already determined that this edge's weight |
12803 | // is less than newWeight, so we just allow for the slop |
12804 | if (newWeight <= (flEdgeWeightMax + slop)) |
12805 | { |
12806 | result = true; |
12807 | |
12808 | if (flEdgeWeightMax != 0) |
12809 | { |
12810 | // We will raise flEdgeWeightMin and Max towards newWeight |
12811 | flEdgeWeightMin = flEdgeWeightMax; |
12812 | flEdgeWeightMax = newWeight; |
12813 | } |
12814 | |
12815 | if (wbUsedSlop != nullptr) |
12816 | { |
12817 | *wbUsedSlop = true; |
12818 | } |
12819 | } |
12820 | } |
12821 | else |
12822 | { |
12823 | assert(flEdgeWeightMin > newWeight); |
12824 | |
12825 | // We have already determined that this edge's weight |
12826 | // is more than newWeight, so we just allow for the slop |
12827 | if ((newWeight + slop) >= flEdgeWeightMin) |
12828 | { |
12829 | result = true; |
12830 | |
12831 | assert(flEdgeWeightMax != 0); |
12832 | |
12833 | // We will lower flEdgeWeightMin towards newWeight |
12834 | flEdgeWeightMin = newWeight; |
12835 | |
12836 | if (wbUsedSlop != nullptr) |
12837 | { |
12838 | *wbUsedSlop = true; |
12839 | } |
12840 | } |
12841 | } |
12842 | |
12843 | // If we are returning true then we should have adjusted the range so that |
12844 | // the newWeight is in new range [Min..Max] or fgEdjeWeightMax is zero. |
12845 | // Also we should have set wbUsedSlop to true. |
12846 | if (result == true) |
12847 | { |
12848 | assert((flEdgeWeightMax == 0) || ((newWeight <= flEdgeWeightMax) && (newWeight >= flEdgeWeightMin))); |
12849 | |
12850 | if (wbUsedSlop != nullptr) |
12851 | { |
12852 | assert(*wbUsedSlop == true); |
12853 | } |
12854 | } |
12855 | } |
12856 | |
12857 | #if DEBUG |
12858 | if (result == false) |
12859 | { |
12860 | result = false; // break here |
12861 | } |
12862 | #endif // DEBUG |
12863 | |
12864 | return result; |
12865 | } |
12866 | |
12867 | bool flowList::setEdgeWeightMaxChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop) |
12868 | { |
12869 | bool result = false; |
12870 | if ((newWeight >= flEdgeWeightMin) && (newWeight <= flEdgeWeightMax)) |
12871 | { |
12872 | flEdgeWeightMax = newWeight; |
12873 | result = true; |
12874 | } |
12875 | else if (slop > 0) |
12876 | { |
12877 | // We allow for a small amount of inaccuracy in block weight counts. |
12878 | if (flEdgeWeightMax < newWeight) |
12879 | { |
12880 | // We have already determined that this edge's weight |
12881 | // is less than newWeight, so we just allow for the slop |
12882 | if (newWeight <= (flEdgeWeightMax + slop)) |
12883 | { |
12884 | result = true; |
12885 | |
12886 | if (flEdgeWeightMax != 0) |
12887 | { |
12888 | // We will allow this to raise flEdgeWeightMax towards newWeight |
12889 | flEdgeWeightMax = newWeight; |
12890 | } |
12891 | |
12892 | if (wbUsedSlop != nullptr) |
12893 | { |
12894 | *wbUsedSlop = true; |
12895 | } |
12896 | } |
12897 | } |
12898 | else |
12899 | { |
12900 | assert(flEdgeWeightMin > newWeight); |
12901 | |
12902 | // We have already determined that this edge's weight |
12903 | // is more than newWeight, so we just allow for the slop |
12904 | if ((newWeight + slop) >= flEdgeWeightMin) |
12905 | { |
12906 | result = true; |
12907 | |
12908 | assert(flEdgeWeightMax != 0); |
12909 | |
12910 | // We will allow this to lower flEdgeWeightMin and Max towards newWeight |
12911 | flEdgeWeightMax = flEdgeWeightMin; |
12912 | flEdgeWeightMin = newWeight; |
12913 | |
12914 | if (wbUsedSlop != nullptr) |
12915 | { |
12916 | *wbUsedSlop = true; |
12917 | } |
12918 | } |
12919 | } |
12920 | |
12921 | // If we are returning true then we should have adjusted the range so that |
12922 | // the newWeight is in new range [Min..Max] or fgEdjeWeightMax is zero |
12923 | // Also we should have set wbUsedSlop to true, unless it is NULL |
12924 | if (result == true) |
12925 | { |
12926 | assert((flEdgeWeightMax == 0) || ((newWeight <= flEdgeWeightMax) && (newWeight >= flEdgeWeightMin))); |
12927 | |
12928 | assert((wbUsedSlop == nullptr) || (*wbUsedSlop == true)); |
12929 | } |
12930 | } |
12931 | |
12932 | #if DEBUG |
12933 | if (result == false) |
12934 | { |
12935 | result = false; // break here |
12936 | } |
12937 | #endif // DEBUG |
12938 | |
12939 | return result; |
12940 | } |
12941 | |
12942 | #ifdef DEBUG |
12943 | void Compiler::fgPrintEdgeWeights() |
12944 | { |
12945 | BasicBlock* bSrc; |
12946 | BasicBlock* bDst; |
12947 | flowList* edge; |
12948 | |
12949 | // Print out all of the edge weights |
12950 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
12951 | { |
12952 | if (bDst->bbPreds != nullptr) |
12953 | { |
12954 | printf(" Edge weights into " FMT_BB " :" , bDst->bbNum); |
12955 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
12956 | { |
12957 | bSrc = edge->flBlock; |
12958 | // This is the control flow edge (bSrc -> bDst) |
12959 | |
12960 | printf(FMT_BB " " , bSrc->bbNum); |
12961 | |
12962 | if (edge->flEdgeWeightMin < BB_MAX_WEIGHT) |
12963 | { |
12964 | printf("(%u" , edge->flEdgeWeightMin); |
12965 | } |
12966 | else |
12967 | { |
12968 | printf("(MAX" ); |
12969 | } |
12970 | if (edge->flEdgeWeightMin != edge->flEdgeWeightMax) |
12971 | { |
12972 | if (edge->flEdgeWeightMax < BB_MAX_WEIGHT) |
12973 | { |
12974 | printf("..%u" , edge->flEdgeWeightMax); |
12975 | } |
12976 | else |
12977 | { |
12978 | printf("..MAX" ); |
12979 | } |
12980 | } |
12981 | printf(")" ); |
12982 | if (edge->flNext != nullptr) |
12983 | { |
12984 | printf(", " ); |
12985 | } |
12986 | } |
12987 | printf("\n" ); |
12988 | } |
12989 | } |
12990 | } |
12991 | #endif // DEBUG |
12992 | |
12993 | // return true if there is a possibility that the method has a loop (a backedge is present) |
12994 | bool Compiler::fgMightHaveLoop() |
12995 | { |
12996 | // Don't use a BlockSet for this temporary bitset of blocks: we don't want to have to call EnsureBasicBlockEpoch() |
12997 | // and potentially change the block epoch. |
12998 | |
12999 | BitVecTraits blockVecTraits(fgBBNumMax + 1, this); |
13000 | BitVec blocksSeen(BitVecOps::MakeEmpty(&blockVecTraits)); |
13001 | |
13002 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
13003 | { |
13004 | BitVecOps::AddElemD(&blockVecTraits, blocksSeen, block->bbNum); |
13005 | |
13006 | for (BasicBlock* succ : block->GetAllSuccs(this)) |
13007 | { |
13008 | if (BitVecOps::IsMember(&blockVecTraits, blocksSeen, succ->bbNum)) |
13009 | { |
13010 | return true; |
13011 | } |
13012 | } |
13013 | } |
13014 | return false; |
13015 | } |
13016 | |
13017 | //------------------------------------------------------------- |
13018 | // fgComputeBlockAndEdgeWeights: determine weights for blocks |
13019 | // and optionally for edges |
13020 | // |
13021 | void Compiler::fgComputeBlockAndEdgeWeights() |
13022 | { |
13023 | JITDUMP("*************** In fgComputeBlockAndEdgeWeights()\n" ); |
13024 | |
13025 | const bool usingProfileWeights = fgIsUsingProfileWeights(); |
13026 | const bool isOptimizing = opts.OptimizationEnabled(); |
13027 | |
13028 | fgHaveValidEdgeWeights = false; |
13029 | fgCalledCount = BB_UNITY_WEIGHT; |
13030 | |
13031 | #if DEBUG |
13032 | if (verbose) |
13033 | { |
13034 | fgDispBasicBlocks(); |
13035 | printf("\n" ); |
13036 | } |
13037 | #endif // DEBUG |
13038 | |
13039 | const BasicBlock::weight_t returnWeight = fgComputeMissingBlockWeights(); |
13040 | |
13041 | if (usingProfileWeights) |
13042 | { |
13043 | fgComputeCalledCount(returnWeight); |
13044 | } |
13045 | else |
13046 | { |
13047 | JITDUMP(" -- no profile data, so using default called count\n" ); |
13048 | } |
13049 | |
13050 | if (isOptimizing) |
13051 | { |
13052 | fgComputeEdgeWeights(); |
13053 | } |
13054 | else |
13055 | { |
13056 | JITDUMP(" -- not optimizing, so not computing edge weights\n" ); |
13057 | } |
13058 | } |
13059 | |
13060 | //------------------------------------------------------------- |
13061 | // fgComputeMissingBlockWeights: determine weights for blocks |
13062 | // that were not profiled and do not yet have weights. |
13063 | // |
13064 | // Returns: |
13065 | // sum of weights for all return and throw blocks in the method |
13066 | |
13067 | BasicBlock::weight_t Compiler::fgComputeMissingBlockWeights() |
13068 | { |
13069 | BasicBlock* bSrc; |
13070 | BasicBlock* bDst; |
13071 | unsigned iterations = 0; |
13072 | bool changed; |
13073 | bool modified = false; |
13074 | BasicBlock::weight_t returnWeight; |
13075 | |
13076 | // If we have any blocks that did not have profile derived weight |
13077 | // we will try to fix their weight up here |
13078 | // |
13079 | modified = false; |
13080 | do // while (changed) |
13081 | { |
13082 | changed = false; |
13083 | returnWeight = 0; |
13084 | iterations++; |
13085 | |
13086 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
13087 | { |
13088 | if (!bDst->hasProfileWeight() && (bDst->bbPreds != nullptr)) |
13089 | { |
13090 | BasicBlock* bOnlyNext; |
13091 | |
13092 | // This block does not have a profile derived weight |
13093 | // |
13094 | BasicBlock::weight_t newWeight = BB_MAX_WEIGHT; |
13095 | |
13096 | if (bDst->countOfInEdges() == 1) |
13097 | { |
13098 | // Only one block flows into bDst |
13099 | bSrc = bDst->bbPreds->flBlock; |
13100 | |
13101 | // Does this block flow into only one other block |
13102 | if (bSrc->bbJumpKind == BBJ_NONE) |
13103 | { |
13104 | bOnlyNext = bSrc->bbNext; |
13105 | } |
13106 | else if (bSrc->bbJumpKind == BBJ_ALWAYS) |
13107 | { |
13108 | bOnlyNext = bSrc->bbJumpDest; |
13109 | } |
13110 | else |
13111 | { |
13112 | bOnlyNext = nullptr; |
13113 | } |
13114 | |
13115 | if ((bOnlyNext == bDst) && bSrc->hasProfileWeight()) |
13116 | { |
13117 | // We know the exact weight of bDst |
13118 | newWeight = bSrc->bbWeight; |
13119 | } |
13120 | } |
13121 | |
13122 | // Does this block flow into only one other block |
13123 | if (bDst->bbJumpKind == BBJ_NONE) |
13124 | { |
13125 | bOnlyNext = bDst->bbNext; |
13126 | } |
13127 | else if (bDst->bbJumpKind == BBJ_ALWAYS) |
13128 | { |
13129 | bOnlyNext = bDst->bbJumpDest; |
13130 | } |
13131 | else |
13132 | { |
13133 | bOnlyNext = nullptr; |
13134 | } |
13135 | |
13136 | if ((bOnlyNext != nullptr) && (bOnlyNext->bbPreds != nullptr)) |
13137 | { |
13138 | // Does only one block flow into bOnlyNext |
13139 | if (bOnlyNext->countOfInEdges() == 1) |
13140 | { |
13141 | noway_assert(bOnlyNext->bbPreds->flBlock == bDst); |
13142 | |
13143 | // We know the exact weight of bDst |
13144 | newWeight = bOnlyNext->bbWeight; |
13145 | } |
13146 | } |
13147 | |
13148 | if ((newWeight != BB_MAX_WEIGHT) && (bDst->bbWeight != newWeight)) |
13149 | { |
13150 | changed = true; |
13151 | modified = true; |
13152 | bDst->bbWeight = newWeight; |
13153 | if (newWeight == 0) |
13154 | { |
13155 | bDst->bbFlags |= BBF_RUN_RARELY; |
13156 | } |
13157 | else |
13158 | { |
13159 | bDst->bbFlags &= ~BBF_RUN_RARELY; |
13160 | } |
13161 | } |
13162 | } |
13163 | |
13164 | // Sum up the weights of all of the return blocks and throw blocks |
13165 | // This is used when we have a back-edge into block 1 |
13166 | // |
13167 | if (bDst->hasProfileWeight() && ((bDst->bbJumpKind == BBJ_RETURN) || (bDst->bbJumpKind == BBJ_THROW))) |
13168 | { |
13169 | returnWeight += bDst->bbWeight; |
13170 | } |
13171 | } |
13172 | } |
13173 | // Generally when we synthesize profile estimates we do it in a way where this algorithm will converge |
13174 | // but downstream opts that remove conditional branches may create a situation where this is not the case. |
13175 | // For instance a loop that becomes unreachable creates a sort of 'ring oscillator' (See test b539509) |
13176 | while (changed && iterations < 10); |
13177 | |
13178 | #if DEBUG |
13179 | if (verbose && modified) |
13180 | { |
13181 | printf("fgComputeMissingBlockWeights() adjusted the weight of some blocks\n" ); |
13182 | fgDispBasicBlocks(); |
13183 | printf("\n" ); |
13184 | } |
13185 | #endif |
13186 | |
13187 | return returnWeight; |
13188 | } |
13189 | |
13190 | //------------------------------------------------------------- |
13191 | // fgComputeCalledCount: when profile information is in use, |
13192 | // compute fgCalledCount |
13193 | // |
13194 | // Argument: |
13195 | // returnWeight - sum of weights for all return and throw blocks |
13196 | |
13197 | void Compiler::fgComputeCalledCount(BasicBlock::weight_t returnWeight) |
13198 | { |
13199 | // When we are not using profile data we have already setup fgCalledCount |
13200 | // only set it here if we are using profile data |
13201 | assert(fgIsUsingProfileWeights()); |
13202 | |
13203 | BasicBlock* firstILBlock = fgFirstBB; // The first block for IL code (i.e. for the IL code at offset 0) |
13204 | |
13205 | // Do we have an internal block as our first Block? |
13206 | if (firstILBlock->bbFlags & BBF_INTERNAL) |
13207 | { |
13208 | // Skip past any/all BBF_INTERNAL blocks that may have been added before the first real IL block. |
13209 | // |
13210 | while (firstILBlock->bbFlags & BBF_INTERNAL) |
13211 | { |
13212 | firstILBlock = firstILBlock->bbNext; |
13213 | } |
13214 | // The 'firstILBlock' is now expected to have a profile-derived weight |
13215 | assert(firstILBlock->hasProfileWeight()); |
13216 | } |
13217 | |
13218 | // If the first block only has one ref then we use it's weight for fgCalledCount. |
13219 | // Otherwise we have backedge's into the first block, so instead we use the sum |
13220 | // of the return block weights for fgCalledCount. |
13221 | // |
13222 | // If the profile data has a 0 for the returnWeight |
13223 | // (i.e. the function never returns because it always throws) |
13224 | // then just use the first block weight rather than 0. |
13225 | // |
13226 | if ((firstILBlock->countOfInEdges() == 1) || (returnWeight == 0)) |
13227 | { |
13228 | assert(firstILBlock->hasProfileWeight()); // This should always be a profile-derived weight |
13229 | fgCalledCount = firstILBlock->bbWeight; |
13230 | } |
13231 | else |
13232 | { |
13233 | fgCalledCount = returnWeight; |
13234 | } |
13235 | |
13236 | // If we allocated a scratch block as the first BB then we need |
13237 | // to set its profile-derived weight to be fgCalledCount |
13238 | if (fgFirstBBisScratch()) |
13239 | { |
13240 | fgFirstBB->setBBProfileWeight(fgCalledCount); |
13241 | if (fgFirstBB->bbWeight == 0) |
13242 | { |
13243 | fgFirstBB->bbFlags |= BBF_RUN_RARELY; |
13244 | } |
13245 | } |
13246 | |
13247 | #if DEBUG |
13248 | if (verbose) |
13249 | { |
13250 | printf("We are using the Profile Weights and fgCalledCount is %d.\n" , fgCalledCount); |
13251 | } |
13252 | #endif |
13253 | } |
13254 | |
13255 | //------------------------------------------------------------- |
13256 | // fgComputeEdgeWeights: compute edge weights from block weights |
13257 | |
13258 | void Compiler::fgComputeEdgeWeights() |
13259 | { |
13260 | BasicBlock* bSrc; |
13261 | BasicBlock* bDst; |
13262 | flowList* edge; |
13263 | BasicBlock::weight_t slop; |
13264 | unsigned goodEdgeCountCurrent = 0; |
13265 | unsigned goodEdgeCountPrevious = 0; |
13266 | bool inconsistentProfileData = false; |
13267 | bool hasIncompleteEdgeWeights = false; |
13268 | bool usedSlop = false; |
13269 | unsigned numEdges = 0; |
13270 | unsigned iterations = 0; |
13271 | |
13272 | // Now we will compute the initial flEdgeWeightMin and flEdgeWeightMax values |
13273 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
13274 | { |
13275 | BasicBlock::weight_t bDstWeight = bDst->bbWeight; |
13276 | |
13277 | // We subtract out the called count so that bDstWeight is |
13278 | // the sum of all edges that go into this block from this method. |
13279 | // |
13280 | if (bDst == fgFirstBB) |
13281 | { |
13282 | bDstWeight -= fgCalledCount; |
13283 | } |
13284 | |
13285 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
13286 | { |
13287 | bool assignOK = true; |
13288 | |
13289 | bSrc = edge->flBlock; |
13290 | // We are processing the control flow edge (bSrc -> bDst) |
13291 | |
13292 | numEdges++; |
13293 | |
13294 | // |
13295 | // If the bSrc or bDst blocks do not have exact profile weights |
13296 | // then we must reset any values that they currently have |
13297 | // |
13298 | |
13299 | if (!bSrc->hasProfileWeight() || !bDst->hasProfileWeight()) |
13300 | { |
13301 | edge->flEdgeWeightMin = BB_ZERO_WEIGHT; |
13302 | edge->flEdgeWeightMax = BB_MAX_WEIGHT; |
13303 | } |
13304 | |
13305 | slop = BasicBlock::GetSlopFraction(bSrc, bDst) + 1; |
13306 | switch (bSrc->bbJumpKind) |
13307 | { |
13308 | case BBJ_ALWAYS: |
13309 | case BBJ_EHCATCHRET: |
13310 | case BBJ_NONE: |
13311 | case BBJ_CALLFINALLY: |
13312 | // We know the exact edge weight |
13313 | assignOK &= edge->setEdgeWeightMinChecked(bSrc->bbWeight, slop, &usedSlop); |
13314 | assignOK &= edge->setEdgeWeightMaxChecked(bSrc->bbWeight, slop, &usedSlop); |
13315 | break; |
13316 | |
13317 | case BBJ_COND: |
13318 | case BBJ_SWITCH: |
13319 | case BBJ_EHFINALLYRET: |
13320 | case BBJ_EHFILTERRET: |
13321 | if (edge->flEdgeWeightMax > bSrc->bbWeight) |
13322 | { |
13323 | // The maximum edge weight to block can't be greater than the weight of bSrc |
13324 | assignOK &= edge->setEdgeWeightMaxChecked(bSrc->bbWeight, slop, &usedSlop); |
13325 | } |
13326 | break; |
13327 | |
13328 | default: |
13329 | // We should never have an edge that starts from one of these jump kinds |
13330 | noway_assert(!"Unexpected bbJumpKind" ); |
13331 | break; |
13332 | } |
13333 | |
13334 | // The maximum edge weight to block can't be greater than the weight of bDst |
13335 | if (edge->flEdgeWeightMax > bDstWeight) |
13336 | { |
13337 | assignOK &= edge->setEdgeWeightMaxChecked(bDstWeight, slop, &usedSlop); |
13338 | } |
13339 | |
13340 | if (!assignOK) |
13341 | { |
13342 | // Here we have inconsistent profile data |
13343 | inconsistentProfileData = true; |
13344 | // No point in continuing |
13345 | goto EARLY_EXIT; |
13346 | } |
13347 | } |
13348 | } |
13349 | |
13350 | fgEdgeCount = numEdges; |
13351 | |
13352 | iterations = 0; |
13353 | |
13354 | do |
13355 | { |
13356 | iterations++; |
13357 | goodEdgeCountPrevious = goodEdgeCountCurrent; |
13358 | goodEdgeCountCurrent = 0; |
13359 | hasIncompleteEdgeWeights = false; |
13360 | |
13361 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
13362 | { |
13363 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
13364 | { |
13365 | bool assignOK = true; |
13366 | |
13367 | // We are processing the control flow edge (bSrc -> bDst) |
13368 | bSrc = edge->flBlock; |
13369 | |
13370 | slop = BasicBlock::GetSlopFraction(bSrc, bDst) + 1; |
13371 | if (bSrc->bbJumpKind == BBJ_COND) |
13372 | { |
13373 | int diff; |
13374 | flowList* otherEdge; |
13375 | if (bSrc->bbNext == bDst) |
13376 | { |
13377 | otherEdge = fgGetPredForBlock(bSrc->bbJumpDest, bSrc); |
13378 | } |
13379 | else |
13380 | { |
13381 | otherEdge = fgGetPredForBlock(bSrc->bbNext, bSrc); |
13382 | } |
13383 | noway_assert(edge->flEdgeWeightMin <= edge->flEdgeWeightMax); |
13384 | noway_assert(otherEdge->flEdgeWeightMin <= otherEdge->flEdgeWeightMax); |
13385 | |
13386 | // Adjust edge->flEdgeWeightMin up or adjust otherEdge->flEdgeWeightMax down |
13387 | diff = ((int)bSrc->bbWeight) - ((int)edge->flEdgeWeightMin + (int)otherEdge->flEdgeWeightMax); |
13388 | if (diff > 0) |
13389 | { |
13390 | assignOK &= edge->setEdgeWeightMinChecked(edge->flEdgeWeightMin + diff, slop, &usedSlop); |
13391 | } |
13392 | else if (diff < 0) |
13393 | { |
13394 | assignOK &= |
13395 | otherEdge->setEdgeWeightMaxChecked(otherEdge->flEdgeWeightMax + diff, slop, &usedSlop); |
13396 | } |
13397 | |
13398 | // Adjust otherEdge->flEdgeWeightMin up or adjust edge->flEdgeWeightMax down |
13399 | diff = ((int)bSrc->bbWeight) - ((int)otherEdge->flEdgeWeightMin + (int)edge->flEdgeWeightMax); |
13400 | if (diff > 0) |
13401 | { |
13402 | assignOK &= |
13403 | otherEdge->setEdgeWeightMinChecked(otherEdge->flEdgeWeightMin + diff, slop, &usedSlop); |
13404 | } |
13405 | else if (diff < 0) |
13406 | { |
13407 | assignOK &= edge->setEdgeWeightMaxChecked(edge->flEdgeWeightMax + diff, slop, &usedSlop); |
13408 | } |
13409 | |
13410 | if (!assignOK) |
13411 | { |
13412 | // Here we have inconsistent profile data |
13413 | inconsistentProfileData = true; |
13414 | // No point in continuing |
13415 | goto EARLY_EXIT; |
13416 | } |
13417 | #ifdef DEBUG |
13418 | // Now edge->flEdgeWeightMin and otherEdge->flEdgeWeightMax) should add up to bSrc->bbWeight |
13419 | diff = ((int)bSrc->bbWeight) - ((int)edge->flEdgeWeightMin + (int)otherEdge->flEdgeWeightMax); |
13420 | noway_assert((-((int)slop) <= diff) && (diff <= ((int)slop))); |
13421 | |
13422 | // Now otherEdge->flEdgeWeightMin and edge->flEdgeWeightMax) should add up to bSrc->bbWeight |
13423 | diff = ((int)bSrc->bbWeight) - ((int)otherEdge->flEdgeWeightMin + (int)edge->flEdgeWeightMax); |
13424 | noway_assert((-((int)slop) <= diff) && (diff <= ((int)slop))); |
13425 | #endif // DEBUG |
13426 | } |
13427 | } |
13428 | } |
13429 | |
13430 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
13431 | { |
13432 | BasicBlock::weight_t bDstWeight = bDst->bbWeight; |
13433 | |
13434 | if (bDstWeight == BB_MAX_WEIGHT) |
13435 | { |
13436 | inconsistentProfileData = true; |
13437 | // No point in continuing |
13438 | goto EARLY_EXIT; |
13439 | } |
13440 | else |
13441 | { |
13442 | // We subtract out the called count so that bDstWeight is |
13443 | // the sum of all edges that go into this block from this method. |
13444 | // |
13445 | if (bDst == fgFirstBB) |
13446 | { |
13447 | bDstWeight -= fgCalledCount; |
13448 | } |
13449 | |
13450 | UINT64 minEdgeWeightSum = 0; |
13451 | UINT64 maxEdgeWeightSum = 0; |
13452 | |
13453 | // Calculate the sums of the minimum and maximum edge weights |
13454 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
13455 | { |
13456 | // We are processing the control flow edge (bSrc -> bDst) |
13457 | bSrc = edge->flBlock; |
13458 | |
13459 | maxEdgeWeightSum += edge->flEdgeWeightMax; |
13460 | minEdgeWeightSum += edge->flEdgeWeightMin; |
13461 | } |
13462 | |
13463 | // maxEdgeWeightSum is the sum of all flEdgeWeightMax values into bDst |
13464 | // minEdgeWeightSum is the sum of all flEdgeWeightMin values into bDst |
13465 | |
13466 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
13467 | { |
13468 | bool assignOK = true; |
13469 | |
13470 | // We are processing the control flow edge (bSrc -> bDst) |
13471 | bSrc = edge->flBlock; |
13472 | slop = BasicBlock::GetSlopFraction(bSrc, bDst) + 1; |
13473 | |
13474 | // otherMaxEdgesWeightSum is the sum of all of the other edges flEdgeWeightMax values |
13475 | // This can be used to compute a lower bound for our minimum edge weight |
13476 | noway_assert(maxEdgeWeightSum >= edge->flEdgeWeightMax); |
13477 | UINT64 otherMaxEdgesWeightSum = maxEdgeWeightSum - edge->flEdgeWeightMax; |
13478 | |
13479 | // otherMinEdgesWeightSum is the sum of all of the other edges flEdgeWeightMin values |
13480 | // This can be used to compute an upper bound for our maximum edge weight |
13481 | noway_assert(minEdgeWeightSum >= edge->flEdgeWeightMin); |
13482 | UINT64 otherMinEdgesWeightSum = minEdgeWeightSum - edge->flEdgeWeightMin; |
13483 | |
13484 | if (bDstWeight >= otherMaxEdgesWeightSum) |
13485 | { |
13486 | // minWeightCalc is our minWeight when every other path to bDst takes it's flEdgeWeightMax value |
13487 | BasicBlock::weight_t minWeightCalc = |
13488 | (BasicBlock::weight_t)(bDstWeight - otherMaxEdgesWeightSum); |
13489 | if (minWeightCalc > edge->flEdgeWeightMin) |
13490 | { |
13491 | assignOK &= edge->setEdgeWeightMinChecked(minWeightCalc, slop, &usedSlop); |
13492 | } |
13493 | } |
13494 | |
13495 | if (bDstWeight >= otherMinEdgesWeightSum) |
13496 | { |
13497 | // maxWeightCalc is our maxWeight when every other path to bDst takes it's flEdgeWeightMin value |
13498 | BasicBlock::weight_t maxWeightCalc = |
13499 | (BasicBlock::weight_t)(bDstWeight - otherMinEdgesWeightSum); |
13500 | if (maxWeightCalc < edge->flEdgeWeightMax) |
13501 | { |
13502 | assignOK &= edge->setEdgeWeightMaxChecked(maxWeightCalc, slop, &usedSlop); |
13503 | } |
13504 | } |
13505 | |
13506 | if (!assignOK) |
13507 | { |
13508 | // Here we have inconsistent profile data |
13509 | inconsistentProfileData = true; |
13510 | // No point in continuing |
13511 | goto EARLY_EXIT; |
13512 | } |
13513 | |
13514 | // When flEdgeWeightMin equals flEdgeWeightMax we have a "good" edge weight |
13515 | if (edge->flEdgeWeightMin == edge->flEdgeWeightMax) |
13516 | { |
13517 | // Count how many "good" edge weights we have |
13518 | // Each time through we should have more "good" weights |
13519 | // We exit the while loop when no longer find any new "good" edges |
13520 | goodEdgeCountCurrent++; |
13521 | } |
13522 | else |
13523 | { |
13524 | // Remember that we have seen at least one "Bad" edge weight |
13525 | // so that we will repeat the while loop again |
13526 | hasIncompleteEdgeWeights = true; |
13527 | } |
13528 | } |
13529 | } |
13530 | } |
13531 | |
13532 | if (inconsistentProfileData) |
13533 | { |
13534 | hasIncompleteEdgeWeights = true; |
13535 | break; |
13536 | } |
13537 | |
13538 | if (numEdges == goodEdgeCountCurrent) |
13539 | { |
13540 | noway_assert(hasIncompleteEdgeWeights == false); |
13541 | break; |
13542 | } |
13543 | |
13544 | } while (hasIncompleteEdgeWeights && (goodEdgeCountCurrent > goodEdgeCountPrevious) && (iterations < 8)); |
13545 | |
13546 | EARLY_EXIT:; |
13547 | |
13548 | #ifdef DEBUG |
13549 | if (verbose) |
13550 | { |
13551 | if (inconsistentProfileData) |
13552 | { |
13553 | printf("fgComputeEdgeWeights() found inconsistent profile data, not using the edge weights\n" ); |
13554 | } |
13555 | else |
13556 | { |
13557 | if (hasIncompleteEdgeWeights) |
13558 | { |
13559 | printf("fgComputeEdgeWeights() was able to compute exact edge weights for %3d of the %3d edges, using " |
13560 | "%d passes.\n" , |
13561 | goodEdgeCountCurrent, numEdges, iterations); |
13562 | } |
13563 | else |
13564 | { |
13565 | printf("fgComputeEdgeWeights() was able to compute exact edge weights for all of the %3d edges, using " |
13566 | "%d passes.\n" , |
13567 | numEdges, iterations); |
13568 | } |
13569 | |
13570 | fgPrintEdgeWeights(); |
13571 | } |
13572 | } |
13573 | #endif // DEBUG |
13574 | |
13575 | fgSlopUsedInEdgeWeights = usedSlop; |
13576 | fgRangeUsedInEdgeWeights = false; |
13577 | |
13578 | // See if any edge weight are expressed in [min..max] form |
13579 | |
13580 | for (bDst = fgFirstBB; bDst != nullptr; bDst = bDst->bbNext) |
13581 | { |
13582 | if (bDst->bbPreds != nullptr) |
13583 | { |
13584 | for (edge = bDst->bbPreds; edge != nullptr; edge = edge->flNext) |
13585 | { |
13586 | bSrc = edge->flBlock; |
13587 | // This is the control flow edge (bSrc -> bDst) |
13588 | |
13589 | if (edge->flEdgeWeightMin != edge->flEdgeWeightMax) |
13590 | { |
13591 | fgRangeUsedInEdgeWeights = true; |
13592 | break; |
13593 | } |
13594 | } |
13595 | if (fgRangeUsedInEdgeWeights) |
13596 | { |
13597 | break; |
13598 | } |
13599 | } |
13600 | } |
13601 | |
13602 | fgHaveValidEdgeWeights = !inconsistentProfileData; |
13603 | fgEdgeWeightsComputed = true; |
13604 | } |
13605 | |
13606 | // fgOptimizeBranchToEmptyUnconditional: |
13607 | // optimize a jump to an empty block which ends in an unconditional branch. |
13608 | // Args: |
13609 | // block: source block |
13610 | // bDest: destination |
13611 | // Returns: true if we changed the code |
13612 | // |
13613 | bool Compiler::fgOptimizeBranchToEmptyUnconditional(BasicBlock* block, BasicBlock* bDest) |
13614 | { |
13615 | bool optimizeJump = true; |
13616 | |
13617 | assert(bDest->isEmpty()); |
13618 | assert(bDest->bbJumpKind == BBJ_ALWAYS); |
13619 | |
13620 | // We do not optimize jumps between two different try regions. |
13621 | // However jumping to a block that is not in any try region is OK |
13622 | // |
13623 | if (bDest->hasTryIndex() && !BasicBlock::sameTryRegion(block, bDest)) |
13624 | { |
13625 | optimizeJump = false; |
13626 | } |
13627 | |
13628 | // Don't optimize a jump to a removed block |
13629 | if (bDest->bbJumpDest->bbFlags & BBF_REMOVED) |
13630 | { |
13631 | optimizeJump = false; |
13632 | } |
13633 | |
13634 | // Don't optimize a jump to a cloned finally |
13635 | if (bDest->bbFlags & BBF_CLONED_FINALLY_BEGIN) |
13636 | { |
13637 | optimizeJump = false; |
13638 | } |
13639 | |
13640 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
13641 | // Don't optimize a jump to a finally target. For BB1->BB2->BB3, where |
13642 | // BB2 is a finally target, if we changed BB1 to jump directly to BB3, |
13643 | // it would skip the finally target. BB1 might be a BBJ_ALWAYS block part |
13644 | // of a BBJ_CALLFINALLY/BBJ_ALWAYS pair, so changing the finally target |
13645 | // would change the unwind behavior. |
13646 | if (bDest->bbFlags & BBF_FINALLY_TARGET) |
13647 | { |
13648 | optimizeJump = false; |
13649 | } |
13650 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
13651 | |
13652 | // Must optimize jump if bDest has been removed |
13653 | // |
13654 | if (bDest->bbFlags & BBF_REMOVED) |
13655 | { |
13656 | optimizeJump = true; |
13657 | } |
13658 | |
13659 | // If we are optimizing using real profile weights |
13660 | // then don't optimize a conditional jump to an unconditional jump |
13661 | // until after we have computed the edge weights |
13662 | // |
13663 | if (fgIsUsingProfileWeights() && !fgEdgeWeightsComputed) |
13664 | { |
13665 | fgNeedsUpdateFlowGraph = true; |
13666 | optimizeJump = false; |
13667 | } |
13668 | |
13669 | if (optimizeJump) |
13670 | { |
13671 | #ifdef DEBUG |
13672 | if (verbose) |
13673 | { |
13674 | printf("\nOptimizing a jump to an unconditional jump (" FMT_BB " -> " FMT_BB " -> " FMT_BB ")\n" , |
13675 | block->bbNum, bDest->bbNum, bDest->bbJumpDest->bbNum); |
13676 | } |
13677 | #endif // DEBUG |
13678 | |
13679 | // |
13680 | // When we optimize a branch to branch we need to update the profile weight |
13681 | // of bDest by subtracting out the block/edge weight of the path that is being optimized. |
13682 | // |
13683 | if (fgHaveValidEdgeWeights && bDest->hasProfileWeight()) |
13684 | { |
13685 | flowList* edge1 = fgGetPredForBlock(bDest, block); |
13686 | noway_assert(edge1 != nullptr); |
13687 | |
13688 | BasicBlock::weight_t edgeWeight; |
13689 | |
13690 | if (edge1->flEdgeWeightMin != edge1->flEdgeWeightMax) |
13691 | { |
13692 | // |
13693 | // We only have an estimate for the edge weight |
13694 | // |
13695 | edgeWeight = (edge1->flEdgeWeightMin + edge1->flEdgeWeightMax) / 2; |
13696 | // |
13697 | // Clear the profile weight flag |
13698 | // |
13699 | bDest->bbFlags &= ~BBF_PROF_WEIGHT; |
13700 | } |
13701 | else |
13702 | { |
13703 | // |
13704 | // We only have the exact edge weight |
13705 | // |
13706 | edgeWeight = edge1->flEdgeWeightMin; |
13707 | } |
13708 | |
13709 | // |
13710 | // Update the bDest->bbWeight |
13711 | // |
13712 | if (bDest->bbWeight > edgeWeight) |
13713 | { |
13714 | bDest->bbWeight -= edgeWeight; |
13715 | } |
13716 | else |
13717 | { |
13718 | bDest->bbWeight = BB_ZERO_WEIGHT; |
13719 | bDest->bbFlags |= BBF_RUN_RARELY; // Set the RarelyRun flag |
13720 | } |
13721 | |
13722 | flowList* edge2 = fgGetPredForBlock(bDest->bbJumpDest, bDest); |
13723 | |
13724 | if (edge2 != nullptr) |
13725 | { |
13726 | // |
13727 | // Update the edge2 min/max weights |
13728 | // |
13729 | if (edge2->flEdgeWeightMin > edge1->flEdgeWeightMin) |
13730 | { |
13731 | edge2->flEdgeWeightMin -= edge1->flEdgeWeightMin; |
13732 | } |
13733 | else |
13734 | { |
13735 | edge2->flEdgeWeightMin = BB_ZERO_WEIGHT; |
13736 | } |
13737 | |
13738 | if (edge2->flEdgeWeightMax > edge1->flEdgeWeightMin) |
13739 | { |
13740 | edge2->flEdgeWeightMax -= edge1->flEdgeWeightMin; |
13741 | } |
13742 | else |
13743 | { |
13744 | edge2->flEdgeWeightMax = BB_ZERO_WEIGHT; |
13745 | } |
13746 | } |
13747 | } |
13748 | |
13749 | // Optimize the JUMP to empty unconditional JUMP to go to the new target |
13750 | block->bbJumpDest = bDest->bbJumpDest; |
13751 | |
13752 | fgAddRefPred(bDest->bbJumpDest, block, fgRemoveRefPred(bDest, block)); |
13753 | |
13754 | return true; |
13755 | } |
13756 | return false; |
13757 | } |
13758 | |
13759 | // fgOptimizeEmptyBlock: |
13760 | // Does flow optimization of an empty block (can remove it in some cases) |
13761 | // |
13762 | // Args: |
13763 | // block: an empty block |
13764 | // Returns: true if we changed the code |
13765 | |
13766 | bool Compiler::fgOptimizeEmptyBlock(BasicBlock* block) |
13767 | { |
13768 | assert(block->isEmpty()); |
13769 | |
13770 | BasicBlock* bPrev = block->bbPrev; |
13771 | |
13772 | switch (block->bbJumpKind) |
13773 | { |
13774 | case BBJ_COND: |
13775 | case BBJ_SWITCH: |
13776 | case BBJ_THROW: |
13777 | |
13778 | /* can never happen */ |
13779 | noway_assert(!"Conditional, switch, or throw block with empty body!" ); |
13780 | break; |
13781 | |
13782 | case BBJ_CALLFINALLY: |
13783 | case BBJ_RETURN: |
13784 | case BBJ_EHCATCHRET: |
13785 | case BBJ_EHFINALLYRET: |
13786 | case BBJ_EHFILTERRET: |
13787 | |
13788 | /* leave them as is */ |
13789 | /* some compilers generate multiple returns and put all of them at the end - |
13790 | * to solve that we need the predecessor list */ |
13791 | |
13792 | break; |
13793 | |
13794 | case BBJ_ALWAYS: |
13795 | |
13796 | // A GOTO cannot be to the next block since that |
13797 | // should have been fixed by the optimization above |
13798 | // An exception is made for a jump from Hot to Cold |
13799 | noway_assert(block->bbJumpDest != block->bbNext || ((bPrev != nullptr) && bPrev->isBBCallAlwaysPair()) || |
13800 | fgInDifferentRegions(block, block->bbNext)); |
13801 | |
13802 | /* Cannot remove the first BB */ |
13803 | if (!bPrev) |
13804 | { |
13805 | break; |
13806 | } |
13807 | |
13808 | /* Do not remove a block that jumps to itself - used for while (true){} */ |
13809 | if (block->bbJumpDest == block) |
13810 | { |
13811 | break; |
13812 | } |
13813 | |
13814 | /* Empty GOTO can be removed iff bPrev is BBJ_NONE */ |
13815 | if (bPrev->bbJumpKind != BBJ_NONE) |
13816 | { |
13817 | break; |
13818 | } |
13819 | |
13820 | // can't allow fall through into cold code |
13821 | if (block->bbNext == fgFirstColdBlock) |
13822 | { |
13823 | break; |
13824 | } |
13825 | |
13826 | /* Can fall through since this is similar with removing |
13827 | * a BBJ_NONE block, only the successor is different */ |
13828 | |
13829 | __fallthrough; |
13830 | |
13831 | case BBJ_NONE: |
13832 | |
13833 | /* special case if this is the first BB */ |
13834 | if (!bPrev) |
13835 | { |
13836 | assert(block == fgFirstBB); |
13837 | } |
13838 | else |
13839 | { |
13840 | /* If this block follows a BBJ_CALLFINALLY do not remove it |
13841 | * (because we don't know who may jump to it) */ |
13842 | if (bPrev->bbJumpKind == BBJ_CALLFINALLY) |
13843 | { |
13844 | break; |
13845 | } |
13846 | } |
13847 | |
13848 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
13849 | /* Don't remove finally targets */ |
13850 | if (block->bbFlags & BBF_FINALLY_TARGET) |
13851 | break; |
13852 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
13853 | |
13854 | #if FEATURE_EH_FUNCLETS |
13855 | /* Don't remove an empty block that is in a different EH region |
13856 | * from its successor block, if the block is the target of a |
13857 | * catch return. It is required that the return address of a |
13858 | * catch be in the correct EH region, for re-raise of thread |
13859 | * abort exceptions to work. Insert a NOP in the empty block |
13860 | * to ensure we generate code for the block, if we keep it. |
13861 | */ |
13862 | { |
13863 | BasicBlock* succBlock; |
13864 | |
13865 | if (block->bbJumpKind == BBJ_ALWAYS) |
13866 | { |
13867 | succBlock = block->bbJumpDest; |
13868 | } |
13869 | else |
13870 | { |
13871 | succBlock = block->bbNext; |
13872 | } |
13873 | |
13874 | if ((succBlock != nullptr) && !BasicBlock::sameEHRegion(block, succBlock)) |
13875 | { |
13876 | // The empty block and the block that follows it are in different |
13877 | // EH regions. Is this a case where they can't be merged? |
13878 | |
13879 | bool okToMerge = true; // assume it's ok |
13880 | for (flowList* pred = block->bbPreds; pred; pred = pred->flNext) |
13881 | { |
13882 | if (pred->flBlock->bbJumpKind == BBJ_EHCATCHRET) |
13883 | { |
13884 | assert(pred->flBlock->bbJumpDest == block); |
13885 | okToMerge = false; // we can't get rid of the empty block |
13886 | break; |
13887 | } |
13888 | } |
13889 | |
13890 | if (!okToMerge) |
13891 | { |
13892 | // Insert a NOP in the empty block to ensure we generate code |
13893 | // for the catchret target in the right EH region. |
13894 | GenTree* nop = new (this, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID); |
13895 | |
13896 | if (block->IsLIR()) |
13897 | { |
13898 | LIR::AsRange(block).InsertAtEnd(nop); |
13899 | LIR::ReadOnlyRange range(nop, nop); |
13900 | m_pLowering->LowerRange(block, range); |
13901 | } |
13902 | else |
13903 | { |
13904 | GenTree* nopStmt = fgInsertStmtAtEnd(block, nop); |
13905 | fgSetStmtSeq(nopStmt); |
13906 | gtSetStmtInfo(nopStmt); |
13907 | } |
13908 | |
13909 | #ifdef DEBUG |
13910 | if (verbose) |
13911 | { |
13912 | printf("\nKeeping empty block " FMT_BB " - it is the target of a catch return\n" , |
13913 | block->bbNum); |
13914 | } |
13915 | #endif // DEBUG |
13916 | |
13917 | break; // go to the next block |
13918 | } |
13919 | } |
13920 | } |
13921 | #endif // FEATURE_EH_FUNCLETS |
13922 | |
13923 | if (!ehCanDeleteEmptyBlock(block)) |
13924 | { |
13925 | // We're not allowed to remove this block due to reasons related to the EH table. |
13926 | break; |
13927 | } |
13928 | |
13929 | /* special case if this is the last BB */ |
13930 | if (block == fgLastBB) |
13931 | { |
13932 | if (!bPrev) |
13933 | { |
13934 | break; |
13935 | } |
13936 | fgLastBB = bPrev; |
13937 | } |
13938 | |
13939 | // When using profile weights, fgComputeEdgeWeights expects the first non-internal block to have profile |
13940 | // weight. |
13941 | // Make sure we don't break that invariant. |
13942 | if (fgIsUsingProfileWeights() && block->hasProfileWeight() && (block->bbFlags & BBF_INTERNAL) == 0) |
13943 | { |
13944 | BasicBlock* bNext = block->bbNext; |
13945 | |
13946 | // Check if the next block can't maintain the invariant. |
13947 | if ((bNext == nullptr) || ((bNext->bbFlags & BBF_INTERNAL) != 0) || !bNext->hasProfileWeight()) |
13948 | { |
13949 | // Check if the current block is the first non-internal block. |
13950 | BasicBlock* curBB = bPrev; |
13951 | while ((curBB != nullptr) && (curBB->bbFlags & BBF_INTERNAL) != 0) |
13952 | { |
13953 | curBB = curBB->bbPrev; |
13954 | } |
13955 | if (curBB == nullptr) |
13956 | { |
13957 | // This block is the first non-internal block and it has profile weight. |
13958 | // Don't delete it. |
13959 | break; |
13960 | } |
13961 | } |
13962 | } |
13963 | |
13964 | /* Remove the block */ |
13965 | compCurBB = block; |
13966 | fgRemoveBlock(block, false); |
13967 | return true; |
13968 | |
13969 | default: |
13970 | noway_assert(!"Unexpected bbJumpKind" ); |
13971 | break; |
13972 | } |
13973 | return false; |
13974 | } |
13975 | |
13976 | // fgOptimizeSwitchBranches: |
13977 | // Does flow optimization for a switch - bypasses jumps to empty unconditional branches, |
13978 | // and transforms degenerate switch cases like those with 1 or 2 targets |
13979 | // |
13980 | // Args: |
13981 | // block: BasicBlock that contains the switch |
13982 | // Returns: true if we changed the code |
13983 | // |
13984 | bool Compiler::fgOptimizeSwitchBranches(BasicBlock* block) |
13985 | { |
13986 | assert(block->bbJumpKind == BBJ_SWITCH); |
13987 | |
13988 | unsigned jmpCnt = block->bbJumpSwt->bbsCount; |
13989 | BasicBlock** jmpTab = block->bbJumpSwt->bbsDstTab; |
13990 | BasicBlock* bNewDest; // the new jump target for the current switch case |
13991 | BasicBlock* bDest; |
13992 | bool returnvalue = false; |
13993 | |
13994 | do |
13995 | { |
13996 | REPEAT_SWITCH:; |
13997 | bDest = *jmpTab; |
13998 | bNewDest = bDest; |
13999 | |
14000 | // Do we have a JUMP to an empty unconditional JUMP block? |
14001 | if (bDest->isEmpty() && (bDest->bbJumpKind == BBJ_ALWAYS) && |
14002 | (bDest != bDest->bbJumpDest)) // special case for self jumps |
14003 | { |
14004 | bool optimizeJump = true; |
14005 | |
14006 | // We do not optimize jumps between two different try regions. |
14007 | // However jumping to a block that is not in any try region is OK |
14008 | // |
14009 | if (bDest->hasTryIndex() && !BasicBlock::sameTryRegion(block, bDest)) |
14010 | { |
14011 | optimizeJump = false; |
14012 | } |
14013 | |
14014 | // If we are optimize using real profile weights |
14015 | // then don't optimize a switch jump to an unconditional jump |
14016 | // until after we have computed the edge weights |
14017 | // |
14018 | if (fgIsUsingProfileWeights() && !fgEdgeWeightsComputed) |
14019 | { |
14020 | fgNeedsUpdateFlowGraph = true; |
14021 | optimizeJump = false; |
14022 | } |
14023 | |
14024 | if (optimizeJump) |
14025 | { |
14026 | bNewDest = bDest->bbJumpDest; |
14027 | #ifdef DEBUG |
14028 | if (verbose) |
14029 | { |
14030 | printf("\nOptimizing a switch jump to an empty block with an unconditional jump (" FMT_BB |
14031 | " -> " FMT_BB " " |
14032 | "-> " FMT_BB ")\n" , |
14033 | block->bbNum, bDest->bbNum, bNewDest->bbNum); |
14034 | } |
14035 | #endif // DEBUG |
14036 | } |
14037 | } |
14038 | |
14039 | if (bNewDest != bDest) |
14040 | { |
14041 | // |
14042 | // When we optimize a branch to branch we need to update the profile weight |
14043 | // of bDest by subtracting out the block/edge weight of the path that is being optimized. |
14044 | // |
14045 | if (fgIsUsingProfileWeights() && bDest->hasProfileWeight()) |
14046 | { |
14047 | if (fgHaveValidEdgeWeights) |
14048 | { |
14049 | flowList* edge = fgGetPredForBlock(bDest, block); |
14050 | BasicBlock::weight_t branchThroughWeight = edge->flEdgeWeightMin; |
14051 | |
14052 | if (bDest->bbWeight > branchThroughWeight) |
14053 | { |
14054 | bDest->bbWeight -= branchThroughWeight; |
14055 | } |
14056 | else |
14057 | { |
14058 | bDest->bbWeight = BB_ZERO_WEIGHT; |
14059 | bDest->bbFlags |= BBF_RUN_RARELY; |
14060 | } |
14061 | } |
14062 | } |
14063 | |
14064 | // Update the switch jump table |
14065 | *jmpTab = bNewDest; |
14066 | |
14067 | // Maintain, if necessary, the set of unique targets of "block." |
14068 | UpdateSwitchTableTarget(block, bDest, bNewDest); |
14069 | |
14070 | fgAddRefPred(bNewDest, block, fgRemoveRefPred(bDest, block)); |
14071 | |
14072 | // we optimized a Switch label - goto REPEAT_SWITCH to follow this new jump |
14073 | returnvalue = true; |
14074 | |
14075 | goto REPEAT_SWITCH; |
14076 | } |
14077 | } while (++jmpTab, --jmpCnt); |
14078 | |
14079 | GenTreeStmt* switchStmt = nullptr; |
14080 | LIR::Range* blockRange = nullptr; |
14081 | |
14082 | GenTree* switchTree; |
14083 | if (block->IsLIR()) |
14084 | { |
14085 | blockRange = &LIR::AsRange(block); |
14086 | switchTree = blockRange->LastNode(); |
14087 | |
14088 | assert(switchTree->OperGet() == GT_SWITCH_TABLE); |
14089 | } |
14090 | else |
14091 | { |
14092 | switchStmt = block->lastStmt(); |
14093 | switchTree = switchStmt->gtStmtExpr; |
14094 | |
14095 | assert(switchTree->OperGet() == GT_SWITCH); |
14096 | } |
14097 | |
14098 | noway_assert(switchTree->gtType == TYP_VOID); |
14099 | |
14100 | // At this point all of the case jump targets have been updated such |
14101 | // that none of them go to block that is an empty unconditional block |
14102 | // |
14103 | jmpTab = block->bbJumpSwt->bbsDstTab; |
14104 | jmpCnt = block->bbJumpSwt->bbsCount; |
14105 | // Now check for two trivial switch jumps. |
14106 | // |
14107 | if (block->NumSucc(this) == 1) |
14108 | { |
14109 | // Use BBJ_ALWAYS for a switch with only a default clause, or with only one unique successor. |
14110 | BasicBlock* uniqueSucc = jmpTab[0]; |
14111 | |
14112 | #ifdef DEBUG |
14113 | if (verbose) |
14114 | { |
14115 | printf("\nRemoving a switch jump with a single target (" FMT_BB ")\n" , block->bbNum); |
14116 | printf("BEFORE:\n" ); |
14117 | } |
14118 | #endif // DEBUG |
14119 | |
14120 | if (block->IsLIR()) |
14121 | { |
14122 | bool isClosed; |
14123 | unsigned sideEffects; |
14124 | LIR::ReadOnlyRange switchTreeRange = blockRange->GetTreeRange(switchTree, &isClosed, &sideEffects); |
14125 | |
14126 | // The switch tree should form a contiguous, side-effect free range by construction. See |
14127 | // Lowering::LowerSwitch for details. |
14128 | assert(isClosed); |
14129 | assert((sideEffects & GTF_ALL_EFFECT) == 0); |
14130 | |
14131 | blockRange->Delete(this, block, std::move(switchTreeRange)); |
14132 | } |
14133 | else |
14134 | { |
14135 | /* check for SIDE_EFFECTS */ |
14136 | if (switchTree->gtFlags & GTF_SIDE_EFFECT) |
14137 | { |
14138 | /* Extract the side effects from the conditional */ |
14139 | GenTree* sideEffList = nullptr; |
14140 | |
14141 | gtExtractSideEffList(switchTree, &sideEffList); |
14142 | |
14143 | if (sideEffList == nullptr) |
14144 | { |
14145 | goto NO_SWITCH_SIDE_EFFECT; |
14146 | } |
14147 | |
14148 | noway_assert(sideEffList->gtFlags & GTF_SIDE_EFFECT); |
14149 | |
14150 | #ifdef DEBUG |
14151 | if (verbose) |
14152 | { |
14153 | printf("\nSwitch expression has side effects! Extracting side effects...\n" ); |
14154 | gtDispTree(switchTree); |
14155 | printf("\n" ); |
14156 | gtDispTree(sideEffList); |
14157 | printf("\n" ); |
14158 | } |
14159 | #endif // DEBUG |
14160 | |
14161 | /* Replace the conditional statement with the list of side effects */ |
14162 | noway_assert(sideEffList->gtOper != GT_STMT); |
14163 | noway_assert(sideEffList->gtOper != GT_SWITCH); |
14164 | |
14165 | switchStmt->gtStmtExpr = sideEffList; |
14166 | |
14167 | if (fgStmtListThreaded) |
14168 | { |
14169 | compCurBB = block; |
14170 | |
14171 | /* Update ordering, costs, FP levels, etc. */ |
14172 | gtSetStmtInfo(switchStmt); |
14173 | |
14174 | /* Re-link the nodes for this statement */ |
14175 | fgSetStmtSeq(switchStmt); |
14176 | } |
14177 | } |
14178 | else |
14179 | { |
14180 | |
14181 | NO_SWITCH_SIDE_EFFECT: |
14182 | |
14183 | /* conditional has NO side effect - remove it */ |
14184 | fgRemoveStmt(block, switchStmt); |
14185 | } |
14186 | } |
14187 | |
14188 | // Change the switch jump into a BBJ_ALWAYS |
14189 | block->bbJumpDest = block->bbJumpSwt->bbsDstTab[0]; |
14190 | block->bbJumpKind = BBJ_ALWAYS; |
14191 | if (jmpCnt > 1) |
14192 | { |
14193 | for (unsigned i = 1; i < jmpCnt; ++i) |
14194 | { |
14195 | (void)fgRemoveRefPred(jmpTab[i], block); |
14196 | } |
14197 | } |
14198 | |
14199 | return true; |
14200 | } |
14201 | else if (block->bbJumpSwt->bbsCount == 2 && block->bbJumpSwt->bbsDstTab[1] == block->bbNext) |
14202 | { |
14203 | /* Use a BBJ_COND(switchVal==0) for a switch with only one |
14204 | significant clause besides the default clause, if the |
14205 | default clause is bbNext */ |
14206 | GenTree* switchVal = switchTree->gtOp.gtOp1; |
14207 | noway_assert(genActualTypeIsIntOrI(switchVal->TypeGet())); |
14208 | |
14209 | // If we are in LIR, remove the jump table from the block. |
14210 | if (block->IsLIR()) |
14211 | { |
14212 | GenTree* jumpTable = switchTree->gtOp.gtOp2; |
14213 | assert(jumpTable->OperGet() == GT_JMPTABLE); |
14214 | blockRange->Remove(jumpTable); |
14215 | } |
14216 | |
14217 | // Change the GT_SWITCH(switchVal) into GT_JTRUE(GT_EQ(switchVal==0)). |
14218 | // Also mark the node as GTF_DONT_CSE as further down JIT is not capable of handling it. |
14219 | // For example CSE could determine that the expression rooted at GT_EQ is a candidate cse and |
14220 | // replace it with a COMMA node. In such a case we will end up with GT_JTRUE node pointing to |
14221 | // a COMMA node which results in noway asserts in fgMorphSmpOp(), optAssertionGen() and rpPredictTreeRegUse(). |
14222 | // For the same reason fgMorphSmpOp() marks GT_JTRUE nodes with RELOP children as GTF_DONT_CSE. |
14223 | CLANG_FORMAT_COMMENT_ANCHOR; |
14224 | |
14225 | #ifdef DEBUG |
14226 | if (verbose) |
14227 | { |
14228 | printf("\nConverting a switch (" FMT_BB ") with only one significant clause besides a default target to a " |
14229 | "conditional branch\n" , |
14230 | block->bbNum); |
14231 | } |
14232 | #endif // DEBUG |
14233 | |
14234 | switchTree->ChangeOper(GT_JTRUE); |
14235 | GenTree* zeroConstNode = gtNewZeroConNode(genActualType(switchVal->TypeGet())); |
14236 | GenTree* condNode = gtNewOperNode(GT_EQ, TYP_INT, switchVal, zeroConstNode); |
14237 | switchTree->gtOp.gtOp1 = condNode; |
14238 | switchTree->gtOp.gtOp1->gtFlags |= (GTF_RELOP_JMP_USED | GTF_DONT_CSE); |
14239 | |
14240 | if (block->IsLIR()) |
14241 | { |
14242 | blockRange->InsertAfter(switchVal, zeroConstNode, condNode); |
14243 | LIR::ReadOnlyRange range(zeroConstNode, switchTree); |
14244 | m_pLowering->LowerRange(block, range); |
14245 | } |
14246 | else |
14247 | { |
14248 | // Re-link the nodes for this statement. |
14249 | fgSetStmtSeq(switchStmt); |
14250 | } |
14251 | |
14252 | block->bbJumpDest = block->bbJumpSwt->bbsDstTab[0]; |
14253 | block->bbJumpKind = BBJ_COND; |
14254 | |
14255 | return true; |
14256 | } |
14257 | return returnvalue; |
14258 | } |
14259 | |
14260 | // fgBlockEndFavorsTailDuplication: |
14261 | // Heuristic function that returns true if this block ends in a statement that looks favorable |
14262 | // for tail-duplicating its successor (such as assigning a constant to a local). |
14263 | // Args: |
14264 | // block: BasicBlock we are considering duplicating the successor of |
14265 | // Returns: |
14266 | // true if it seems like a good idea |
14267 | // |
14268 | bool Compiler::fgBlockEndFavorsTailDuplication(BasicBlock* block) |
14269 | { |
14270 | if (block->isRunRarely()) |
14271 | { |
14272 | return false; |
14273 | } |
14274 | |
14275 | if (!block->lastStmt()) |
14276 | { |
14277 | return false; |
14278 | } |
14279 | else |
14280 | { |
14281 | // Tail duplication tends to pay off when the last statement |
14282 | // is an assignment of a constant, arraylength, or a relop. |
14283 | // This is because these statements produce information about values |
14284 | // that would otherwise be lost at the upcoming merge point. |
14285 | |
14286 | GenTreeStmt* lastStmt = block->lastStmt(); |
14287 | GenTree* tree = lastStmt->gtStmtExpr; |
14288 | if (tree->gtOper != GT_ASG) |
14289 | { |
14290 | return false; |
14291 | } |
14292 | |
14293 | if (tree->OperIsBlkOp()) |
14294 | { |
14295 | return false; |
14296 | } |
14297 | |
14298 | GenTree* op2 = tree->gtOp.gtOp2; |
14299 | if (op2->gtOper != GT_ARR_LENGTH && !op2->OperIsConst() && ((op2->OperKind() & GTK_RELOP) == 0)) |
14300 | { |
14301 | return false; |
14302 | } |
14303 | } |
14304 | return true; |
14305 | } |
14306 | |
14307 | // fgBlockIsGoodTailDuplicationCandidate: |
14308 | // Heuristic function that examines a block (presumably one that is a merge point) to determine |
14309 | // if it should be duplicated. |
14310 | // args: |
14311 | // target - the tail block (candidate for duplication) |
14312 | // returns: |
14313 | // true if this block seems like a good candidate for duplication |
14314 | // |
14315 | bool Compiler::fgBlockIsGoodTailDuplicationCandidate(BasicBlock* target) |
14316 | { |
14317 | GenTreeStmt* stmt = target->FirstNonPhiDef(); |
14318 | |
14319 | // Here we are looking for blocks with a single statement feeding a conditional branch. |
14320 | // These blocks are small, and when duplicated onto the tail of blocks that end in |
14321 | // assignments, there is a high probability of the branch completely going away. |
14322 | |
14323 | // This is by no means the only kind of tail that it is beneficial to duplicate, |
14324 | // just the only one we recognize for now. |
14325 | |
14326 | if (stmt != target->lastStmt()) |
14327 | { |
14328 | return false; |
14329 | } |
14330 | |
14331 | if (target->bbJumpKind != BBJ_COND) |
14332 | { |
14333 | return false; |
14334 | } |
14335 | |
14336 | GenTree* tree = stmt->gtStmtExpr; |
14337 | |
14338 | if (tree->gtOper != GT_JTRUE) |
14339 | { |
14340 | return false; |
14341 | } |
14342 | |
14343 | // must be some kind of relational operator |
14344 | GenTree* cond = tree->gtOp.gtOp1; |
14345 | if (!(cond->OperKind() & GTK_RELOP)) |
14346 | { |
14347 | return false; |
14348 | } |
14349 | |
14350 | // op1 must be some combinations of casts of local or constant |
14351 | GenTree* op1 = cond->gtOp.gtOp1; |
14352 | while (op1->gtOper == GT_CAST) |
14353 | { |
14354 | op1 = op1->gtOp.gtOp1; |
14355 | } |
14356 | if (!op1->IsLocal() && !op1->OperIsConst()) |
14357 | { |
14358 | return false; |
14359 | } |
14360 | |
14361 | // op2 must be some combinations of casts of local or constant |
14362 | GenTree* op2 = cond->gtOp.gtOp2; |
14363 | while (op2->gtOper == GT_CAST) |
14364 | { |
14365 | op2 = op2->gtOp.gtOp1; |
14366 | } |
14367 | if (!op2->IsLocal() && !op2->OperIsConst()) |
14368 | { |
14369 | return false; |
14370 | } |
14371 | |
14372 | return true; |
14373 | } |
14374 | |
14375 | // fgOptimizeUncondBranchToSimpleCond: |
14376 | // For a block which has an unconditional branch, look to see if its target block |
14377 | // is a good candidate for tail duplication, and if so do that duplication. |
14378 | // |
14379 | // Args: |
14380 | // block - block with uncond branch |
14381 | // target - block which is target of first block |
14382 | // |
14383 | // returns: true if changes were made |
14384 | |
14385 | bool Compiler::fgOptimizeUncondBranchToSimpleCond(BasicBlock* block, BasicBlock* target) |
14386 | { |
14387 | assert(block->bbJumpKind == BBJ_ALWAYS); |
14388 | assert(block->bbJumpDest == target); |
14389 | |
14390 | // TODO-Review: OK if they are in the same region? |
14391 | if (compHndBBtabCount > 0) |
14392 | { |
14393 | return false; |
14394 | } |
14395 | |
14396 | if (!fgBlockIsGoodTailDuplicationCandidate(target)) |
14397 | { |
14398 | return false; |
14399 | } |
14400 | |
14401 | if (!fgBlockEndFavorsTailDuplication(block)) |
14402 | { |
14403 | return false; |
14404 | } |
14405 | |
14406 | // NOTE: we do not currently hit this assert because this function is only called when |
14407 | // `fgUpdateFlowGraph` has been called with `doTailDuplication` set to true, and the |
14408 | // backend always calls `fgUpdateFlowGraph` with `doTailDuplication` set to false. |
14409 | assert(!block->IsLIR()); |
14410 | |
14411 | GenTreeStmt* stmt = target->FirstNonPhiDef(); |
14412 | assert(stmt == target->lastStmt()); |
14413 | |
14414 | // Duplicate the target block at the end of this block |
14415 | |
14416 | GenTree* cloned = gtCloneExpr(stmt->gtStmtExpr); |
14417 | noway_assert(cloned); |
14418 | GenTree* jmpStmt = gtNewStmt(cloned); |
14419 | |
14420 | block->bbJumpKind = BBJ_COND; |
14421 | block->bbJumpDest = target->bbJumpDest; |
14422 | fgAddRefPred(block->bbJumpDest, block); |
14423 | fgRemoveRefPred(target, block); |
14424 | |
14425 | // add an unconditional block after this block to jump to the target block's fallthrough block |
14426 | |
14427 | BasicBlock* next = fgNewBBafter(BBJ_ALWAYS, block, true); |
14428 | |
14429 | // The new block 'next' will inherit its weight from 'block' |
14430 | next->inheritWeight(block); |
14431 | next->bbJumpDest = target->bbNext; |
14432 | target->bbNext->bbFlags |= BBF_JMP_TARGET; |
14433 | fgAddRefPred(next, block); |
14434 | fgAddRefPred(next->bbJumpDest, next); |
14435 | |
14436 | #ifdef DEBUG |
14437 | if (verbose) |
14438 | { |
14439 | printf("fgOptimizeUncondBranchToSimpleCond(from " FMT_BB " to cond " FMT_BB "), created new uncond " FMT_BB |
14440 | "\n" , |
14441 | block->bbNum, target->bbNum, next->bbNum); |
14442 | } |
14443 | #endif // DEBUG |
14444 | |
14445 | if (fgStmtListThreaded) |
14446 | { |
14447 | gtSetStmtInfo(jmpStmt); |
14448 | } |
14449 | |
14450 | fgInsertStmtAtEnd(block, jmpStmt); |
14451 | |
14452 | return true; |
14453 | } |
14454 | |
14455 | // fgOptimizeBranchToNext: |
14456 | // Optimize a block which has a branch to the following block |
14457 | // Args: |
14458 | // block - block with a branch |
14459 | // bNext - block which is both next and the target of the first block |
14460 | // bPrev - block which is prior to the first block |
14461 | // |
14462 | // returns: true if changes were made |
14463 | // |
14464 | bool Compiler::fgOptimizeBranchToNext(BasicBlock* block, BasicBlock* bNext, BasicBlock* bPrev) |
14465 | { |
14466 | assert(block->bbJumpKind == BBJ_COND || block->bbJumpKind == BBJ_ALWAYS); |
14467 | assert(block->bbJumpDest == bNext); |
14468 | assert(block->bbNext == bNext); |
14469 | assert(block->bbPrev == bPrev); |
14470 | |
14471 | if (block->bbJumpKind == BBJ_ALWAYS) |
14472 | { |
14473 | // We can't remove it if it is a branch from hot => cold |
14474 | if (!fgInDifferentRegions(block, bNext)) |
14475 | { |
14476 | // We can't remove if it is marked as BBF_KEEP_BBJ_ALWAYS |
14477 | if (!(block->bbFlags & BBF_KEEP_BBJ_ALWAYS)) |
14478 | { |
14479 | // We can't remove if the BBJ_ALWAYS is part of a BBJ_CALLFINALLY pair |
14480 | if ((bPrev == nullptr) || !bPrev->isBBCallAlwaysPair()) |
14481 | { |
14482 | /* the unconditional jump is to the next BB */ |
14483 | block->bbJumpKind = BBJ_NONE; |
14484 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
14485 | #ifdef DEBUG |
14486 | if (verbose) |
14487 | { |
14488 | printf("\nRemoving unconditional jump to next block (" FMT_BB " -> " FMT_BB |
14489 | ") (converted " FMT_BB " to " |
14490 | "fall-through)\n" , |
14491 | block->bbNum, bNext->bbNum, block->bbNum); |
14492 | } |
14493 | #endif // DEBUG |
14494 | return true; |
14495 | } |
14496 | } |
14497 | } |
14498 | } |
14499 | else |
14500 | { |
14501 | /* remove the conditional statement at the end of block */ |
14502 | noway_assert(block->bbJumpKind == BBJ_COND); |
14503 | noway_assert(block->bbTreeList); |
14504 | |
14505 | #ifdef DEBUG |
14506 | if (verbose) |
14507 | { |
14508 | printf("\nRemoving conditional jump to next block (" FMT_BB " -> " FMT_BB ")\n" , block->bbNum, |
14509 | bNext->bbNum); |
14510 | } |
14511 | #endif // DEBUG |
14512 | |
14513 | if (block->IsLIR()) |
14514 | { |
14515 | LIR::Range& blockRange = LIR::AsRange(block); |
14516 | GenTree* jmp = blockRange.LastNode(); |
14517 | assert(jmp->OperIsConditionalJump()); |
14518 | if (jmp->OperGet() == GT_JTRUE) |
14519 | { |
14520 | jmp->gtOp.gtOp1->gtFlags &= ~GTF_SET_FLAGS; |
14521 | } |
14522 | |
14523 | bool isClosed; |
14524 | unsigned sideEffects; |
14525 | LIR::ReadOnlyRange jmpRange = blockRange.GetTreeRange(jmp, &isClosed, &sideEffects); |
14526 | |
14527 | // TODO-LIR: this should really be checking GTF_ALL_EFFECT, but that produces unacceptable |
14528 | // diffs compared to the existing backend. |
14529 | if (isClosed && ((sideEffects & GTF_SIDE_EFFECT) == 0)) |
14530 | { |
14531 | // If the jump and its operands form a contiguous, side-effect-free range, |
14532 | // remove them. |
14533 | blockRange.Delete(this, block, std::move(jmpRange)); |
14534 | } |
14535 | else |
14536 | { |
14537 | // Otherwise, just remove the jump node itself. |
14538 | blockRange.Remove(jmp, true); |
14539 | } |
14540 | } |
14541 | else |
14542 | { |
14543 | GenTreeStmt* cond = block->lastStmt(); |
14544 | noway_assert(cond->gtStmtExpr->gtOper == GT_JTRUE); |
14545 | |
14546 | /* check for SIDE_EFFECTS */ |
14547 | if (cond->gtStmtExpr->gtFlags & GTF_SIDE_EFFECT) |
14548 | { |
14549 | /* Extract the side effects from the conditional */ |
14550 | GenTree* sideEffList = nullptr; |
14551 | |
14552 | gtExtractSideEffList(cond->gtStmtExpr, &sideEffList); |
14553 | |
14554 | if (sideEffList == nullptr) |
14555 | { |
14556 | compCurBB = block; |
14557 | fgRemoveStmt(block, cond); |
14558 | } |
14559 | else |
14560 | { |
14561 | noway_assert(sideEffList->gtFlags & GTF_SIDE_EFFECT); |
14562 | #ifdef DEBUG |
14563 | if (verbose) |
14564 | { |
14565 | printf("\nConditional has side effects! Extracting side effects...\n" ); |
14566 | gtDispTree(cond); |
14567 | printf("\n" ); |
14568 | gtDispTree(sideEffList); |
14569 | printf("\n" ); |
14570 | } |
14571 | #endif // DEBUG |
14572 | |
14573 | /* Replace the conditional statement with the list of side effects */ |
14574 | noway_assert(sideEffList->gtOper != GT_STMT); |
14575 | noway_assert(sideEffList->gtOper != GT_JTRUE); |
14576 | |
14577 | cond->gtStmtExpr = sideEffList; |
14578 | |
14579 | if (fgStmtListThreaded) |
14580 | { |
14581 | compCurBB = block; |
14582 | |
14583 | /* Update ordering, costs, FP levels, etc. */ |
14584 | gtSetStmtInfo(cond); |
14585 | |
14586 | /* Re-link the nodes for this statement */ |
14587 | fgSetStmtSeq(cond); |
14588 | } |
14589 | } |
14590 | } |
14591 | else |
14592 | { |
14593 | compCurBB = block; |
14594 | /* conditional has NO side effect - remove it */ |
14595 | fgRemoveStmt(block, cond); |
14596 | } |
14597 | } |
14598 | |
14599 | /* Conditional is gone - simply fall into the next block */ |
14600 | |
14601 | block->bbJumpKind = BBJ_NONE; |
14602 | block->bbFlags &= ~BBF_NEEDS_GCPOLL; |
14603 | |
14604 | /* Update bbRefs and bbNum - Conditional predecessors to the same |
14605 | * block are counted twice so we have to remove one of them */ |
14606 | |
14607 | noway_assert(bNext->countOfInEdges() > 1); |
14608 | fgRemoveRefPred(bNext, block); |
14609 | |
14610 | return true; |
14611 | } |
14612 | return false; |
14613 | } |
14614 | |
14615 | /***************************************************************************** |
14616 | * |
14617 | * Function called to optimize an unconditional branch that branches |
14618 | * to a conditional branch. |
14619 | * Currently we require that the conditional branch jump back to the |
14620 | * block that follows the unconditional branch. |
14621 | * |
14622 | * We can improve the code execution and layout by concatenating a copy |
14623 | * of the conditional branch block at the end of the conditional branch |
14624 | * and reversing the sense of the branch. |
14625 | * |
14626 | * This is only done when the amount of code to be copied is smaller than |
14627 | * our calculated threshold in maxDupCostSz. |
14628 | * |
14629 | */ |
14630 | |
14631 | bool Compiler::fgOptimizeBranch(BasicBlock* bJump) |
14632 | { |
14633 | if (opts.MinOpts()) |
14634 | { |
14635 | return false; |
14636 | } |
14637 | |
14638 | if (bJump->bbJumpKind != BBJ_ALWAYS) |
14639 | { |
14640 | return false; |
14641 | } |
14642 | |
14643 | if (bJump->bbFlags & BBF_KEEP_BBJ_ALWAYS) |
14644 | { |
14645 | return false; |
14646 | } |
14647 | |
14648 | // Don't hoist a conditional branch into the scratch block; we'd prefer it stay |
14649 | // either BBJ_NONE or BBJ_ALWAYS. |
14650 | if (fgBBisScratch(bJump)) |
14651 | { |
14652 | return false; |
14653 | } |
14654 | |
14655 | BasicBlock* bDest = bJump->bbJumpDest; |
14656 | |
14657 | if (bDest->bbJumpKind != BBJ_COND) |
14658 | { |
14659 | return false; |
14660 | } |
14661 | |
14662 | if (bDest->bbJumpDest != bJump->bbNext) |
14663 | { |
14664 | return false; |
14665 | } |
14666 | |
14667 | // 'bJump' must be in the same try region as the condition, since we're going to insert |
14668 | // a duplicated condition in 'bJump', and the condition might include exception throwing code. |
14669 | if (!BasicBlock::sameTryRegion(bJump, bDest)) |
14670 | { |
14671 | return false; |
14672 | } |
14673 | |
14674 | // do not jump into another try region |
14675 | BasicBlock* bDestNext = bDest->bbNext; |
14676 | if (bDestNext->hasTryIndex() && !BasicBlock::sameTryRegion(bJump, bDestNext)) |
14677 | { |
14678 | return false; |
14679 | } |
14680 | |
14681 | // This function is only called by fgReorderBlocks, which we do not run in the backend. |
14682 | // If we wanted to run block reordering in the backend, we would need to be able to |
14683 | // calculate cost information for LIR on a per-node basis in order for this function |
14684 | // to work. |
14685 | assert(!bJump->IsLIR()); |
14686 | assert(!bDest->IsLIR()); |
14687 | |
14688 | GenTreeStmt* stmt; |
14689 | unsigned estDupCostSz = 0; |
14690 | for (stmt = bDest->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
14691 | { |
14692 | GenTree* expr = stmt->gtStmtExpr; |
14693 | |
14694 | /* We call gtPrepareCost to measure the cost of duplicating this tree */ |
14695 | gtPrepareCost(expr); |
14696 | |
14697 | estDupCostSz += expr->gtCostSz; |
14698 | } |
14699 | |
14700 | bool allProfileWeightsAreValid = false; |
14701 | BasicBlock::weight_t weightJump = bJump->bbWeight; |
14702 | BasicBlock::weight_t weightDest = bDest->bbWeight; |
14703 | BasicBlock::weight_t weightNext = bJump->bbNext->bbWeight; |
14704 | bool rareJump = bJump->isRunRarely(); |
14705 | bool rareDest = bDest->isRunRarely(); |
14706 | bool rareNext = bJump->bbNext->isRunRarely(); |
14707 | |
14708 | // If we have profile data then we calculate the number of time |
14709 | // the loop will iterate into loopIterations |
14710 | if (fgIsUsingProfileWeights()) |
14711 | { |
14712 | // Only rely upon the profile weight when all three of these blocks |
14713 | // have either good profile weights or are rarelyRun |
14714 | // |
14715 | if ((bJump->bbFlags & (BBF_PROF_WEIGHT | BBF_RUN_RARELY)) && |
14716 | (bDest->bbFlags & (BBF_PROF_WEIGHT | BBF_RUN_RARELY)) && |
14717 | (bJump->bbNext->bbFlags & (BBF_PROF_WEIGHT | BBF_RUN_RARELY))) |
14718 | { |
14719 | allProfileWeightsAreValid = true; |
14720 | |
14721 | if ((weightJump * 100) < weightDest) |
14722 | { |
14723 | rareJump = true; |
14724 | } |
14725 | |
14726 | if ((weightNext * 100) < weightDest) |
14727 | { |
14728 | rareNext = true; |
14729 | } |
14730 | |
14731 | if (((weightDest * 100) < weightJump) && ((weightDest * 100) < weightNext)) |
14732 | { |
14733 | rareDest = true; |
14734 | } |
14735 | } |
14736 | } |
14737 | |
14738 | unsigned maxDupCostSz = 6; |
14739 | |
14740 | // |
14741 | // Branches between the hot and rarely run regions |
14742 | // should be minimized. So we allow a larger size |
14743 | // |
14744 | if (rareDest != rareJump) |
14745 | { |
14746 | maxDupCostSz += 6; |
14747 | } |
14748 | |
14749 | if (rareDest != rareNext) |
14750 | { |
14751 | maxDupCostSz += 6; |
14752 | } |
14753 | |
14754 | // |
14755 | // We we are ngen-ing: |
14756 | // If the uncondional branch is a rarely run block then |
14757 | // we are willing to have more code expansion since we |
14758 | // won't be running code from this page |
14759 | // |
14760 | if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PREJIT)) |
14761 | { |
14762 | if (rareJump) |
14763 | { |
14764 | maxDupCostSz *= 2; |
14765 | } |
14766 | } |
14767 | |
14768 | // If the compare has too high cost then we don't want to dup |
14769 | |
14770 | bool costIsTooHigh = (estDupCostSz > maxDupCostSz); |
14771 | |
14772 | #ifdef DEBUG |
14773 | if (verbose) |
14774 | { |
14775 | printf("\nDuplication of the conditional block " FMT_BB " (always branch from " FMT_BB |
14776 | ") %s, because the cost of " |
14777 | "duplication (%i) is %s than %i," |
14778 | " validProfileWeights = %s\n" , |
14779 | bDest->bbNum, bJump->bbNum, costIsTooHigh ? "not done" : "performed" , estDupCostSz, |
14780 | costIsTooHigh ? "greater" : "less or equal" , maxDupCostSz, allProfileWeightsAreValid ? "true" : "false" ); |
14781 | } |
14782 | #endif // DEBUG |
14783 | |
14784 | if (costIsTooHigh) |
14785 | { |
14786 | return false; |
14787 | } |
14788 | |
14789 | /* Looks good - duplicate the conditional block */ |
14790 | |
14791 | GenTree* newStmtList = nullptr; // new stmt list to be added to bJump |
14792 | GenTree* newStmtLast = nullptr; |
14793 | bool cloneExprFailed = false; |
14794 | |
14795 | /* Visit all the statements in bDest */ |
14796 | |
14797 | for (GenTree* curStmt = bDest->bbTreeList; curStmt; curStmt = curStmt->gtNext) |
14798 | { |
14799 | /* Clone/substitute the expression */ |
14800 | |
14801 | stmt = gtCloneExpr(curStmt)->AsStmt(); |
14802 | |
14803 | // cloneExpr doesn't handle everything |
14804 | |
14805 | if (stmt == nullptr) |
14806 | { |
14807 | cloneExprFailed = true; |
14808 | break; |
14809 | } |
14810 | |
14811 | /* Append the expression to our list */ |
14812 | |
14813 | if (newStmtList != nullptr) |
14814 | { |
14815 | newStmtLast->gtNext = stmt; |
14816 | } |
14817 | else |
14818 | { |
14819 | newStmtList = stmt; |
14820 | } |
14821 | |
14822 | stmt->gtPrev = newStmtLast; |
14823 | newStmtLast = stmt; |
14824 | } |
14825 | |
14826 | if (cloneExprFailed) |
14827 | { |
14828 | return false; |
14829 | } |
14830 | |
14831 | noway_assert(newStmtLast != nullptr); |
14832 | noway_assert(stmt != nullptr); |
14833 | noway_assert(stmt->gtOper == GT_STMT); |
14834 | |
14835 | if ((newStmtLast == nullptr) || (stmt == nullptr) || (stmt->gtOper != GT_STMT)) |
14836 | { |
14837 | return false; |
14838 | } |
14839 | |
14840 | /* Get to the condition node from the statement tree */ |
14841 | |
14842 | GenTree* condTree = stmt->gtStmtExpr; |
14843 | noway_assert(condTree->gtOper == GT_JTRUE); |
14844 | |
14845 | if (condTree->gtOper != GT_JTRUE) |
14846 | { |
14847 | return false; |
14848 | } |
14849 | |
14850 | // |
14851 | // Set condTree to the operand to the GT_JTRUE |
14852 | // |
14853 | condTree = condTree->gtOp.gtOp1; |
14854 | |
14855 | // |
14856 | // This condTree has to be a RelOp comparison |
14857 | // |
14858 | if (condTree->OperIsCompare() == false) |
14859 | { |
14860 | return false; |
14861 | } |
14862 | |
14863 | // |
14864 | // Find the last statement in the bJump block |
14865 | // |
14866 | GenTreeStmt* lastStmt = nullptr; |
14867 | for (stmt = bJump->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
14868 | { |
14869 | lastStmt = stmt; |
14870 | } |
14871 | stmt = bJump->firstStmt(); |
14872 | |
14873 | /* Join the two linked lists */ |
14874 | newStmtLast->gtNext = nullptr; |
14875 | |
14876 | if (lastStmt != nullptr) |
14877 | { |
14878 | stmt->gtPrev = newStmtLast; |
14879 | lastStmt->gtNext = newStmtList; |
14880 | newStmtList->gtPrev = lastStmt; |
14881 | } |
14882 | else |
14883 | { |
14884 | bJump->bbTreeList = newStmtList; |
14885 | newStmtList->gtPrev = newStmtLast; |
14886 | } |
14887 | |
14888 | // |
14889 | // Reverse the sense of the compare |
14890 | // |
14891 | gtReverseCond(condTree); |
14892 | |
14893 | // We need to update the following flags of the bJump block if they were set in the bDest block |
14894 | bJump->bbFlags |= |
14895 | (bDest->bbFlags & (BBF_HAS_NEWOBJ | BBF_HAS_NEWARRAY | BBF_HAS_NULLCHECK | BBF_HAS_IDX_LEN | BBF_HAS_VTABREF)); |
14896 | |
14897 | bJump->bbJumpKind = BBJ_COND; |
14898 | bJump->bbJumpDest = bDest->bbNext; |
14899 | |
14900 | /* Mark the jump dest block as being a jump target */ |
14901 | bJump->bbJumpDest->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
14902 | |
14903 | /* Update bbRefs and bbPreds */ |
14904 | |
14905 | // bJump now falls through into the next block |
14906 | // |
14907 | fgAddRefPred(bJump->bbNext, bJump); |
14908 | |
14909 | // bJump no longer jumps to bDest |
14910 | // |
14911 | fgRemoveRefPred(bDest, bJump); |
14912 | |
14913 | // bJump now jumps to bDest->bbNext |
14914 | // |
14915 | fgAddRefPred(bDest->bbNext, bJump); |
14916 | |
14917 | if (weightJump > 0) |
14918 | { |
14919 | if (allProfileWeightsAreValid) |
14920 | { |
14921 | if (weightDest > weightJump) |
14922 | { |
14923 | bDest->bbWeight = (weightDest - weightJump); |
14924 | } |
14925 | else if (!bDest->isRunRarely()) |
14926 | { |
14927 | bDest->bbWeight = BB_UNITY_WEIGHT; |
14928 | } |
14929 | } |
14930 | else |
14931 | { |
14932 | BasicBlock::weight_t newWeightDest = 0; |
14933 | BasicBlock::weight_t unloopWeightDest = 0; |
14934 | |
14935 | if (weightDest > weightJump) |
14936 | { |
14937 | newWeightDest = (weightDest - weightJump); |
14938 | } |
14939 | if (weightDest >= (BB_LOOP_WEIGHT * BB_UNITY_WEIGHT) / 2) |
14940 | { |
14941 | newWeightDest = (weightDest * 2) / (BB_LOOP_WEIGHT * BB_UNITY_WEIGHT); |
14942 | } |
14943 | if ((newWeightDest > 0) || (unloopWeightDest > 0)) |
14944 | { |
14945 | bDest->bbWeight = Max(newWeightDest, unloopWeightDest); |
14946 | } |
14947 | } |
14948 | } |
14949 | |
14950 | #if DEBUG |
14951 | if (verbose) |
14952 | { |
14953 | // Dump out the newStmtList that we created |
14954 | printf("\nfgOptimizeBranch added these statements(s) at the end of " FMT_BB ":\n" , bJump->bbNum); |
14955 | for (stmt = newStmtList->AsStmt(); stmt; stmt = stmt->gtNextStmt) |
14956 | { |
14957 | gtDispTree(stmt); |
14958 | } |
14959 | printf("\nfgOptimizeBranch changed block " FMT_BB " from BBJ_ALWAYS to BBJ_COND.\n" , bJump->bbNum); |
14960 | |
14961 | printf("\nAfter this change in fgOptimizeBranch the BB graph is:" ); |
14962 | fgDispBasicBlocks(verboseTrees); |
14963 | printf("\n" ); |
14964 | } |
14965 | #endif // DEBUG |
14966 | |
14967 | return true; |
14968 | } |
14969 | |
14970 | /***************************************************************************** |
14971 | * |
14972 | * Function called to optimize switch statements |
14973 | */ |
14974 | |
14975 | bool Compiler::fgOptimizeSwitchJumps() |
14976 | { |
14977 | bool result = false; // Our return value |
14978 | |
14979 | #if 0 |
14980 | // TODO-CQ: Add switch jump optimizations? |
14981 | if (!fgHasSwitch) |
14982 | return false; |
14983 | |
14984 | if (!fgHaveValidEdgeWeights) |
14985 | return false; |
14986 | |
14987 | for (BasicBlock* bSrc = fgFirstBB; bSrc != NULL; bSrc = bSrc->bbNext) |
14988 | { |
14989 | if (bSrc->bbJumpKind == BBJ_SWITCH) |
14990 | { |
14991 | unsigned jumpCnt; jumpCnt = bSrc->bbJumpSwt->bbsCount; |
14992 | BasicBlock** jumpTab; jumpTab = bSrc->bbJumpSwt->bbsDstTab; |
14993 | |
14994 | do |
14995 | { |
14996 | BasicBlock* bDst = *jumpTab; |
14997 | flowList* edgeToDst = fgGetPredForBlock(bDst, bSrc); |
14998 | double outRatio = (double) edgeToDst->flEdgeWeightMin / (double) bSrc->bbWeight; |
14999 | |
15000 | if (outRatio >= 0.60) |
15001 | { |
15002 | // straighten switch here... |
15003 | } |
15004 | } |
15005 | while (++jumpTab, --jumpCnt); |
15006 | } |
15007 | } |
15008 | #endif |
15009 | |
15010 | return result; |
15011 | } |
15012 | |
15013 | #ifdef _PREFAST_ |
15014 | #pragma warning(push) |
15015 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
15016 | #endif |
15017 | /***************************************************************************** |
15018 | * |
15019 | * Function called to reorder the flowgraph of BasicBlocks such that any |
15020 | * rarely run blocks are placed at the end of the block list. |
15021 | * If we have profile information we also use that information to reverse |
15022 | * all conditional jumps that would benefit. |
15023 | */ |
15024 | |
15025 | void Compiler::fgReorderBlocks() |
15026 | { |
15027 | noway_assert(opts.compDbgCode == false); |
15028 | |
15029 | #if FEATURE_EH_FUNCLETS |
15030 | assert(fgFuncletsCreated); |
15031 | #endif // FEATURE_EH_FUNCLETS |
15032 | |
15033 | // We can't relocate anything if we only have one block |
15034 | if (fgFirstBB->bbNext == nullptr) |
15035 | { |
15036 | return; |
15037 | } |
15038 | |
15039 | bool newRarelyRun = false; |
15040 | bool movedBlocks = false; |
15041 | bool optimizedSwitches = false; |
15042 | |
15043 | // First let us expand the set of run rarely blocks |
15044 | newRarelyRun |= fgExpandRarelyRunBlocks(); |
15045 | |
15046 | #if !FEATURE_EH_FUNCLETS |
15047 | movedBlocks |= fgRelocateEHRegions(); |
15048 | #endif // !FEATURE_EH_FUNCLETS |
15049 | |
15050 | // |
15051 | // If we are using profile weights we can change some |
15052 | // switch jumps into conditional test and jump |
15053 | // |
15054 | if (fgIsUsingProfileWeights()) |
15055 | { |
15056 | // |
15057 | // Note that this is currently not yet implemented |
15058 | // |
15059 | optimizedSwitches = fgOptimizeSwitchJumps(); |
15060 | if (optimizedSwitches) |
15061 | { |
15062 | fgUpdateFlowGraph(); |
15063 | } |
15064 | } |
15065 | |
15066 | #ifdef DEBUG |
15067 | if (verbose) |
15068 | { |
15069 | printf("*************** In fgReorderBlocks()\n" ); |
15070 | |
15071 | printf("\nInitial BasicBlocks" ); |
15072 | fgDispBasicBlocks(verboseTrees); |
15073 | printf("\n" ); |
15074 | } |
15075 | #endif // DEBUG |
15076 | |
15077 | BasicBlock* bNext; |
15078 | BasicBlock* bPrev; |
15079 | BasicBlock* block; |
15080 | unsigned XTnum; |
15081 | EHblkDsc* HBtab; |
15082 | |
15083 | // Iterate over every block, remembering our previous block in bPrev |
15084 | for (bPrev = fgFirstBB, block = bPrev->bbNext; block != nullptr; bPrev = block, block = block->bbNext) |
15085 | { |
15086 | // |
15087 | // Consider relocating the rarely run blocks such that they are at the end of the method. |
15088 | // We also consider reversing conditional branches so that they become a not taken forwards branch. |
15089 | // |
15090 | |
15091 | // If block is marked with a BBF_KEEP_BBJ_ALWAYS flag then we don't move the block |
15092 | if ((block->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0) |
15093 | { |
15094 | continue; |
15095 | } |
15096 | |
15097 | // Finally and handlers blocks are to be kept contiguous. |
15098 | // TODO-CQ: Allow reordering within the handler region |
15099 | if (block->hasHndIndex() == true) |
15100 | { |
15101 | continue; |
15102 | } |
15103 | |
15104 | bool reorderBlock = true; // This is set to false if we decide not to reorder 'block' |
15105 | bool isRare = block->isRunRarely(); |
15106 | BasicBlock* bDest = nullptr; |
15107 | bool forwardBranch = false; |
15108 | bool backwardBranch = false; |
15109 | |
15110 | // Setup bDest |
15111 | if ((bPrev->bbJumpKind == BBJ_COND) || (bPrev->bbJumpKind == BBJ_ALWAYS)) |
15112 | { |
15113 | bDest = bPrev->bbJumpDest; |
15114 | forwardBranch = fgIsForwardBranch(bPrev); |
15115 | backwardBranch = !forwardBranch; |
15116 | } |
15117 | |
15118 | // We will look for bPrev as a non rarely run block followed by block as a rarely run block |
15119 | // |
15120 | if (bPrev->isRunRarely()) |
15121 | { |
15122 | reorderBlock = false; |
15123 | } |
15124 | |
15125 | // If the weights of the bPrev, block and bDest were all obtained from a profile run |
15126 | // then we can use them to decide if it is useful to reverse this conditional branch |
15127 | |
15128 | BasicBlock::weight_t profHotWeight = -1; |
15129 | |
15130 | if (bPrev->hasProfileWeight() && block->hasProfileWeight() && ((bDest == nullptr) || bDest->hasProfileWeight())) |
15131 | { |
15132 | // |
15133 | // All blocks have profile information |
15134 | // |
15135 | if (forwardBranch) |
15136 | { |
15137 | if (bPrev->bbJumpKind == BBJ_ALWAYS) |
15138 | { |
15139 | // We can pull up the blocks that the unconditional jump branches to |
15140 | // if the weight of bDest is greater or equal to the weight of block |
15141 | // also the weight of bDest can't be zero. |
15142 | // |
15143 | if ((bDest->bbWeight < block->bbWeight) || (bDest->bbWeight == 0)) |
15144 | { |
15145 | reorderBlock = false; |
15146 | } |
15147 | else |
15148 | { |
15149 | // |
15150 | // If this remains true then we will try to pull up bDest to succeed bPrev |
15151 | // |
15152 | bool moveDestUp = true; |
15153 | |
15154 | if (fgHaveValidEdgeWeights) |
15155 | { |
15156 | // |
15157 | // The edge bPrev -> bDest must have a higher minimum weight |
15158 | // than every other edge into bDest |
15159 | // |
15160 | flowList* edgeFromPrev = fgGetPredForBlock(bDest, bPrev); |
15161 | noway_assert(edgeFromPrev != nullptr); |
15162 | |
15163 | // Examine all of the other edges into bDest |
15164 | for (flowList* edge = bDest->bbPreds; edge != nullptr; edge = edge->flNext) |
15165 | { |
15166 | if (edge != edgeFromPrev) |
15167 | { |
15168 | if (edge->flEdgeWeightMax >= edgeFromPrev->flEdgeWeightMin) |
15169 | { |
15170 | moveDestUp = false; |
15171 | break; |
15172 | } |
15173 | } |
15174 | } |
15175 | } |
15176 | else |
15177 | { |
15178 | // |
15179 | // The block bPrev must have a higher weight |
15180 | // than every other block that goes into bDest |
15181 | // |
15182 | |
15183 | // Examine all of the other edges into bDest |
15184 | for (flowList* edge = bDest->bbPreds; edge != nullptr; edge = edge->flNext) |
15185 | { |
15186 | BasicBlock* bTemp = edge->flBlock; |
15187 | |
15188 | if ((bTemp != bPrev) && (bTemp->bbWeight >= bPrev->bbWeight)) |
15189 | { |
15190 | moveDestUp = false; |
15191 | break; |
15192 | } |
15193 | } |
15194 | } |
15195 | |
15196 | // Are we still good to move bDest up to bPrev? |
15197 | if (moveDestUp) |
15198 | { |
15199 | // |
15200 | // We will consider all blocks that have less weight than profHotWeight to be |
15201 | // uncommonly run blocks as compared with the hot path of bPrev taken-jump to bDest |
15202 | // |
15203 | profHotWeight = bDest->bbWeight - 1; |
15204 | } |
15205 | else |
15206 | { |
15207 | if (block->isRunRarely()) |
15208 | { |
15209 | // We will move any rarely run blocks blocks |
15210 | profHotWeight = 0; |
15211 | } |
15212 | else |
15213 | { |
15214 | // We will move all blocks that have a weight less or equal to our fall through block |
15215 | profHotWeight = block->bbWeight + 1; |
15216 | } |
15217 | // But we won't try to connect with bDest |
15218 | bDest = nullptr; |
15219 | } |
15220 | } |
15221 | } |
15222 | else // (bPrev->bbJumpKind == BBJ_COND) |
15223 | { |
15224 | noway_assert(bPrev->bbJumpKind == BBJ_COND); |
15225 | // |
15226 | // We will reverse branch if the taken-jump to bDest ratio (i.e. 'takenRatio') |
15227 | // is more than 51% |
15228 | // |
15229 | // We will setup profHotWeight to be maximum bbWeight that a block |
15230 | // could have for us not to want to reverse the conditional branch |
15231 | // |
15232 | // We will consider all blocks that have less weight than profHotWeight to be |
15233 | // uncommonly run blocks as compared with the hot path of bPrev taken-jump to bDest |
15234 | // |
15235 | if (fgHaveValidEdgeWeights) |
15236 | { |
15237 | // We have valid edge weights, however even with valid edge weights |
15238 | // we may have a minimum and maximum range for each edges value |
15239 | // |
15240 | // We will check that the min weight of the bPrev to bDest edge |
15241 | // is more than twice the max weight of the bPrev to block edge. |
15242 | // |
15243 | // bPrev --> [BB04, weight 31] |
15244 | // | \ |
15245 | // edgeToBlock -------------> O \ |
15246 | // [min=8,max=10] V \ |
15247 | // block --> [BB05, weight 10] \ |
15248 | // \ |
15249 | // edgeToDest ----------------------------> O |
15250 | // [min=21,max=23] | |
15251 | // V |
15252 | // bDest ---------------> [BB08, weight 21] |
15253 | // |
15254 | flowList* edgeToDest = fgGetPredForBlock(bDest, bPrev); |
15255 | flowList* edgeToBlock = fgGetPredForBlock(block, bPrev); |
15256 | noway_assert(edgeToDest != nullptr); |
15257 | noway_assert(edgeToBlock != nullptr); |
15258 | // |
15259 | // Calculate the taken ratio |
15260 | // A takenRation of 0.10 means taken 10% of the time, not taken 90% of the time |
15261 | // A takenRation of 0.50 means taken 50% of the time, not taken 50% of the time |
15262 | // A takenRation of 0.90 means taken 90% of the time, not taken 10% of the time |
15263 | // |
15264 | double takenCount = |
15265 | ((double)edgeToDest->flEdgeWeightMin + (double)edgeToDest->flEdgeWeightMax) / 2.0; |
15266 | double notTakenCount = |
15267 | ((double)edgeToBlock->flEdgeWeightMin + (double)edgeToBlock->flEdgeWeightMax) / 2.0; |
15268 | double totalCount = takenCount + notTakenCount; |
15269 | double takenRatio = takenCount / totalCount; |
15270 | |
15271 | // If the takenRatio is greater or equal to 51% then we will reverse the branch |
15272 | if (takenRatio < 0.51) |
15273 | { |
15274 | reorderBlock = false; |
15275 | } |
15276 | else |
15277 | { |
15278 | // set profHotWeight |
15279 | profHotWeight = (edgeToBlock->flEdgeWeightMin + edgeToBlock->flEdgeWeightMax) / 2 - 1; |
15280 | } |
15281 | } |
15282 | else |
15283 | { |
15284 | // We don't have valid edge weight so we will be more conservative |
15285 | // We could have bPrev, block or bDest as part of a loop and thus have extra weight |
15286 | // |
15287 | // We will do two checks: |
15288 | // 1. Check that the weight of bDest is at least two times more than block |
15289 | // 2. Check that the weight of bPrev is at least three times more than block |
15290 | // |
15291 | // bPrev --> [BB04, weight 31] |
15292 | // | \ |
15293 | // V \ |
15294 | // block --> [BB05, weight 10] \ |
15295 | // \ |
15296 | // | |
15297 | // V |
15298 | // bDest ---------------> [BB08, weight 21] |
15299 | // |
15300 | // For this case weightDest is calculated as (21+1)/2 or 11 |
15301 | // and weightPrev is calculated as (31+2)/3 also 11 |
15302 | // |
15303 | // Generally both weightDest and weightPrev should calculate |
15304 | // the same value unless bPrev or bDest are part of a loop |
15305 | // |
15306 | BasicBlock::weight_t weightDest = |
15307 | bDest->isMaxBBWeight() ? bDest->bbWeight : (bDest->bbWeight + 1) / 2; |
15308 | BasicBlock::weight_t weightPrev = |
15309 | bPrev->isMaxBBWeight() ? bPrev->bbWeight : (bPrev->bbWeight + 2) / 3; |
15310 | |
15311 | // select the lower of weightDest and weightPrev |
15312 | profHotWeight = (weightDest < weightPrev) ? weightDest : weightPrev; |
15313 | |
15314 | // if the weight of block is greater (or equal) to profHotWeight then we don't reverse the cond |
15315 | if (block->bbWeight >= profHotWeight) |
15316 | { |
15317 | reorderBlock = false; |
15318 | } |
15319 | } |
15320 | } |
15321 | } |
15322 | else // not a forwardBranch |
15323 | { |
15324 | if (bPrev->bbFallsThrough()) |
15325 | { |
15326 | goto CHECK_FOR_RARE; |
15327 | } |
15328 | |
15329 | // Here we should pull up the highest weight block remaining |
15330 | // and place it here since bPrev does not fall through. |
15331 | |
15332 | BasicBlock::weight_t highestWeight = 0; |
15333 | BasicBlock* candidateBlock = nullptr; |
15334 | BasicBlock* lastNonFallThroughBlock = bPrev; |
15335 | BasicBlock* bTmp = bPrev->bbNext; |
15336 | |
15337 | while (bTmp != nullptr) |
15338 | { |
15339 | // Don't try to split a Call/Always pair |
15340 | // |
15341 | if (bTmp->isBBCallAlwaysPair()) |
15342 | { |
15343 | // Move bTmp forward |
15344 | bTmp = bTmp->bbNext; |
15345 | } |
15346 | |
15347 | // |
15348 | // Check for loop exit condition |
15349 | // |
15350 | if (bTmp == nullptr) |
15351 | { |
15352 | break; |
15353 | } |
15354 | |
15355 | // |
15356 | // if its weight is the highest one we've seen and |
15357 | // the EH regions allow for us to place bTmp after bPrev |
15358 | // |
15359 | if ((bTmp->bbWeight > highestWeight) && fgEhAllowsMoveBlock(bPrev, bTmp)) |
15360 | { |
15361 | // When we have a current candidateBlock that is a conditional (or unconditional) jump |
15362 | // to bTmp (which is a higher weighted block) then it is better to keep out current |
15363 | // candidateBlock and have it fall into bTmp |
15364 | // |
15365 | if ((candidateBlock == nullptr) || |
15366 | ((candidateBlock->bbJumpKind != BBJ_COND) && (candidateBlock->bbJumpKind != BBJ_ALWAYS)) || |
15367 | (candidateBlock->bbJumpDest != bTmp)) |
15368 | { |
15369 | // otherwise we have a new candidateBlock |
15370 | // |
15371 | highestWeight = bTmp->bbWeight; |
15372 | candidateBlock = lastNonFallThroughBlock->bbNext; |
15373 | } |
15374 | } |
15375 | |
15376 | if ((bTmp->bbFallsThrough() == false) || (bTmp->bbWeight == 0)) |
15377 | { |
15378 | lastNonFallThroughBlock = bTmp; |
15379 | } |
15380 | |
15381 | bTmp = bTmp->bbNext; |
15382 | } |
15383 | |
15384 | // If we didn't find a suitable block then skip this |
15385 | if (highestWeight == 0) |
15386 | { |
15387 | reorderBlock = false; |
15388 | } |
15389 | else |
15390 | { |
15391 | noway_assert(candidateBlock != nullptr); |
15392 | |
15393 | // If the candidateBlock is the same a block then skip this |
15394 | if (candidateBlock == block) |
15395 | { |
15396 | reorderBlock = false; |
15397 | } |
15398 | else |
15399 | { |
15400 | // Set bDest to the block that we want to come after bPrev |
15401 | bDest = candidateBlock; |
15402 | |
15403 | // set profHotWeight |
15404 | profHotWeight = highestWeight - 1; |
15405 | } |
15406 | } |
15407 | } |
15408 | } |
15409 | else // we don't have good profile info (or we are falling through) |
15410 | { |
15411 | |
15412 | CHECK_FOR_RARE:; |
15413 | |
15414 | /* We only want to reorder when we have a rarely run */ |
15415 | /* block right after a normal block, */ |
15416 | /* (bPrev is known to be a normal block at this point) */ |
15417 | if (!isRare) |
15418 | { |
15419 | if ((bDest == block->bbNext) && (block->bbJumpKind == BBJ_RETURN) && (bPrev->bbJumpKind == BBJ_ALWAYS)) |
15420 | { |
15421 | // This is a common case with expressions like "return Expr1 && Expr2" -- move the return |
15422 | // to establish fall-through. |
15423 | } |
15424 | else |
15425 | { |
15426 | reorderBlock = false; |
15427 | } |
15428 | } |
15429 | else |
15430 | { |
15431 | /* If the jump target bDest is also a rarely run block then we don't want to do the reversal */ |
15432 | if (bDest && bDest->isRunRarely()) |
15433 | { |
15434 | reorderBlock = false; /* Both block and bDest are rarely run */ |
15435 | } |
15436 | else |
15437 | { |
15438 | // We will move any rarely run blocks blocks |
15439 | profHotWeight = 0; |
15440 | } |
15441 | } |
15442 | } |
15443 | |
15444 | if (reorderBlock == false) |
15445 | { |
15446 | // |
15447 | // Check for an unconditional branch to a conditional branch |
15448 | // which also branches back to our next block |
15449 | // |
15450 | if (fgOptimizeBranch(bPrev)) |
15451 | { |
15452 | noway_assert(bPrev->bbJumpKind == BBJ_COND); |
15453 | } |
15454 | continue; |
15455 | } |
15456 | |
15457 | // Now we need to determine which blocks should be moved |
15458 | // |
15459 | // We consider one of two choices: |
15460 | // |
15461 | // 1. Moving the fall-through blocks (or rarely run blocks) down to |
15462 | // later in the method and hopefully connecting the jump dest block |
15463 | // so that it becomes the fall through block |
15464 | // |
15465 | // And when bDest in not NULL, we also consider: |
15466 | // |
15467 | // 2. Moving the bDest block (or blocks) up to bPrev |
15468 | // so that it could be used as a fall through block |
15469 | // |
15470 | // We will prefer option #1 if we are able to connect the jump dest |
15471 | // block as the fall though block otherwise will we try to use option #2 |
15472 | // |
15473 | |
15474 | // |
15475 | // Consider option #1: relocating blocks starting at 'block' |
15476 | // to later in flowgraph |
15477 | // |
15478 | // We set bStart to the first block that will be relocated |
15479 | // and bEnd to the last block that will be relocated |
15480 | |
15481 | BasicBlock* bStart = block; |
15482 | BasicBlock* bEnd = bStart; |
15483 | bNext = bEnd->bbNext; |
15484 | bool connected_bDest = false; |
15485 | |
15486 | if ((backwardBranch && !isRare) || |
15487 | ((block->bbFlags & BBF_DONT_REMOVE) != 0)) // Don't choose option #1 when block is the start of a try region |
15488 | { |
15489 | bStart = nullptr; |
15490 | bEnd = nullptr; |
15491 | } |
15492 | else |
15493 | { |
15494 | while (true) |
15495 | { |
15496 | // Don't try to split a Call/Always pair |
15497 | // |
15498 | if (bEnd->isBBCallAlwaysPair()) |
15499 | { |
15500 | // Move bEnd and bNext forward |
15501 | bEnd = bNext; |
15502 | bNext = bNext->bbNext; |
15503 | } |
15504 | |
15505 | // |
15506 | // Check for loop exit condition |
15507 | // |
15508 | if (bNext == nullptr) |
15509 | { |
15510 | break; |
15511 | } |
15512 | |
15513 | #if FEATURE_EH_FUNCLETS |
15514 | // Check if we've reached the funclets region, at the end of the function |
15515 | if (fgFirstFuncletBB == bEnd->bbNext) |
15516 | { |
15517 | break; |
15518 | } |
15519 | #endif // FEATURE_EH_FUNCLETS |
15520 | |
15521 | if (bNext == bDest) |
15522 | { |
15523 | connected_bDest = true; |
15524 | break; |
15525 | } |
15526 | |
15527 | // All the blocks must have the same try index |
15528 | // and must not have the BBF_DONT_REMOVE flag set |
15529 | |
15530 | if (!BasicBlock::sameTryRegion(bStart, bNext) || ((bNext->bbFlags & BBF_DONT_REMOVE) != 0)) |
15531 | { |
15532 | // exit the loop, bEnd is now set to the |
15533 | // last block that we want to relocate |
15534 | break; |
15535 | } |
15536 | |
15537 | // If we are relocating rarely run blocks.. |
15538 | if (isRare) |
15539 | { |
15540 | // ... then all blocks must be rarely run |
15541 | if (!bNext->isRunRarely()) |
15542 | { |
15543 | // exit the loop, bEnd is now set to the |
15544 | // last block that we want to relocate |
15545 | break; |
15546 | } |
15547 | } |
15548 | else |
15549 | { |
15550 | // If we are moving blocks that are hot then all |
15551 | // of the blocks moved must be less than profHotWeight */ |
15552 | if (bNext->bbWeight >= profHotWeight) |
15553 | { |
15554 | // exit the loop, bEnd is now set to the |
15555 | // last block that we would relocate |
15556 | break; |
15557 | } |
15558 | } |
15559 | |
15560 | // Move bEnd and bNext forward |
15561 | bEnd = bNext; |
15562 | bNext = bNext->bbNext; |
15563 | } |
15564 | |
15565 | // Set connected_bDest to true if moving blocks [bStart .. bEnd] |
15566 | // connects with the the jump dest of bPrev (i.e bDest) and |
15567 | // thus allows bPrev fall through instead of jump. |
15568 | if (bNext == bDest) |
15569 | { |
15570 | connected_bDest = true; |
15571 | } |
15572 | } |
15573 | |
15574 | // Now consider option #2: Moving the jump dest block (or blocks) |
15575 | // up to bPrev |
15576 | // |
15577 | // The variables bStart2, bEnd2 and bPrev2 are used for option #2 |
15578 | // |
15579 | // We will setup bStart2 to the first block that will be relocated |
15580 | // and bEnd2 to the last block that will be relocated |
15581 | // and bPrev2 to be the lexical pred of bDest |
15582 | // |
15583 | // If after this calculation bStart2 is NULL we cannot use option #2, |
15584 | // otherwise bStart2, bEnd2 and bPrev2 are all non-NULL and we will use option #2 |
15585 | |
15586 | BasicBlock* bStart2 = nullptr; |
15587 | BasicBlock* bEnd2 = nullptr; |
15588 | BasicBlock* bPrev2 = nullptr; |
15589 | |
15590 | // If option #1 didn't connect bDest and bDest isn't NULL |
15591 | if ((connected_bDest == false) && (bDest != nullptr) && |
15592 | // The jump target cannot be moved if it has the BBF_DONT_REMOVE flag set |
15593 | ((bDest->bbFlags & BBF_DONT_REMOVE) == 0)) |
15594 | { |
15595 | // We will consider option #2: relocating blocks starting at 'bDest' to succeed bPrev |
15596 | // |
15597 | // setup bPrev2 to be the lexical pred of bDest |
15598 | |
15599 | bPrev2 = block; |
15600 | while (bPrev2 != nullptr) |
15601 | { |
15602 | if (bPrev2->bbNext == bDest) |
15603 | { |
15604 | break; |
15605 | } |
15606 | |
15607 | bPrev2 = bPrev2->bbNext; |
15608 | } |
15609 | |
15610 | if ((bPrev2 != nullptr) && fgEhAllowsMoveBlock(bPrev, bDest)) |
15611 | { |
15612 | // We have decided that relocating bDest to be after bPrev is best |
15613 | // Set bStart2 to the first block that will be relocated |
15614 | // and bEnd2 to the last block that will be relocated |
15615 | // |
15616 | // Assigning to bStart2 selects option #2 |
15617 | // |
15618 | bStart2 = bDest; |
15619 | bEnd2 = bStart2; |
15620 | bNext = bEnd2->bbNext; |
15621 | |
15622 | while (true) |
15623 | { |
15624 | // Don't try to split a Call/Always pair |
15625 | // |
15626 | if (bEnd2->isBBCallAlwaysPair()) |
15627 | { |
15628 | noway_assert(bNext->bbJumpKind == BBJ_ALWAYS); |
15629 | // Move bEnd2 and bNext forward |
15630 | bEnd2 = bNext; |
15631 | bNext = bNext->bbNext; |
15632 | } |
15633 | |
15634 | // Check for the Loop exit conditions |
15635 | |
15636 | if (bNext == nullptr) |
15637 | { |
15638 | break; |
15639 | } |
15640 | |
15641 | if (bEnd2->bbFallsThrough() == false) |
15642 | { |
15643 | break; |
15644 | } |
15645 | |
15646 | // If we are relocating rarely run blocks.. |
15647 | // All the blocks must have the same try index, |
15648 | // and must not have the BBF_DONT_REMOVE flag set |
15649 | |
15650 | if (!BasicBlock::sameTryRegion(bStart2, bNext) || ((bNext->bbFlags & BBF_DONT_REMOVE) != 0)) |
15651 | { |
15652 | // exit the loop, bEnd2 is now set to the |
15653 | // last block that we want to relocate |
15654 | break; |
15655 | } |
15656 | |
15657 | if (isRare) |
15658 | { |
15659 | /* ... then all blocks must not be rarely run */ |
15660 | if (bNext->isRunRarely()) |
15661 | { |
15662 | // exit the loop, bEnd2 is now set to the |
15663 | // last block that we want to relocate |
15664 | break; |
15665 | } |
15666 | } |
15667 | else |
15668 | { |
15669 | // If we are relocating hot blocks |
15670 | // all blocks moved must be greater than profHotWeight |
15671 | if (bNext->bbWeight <= profHotWeight) |
15672 | { |
15673 | // exit the loop, bEnd2 is now set to the |
15674 | // last block that we want to relocate |
15675 | break; |
15676 | } |
15677 | } |
15678 | |
15679 | // Move bEnd2 and bNext forward |
15680 | bEnd2 = bNext; |
15681 | bNext = bNext->bbNext; |
15682 | } |
15683 | } |
15684 | } |
15685 | |
15686 | // If we are using option #1 then ... |
15687 | if (bStart2 == nullptr) |
15688 | { |
15689 | // Don't use option #1 for a backwards branch |
15690 | if (bStart == nullptr) |
15691 | { |
15692 | continue; |
15693 | } |
15694 | |
15695 | // .... Don't move a set of blocks that are already at the end of the main method |
15696 | if (bEnd == fgLastBBInMainFunction()) |
15697 | { |
15698 | continue; |
15699 | } |
15700 | } |
15701 | |
15702 | #ifdef DEBUG |
15703 | if (verbose) |
15704 | { |
15705 | if (bDest != nullptr) |
15706 | { |
15707 | if (bPrev->bbJumpKind == BBJ_COND) |
15708 | { |
15709 | printf("Decided to reverse conditional branch at block " FMT_BB " branch to " FMT_BB " " , |
15710 | bPrev->bbNum, bDest->bbNum); |
15711 | } |
15712 | else if (bPrev->bbJumpKind == BBJ_ALWAYS) |
15713 | { |
15714 | printf("Decided to straighten unconditional branch at block " FMT_BB " branch to " FMT_BB " " , |
15715 | bPrev->bbNum, bDest->bbNum); |
15716 | } |
15717 | else |
15718 | { |
15719 | printf("Decided to place hot code after " FMT_BB ", placed " FMT_BB " after this block " , |
15720 | bPrev->bbNum, bDest->bbNum); |
15721 | } |
15722 | |
15723 | if (profHotWeight > 0) |
15724 | { |
15725 | printf("because of IBC profile data\n" ); |
15726 | } |
15727 | else |
15728 | { |
15729 | if (bPrev->bbFallsThrough()) |
15730 | { |
15731 | printf("since it falls into a rarely run block\n" ); |
15732 | } |
15733 | else |
15734 | { |
15735 | printf("since it is succeeded by a rarely run block\n" ); |
15736 | } |
15737 | } |
15738 | } |
15739 | else |
15740 | { |
15741 | printf("Decided to relocate block(s) after block " FMT_BB " since they are %s block(s)\n" , bPrev->bbNum, |
15742 | block->isRunRarely() ? "rarely run" : "uncommonly run" ); |
15743 | } |
15744 | } |
15745 | #endif // DEBUG |
15746 | |
15747 | // We will set insertAfterBlk to the block the precedes our insertion range |
15748 | // We will set bStartPrev to be the block that precedes the set of blocks that we are moving |
15749 | BasicBlock* insertAfterBlk; |
15750 | BasicBlock* bStartPrev; |
15751 | |
15752 | if (bStart2 != nullptr) |
15753 | { |
15754 | // Option #2: relocating blocks starting at 'bDest' to follow bPrev |
15755 | |
15756 | // Update bStart and bEnd so that we can use these two for all later operations |
15757 | bStart = bStart2; |
15758 | bEnd = bEnd2; |
15759 | |
15760 | // Set bStartPrev to be the block that comes before bStart |
15761 | bStartPrev = bPrev2; |
15762 | |
15763 | // We will move [bStart..bEnd] to immediately after bPrev |
15764 | insertAfterBlk = bPrev; |
15765 | } |
15766 | else |
15767 | { |
15768 | // option #1: Moving the fall-through blocks (or rarely run blocks) down to later in the method |
15769 | |
15770 | // Set bStartPrev to be the block that come before bStart |
15771 | bStartPrev = bPrev; |
15772 | |
15773 | // We will move [bStart..bEnd] but we will pick the insert location later |
15774 | insertAfterBlk = nullptr; |
15775 | } |
15776 | |
15777 | // We are going to move [bStart..bEnd] so they can't be NULL |
15778 | noway_assert(bStart != nullptr); |
15779 | noway_assert(bEnd != nullptr); |
15780 | |
15781 | // bEnd can't be a BBJ_CALLFINALLY unless it is a RETLESS call |
15782 | noway_assert((bEnd->bbJumpKind != BBJ_CALLFINALLY) || (bEnd->bbFlags & BBF_RETLESS_CALL)); |
15783 | |
15784 | // bStartPrev must be set to the block that precedes bStart |
15785 | noway_assert(bStartPrev->bbNext == bStart); |
15786 | |
15787 | // Since we will be unlinking [bStart..bEnd], |
15788 | // we need to compute and remember if bStart is in each of |
15789 | // the try and handler regions |
15790 | // |
15791 | bool* fStartIsInTry = nullptr; |
15792 | bool* fStartIsInHnd = nullptr; |
15793 | |
15794 | if (compHndBBtabCount > 0) |
15795 | { |
15796 | fStartIsInTry = new (this, CMK_Unknown) bool[compHndBBtabCount]; |
15797 | fStartIsInHnd = new (this, CMK_Unknown) bool[compHndBBtabCount]; |
15798 | |
15799 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
15800 | { |
15801 | fStartIsInTry[XTnum] = HBtab->InTryRegionBBRange(bStart); |
15802 | fStartIsInHnd[XTnum] = HBtab->InHndRegionBBRange(bStart); |
15803 | } |
15804 | } |
15805 | |
15806 | /* Temporarily unlink [bStart..bEnd] from the flow graph */ |
15807 | fgUnlinkRange(bStart, bEnd); |
15808 | |
15809 | if (insertAfterBlk == nullptr) |
15810 | { |
15811 | // Find new location for the unlinked block(s) |
15812 | // Set insertAfterBlk to the block which will precede the insertion point |
15813 | |
15814 | if (!bStart->hasTryIndex() && isRare) |
15815 | { |
15816 | // We'll just insert the blocks at the end of the method. If the method |
15817 | // has funclets, we will insert at the end of the main method but before |
15818 | // any of the funclets. Note that we create funclets before we call |
15819 | // fgReorderBlocks(). |
15820 | |
15821 | insertAfterBlk = fgLastBBInMainFunction(); |
15822 | noway_assert(insertAfterBlk != bPrev); |
15823 | } |
15824 | else |
15825 | { |
15826 | BasicBlock* startBlk; |
15827 | BasicBlock* lastBlk; |
15828 | EHblkDsc* ehDsc = ehInitTryBlockRange(bStart, &startBlk, &lastBlk); |
15829 | |
15830 | BasicBlock* endBlk; |
15831 | |
15832 | /* Setup startBlk and endBlk as the range to search */ |
15833 | |
15834 | if (ehDsc != nullptr) |
15835 | { |
15836 | endBlk = lastBlk->bbNext; |
15837 | |
15838 | /* |
15839 | Multiple (nested) try regions might start from the same BB. |
15840 | For example, |
15841 | |
15842 | try3 try2 try1 |
15843 | |--- |--- |--- BB01 |
15844 | | | | BB02 |
15845 | | | |--- BB03 |
15846 | | | BB04 |
15847 | | |------------ BB05 |
15848 | | BB06 |
15849 | |------------------- BB07 |
15850 | |
15851 | Now if we want to insert in try2 region, we will start with startBlk=BB01. |
15852 | The following loop will allow us to start from startBlk==BB04. |
15853 | */ |
15854 | while (!BasicBlock::sameTryRegion(startBlk, bStart) && (startBlk != endBlk)) |
15855 | { |
15856 | startBlk = startBlk->bbNext; |
15857 | } |
15858 | |
15859 | // startBlk cannot equal endBlk as it must come before endBlk |
15860 | if (startBlk == endBlk) |
15861 | { |
15862 | goto CANNOT_MOVE; |
15863 | } |
15864 | |
15865 | // we also can't start searching the try region at bStart |
15866 | if (startBlk == bStart) |
15867 | { |
15868 | // if bEnd is the last block in the method or |
15869 | // or if bEnd->bbNext is in a different try region |
15870 | // then we cannot move the blocks |
15871 | // |
15872 | if ((bEnd->bbNext == nullptr) || !BasicBlock::sameTryRegion(startBlk, bEnd->bbNext)) |
15873 | { |
15874 | goto CANNOT_MOVE; |
15875 | } |
15876 | |
15877 | startBlk = bEnd->bbNext; |
15878 | |
15879 | // Check that the new startBlk still comes before endBlk |
15880 | |
15881 | // startBlk cannot equal endBlk as it must come before endBlk |
15882 | if (startBlk == endBlk) |
15883 | { |
15884 | goto CANNOT_MOVE; |
15885 | } |
15886 | |
15887 | BasicBlock* tmpBlk = startBlk; |
15888 | while ((tmpBlk != endBlk) && (tmpBlk != nullptr)) |
15889 | { |
15890 | tmpBlk = tmpBlk->bbNext; |
15891 | } |
15892 | |
15893 | // when tmpBlk is NULL that means startBlk is after endBlk |
15894 | // so there is no way to move bStart..bEnd within the try region |
15895 | if (tmpBlk == nullptr) |
15896 | { |
15897 | goto CANNOT_MOVE; |
15898 | } |
15899 | } |
15900 | } |
15901 | else |
15902 | { |
15903 | noway_assert(isRare == false); |
15904 | |
15905 | /* We'll search through the entire main method */ |
15906 | startBlk = fgFirstBB; |
15907 | endBlk = fgEndBBAfterMainFunction(); |
15908 | } |
15909 | |
15910 | // Calculate nearBlk and jumpBlk and then call fgFindInsertPoint() |
15911 | // to find our insertion block |
15912 | // |
15913 | { |
15914 | // If the set of blocks that we are moving ends with a BBJ_ALWAYS to |
15915 | // another [rarely run] block that comes after bPrev (forward branch) |
15916 | // then we can set up nearBlk to eliminate this jump sometimes |
15917 | // |
15918 | BasicBlock* nearBlk = nullptr; |
15919 | BasicBlock* jumpBlk = nullptr; |
15920 | |
15921 | if ((bEnd->bbJumpKind == BBJ_ALWAYS) && (!isRare || bEnd->bbJumpDest->isRunRarely()) && |
15922 | fgIsForwardBranch(bEnd, bPrev)) |
15923 | { |
15924 | // Set nearBlk to be the block in [startBlk..endBlk] |
15925 | // such that nearBlk->bbNext == bEnd->JumpDest |
15926 | // if no such block exists then set nearBlk to NULL |
15927 | nearBlk = startBlk; |
15928 | jumpBlk = bEnd; |
15929 | do |
15930 | { |
15931 | // We do not want to set nearBlk to bPrev |
15932 | // since then we will not move [bStart..bEnd] |
15933 | // |
15934 | if (nearBlk != bPrev) |
15935 | { |
15936 | // Check if nearBlk satisfies our requirement |
15937 | if (nearBlk->bbNext == bEnd->bbJumpDest) |
15938 | { |
15939 | break; |
15940 | } |
15941 | } |
15942 | |
15943 | // Did we reach the endBlk? |
15944 | if (nearBlk == endBlk) |
15945 | { |
15946 | nearBlk = nullptr; |
15947 | break; |
15948 | } |
15949 | |
15950 | // advance nearBlk to the next block |
15951 | nearBlk = nearBlk->bbNext; |
15952 | |
15953 | } while (nearBlk != nullptr); |
15954 | } |
15955 | |
15956 | // if nearBlk is NULL then we set nearBlk to be the |
15957 | // first block that we want to insert after. |
15958 | if (nearBlk == nullptr) |
15959 | { |
15960 | if (bDest != nullptr) |
15961 | { |
15962 | // we want to insert after bDest |
15963 | nearBlk = bDest; |
15964 | } |
15965 | else |
15966 | { |
15967 | // we want to insert after bPrev |
15968 | nearBlk = bPrev; |
15969 | } |
15970 | } |
15971 | |
15972 | /* Set insertAfterBlk to the block which we will insert after. */ |
15973 | |
15974 | insertAfterBlk = |
15975 | fgFindInsertPoint(bStart->bbTryIndex, |
15976 | true, // Insert in the try region. |
15977 | startBlk, endBlk, nearBlk, jumpBlk, bStart->bbWeight == BB_ZERO_WEIGHT); |
15978 | } |
15979 | |
15980 | /* See if insertAfterBlk is the same as where we started, */ |
15981 | /* or if we could not find any insertion point */ |
15982 | |
15983 | if ((insertAfterBlk == bPrev) || (insertAfterBlk == nullptr)) |
15984 | { |
15985 | CANNOT_MOVE:; |
15986 | /* We couldn't move the blocks, so put everything back */ |
15987 | /* relink [bStart .. bEnd] into the flow graph */ |
15988 | |
15989 | bPrev->setNext(bStart); |
15990 | if (bEnd->bbNext) |
15991 | { |
15992 | bEnd->bbNext->bbPrev = bEnd; |
15993 | } |
15994 | #ifdef DEBUG |
15995 | if (verbose) |
15996 | { |
15997 | if (bStart != bEnd) |
15998 | { |
15999 | printf("Could not relocate blocks (" FMT_BB " .. " FMT_BB ")\n" , bStart->bbNum, |
16000 | bEnd->bbNum); |
16001 | } |
16002 | else |
16003 | { |
16004 | printf("Could not relocate block " FMT_BB "\n" , bStart->bbNum); |
16005 | } |
16006 | } |
16007 | #endif // DEBUG |
16008 | continue; |
16009 | } |
16010 | } |
16011 | } |
16012 | |
16013 | noway_assert(insertAfterBlk != nullptr); |
16014 | noway_assert(bStartPrev != nullptr); |
16015 | noway_assert(bStartPrev != insertAfterBlk); |
16016 | |
16017 | #ifdef DEBUG |
16018 | movedBlocks = true; |
16019 | |
16020 | if (verbose) |
16021 | { |
16022 | const char* msg; |
16023 | if (bStart2 != nullptr) |
16024 | { |
16025 | msg = "hot" ; |
16026 | } |
16027 | else |
16028 | { |
16029 | if (isRare) |
16030 | { |
16031 | msg = "rarely run" ; |
16032 | } |
16033 | else |
16034 | { |
16035 | msg = "uncommon" ; |
16036 | } |
16037 | } |
16038 | |
16039 | printf("Relocated %s " , msg); |
16040 | if (bStart != bEnd) |
16041 | { |
16042 | printf("blocks (" FMT_BB " .. " FMT_BB ")" , bStart->bbNum, bEnd->bbNum); |
16043 | } |
16044 | else |
16045 | { |
16046 | printf("block " FMT_BB, bStart->bbNum); |
16047 | } |
16048 | |
16049 | if (bPrev->bbJumpKind == BBJ_COND) |
16050 | { |
16051 | printf(" by reversing conditional jump at " FMT_BB "\n" , bPrev->bbNum); |
16052 | } |
16053 | else |
16054 | { |
16055 | printf("\n" , bPrev->bbNum); |
16056 | } |
16057 | } |
16058 | #endif // DEBUG |
16059 | |
16060 | if (bPrev->bbJumpKind == BBJ_COND) |
16061 | { |
16062 | /* Reverse the bPrev jump condition */ |
16063 | GenTree* condTest = bPrev->lastStmt(); |
16064 | |
16065 | condTest = condTest->gtStmt.gtStmtExpr; |
16066 | noway_assert(condTest->gtOper == GT_JTRUE); |
16067 | |
16068 | condTest->gtOp.gtOp1 = gtReverseCond(condTest->gtOp.gtOp1); |
16069 | |
16070 | if (bStart2 == nullptr) |
16071 | { |
16072 | /* Set the new jump dest for bPrev to the rarely run or uncommon block(s) */ |
16073 | bPrev->bbJumpDest = bStart; |
16074 | bStart->bbFlags |= (BBF_JMP_TARGET | BBF_HAS_LABEL); |
16075 | } |
16076 | else |
16077 | { |
16078 | noway_assert(insertAfterBlk == bPrev); |
16079 | noway_assert(insertAfterBlk->bbNext == block); |
16080 | |
16081 | /* Set the new jump dest for bPrev to the rarely run or uncommon block(s) */ |
16082 | bPrev->bbJumpDest = block; |
16083 | block->bbFlags |= (BBF_JMP_TARGET | BBF_HAS_LABEL); |
16084 | } |
16085 | } |
16086 | |
16087 | // If we are moving blocks that are at the end of a try or handler |
16088 | // we will need to shorten ebdTryLast or ebdHndLast |
16089 | // |
16090 | ehUpdateLastBlocks(bEnd, bStartPrev); |
16091 | |
16092 | // If we are moving blocks into the end of a try region or handler region |
16093 | // we will need to extend ebdTryLast or ebdHndLast so the blocks that we |
16094 | // are moving are part of this try or handler region. |
16095 | // |
16096 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
16097 | { |
16098 | // Are we moving blocks to the end of a try region? |
16099 | if (HBtab->ebdTryLast == insertAfterBlk) |
16100 | { |
16101 | if (fStartIsInTry[XTnum]) |
16102 | { |
16103 | // bStart..bEnd is in the try, so extend the try region |
16104 | fgSetTryEnd(HBtab, bEnd); |
16105 | } |
16106 | } |
16107 | |
16108 | // Are we moving blocks to the end of a handler region? |
16109 | if (HBtab->ebdHndLast == insertAfterBlk) |
16110 | { |
16111 | if (fStartIsInHnd[XTnum]) |
16112 | { |
16113 | // bStart..bEnd is in the handler, so extend the handler region |
16114 | fgSetHndEnd(HBtab, bEnd); |
16115 | } |
16116 | } |
16117 | } |
16118 | |
16119 | /* We have decided to insert the block(s) after 'insertAfterBlk' */ |
16120 | fgMoveBlocksAfter(bStart, bEnd, insertAfterBlk); |
16121 | |
16122 | if (bDest) |
16123 | { |
16124 | /* We may need to insert an unconditional branch after bPrev to bDest */ |
16125 | fgConnectFallThrough(bPrev, bDest); |
16126 | } |
16127 | else |
16128 | { |
16129 | /* If bPrev falls through, we must insert a jump to block */ |
16130 | fgConnectFallThrough(bPrev, block); |
16131 | } |
16132 | |
16133 | BasicBlock* bSkip = bEnd->bbNext; |
16134 | |
16135 | /* If bEnd falls through, we must insert a jump to bNext */ |
16136 | fgConnectFallThrough(bEnd, bNext); |
16137 | |
16138 | if (bStart2 == nullptr) |
16139 | { |
16140 | /* If insertAfterBlk falls through, we are forced to */ |
16141 | /* add a jump around the block(s) we just inserted */ |
16142 | fgConnectFallThrough(insertAfterBlk, bSkip); |
16143 | } |
16144 | else |
16145 | { |
16146 | /* We may need to insert an unconditional branch after bPrev2 to bStart */ |
16147 | fgConnectFallThrough(bPrev2, bStart); |
16148 | } |
16149 | |
16150 | #if DEBUG |
16151 | if (verbose) |
16152 | { |
16153 | printf("\nAfter this change in fgReorderBlocks the BB graph is:" ); |
16154 | fgDispBasicBlocks(verboseTrees); |
16155 | printf("\n" ); |
16156 | } |
16157 | fgVerifyHandlerTab(); |
16158 | |
16159 | // Make sure that the predecessor lists are accurate |
16160 | if (expensiveDebugCheckLevel >= 2) |
16161 | { |
16162 | fgDebugCheckBBlist(); |
16163 | } |
16164 | #endif // DEBUG |
16165 | |
16166 | // Set our iteration point 'block' to be the new bPrev->bbNext |
16167 | // It will be used as the next bPrev |
16168 | block = bPrev->bbNext; |
16169 | |
16170 | } // end of for loop(bPrev,block) |
16171 | |
16172 | bool changed = movedBlocks || newRarelyRun || optimizedSwitches; |
16173 | |
16174 | if (changed) |
16175 | { |
16176 | fgNeedsUpdateFlowGraph = true; |
16177 | #if DEBUG |
16178 | // Make sure that the predecessor lists are accurate |
16179 | if (expensiveDebugCheckLevel >= 2) |
16180 | { |
16181 | fgDebugCheckBBlist(); |
16182 | } |
16183 | #endif // DEBUG |
16184 | } |
16185 | } |
16186 | #ifdef _PREFAST_ |
16187 | #pragma warning(pop) |
16188 | #endif |
16189 | |
16190 | /*------------------------------------------------------------------------- |
16191 | * |
16192 | * Walk the basic blocks list to determine the first block to place in the |
16193 | * cold section. This would be the first of a series of rarely executed blocks |
16194 | * such that no succeeding blocks are in a try region or an exception handler |
16195 | * or are rarely executed. |
16196 | */ |
16197 | |
16198 | void Compiler::fgDetermineFirstColdBlock() |
16199 | { |
16200 | #ifdef DEBUG |
16201 | if (verbose) |
16202 | { |
16203 | printf("\n*************** In fgDetermineFirstColdBlock()\n" ); |
16204 | } |
16205 | #endif // DEBUG |
16206 | |
16207 | // Since we may need to create a new transistion block |
16208 | // we assert that it is OK to create new blocks. |
16209 | // |
16210 | assert(fgSafeBasicBlockCreation); |
16211 | |
16212 | fgFirstColdBlock = nullptr; |
16213 | |
16214 | if (!opts.compProcedureSplitting) |
16215 | { |
16216 | JITDUMP("No procedure splitting will be done for this method\n" ); |
16217 | return; |
16218 | } |
16219 | |
16220 | #ifdef DEBUG |
16221 | if ((compHndBBtabCount > 0) && !opts.compProcedureSplittingEH) |
16222 | { |
16223 | JITDUMP("No procedure splitting will be done for this method with EH (by request)\n" ); |
16224 | return; |
16225 | } |
16226 | #endif // DEBUG |
16227 | |
16228 | #if FEATURE_EH_FUNCLETS |
16229 | // TODO-CQ: handle hot/cold splitting in functions with EH (including synchronized methods |
16230 | // that create EH in methods without explicit EH clauses). |
16231 | |
16232 | if (compHndBBtabCount > 0) |
16233 | { |
16234 | JITDUMP("No procedure splitting will be done for this method with EH (implementation limitation)\n" ); |
16235 | return; |
16236 | } |
16237 | #endif // FEATURE_EH_FUNCLETS |
16238 | |
16239 | BasicBlock* firstColdBlock = nullptr; |
16240 | BasicBlock* prevToFirstColdBlock = nullptr; |
16241 | BasicBlock* block; |
16242 | BasicBlock* lblk; |
16243 | |
16244 | for (lblk = nullptr, block = fgFirstBB; block != nullptr; lblk = block, block = block->bbNext) |
16245 | { |
16246 | bool blockMustBeInHotSection = false; |
16247 | |
16248 | #if HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION |
16249 | if (bbIsHandlerBeg(block)) |
16250 | { |
16251 | blockMustBeInHotSection = true; |
16252 | } |
16253 | #endif // HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION |
16254 | |
16255 | // Do we have a candidate for the first cold block? |
16256 | if (firstColdBlock != nullptr) |
16257 | { |
16258 | // We have a candidate for first cold block |
16259 | |
16260 | // Is this a hot block? |
16261 | if (blockMustBeInHotSection || (block->isRunRarely() == false)) |
16262 | { |
16263 | // We have to restart the search for the first cold block |
16264 | firstColdBlock = nullptr; |
16265 | prevToFirstColdBlock = nullptr; |
16266 | } |
16267 | } |
16268 | else // (firstColdBlock == NULL) |
16269 | { |
16270 | // We don't have a candidate for first cold block |
16271 | |
16272 | // Is this a cold block? |
16273 | if (!blockMustBeInHotSection && (block->isRunRarely() == true)) |
16274 | { |
16275 | // |
16276 | // If the last block that was hot was a BBJ_COND |
16277 | // then we will have to add an unconditional jump |
16278 | // so the code size for block needs be large |
16279 | // enough to make it worth our while |
16280 | // |
16281 | if ((lblk == nullptr) || (lblk->bbJumpKind != BBJ_COND) || (fgGetCodeEstimate(block) >= 8)) |
16282 | { |
16283 | // This block is now a candidate for first cold block |
16284 | // Also remember the predecessor to this block |
16285 | firstColdBlock = block; |
16286 | prevToFirstColdBlock = lblk; |
16287 | } |
16288 | } |
16289 | } |
16290 | } |
16291 | |
16292 | if (firstColdBlock == fgFirstBB) |
16293 | { |
16294 | // If the first block is Cold then we can't move any blocks |
16295 | // into the cold section |
16296 | |
16297 | firstColdBlock = nullptr; |
16298 | } |
16299 | |
16300 | if (firstColdBlock != nullptr) |
16301 | { |
16302 | noway_assert(prevToFirstColdBlock != nullptr); |
16303 | |
16304 | if (prevToFirstColdBlock == nullptr) |
16305 | { |
16306 | return; // To keep Prefast happy |
16307 | } |
16308 | |
16309 | // If we only have one cold block |
16310 | // then it may not be worth it to move it |
16311 | // into the Cold section as a jump to the |
16312 | // Cold section is 5 bytes in size. |
16313 | // |
16314 | if (firstColdBlock->bbNext == nullptr) |
16315 | { |
16316 | // If the size of the cold block is 7 or less |
16317 | // then we will keep it in the Hot section. |
16318 | // |
16319 | if (fgGetCodeEstimate(firstColdBlock) < 8) |
16320 | { |
16321 | firstColdBlock = nullptr; |
16322 | goto EXIT; |
16323 | } |
16324 | } |
16325 | |
16326 | // When the last Hot block fall through into the Cold section |
16327 | // we may need to add a jump |
16328 | // |
16329 | if (prevToFirstColdBlock->bbFallsThrough()) |
16330 | { |
16331 | switch (prevToFirstColdBlock->bbJumpKind) |
16332 | { |
16333 | default: |
16334 | noway_assert(!"Unhandled jumpkind in fgDetermineFirstColdBlock()" ); |
16335 | |
16336 | case BBJ_CALLFINALLY: |
16337 | // A BBJ_CALLFINALLY that falls through is always followed |
16338 | // by an empty BBJ_ALWAYS. |
16339 | // |
16340 | assert(prevToFirstColdBlock->isBBCallAlwaysPair()); |
16341 | firstColdBlock = |
16342 | firstColdBlock->bbNext; // Note that this assignment could make firstColdBlock == nullptr |
16343 | break; |
16344 | |
16345 | case BBJ_COND: |
16346 | // |
16347 | // This is a slightly more complicated case, because we will |
16348 | // probably need to insert a block to jump to the cold section. |
16349 | // |
16350 | if (firstColdBlock->isEmpty() && (firstColdBlock->bbJumpKind == BBJ_ALWAYS)) |
16351 | { |
16352 | // We can just use this block as the transitionBlock |
16353 | firstColdBlock = firstColdBlock->bbNext; |
16354 | // Note that this assignment could make firstColdBlock == NULL |
16355 | } |
16356 | else |
16357 | { |
16358 | BasicBlock* transitionBlock = fgNewBBafter(BBJ_ALWAYS, prevToFirstColdBlock, true); |
16359 | transitionBlock->bbJumpDest = firstColdBlock; |
16360 | transitionBlock->inheritWeight(firstColdBlock); |
16361 | |
16362 | noway_assert(fgComputePredsDone); |
16363 | |
16364 | // Update the predecessor list for firstColdBlock |
16365 | fgReplacePred(firstColdBlock, prevToFirstColdBlock, transitionBlock); |
16366 | |
16367 | // Add prevToFirstColdBlock as a predecessor for transitionBlock |
16368 | fgAddRefPred(transitionBlock, prevToFirstColdBlock); |
16369 | } |
16370 | break; |
16371 | |
16372 | case BBJ_NONE: |
16373 | // If the block preceding the first cold block is BBJ_NONE, |
16374 | // convert it to BBJ_ALWAYS to force an explicit jump. |
16375 | |
16376 | prevToFirstColdBlock->bbJumpDest = firstColdBlock; |
16377 | prevToFirstColdBlock->bbJumpKind = BBJ_ALWAYS; |
16378 | break; |
16379 | } |
16380 | } |
16381 | } |
16382 | |
16383 | if (firstColdBlock != nullptr) |
16384 | { |
16385 | firstColdBlock->bbFlags |= BBF_JMP_TARGET; |
16386 | |
16387 | for (block = firstColdBlock; block; block = block->bbNext) |
16388 | { |
16389 | block->bbFlags |= BBF_COLD; |
16390 | } |
16391 | } |
16392 | |
16393 | EXIT:; |
16394 | |
16395 | #ifdef DEBUG |
16396 | if (verbose) |
16397 | { |
16398 | if (firstColdBlock) |
16399 | { |
16400 | printf("fgFirstColdBlock is " FMT_BB ".\n" , firstColdBlock->bbNum); |
16401 | } |
16402 | else |
16403 | { |
16404 | printf("fgFirstColdBlock is NULL.\n" ); |
16405 | } |
16406 | |
16407 | fgDispBasicBlocks(); |
16408 | } |
16409 | |
16410 | fgVerifyHandlerTab(); |
16411 | #endif // DEBUG |
16412 | |
16413 | fgFirstColdBlock = firstColdBlock; |
16414 | } |
16415 | |
16416 | #ifdef _PREFAST_ |
16417 | #pragma warning(push) |
16418 | #pragma warning(disable : 21000) // Suppress PREFast warning about overly large function |
16419 | #endif |
16420 | /***************************************************************************** |
16421 | * |
16422 | * Function called to "comb" the basic block list. |
16423 | * Removes any empty blocks, unreachable blocks and redundant jumps. |
16424 | * Most of those appear after dead store removal and folding of conditionals. |
16425 | * |
16426 | * Returns: true if the flowgraph has been modified |
16427 | * |
16428 | * It also compacts basic blocks |
16429 | * (consecutive basic blocks that should in fact be one). |
16430 | * |
16431 | * NOTE: |
16432 | * Debuggable code and Min Optimization JIT also introduces basic blocks |
16433 | * but we do not optimize those! |
16434 | */ |
16435 | |
16436 | bool Compiler::fgUpdateFlowGraph(bool doTailDuplication) |
16437 | { |
16438 | #ifdef DEBUG |
16439 | if (verbose) |
16440 | { |
16441 | printf("\n*************** In fgUpdateFlowGraph()" ); |
16442 | } |
16443 | #endif // DEBUG |
16444 | |
16445 | /* This should never be called for debuggable code */ |
16446 | |
16447 | noway_assert(opts.OptimizationEnabled()); |
16448 | |
16449 | #ifdef DEBUG |
16450 | if (verbose) |
16451 | { |
16452 | printf("\nBefore updating the flow graph:\n" ); |
16453 | fgDispBasicBlocks(verboseTrees); |
16454 | printf("\n" ); |
16455 | } |
16456 | #endif // DEBUG |
16457 | |
16458 | /* Walk all the basic blocks - look for unconditional jumps, empty blocks, blocks to compact, etc... |
16459 | * |
16460 | * OBSERVATION: |
16461 | * Once a block is removed the predecessors are not accurate (assuming they were at the beginning) |
16462 | * For now we will only use the information in bbRefs because it is easier to be updated |
16463 | */ |
16464 | |
16465 | bool modified = false; |
16466 | bool change; |
16467 | do |
16468 | { |
16469 | change = false; |
16470 | |
16471 | BasicBlock* block; // the current block |
16472 | BasicBlock* bPrev = nullptr; // the previous non-worthless block |
16473 | BasicBlock* bNext; // the successor of the current block |
16474 | BasicBlock* bDest; // the jump target of the current block |
16475 | |
16476 | for (block = fgFirstBB; block != nullptr; block = block->bbNext) |
16477 | { |
16478 | /* Some blocks may be already marked removed by other optimizations |
16479 | * (e.g worthless loop removal), without being explicitly removed |
16480 | * from the list. |
16481 | */ |
16482 | |
16483 | if (block->bbFlags & BBF_REMOVED) |
16484 | { |
16485 | if (bPrev) |
16486 | { |
16487 | bPrev->setNext(block->bbNext); |
16488 | } |
16489 | else |
16490 | { |
16491 | /* WEIRD first basic block is removed - should have an assert here */ |
16492 | noway_assert(!"First basic block marked as BBF_REMOVED???" ); |
16493 | |
16494 | fgFirstBB = block->bbNext; |
16495 | } |
16496 | continue; |
16497 | } |
16498 | |
16499 | /* We jump to the REPEAT label if we performed a change involving the current block |
16500 | * This is in case there are other optimizations that can show up |
16501 | * (e.g. - compact 3 blocks in a row) |
16502 | * If nothing happens, we then finish the iteration and move to the next block |
16503 | */ |
16504 | |
16505 | REPEAT:; |
16506 | |
16507 | bNext = block->bbNext; |
16508 | bDest = nullptr; |
16509 | |
16510 | if (block->bbJumpKind == BBJ_ALWAYS) |
16511 | { |
16512 | bDest = block->bbJumpDest; |
16513 | if (doTailDuplication && fgOptimizeUncondBranchToSimpleCond(block, bDest)) |
16514 | { |
16515 | change = true; |
16516 | modified = true; |
16517 | bDest = block->bbJumpDest; |
16518 | bNext = block->bbNext; |
16519 | } |
16520 | } |
16521 | |
16522 | // Remove JUMPS to the following block |
16523 | // and optimize any JUMPS to JUMPS |
16524 | |
16525 | if (block->bbJumpKind == BBJ_COND || block->bbJumpKind == BBJ_ALWAYS) |
16526 | { |
16527 | bDest = block->bbJumpDest; |
16528 | if (bDest == bNext) |
16529 | { |
16530 | if (fgOptimizeBranchToNext(block, bNext, bPrev)) |
16531 | { |
16532 | change = true; |
16533 | modified = true; |
16534 | bDest = nullptr; |
16535 | } |
16536 | } |
16537 | } |
16538 | |
16539 | if (bDest != nullptr) |
16540 | { |
16541 | // Do we have a JUMP to an empty unconditional JUMP block? |
16542 | if (bDest->isEmpty() && (bDest->bbJumpKind == BBJ_ALWAYS) && |
16543 | (bDest != bDest->bbJumpDest)) // special case for self jumps |
16544 | { |
16545 | if (fgOptimizeBranchToEmptyUnconditional(block, bDest)) |
16546 | { |
16547 | change = true; |
16548 | modified = true; |
16549 | goto REPEAT; |
16550 | } |
16551 | } |
16552 | |
16553 | // Check for a conditional branch that just skips over an empty BBJ_ALWAYS block |
16554 | |
16555 | if ((block->bbJumpKind == BBJ_COND) && // block is a BBJ_COND block |
16556 | (bNext != nullptr) && // block is not the last block |
16557 | (bNext->bbRefs == 1) && // No other block jumps to bNext |
16558 | (bNext->bbNext == bDest) && // The block after bNext is the BBJ_COND jump dest |
16559 | (bNext->bbJumpKind == BBJ_ALWAYS) && // The next block is a BBJ_ALWAYS block |
16560 | bNext->isEmpty() && // and it is an an empty block |
16561 | (bNext != bNext->bbJumpDest) && // special case for self jumps |
16562 | (bDest != fgFirstColdBlock)) |
16563 | { |
16564 | bool optimizeJump = true; |
16565 | |
16566 | // We do not optimize jumps between two different try regions. |
16567 | // However jumping to a block that is not in any try region is OK |
16568 | // |
16569 | if (bDest->hasTryIndex() && !BasicBlock::sameTryRegion(block, bDest)) |
16570 | { |
16571 | optimizeJump = false; |
16572 | } |
16573 | |
16574 | // Also consider bNext's try region |
16575 | // |
16576 | if (bNext->hasTryIndex() && !BasicBlock::sameTryRegion(block, bNext)) |
16577 | { |
16578 | optimizeJump = false; |
16579 | } |
16580 | |
16581 | // If we are optimizing using real profile weights |
16582 | // then don't optimize a conditional jump to an unconditional jump |
16583 | // until after we have computed the edge weights |
16584 | // |
16585 | if (fgIsUsingProfileWeights()) |
16586 | { |
16587 | // if block and bdest are in different hot/cold regions we can't do this this optimization |
16588 | // because we can't allow fall-through into the cold region. |
16589 | if (!fgEdgeWeightsComputed || fgInDifferentRegions(block, bDest)) |
16590 | { |
16591 | fgNeedsUpdateFlowGraph = true; |
16592 | optimizeJump = false; |
16593 | } |
16594 | } |
16595 | |
16596 | if (optimizeJump) |
16597 | { |
16598 | #ifdef DEBUG |
16599 | if (verbose) |
16600 | { |
16601 | printf("\nReversing a conditional jump around an unconditional jump (" FMT_BB " -> " FMT_BB |
16602 | " -> " FMT_BB ")\n" , |
16603 | block->bbNum, bDest->bbNum, bNext->bbJumpDest->bbNum); |
16604 | } |
16605 | #endif // DEBUG |
16606 | /* Reverse the jump condition */ |
16607 | |
16608 | GenTree* test = block->lastNode(); |
16609 | noway_assert(test->OperIsConditionalJump()); |
16610 | |
16611 | if (test->OperGet() == GT_JTRUE) |
16612 | { |
16613 | GenTree* cond = gtReverseCond(test->gtOp.gtOp1); |
16614 | assert(cond == test->gtOp.gtOp1); // Ensure `gtReverseCond` did not create a new node. |
16615 | test->gtOp.gtOp1 = cond; |
16616 | } |
16617 | else |
16618 | { |
16619 | gtReverseCond(test); |
16620 | } |
16621 | |
16622 | // Optimize the Conditional JUMP to go to the new target |
16623 | block->bbJumpDest = bNext->bbJumpDest; |
16624 | |
16625 | fgAddRefPred(bNext->bbJumpDest, block, fgRemoveRefPred(bNext->bbJumpDest, bNext)); |
16626 | |
16627 | /* |
16628 | Unlink bNext from the BasicBlock list; note that we can |
16629 | do this even though other blocks could jump to it - the |
16630 | reason is that elsewhere in this function we always |
16631 | redirect jumps to jumps to jump to the final label, |
16632 | so even if another block jumps to bNext it won't matter |
16633 | once we're done since any such jump will be redirected |
16634 | to the final target by the time we're done here. |
16635 | */ |
16636 | |
16637 | fgRemoveRefPred(bNext, block); |
16638 | fgUnlinkBlock(bNext); |
16639 | |
16640 | /* Mark the block as removed */ |
16641 | bNext->bbFlags |= BBF_REMOVED; |
16642 | |
16643 | // If this is the first Cold basic block update fgFirstColdBlock |
16644 | if (bNext == fgFirstColdBlock) |
16645 | { |
16646 | fgFirstColdBlock = bNext->bbNext; |
16647 | } |
16648 | |
16649 | // |
16650 | // If we removed the end of a try region or handler region |
16651 | // we will need to update ebdTryLast or ebdHndLast. |
16652 | // |
16653 | |
16654 | EHblkDsc* HBtab; |
16655 | EHblkDsc* HBtabEnd; |
16656 | |
16657 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; |
16658 | HBtab++) |
16659 | { |
16660 | if ((HBtab->ebdTryLast == bNext) || (HBtab->ebdHndLast == bNext)) |
16661 | { |
16662 | fgSkipRmvdBlocks(HBtab); |
16663 | } |
16664 | } |
16665 | |
16666 | // we optimized this JUMP - goto REPEAT to catch similar cases |
16667 | change = true; |
16668 | modified = true; |
16669 | |
16670 | #ifdef DEBUG |
16671 | if (verbose) |
16672 | { |
16673 | printf("\nAfter reversing the jump:\n" ); |
16674 | fgDispBasicBlocks(verboseTrees); |
16675 | } |
16676 | #endif // DEBUG |
16677 | |
16678 | /* |
16679 | For a rare special case we cannot jump to REPEAT |
16680 | as jumping to REPEAT will cause us to delete 'block' |
16681 | because it currently appears to be unreachable. As |
16682 | it is a self loop that only has a single bbRef (itself) |
16683 | However since the unlinked bNext has additional bbRefs |
16684 | (that we will later connect to 'block'), it is not really |
16685 | unreachable. |
16686 | */ |
16687 | if ((bNext->bbRefs > 0) && (bNext->bbJumpDest == block) && (block->bbRefs == 1)) |
16688 | { |
16689 | continue; |
16690 | } |
16691 | |
16692 | goto REPEAT; |
16693 | } |
16694 | } |
16695 | } |
16696 | |
16697 | // |
16698 | // Update the switch jump table such that it follows jumps to jumps: |
16699 | // |
16700 | if (block->bbJumpKind == BBJ_SWITCH) |
16701 | { |
16702 | if (fgOptimizeSwitchBranches(block)) |
16703 | { |
16704 | change = true; |
16705 | modified = true; |
16706 | goto REPEAT; |
16707 | } |
16708 | } |
16709 | |
16710 | noway_assert(!(block->bbFlags & BBF_REMOVED)); |
16711 | |
16712 | /* COMPACT blocks if possible */ |
16713 | |
16714 | if (fgCanCompactBlocks(block, bNext)) |
16715 | { |
16716 | fgCompactBlocks(block, bNext); |
16717 | |
16718 | /* we compacted two blocks - goto REPEAT to catch similar cases */ |
16719 | change = true; |
16720 | modified = true; |
16721 | goto REPEAT; |
16722 | } |
16723 | |
16724 | /* Remove unreachable or empty blocks - do not consider blocks marked BBF_DONT_REMOVE or genReturnBB block |
16725 | * These include first and last block of a TRY, exception handlers and RANGE_CHECK_FAIL THROW blocks */ |
16726 | |
16727 | if ((block->bbFlags & BBF_DONT_REMOVE) == BBF_DONT_REMOVE || block == genReturnBB) |
16728 | { |
16729 | bPrev = block; |
16730 | continue; |
16731 | } |
16732 | |
16733 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
16734 | // Don't remove the BBJ_ALWAYS block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair. |
16735 | if (block->countOfInEdges() == 0 && bPrev->bbJumpKind == BBJ_CALLFINALLY) |
16736 | { |
16737 | assert(bPrev->isBBCallAlwaysPair()); |
16738 | noway_assert(!(bPrev->bbFlags & BBF_RETLESS_CALL)); |
16739 | noway_assert(block->bbJumpKind == BBJ_ALWAYS); |
16740 | bPrev = block; |
16741 | continue; |
16742 | } |
16743 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
16744 | |
16745 | noway_assert(!block->bbCatchTyp); |
16746 | noway_assert(!(block->bbFlags & BBF_TRY_BEG)); |
16747 | |
16748 | /* Remove unreachable blocks |
16749 | * |
16750 | * We'll look for blocks that have countOfInEdges() = 0 (blocks may become |
16751 | * unreachable due to a BBJ_ALWAYS introduced by conditional folding for example) |
16752 | */ |
16753 | |
16754 | if (block->countOfInEdges() == 0) |
16755 | { |
16756 | /* no references -> unreachable - remove it */ |
16757 | /* For now do not update the bbNum, do it at the end */ |
16758 | |
16759 | fgRemoveBlock(block, true); |
16760 | |
16761 | change = true; |
16762 | modified = true; |
16763 | |
16764 | /* we removed the current block - the rest of the optimizations won't have a target |
16765 | * continue with the next one */ |
16766 | |
16767 | continue; |
16768 | } |
16769 | else if (block->countOfInEdges() == 1) |
16770 | { |
16771 | switch (block->bbJumpKind) |
16772 | { |
16773 | case BBJ_COND: |
16774 | case BBJ_ALWAYS: |
16775 | if (block->bbJumpDest == block) |
16776 | { |
16777 | fgRemoveBlock(block, true); |
16778 | |
16779 | change = true; |
16780 | modified = true; |
16781 | |
16782 | /* we removed the current block - the rest of the optimizations |
16783 | * won't have a target so continue with the next block */ |
16784 | |
16785 | continue; |
16786 | } |
16787 | break; |
16788 | |
16789 | default: |
16790 | break; |
16791 | } |
16792 | } |
16793 | |
16794 | noway_assert(!(block->bbFlags & BBF_REMOVED)); |
16795 | |
16796 | /* Remove EMPTY blocks */ |
16797 | |
16798 | if (block->isEmpty()) |
16799 | { |
16800 | assert(bPrev == block->bbPrev); |
16801 | if (fgOptimizeEmptyBlock(block)) |
16802 | { |
16803 | change = true; |
16804 | modified = true; |
16805 | } |
16806 | |
16807 | /* Have we removed the block? */ |
16808 | |
16809 | if (block->bbFlags & BBF_REMOVED) |
16810 | { |
16811 | /* block was removed - no change to bPrev */ |
16812 | continue; |
16813 | } |
16814 | } |
16815 | |
16816 | /* Set the predecessor of the last reachable block |
16817 | * If we removed the current block, the predecessor remains unchanged |
16818 | * otherwise, since the current block is ok, it becomes the predecessor */ |
16819 | |
16820 | noway_assert(!(block->bbFlags & BBF_REMOVED)); |
16821 | |
16822 | bPrev = block; |
16823 | } |
16824 | } while (change); |
16825 | |
16826 | fgNeedsUpdateFlowGraph = false; |
16827 | |
16828 | #ifdef DEBUG |
16829 | if (verbose && modified) |
16830 | { |
16831 | printf("\nAfter updating the flow graph:\n" ); |
16832 | fgDispBasicBlocks(verboseTrees); |
16833 | fgDispHandlerTab(); |
16834 | } |
16835 | |
16836 | if (compRationalIRForm) |
16837 | { |
16838 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
16839 | { |
16840 | LIR::AsRange(block).CheckLIR(this); |
16841 | } |
16842 | } |
16843 | |
16844 | fgVerifyHandlerTab(); |
16845 | // Make sure that the predecessor lists are accurate |
16846 | fgDebugCheckBBlist(); |
16847 | fgDebugCheckUpdate(); |
16848 | #endif // DEBUG |
16849 | |
16850 | return modified; |
16851 | } |
16852 | #ifdef _PREFAST_ |
16853 | #pragma warning(pop) |
16854 | #endif |
16855 | |
16856 | /***************************************************************************** |
16857 | * Check that the flow graph is really updated |
16858 | */ |
16859 | |
16860 | #ifdef DEBUG |
16861 | |
16862 | void Compiler::fgDebugCheckUpdate() |
16863 | { |
16864 | if (!compStressCompile(STRESS_CHK_FLOW_UPDATE, 30)) |
16865 | { |
16866 | return; |
16867 | } |
16868 | |
16869 | /* We check for these conditions: |
16870 | * no unreachable blocks -> no blocks have countOfInEdges() = 0 |
16871 | * no empty blocks -> no blocks have bbTreeList = 0 |
16872 | * no un-imported blocks -> no blocks have BBF_IMPORTED not set (this is |
16873 | * kind of redundand with the above, but to make sure) |
16874 | * no un-compacted blocks -> BBJ_NONE followed by block with no jumps to it (countOfInEdges() = 1) |
16875 | */ |
16876 | |
16877 | BasicBlock* prev; |
16878 | BasicBlock* block; |
16879 | for (prev = nullptr, block = fgFirstBB; block != nullptr; prev = block, block = block->bbNext) |
16880 | { |
16881 | /* no unreachable blocks */ |
16882 | |
16883 | if ((block->countOfInEdges() == 0) && !(block->bbFlags & BBF_DONT_REMOVE) |
16884 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
16885 | // With funclets, we never get rid of the BBJ_ALWAYS part of a BBJ_CALLFINALLY/BBJ_ALWAYS pair, |
16886 | // even if we can prove that the finally block never returns. |
16887 | && (prev == NULL || block->bbJumpKind != BBJ_ALWAYS || !prev->isBBCallAlwaysPair()) |
16888 | #endif // FEATURE_EH_FUNCLETS |
16889 | ) |
16890 | { |
16891 | noway_assert(!"Unreachable block not removed!" ); |
16892 | } |
16893 | |
16894 | /* no empty blocks */ |
16895 | |
16896 | if (block->isEmpty() && !(block->bbFlags & BBF_DONT_REMOVE)) |
16897 | { |
16898 | switch (block->bbJumpKind) |
16899 | { |
16900 | case BBJ_CALLFINALLY: |
16901 | case BBJ_EHFINALLYRET: |
16902 | case BBJ_EHFILTERRET: |
16903 | case BBJ_RETURN: |
16904 | /* for BBJ_ALWAYS is probably just a GOTO, but will have to be treated */ |
16905 | case BBJ_ALWAYS: |
16906 | case BBJ_EHCATCHRET: |
16907 | /* These jump kinds are allowed to have empty tree lists */ |
16908 | break; |
16909 | |
16910 | default: |
16911 | /* it may be the case that the block had more than one reference to it |
16912 | * so we couldn't remove it */ |
16913 | |
16914 | if (block->countOfInEdges() == 0) |
16915 | { |
16916 | noway_assert(!"Empty block not removed!" ); |
16917 | } |
16918 | break; |
16919 | } |
16920 | } |
16921 | |
16922 | /* no un-imported blocks */ |
16923 | |
16924 | if (!(block->bbFlags & BBF_IMPORTED)) |
16925 | { |
16926 | /* internal blocks do not count */ |
16927 | |
16928 | if (!(block->bbFlags & BBF_INTERNAL)) |
16929 | { |
16930 | noway_assert(!"Non IMPORTED block not removed!" ); |
16931 | } |
16932 | } |
16933 | |
16934 | bool prevIsCallAlwaysPair = ((prev != nullptr) && prev->isBBCallAlwaysPair()); |
16935 | |
16936 | // Check for an unnecessary jumps to the next block |
16937 | bool doAssertOnJumpToNextBlock = false; // unless we have a BBJ_COND or BBJ_ALWAYS we can not assert |
16938 | |
16939 | if (block->bbJumpKind == BBJ_COND) |
16940 | { |
16941 | // A conditional branch should never jump to the next block |
16942 | // as it can be folded into a BBJ_NONE; |
16943 | doAssertOnJumpToNextBlock = true; |
16944 | } |
16945 | else if (block->bbJumpKind == BBJ_ALWAYS) |
16946 | { |
16947 | // Generally we will want to assert if a BBJ_ALWAYS branches to the next block |
16948 | doAssertOnJumpToNextBlock = true; |
16949 | |
16950 | // If the BBF_KEEP_BBJ_ALWAYS flag is set we allow it to jump to the next block |
16951 | if (block->bbFlags & BBF_KEEP_BBJ_ALWAYS) |
16952 | { |
16953 | doAssertOnJumpToNextBlock = false; |
16954 | } |
16955 | |
16956 | // A call/always pair is also allowed to jump to the next block |
16957 | if (prevIsCallAlwaysPair) |
16958 | { |
16959 | doAssertOnJumpToNextBlock = false; |
16960 | } |
16961 | |
16962 | // We are allowed to have a branch from a hot 'block' to a cold 'bbNext' |
16963 | // |
16964 | if ((block->bbNext != nullptr) && fgInDifferentRegions(block, block->bbNext)) |
16965 | { |
16966 | doAssertOnJumpToNextBlock = false; |
16967 | } |
16968 | } |
16969 | |
16970 | if (doAssertOnJumpToNextBlock) |
16971 | { |
16972 | if (block->bbJumpDest == block->bbNext) |
16973 | { |
16974 | noway_assert(!"Unnecessary jump to the next block!" ); |
16975 | } |
16976 | } |
16977 | |
16978 | /* Make sure BBF_KEEP_BBJ_ALWAYS is set correctly */ |
16979 | |
16980 | if ((block->bbJumpKind == BBJ_ALWAYS) && prevIsCallAlwaysPair) |
16981 | { |
16982 | noway_assert(block->bbFlags & BBF_KEEP_BBJ_ALWAYS); |
16983 | } |
16984 | |
16985 | /* For a BBJ_CALLFINALLY block we make sure that we are followed by */ |
16986 | /* an BBJ_ALWAYS block with BBF_INTERNAL set */ |
16987 | /* or that it's a BBF_RETLESS_CALL */ |
16988 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
16989 | { |
16990 | assert((block->bbFlags & BBF_RETLESS_CALL) || block->isBBCallAlwaysPair()); |
16991 | } |
16992 | |
16993 | /* no un-compacted blocks */ |
16994 | |
16995 | if (fgCanCompactBlocks(block, block->bbNext)) |
16996 | { |
16997 | noway_assert(!"Found un-compacted blocks!" ); |
16998 | } |
16999 | } |
17000 | } |
17001 | |
17002 | #endif // DEBUG |
17003 | |
17004 | /***************************************************************************** |
17005 | * We've inserted a new block before 'block' that should be part of the same EH region as 'block'. |
17006 | * Update the EH table to make this so. Also, set the new block to have the right EH region data |
17007 | * (copy the bbTryIndex, bbHndIndex, and bbCatchTyp from 'block' to the new predecessor, and clear |
17008 | * 'bbCatchTyp' from 'block'). |
17009 | */ |
17010 | void Compiler::fgExtendEHRegionBefore(BasicBlock* block) |
17011 | { |
17012 | assert(block->bbPrev != nullptr); |
17013 | |
17014 | BasicBlock* bPrev = block->bbPrev; |
17015 | |
17016 | bPrev->copyEHRegion(block); |
17017 | |
17018 | // The first block (and only the first block) of a handler has bbCatchTyp set |
17019 | bPrev->bbCatchTyp = block->bbCatchTyp; |
17020 | block->bbCatchTyp = BBCT_NONE; |
17021 | |
17022 | EHblkDsc* HBtab; |
17023 | EHblkDsc* HBtabEnd; |
17024 | |
17025 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
17026 | { |
17027 | /* Multiple pointers in EHblkDsc can point to same block. We can not early out after the first match. */ |
17028 | if (HBtab->ebdTryBeg == block) |
17029 | { |
17030 | #ifdef DEBUG |
17031 | if (verbose) |
17032 | { |
17033 | printf("EH#%u: New first block of try: " FMT_BB "\n" , ehGetIndex(HBtab), bPrev->bbNum); |
17034 | } |
17035 | #endif // DEBUG |
17036 | HBtab->ebdTryBeg = bPrev; |
17037 | bPrev->bbFlags |= BBF_TRY_BEG | BBF_DONT_REMOVE | BBF_HAS_LABEL; |
17038 | |
17039 | // clear the TryBeg flag unless it begins another try region |
17040 | if (!bbIsTryBeg(block)) |
17041 | { |
17042 | block->bbFlags &= ~BBF_TRY_BEG; |
17043 | } |
17044 | } |
17045 | |
17046 | if (HBtab->ebdHndBeg == block) |
17047 | { |
17048 | #ifdef DEBUG |
17049 | if (verbose) |
17050 | { |
17051 | printf("EH#%u: New first block of handler: " FMT_BB "\n" , ehGetIndex(HBtab), bPrev->bbNum); |
17052 | } |
17053 | #endif // DEBUG |
17054 | |
17055 | // The first block of a handler has an artificial extra refcount. Transfer that to the new block. |
17056 | assert(block->bbRefs > 0); |
17057 | block->bbRefs--; |
17058 | |
17059 | HBtab->ebdHndBeg = bPrev; |
17060 | bPrev->bbFlags |= BBF_DONT_REMOVE | BBF_HAS_LABEL; |
17061 | |
17062 | #if FEATURE_EH_FUNCLETS |
17063 | if (fgFuncletsCreated) |
17064 | { |
17065 | assert((block->bbFlags & BBF_FUNCLET_BEG) != 0); |
17066 | bPrev->bbFlags |= BBF_FUNCLET_BEG; |
17067 | block->bbFlags &= ~BBF_FUNCLET_BEG; |
17068 | } |
17069 | #endif // FEATURE_EH_FUNCLETS |
17070 | |
17071 | bPrev->bbRefs++; |
17072 | |
17073 | // If this is a handler for a filter, the last block of the filter will end with |
17074 | // a BBJ_EJFILTERRET block that has a bbJumpDest that jumps to the first block of |
17075 | // it's handler. So we need to update it to keep things in sync. |
17076 | // |
17077 | if (HBtab->HasFilter()) |
17078 | { |
17079 | BasicBlock* bFilterLast = HBtab->BBFilterLast(); |
17080 | assert(bFilterLast != nullptr); |
17081 | assert(bFilterLast->bbJumpKind == BBJ_EHFILTERRET); |
17082 | assert(bFilterLast->bbJumpDest == block); |
17083 | #ifdef DEBUG |
17084 | if (verbose) |
17085 | { |
17086 | printf("EH#%u: Updating bbJumpDest for filter ret block: " FMT_BB " => " FMT_BB "\n" , |
17087 | ehGetIndex(HBtab), bFilterLast->bbNum, bPrev->bbNum); |
17088 | } |
17089 | #endif // DEBUG |
17090 | // Change the bbJumpDest for bFilterLast from the old first 'block' to the new first 'bPrev' |
17091 | bFilterLast->bbJumpDest = bPrev; |
17092 | } |
17093 | } |
17094 | |
17095 | if (HBtab->HasFilter() && (HBtab->ebdFilter == block)) |
17096 | { |
17097 | #ifdef DEBUG |
17098 | if (verbose) |
17099 | { |
17100 | printf("EH#%u: New first block of filter: " FMT_BB "\n" , ehGetIndex(HBtab), bPrev->bbNum); |
17101 | } |
17102 | #endif // DEBUG |
17103 | |
17104 | // The first block of a filter has an artificial extra refcount. Transfer that to the new block. |
17105 | assert(block->bbRefs > 0); |
17106 | block->bbRefs--; |
17107 | |
17108 | HBtab->ebdFilter = bPrev; |
17109 | bPrev->bbFlags |= BBF_DONT_REMOVE | BBF_HAS_LABEL; |
17110 | |
17111 | #if FEATURE_EH_FUNCLETS |
17112 | if (fgFuncletsCreated) |
17113 | { |
17114 | assert((block->bbFlags & BBF_FUNCLET_BEG) != 0); |
17115 | bPrev->bbFlags |= BBF_FUNCLET_BEG; |
17116 | block->bbFlags &= ~BBF_FUNCLET_BEG; |
17117 | } |
17118 | #endif // FEATURE_EH_FUNCLETS |
17119 | |
17120 | bPrev->bbRefs++; |
17121 | } |
17122 | } |
17123 | } |
17124 | |
17125 | /***************************************************************************** |
17126 | * We've inserted a new block after 'block' that should be part of the same EH region as 'block'. |
17127 | * Update the EH table to make this so. Also, set the new block to have the right EH region data. |
17128 | */ |
17129 | |
17130 | void Compiler::fgExtendEHRegionAfter(BasicBlock* block) |
17131 | { |
17132 | BasicBlock* newBlk = block->bbNext; |
17133 | assert(newBlk != nullptr); |
17134 | |
17135 | newBlk->copyEHRegion(block); |
17136 | newBlk->bbCatchTyp = |
17137 | BBCT_NONE; // Only the first block of a catch has this set, and 'newBlk' can't be the first block of a catch. |
17138 | |
17139 | // TODO-Throughput: if the block is not in an EH region, then we don't need to walk the EH table looking for 'last' |
17140 | // block pointers to update. |
17141 | ehUpdateLastBlocks(block, newBlk); |
17142 | } |
17143 | |
17144 | /***************************************************************************** |
17145 | * |
17146 | * Insert a BasicBlock before the given block. |
17147 | */ |
17148 | |
17149 | BasicBlock* Compiler::fgNewBBbefore(BBjumpKinds jumpKind, BasicBlock* block, bool extendRegion) |
17150 | { |
17151 | // Create a new BasicBlock and chain it in |
17152 | |
17153 | BasicBlock* newBlk = bbNewBasicBlock(jumpKind); |
17154 | newBlk->bbFlags |= BBF_INTERNAL; |
17155 | |
17156 | fgInsertBBbefore(block, newBlk); |
17157 | |
17158 | newBlk->bbRefs = 0; |
17159 | |
17160 | if (newBlk->bbFallsThrough() && block->isRunRarely()) |
17161 | { |
17162 | newBlk->bbSetRunRarely(); |
17163 | } |
17164 | |
17165 | if (extendRegion) |
17166 | { |
17167 | fgExtendEHRegionBefore(block); |
17168 | } |
17169 | else |
17170 | { |
17171 | // When extendRegion is false the caller is responsible for setting these two values |
17172 | newBlk->setTryIndex(MAX_XCPTN_INDEX); // Note: this is still a legal index, just unlikely |
17173 | newBlk->setHndIndex(MAX_XCPTN_INDEX); // Note: this is still a legal index, just unlikely |
17174 | } |
17175 | |
17176 | // We assume that if the block we are inserting before is in the cold region, then this new |
17177 | // block will also be in the cold region. |
17178 | newBlk->bbFlags |= (block->bbFlags & BBF_COLD); |
17179 | |
17180 | return newBlk; |
17181 | } |
17182 | |
17183 | /***************************************************************************** |
17184 | * |
17185 | * Insert a BasicBlock after the given block. |
17186 | */ |
17187 | |
17188 | BasicBlock* Compiler::fgNewBBafter(BBjumpKinds jumpKind, BasicBlock* block, bool extendRegion) |
17189 | { |
17190 | // Create a new BasicBlock and chain it in |
17191 | |
17192 | BasicBlock* newBlk = bbNewBasicBlock(jumpKind); |
17193 | newBlk->bbFlags |= BBF_INTERNAL; |
17194 | |
17195 | fgInsertBBafter(block, newBlk); |
17196 | |
17197 | newBlk->bbRefs = 0; |
17198 | |
17199 | if (block->bbFallsThrough() && block->isRunRarely()) |
17200 | { |
17201 | newBlk->bbSetRunRarely(); |
17202 | } |
17203 | |
17204 | if (extendRegion) |
17205 | { |
17206 | fgExtendEHRegionAfter(block); |
17207 | } |
17208 | else |
17209 | { |
17210 | // When extendRegion is false the caller is responsible for setting these two values |
17211 | newBlk->setTryIndex(MAX_XCPTN_INDEX); // Note: this is still a legal index, just unlikely |
17212 | newBlk->setHndIndex(MAX_XCPTN_INDEX); // Note: this is still a legal index, just unlikely |
17213 | } |
17214 | |
17215 | // If the new block is in the cold region (because the block we are inserting after |
17216 | // is in the cold region), mark it as such. |
17217 | newBlk->bbFlags |= (block->bbFlags & BBF_COLD); |
17218 | |
17219 | return newBlk; |
17220 | } |
17221 | |
17222 | /***************************************************************************** |
17223 | * Inserts basic block before existing basic block. |
17224 | * |
17225 | * If insertBeforeBlk is in the funclet region, then newBlk will be in the funclet region. |
17226 | * (If insertBeforeBlk is the first block of the funclet region, then 'newBlk' will be the |
17227 | * new first block of the funclet region.) |
17228 | */ |
17229 | void Compiler::fgInsertBBbefore(BasicBlock* insertBeforeBlk, BasicBlock* newBlk) |
17230 | { |
17231 | if (insertBeforeBlk->bbPrev) |
17232 | { |
17233 | fgInsertBBafter(insertBeforeBlk->bbPrev, newBlk); |
17234 | } |
17235 | else |
17236 | { |
17237 | newBlk->setNext(fgFirstBB); |
17238 | |
17239 | fgFirstBB = newBlk; |
17240 | newBlk->bbPrev = nullptr; |
17241 | } |
17242 | |
17243 | #if FEATURE_EH_FUNCLETS |
17244 | |
17245 | /* Update fgFirstFuncletBB if insertBeforeBlk is the first block of the funclet region. */ |
17246 | |
17247 | if (fgFirstFuncletBB == insertBeforeBlk) |
17248 | { |
17249 | fgFirstFuncletBB = newBlk; |
17250 | } |
17251 | |
17252 | #endif // FEATURE_EH_FUNCLETS |
17253 | } |
17254 | |
17255 | /***************************************************************************** |
17256 | * Inserts basic block after existing basic block. |
17257 | * |
17258 | * If insertBeforeBlk is in the funclet region, then newBlk will be in the funclet region. |
17259 | * (It can't be used to insert a block as the first block of the funclet region). |
17260 | */ |
17261 | void Compiler::fgInsertBBafter(BasicBlock* insertAfterBlk, BasicBlock* newBlk) |
17262 | { |
17263 | newBlk->bbNext = insertAfterBlk->bbNext; |
17264 | |
17265 | if (insertAfterBlk->bbNext) |
17266 | { |
17267 | insertAfterBlk->bbNext->bbPrev = newBlk; |
17268 | } |
17269 | |
17270 | insertAfterBlk->bbNext = newBlk; |
17271 | newBlk->bbPrev = insertAfterBlk; |
17272 | |
17273 | if (fgLastBB == insertAfterBlk) |
17274 | { |
17275 | fgLastBB = newBlk; |
17276 | assert(fgLastBB->bbNext == nullptr); |
17277 | } |
17278 | } |
17279 | |
17280 | // We have two edges (bAlt => bCur) and (bCur => bNext). |
17281 | // |
17282 | // Returns true if the weight of (bAlt => bCur) |
17283 | // is greater than the weight of (bCur => bNext). |
17284 | // We compare the edge weights if we have valid edge weights |
17285 | // otherwise we compare blocks weights. |
17286 | // |
17287 | bool Compiler::fgIsBetterFallThrough(BasicBlock* bCur, BasicBlock* bAlt) |
17288 | { |
17289 | // bCur can't be NULL and must be a fall through bbJumpKind |
17290 | noway_assert(bCur != nullptr); |
17291 | noway_assert(bCur->bbFallsThrough()); |
17292 | noway_assert(bAlt != nullptr); |
17293 | |
17294 | // We only handle the cases when bAlt is a BBJ_ALWAYS or a BBJ_COND |
17295 | if ((bAlt->bbJumpKind != BBJ_ALWAYS) && (bAlt->bbJumpKind != BBJ_COND)) |
17296 | { |
17297 | return false; |
17298 | } |
17299 | |
17300 | // if bAlt doesn't jump to bCur it can't be a better fall through than bCur |
17301 | if (bAlt->bbJumpDest != bCur) |
17302 | { |
17303 | return false; |
17304 | } |
17305 | |
17306 | // Currently bNext is the fall through for bCur |
17307 | BasicBlock* bNext = bCur->bbNext; |
17308 | noway_assert(bNext != nullptr); |
17309 | |
17310 | // We will set result to true if bAlt is a better fall through than bCur |
17311 | bool result; |
17312 | if (fgHaveValidEdgeWeights) |
17313 | { |
17314 | // We will compare the edge weight for our two choices |
17315 | flowList* edgeFromAlt = fgGetPredForBlock(bCur, bAlt); |
17316 | flowList* edgeFromCur = fgGetPredForBlock(bNext, bCur); |
17317 | noway_assert(edgeFromCur != nullptr); |
17318 | noway_assert(edgeFromAlt != nullptr); |
17319 | |
17320 | result = (edgeFromAlt->flEdgeWeightMin > edgeFromCur->flEdgeWeightMax); |
17321 | } |
17322 | else |
17323 | { |
17324 | if (bAlt->bbJumpKind == BBJ_ALWAYS) |
17325 | { |
17326 | // Our result is true if bAlt's weight is more than bCur's weight |
17327 | result = (bAlt->bbWeight > bCur->bbWeight); |
17328 | } |
17329 | else |
17330 | { |
17331 | noway_assert(bAlt->bbJumpKind == BBJ_COND); |
17332 | // Our result is true if bAlt's weight is more than twice bCur's weight |
17333 | result = (bAlt->bbWeight > (2 * bCur->bbWeight)); |
17334 | } |
17335 | } |
17336 | return result; |
17337 | } |
17338 | |
17339 | //------------------------------------------------------------------------ |
17340 | // fgCheckEHCanInsertAfterBlock: Determine if a block can be inserted after |
17341 | // 'blk' and legally be put in the EH region specified by 'regionIndex'. This |
17342 | // can be true if the most nested region the block is in is already 'regionIndex', |
17343 | // as we'll just extend the most nested region (and any region ending at the same block). |
17344 | // It can also be true if it is the end of (a set of) EH regions, such that |
17345 | // inserting the block and properly extending some EH regions (if necessary) |
17346 | // puts the block in the correct region. We only consider the case of extending |
17347 | // an EH region after 'blk' (that is, to include 'blk' and the newly insert block); |
17348 | // we don't consider inserting a block as the the first block of an EH region following 'blk'. |
17349 | // |
17350 | // Consider this example: |
17351 | // |
17352 | // try3 try2 try1 |
17353 | // |--- | | BB01 |
17354 | // | |--- | BB02 |
17355 | // | | |--- BB03 |
17356 | // | | | BB04 |
17357 | // | |--- |--- BB05 |
17358 | // | BB06 |
17359 | // |----------------- BB07 |
17360 | // |
17361 | // Passing BB05 and try1/try2/try3 as the region to insert into (as well as putInTryRegion==true) |
17362 | // will all return 'true'. Here are the cases: |
17363 | // 1. Insert into try1: the most nested EH region BB05 is in is already try1, so we can insert after |
17364 | // it and extend try1 (and try2). |
17365 | // 2. Insert into try2: we can extend try2, but leave try1 alone. |
17366 | // 3. Insert into try3: we can leave try1 and try2 alone, and put the new block just in try3. Note that |
17367 | // in this case, after we "loop outwards" in the EH nesting, we get to a place where we're in the middle |
17368 | // of the try3 region, not at the end of it. |
17369 | // In all cases, it is possible to put a block after BB05 and put it in any of these three 'try' regions legally. |
17370 | // |
17371 | // Filters are ignored; if 'blk' is in a filter, the answer will be false. |
17372 | // |
17373 | // Arguments: |
17374 | // blk - the BasicBlock we are checking to see if we can insert after. |
17375 | // regionIndex - the EH region we want to insert a block into. regionIndex is |
17376 | // in the range [0..compHndBBtabCount]; 0 means "main method". |
17377 | // putInTryRegion - 'true' if the new block should be inserted in the 'try' region of 'regionIndex'. |
17378 | // For regionIndex 0 (the "main method"), this should be 'true'. |
17379 | // |
17380 | // Return Value: |
17381 | // 'true' if a block can be inserted after 'blk' and put in EH region 'regionIndex', else 'false'. |
17382 | // |
17383 | bool Compiler::fgCheckEHCanInsertAfterBlock(BasicBlock* blk, unsigned regionIndex, bool putInTryRegion) |
17384 | { |
17385 | assert(blk != nullptr); |
17386 | assert(regionIndex <= compHndBBtabCount); |
17387 | |
17388 | if (regionIndex == 0) |
17389 | { |
17390 | assert(putInTryRegion); |
17391 | } |
17392 | |
17393 | bool inTryRegion; |
17394 | unsigned nestedRegionIndex = ehGetMostNestedRegionIndex(blk, &inTryRegion); |
17395 | |
17396 | bool insertOK = true; |
17397 | for (;;) |
17398 | { |
17399 | if (nestedRegionIndex == regionIndex) |
17400 | { |
17401 | // This block is in the region we want to be in. We can insert here if it's the right type of region. |
17402 | // (If we want to be in the 'try' region, but the block is in the handler region, then inserting a |
17403 | // new block after 'blk' can't put it in the 'try' region, and vice-versa, since we only consider |
17404 | // extending regions after, not prepending to regions.) |
17405 | // This check will be 'true' if we are trying to put something in the main function (as putInTryRegion |
17406 | // must be 'true' if regionIndex is zero, and inTryRegion will also be 'true' if nestedRegionIndex is zero). |
17407 | insertOK = (putInTryRegion == inTryRegion); |
17408 | break; |
17409 | } |
17410 | else if (nestedRegionIndex == 0) |
17411 | { |
17412 | // The block is in the main function, but we want to put something in a nested region. We can't do that. |
17413 | insertOK = false; |
17414 | break; |
17415 | } |
17416 | |
17417 | assert(nestedRegionIndex > 0); |
17418 | EHblkDsc* ehDsc = ehGetDsc(nestedRegionIndex - 1); // ehGetDsc uses [0..compHndBBtabCount) form. |
17419 | |
17420 | if (inTryRegion) |
17421 | { |
17422 | if (blk != ehDsc->ebdTryLast) |
17423 | { |
17424 | // Not the last block? Then it must be somewhere else within the try region, so we can't insert here. |
17425 | insertOK = false; |
17426 | break; // exit the 'for' loop |
17427 | } |
17428 | } |
17429 | else |
17430 | { |
17431 | // We ignore filters. |
17432 | if (blk != ehDsc->ebdHndLast) |
17433 | { |
17434 | // Not the last block? Then it must be somewhere else within the handler region, so we can't insert |
17435 | // here. |
17436 | insertOK = false; |
17437 | break; // exit the 'for' loop |
17438 | } |
17439 | } |
17440 | |
17441 | // Things look good for this region; check the enclosing regions, if any. |
17442 | |
17443 | nestedRegionIndex = |
17444 | ehGetEnclosingRegionIndex(nestedRegionIndex - 1, |
17445 | &inTryRegion); // ehGetEnclosingRegionIndex uses [0..compHndBBtabCount) form. |
17446 | |
17447 | // Convert to [0..compHndBBtabCount] form. |
17448 | nestedRegionIndex = (nestedRegionIndex == EHblkDsc::NO_ENCLOSING_INDEX) ? 0 : nestedRegionIndex + 1; |
17449 | } // end of for(;;) |
17450 | |
17451 | return insertOK; |
17452 | } |
17453 | |
17454 | //------------------------------------------------------------------------ |
17455 | // Finds the block closest to endBlk in the range [startBlk..endBlk) after which a block can be |
17456 | // inserted easily. Note that endBlk cannot be returned; its predecessor is the last block that can |
17457 | // be returned. The new block will be put in an EH region described by the arguments regionIndex, |
17458 | // putInTryRegion, startBlk, and endBlk (explained below), so it must be legal to place to put the |
17459 | // new block after the insertion location block, give it the specified EH region index, and not break |
17460 | // EH nesting rules. This function is careful to choose a block in the correct EH region. However, |
17461 | // it assumes that the new block can ALWAYS be placed at the end (just before endBlk). That means |
17462 | // that the caller must ensure that is true. |
17463 | // |
17464 | // Below are the possible cases for the arguments to this method: |
17465 | // 1. putInTryRegion == true and regionIndex > 0: |
17466 | // Search in the try region indicated by regionIndex. |
17467 | // 2. putInTryRegion == false and regionIndex > 0: |
17468 | // a. If startBlk is the first block of a filter and endBlk is the block after the end of the |
17469 | // filter (that is, the startBlk and endBlk match a filter bounds exactly), then choose a |
17470 | // location within this filter region. (Note that, due to IL rules, filters do not have any |
17471 | // EH nested within them.) Otherwise, filters are skipped. |
17472 | // b. Else, search in the handler region indicated by regionIndex. |
17473 | // 3. regionIndex = 0: |
17474 | // Search in the entire main method, excluding all EH regions. In this case, putInTryRegion must be true. |
17475 | // |
17476 | // This method makes sure to find an insertion point which would not cause the inserted block to |
17477 | // be put inside any inner try/filter/handler regions. |
17478 | // |
17479 | // The actual insertion occurs after the returned block. Note that the returned insertion point might |
17480 | // be the last block of a more nested EH region, because the new block will be inserted after the insertion |
17481 | // point, and will not extend the more nested EH region. For example: |
17482 | // |
17483 | // try3 try2 try1 |
17484 | // |--- | | BB01 |
17485 | // | |--- | BB02 |
17486 | // | | |--- BB03 |
17487 | // | | | BB04 |
17488 | // | |--- |--- BB05 |
17489 | // | BB06 |
17490 | // |----------------- BB07 |
17491 | // |
17492 | // for regionIndex==try3, putInTryRegion==true, we might return BB05, even though BB05 will have a try index |
17493 | // for try1 (the most nested 'try' region the block is in). That's because when we insert after BB05, the new |
17494 | // block will be in the correct, desired EH region, since try1 and try2 regions will not be extended to include |
17495 | // the inserted block. Furthermore, for regionIndex==try2, putInTryRegion==true, we can also return BB05. In this |
17496 | // case, when the new block is inserted, the try1 region remains the same, but we need extend region 'try2' to |
17497 | // include the inserted block. (We also need to check all parent regions as well, just in case any parent regions |
17498 | // also end on the same block, in which case we would also need to extend the parent regions. This is standard |
17499 | // procedure when inserting a block at the end of an EH region.) |
17500 | // |
17501 | // If nearBlk is non-nullptr then we return the closest block after nearBlk that will work best. |
17502 | // |
17503 | // We try to find a block in the appropriate region that is not a fallthrough block, so we can insert after it |
17504 | // without the need to insert a jump around the inserted block. |
17505 | // |
17506 | // Note that regionIndex is numbered the same as BasicBlock::bbTryIndex and BasicBlock::bbHndIndex, that is, "0" is |
17507 | // "main method" and otherwise is +1 from normal, so we can call, e.g., ehGetDsc(tryIndex - 1). |
17508 | // |
17509 | // Arguments: |
17510 | // regionIndex - the region index where the new block will be inserted. Zero means entire method; |
17511 | // non-zero means either a "try" or a "handler" region, depending on what putInTryRegion says. |
17512 | // putInTryRegion - 'true' to put the block in the 'try' region corresponding to 'regionIndex', 'false' |
17513 | // to put the block in the handler region. Should be 'true' if regionIndex==0. |
17514 | // startBlk - start block of range to search. |
17515 | // endBlk - end block of range to search (don't include this block in the range). Can be nullptr to indicate |
17516 | // the end of the function. |
17517 | // nearBlk - If non-nullptr, try to find an insertion location closely after this block. If nullptr, we insert |
17518 | // at the best location found towards the end of the acceptable block range. |
17519 | // jumpBlk - When nearBlk is set, this can be set to the block which jumps to bNext->bbNext (TODO: need to review |
17520 | // this?) |
17521 | // runRarely - true if the block being inserted is expected to be rarely run. This helps determine |
17522 | // the best place to put the new block, by putting in a place that has the same 'rarely run' characteristic. |
17523 | // |
17524 | // Return Value: |
17525 | // A block with the desired characteristics, so the new block will be inserted after this one. |
17526 | // If there is no suitable location, return nullptr. This should basically never happen. |
17527 | // |
17528 | BasicBlock* Compiler::fgFindInsertPoint(unsigned regionIndex, |
17529 | bool putInTryRegion, |
17530 | BasicBlock* startBlk, |
17531 | BasicBlock* endBlk, |
17532 | BasicBlock* nearBlk, |
17533 | BasicBlock* jumpBlk, |
17534 | bool runRarely) |
17535 | { |
17536 | noway_assert(startBlk != nullptr); |
17537 | noway_assert(startBlk != endBlk); |
17538 | noway_assert((regionIndex == 0 && putInTryRegion) || // Search in the main method |
17539 | (putInTryRegion && regionIndex > 0 && |
17540 | startBlk->bbTryIndex == regionIndex) || // Search in the specified try region |
17541 | (!putInTryRegion && regionIndex > 0 && |
17542 | startBlk->bbHndIndex == regionIndex)); // Search in the specified handler region |
17543 | |
17544 | #ifdef DEBUG |
17545 | // Assert that startBlk precedes endBlk in the block list. |
17546 | // We don't want to use bbNum to assert this condition, as we cannot depend on the block numbers being |
17547 | // sequential at all times. |
17548 | for (BasicBlock* b = startBlk; b != endBlk; b = b->bbNext) |
17549 | { |
17550 | assert(b != nullptr); // We reached the end of the block list, but never found endBlk. |
17551 | } |
17552 | #endif // DEBUG |
17553 | |
17554 | JITDUMP("fgFindInsertPoint(regionIndex=%u, putInTryRegion=%s, startBlk=" FMT_BB ", endBlk=" FMT_BB |
17555 | ", nearBlk=" FMT_BB ", " |
17556 | "jumpBlk=" FMT_BB ", runRarely=%s)\n" , |
17557 | regionIndex, dspBool(putInTryRegion), startBlk->bbNum, (endBlk == nullptr) ? 0 : endBlk->bbNum, |
17558 | (nearBlk == nullptr) ? 0 : nearBlk->bbNum, (jumpBlk == nullptr) ? 0 : jumpBlk->bbNum, dspBool(runRarely)); |
17559 | |
17560 | bool insertingIntoFilter = false; |
17561 | if (!putInTryRegion) |
17562 | { |
17563 | EHblkDsc* const dsc = ehGetDsc(regionIndex - 1); |
17564 | insertingIntoFilter = dsc->HasFilter() && (startBlk == dsc->ebdFilter) && (endBlk == dsc->ebdHndBeg); |
17565 | } |
17566 | |
17567 | bool reachedNear = false; // Have we reached 'nearBlk' in our search? If not, we'll keep searching. |
17568 | bool inFilter = false; // Are we in a filter region that we need to skip? |
17569 | BasicBlock* bestBlk = |
17570 | nullptr; // Set to the best insertion point we've found so far that meets all the EH requirements. |
17571 | BasicBlock* goodBlk = |
17572 | nullptr; // Set to an acceptable insertion point that we'll use if we don't find a 'best' option. |
17573 | BasicBlock* blk; |
17574 | |
17575 | if (nearBlk != nullptr) |
17576 | { |
17577 | // Does the nearBlk precede the startBlk? |
17578 | for (blk = nearBlk; blk != nullptr; blk = blk->bbNext) |
17579 | { |
17580 | if (blk == startBlk) |
17581 | { |
17582 | reachedNear = true; |
17583 | break; |
17584 | } |
17585 | else if (blk == endBlk) |
17586 | { |
17587 | break; |
17588 | } |
17589 | } |
17590 | } |
17591 | |
17592 | for (blk = startBlk; blk != endBlk; blk = blk->bbNext) |
17593 | { |
17594 | // The only way (blk == nullptr) could be true is if the caller passed an endBlk that preceded startBlk in the |
17595 | // block list, or if endBlk isn't in the block list at all. In DEBUG, we'll instead hit the similar |
17596 | // well-formedness assert earlier in this function. |
17597 | noway_assert(blk != nullptr); |
17598 | |
17599 | if (blk == nearBlk) |
17600 | { |
17601 | reachedNear = true; |
17602 | } |
17603 | |
17604 | if (blk->bbCatchTyp == BBCT_FILTER) |
17605 | { |
17606 | // Record the fact that we entered a filter region, so we don't insert into filters... |
17607 | // Unless the caller actually wanted the block inserted in this exact filter region. |
17608 | if (!insertingIntoFilter || (blk != startBlk)) |
17609 | { |
17610 | inFilter = true; |
17611 | } |
17612 | } |
17613 | else if (blk->bbCatchTyp == BBCT_FILTER_HANDLER) |
17614 | { |
17615 | // Record the fact that we exited a filter region. |
17616 | inFilter = false; |
17617 | } |
17618 | |
17619 | // Don't insert a block inside this filter region. |
17620 | if (inFilter) |
17621 | { |
17622 | continue; |
17623 | } |
17624 | |
17625 | // Note that the new block will be inserted AFTER "blk". We check to make sure that doing so |
17626 | // would put the block in the correct EH region. We make an assumption here that you can |
17627 | // ALWAYS insert the new block before "endBlk" (that is, at the end of the search range) |
17628 | // and be in the correct EH region. This is must be guaranteed by the caller (as it is by |
17629 | // fgNewBBinRegion(), which passes the search range as an exact EH region block range). |
17630 | // Because of this assumption, we only check the EH information for blocks before the last block. |
17631 | if (blk->bbNext != endBlk) |
17632 | { |
17633 | // We are in the middle of the search range. We can't insert the new block in |
17634 | // an inner try or handler region. We can, however, set the insertion |
17635 | // point to the last block of an EH try/handler region, if the enclosing |
17636 | // region is the region we wish to insert in. (Since multiple regions can |
17637 | // end at the same block, we need to search outwards, checking that the |
17638 | // block is the last block of every EH region out to the region we want |
17639 | // to insert in.) This is especially useful for putting a call-to-finally |
17640 | // block on AMD64 immediately after its corresponding 'try' block, so in the |
17641 | // common case, we'll just fall through to it. For example: |
17642 | // |
17643 | // BB01 |
17644 | // BB02 -- first block of try |
17645 | // BB03 |
17646 | // BB04 -- last block of try |
17647 | // BB05 -- first block of finally |
17648 | // BB06 |
17649 | // BB07 -- last block of handler |
17650 | // BB08 |
17651 | // |
17652 | // Assume there is only one try/finally, so BB01 and BB08 are in the "main function". |
17653 | // For AMD64 call-to-finally, we'll want to insert the BBJ_CALLFINALLY in |
17654 | // the main function, immediately after BB04. This allows us to do that. |
17655 | |
17656 | if (!fgCheckEHCanInsertAfterBlock(blk, regionIndex, putInTryRegion)) |
17657 | { |
17658 | // Can't insert here. |
17659 | continue; |
17660 | } |
17661 | } |
17662 | |
17663 | // Look for an insert location: |
17664 | // 1. We want blocks that don't end with a fall through, |
17665 | // 2. Also, when blk equals nearBlk we may want to insert here. |
17666 | if (!blk->bbFallsThrough() || (blk == nearBlk)) |
17667 | { |
17668 | bool updateBestBlk = true; // We will probably update the bestBlk |
17669 | |
17670 | // If blk falls through then we must decide whether to use the nearBlk |
17671 | // hint |
17672 | if (blk->bbFallsThrough()) |
17673 | { |
17674 | noway_assert(blk == nearBlk); |
17675 | if (jumpBlk != nullptr) |
17676 | { |
17677 | updateBestBlk = fgIsBetterFallThrough(blk, jumpBlk); |
17678 | } |
17679 | else |
17680 | { |
17681 | updateBestBlk = false; |
17682 | } |
17683 | } |
17684 | |
17685 | // If we already have a best block, see if the 'runRarely' flags influences |
17686 | // our choice. If we want a runRarely insertion point, and the existing best |
17687 | // block is run rarely but the current block isn't run rarely, then don't |
17688 | // update the best block. |
17689 | // TODO-CQ: We should also handle the reverse case, where runRarely is false (we |
17690 | // want a non-rarely-run block), but bestBlock->isRunRarely() is true. In that |
17691 | // case, we should update the block, also. Probably what we want is: |
17692 | // (bestBlk->isRunRarely() != runRarely) && (blk->isRunRarely() == runRarely) |
17693 | if (updateBestBlk && (bestBlk != nullptr) && runRarely && bestBlk->isRunRarely() && !blk->isRunRarely()) |
17694 | { |
17695 | updateBestBlk = false; |
17696 | } |
17697 | |
17698 | if (updateBestBlk) |
17699 | { |
17700 | // We found a 'best' insertion location, so save it away. |
17701 | bestBlk = blk; |
17702 | |
17703 | // If we've reached nearBlk, we've satisfied all the criteria, |
17704 | // so we're done. |
17705 | if (reachedNear) |
17706 | { |
17707 | goto DONE; |
17708 | } |
17709 | |
17710 | // If we haven't reached nearBlk, keep looking for a 'best' location, just |
17711 | // in case we'll find one at or after nearBlk. If no nearBlk was specified, |
17712 | // we prefer inserting towards the end of the given range, so keep looking |
17713 | // for more acceptable insertion locations. |
17714 | } |
17715 | } |
17716 | |
17717 | // No need to update goodBlk after we have set bestBlk, but we could still find a better |
17718 | // bestBlk, so keep looking. |
17719 | if (bestBlk != nullptr) |
17720 | { |
17721 | continue; |
17722 | } |
17723 | |
17724 | // Set the current block as a "good enough" insertion point, if it meets certain criteria. |
17725 | // We'll return this block if we don't find a "best" block in the search range. The block |
17726 | // can't be a BBJ_CALLFINALLY of a BBJ_CALLFINALLY/BBJ_ALWAYS pair (since we don't want |
17727 | // to insert anything between these two blocks). Otherwise, we can use it. However, |
17728 | // if we'd previously chosen a BBJ_COND block, then we'd prefer the "good" block to be |
17729 | // something else. We keep updating it until we've reached the 'nearBlk', to push it as |
17730 | // close to endBlk as possible. |
17731 | if (!blk->isBBCallAlwaysPair()) |
17732 | { |
17733 | if (goodBlk == nullptr) |
17734 | { |
17735 | goodBlk = blk; |
17736 | } |
17737 | else if ((goodBlk->bbJumpKind == BBJ_COND) || (blk->bbJumpKind != BBJ_COND)) |
17738 | { |
17739 | if ((blk == nearBlk) || !reachedNear) |
17740 | { |
17741 | goodBlk = blk; |
17742 | } |
17743 | } |
17744 | } |
17745 | } |
17746 | |
17747 | // If we didn't find a non-fall_through block, then insert at the last good block. |
17748 | |
17749 | if (bestBlk == nullptr) |
17750 | { |
17751 | bestBlk = goodBlk; |
17752 | } |
17753 | |
17754 | DONE: |
17755 | |
17756 | #if defined(JIT32_GCENCODER) |
17757 | // If we are inserting into a filter and the best block is the end of the filter region, we need to |
17758 | // insert after its predecessor instead: the JIT32 GC encoding used by the x86 CLR ABI states that the |
17759 | // terminal block of a filter region is its exit block. If the filter region consists of a single block, |
17760 | // a new block cannot be inserted without either splitting the single block before inserting a new block |
17761 | // or inserting the new block before the single block and updating the filter description such that the |
17762 | // inserted block is marked as the entry block for the filter. Becuase this sort of split can be complex |
17763 | // (especially given that it must ensure that the liveness of the exception object is properly tracked), |
17764 | // we avoid this situation by never generating single-block filters on x86 (see impPushCatchArgOnStack). |
17765 | if (insertingIntoFilter && (bestBlk == endBlk->bbPrev)) |
17766 | { |
17767 | assert(bestBlk != startBlk); |
17768 | bestBlk = bestBlk->bbPrev; |
17769 | } |
17770 | #endif // defined(JIT32_GCENCODER) |
17771 | |
17772 | return bestBlk; |
17773 | } |
17774 | |
17775 | //------------------------------------------------------------------------ |
17776 | // Creates a new BasicBlock and inserts it in a specific EH region, given by 'tryIndex', 'hndIndex', and 'putInFilter'. |
17777 | // |
17778 | // If 'putInFilter' it true, then the block is inserted in the filter region given by 'hndIndex'. In this case, tryIndex |
17779 | // must be a less nested EH region (that is, tryIndex > hndIndex). |
17780 | // |
17781 | // Otherwise, the block is inserted in either the try region or the handler region, depending on which one is the inner |
17782 | // region. In other words, if the try region indicated by tryIndex is nested in the handler region indicated by |
17783 | // hndIndex, |
17784 | // then the new BB will be created in the try region. Vice versa. |
17785 | // |
17786 | // Note that tryIndex and hndIndex are numbered the same as BasicBlock::bbTryIndex and BasicBlock::bbHndIndex, that is, |
17787 | // "0" is "main method" and otherwise is +1 from normal, so we can call, e.g., ehGetDsc(tryIndex - 1). |
17788 | // |
17789 | // To be more specific, this function will create a new BB in one of the following 5 regions (if putInFilter is false): |
17790 | // 1. When tryIndex = 0 and hndIndex = 0: |
17791 | // The new BB will be created in the method region. |
17792 | // 2. When tryIndex != 0 and hndIndex = 0: |
17793 | // The new BB will be created in the try region indicated by tryIndex. |
17794 | // 3. When tryIndex == 0 and hndIndex != 0: |
17795 | // The new BB will be created in the handler region indicated by hndIndex. |
17796 | // 4. When tryIndex != 0 and hndIndex != 0 and tryIndex < hndIndex: |
17797 | // In this case, the try region is nested inside the handler region. Therefore, the new BB will be created |
17798 | // in the try region indicated by tryIndex. |
17799 | // 5. When tryIndex != 0 and hndIndex != 0 and tryIndex > hndIndex: |
17800 | // In this case, the handler region is nested inside the try region. Therefore, the new BB will be created |
17801 | // in the handler region indicated by hndIndex. |
17802 | // |
17803 | // Note that if tryIndex != 0 and hndIndex != 0 then tryIndex must not be equal to hndIndex (this makes sense because |
17804 | // if they are equal, you are asking to put the new block in both the try and handler, which is impossible). |
17805 | // |
17806 | // The BasicBlock will not be inserted inside an EH region that is more nested than the requested tryIndex/hndIndex |
17807 | // region (so the function is careful to skip more nested EH regions when searching for a place to put the new block). |
17808 | // |
17809 | // This function cannot be used to insert a block as the first block of any region. It always inserts a block after |
17810 | // an existing block in the given region. |
17811 | // |
17812 | // If nearBlk is nullptr, or the block is run rarely, then the new block is assumed to be run rarely. |
17813 | // |
17814 | // Arguments: |
17815 | // jumpKind - the jump kind of the new block to create. |
17816 | // tryIndex - the try region to insert the new block in, described above. This must be a number in the range |
17817 | // [0..compHndBBtabCount]. |
17818 | // hndIndex - the handler region to insert the new block in, described above. This must be a number in the range |
17819 | // [0..compHndBBtabCount]. |
17820 | // nearBlk - insert the new block closely after this block, if possible. If nullptr, put the new block anywhere |
17821 | // in the requested region. |
17822 | // putInFilter - put the new block in the filter region given by hndIndex, as described above. |
17823 | // runRarely - 'true' if the new block is run rarely. |
17824 | // insertAtEnd - 'true' if the block should be inserted at the end of the region. Note: this is currently only |
17825 | // implemented when inserting into the main function (not into any EH region). |
17826 | // |
17827 | // Return Value: |
17828 | // The new block. |
17829 | |
17830 | BasicBlock* Compiler::fgNewBBinRegion(BBjumpKinds jumpKind, |
17831 | unsigned tryIndex, |
17832 | unsigned hndIndex, |
17833 | BasicBlock* nearBlk, |
17834 | bool putInFilter /* = false */, |
17835 | bool runRarely /* = false */, |
17836 | bool insertAtEnd /* = false */) |
17837 | { |
17838 | assert(tryIndex <= compHndBBtabCount); |
17839 | assert(hndIndex <= compHndBBtabCount); |
17840 | |
17841 | /* afterBlk is the block which will precede the newBB */ |
17842 | BasicBlock* afterBlk; |
17843 | |
17844 | // start and end limit for inserting the block |
17845 | BasicBlock* startBlk = nullptr; |
17846 | BasicBlock* endBlk = nullptr; |
17847 | |
17848 | bool putInTryRegion = true; |
17849 | unsigned regionIndex = 0; |
17850 | |
17851 | // First, figure out which region (the "try" region or the "handler" region) to put the newBB in. |
17852 | if ((tryIndex == 0) && (hndIndex == 0)) |
17853 | { |
17854 | assert(!putInFilter); |
17855 | |
17856 | endBlk = fgEndBBAfterMainFunction(); // don't put new BB in funclet region |
17857 | |
17858 | if (insertAtEnd || (nearBlk == nullptr)) |
17859 | { |
17860 | /* We'll just insert the block at the end of the method, before the funclets */ |
17861 | |
17862 | afterBlk = fgLastBBInMainFunction(); |
17863 | goto _FoundAfterBlk; |
17864 | } |
17865 | else |
17866 | { |
17867 | // We'll search through the entire method |
17868 | startBlk = fgFirstBB; |
17869 | } |
17870 | |
17871 | noway_assert(regionIndex == 0); |
17872 | } |
17873 | else |
17874 | { |
17875 | noway_assert(tryIndex > 0 || hndIndex > 0); |
17876 | PREFIX_ASSUME(tryIndex <= compHndBBtabCount); |
17877 | PREFIX_ASSUME(hndIndex <= compHndBBtabCount); |
17878 | |
17879 | // Decide which region to put in, the "try" region or the "handler" region. |
17880 | if (tryIndex == 0) |
17881 | { |
17882 | noway_assert(hndIndex > 0); |
17883 | putInTryRegion = false; |
17884 | } |
17885 | else if (hndIndex == 0) |
17886 | { |
17887 | noway_assert(tryIndex > 0); |
17888 | noway_assert(putInTryRegion); |
17889 | assert(!putInFilter); |
17890 | } |
17891 | else |
17892 | { |
17893 | noway_assert(tryIndex > 0 && hndIndex > 0 && tryIndex != hndIndex); |
17894 | putInTryRegion = (tryIndex < hndIndex); |
17895 | } |
17896 | |
17897 | if (putInTryRegion) |
17898 | { |
17899 | // Try region is the inner region. |
17900 | // In other words, try region must be nested inside the handler region. |
17901 | noway_assert(hndIndex == 0 || bbInHandlerRegions(hndIndex - 1, ehGetDsc(tryIndex - 1)->ebdTryBeg)); |
17902 | assert(!putInFilter); |
17903 | } |
17904 | else |
17905 | { |
17906 | // Handler region is the inner region. |
17907 | // In other words, handler region must be nested inside the try region. |
17908 | noway_assert(tryIndex == 0 || bbInTryRegions(tryIndex - 1, ehGetDsc(hndIndex - 1)->ebdHndBeg)); |
17909 | } |
17910 | |
17911 | // Figure out the start and end block range to search for an insertion location. Pick the beginning and |
17912 | // ending blocks of the target EH region (the 'endBlk' is one past the last block of the EH region, to make |
17913 | // loop iteration easier). Note that, after funclets have been created (for FEATURE_EH_FUNCLETS), |
17914 | // this linear block range will not include blocks of handlers for try/handler clauses nested within |
17915 | // this EH region, as those blocks have been extracted as funclets. That is ok, though, because we don't |
17916 | // want to insert a block in any nested EH region. |
17917 | |
17918 | if (putInTryRegion) |
17919 | { |
17920 | // We will put the newBB in the try region. |
17921 | EHblkDsc* ehDsc = ehGetDsc(tryIndex - 1); |
17922 | startBlk = ehDsc->ebdTryBeg; |
17923 | endBlk = ehDsc->ebdTryLast->bbNext; |
17924 | regionIndex = tryIndex; |
17925 | } |
17926 | else if (putInFilter) |
17927 | { |
17928 | // We will put the newBB in the filter region. |
17929 | EHblkDsc* ehDsc = ehGetDsc(hndIndex - 1); |
17930 | startBlk = ehDsc->ebdFilter; |
17931 | endBlk = ehDsc->ebdHndBeg; |
17932 | regionIndex = hndIndex; |
17933 | } |
17934 | else |
17935 | { |
17936 | // We will put the newBB in the handler region. |
17937 | EHblkDsc* ehDsc = ehGetDsc(hndIndex - 1); |
17938 | startBlk = ehDsc->ebdHndBeg; |
17939 | endBlk = ehDsc->ebdHndLast->bbNext; |
17940 | regionIndex = hndIndex; |
17941 | } |
17942 | |
17943 | noway_assert(regionIndex > 0); |
17944 | } |
17945 | |
17946 | // Now find the insertion point. |
17947 | afterBlk = fgFindInsertPoint(regionIndex, putInTryRegion, startBlk, endBlk, nearBlk, nullptr, runRarely); |
17948 | |
17949 | _FoundAfterBlk:; |
17950 | |
17951 | /* We have decided to insert the block after 'afterBlk'. */ |
17952 | noway_assert(afterBlk != nullptr); |
17953 | |
17954 | JITDUMP("fgNewBBinRegion(jumpKind=%u, tryIndex=%u, hndIndex=%u, putInFilter=%s, runRarely=%s, insertAtEnd=%s): " |
17955 | "inserting after " FMT_BB "\n" , |
17956 | jumpKind, tryIndex, hndIndex, dspBool(putInFilter), dspBool(runRarely), dspBool(insertAtEnd), |
17957 | afterBlk->bbNum); |
17958 | |
17959 | return fgNewBBinRegionWorker(jumpKind, afterBlk, regionIndex, putInTryRegion); |
17960 | } |
17961 | |
17962 | //------------------------------------------------------------------------ |
17963 | // Creates a new BasicBlock and inserts it in the same EH region as 'srcBlk'. |
17964 | // |
17965 | // See the implementation of fgNewBBinRegion() used by this one for more notes. |
17966 | // |
17967 | // Arguments: |
17968 | // jumpKind - the jump kind of the new block to create. |
17969 | // srcBlk - insert the new block in the same EH region as this block, and closely after it if possible. |
17970 | // |
17971 | // Return Value: |
17972 | // The new block. |
17973 | |
17974 | BasicBlock* Compiler::fgNewBBinRegion(BBjumpKinds jumpKind, |
17975 | BasicBlock* srcBlk, |
17976 | bool runRarely /* = false */, |
17977 | bool insertAtEnd /* = false */) |
17978 | { |
17979 | assert(srcBlk != nullptr); |
17980 | |
17981 | const unsigned tryIndex = srcBlk->bbTryIndex; |
17982 | const unsigned hndIndex = srcBlk->bbHndIndex; |
17983 | bool putInFilter = false; |
17984 | |
17985 | // Check to see if we need to put the new block in a filter. We do if srcBlk is in a filter. |
17986 | // This can only be true if there is a handler index, and the handler region is more nested than the |
17987 | // try region (if any). This is because no EH regions can be nested within a filter. |
17988 | if (BasicBlock::ehIndexMaybeMoreNested(hndIndex, tryIndex)) |
17989 | { |
17990 | assert(hndIndex != 0); // If hndIndex is more nested, we must be in some handler! |
17991 | putInFilter = ehGetDsc(hndIndex - 1)->InFilterRegionBBRange(srcBlk); |
17992 | } |
17993 | |
17994 | return fgNewBBinRegion(jumpKind, tryIndex, hndIndex, srcBlk, putInFilter, runRarely, insertAtEnd); |
17995 | } |
17996 | |
17997 | //------------------------------------------------------------------------ |
17998 | // Creates a new BasicBlock and inserts it at the end of the function. |
17999 | // |
18000 | // See the implementation of fgNewBBinRegion() used by this one for more notes. |
18001 | // |
18002 | // Arguments: |
18003 | // jumpKind - the jump kind of the new block to create. |
18004 | // |
18005 | // Return Value: |
18006 | // The new block. |
18007 | |
18008 | BasicBlock* Compiler::fgNewBBinRegion(BBjumpKinds jumpKind) |
18009 | { |
18010 | return fgNewBBinRegion(jumpKind, 0, 0, nullptr, /* putInFilter */ false, /* runRarely */ false, |
18011 | /* insertAtEnd */ true); |
18012 | } |
18013 | |
18014 | //------------------------------------------------------------------------ |
18015 | // Creates a new BasicBlock, and inserts it after 'afterBlk'. |
18016 | // |
18017 | // The block cannot be inserted into a more nested try/handler region than that specified by 'regionIndex'. |
18018 | // (It is given exactly 'regionIndex'.) Thus, the parameters must be passed to ensure proper EH nesting |
18019 | // rules are followed. |
18020 | // |
18021 | // Arguments: |
18022 | // jumpKind - the jump kind of the new block to create. |
18023 | // afterBlk - insert the new block after this one. |
18024 | // regionIndex - the block will be put in this EH region. |
18025 | // putInTryRegion - If true, put the new block in the 'try' region corresponding to 'regionIndex', and |
18026 | // set its handler index to the most nested handler region enclosing that 'try' region. |
18027 | // Otherwise, put the block in the handler region specified by 'regionIndex', and set its 'try' |
18028 | // index to the most nested 'try' region enclosing that handler region. |
18029 | // |
18030 | // Return Value: |
18031 | // The new block. |
18032 | |
18033 | BasicBlock* Compiler::fgNewBBinRegionWorker(BBjumpKinds jumpKind, |
18034 | BasicBlock* afterBlk, |
18035 | unsigned regionIndex, |
18036 | bool putInTryRegion) |
18037 | { |
18038 | /* Insert the new block */ |
18039 | BasicBlock* afterBlkNext = afterBlk->bbNext; |
18040 | (void)afterBlkNext; // prevent "unused variable" error from GCC |
18041 | BasicBlock* newBlk = fgNewBBafter(jumpKind, afterBlk, false); |
18042 | |
18043 | if (putInTryRegion) |
18044 | { |
18045 | noway_assert(regionIndex <= MAX_XCPTN_INDEX); |
18046 | newBlk->bbTryIndex = (unsigned short)regionIndex; |
18047 | newBlk->bbHndIndex = bbFindInnermostHandlerRegionContainingTryRegion(regionIndex); |
18048 | } |
18049 | else |
18050 | { |
18051 | newBlk->bbTryIndex = bbFindInnermostTryRegionContainingHandlerRegion(regionIndex); |
18052 | noway_assert(regionIndex <= MAX_XCPTN_INDEX); |
18053 | newBlk->bbHndIndex = (unsigned short)regionIndex; |
18054 | } |
18055 | |
18056 | // We're going to compare for equal try regions (to handle the case of 'mutually protect' |
18057 | // regions). We need to save off the current try region, otherwise we might change it |
18058 | // before it gets compared later, thereby making future comparisons fail. |
18059 | |
18060 | BasicBlock* newTryBeg; |
18061 | BasicBlock* newTryLast; |
18062 | (void)ehInitTryBlockRange(newBlk, &newTryBeg, &newTryLast); |
18063 | |
18064 | unsigned XTnum; |
18065 | EHblkDsc* HBtab; |
18066 | |
18067 | for (XTnum = 0, HBtab = compHndBBtab; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
18068 | { |
18069 | // Is afterBlk at the end of a try region? |
18070 | if (HBtab->ebdTryLast == afterBlk) |
18071 | { |
18072 | noway_assert(afterBlkNext == newBlk->bbNext); |
18073 | |
18074 | bool extendTryRegion = false; |
18075 | if (newBlk->hasTryIndex()) |
18076 | { |
18077 | // We're adding a block after the last block of some try region. Do |
18078 | // we extend the try region to include the block, or not? |
18079 | // If the try region is exactly the same as the try region |
18080 | // associated with the new block (based on the block's try index, |
18081 | // which represents the innermost try the block is a part of), then |
18082 | // we extend it. |
18083 | // If the try region is a "parent" try region -- an enclosing try region |
18084 | // that has the same last block as the new block's try region -- then |
18085 | // we also extend. For example: |
18086 | // try { // 1 |
18087 | // ... |
18088 | // try { // 2 |
18089 | // ... |
18090 | // } /* 2 */ } /* 1 */ |
18091 | // This example is meant to indicate that both try regions 1 and 2 end at |
18092 | // the same block, and we're extending 2. Thus, we must also extend 1. If we |
18093 | // only extended 2, we would break proper nesting. (Dev11 bug 137967) |
18094 | |
18095 | extendTryRegion = HBtab->ebdIsSameTry(newTryBeg, newTryLast) || bbInTryRegions(XTnum, newBlk); |
18096 | } |
18097 | |
18098 | // Does newBlk extend this try region? |
18099 | if (extendTryRegion) |
18100 | { |
18101 | // Yes, newBlk extends this try region |
18102 | |
18103 | // newBlk is the now the new try last block |
18104 | fgSetTryEnd(HBtab, newBlk); |
18105 | } |
18106 | } |
18107 | |
18108 | // Is afterBlk at the end of a handler region? |
18109 | if (HBtab->ebdHndLast == afterBlk) |
18110 | { |
18111 | noway_assert(afterBlkNext == newBlk->bbNext); |
18112 | |
18113 | // Does newBlk extend this handler region? |
18114 | bool extendHndRegion = false; |
18115 | if (newBlk->hasHndIndex()) |
18116 | { |
18117 | // We're adding a block after the last block of some handler region. Do |
18118 | // we extend the handler region to include the block, or not? |
18119 | // If the handler region is exactly the same as the handler region |
18120 | // associated with the new block (based on the block's handler index, |
18121 | // which represents the innermost handler the block is a part of), then |
18122 | // we extend it. |
18123 | // If the handler region is a "parent" handler region -- an enclosing |
18124 | // handler region that has the same last block as the new block's handler |
18125 | // region -- then we also extend. For example: |
18126 | // catch { // 1 |
18127 | // ... |
18128 | // catch { // 2 |
18129 | // ... |
18130 | // } /* 2 */ } /* 1 */ |
18131 | // This example is meant to indicate that both handler regions 1 and 2 end at |
18132 | // the same block, and we're extending 2. Thus, we must also extend 1. If we |
18133 | // only extended 2, we would break proper nesting. (Dev11 bug 372051) |
18134 | |
18135 | extendHndRegion = bbInHandlerRegions(XTnum, newBlk); |
18136 | } |
18137 | |
18138 | if (extendHndRegion) |
18139 | { |
18140 | // Yes, newBlk extends this handler region |
18141 | |
18142 | // newBlk is now the last block of the handler. |
18143 | fgSetHndEnd(HBtab, newBlk); |
18144 | } |
18145 | } |
18146 | } |
18147 | |
18148 | /* If afterBlk falls through, we insert a jump around newBlk */ |
18149 | fgConnectFallThrough(afterBlk, newBlk->bbNext); |
18150 | |
18151 | #ifdef DEBUG |
18152 | fgVerifyHandlerTab(); |
18153 | #endif |
18154 | |
18155 | return newBlk; |
18156 | } |
18157 | |
18158 | /***************************************************************************** |
18159 | */ |
18160 | |
18161 | /* static */ |
18162 | unsigned Compiler::acdHelper(SpecialCodeKind codeKind) |
18163 | { |
18164 | switch (codeKind) |
18165 | { |
18166 | case SCK_RNGCHK_FAIL: |
18167 | return CORINFO_HELP_RNGCHKFAIL; |
18168 | case SCK_ARG_EXCPN: |
18169 | return CORINFO_HELP_THROW_ARGUMENTEXCEPTION; |
18170 | case SCK_ARG_RNG_EXCPN: |
18171 | return CORINFO_HELP_THROW_ARGUMENTOUTOFRANGEEXCEPTION; |
18172 | case SCK_DIV_BY_ZERO: |
18173 | return CORINFO_HELP_THROWDIVZERO; |
18174 | case SCK_ARITH_EXCPN: |
18175 | return CORINFO_HELP_OVERFLOW; |
18176 | default: |
18177 | assert(!"Bad codeKind" ); |
18178 | return 0; |
18179 | } |
18180 | } |
18181 | |
18182 | //------------------------------------------------------------------------ |
18183 | // fgAddCodeRef: Find/create an added code entry associated with the given block and with the given kind. |
18184 | // |
18185 | // Arguments: |
18186 | // srcBlk - the block that needs an entry; |
18187 | // refData - the index to use as the cache key for sharing throw blocks; |
18188 | // kind - the kind of exception; |
18189 | // |
18190 | // Return Value: |
18191 | // The target throw helper block or nullptr if throw helper blocks are disabled. |
18192 | // |
18193 | BasicBlock* Compiler::fgAddCodeRef(BasicBlock* srcBlk, unsigned refData, SpecialCodeKind kind) |
18194 | { |
18195 | // Record that the code will call a THROW_HELPER |
18196 | // so on Windows Amd64 we can allocate the 4 outgoing |
18197 | // arg slots on the stack frame if there are no other calls. |
18198 | compUsesThrowHelper = true; |
18199 | |
18200 | if (!fgUseThrowHelperBlocks()) |
18201 | { |
18202 | return nullptr; |
18203 | } |
18204 | |
18205 | const static BBjumpKinds jumpKinds[] = { |
18206 | BBJ_NONE, // SCK_NONE |
18207 | BBJ_THROW, // SCK_RNGCHK_FAIL |
18208 | BBJ_ALWAYS, // SCK_PAUSE_EXEC |
18209 | BBJ_THROW, // SCK_DIV_BY_ZERO |
18210 | BBJ_THROW, // SCK_ARITH_EXCP, SCK_OVERFLOW |
18211 | BBJ_THROW, // SCK_ARG_EXCPN |
18212 | BBJ_THROW, // SCK_ARG_RNG_EXCPN |
18213 | }; |
18214 | |
18215 | noway_assert(sizeof(jumpKinds) == SCK_COUNT); // sanity check |
18216 | |
18217 | /* First look for an existing entry that matches what we're looking for */ |
18218 | |
18219 | AddCodeDsc* add = fgFindExcptnTarget(kind, refData); |
18220 | |
18221 | if (add) // found it |
18222 | { |
18223 | return add->acdDstBlk; |
18224 | } |
18225 | |
18226 | /* We have to allocate a new entry and prepend it to the list */ |
18227 | |
18228 | add = new (this, CMK_Unknown) AddCodeDsc; |
18229 | add->acdData = refData; |
18230 | add->acdKind = kind; |
18231 | add->acdNext = fgAddCodeList; |
18232 | #if !FEATURE_FIXED_OUT_ARGS |
18233 | add->acdStkLvl = 0; |
18234 | add->acdStkLvlInit = false; |
18235 | #endif // !FEATURE_FIXED_OUT_ARGS |
18236 | |
18237 | fgAddCodeList = add; |
18238 | |
18239 | /* Create the target basic block */ |
18240 | |
18241 | BasicBlock* newBlk; |
18242 | |
18243 | newBlk = add->acdDstBlk = fgNewBBinRegion(jumpKinds[kind], srcBlk, /* runRarely */ true, /* insertAtEnd */ true); |
18244 | |
18245 | add->acdDstBlk->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL; |
18246 | |
18247 | #ifdef DEBUG |
18248 | if (verbose) |
18249 | { |
18250 | const char* msgWhere = "" ; |
18251 | if (!srcBlk->hasTryIndex() && !srcBlk->hasHndIndex()) |
18252 | { |
18253 | msgWhere = "non-EH region" ; |
18254 | } |
18255 | else if (!srcBlk->hasTryIndex()) |
18256 | { |
18257 | msgWhere = "handler" ; |
18258 | } |
18259 | else if (!srcBlk->hasHndIndex()) |
18260 | { |
18261 | msgWhere = "try" ; |
18262 | } |
18263 | else if (srcBlk->getTryIndex() < srcBlk->getHndIndex()) |
18264 | { |
18265 | msgWhere = "try" ; |
18266 | } |
18267 | else |
18268 | { |
18269 | msgWhere = "handler" ; |
18270 | } |
18271 | |
18272 | const char* msg; |
18273 | switch (kind) |
18274 | { |
18275 | case SCK_RNGCHK_FAIL: |
18276 | msg = " for RNGCHK_FAIL" ; |
18277 | break; |
18278 | case SCK_PAUSE_EXEC: |
18279 | msg = " for PAUSE_EXEC" ; |
18280 | break; |
18281 | case SCK_DIV_BY_ZERO: |
18282 | msg = " for DIV_BY_ZERO" ; |
18283 | break; |
18284 | case SCK_OVERFLOW: |
18285 | msg = " for OVERFLOW" ; |
18286 | break; |
18287 | case SCK_ARG_EXCPN: |
18288 | msg = " for ARG_EXCPN" ; |
18289 | break; |
18290 | case SCK_ARG_RNG_EXCPN: |
18291 | msg = " for ARG_RNG_EXCPN" ; |
18292 | break; |
18293 | default: |
18294 | msg = " for ??" ; |
18295 | break; |
18296 | } |
18297 | |
18298 | printf("\nfgAddCodeRef - Add BB in %s%s, new block %s\n" , msgWhere, msg, add->acdDstBlk->dspToString()); |
18299 | } |
18300 | #endif // DEBUG |
18301 | |
18302 | /* Mark the block as added by the compiler and not removable by future flow |
18303 | graph optimizations. Note that no bbJumpDest points to these blocks. */ |
18304 | |
18305 | newBlk->bbFlags |= BBF_IMPORTED; |
18306 | newBlk->bbFlags |= BBF_DONT_REMOVE; |
18307 | |
18308 | /* Remember that we're adding a new basic block */ |
18309 | |
18310 | fgAddCodeModf = true; |
18311 | fgRngChkThrowAdded = true; |
18312 | |
18313 | /* Now figure out what code to insert */ |
18314 | |
18315 | GenTreeCall* tree; |
18316 | int helper = CORINFO_HELP_UNDEF; |
18317 | |
18318 | switch (kind) |
18319 | { |
18320 | case SCK_RNGCHK_FAIL: |
18321 | helper = CORINFO_HELP_RNGCHKFAIL; |
18322 | break; |
18323 | |
18324 | case SCK_DIV_BY_ZERO: |
18325 | helper = CORINFO_HELP_THROWDIVZERO; |
18326 | break; |
18327 | |
18328 | case SCK_ARITH_EXCPN: |
18329 | helper = CORINFO_HELP_OVERFLOW; |
18330 | noway_assert(SCK_OVERFLOW == SCK_ARITH_EXCPN); |
18331 | break; |
18332 | |
18333 | case SCK_ARG_EXCPN: |
18334 | helper = CORINFO_HELP_THROW_ARGUMENTEXCEPTION; |
18335 | break; |
18336 | |
18337 | case SCK_ARG_RNG_EXCPN: |
18338 | helper = CORINFO_HELP_THROW_ARGUMENTOUTOFRANGEEXCEPTION; |
18339 | break; |
18340 | |
18341 | // case SCK_PAUSE_EXEC: |
18342 | // noway_assert(!"add code to pause exec"); |
18343 | |
18344 | default: |
18345 | noway_assert(!"unexpected code addition kind" ); |
18346 | return nullptr; |
18347 | } |
18348 | |
18349 | noway_assert(helper != CORINFO_HELP_UNDEF); |
18350 | |
18351 | // Add the appropriate helper call. |
18352 | tree = gtNewHelperCallNode(helper, TYP_VOID); |
18353 | |
18354 | // There are no args here but fgMorphArgs has side effects |
18355 | // such as setting the outgoing arg area (which is necessary |
18356 | // on AMD if there are any calls). |
18357 | tree = fgMorphArgs(tree); |
18358 | |
18359 | // Store the tree in the new basic block. |
18360 | assert(!srcBlk->isEmpty()); |
18361 | if (!srcBlk->IsLIR()) |
18362 | { |
18363 | fgInsertStmtAtEnd(newBlk, fgNewStmtFromTree(tree)); |
18364 | } |
18365 | else |
18366 | { |
18367 | LIR::AsRange(newBlk).InsertAtEnd(LIR::SeqTree(this, tree)); |
18368 | } |
18369 | |
18370 | return add->acdDstBlk; |
18371 | } |
18372 | |
18373 | /***************************************************************************** |
18374 | * Finds the block to jump to, to throw a given kind of exception |
18375 | * We maintain a cache of one AddCodeDsc for each kind, to make searching fast. |
18376 | * Note : Each block uses the same (maybe shared) block as the jump target for |
18377 | * a given type of exception |
18378 | */ |
18379 | |
18380 | Compiler::AddCodeDsc* Compiler::fgFindExcptnTarget(SpecialCodeKind kind, unsigned refData) |
18381 | { |
18382 | assert(fgUseThrowHelperBlocks()); |
18383 | if (!(fgExcptnTargetCache[kind] && // Try the cached value first |
18384 | fgExcptnTargetCache[kind]->acdData == refData)) |
18385 | { |
18386 | // Too bad, have to search for the jump target for the exception |
18387 | |
18388 | AddCodeDsc* add = nullptr; |
18389 | |
18390 | for (add = fgAddCodeList; add != nullptr; add = add->acdNext) |
18391 | { |
18392 | if (add->acdData == refData && add->acdKind == kind) |
18393 | { |
18394 | break; |
18395 | } |
18396 | } |
18397 | |
18398 | fgExcptnTargetCache[kind] = add; // Cache it |
18399 | } |
18400 | |
18401 | return fgExcptnTargetCache[kind]; |
18402 | } |
18403 | |
18404 | /***************************************************************************** |
18405 | * |
18406 | * The given basic block contains an array range check; return the label this |
18407 | * range check is to jump to upon failure. |
18408 | */ |
18409 | |
18410 | //------------------------------------------------------------------------ |
18411 | // fgRngChkTarget: Create/find the appropriate "range-fail" label for the block. |
18412 | // |
18413 | // Arguments: |
18414 | // srcBlk - the block that needs an entry; |
18415 | // kind - the kind of exception; |
18416 | // |
18417 | // Return Value: |
18418 | // The target throw helper block this check jumps to upon failure. |
18419 | // |
18420 | BasicBlock* Compiler::fgRngChkTarget(BasicBlock* block, SpecialCodeKind kind) |
18421 | { |
18422 | #ifdef DEBUG |
18423 | if (verbose) |
18424 | { |
18425 | printf("*** Computing fgRngChkTarget for block " FMT_BB "\n" , block->bbNum); |
18426 | if (!block->IsLIR()) |
18427 | { |
18428 | gtDispTree(compCurStmt); |
18429 | } |
18430 | } |
18431 | #endif // DEBUG |
18432 | |
18433 | /* We attach the target label to the containing try block (if any) */ |
18434 | noway_assert(!compIsForInlining()); |
18435 | return fgAddCodeRef(block, bbThrowIndex(block), kind); |
18436 | } |
18437 | |
18438 | // Sequences the tree. |
18439 | // prevTree is what gtPrev of the first node in execution order gets set to. |
18440 | // Returns the first node (execution order) in the sequenced tree. |
18441 | GenTree* Compiler::fgSetTreeSeq(GenTree* tree, GenTree* prevTree, bool isLIR) |
18442 | { |
18443 | GenTree list; |
18444 | |
18445 | if (prevTree == nullptr) |
18446 | { |
18447 | prevTree = &list; |
18448 | } |
18449 | fgTreeSeqLst = prevTree; |
18450 | fgTreeSeqNum = 0; |
18451 | fgTreeSeqBeg = nullptr; |
18452 | fgSetTreeSeqHelper(tree, isLIR); |
18453 | |
18454 | GenTree* result = prevTree->gtNext; |
18455 | if (prevTree == &list) |
18456 | { |
18457 | list.gtNext->gtPrev = nullptr; |
18458 | } |
18459 | |
18460 | return result; |
18461 | } |
18462 | |
18463 | /***************************************************************************** |
18464 | * |
18465 | * Assigns sequence numbers to the given tree and its sub-operands, and |
18466 | * threads all the nodes together via the 'gtNext' and 'gtPrev' fields. |
18467 | * Uses 'global' - fgTreeSeqLst |
18468 | */ |
18469 | |
18470 | void Compiler::fgSetTreeSeqHelper(GenTree* tree, bool isLIR) |
18471 | { |
18472 | genTreeOps oper; |
18473 | unsigned kind; |
18474 | |
18475 | noway_assert(tree); |
18476 | assert(!IsUninitialized(tree)); |
18477 | noway_assert(tree->gtOper != GT_STMT); |
18478 | |
18479 | /* Figure out what kind of a node we have */ |
18480 | |
18481 | oper = tree->OperGet(); |
18482 | kind = tree->OperKind(); |
18483 | |
18484 | /* Is this a leaf/constant node? */ |
18485 | |
18486 | if (kind & (GTK_CONST | GTK_LEAF)) |
18487 | { |
18488 | fgSetTreeSeqFinish(tree, isLIR); |
18489 | return; |
18490 | } |
18491 | |
18492 | // Special handling for dynamic block ops. |
18493 | if (tree->OperIs(GT_DYN_BLK, GT_STORE_DYN_BLK)) |
18494 | { |
18495 | GenTreeDynBlk* dynBlk = tree->AsDynBlk(); |
18496 | GenTree* sizeNode = dynBlk->gtDynamicSize; |
18497 | GenTree* dstAddr = dynBlk->Addr(); |
18498 | GenTree* src = dynBlk->Data(); |
18499 | bool isReverse = ((dynBlk->gtFlags & GTF_REVERSE_OPS) != 0); |
18500 | if (dynBlk->gtEvalSizeFirst) |
18501 | { |
18502 | fgSetTreeSeqHelper(sizeNode, isLIR); |
18503 | } |
18504 | |
18505 | // We either have a DYN_BLK or a STORE_DYN_BLK. If the latter, we have a |
18506 | // src (the Data to be stored), and isReverse tells us whether to evaluate |
18507 | // that before dstAddr. |
18508 | if (isReverse && (src != nullptr)) |
18509 | { |
18510 | fgSetTreeSeqHelper(src, isLIR); |
18511 | } |
18512 | fgSetTreeSeqHelper(dstAddr, isLIR); |
18513 | if (!isReverse && (src != nullptr)) |
18514 | { |
18515 | fgSetTreeSeqHelper(src, isLIR); |
18516 | } |
18517 | if (!dynBlk->gtEvalSizeFirst) |
18518 | { |
18519 | fgSetTreeSeqHelper(sizeNode, isLIR); |
18520 | } |
18521 | fgSetTreeSeqFinish(dynBlk, isLIR); |
18522 | return; |
18523 | } |
18524 | |
18525 | /* Is it a 'simple' unary/binary operator? */ |
18526 | |
18527 | if (kind & GTK_SMPOP) |
18528 | { |
18529 | GenTree* op1 = tree->gtOp.gtOp1; |
18530 | GenTree* op2 = tree->gtGetOp2IfPresent(); |
18531 | |
18532 | // Special handling for GT_LIST |
18533 | if (tree->OperGet() == GT_LIST) |
18534 | { |
18535 | // First, handle the list items, which will be linked in forward order. |
18536 | // As we go, we will link the GT_LIST nodes in reverse order - we will number |
18537 | // them and update fgTreeSeqList in a subsequent traversal. |
18538 | GenTree* nextList = tree; |
18539 | GenTree* list = nullptr; |
18540 | while (nextList != nullptr && nextList->OperGet() == GT_LIST) |
18541 | { |
18542 | list = nextList; |
18543 | GenTree* listItem = list->gtOp.gtOp1; |
18544 | fgSetTreeSeqHelper(listItem, isLIR); |
18545 | nextList = list->gtOp.gtOp2; |
18546 | if (nextList != nullptr) |
18547 | { |
18548 | nextList->gtNext = list; |
18549 | } |
18550 | list->gtPrev = nextList; |
18551 | } |
18552 | // Next, handle the GT_LIST nodes. |
18553 | // Note that fgSetTreeSeqFinish() sets the gtNext to null, so we need to capture the nextList |
18554 | // before we call that method. |
18555 | nextList = list; |
18556 | do |
18557 | { |
18558 | assert(list != nullptr); |
18559 | list = nextList; |
18560 | nextList = list->gtNext; |
18561 | fgSetTreeSeqFinish(list, isLIR); |
18562 | } while (list != tree); |
18563 | return; |
18564 | } |
18565 | |
18566 | /* Special handling for AddrMode */ |
18567 | if (tree->OperIsAddrMode()) |
18568 | { |
18569 | bool reverse = ((tree->gtFlags & GTF_REVERSE_OPS) != 0); |
18570 | if (reverse) |
18571 | { |
18572 | assert(op1 != nullptr && op2 != nullptr); |
18573 | fgSetTreeSeqHelper(op2, isLIR); |
18574 | } |
18575 | if (op1 != nullptr) |
18576 | { |
18577 | fgSetTreeSeqHelper(op1, isLIR); |
18578 | } |
18579 | if (!reverse && op2 != nullptr) |
18580 | { |
18581 | fgSetTreeSeqHelper(op2, isLIR); |
18582 | } |
18583 | |
18584 | fgSetTreeSeqFinish(tree, isLIR); |
18585 | return; |
18586 | } |
18587 | |
18588 | /* Check for a nilary operator */ |
18589 | |
18590 | if (op1 == nullptr) |
18591 | { |
18592 | noway_assert(op2 == nullptr); |
18593 | fgSetTreeSeqFinish(tree, isLIR); |
18594 | return; |
18595 | } |
18596 | |
18597 | /* Is this a unary operator? |
18598 | * Although UNARY GT_IND has a special structure */ |
18599 | |
18600 | if (oper == GT_IND) |
18601 | { |
18602 | /* Visit the indirection first - op2 may point to the |
18603 | * jump Label for array-index-out-of-range */ |
18604 | |
18605 | fgSetTreeSeqHelper(op1, isLIR); |
18606 | fgSetTreeSeqFinish(tree, isLIR); |
18607 | return; |
18608 | } |
18609 | |
18610 | /* Now this is REALLY a unary operator */ |
18611 | |
18612 | if (!op2) |
18613 | { |
18614 | /* Visit the (only) operand and we're done */ |
18615 | |
18616 | fgSetTreeSeqHelper(op1, isLIR); |
18617 | fgSetTreeSeqFinish(tree, isLIR); |
18618 | return; |
18619 | } |
18620 | |
18621 | /* |
18622 | For "real" ?: operators, we make sure the order is |
18623 | as follows: |
18624 | |
18625 | condition |
18626 | 1st operand |
18627 | GT_COLON |
18628 | 2nd operand |
18629 | GT_QMARK |
18630 | */ |
18631 | |
18632 | if (oper == GT_QMARK) |
18633 | { |
18634 | noway_assert((tree->gtFlags & GTF_REVERSE_OPS) == 0); |
18635 | |
18636 | fgSetTreeSeqHelper(op1, isLIR); |
18637 | // Here, for the colon, the sequence does not actually represent "order of evaluation": |
18638 | // one or the other of the branches is executed, not both. Still, to make debugging checks |
18639 | // work, we want the sequence to match the order in which we'll generate code, which means |
18640 | // "else" clause then "then" clause. |
18641 | fgSetTreeSeqHelper(op2->AsColon()->ElseNode(), isLIR); |
18642 | fgSetTreeSeqHelper(op2, isLIR); |
18643 | fgSetTreeSeqHelper(op2->AsColon()->ThenNode(), isLIR); |
18644 | |
18645 | fgSetTreeSeqFinish(tree, isLIR); |
18646 | return; |
18647 | } |
18648 | |
18649 | if (oper == GT_COLON) |
18650 | { |
18651 | fgSetTreeSeqFinish(tree, isLIR); |
18652 | return; |
18653 | } |
18654 | |
18655 | /* This is a binary operator */ |
18656 | |
18657 | if (tree->gtFlags & GTF_REVERSE_OPS) |
18658 | { |
18659 | fgSetTreeSeqHelper(op2, isLIR); |
18660 | fgSetTreeSeqHelper(op1, isLIR); |
18661 | } |
18662 | else |
18663 | { |
18664 | fgSetTreeSeqHelper(op1, isLIR); |
18665 | fgSetTreeSeqHelper(op2, isLIR); |
18666 | } |
18667 | |
18668 | fgSetTreeSeqFinish(tree, isLIR); |
18669 | return; |
18670 | } |
18671 | |
18672 | /* See what kind of a special operator we have here */ |
18673 | |
18674 | switch (oper) |
18675 | { |
18676 | case GT_FIELD: |
18677 | noway_assert(tree->gtField.gtFldObj == nullptr); |
18678 | break; |
18679 | |
18680 | case GT_CALL: |
18681 | |
18682 | /* We'll evaluate the 'this' argument value first */ |
18683 | if (tree->gtCall.gtCallObjp) |
18684 | { |
18685 | fgSetTreeSeqHelper(tree->gtCall.gtCallObjp, isLIR); |
18686 | } |
18687 | |
18688 | /* We'll evaluate the arguments next, left to right |
18689 | * NOTE: setListOrder needs cleanup - eliminate the #ifdef afterwards */ |
18690 | |
18691 | if (tree->gtCall.gtCallArgs) |
18692 | { |
18693 | fgSetTreeSeqHelper(tree->gtCall.gtCallArgs, isLIR); |
18694 | } |
18695 | |
18696 | /* Evaluate the temp register arguments list |
18697 | * This is a "hidden" list and its only purpose is to |
18698 | * extend the life of temps until we make the call */ |
18699 | |
18700 | if (tree->gtCall.gtCallLateArgs) |
18701 | { |
18702 | fgSetTreeSeqHelper(tree->gtCall.gtCallLateArgs, isLIR); |
18703 | } |
18704 | |
18705 | if ((tree->gtCall.gtCallType == CT_INDIRECT) && (tree->gtCall.gtCallCookie != nullptr)) |
18706 | { |
18707 | fgSetTreeSeqHelper(tree->gtCall.gtCallCookie, isLIR); |
18708 | } |
18709 | |
18710 | if (tree->gtCall.gtCallType == CT_INDIRECT) |
18711 | { |
18712 | fgSetTreeSeqHelper(tree->gtCall.gtCallAddr, isLIR); |
18713 | } |
18714 | |
18715 | if (tree->gtCall.gtControlExpr) |
18716 | { |
18717 | fgSetTreeSeqHelper(tree->gtCall.gtControlExpr, isLIR); |
18718 | } |
18719 | |
18720 | break; |
18721 | |
18722 | case GT_ARR_ELEM: |
18723 | |
18724 | fgSetTreeSeqHelper(tree->gtArrElem.gtArrObj, isLIR); |
18725 | |
18726 | unsigned dim; |
18727 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
18728 | { |
18729 | fgSetTreeSeqHelper(tree->gtArrElem.gtArrInds[dim], isLIR); |
18730 | } |
18731 | |
18732 | break; |
18733 | |
18734 | case GT_ARR_OFFSET: |
18735 | fgSetTreeSeqHelper(tree->gtArrOffs.gtOffset, isLIR); |
18736 | fgSetTreeSeqHelper(tree->gtArrOffs.gtIndex, isLIR); |
18737 | fgSetTreeSeqHelper(tree->gtArrOffs.gtArrObj, isLIR); |
18738 | break; |
18739 | |
18740 | case GT_CMPXCHG: |
18741 | // Evaluate the trees left to right |
18742 | fgSetTreeSeqHelper(tree->gtCmpXchg.gtOpLocation, isLIR); |
18743 | fgSetTreeSeqHelper(tree->gtCmpXchg.gtOpValue, isLIR); |
18744 | fgSetTreeSeqHelper(tree->gtCmpXchg.gtOpComparand, isLIR); |
18745 | break; |
18746 | |
18747 | case GT_ARR_BOUNDS_CHECK: |
18748 | #ifdef FEATURE_SIMD |
18749 | case GT_SIMD_CHK: |
18750 | #endif // FEATURE_SIMD |
18751 | #ifdef FEATURE_HW_INTRINSICS |
18752 | case GT_HW_INTRINSIC_CHK: |
18753 | #endif // FEATURE_HW_INTRINSICS |
18754 | // Evaluate the trees left to right |
18755 | fgSetTreeSeqHelper(tree->gtBoundsChk.gtIndex, isLIR); |
18756 | fgSetTreeSeqHelper(tree->gtBoundsChk.gtArrLen, isLIR); |
18757 | break; |
18758 | |
18759 | case GT_STORE_DYN_BLK: |
18760 | case GT_DYN_BLK: |
18761 | noway_assert(!"DYN_BLK nodes should be sequenced as a special case" ); |
18762 | break; |
18763 | |
18764 | case GT_INDEX_ADDR: |
18765 | // Evaluate the array first, then the index.... |
18766 | assert((tree->gtFlags & GTF_REVERSE_OPS) == 0); |
18767 | fgSetTreeSeqHelper(tree->AsIndexAddr()->Arr(), isLIR); |
18768 | fgSetTreeSeqHelper(tree->AsIndexAddr()->Index(), isLIR); |
18769 | break; |
18770 | |
18771 | default: |
18772 | #ifdef DEBUG |
18773 | gtDispTree(tree); |
18774 | noway_assert(!"unexpected operator" ); |
18775 | #endif // DEBUG |
18776 | break; |
18777 | } |
18778 | |
18779 | fgSetTreeSeqFinish(tree, isLIR); |
18780 | } |
18781 | |
18782 | void Compiler::fgSetTreeSeqFinish(GenTree* tree, bool isLIR) |
18783 | { |
18784 | // If we are sequencing for LIR: |
18785 | // - Clear the reverse ops flag |
18786 | // - If we are processing a node that does not appear in LIR, do not add it to the list. |
18787 | if (isLIR) |
18788 | { |
18789 | tree->gtFlags &= ~GTF_REVERSE_OPS; |
18790 | |
18791 | if ((tree->OperGet() == GT_LIST) || (tree->OperGet() == GT_ARGPLACE) || |
18792 | (tree->OperGet() == GT_FIELD_LIST && !tree->AsFieldList()->IsFieldListHead())) |
18793 | { |
18794 | return; |
18795 | } |
18796 | } |
18797 | |
18798 | /* Append to the node list */ |
18799 | ++fgTreeSeqNum; |
18800 | |
18801 | #ifdef DEBUG |
18802 | tree->gtSeqNum = fgTreeSeqNum; |
18803 | |
18804 | if (verbose & 0) |
18805 | { |
18806 | printf("SetTreeOrder: " ); |
18807 | printTreeID(fgTreeSeqLst); |
18808 | printf(" followed by " ); |
18809 | printTreeID(tree); |
18810 | printf("\n" ); |
18811 | } |
18812 | #endif // DEBUG |
18813 | |
18814 | fgTreeSeqLst->gtNext = tree; |
18815 | tree->gtNext = nullptr; |
18816 | tree->gtPrev = fgTreeSeqLst; |
18817 | fgTreeSeqLst = tree; |
18818 | |
18819 | /* Remember the very first node */ |
18820 | |
18821 | if (!fgTreeSeqBeg) |
18822 | { |
18823 | fgTreeSeqBeg = tree; |
18824 | assert(tree->gtSeqNum == 1); |
18825 | } |
18826 | } |
18827 | |
18828 | /***************************************************************************** |
18829 | * |
18830 | * Figure out the order in which operators should be evaluated, along with |
18831 | * other information (such as the register sets trashed by each subtree). |
18832 | * Also finds blocks that need GC polls and inserts them as needed. |
18833 | */ |
18834 | |
18835 | void Compiler::fgSetBlockOrder() |
18836 | { |
18837 | #ifdef DEBUG |
18838 | if (verbose) |
18839 | { |
18840 | printf("*************** In fgSetBlockOrder()\n" ); |
18841 | } |
18842 | #endif // DEBUG |
18843 | |
18844 | #ifdef DEBUG |
18845 | BasicBlock::s_nMaxTrees = 0; |
18846 | #endif |
18847 | |
18848 | /* Walk the basic blocks to assign sequence numbers */ |
18849 | |
18850 | /* If we don't compute the doms, then we never mark blocks as loops. */ |
18851 | if (fgDomsComputed) |
18852 | { |
18853 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
18854 | { |
18855 | /* If this block is a loop header, mark it appropriately */ |
18856 | |
18857 | if (block->isLoopHead()) |
18858 | { |
18859 | fgMarkLoopHead(block); |
18860 | } |
18861 | } |
18862 | } |
18863 | // only enable fully interruptible code for if we're hijacking. |
18864 | else if (GCPOLL_NONE == opts.compGCPollType) |
18865 | { |
18866 | /* If we don't have the dominators, use an abbreviated test for fully interruptible. If there are |
18867 | * any back edges, check the source and destination blocks to see if they're GC Safe. If not, then |
18868 | * go fully interruptible. */ |
18869 | |
18870 | /* XXX Mon 1/21/2008 |
18871 | * Wouldn't it be nice to have a block iterator that can do this loop? |
18872 | */ |
18873 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
18874 | { |
18875 | // true if the edge is forward, or if it is a back edge and either the source and dest are GC safe. |
18876 | #define EDGE_IS_GC_SAFE(src, dst) \ |
18877 | (((src)->bbNum < (dst)->bbNum) || (((src)->bbFlags | (dst)->bbFlags) & BBF_GC_SAFE_POINT)) |
18878 | |
18879 | bool partiallyInterruptible = true; |
18880 | switch (block->bbJumpKind) |
18881 | { |
18882 | case BBJ_COND: |
18883 | case BBJ_ALWAYS: |
18884 | partiallyInterruptible = EDGE_IS_GC_SAFE(block, block->bbJumpDest); |
18885 | break; |
18886 | |
18887 | case BBJ_SWITCH: |
18888 | |
18889 | unsigned jumpCnt; |
18890 | jumpCnt = block->bbJumpSwt->bbsCount; |
18891 | BasicBlock** jumpPtr; |
18892 | jumpPtr = block->bbJumpSwt->bbsDstTab; |
18893 | |
18894 | do |
18895 | { |
18896 | partiallyInterruptible &= EDGE_IS_GC_SAFE(block, *jumpPtr); |
18897 | } while (++jumpPtr, --jumpCnt); |
18898 | |
18899 | break; |
18900 | |
18901 | default: |
18902 | break; |
18903 | } |
18904 | |
18905 | if (!partiallyInterruptible) |
18906 | { |
18907 | // DDB 204533: |
18908 | // The GC encoding for fully interruptible methods does not |
18909 | // support more than 1023 pushed arguments, so we can't set |
18910 | // genInterruptible here when we have 1024 or more pushed args |
18911 | // |
18912 | if (compCanEncodePtrArgCntMax()) |
18913 | { |
18914 | genInterruptible = true; |
18915 | } |
18916 | break; |
18917 | } |
18918 | #undef EDGE_IS_GC_SAFE |
18919 | } |
18920 | } |
18921 | |
18922 | if (!fgGCPollsCreated) |
18923 | { |
18924 | fgCreateGCPolls(); |
18925 | } |
18926 | |
18927 | for (BasicBlock* block = fgFirstBB; block; block = block->bbNext) |
18928 | { |
18929 | |
18930 | #if FEATURE_FASTTAILCALL |
18931 | #ifndef JIT32_GCENCODER |
18932 | if (block->endsWithTailCallOrJmp(this, true) && optReachWithoutCall(fgFirstBB, block)) |
18933 | { |
18934 | // We have a tail call that is reachable without making any other |
18935 | // 'normal' call that would have counted as a GC Poll. If we were |
18936 | // using polls, all return blocks meeting this criteria would have |
18937 | // already added polls and then marked as being GC safe |
18938 | // (BBF_GC_SAFE_POINT). Thus we can only reach here when *NOT* |
18939 | // using GC polls, but instead relying on the JIT to generate |
18940 | // fully-interruptible code. |
18941 | noway_assert(GCPOLL_NONE == opts.compGCPollType); |
18942 | |
18943 | // This tail call might combine with other tail calls to form a |
18944 | // loop. Thus we need to either add a poll, or make the method |
18945 | // fully interruptible. I chose the later because that's what |
18946 | // JIT64 does. |
18947 | genInterruptible = true; |
18948 | } |
18949 | #endif // !JIT32_GCENCODER |
18950 | #endif // FEATURE_FASTTAILCALL |
18951 | |
18952 | fgSetBlockOrder(block); |
18953 | } |
18954 | |
18955 | /* Remember that now the tree list is threaded */ |
18956 | |
18957 | fgStmtListThreaded = true; |
18958 | |
18959 | #ifdef DEBUG |
18960 | if (verbose) |
18961 | { |
18962 | printf("The biggest BB has %4u tree nodes\n" , BasicBlock::s_nMaxTrees); |
18963 | } |
18964 | fgDebugCheckLinks(); |
18965 | #endif // DEBUG |
18966 | } |
18967 | |
18968 | /*****************************************************************************/ |
18969 | |
18970 | void Compiler::fgSetStmtSeq(GenTree* tree) |
18971 | { |
18972 | GenTree list; // helper node that we use to start the StmtList |
18973 | // It's located in front of the first node in the list |
18974 | |
18975 | noway_assert(tree->gtOper == GT_STMT); |
18976 | |
18977 | /* Assign numbers and next/prev links for this tree */ |
18978 | |
18979 | fgTreeSeqNum = 0; |
18980 | fgTreeSeqLst = &list; |
18981 | fgTreeSeqBeg = nullptr; |
18982 | |
18983 | fgSetTreeSeqHelper(tree->gtStmt.gtStmtExpr, false); |
18984 | |
18985 | /* Record the address of the first node */ |
18986 | |
18987 | tree->gtStmt.gtStmtList = fgTreeSeqBeg; |
18988 | |
18989 | #ifdef DEBUG |
18990 | |
18991 | if (list.gtNext->gtPrev != &list) |
18992 | { |
18993 | printf("&list " ); |
18994 | printTreeID(&list); |
18995 | printf(" != list.next->prev " ); |
18996 | printTreeID(list.gtNext->gtPrev); |
18997 | printf("\n" ); |
18998 | goto BAD_LIST; |
18999 | } |
19000 | |
19001 | GenTree* temp; |
19002 | GenTree* last; |
19003 | for (temp = list.gtNext, last = &list; temp; last = temp, temp = temp->gtNext) |
19004 | { |
19005 | if (temp->gtPrev != last) |
19006 | { |
19007 | printTreeID(temp); |
19008 | printf("->gtPrev = " ); |
19009 | printTreeID(temp->gtPrev); |
19010 | printf(", but last = " ); |
19011 | printTreeID(last); |
19012 | printf("\n" ); |
19013 | |
19014 | BAD_LIST:; |
19015 | |
19016 | printf("\n" ); |
19017 | gtDispTree(tree->gtStmt.gtStmtExpr); |
19018 | printf("\n" ); |
19019 | |
19020 | for (GenTree* bad = &list; bad; bad = bad->gtNext) |
19021 | { |
19022 | printf(" entry at " ); |
19023 | printTreeID(bad); |
19024 | printf(" (prev=" ); |
19025 | printTreeID(bad->gtPrev); |
19026 | printf(",next=)" ); |
19027 | printTreeID(bad->gtNext); |
19028 | printf("\n" ); |
19029 | } |
19030 | |
19031 | printf("\n" ); |
19032 | noway_assert(!"Badly linked tree" ); |
19033 | break; |
19034 | } |
19035 | } |
19036 | #endif // DEBUG |
19037 | |
19038 | /* Fix the first node's 'prev' link */ |
19039 | |
19040 | noway_assert(list.gtNext->gtPrev == &list); |
19041 | list.gtNext->gtPrev = nullptr; |
19042 | |
19043 | #ifdef DEBUG |
19044 | /* Keep track of the highest # of tree nodes */ |
19045 | |
19046 | if (BasicBlock::s_nMaxTrees < fgTreeSeqNum) |
19047 | { |
19048 | BasicBlock::s_nMaxTrees = fgTreeSeqNum; |
19049 | } |
19050 | #endif // DEBUG |
19051 | } |
19052 | |
19053 | /*****************************************************************************/ |
19054 | |
19055 | void Compiler::fgSetBlockOrder(BasicBlock* block) |
19056 | { |
19057 | GenTree* tree; |
19058 | |
19059 | tree = block->bbTreeList; |
19060 | if (!tree) |
19061 | { |
19062 | return; |
19063 | } |
19064 | |
19065 | for (;;) |
19066 | { |
19067 | fgSetStmtSeq(tree); |
19068 | |
19069 | /* Are there any more trees in this basic block? */ |
19070 | |
19071 | if (tree->gtNext == nullptr) |
19072 | { |
19073 | /* last statement in the tree list */ |
19074 | noway_assert(block->lastStmt() == tree); |
19075 | break; |
19076 | } |
19077 | |
19078 | #ifdef DEBUG |
19079 | if (block->bbTreeList == tree) |
19080 | { |
19081 | /* first statement in the list */ |
19082 | noway_assert(tree->gtPrev->gtNext == nullptr); |
19083 | } |
19084 | else |
19085 | { |
19086 | noway_assert(tree->gtPrev->gtNext == tree); |
19087 | } |
19088 | |
19089 | noway_assert(tree->gtNext->gtPrev == tree); |
19090 | #endif // DEBUG |
19091 | |
19092 | tree = tree->gtNext; |
19093 | } |
19094 | } |
19095 | |
19096 | //------------------------------------------------------------------------ |
19097 | // fgGetFirstNode: Get the first node in the tree, in execution order |
19098 | // |
19099 | // Arguments: |
19100 | // tree - The top node of the tree of interest |
19101 | // |
19102 | // Return Value: |
19103 | // The first node in execution order, that belongs to tree. |
19104 | // |
19105 | // Assumptions: |
19106 | // 'tree' must either be a leaf, or all of its constituent nodes must be contiguous |
19107 | // in execution order. |
19108 | // TODO-Cleanup: Add a debug-only method that verifies this. |
19109 | |
19110 | /* static */ |
19111 | GenTree* Compiler::fgGetFirstNode(GenTree* tree) |
19112 | { |
19113 | GenTree* child = tree; |
19114 | while (child->NumChildren() > 0) |
19115 | { |
19116 | if (child->OperIsBinary() && child->IsReverseOp()) |
19117 | { |
19118 | child = child->GetChild(1); |
19119 | } |
19120 | else |
19121 | { |
19122 | child = child->GetChild(0); |
19123 | } |
19124 | } |
19125 | return child; |
19126 | } |
19127 | |
19128 | // Examine the bbTreeList and return the estimated code size for this block |
19129 | unsigned Compiler::fgGetCodeEstimate(BasicBlock* block) |
19130 | { |
19131 | unsigned costSz = 0; // estimate of blocks code size cost |
19132 | |
19133 | switch (block->bbJumpKind) |
19134 | { |
19135 | case BBJ_NONE: |
19136 | costSz = 0; |
19137 | break; |
19138 | case BBJ_ALWAYS: |
19139 | case BBJ_EHCATCHRET: |
19140 | case BBJ_LEAVE: |
19141 | case BBJ_COND: |
19142 | costSz = 2; |
19143 | break; |
19144 | case BBJ_CALLFINALLY: |
19145 | costSz = 5; |
19146 | break; |
19147 | case BBJ_SWITCH: |
19148 | costSz = 10; |
19149 | break; |
19150 | case BBJ_THROW: |
19151 | costSz = 1; // We place a int3 after the code for a throw block |
19152 | break; |
19153 | case BBJ_EHFINALLYRET: |
19154 | case BBJ_EHFILTERRET: |
19155 | costSz = 1; |
19156 | break; |
19157 | case BBJ_RETURN: // return from method |
19158 | costSz = 3; |
19159 | break; |
19160 | default: |
19161 | noway_assert(!"Bad bbJumpKind" ); |
19162 | break; |
19163 | } |
19164 | |
19165 | GenTree* tree = block->FirstNonPhiDef(); |
19166 | if (tree) |
19167 | { |
19168 | do |
19169 | { |
19170 | noway_assert(tree->gtOper == GT_STMT); |
19171 | |
19172 | if (tree->gtCostSz < MAX_COST) |
19173 | { |
19174 | costSz += tree->gtCostSz; |
19175 | } |
19176 | else |
19177 | { |
19178 | // We could walk the tree to find out the real gtCostSz, |
19179 | // but just using MAX_COST for this trees code size works OK |
19180 | costSz += tree->gtCostSz; |
19181 | } |
19182 | |
19183 | tree = tree->gtNext; |
19184 | } while (tree); |
19185 | } |
19186 | |
19187 | return costSz; |
19188 | } |
19189 | |
19190 | #if DUMP_FLOWGRAPHS |
19191 | |
19192 | struct escapeMapping_t |
19193 | { |
19194 | char ch; |
19195 | const char* sub; |
19196 | }; |
19197 | |
19198 | // clang-format off |
19199 | static escapeMapping_t s_EscapeFileMapping[] = |
19200 | { |
19201 | {':', "=" }, |
19202 | {'<', "[" }, |
19203 | {'>', "]" }, |
19204 | {';', "~semi~" }, |
19205 | {'|', "~bar~" }, |
19206 | {'&', "~amp~" }, |
19207 | {'"', "~quot~" }, |
19208 | {'*', "~star~" }, |
19209 | {0, nullptr} |
19210 | }; |
19211 | |
19212 | static escapeMapping_t s_EscapeMapping[] = |
19213 | { |
19214 | {'<', "<" }, |
19215 | {'>', ">" }, |
19216 | {'&', "&" }, |
19217 | {'"', """ }, |
19218 | {0, nullptr} |
19219 | }; |
19220 | // clang-format on |
19221 | |
19222 | const char* Compiler::fgProcessEscapes(const char* nameIn, escapeMapping_t* map) |
19223 | { |
19224 | const char* nameOut = nameIn; |
19225 | unsigned lengthOut; |
19226 | unsigned index; |
19227 | bool match; |
19228 | bool subsitutionRequired; |
19229 | const char* pChar; |
19230 | |
19231 | lengthOut = 1; |
19232 | subsitutionRequired = false; |
19233 | pChar = nameIn; |
19234 | while (*pChar != '\0') |
19235 | { |
19236 | match = false; |
19237 | index = 0; |
19238 | while (map[index].ch != 0) |
19239 | { |
19240 | if (*pChar == map[index].ch) |
19241 | { |
19242 | match = true; |
19243 | break; |
19244 | } |
19245 | index++; |
19246 | } |
19247 | if (match) |
19248 | { |
19249 | subsitutionRequired = true; |
19250 | lengthOut += (unsigned)strlen(map[index].sub); |
19251 | } |
19252 | else |
19253 | { |
19254 | lengthOut += 1; |
19255 | } |
19256 | pChar++; |
19257 | } |
19258 | |
19259 | if (subsitutionRequired) |
19260 | { |
19261 | char* newName = getAllocator(CMK_DebugOnly).allocate<char>(lengthOut); |
19262 | char* pDest; |
19263 | pDest = newName; |
19264 | pChar = nameIn; |
19265 | while (*pChar != '\0') |
19266 | { |
19267 | match = false; |
19268 | index = 0; |
19269 | while (map[index].ch != 0) |
19270 | { |
19271 | if (*pChar == map[index].ch) |
19272 | { |
19273 | match = true; |
19274 | break; |
19275 | } |
19276 | index++; |
19277 | } |
19278 | if (match) |
19279 | { |
19280 | strcpy(pDest, map[index].sub); |
19281 | pDest += strlen(map[index].sub); |
19282 | } |
19283 | else |
19284 | { |
19285 | *pDest++ = *pChar; |
19286 | } |
19287 | pChar++; |
19288 | } |
19289 | *pDest++ = '\0'; |
19290 | nameOut = (const char*)newName; |
19291 | } |
19292 | |
19293 | return nameOut; |
19294 | } |
19295 | |
19296 | static void fprintfDouble(FILE* fgxFile, double value) |
19297 | { |
19298 | assert(value >= 0.0); |
19299 | |
19300 | if ((value >= 0.010) || (value == 0.0)) |
19301 | { |
19302 | fprintf(fgxFile, "\"%7.3f\"" , value); |
19303 | } |
19304 | else if (value >= 0.00010) |
19305 | { |
19306 | fprintf(fgxFile, "\"%7.5f\"" , value); |
19307 | } |
19308 | else |
19309 | { |
19310 | fprintf(fgxFile, "\"%7E\"" , value); |
19311 | } |
19312 | } |
19313 | |
19314 | //------------------------------------------------------------------------ |
19315 | // fgOpenFlowGraphFile: Open a file to dump either the xml or dot format flow graph |
19316 | // |
19317 | // Arguments: |
19318 | // wbDontClose - A boolean out argument that indicates whether the caller should close the file |
19319 | // phase - A phase identifier to indicate which phase is associated with the dump |
19320 | // type - A (wide) string indicating the type of dump, "dot" or "xml" |
19321 | // |
19322 | // Return Value: |
19323 | // Opens a file to which a flowgraph can be dumped, whose name is based on the current |
19324 | // config vales. |
19325 | |
19326 | FILE* Compiler::fgOpenFlowGraphFile(bool* wbDontClose, Phases phase, LPCWSTR type) |
19327 | { |
19328 | FILE* fgxFile; |
19329 | LPCWSTR pattern = nullptr; |
19330 | LPCWSTR filename = nullptr; |
19331 | LPCWSTR pathname = nullptr; |
19332 | const char* escapedString; |
19333 | bool createDuplicateFgxFiles = true; |
19334 | |
19335 | #ifdef DEBUG |
19336 | if (opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PREJIT)) |
19337 | { |
19338 | pattern = JitConfig.NgenDumpFg(); |
19339 | filename = JitConfig.NgenDumpFgFile(); |
19340 | pathname = JitConfig.NgenDumpFgDir(); |
19341 | } |
19342 | else |
19343 | { |
19344 | pattern = JitConfig.JitDumpFg(); |
19345 | filename = JitConfig.JitDumpFgFile(); |
19346 | pathname = JitConfig.JitDumpFgDir(); |
19347 | } |
19348 | #endif // DEBUG |
19349 | |
19350 | if (fgBBcount <= 1) |
19351 | { |
19352 | return nullptr; |
19353 | } |
19354 | |
19355 | if (pattern == nullptr) |
19356 | { |
19357 | return nullptr; |
19358 | } |
19359 | |
19360 | if (wcslen(pattern) == 0) |
19361 | { |
19362 | return nullptr; |
19363 | } |
19364 | |
19365 | LPCWSTR phasePattern = JitConfig.JitDumpFgPhase(); |
19366 | LPCWSTR phaseName = PhaseShortNames[phase]; |
19367 | if (phasePattern == nullptr) |
19368 | { |
19369 | if (phase != PHASE_DETERMINE_FIRST_COLD_BLOCK) |
19370 | { |
19371 | return nullptr; |
19372 | } |
19373 | } |
19374 | else if (*phasePattern != W('*')) |
19375 | { |
19376 | if (wcsstr(phasePattern, phaseName) == nullptr) |
19377 | { |
19378 | return nullptr; |
19379 | } |
19380 | } |
19381 | |
19382 | if (*pattern != W('*')) |
19383 | { |
19384 | bool hasColon = (wcschr(pattern, W(':')) != nullptr); |
19385 | |
19386 | if (hasColon) |
19387 | { |
19388 | const char* className = info.compClassName; |
19389 | if (*pattern == W('*')) |
19390 | { |
19391 | pattern++; |
19392 | } |
19393 | else |
19394 | { |
19395 | while ((*pattern != W(':')) && (*pattern != W('*'))) |
19396 | { |
19397 | if (*pattern != *className) |
19398 | { |
19399 | return nullptr; |
19400 | } |
19401 | |
19402 | pattern++; |
19403 | className++; |
19404 | } |
19405 | if (*pattern == W('*')) |
19406 | { |
19407 | pattern++; |
19408 | } |
19409 | else |
19410 | { |
19411 | if (*className != 0) |
19412 | { |
19413 | return nullptr; |
19414 | } |
19415 | } |
19416 | } |
19417 | if (*pattern != W(':')) |
19418 | { |
19419 | return nullptr; |
19420 | } |
19421 | |
19422 | pattern++; |
19423 | } |
19424 | |
19425 | const char* methodName = info.compMethodName; |
19426 | if (*pattern == W('*')) |
19427 | { |
19428 | pattern++; |
19429 | } |
19430 | else |
19431 | { |
19432 | while ((*pattern != 0) && (*pattern != W('*'))) |
19433 | { |
19434 | if (*pattern != *methodName) |
19435 | { |
19436 | return nullptr; |
19437 | } |
19438 | |
19439 | pattern++; |
19440 | methodName++; |
19441 | } |
19442 | if (*pattern == W('*')) |
19443 | { |
19444 | pattern++; |
19445 | } |
19446 | else |
19447 | { |
19448 | if (*methodName != 0) |
19449 | { |
19450 | return nullptr; |
19451 | } |
19452 | } |
19453 | } |
19454 | if (*pattern != 0) |
19455 | { |
19456 | return nullptr; |
19457 | } |
19458 | } |
19459 | |
19460 | if (filename == nullptr) |
19461 | { |
19462 | filename = W("default" ); |
19463 | } |
19464 | |
19465 | if (wcscmp(filename, W("profiled" )) == 0) |
19466 | { |
19467 | if (fgFirstBB->hasProfileWeight()) |
19468 | { |
19469 | createDuplicateFgxFiles = true; |
19470 | goto ONE_FILE_PER_METHOD; |
19471 | } |
19472 | else |
19473 | { |
19474 | return nullptr; |
19475 | } |
19476 | } |
19477 | if (wcscmp(filename, W("hot" )) == 0) |
19478 | { |
19479 | if (info.compMethodInfo->regionKind == CORINFO_REGION_HOT) |
19480 | |
19481 | { |
19482 | createDuplicateFgxFiles = true; |
19483 | goto ONE_FILE_PER_METHOD; |
19484 | } |
19485 | else |
19486 | { |
19487 | return nullptr; |
19488 | } |
19489 | } |
19490 | else if (wcscmp(filename, W("cold" )) == 0) |
19491 | { |
19492 | if (info.compMethodInfo->regionKind == CORINFO_REGION_COLD) |
19493 | { |
19494 | createDuplicateFgxFiles = true; |
19495 | goto ONE_FILE_PER_METHOD; |
19496 | } |
19497 | else |
19498 | { |
19499 | return nullptr; |
19500 | } |
19501 | } |
19502 | else if (wcscmp(filename, W("jit" )) == 0) |
19503 | { |
19504 | if (info.compMethodInfo->regionKind == CORINFO_REGION_JIT) |
19505 | { |
19506 | createDuplicateFgxFiles = true; |
19507 | goto ONE_FILE_PER_METHOD; |
19508 | } |
19509 | else |
19510 | { |
19511 | return nullptr; |
19512 | } |
19513 | } |
19514 | else if (wcscmp(filename, W("all" )) == 0) |
19515 | { |
19516 | createDuplicateFgxFiles = true; |
19517 | |
19518 | ONE_FILE_PER_METHOD:; |
19519 | |
19520 | escapedString = fgProcessEscapes(info.compFullName, s_EscapeFileMapping); |
19521 | size_t wCharCount = strlen(escapedString) + wcslen(phaseName) + 1 + strlen("~999" ) + wcslen(type) + 1; |
19522 | if (pathname != nullptr) |
19523 | { |
19524 | wCharCount += wcslen(pathname) + 1; |
19525 | } |
19526 | filename = (LPCWSTR)alloca(wCharCount * sizeof(WCHAR)); |
19527 | if (pathname != nullptr) |
19528 | { |
19529 | swprintf_s((LPWSTR)filename, wCharCount, W("%s\\%S-%s.%s" ), pathname, escapedString, phaseName, type); |
19530 | } |
19531 | else |
19532 | { |
19533 | swprintf_s((LPWSTR)filename, wCharCount, W("%S.%s" ), escapedString, type); |
19534 | } |
19535 | fgxFile = _wfopen(filename, W("r" )); // Check if this file already exists |
19536 | if (fgxFile != nullptr) |
19537 | { |
19538 | // For Generic methods we will have both hot and cold versions |
19539 | if (createDuplicateFgxFiles == false) |
19540 | { |
19541 | fclose(fgxFile); |
19542 | return nullptr; |
19543 | } |
19544 | // Yes, this filename already exists, so create a different one by appending ~2, ~3, etc... |
19545 | for (int i = 2; i < 1000; i++) |
19546 | { |
19547 | fclose(fgxFile); |
19548 | if (pathname != nullptr) |
19549 | { |
19550 | swprintf_s((LPWSTR)filename, wCharCount, W("%s\\%S~%d.%s" ), pathname, escapedString, i, type); |
19551 | } |
19552 | else |
19553 | { |
19554 | swprintf_s((LPWSTR)filename, wCharCount, W("%S~%d.%s" ), escapedString, i, type); |
19555 | } |
19556 | fgxFile = _wfopen(filename, W("r" )); // Check if this file exists |
19557 | if (fgxFile == nullptr) |
19558 | { |
19559 | break; |
19560 | } |
19561 | } |
19562 | // If we have already created 1000 files with this name then just fail |
19563 | if (fgxFile != nullptr) |
19564 | { |
19565 | fclose(fgxFile); |
19566 | return nullptr; |
19567 | } |
19568 | } |
19569 | fgxFile = _wfopen(filename, W("a+" )); |
19570 | *wbDontClose = false; |
19571 | } |
19572 | else if (wcscmp(filename, W("stdout" )) == 0) |
19573 | { |
19574 | fgxFile = jitstdout; |
19575 | *wbDontClose = true; |
19576 | } |
19577 | else if (wcscmp(filename, W("stderr" )) == 0) |
19578 | { |
19579 | fgxFile = stderr; |
19580 | *wbDontClose = true; |
19581 | } |
19582 | else |
19583 | { |
19584 | LPCWSTR origFilename = filename; |
19585 | size_t wCharCount = wcslen(origFilename) + wcslen(type) + 2; |
19586 | if (pathname != nullptr) |
19587 | { |
19588 | wCharCount += wcslen(pathname) + 1; |
19589 | } |
19590 | filename = (LPCWSTR)alloca(wCharCount * sizeof(WCHAR)); |
19591 | if (pathname != nullptr) |
19592 | { |
19593 | swprintf_s((LPWSTR)filename, wCharCount, W("%s\\%s.%s" ), pathname, origFilename, type); |
19594 | } |
19595 | else |
19596 | { |
19597 | swprintf_s((LPWSTR)filename, wCharCount, W("%s.%s" ), origFilename, type); |
19598 | } |
19599 | fgxFile = _wfopen(filename, W("a+" )); |
19600 | *wbDontClose = false; |
19601 | } |
19602 | |
19603 | return fgxFile; |
19604 | } |
19605 | |
19606 | //------------------------------------------------------------------------ |
19607 | // fgDumpFlowGraph: Dump the xml or dot format flow graph, if enabled for this phase. |
19608 | // |
19609 | // Arguments: |
19610 | // phase - A phase identifier to indicate which phase is associated with the dump, |
19611 | // i.e. which phase has just completed. |
19612 | // |
19613 | // Return Value: |
19614 | // True iff a flowgraph has been dumped. |
19615 | // |
19616 | // Notes: |
19617 | // The xml dumps are the historical mechanism for dumping the flowgraph. |
19618 | // The dot format can be viewed by: |
19619 | // - Graphviz (http://www.graphviz.org/) |
19620 | // - The command "C:\Program Files (x86)\Graphviz2.38\bin\dot.exe" -Tsvg -oFoo.svg -Kdot Foo.dot |
19621 | // will produce a Foo.svg file that can be opened with any svg-capable browser (e.g. IE). |
19622 | // - http://rise4fun.com/Agl/ |
19623 | // - Cut and paste the graph from your .dot file, replacing the digraph on the page, and then click the play |
19624 | // button. |
19625 | // - It will show a rotating '/' and then render the graph in the browser. |
19626 | // MSAGL has also been open-sourced to https://github.com/Microsoft/automatic-graph-layout.git. |
19627 | // |
19628 | // Here are the config values that control it: |
19629 | // COMPlus_JitDumpFg A string (ala the COMPlus_JitDump string) indicating what methods to dump flowgraphs |
19630 | // for. |
19631 | // COMPlus_JitDumpFgDir A path to a directory into which the flowgraphs will be dumped. |
19632 | // COMPlus_JitDumpFgFile The filename to use. The default is "default.[xml|dot]". |
19633 | // Note that the new graphs will be appended to this file if it already exists. |
19634 | // COMPlus_JitDumpFgPhase Phase(s) after which to dump the flowgraph. |
19635 | // Set to the short name of a phase to see the flowgraph after that phase. |
19636 | // Leave unset to dump after COLD-BLK (determine first cold block) or set to * for all |
19637 | // phases. |
19638 | // COMPlus_JitDumpFgDot Set to non-zero to emit Dot instead of Xml Flowgraph dump. (Default is xml format.) |
19639 | |
19640 | bool Compiler::fgDumpFlowGraph(Phases phase) |
19641 | { |
19642 | bool result = false; |
19643 | bool dontClose = false; |
19644 | bool createDotFile = false; |
19645 | if (JitConfig.JitDumpFgDot()) |
19646 | { |
19647 | createDotFile = true; |
19648 | } |
19649 | |
19650 | FILE* fgxFile = fgOpenFlowGraphFile(&dontClose, phase, createDotFile ? W("dot" ) : W("fgx" )); |
19651 | |
19652 | if (fgxFile == nullptr) |
19653 | { |
19654 | return false; |
19655 | } |
19656 | bool validWeights = fgHaveValidEdgeWeights; |
19657 | unsigned calledCount = max(fgCalledCount, BB_UNITY_WEIGHT) / BB_UNITY_WEIGHT; |
19658 | double weightDivisor = (double)(calledCount * BB_UNITY_WEIGHT); |
19659 | const char* escapedString; |
19660 | const char* regionString = "NONE" ; |
19661 | |
19662 | if (info.compMethodInfo->regionKind == CORINFO_REGION_HOT) |
19663 | { |
19664 | regionString = "HOT" ; |
19665 | } |
19666 | else if (info.compMethodInfo->regionKind == CORINFO_REGION_COLD) |
19667 | { |
19668 | regionString = "COLD" ; |
19669 | } |
19670 | else if (info.compMethodInfo->regionKind == CORINFO_REGION_JIT) |
19671 | { |
19672 | regionString = "JIT" ; |
19673 | } |
19674 | |
19675 | if (createDotFile) |
19676 | { |
19677 | fprintf(fgxFile, "digraph %s\n{\n" , info.compMethodName); |
19678 | fprintf(fgxFile, "/* Method %d, after phase %s */" , Compiler::jitTotalMethodCompiled, PhaseNames[phase]); |
19679 | } |
19680 | else |
19681 | { |
19682 | fprintf(fgxFile, "<method" ); |
19683 | |
19684 | escapedString = fgProcessEscapes(info.compFullName, s_EscapeMapping); |
19685 | fprintf(fgxFile, "\n name=\"%s\"" , escapedString); |
19686 | |
19687 | escapedString = fgProcessEscapes(info.compClassName, s_EscapeMapping); |
19688 | fprintf(fgxFile, "\n className=\"%s\"" , escapedString); |
19689 | |
19690 | escapedString = fgProcessEscapes(info.compMethodName, s_EscapeMapping); |
19691 | fprintf(fgxFile, "\n methodName=\"%s\"" , escapedString); |
19692 | fprintf(fgxFile, "\n ngenRegion=\"%s\"" , regionString); |
19693 | |
19694 | fprintf(fgxFile, "\n bytesOfIL=\"%d\"" , info.compILCodeSize); |
19695 | fprintf(fgxFile, "\n localVarCount=\"%d\"" , lvaCount); |
19696 | |
19697 | if (fgHaveProfileData()) |
19698 | { |
19699 | fprintf(fgxFile, "\n calledCount=\"%d\"" , calledCount); |
19700 | fprintf(fgxFile, "\n profileData=\"true\"" ); |
19701 | } |
19702 | if (compHndBBtabCount > 0) |
19703 | { |
19704 | fprintf(fgxFile, "\n hasEHRegions=\"true\"" ); |
19705 | } |
19706 | if (fgHasLoops) |
19707 | { |
19708 | fprintf(fgxFile, "\n hasLoops=\"true\"" ); |
19709 | } |
19710 | if (validWeights) |
19711 | { |
19712 | fprintf(fgxFile, "\n validEdgeWeights=\"true\"" ); |
19713 | if (!fgSlopUsedInEdgeWeights && !fgRangeUsedInEdgeWeights) |
19714 | { |
19715 | fprintf(fgxFile, "\n exactEdgeWeights=\"true\"" ); |
19716 | } |
19717 | } |
19718 | if (fgFirstColdBlock != nullptr) |
19719 | { |
19720 | fprintf(fgxFile, "\n firstColdBlock=\"%d\"" , fgFirstColdBlock->bbNum); |
19721 | } |
19722 | |
19723 | fprintf(fgxFile, ">" ); |
19724 | |
19725 | fprintf(fgxFile, "\n <blocks" ); |
19726 | fprintf(fgxFile, "\n blockCount=\"%d\"" , fgBBcount); |
19727 | fprintf(fgxFile, ">" ); |
19728 | } |
19729 | |
19730 | static const char* kindImage[] = {"EHFINALLYRET" , "EHFILTERRET" , "EHCATCHRET" , "THROW" , "RETURN" , "NONE" , |
19731 | "ALWAYS" , "LEAVE" , "CALLFINALLY" , "COND" , "SWITCH" }; |
19732 | |
19733 | BasicBlock* block; |
19734 | unsigned blockOrdinal; |
19735 | for (block = fgFirstBB, blockOrdinal = 1; block != nullptr; block = block->bbNext, blockOrdinal++) |
19736 | { |
19737 | if (createDotFile) |
19738 | { |
19739 | // Add constraint edges to try to keep nodes ordered. |
19740 | // It seems to work best if these edges are all created first. |
19741 | switch (block->bbJumpKind) |
19742 | { |
19743 | case BBJ_COND: |
19744 | case BBJ_NONE: |
19745 | assert(block->bbNext != nullptr); |
19746 | fprintf(fgxFile, " " FMT_BB " -> " FMT_BB "\n" , block->bbNum, block->bbNext->bbNum); |
19747 | break; |
19748 | default: |
19749 | // These may or may not have an edge to the next block. |
19750 | // Add a transparent edge to keep nodes ordered. |
19751 | if (block->bbNext != nullptr) |
19752 | { |
19753 | fprintf(fgxFile, " " FMT_BB " -> " FMT_BB " [arrowtail=none,color=transparent]\n" , |
19754 | block->bbNum, block->bbNext->bbNum); |
19755 | } |
19756 | } |
19757 | } |
19758 | else |
19759 | { |
19760 | fprintf(fgxFile, "\n <block" ); |
19761 | fprintf(fgxFile, "\n id=\"%d\"" , block->bbNum); |
19762 | fprintf(fgxFile, "\n ordinal=\"%d\"" , blockOrdinal); |
19763 | fprintf(fgxFile, "\n jumpKind=\"%s\"" , kindImage[block->bbJumpKind]); |
19764 | if (block->hasTryIndex()) |
19765 | { |
19766 | fprintf(fgxFile, "\n inTry=\"%s\"" , "true" ); |
19767 | } |
19768 | if (block->hasHndIndex()) |
19769 | { |
19770 | fprintf(fgxFile, "\n inHandler=\"%s\"" , "true" ); |
19771 | } |
19772 | if ((fgFirstBB->hasProfileWeight()) && ((block->bbFlags & BBF_COLD) == 0)) |
19773 | { |
19774 | fprintf(fgxFile, "\n hot=\"true\"" ); |
19775 | } |
19776 | if (block->bbFlags & (BBF_HAS_NEWOBJ | BBF_HAS_NEWARRAY)) |
19777 | { |
19778 | fprintf(fgxFile, "\n callsNew=\"true\"" ); |
19779 | } |
19780 | if (block->bbFlags & BBF_LOOP_HEAD) |
19781 | { |
19782 | fprintf(fgxFile, "\n loopHead=\"true\"" ); |
19783 | } |
19784 | fprintf(fgxFile, "\n weight=" ); |
19785 | fprintfDouble(fgxFile, ((double)block->bbWeight) / weightDivisor); |
19786 | fprintf(fgxFile, "\n codeEstimate=\"%d\"" , fgGetCodeEstimate(block)); |
19787 | fprintf(fgxFile, "\n startOffset=\"%d\"" , block->bbCodeOffs); |
19788 | fprintf(fgxFile, "\n endOffset=\"%d\"" , block->bbCodeOffsEnd); |
19789 | fprintf(fgxFile, ">" ); |
19790 | fprintf(fgxFile, "\n </block>" ); |
19791 | } |
19792 | } |
19793 | |
19794 | if (!createDotFile) |
19795 | { |
19796 | fprintf(fgxFile, "\n </blocks>" ); |
19797 | |
19798 | fprintf(fgxFile, "\n <edges" ); |
19799 | fprintf(fgxFile, "\n edgeCount=\"%d\"" , fgEdgeCount); |
19800 | fprintf(fgxFile, ">" ); |
19801 | } |
19802 | |
19803 | unsigned edgeNum = 1; |
19804 | BasicBlock* bTarget; |
19805 | for (bTarget = fgFirstBB; bTarget != nullptr; bTarget = bTarget->bbNext) |
19806 | { |
19807 | double targetWeightDivisor; |
19808 | if (bTarget->bbWeight == BB_ZERO_WEIGHT) |
19809 | { |
19810 | targetWeightDivisor = 1.0; |
19811 | } |
19812 | else |
19813 | { |
19814 | targetWeightDivisor = (double)bTarget->bbWeight; |
19815 | } |
19816 | |
19817 | flowList* edge; |
19818 | for (edge = bTarget->bbPreds; edge != nullptr; edge = edge->flNext, edgeNum++) |
19819 | { |
19820 | BasicBlock* bSource = edge->flBlock; |
19821 | double sourceWeightDivisor; |
19822 | if (bSource->bbWeight == BB_ZERO_WEIGHT) |
19823 | { |
19824 | sourceWeightDivisor = 1.0; |
19825 | } |
19826 | else |
19827 | { |
19828 | sourceWeightDivisor = (double)bSource->bbWeight; |
19829 | } |
19830 | if (createDotFile) |
19831 | { |
19832 | // Don't duplicate the edges we added above. |
19833 | if ((bSource->bbNum == (bTarget->bbNum - 1)) && |
19834 | ((bSource->bbJumpKind == BBJ_NONE) || (bSource->bbJumpKind == BBJ_COND))) |
19835 | { |
19836 | continue; |
19837 | } |
19838 | fprintf(fgxFile, " " FMT_BB " -> " FMT_BB, bSource->bbNum, bTarget->bbNum); |
19839 | if ((bSource->bbNum > bTarget->bbNum)) |
19840 | { |
19841 | fprintf(fgxFile, "[arrowhead=normal,arrowtail=none,color=green]\n" ); |
19842 | } |
19843 | else |
19844 | { |
19845 | fprintf(fgxFile, "\n" ); |
19846 | } |
19847 | } |
19848 | else |
19849 | { |
19850 | fprintf(fgxFile, "\n <edge" ); |
19851 | fprintf(fgxFile, "\n id=\"%d\"" , edgeNum); |
19852 | fprintf(fgxFile, "\n source=\"%d\"" , bSource->bbNum); |
19853 | fprintf(fgxFile, "\n target=\"%d\"" , bTarget->bbNum); |
19854 | if (bSource->bbJumpKind == BBJ_SWITCH) |
19855 | { |
19856 | if (edge->flDupCount >= 2) |
19857 | { |
19858 | fprintf(fgxFile, "\n switchCases=\"%d\"" , edge->flDupCount); |
19859 | } |
19860 | if (bSource->bbJumpSwt->getDefault() == bTarget) |
19861 | { |
19862 | fprintf(fgxFile, "\n switchDefault=\"true\"" ); |
19863 | } |
19864 | } |
19865 | if (validWeights) |
19866 | { |
19867 | unsigned edgeWeight = (edge->flEdgeWeightMin + edge->flEdgeWeightMax) / 2; |
19868 | fprintf(fgxFile, "\n weight=" ); |
19869 | fprintfDouble(fgxFile, ((double)edgeWeight) / weightDivisor); |
19870 | |
19871 | if (edge->flEdgeWeightMin != edge->flEdgeWeightMax) |
19872 | { |
19873 | fprintf(fgxFile, "\n minWeight=" ); |
19874 | fprintfDouble(fgxFile, ((double)edge->flEdgeWeightMin) / weightDivisor); |
19875 | fprintf(fgxFile, "\n maxWeight=" ); |
19876 | fprintfDouble(fgxFile, ((double)edge->flEdgeWeightMax) / weightDivisor); |
19877 | } |
19878 | |
19879 | if (edgeWeight > 0) |
19880 | { |
19881 | if (edgeWeight < bSource->bbWeight) |
19882 | { |
19883 | fprintf(fgxFile, "\n out=" ); |
19884 | fprintfDouble(fgxFile, ((double)edgeWeight) / sourceWeightDivisor); |
19885 | } |
19886 | if (edgeWeight < bTarget->bbWeight) |
19887 | { |
19888 | fprintf(fgxFile, "\n in=" ); |
19889 | fprintfDouble(fgxFile, ((double)edgeWeight) / targetWeightDivisor); |
19890 | } |
19891 | } |
19892 | } |
19893 | } |
19894 | if (!createDotFile) |
19895 | { |
19896 | fprintf(fgxFile, ">" ); |
19897 | fprintf(fgxFile, "\n </edge>" ); |
19898 | } |
19899 | } |
19900 | } |
19901 | if (createDotFile) |
19902 | { |
19903 | fprintf(fgxFile, "}\n" ); |
19904 | } |
19905 | else |
19906 | { |
19907 | fprintf(fgxFile, "\n </edges>" ); |
19908 | fprintf(fgxFile, "\n</method>\n" ); |
19909 | } |
19910 | |
19911 | if (dontClose) |
19912 | { |
19913 | // fgxFile is jitstdout or stderr |
19914 | fprintf(fgxFile, "\n" ); |
19915 | } |
19916 | else |
19917 | { |
19918 | fclose(fgxFile); |
19919 | } |
19920 | |
19921 | return result; |
19922 | } |
19923 | |
19924 | #endif // DUMP_FLOWGRAPHS |
19925 | |
19926 | /*****************************************************************************/ |
19927 | #ifdef DEBUG |
19928 | |
19929 | void Compiler::fgDispReach() |
19930 | { |
19931 | printf("------------------------------------------------\n" ); |
19932 | printf("BBnum Reachable by \n" ); |
19933 | printf("------------------------------------------------\n" ); |
19934 | |
19935 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
19936 | { |
19937 | printf(FMT_BB " : " , block->bbNum); |
19938 | BlockSetOps::Iter iter(this, block->bbReach); |
19939 | unsigned bbNum = 0; |
19940 | while (iter.NextElem(&bbNum)) |
19941 | { |
19942 | printf(FMT_BB " " , bbNum); |
19943 | } |
19944 | printf("\n" ); |
19945 | } |
19946 | } |
19947 | |
19948 | void Compiler::fgDispDoms() |
19949 | { |
19950 | // Don't bother printing this when we have a large number of BasicBlocks in the method |
19951 | if (fgBBcount > 256) |
19952 | { |
19953 | return; |
19954 | } |
19955 | |
19956 | printf("------------------------------------------------\n" ); |
19957 | printf("BBnum Dominated by\n" ); |
19958 | printf("------------------------------------------------\n" ); |
19959 | |
19960 | for (unsigned i = 1; i <= fgBBNumMax; ++i) |
19961 | { |
19962 | BasicBlock* current = fgBBInvPostOrder[i]; |
19963 | printf(FMT_BB ": " , current->bbNum); |
19964 | while (current != current->bbIDom) |
19965 | { |
19966 | printf(FMT_BB " " , current->bbNum); |
19967 | current = current->bbIDom; |
19968 | } |
19969 | printf("\n" ); |
19970 | } |
19971 | } |
19972 | |
19973 | /*****************************************************************************/ |
19974 | |
19975 | void Compiler::fgTableDispBasicBlock(BasicBlock* block, int ibcColWidth /* = 0 */) |
19976 | { |
19977 | const unsigned __int64 flags = block->bbFlags; |
19978 | unsigned bbNumMax = compIsForInlining() ? impInlineInfo->InlinerCompiler->fgBBNumMax : fgBBNumMax; |
19979 | int maxBlockNumWidth = CountDigits(bbNumMax); |
19980 | maxBlockNumWidth = max(maxBlockNumWidth, 2); |
19981 | int blockNumWidth = CountDigits(block->bbNum); |
19982 | blockNumWidth = max(blockNumWidth, 2); |
19983 | int blockNumPadding = maxBlockNumWidth - blockNumWidth; |
19984 | |
19985 | printf("%s %2u" , block->dspToString(blockNumPadding), block->bbRefs); |
19986 | |
19987 | // |
19988 | // Display EH 'try' region index |
19989 | // |
19990 | |
19991 | if (block->hasTryIndex()) |
19992 | { |
19993 | printf(" %2u" , block->getTryIndex()); |
19994 | } |
19995 | else |
19996 | { |
19997 | printf(" " ); |
19998 | } |
19999 | |
20000 | // |
20001 | // Display EH handler region index |
20002 | // |
20003 | |
20004 | if (block->hasHndIndex()) |
20005 | { |
20006 | printf(" %2u" , block->getHndIndex()); |
20007 | } |
20008 | else |
20009 | { |
20010 | printf(" " ); |
20011 | } |
20012 | |
20013 | printf(" " ); |
20014 | |
20015 | // |
20016 | // Display block predecessor list |
20017 | // |
20018 | |
20019 | unsigned charCnt; |
20020 | if (fgCheapPredsValid) |
20021 | { |
20022 | charCnt = block->dspCheapPreds(); |
20023 | } |
20024 | else |
20025 | { |
20026 | charCnt = block->dspPreds(); |
20027 | } |
20028 | |
20029 | if (charCnt < 19) |
20030 | { |
20031 | printf("%*s" , 19 - charCnt, "" ); |
20032 | } |
20033 | |
20034 | printf(" " ); |
20035 | |
20036 | // |
20037 | // Display block weight |
20038 | // |
20039 | |
20040 | if (block->isMaxBBWeight()) |
20041 | { |
20042 | printf(" MAX " ); |
20043 | } |
20044 | else |
20045 | { |
20046 | BasicBlock::weight_t weight = block->getBBWeight(this); |
20047 | |
20048 | if (weight > 99999) // Is it going to be more than 6 characters? |
20049 | { |
20050 | if (weight <= 99999 * BB_UNITY_WEIGHT) |
20051 | { |
20052 | // print weight in this format ddddd. |
20053 | printf("%5u." , (weight + (BB_UNITY_WEIGHT / 2)) / BB_UNITY_WEIGHT); |
20054 | } |
20055 | else // print weight in terms of k (i.e. 156k ) |
20056 | { |
20057 | // print weight in this format dddddk |
20058 | BasicBlock::weight_t weightK = weight / 1000; |
20059 | printf("%5uk" , (weightK + (BB_UNITY_WEIGHT / 2)) / BB_UNITY_WEIGHT); |
20060 | } |
20061 | } |
20062 | else // print weight in this format ddd.dd |
20063 | { |
20064 | printf("%6s" , refCntWtd2str(weight)); |
20065 | } |
20066 | } |
20067 | printf(" " ); |
20068 | |
20069 | // |
20070 | // Display optional IBC weight column. |
20071 | // Note that iColWidth includes one character for a leading space, if there is an IBC column. |
20072 | // |
20073 | |
20074 | if (ibcColWidth > 0) |
20075 | { |
20076 | if (block->hasProfileWeight()) |
20077 | { |
20078 | printf("%*u" , ibcColWidth, block->bbWeight); |
20079 | } |
20080 | else |
20081 | { |
20082 | // No IBC data. Just print spaces to align the column. |
20083 | printf("%*s" , ibcColWidth, "" ); |
20084 | } |
20085 | } |
20086 | |
20087 | printf(" " ); |
20088 | |
20089 | // |
20090 | // Display block IL range |
20091 | // |
20092 | |
20093 | block->dspBlockILRange(); |
20094 | |
20095 | // |
20096 | // Display block branch target |
20097 | // |
20098 | |
20099 | if (flags & BBF_REMOVED) |
20100 | { |
20101 | printf("[removed] " ); |
20102 | } |
20103 | else |
20104 | { |
20105 | switch (block->bbJumpKind) |
20106 | { |
20107 | case BBJ_COND: |
20108 | printf("-> " FMT_BB "%*s ( cond )" , block->bbJumpDest->bbNum, |
20109 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20110 | break; |
20111 | |
20112 | case BBJ_CALLFINALLY: |
20113 | printf("-> " FMT_BB "%*s (callf )" , block->bbJumpDest->bbNum, |
20114 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20115 | break; |
20116 | |
20117 | case BBJ_ALWAYS: |
20118 | if (flags & BBF_KEEP_BBJ_ALWAYS) |
20119 | { |
20120 | printf("-> " FMT_BB "%*s (ALWAYS)" , block->bbJumpDest->bbNum, |
20121 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20122 | } |
20123 | else |
20124 | { |
20125 | printf("-> " FMT_BB "%*s (always)" , block->bbJumpDest->bbNum, |
20126 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20127 | } |
20128 | break; |
20129 | |
20130 | case BBJ_LEAVE: |
20131 | printf("-> " FMT_BB "%*s (leave )" , block->bbJumpDest->bbNum, |
20132 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20133 | break; |
20134 | |
20135 | case BBJ_EHFINALLYRET: |
20136 | printf("%*s (finret)" , maxBlockNumWidth - 2, "" ); |
20137 | break; |
20138 | |
20139 | case BBJ_EHFILTERRET: |
20140 | printf("%*s (fltret)" , maxBlockNumWidth - 2, "" ); |
20141 | break; |
20142 | |
20143 | case BBJ_EHCATCHRET: |
20144 | printf("-> " FMT_BB "%*s ( cret )" , block->bbJumpDest->bbNum, |
20145 | maxBlockNumWidth - max(CountDigits(block->bbJumpDest->bbNum), 2), "" ); |
20146 | break; |
20147 | |
20148 | case BBJ_THROW: |
20149 | printf("%*s (throw )" , maxBlockNumWidth - 2, "" ); |
20150 | break; |
20151 | |
20152 | case BBJ_RETURN: |
20153 | printf("%*s (return)" , maxBlockNumWidth - 2, "" ); |
20154 | break; |
20155 | |
20156 | default: |
20157 | printf("%*s " , maxBlockNumWidth - 2, "" ); |
20158 | break; |
20159 | |
20160 | case BBJ_SWITCH: |
20161 | printf("->" ); |
20162 | |
20163 | unsigned jumpCnt; |
20164 | jumpCnt = block->bbJumpSwt->bbsCount; |
20165 | BasicBlock** jumpTab; |
20166 | jumpTab = block->bbJumpSwt->bbsDstTab; |
20167 | int switchWidth; |
20168 | switchWidth = 0; |
20169 | do |
20170 | { |
20171 | printf("%c" FMT_BB, (jumpTab == block->bbJumpSwt->bbsDstTab) ? ' ' : ',', (*jumpTab)->bbNum); |
20172 | switchWidth += 1 /* space/comma */ + 2 /* BB */ + max(CountDigits((*jumpTab)->bbNum), 2); |
20173 | } while (++jumpTab, --jumpCnt); |
20174 | |
20175 | if (switchWidth < 7) |
20176 | { |
20177 | printf("%*s" , 8 - switchWidth, "" ); |
20178 | } |
20179 | |
20180 | printf(" (switch)" ); |
20181 | break; |
20182 | } |
20183 | } |
20184 | |
20185 | printf(" " ); |
20186 | |
20187 | // |
20188 | // Display block EH region and type, including nesting indicator |
20189 | // |
20190 | |
20191 | if (block->hasTryIndex()) |
20192 | { |
20193 | printf("T%d " , block->getTryIndex()); |
20194 | } |
20195 | else |
20196 | { |
20197 | printf(" " ); |
20198 | } |
20199 | |
20200 | if (block->hasHndIndex()) |
20201 | { |
20202 | printf("H%d " , block->getHndIndex()); |
20203 | } |
20204 | else |
20205 | { |
20206 | printf(" " ); |
20207 | } |
20208 | |
20209 | if (flags & BBF_FUNCLET_BEG) |
20210 | { |
20211 | printf("F " ); |
20212 | } |
20213 | else |
20214 | { |
20215 | printf(" " ); |
20216 | } |
20217 | |
20218 | int cnt = 0; |
20219 | |
20220 | switch (block->bbCatchTyp) |
20221 | { |
20222 | case BBCT_NONE: |
20223 | break; |
20224 | case BBCT_FAULT: |
20225 | printf("fault " ); |
20226 | cnt += 6; |
20227 | break; |
20228 | case BBCT_FINALLY: |
20229 | printf("finally " ); |
20230 | cnt += 8; |
20231 | break; |
20232 | case BBCT_FILTER: |
20233 | printf("filter " ); |
20234 | cnt += 7; |
20235 | break; |
20236 | case BBCT_FILTER_HANDLER: |
20237 | printf("filtHnd " ); |
20238 | cnt += 8; |
20239 | break; |
20240 | default: |
20241 | printf("catch " ); |
20242 | cnt += 6; |
20243 | break; |
20244 | } |
20245 | |
20246 | if (block->bbCatchTyp != BBCT_NONE) |
20247 | { |
20248 | cnt += 2; |
20249 | printf("{ " ); |
20250 | /* brace matching editor workaround to compensate for the preceding line: } */ |
20251 | } |
20252 | |
20253 | if (flags & BBF_TRY_BEG) |
20254 | { |
20255 | // Output a brace for every try region that this block opens |
20256 | |
20257 | EHblkDsc* HBtab; |
20258 | EHblkDsc* HBtabEnd; |
20259 | |
20260 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
20261 | { |
20262 | if (HBtab->ebdTryBeg == block) |
20263 | { |
20264 | cnt += 6; |
20265 | printf("try { " ); |
20266 | /* brace matching editor workaround to compensate for the preceding line: } */ |
20267 | } |
20268 | } |
20269 | } |
20270 | |
20271 | EHblkDsc* HBtab; |
20272 | EHblkDsc* HBtabEnd; |
20273 | |
20274 | for (HBtab = compHndBBtab, HBtabEnd = compHndBBtab + compHndBBtabCount; HBtab < HBtabEnd; HBtab++) |
20275 | { |
20276 | if (HBtab->ebdTryLast == block) |
20277 | { |
20278 | cnt += 2; |
20279 | /* brace matching editor workaround to compensate for the following line: { */ |
20280 | printf("} " ); |
20281 | } |
20282 | if (HBtab->ebdHndLast == block) |
20283 | { |
20284 | cnt += 2; |
20285 | /* brace matching editor workaround to compensate for the following line: { */ |
20286 | printf("} " ); |
20287 | } |
20288 | if (HBtab->HasFilter() && block->bbNext == HBtab->ebdHndBeg) |
20289 | { |
20290 | cnt += 2; |
20291 | /* brace matching editor workaround to compensate for the following line: { */ |
20292 | printf("} " ); |
20293 | } |
20294 | } |
20295 | |
20296 | while (cnt < 12) |
20297 | { |
20298 | cnt++; |
20299 | printf(" " ); |
20300 | } |
20301 | |
20302 | // |
20303 | // Display block flags |
20304 | // |
20305 | |
20306 | block->dspFlags(); |
20307 | |
20308 | printf("\n" ); |
20309 | } |
20310 | |
20311 | /**************************************************************************** |
20312 | Dump blocks from firstBlock to lastBlock. |
20313 | */ |
20314 | |
20315 | void Compiler::fgDispBasicBlocks(BasicBlock* firstBlock, BasicBlock* lastBlock, bool dumpTrees) |
20316 | { |
20317 | BasicBlock* block; |
20318 | |
20319 | // If any block has IBC data, we add an "IBC weight" column just before the 'IL range' column. This column is as |
20320 | // wide as necessary to accommodate all the various IBC weights. It's at least 4 characters wide, to accommodate |
20321 | // the "IBC" title and leading space. |
20322 | int ibcColWidth = 0; |
20323 | for (block = firstBlock; block != nullptr; block = block->bbNext) |
20324 | { |
20325 | if (block->hasProfileWeight()) |
20326 | { |
20327 | int thisIbcWidth = CountDigits(block->bbWeight); |
20328 | ibcColWidth = max(ibcColWidth, thisIbcWidth); |
20329 | } |
20330 | |
20331 | if (block == lastBlock) |
20332 | { |
20333 | break; |
20334 | } |
20335 | } |
20336 | if (ibcColWidth > 0) |
20337 | { |
20338 | ibcColWidth = max(ibcColWidth, 3) + 1; // + 1 for the leading space |
20339 | } |
20340 | |
20341 | unsigned bbNumMax = compIsForInlining() ? impInlineInfo->InlinerCompiler->fgBBNumMax : fgBBNumMax; |
20342 | int maxBlockNumWidth = CountDigits(bbNumMax); |
20343 | maxBlockNumWidth = max(maxBlockNumWidth, 2); |
20344 | int padWidth = maxBlockNumWidth - 2; // Account for functions with a large number of blocks. |
20345 | |
20346 | // clang-format off |
20347 | |
20348 | printf("\n" ); |
20349 | printf("------%*s-------------------------------------%*s-----------------------%*s----------------------------------------\n" , |
20350 | padWidth, "------------" , |
20351 | ibcColWidth, "------------" , |
20352 | maxBlockNumWidth, "----" ); |
20353 | printf("BBnum %*sBBid ref try hnd %s weight %*s%s [IL range] [jump]%*s [EH region] [flags]\n" , |
20354 | padWidth, "" , |
20355 | fgCheapPredsValid ? "cheap preds" : |
20356 | (fgComputePredsDone ? "preds " |
20357 | : " " ), |
20358 | ((ibcColWidth > 0) ? ibcColWidth - 3 : 0), "" , // Subtract 3 for the width of "IBC", printed next. |
20359 | ((ibcColWidth > 0) ? "IBC" |
20360 | : "" ), |
20361 | maxBlockNumWidth, "" |
20362 | ); |
20363 | printf("------%*s-------------------------------------%*s-----------------------%*s----------------------------------------\n" , |
20364 | padWidth, "------------" , |
20365 | ibcColWidth, "------------" , |
20366 | maxBlockNumWidth, "----" ); |
20367 | |
20368 | // clang-format on |
20369 | |
20370 | for (block = firstBlock; block; block = block->bbNext) |
20371 | { |
20372 | // First, do some checking on the bbPrev links |
20373 | if (block->bbPrev) |
20374 | { |
20375 | if (block->bbPrev->bbNext != block) |
20376 | { |
20377 | printf("bad prev link\n" ); |
20378 | } |
20379 | } |
20380 | else if (block != fgFirstBB) |
20381 | { |
20382 | printf("bad prev link!\n" ); |
20383 | } |
20384 | |
20385 | if (block == fgFirstColdBlock) |
20386 | { |
20387 | printf("~~~~~~%*s~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%*s~~~~~~~~~~~~~~~~~~~~~~~%*s~~~~~~~~~~~~~~~~~~~~~~~~" |
20388 | "~~~~~~~~~~~~~~~~\n" , |
20389 | padWidth, "~~~~~~~~~~~~" , ibcColWidth, "~~~~~~~~~~~~" , maxBlockNumWidth, "~~~~" ); |
20390 | } |
20391 | |
20392 | #if FEATURE_EH_FUNCLETS |
20393 | if (block == fgFirstFuncletBB) |
20394 | { |
20395 | printf("++++++%*s+++++++++++++++++++++++++++++++++++++%*s+++++++++++++++++++++++%*s++++++++++++++++++++++++" |
20396 | "++++++++++++++++ funclets follow\n" , |
20397 | padWidth, "++++++++++++" , ibcColWidth, "++++++++++++" , maxBlockNumWidth, "++++" ); |
20398 | } |
20399 | #endif // FEATURE_EH_FUNCLETS |
20400 | |
20401 | fgTableDispBasicBlock(block, ibcColWidth); |
20402 | |
20403 | if (block == lastBlock) |
20404 | { |
20405 | break; |
20406 | } |
20407 | } |
20408 | |
20409 | printf("------%*s-------------------------------------%*s-----------------------%*s--------------------------------" |
20410 | "--------\n" , |
20411 | padWidth, "------------" , ibcColWidth, "------------" , maxBlockNumWidth, "----" ); |
20412 | |
20413 | if (dumpTrees) |
20414 | { |
20415 | fgDumpTrees(firstBlock, lastBlock); |
20416 | } |
20417 | } |
20418 | |
20419 | /*****************************************************************************/ |
20420 | |
20421 | void Compiler::fgDispBasicBlocks(bool dumpTrees) |
20422 | { |
20423 | fgDispBasicBlocks(fgFirstBB, nullptr, dumpTrees); |
20424 | } |
20425 | |
20426 | /*****************************************************************************/ |
20427 | // Increment the stmtNum and dump the tree using gtDispTree |
20428 | // |
20429 | void Compiler::fgDumpStmtTree(GenTree* stmt, unsigned bbNum) |
20430 | { |
20431 | compCurStmtNum++; // Increment the current stmtNum |
20432 | |
20433 | printf("\n***** " FMT_BB ", stmt %d\n" , bbNum, compCurStmtNum); |
20434 | |
20435 | if (fgOrder == FGOrderLinear || opts.compDbgInfo) |
20436 | { |
20437 | gtDispTree(stmt); |
20438 | } |
20439 | else |
20440 | { |
20441 | gtDispTree(stmt->gtStmt.gtStmtExpr); |
20442 | } |
20443 | } |
20444 | |
20445 | //------------------------------------------------------------------------ |
20446 | // Compiler::fgDumpBlock: dumps the contents of the given block to stdout. |
20447 | // |
20448 | // Arguments: |
20449 | // block - The block to dump. |
20450 | // |
20451 | void Compiler::fgDumpBlock(BasicBlock* block) |
20452 | { |
20453 | printf("\n------------ " ); |
20454 | block->dspBlockHeader(this); |
20455 | |
20456 | if (!block->IsLIR()) |
20457 | { |
20458 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
20459 | { |
20460 | fgDumpStmtTree(stmt, block->bbNum); |
20461 | if (stmt == block->bbTreeList) |
20462 | { |
20463 | block->bbStmtNum = compCurStmtNum; // Set the block->bbStmtNum |
20464 | } |
20465 | } |
20466 | } |
20467 | else |
20468 | { |
20469 | gtDispRange(LIR::AsRange(block)); |
20470 | } |
20471 | } |
20472 | |
20473 | /*****************************************************************************/ |
20474 | // Walk the BasicBlock list calling fgDumpTree once per Stmt |
20475 | // |
20476 | void Compiler::fgDumpTrees(BasicBlock* firstBlock, BasicBlock* lastBlock) |
20477 | { |
20478 | compCurStmtNum = 0; // Reset the current stmtNum |
20479 | |
20480 | /* Walk the basic blocks */ |
20481 | |
20482 | // Note that typically we have already called fgDispBasicBlocks() |
20483 | // so we don't need to print the preds and succs again here |
20484 | // |
20485 | for (BasicBlock* block = firstBlock; block; block = block->bbNext) |
20486 | { |
20487 | fgDumpBlock(block); |
20488 | |
20489 | if (block == lastBlock) |
20490 | { |
20491 | break; |
20492 | } |
20493 | } |
20494 | printf("\n---------------------------------------------------------------------------------------------------------" |
20495 | "----------\n" ); |
20496 | } |
20497 | |
20498 | /***************************************************************************** |
20499 | * Try to create as many candidates for GTF_MUL_64RSLT as possible. |
20500 | * We convert 'intOp1*intOp2' into 'int(long(nop(intOp1))*long(intOp2))'. |
20501 | */ |
20502 | |
20503 | /* static */ |
20504 | Compiler::fgWalkResult Compiler::fgStress64RsltMulCB(GenTree** pTree, fgWalkData* data) |
20505 | { |
20506 | GenTree* tree = *pTree; |
20507 | Compiler* pComp = data->compiler; |
20508 | |
20509 | if (tree->gtOper != GT_MUL || tree->gtType != TYP_INT || (tree->gtOverflow())) |
20510 | { |
20511 | return WALK_CONTINUE; |
20512 | } |
20513 | |
20514 | #ifdef DEBUG |
20515 | if (pComp->verbose) |
20516 | { |
20517 | printf("STRESS_64RSLT_MUL before:\n" ); |
20518 | pComp->gtDispTree(tree); |
20519 | } |
20520 | #endif // DEBUG |
20521 | |
20522 | // To ensure optNarrowTree() doesn't fold back to the original tree. |
20523 | tree->gtOp.gtOp1 = pComp->gtNewCastNode(TYP_LONG, tree->gtOp.gtOp1, false, TYP_LONG); |
20524 | tree->gtOp.gtOp1 = pComp->gtNewOperNode(GT_NOP, TYP_LONG, tree->gtOp.gtOp1); |
20525 | tree->gtOp.gtOp1 = pComp->gtNewCastNode(TYP_LONG, tree->gtOp.gtOp1, false, TYP_LONG); |
20526 | tree->gtOp.gtOp2 = pComp->gtNewCastNode(TYP_LONG, tree->gtOp.gtOp2, false, TYP_LONG); |
20527 | tree->gtType = TYP_LONG; |
20528 | *pTree = pComp->gtNewCastNode(TYP_INT, tree, false, TYP_INT); |
20529 | |
20530 | #ifdef DEBUG |
20531 | if (pComp->verbose) |
20532 | { |
20533 | printf("STRESS_64RSLT_MUL after:\n" ); |
20534 | pComp->gtDispTree(*pTree); |
20535 | } |
20536 | #endif // DEBUG |
20537 | |
20538 | return WALK_SKIP_SUBTREES; |
20539 | } |
20540 | |
20541 | void Compiler::fgStress64RsltMul() |
20542 | { |
20543 | if (!compStressCompile(STRESS_64RSLT_MUL, 20)) |
20544 | { |
20545 | return; |
20546 | } |
20547 | |
20548 | fgWalkAllTreesPre(fgStress64RsltMulCB, (void*)this); |
20549 | } |
20550 | |
20551 | // BBPredsChecker checks jumps from the block's predecessors to the block. |
20552 | class BBPredsChecker |
20553 | { |
20554 | public: |
20555 | BBPredsChecker(Compiler* compiler) : comp(compiler) |
20556 | { |
20557 | } |
20558 | |
20559 | unsigned CheckBBPreds(BasicBlock* block, unsigned curTraversalStamp); |
20560 | |
20561 | private: |
20562 | bool CheckEhTryDsc(BasicBlock* block, BasicBlock* blockPred, EHblkDsc* ehTryDsc); |
20563 | bool CheckEhHndDsc(BasicBlock* block, BasicBlock* blockPred, EHblkDsc* ehHndlDsc); |
20564 | bool CheckJump(BasicBlock* blockPred, BasicBlock* block); |
20565 | bool CheckEHFinalyRet(BasicBlock* blockPred, BasicBlock* block); |
20566 | |
20567 | private: |
20568 | Compiler* comp; |
20569 | }; |
20570 | |
20571 | //------------------------------------------------------------------------ |
20572 | // CheckBBPreds: Check basic block predecessors list. |
20573 | // |
20574 | // Notes: |
20575 | // This DEBUG routine checks that all predecessors have the correct traversal stamp |
20576 | // and have correct jumps to the block. |
20577 | // It calculates the number of incoming edges from the internal block, |
20578 | // i.e. it does not count the global incoming edge for the first block. |
20579 | // |
20580 | // Arguments: |
20581 | // block - the block to process; |
20582 | // curTraversalStamp - current traversal stamp to distinguish different iterations. |
20583 | // |
20584 | // Return value: |
20585 | // the number of incoming edges for the block. |
20586 | unsigned BBPredsChecker::CheckBBPreds(BasicBlock* block, unsigned curTraversalStamp) |
20587 | { |
20588 | if (comp->fgCheapPredsValid) |
20589 | { |
20590 | return 0; |
20591 | } |
20592 | |
20593 | if (!comp->fgComputePredsDone) |
20594 | { |
20595 | assert(block->bbPreds == nullptr); |
20596 | return 0; |
20597 | } |
20598 | |
20599 | unsigned blockRefs = 0; |
20600 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
20601 | { |
20602 | blockRefs += pred->flDupCount; |
20603 | |
20604 | BasicBlock* blockPred = pred->flBlock; |
20605 | |
20606 | // Make sure this pred is part of the BB list. |
20607 | assert(blockPred->bbTraversalStamp == curTraversalStamp); |
20608 | |
20609 | EHblkDsc* ehTryDsc = comp->ehGetBlockTryDsc(block); |
20610 | if (ehTryDsc != nullptr) |
20611 | { |
20612 | assert(CheckEhTryDsc(block, blockPred, ehTryDsc)); |
20613 | } |
20614 | |
20615 | EHblkDsc* ehHndDsc = comp->ehGetBlockHndDsc(block); |
20616 | if (ehHndDsc != nullptr) |
20617 | { |
20618 | assert(CheckEhHndDsc(block, blockPred, ehHndDsc)); |
20619 | } |
20620 | |
20621 | assert(CheckJump(blockPred, block)); |
20622 | } |
20623 | return blockRefs; |
20624 | } |
20625 | |
20626 | bool BBPredsChecker::CheckEhTryDsc(BasicBlock* block, BasicBlock* blockPred, EHblkDsc* ehTryDsc) |
20627 | { |
20628 | // You can jump to the start of a try |
20629 | if (ehTryDsc->ebdTryBeg == block) |
20630 | { |
20631 | return true; |
20632 | } |
20633 | |
20634 | // You can jump within the same try region |
20635 | if (comp->bbInTryRegions(block->getTryIndex(), blockPred)) |
20636 | { |
20637 | return true; |
20638 | } |
20639 | |
20640 | // The catch block can jump back into the middle of the try |
20641 | if (comp->bbInCatchHandlerRegions(block, blockPred)) |
20642 | { |
20643 | return true; |
20644 | } |
20645 | |
20646 | // The end of a finally region is a BBJ_EHFINALLYRET block (during importing, BBJ_LEAVE) which |
20647 | // is marked as "returning" to the BBJ_ALWAYS block following the BBJ_CALLFINALLY |
20648 | // block that does a local call to the finally. This BBJ_ALWAYS is within |
20649 | // the try region protected by the finally (for x86, ARM), but that's ok. |
20650 | BasicBlock* prevBlock = block->bbPrev; |
20651 | if (prevBlock->bbJumpKind == BBJ_CALLFINALLY && block->bbJumpKind == BBJ_ALWAYS && |
20652 | blockPred->bbJumpKind == BBJ_EHFINALLYRET) |
20653 | { |
20654 | return true; |
20655 | } |
20656 | |
20657 | printf("Jump into the middle of try region: " FMT_BB " branches to " FMT_BB "\n" , blockPred->bbNum, block->bbNum); |
20658 | assert(!"Jump into middle of try region" ); |
20659 | return false; |
20660 | } |
20661 | |
20662 | bool BBPredsChecker::CheckEhHndDsc(BasicBlock* block, BasicBlock* blockPred, EHblkDsc* ehHndlDsc) |
20663 | { |
20664 | // You can do a BBJ_EHFINALLYRET or BBJ_EHFILTERRET into a handler region |
20665 | if ((blockPred->bbJumpKind == BBJ_EHFINALLYRET) || (blockPred->bbJumpKind == BBJ_EHFILTERRET)) |
20666 | { |
20667 | return true; |
20668 | } |
20669 | |
20670 | // Our try block can call our finally block |
20671 | if ((block->bbCatchTyp == BBCT_FINALLY) && (blockPred->bbJumpKind == BBJ_CALLFINALLY) && |
20672 | comp->ehCallFinallyInCorrectRegion(blockPred, block->getHndIndex())) |
20673 | { |
20674 | return true; |
20675 | } |
20676 | |
20677 | // You can jump within the same handler region |
20678 | if (comp->bbInHandlerRegions(block->getHndIndex(), blockPred)) |
20679 | { |
20680 | return true; |
20681 | } |
20682 | |
20683 | // A filter can jump to the start of the filter handler |
20684 | if (ehHndlDsc->HasFilter()) |
20685 | { |
20686 | return true; |
20687 | } |
20688 | |
20689 | printf("Jump into the middle of handler region: " FMT_BB " branches to " FMT_BB "\n" , blockPred->bbNum, |
20690 | block->bbNum); |
20691 | assert(!"Jump into the middle of handler region" ); |
20692 | return false; |
20693 | } |
20694 | |
20695 | bool BBPredsChecker::CheckJump(BasicBlock* blockPred, BasicBlock* block) |
20696 | { |
20697 | switch (blockPred->bbJumpKind) |
20698 | { |
20699 | case BBJ_COND: |
20700 | assert(blockPred->bbNext == block || blockPred->bbJumpDest == block); |
20701 | return true; |
20702 | |
20703 | case BBJ_NONE: |
20704 | assert(blockPred->bbNext == block); |
20705 | return true; |
20706 | |
20707 | case BBJ_CALLFINALLY: |
20708 | case BBJ_ALWAYS: |
20709 | case BBJ_EHCATCHRET: |
20710 | case BBJ_EHFILTERRET: |
20711 | assert(blockPred->bbJumpDest == block); |
20712 | return true; |
20713 | |
20714 | case BBJ_EHFINALLYRET: |
20715 | assert(CheckEHFinalyRet(blockPred, block)); |
20716 | return true; |
20717 | |
20718 | case BBJ_THROW: |
20719 | case BBJ_RETURN: |
20720 | assert(!"THROW and RETURN block cannot be in the predecessor list!" ); |
20721 | break; |
20722 | |
20723 | case BBJ_SWITCH: |
20724 | { |
20725 | unsigned jumpCnt = blockPred->bbJumpSwt->bbsCount; |
20726 | |
20727 | for (unsigned i = 0; i < jumpCnt; ++i) |
20728 | { |
20729 | BasicBlock* jumpTab = blockPred->bbJumpSwt->bbsDstTab[i]; |
20730 | assert(jumpTab != nullptr); |
20731 | if (block == jumpTab) |
20732 | { |
20733 | return true; |
20734 | } |
20735 | } |
20736 | |
20737 | assert(!"SWITCH in the predecessor list with no jump label to BLOCK!" ); |
20738 | } |
20739 | break; |
20740 | |
20741 | default: |
20742 | assert(!"Unexpected bbJumpKind" ); |
20743 | break; |
20744 | } |
20745 | return false; |
20746 | } |
20747 | |
20748 | bool BBPredsChecker::CheckEHFinalyRet(BasicBlock* blockPred, BasicBlock* block) |
20749 | { |
20750 | |
20751 | // If the current block is a successor to a BBJ_EHFINALLYRET (return from finally), |
20752 | // then the lexically previous block should be a call to the same finally. |
20753 | // Verify all of that. |
20754 | |
20755 | unsigned hndIndex = blockPred->getHndIndex(); |
20756 | EHblkDsc* ehDsc = comp->ehGetDsc(hndIndex); |
20757 | BasicBlock* finBeg = ehDsc->ebdHndBeg; |
20758 | |
20759 | // Because there is no bbPrev, we have to search for the lexically previous |
20760 | // block. We can shorten the search by only looking in places where it is legal |
20761 | // to have a call to the finally. |
20762 | |
20763 | BasicBlock* begBlk; |
20764 | BasicBlock* endBlk; |
20765 | comp->ehGetCallFinallyBlockRange(hndIndex, &begBlk, &endBlk); |
20766 | |
20767 | for (BasicBlock* bcall = begBlk; bcall != endBlk; bcall = bcall->bbNext) |
20768 | { |
20769 | if (bcall->bbJumpKind != BBJ_CALLFINALLY || bcall->bbJumpDest != finBeg) |
20770 | { |
20771 | continue; |
20772 | } |
20773 | |
20774 | if (block == bcall->bbNext) |
20775 | { |
20776 | return true; |
20777 | } |
20778 | } |
20779 | |
20780 | #if FEATURE_EH_FUNCLETS |
20781 | |
20782 | if (comp->fgFuncletsCreated) |
20783 | { |
20784 | // There is no easy way to search just the funclets that were pulled out of |
20785 | // the corresponding try body, so instead we search all the funclets, and if |
20786 | // we find a potential 'hit' we check if the funclet we're looking at is |
20787 | // from the correct try region. |
20788 | |
20789 | for (BasicBlock* bcall = comp->fgFirstFuncletBB; bcall != nullptr; bcall = bcall->bbNext) |
20790 | { |
20791 | if (bcall->bbJumpKind != BBJ_CALLFINALLY || bcall->bbJumpDest != finBeg) |
20792 | { |
20793 | continue; |
20794 | } |
20795 | |
20796 | if (block != bcall->bbNext) |
20797 | { |
20798 | continue; |
20799 | } |
20800 | |
20801 | if (comp->ehCallFinallyInCorrectRegion(bcall, hndIndex)) |
20802 | { |
20803 | return true; |
20804 | } |
20805 | } |
20806 | } |
20807 | |
20808 | #endif // FEATURE_EH_FUNCLETS |
20809 | |
20810 | assert(!"BBJ_EHFINALLYRET predecessor of block that doesn't follow a BBJ_CALLFINALLY!" ); |
20811 | return false; |
20812 | } |
20813 | |
20814 | // This variable is used to generate "traversal labels": one-time constants with which |
20815 | // we label basic blocks that are members of the basic block list, in order to have a |
20816 | // fast, high-probability test for membership in that list. Type is "volatile" because |
20817 | // it's incremented with an atomic operation, which wants a volatile type; "long" so that |
20818 | // wrap-around to 0 (which I think has the highest probability of accidental collision) is |
20819 | // postponed a *long* time. |
20820 | static volatile int bbTraverseLabel = 1; |
20821 | |
20822 | /***************************************************************************** |
20823 | * |
20824 | * A DEBUG routine to check the consistency of the flowgraph, |
20825 | * i.e. bbNum, bbRefs, bbPreds have to be up to date. |
20826 | * |
20827 | *****************************************************************************/ |
20828 | |
20829 | void Compiler::fgDebugCheckBBlist(bool checkBBNum /* = false */, bool checkBBRefs /* = true */) |
20830 | { |
20831 | #ifdef DEBUG |
20832 | if (verbose) |
20833 | { |
20834 | printf("*************** In fgDebugCheckBBlist\n" ); |
20835 | } |
20836 | #endif // DEBUG |
20837 | |
20838 | fgDebugCheckBlockLinks(); |
20839 | |
20840 | if (fgBBcount > 10000 && expensiveDebugCheckLevel < 1) |
20841 | { |
20842 | // The basic block checks are too expensive if there are too many blocks, |
20843 | // so give up unless we've been told to try hard. |
20844 | return; |
20845 | } |
20846 | |
20847 | DWORD startTickCount = GetTickCount(); |
20848 | |
20849 | #if FEATURE_EH_FUNCLETS |
20850 | bool reachedFirstFunclet = false; |
20851 | if (fgFuncletsCreated) |
20852 | { |
20853 | // |
20854 | // Make sure that fgFirstFuncletBB is accurate. |
20855 | // It should be the first basic block in a handler region. |
20856 | // |
20857 | if (fgFirstFuncletBB != nullptr) |
20858 | { |
20859 | assert(fgFirstFuncletBB->hasHndIndex() == true); |
20860 | assert(fgFirstFuncletBB->bbFlags & BBF_FUNCLET_BEG); |
20861 | } |
20862 | } |
20863 | #endif // FEATURE_EH_FUNCLETS |
20864 | |
20865 | /* Check bbNum, bbRefs and bbPreds */ |
20866 | // First, pick a traversal stamp, and label all the blocks with it. |
20867 | unsigned curTraversalStamp = unsigned(InterlockedIncrement((LONG*)&bbTraverseLabel)); |
20868 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
20869 | { |
20870 | block->bbTraversalStamp = curTraversalStamp; |
20871 | } |
20872 | |
20873 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
20874 | { |
20875 | if (checkBBNum) |
20876 | { |
20877 | // Check that bbNum is sequential |
20878 | assert(block->bbNext == nullptr || (block->bbNum + 1 == block->bbNext->bbNum)); |
20879 | } |
20880 | |
20881 | // If the block is a BBJ_COND, a BBJ_SWITCH or a |
20882 | // lowered GT_SWITCH_TABLE node then make sure it |
20883 | // ends with a conditional jump or a GT_SWITCH |
20884 | |
20885 | if (block->bbJumpKind == BBJ_COND) |
20886 | { |
20887 | assert(block->lastNode()->gtNext == nullptr && block->lastNode()->OperIsConditionalJump()); |
20888 | } |
20889 | else if (block->bbJumpKind == BBJ_SWITCH) |
20890 | { |
20891 | assert(block->lastNode()->gtNext == nullptr && |
20892 | (block->lastNode()->gtOper == GT_SWITCH || block->lastNode()->gtOper == GT_SWITCH_TABLE)); |
20893 | } |
20894 | else if (!(block->bbJumpKind == BBJ_ALWAYS || block->bbJumpKind == BBJ_RETURN)) |
20895 | { |
20896 | // this block cannot have a poll |
20897 | assert(!(block->bbFlags & BBF_NEEDS_GCPOLL)); |
20898 | } |
20899 | |
20900 | if (block->bbCatchTyp == BBCT_FILTER) |
20901 | { |
20902 | if (!fgCheapPredsValid) // Don't check cheap preds |
20903 | { |
20904 | // A filter has no predecessors |
20905 | assert(block->bbPreds == nullptr); |
20906 | } |
20907 | } |
20908 | |
20909 | #if FEATURE_EH_FUNCLETS |
20910 | if (fgFuncletsCreated) |
20911 | { |
20912 | // |
20913 | // There should be no handler blocks until |
20914 | // we get to the fgFirstFuncletBB block, |
20915 | // then every block should be a handler block |
20916 | // |
20917 | if (!reachedFirstFunclet) |
20918 | { |
20919 | if (block == fgFirstFuncletBB) |
20920 | { |
20921 | assert(block->hasHndIndex() == true); |
20922 | reachedFirstFunclet = true; |
20923 | } |
20924 | else |
20925 | { |
20926 | assert(block->hasHndIndex() == false); |
20927 | } |
20928 | } |
20929 | else // reachedFirstFunclet |
20930 | { |
20931 | assert(block->hasHndIndex() == true); |
20932 | } |
20933 | } |
20934 | #endif // FEATURE_EH_FUNCLETS |
20935 | |
20936 | if (checkBBRefs) |
20937 | { |
20938 | assert(fgComputePredsDone); |
20939 | } |
20940 | |
20941 | BBPredsChecker checker(this); |
20942 | unsigned blockRefs = checker.CheckBBPreds(block, curTraversalStamp); |
20943 | |
20944 | // First basic block has an additional global incoming edge. |
20945 | if (block == fgFirstBB) |
20946 | { |
20947 | blockRefs += 1; |
20948 | } |
20949 | |
20950 | /* Check the bbRefs */ |
20951 | if (checkBBRefs) |
20952 | { |
20953 | if (block->bbRefs != blockRefs) |
20954 | { |
20955 | // Check to see if this block is the beginning of a filter or a handler and adjust the ref count |
20956 | // appropriately. |
20957 | for (EHblkDsc *HBtab = compHndBBtab, *HBtabEnd = &compHndBBtab[compHndBBtabCount]; HBtab != HBtabEnd; |
20958 | HBtab++) |
20959 | { |
20960 | if (HBtab->ebdHndBeg == block) |
20961 | { |
20962 | blockRefs++; |
20963 | } |
20964 | if (HBtab->HasFilter() && (HBtab->ebdFilter == block)) |
20965 | { |
20966 | blockRefs++; |
20967 | } |
20968 | } |
20969 | } |
20970 | |
20971 | assert(block->bbRefs == blockRefs); |
20972 | } |
20973 | |
20974 | /* Check that BBF_HAS_HANDLER is valid bbTryIndex */ |
20975 | if (block->hasTryIndex()) |
20976 | { |
20977 | assert(block->getTryIndex() < compHndBBtabCount); |
20978 | } |
20979 | |
20980 | /* Check if BBF_RUN_RARELY is set that we have bbWeight of zero */ |
20981 | if (block->isRunRarely()) |
20982 | { |
20983 | assert(block->bbWeight == BB_ZERO_WEIGHT); |
20984 | } |
20985 | else |
20986 | { |
20987 | assert(block->bbWeight > BB_ZERO_WEIGHT); |
20988 | } |
20989 | } |
20990 | |
20991 | // Make sure the one return BB is not changed. |
20992 | if (genReturnBB != nullptr) |
20993 | { |
20994 | assert(genReturnBB->bbTreeList); |
20995 | assert(genReturnBB->IsLIR() || genReturnBB->bbTreeList->gtOper == GT_STMT); |
20996 | assert(genReturnBB->IsLIR() || genReturnBB->bbTreeList->gtType == TYP_VOID); |
20997 | } |
20998 | |
20999 | // The general encoder/decoder (currently) only reports "this" as a generics context as a stack location, |
21000 | // so we mark info.compThisArg as lvAddrTaken to ensure that it is not enregistered. Otherwise, it should |
21001 | // not be address-taken. This variable determines if the address-taken-ness of "thisArg" is "OK". |
21002 | bool copiedForGenericsCtxt; |
21003 | #ifndef JIT32_GCENCODER |
21004 | copiedForGenericsCtxt = ((info.compMethodInfo->options & CORINFO_GENERICS_CTXT_FROM_THIS) != 0); |
21005 | #else // JIT32_GCENCODER |
21006 | copiedForGenericsCtxt = FALSE; |
21007 | #endif // JIT32_GCENCODER |
21008 | |
21009 | // This if only in support of the noway_asserts it contains. |
21010 | if (info.compIsStatic) |
21011 | { |
21012 | // For static method, should have never grabbed the temp. |
21013 | assert(lvaArg0Var == BAD_VAR_NUM); |
21014 | } |
21015 | else |
21016 | { |
21017 | // For instance method: |
21018 | assert(info.compThisArg != BAD_VAR_NUM); |
21019 | bool compThisArgAddrExposedOK = !lvaTable[info.compThisArg].lvAddrExposed; |
21020 | |
21021 | #ifndef JIT32_GCENCODER |
21022 | compThisArgAddrExposedOK = compThisArgAddrExposedOK || copiedForGenericsCtxt; |
21023 | #endif // !JIT32_GCENCODER |
21024 | |
21025 | // Should never expose the address of arg 0 or write to arg 0. |
21026 | // In addition, lvArg0Var should remain 0 if arg0 is not |
21027 | // written to or address-exposed. |
21028 | assert(compThisArgAddrExposedOK && !lvaTable[info.compThisArg].lvHasILStoreOp && |
21029 | (lvaArg0Var == info.compThisArg || |
21030 | lvaArg0Var != info.compThisArg && (lvaTable[lvaArg0Var].lvAddrExposed || |
21031 | lvaTable[lvaArg0Var].lvHasILStoreOp || copiedForGenericsCtxt))); |
21032 | } |
21033 | } |
21034 | |
21035 | /***************************************************************************** |
21036 | * |
21037 | * A DEBUG routine to check the that the exception flags are correctly set. |
21038 | * |
21039 | ****************************************************************************/ |
21040 | |
21041 | void Compiler::fgDebugCheckFlags(GenTree* tree) |
21042 | { |
21043 | noway_assert(tree->gtOper != GT_STMT); |
21044 | |
21045 | const genTreeOps oper = tree->OperGet(); |
21046 | const unsigned kind = tree->OperKind(); |
21047 | unsigned treeFlags = tree->gtFlags & GTF_ALL_EFFECT; |
21048 | unsigned chkFlags = 0; |
21049 | |
21050 | if (tree->OperMayThrow(this)) |
21051 | { |
21052 | chkFlags |= GTF_EXCEPT; |
21053 | } |
21054 | |
21055 | if (tree->OperRequiresCallFlag(this)) |
21056 | { |
21057 | chkFlags |= GTF_CALL; |
21058 | } |
21059 | |
21060 | /* Is this a leaf node? */ |
21061 | |
21062 | if (kind & GTK_LEAF) |
21063 | { |
21064 | switch (oper) |
21065 | { |
21066 | case GT_CLS_VAR: |
21067 | chkFlags |= GTF_GLOB_REF; |
21068 | break; |
21069 | |
21070 | case GT_CATCH_ARG: |
21071 | chkFlags |= GTF_ORDER_SIDEEFF; |
21072 | break; |
21073 | |
21074 | case GT_MEMORYBARRIER: |
21075 | chkFlags |= GTF_GLOB_REF | GTF_ASG; |
21076 | break; |
21077 | |
21078 | default: |
21079 | break; |
21080 | } |
21081 | } |
21082 | |
21083 | /* Is it a 'simple' unary/binary operator? */ |
21084 | |
21085 | else if (kind & GTK_SMPOP) |
21086 | { |
21087 | GenTree* op1 = tree->gtOp.gtOp1; |
21088 | GenTree* op2 = tree->gtGetOp2IfPresent(); |
21089 | |
21090 | // During GS work, we make shadow copies for params. |
21091 | // In gsParamsToShadows(), we create a shadow var of TYP_INT for every small type param. |
21092 | // Then in gsReplaceShadowParams(), we change the gtLclNum to the shadow var. |
21093 | // We also change the types of the local var tree and the assignment tree to TYP_INT if necessary. |
21094 | // However, since we don't morph the tree at this late stage. Manually propagating |
21095 | // TYP_INT up to the GT_ASG tree is only correct if we don't need to propagate the TYP_INT back up. |
21096 | // The following checks will ensure this. |
21097 | |
21098 | // Is the left child of "tree" a GT_ASG? |
21099 | // |
21100 | // If parent is a TYP_VOID, we don't no need to propagate TYP_INT up. We are fine. |
21101 | // (or) If GT_ASG is the left child of a GT_COMMA, the type of the GT_COMMA node will |
21102 | // be determined by its right child. So we don't need to propagate TYP_INT up either. We are fine. |
21103 | if (op1 && op1->gtOper == GT_ASG) |
21104 | { |
21105 | assert(tree->gtType == TYP_VOID || tree->gtOper == GT_COMMA); |
21106 | } |
21107 | |
21108 | // Is the right child of "tree" a GT_ASG? |
21109 | // |
21110 | // If parent is a TYP_VOID, we don't no need to propagate TYP_INT up. We are fine. |
21111 | if (op2 && op2->gtOper == GT_ASG) |
21112 | { |
21113 | assert(tree->gtType == TYP_VOID); |
21114 | } |
21115 | |
21116 | switch (oper) |
21117 | { |
21118 | case GT_QMARK: |
21119 | if (op1->OperIsCompare()) |
21120 | { |
21121 | noway_assert(op1->gtFlags & GTF_DONT_CSE); |
21122 | } |
21123 | else |
21124 | { |
21125 | noway_assert((op1->gtOper == GT_CNS_INT) && |
21126 | ((op1->gtIntCon.gtIconVal == 0) || (op1->gtIntCon.gtIconVal == 1))); |
21127 | } |
21128 | break; |
21129 | |
21130 | case GT_LIST: |
21131 | case GT_FIELD_LIST: |
21132 | if ((op2 != nullptr) && op2->OperIsAnyList()) |
21133 | { |
21134 | ArrayStack<GenTree*> stack(getAllocator(CMK_DebugOnly)); |
21135 | while ((tree->gtGetOp2() != nullptr) && tree->gtGetOp2()->OperIsAnyList()) |
21136 | { |
21137 | stack.Push(tree); |
21138 | tree = tree->gtGetOp2(); |
21139 | } |
21140 | |
21141 | fgDebugCheckFlags(tree); |
21142 | |
21143 | while (!stack.Empty()) |
21144 | { |
21145 | tree = stack.Pop(); |
21146 | assert((tree->gtFlags & GTF_REVERSE_OPS) == 0); |
21147 | fgDebugCheckFlags(tree->gtOp.gtOp1); |
21148 | chkFlags |= (tree->gtOp.gtOp1->gtFlags & GTF_ALL_EFFECT); |
21149 | chkFlags |= (tree->gtGetOp2()->gtFlags & GTF_ALL_EFFECT); |
21150 | fgDebugCheckFlagsHelper(tree, (tree->gtFlags & GTF_ALL_EFFECT), chkFlags); |
21151 | } |
21152 | |
21153 | return; |
21154 | } |
21155 | break; |
21156 | |
21157 | default: |
21158 | break; |
21159 | } |
21160 | |
21161 | /* Recursively check the subtrees */ |
21162 | |
21163 | if (op1) |
21164 | { |
21165 | fgDebugCheckFlags(op1); |
21166 | } |
21167 | if (op2) |
21168 | { |
21169 | fgDebugCheckFlags(op2); |
21170 | } |
21171 | |
21172 | if (op1) |
21173 | { |
21174 | chkFlags |= (op1->gtFlags & GTF_ALL_EFFECT); |
21175 | } |
21176 | if (op2) |
21177 | { |
21178 | chkFlags |= (op2->gtFlags & GTF_ALL_EFFECT); |
21179 | } |
21180 | |
21181 | // We reuse the value of GTF_REVERSE_OPS for a GT_IND-specific flag, |
21182 | // so exempt that (unary) operator. |
21183 | if (tree->OperGet() != GT_IND && tree->gtFlags & GTF_REVERSE_OPS) |
21184 | { |
21185 | /* Must have two operands if GTF_REVERSE is set */ |
21186 | noway_assert(op1 && op2); |
21187 | |
21188 | /* Make sure that the order of side effects has not been swapped. */ |
21189 | |
21190 | /* However CSE may introduce an assignment after the reverse flag |
21191 | was set and thus GTF_ASG cannot be considered here. */ |
21192 | |
21193 | /* For a GT_ASG(GT_IND(x), y) we are interested in the side effects of x */ |
21194 | GenTree* op1p; |
21195 | if ((oper == GT_ASG) && (op1->gtOper == GT_IND)) |
21196 | { |
21197 | op1p = op1->gtOp.gtOp1; |
21198 | } |
21199 | else |
21200 | { |
21201 | op1p = op1; |
21202 | } |
21203 | |
21204 | /* This isn't true any more with the sticky GTF_REVERSE */ |
21205 | /* |
21206 | // if op1p has side effects, then op2 cannot have side effects |
21207 | if (op1p->gtFlags & (GTF_SIDE_EFFECT & ~GTF_ASG)) |
21208 | { |
21209 | if (op2->gtFlags & (GTF_SIDE_EFFECT & ~GTF_ASG)) |
21210 | gtDispTree(tree); |
21211 | noway_assert(!(op2->gtFlags & (GTF_SIDE_EFFECT & ~GTF_ASG))); |
21212 | } |
21213 | */ |
21214 | } |
21215 | |
21216 | if (tree->OperRequiresAsgFlag()) |
21217 | { |
21218 | chkFlags |= GTF_ASG; |
21219 | } |
21220 | |
21221 | if (oper == GT_ADDR && (op1->OperIsLocal() || op1->gtOper == GT_CLS_VAR || |
21222 | (op1->gtOper == GT_IND && op1->gtOp.gtOp1->gtOper == GT_CLS_VAR_ADDR))) |
21223 | { |
21224 | /* &aliasedVar doesn't need GTF_GLOB_REF, though alisasedVar does. |
21225 | Similarly for clsVar */ |
21226 | treeFlags |= GTF_GLOB_REF; |
21227 | } |
21228 | } |
21229 | |
21230 | /* See what kind of a special operator we have here */ |
21231 | |
21232 | else |
21233 | { |
21234 | switch (tree->OperGet()) |
21235 | { |
21236 | case GT_CALL: |
21237 | |
21238 | GenTree* args; |
21239 | GenTree* argx; |
21240 | GenTreeCall* call; |
21241 | |
21242 | call = tree->AsCall(); |
21243 | |
21244 | if (call->gtCallObjp) |
21245 | { |
21246 | fgDebugCheckFlags(call->gtCallObjp); |
21247 | chkFlags |= (call->gtCallObjp->gtFlags & GTF_SIDE_EFFECT); |
21248 | |
21249 | if (call->gtCallObjp->gtFlags & GTF_ASG) |
21250 | { |
21251 | treeFlags |= GTF_ASG; |
21252 | } |
21253 | } |
21254 | |
21255 | for (args = call->gtCallArgs; args; args = args->gtOp.gtOp2) |
21256 | { |
21257 | argx = args->gtOp.gtOp1; |
21258 | fgDebugCheckFlags(argx); |
21259 | |
21260 | chkFlags |= (argx->gtFlags & GTF_SIDE_EFFECT); |
21261 | |
21262 | if (argx->gtFlags & GTF_ASG) |
21263 | { |
21264 | treeFlags |= GTF_ASG; |
21265 | } |
21266 | } |
21267 | |
21268 | for (args = call->gtCallLateArgs; args; args = args->gtOp.gtOp2) |
21269 | { |
21270 | argx = args->gtOp.gtOp1; |
21271 | fgDebugCheckFlags(argx); |
21272 | |
21273 | chkFlags |= (argx->gtFlags & GTF_SIDE_EFFECT); |
21274 | |
21275 | if (argx->gtFlags & GTF_ASG) |
21276 | { |
21277 | treeFlags |= GTF_ASG; |
21278 | } |
21279 | } |
21280 | |
21281 | if ((call->gtCallType == CT_INDIRECT) && (call->gtCallCookie != nullptr)) |
21282 | { |
21283 | fgDebugCheckFlags(call->gtCallCookie); |
21284 | chkFlags |= (call->gtCallCookie->gtFlags & GTF_SIDE_EFFECT); |
21285 | } |
21286 | |
21287 | if (call->gtCallType == CT_INDIRECT) |
21288 | { |
21289 | fgDebugCheckFlags(call->gtCallAddr); |
21290 | chkFlags |= (call->gtCallAddr->gtFlags & GTF_SIDE_EFFECT); |
21291 | } |
21292 | |
21293 | if (call->IsUnmanaged() && (call->gtCallMoreFlags & GTF_CALL_M_UNMGD_THISCALL)) |
21294 | { |
21295 | if (call->gtCallArgs->gtOp.gtOp1->OperGet() == GT_NOP) |
21296 | { |
21297 | noway_assert(call->gtCallLateArgs->gtOp.gtOp1->TypeGet() == TYP_I_IMPL || |
21298 | call->gtCallLateArgs->gtOp.gtOp1->TypeGet() == TYP_BYREF); |
21299 | } |
21300 | else |
21301 | { |
21302 | noway_assert(call->gtCallArgs->gtOp.gtOp1->TypeGet() == TYP_I_IMPL || |
21303 | call->gtCallArgs->gtOp.gtOp1->TypeGet() == TYP_BYREF); |
21304 | } |
21305 | } |
21306 | break; |
21307 | |
21308 | case GT_ARR_ELEM: |
21309 | |
21310 | GenTree* arrObj; |
21311 | unsigned dim; |
21312 | |
21313 | arrObj = tree->gtArrElem.gtArrObj; |
21314 | fgDebugCheckFlags(arrObj); |
21315 | chkFlags |= (arrObj->gtFlags & GTF_ALL_EFFECT); |
21316 | |
21317 | for (dim = 0; dim < tree->gtArrElem.gtArrRank; dim++) |
21318 | { |
21319 | fgDebugCheckFlags(tree->gtArrElem.gtArrInds[dim]); |
21320 | chkFlags |= tree->gtArrElem.gtArrInds[dim]->gtFlags & GTF_ALL_EFFECT; |
21321 | } |
21322 | break; |
21323 | |
21324 | case GT_ARR_OFFSET: |
21325 | |
21326 | fgDebugCheckFlags(tree->gtArrOffs.gtOffset); |
21327 | chkFlags |= (tree->gtArrOffs.gtOffset->gtFlags & GTF_ALL_EFFECT); |
21328 | fgDebugCheckFlags(tree->gtArrOffs.gtIndex); |
21329 | chkFlags |= (tree->gtArrOffs.gtIndex->gtFlags & GTF_ALL_EFFECT); |
21330 | fgDebugCheckFlags(tree->gtArrOffs.gtArrObj); |
21331 | chkFlags |= (tree->gtArrOffs.gtArrObj->gtFlags & GTF_ALL_EFFECT); |
21332 | break; |
21333 | |
21334 | case GT_ARR_BOUNDS_CHECK: |
21335 | #ifdef FEATURE_SIMD |
21336 | case GT_SIMD_CHK: |
21337 | #endif // FEATURE_SIMD |
21338 | #ifdef FEATURE_HW_INTRINSICS |
21339 | case GT_HW_INTRINSIC_CHK: |
21340 | #endif // FEATURE_HW_INTRINSICS |
21341 | |
21342 | GenTreeBoundsChk* bndsChk; |
21343 | bndsChk = tree->AsBoundsChk(); |
21344 | fgDebugCheckFlags(bndsChk->gtIndex); |
21345 | chkFlags |= (bndsChk->gtIndex->gtFlags & GTF_ALL_EFFECT); |
21346 | fgDebugCheckFlags(bndsChk->gtArrLen); |
21347 | chkFlags |= (bndsChk->gtArrLen->gtFlags & GTF_ALL_EFFECT); |
21348 | break; |
21349 | |
21350 | case GT_CMPXCHG: |
21351 | |
21352 | chkFlags |= (GTF_GLOB_REF | GTF_ASG); |
21353 | GenTreeCmpXchg* cmpXchg; |
21354 | cmpXchg = tree->AsCmpXchg(); |
21355 | fgDebugCheckFlags(cmpXchg->gtOpLocation); |
21356 | chkFlags |= (cmpXchg->gtOpLocation->gtFlags & GTF_ALL_EFFECT); |
21357 | fgDebugCheckFlags(cmpXchg->gtOpValue); |
21358 | chkFlags |= (cmpXchg->gtOpValue->gtFlags & GTF_ALL_EFFECT); |
21359 | fgDebugCheckFlags(cmpXchg->gtOpComparand); |
21360 | chkFlags |= (cmpXchg->gtOpComparand->gtFlags & GTF_ALL_EFFECT); |
21361 | break; |
21362 | |
21363 | case GT_STORE_DYN_BLK: |
21364 | case GT_DYN_BLK: |
21365 | |
21366 | GenTreeDynBlk* dynBlk; |
21367 | dynBlk = tree->AsDynBlk(); |
21368 | fgDebugCheckFlags(dynBlk->gtDynamicSize); |
21369 | chkFlags |= (dynBlk->gtDynamicSize->gtFlags & GTF_ALL_EFFECT); |
21370 | fgDebugCheckFlags(dynBlk->Addr()); |
21371 | chkFlags |= (dynBlk->Addr()->gtFlags & GTF_ALL_EFFECT); |
21372 | if (tree->OperGet() == GT_STORE_DYN_BLK) |
21373 | { |
21374 | fgDebugCheckFlags(dynBlk->Data()); |
21375 | chkFlags |= (dynBlk->Data()->gtFlags & GTF_ALL_EFFECT); |
21376 | } |
21377 | break; |
21378 | |
21379 | default: |
21380 | |
21381 | #ifdef DEBUG |
21382 | gtDispTree(tree); |
21383 | #endif |
21384 | |
21385 | assert(!"Unknown operator for fgDebugCheckFlags" ); |
21386 | break; |
21387 | } |
21388 | } |
21389 | |
21390 | fgDebugCheckFlagsHelper(tree, treeFlags, chkFlags); |
21391 | } |
21392 | |
21393 | //------------------------------------------------------------------------------ |
21394 | // fgDebugCheckFlagsHelper : Check if all bits that are set in chkFlags are also set in treeFlags. |
21395 | // |
21396 | // |
21397 | // Arguments: |
21398 | // tree - Tree whose flags are being checked |
21399 | // treeFlags - Actual flags on the tree |
21400 | // chkFlags - Expected flags |
21401 | // |
21402 | // Note: |
21403 | // Checking that all bits that are set in treeFlags are also set in chkFlags is currently disabled. |
21404 | |
21405 | void Compiler::fgDebugCheckFlagsHelper(GenTree* tree, unsigned treeFlags, unsigned chkFlags) |
21406 | { |
21407 | if (chkFlags & ~treeFlags) |
21408 | { |
21409 | // Print the tree so we can see it in the log. |
21410 | printf("Missing flags on tree [%06d]: " , dspTreeID(tree)); |
21411 | GenTree::gtDispFlags(chkFlags & ~treeFlags, GTF_DEBUG_NONE); |
21412 | printf("\n" ); |
21413 | gtDispTree(tree); |
21414 | |
21415 | noway_assert(!"Missing flags on tree" ); |
21416 | |
21417 | // Print the tree again so we can see it right after we hook up the debugger. |
21418 | printf("Missing flags on tree [%06d]: " , dspTreeID(tree)); |
21419 | GenTree::gtDispFlags(chkFlags & ~treeFlags, GTF_DEBUG_NONE); |
21420 | printf("\n" ); |
21421 | gtDispTree(tree); |
21422 | } |
21423 | else if (treeFlags & ~chkFlags) |
21424 | { |
21425 | // TODO: We are currently only checking extra GTF_EXCEPT, GTF_ASG, and GTF_CALL flags. |
21426 | if ((treeFlags & ~chkFlags & ~GTF_GLOB_REF & ~GTF_ORDER_SIDEEFF) != 0) |
21427 | { |
21428 | // Print the tree so we can see it in the log. |
21429 | printf("Extra flags on parent tree [%X]: " , tree); |
21430 | GenTree::gtDispFlags(treeFlags & ~chkFlags, GTF_DEBUG_NONE); |
21431 | printf("\n" ); |
21432 | gtDispTree(tree); |
21433 | |
21434 | noway_assert(!"Extra flags on tree" ); |
21435 | |
21436 | // Print the tree again so we can see it right after we hook up the debugger. |
21437 | printf("Extra flags on parent tree [%X]: " , tree); |
21438 | GenTree::gtDispFlags(treeFlags & ~chkFlags, GTF_DEBUG_NONE); |
21439 | printf("\n" ); |
21440 | gtDispTree(tree); |
21441 | } |
21442 | } |
21443 | } |
21444 | |
21445 | // DEBUG routine to check correctness of the internal gtNext, gtPrev threading of a statement. |
21446 | // This threading is only valid when fgStmtListThreaded is true. |
21447 | // This calls an alternate method for FGOrderLinear. |
21448 | void Compiler::fgDebugCheckNodeLinks(BasicBlock* block, GenTree* node) |
21449 | { |
21450 | // LIR blocks are checked using BasicBlock::CheckLIR(). |
21451 | if (block->IsLIR()) |
21452 | { |
21453 | LIR::AsRange(block).CheckLIR(this); |
21454 | // TODO: return? |
21455 | } |
21456 | |
21457 | GenTreeStmt* stmt = node->AsStmt(); |
21458 | |
21459 | assert(fgStmtListThreaded); |
21460 | |
21461 | noway_assert(stmt->gtStmtList); |
21462 | |
21463 | // The first node's gtPrev must be nullptr (the gtPrev list is not circular). |
21464 | // The last node's gtNext must be nullptr (the gtNext list is not circular). This is tested if the loop below |
21465 | // terminates. |
21466 | assert(stmt->gtStmtList->gtPrev == nullptr); |
21467 | |
21468 | for (GenTree* tree = stmt->gtStmtList; tree != nullptr; tree = tree->gtNext) |
21469 | { |
21470 | if (tree->gtPrev) |
21471 | { |
21472 | noway_assert(tree->gtPrev->gtNext == tree); |
21473 | } |
21474 | else |
21475 | { |
21476 | noway_assert(tree == stmt->gtStmtList); |
21477 | } |
21478 | |
21479 | if (tree->gtNext) |
21480 | { |
21481 | noway_assert(tree->gtNext->gtPrev == tree); |
21482 | } |
21483 | else |
21484 | { |
21485 | noway_assert(tree == stmt->gtStmtExpr); |
21486 | } |
21487 | |
21488 | /* Cross-check gtPrev,gtNext with gtOp for simple trees */ |
21489 | |
21490 | GenTree* expectedPrevTree = nullptr; |
21491 | |
21492 | if (tree->OperIsLeaf()) |
21493 | { |
21494 | if (tree->gtOper == GT_CATCH_ARG) |
21495 | { |
21496 | // The GT_CATCH_ARG should always have GTF_ORDER_SIDEEFF set |
21497 | noway_assert(tree->gtFlags & GTF_ORDER_SIDEEFF); |
21498 | // The GT_CATCH_ARG has to be the first thing evaluated |
21499 | noway_assert(stmt == block->FirstNonPhiDef()); |
21500 | noway_assert(stmt->gtStmtList->gtOper == GT_CATCH_ARG); |
21501 | // The root of the tree should have GTF_ORDER_SIDEEFF set |
21502 | noway_assert(stmt->gtStmtExpr->gtFlags & GTF_ORDER_SIDEEFF); |
21503 | } |
21504 | } |
21505 | |
21506 | if (tree->OperIsUnary() && tree->gtOp.gtOp1) |
21507 | { |
21508 | expectedPrevTree = tree->gtOp.gtOp1; |
21509 | } |
21510 | else if (tree->OperIsBinary() && tree->gtOp.gtOp1) |
21511 | { |
21512 | switch (tree->gtOper) |
21513 | { |
21514 | case GT_QMARK: |
21515 | expectedPrevTree = |
21516 | tree->gtOp.gtOp2->AsColon()->ThenNode(); // "then" operand of the GT_COLON (generated second). |
21517 | break; |
21518 | |
21519 | case GT_COLON: |
21520 | expectedPrevTree = tree->AsColon()->ElseNode(); // "else" branch result (generated first). |
21521 | break; |
21522 | |
21523 | default: |
21524 | if (tree->gtOp.gtOp2) |
21525 | { |
21526 | if (tree->gtFlags & GTF_REVERSE_OPS) |
21527 | { |
21528 | expectedPrevTree = tree->gtOp.gtOp1; |
21529 | } |
21530 | else |
21531 | { |
21532 | expectedPrevTree = tree->gtOp.gtOp2; |
21533 | } |
21534 | } |
21535 | else |
21536 | { |
21537 | expectedPrevTree = tree->gtOp.gtOp1; |
21538 | } |
21539 | break; |
21540 | } |
21541 | } |
21542 | |
21543 | noway_assert(expectedPrevTree == nullptr || // No expectations about the prev node |
21544 | tree->gtPrev == expectedPrevTree); // The "normal" case |
21545 | } |
21546 | } |
21547 | |
21548 | /***************************************************************************** |
21549 | * |
21550 | * A DEBUG routine to check the correctness of the links between GT_STMT nodes |
21551 | * and ordinary nodes within a statement. |
21552 | * |
21553 | ****************************************************************************/ |
21554 | |
21555 | void Compiler::fgDebugCheckLinks(bool morphTrees) |
21556 | { |
21557 | // This used to be only on for stress, and there was a comment stating that |
21558 | // it was "quite an expensive operation" but I did not find that to be true. |
21559 | // Set DO_SANITY_DEBUG_CHECKS to false to revert to that behavior. |
21560 | const bool DO_SANITY_DEBUG_CHECKS = true; |
21561 | |
21562 | if (!DO_SANITY_DEBUG_CHECKS && !compStressCompile(STRESS_CHK_FLOW_UPDATE, 30)) |
21563 | { |
21564 | return; |
21565 | } |
21566 | |
21567 | fgDebugCheckBlockLinks(); |
21568 | |
21569 | /* For each basic block check the bbTreeList links */ |
21570 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
21571 | { |
21572 | if (block->IsLIR()) |
21573 | { |
21574 | LIR::AsRange(block).CheckLIR(this); |
21575 | } |
21576 | else |
21577 | { |
21578 | fgDebugCheckStmtsList(block, morphTrees); |
21579 | } |
21580 | } |
21581 | |
21582 | fgDebugCheckNodesUniqueness(); |
21583 | } |
21584 | |
21585 | //------------------------------------------------------------------------------ |
21586 | // fgDebugCheckStmtsList : Perfoms the set of checks: |
21587 | // - all statements in the block are linked correctly |
21588 | // - check statements flags |
21589 | // - check nodes gtNext and gtPrev values, if the node list is threaded |
21590 | // |
21591 | // Arguments: |
21592 | // block - the block to check statements in |
21593 | // morphTrees - try to morph trees in the checker |
21594 | // |
21595 | // Note: |
21596 | // Checking that all bits that are set in treeFlags are also set in chkFlags is currently disabled. |
21597 | |
21598 | void Compiler::fgDebugCheckStmtsList(BasicBlock* block, bool morphTrees) |
21599 | { |
21600 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
21601 | { |
21602 | /* Verify that bbTreeList is threaded correctly */ |
21603 | /* Note that for the GT_STMT list, the gtPrev list is circular. The gtNext list is not: gtNext of the |
21604 | * last GT_STMT in a block is nullptr. */ |
21605 | |
21606 | noway_assert(stmt->gtPrev); |
21607 | |
21608 | if (stmt == block->bbTreeList) |
21609 | { |
21610 | noway_assert(stmt->gtPrev->gtNext == nullptr); |
21611 | } |
21612 | else |
21613 | { |
21614 | noway_assert(stmt->gtPrev->gtNext == stmt); |
21615 | } |
21616 | |
21617 | if (stmt->gtNext) |
21618 | { |
21619 | noway_assert(stmt->gtNext->gtPrev == stmt); |
21620 | } |
21621 | else |
21622 | { |
21623 | noway_assert(block->lastStmt() == stmt); |
21624 | } |
21625 | |
21626 | /* For each statement check that the exception flags are properly set */ |
21627 | |
21628 | noway_assert(stmt->gtStmtExpr); |
21629 | |
21630 | if (verbose && 0) |
21631 | { |
21632 | gtDispTree(stmt->gtStmtExpr); |
21633 | } |
21634 | |
21635 | fgDebugCheckFlags(stmt->gtStmtExpr); |
21636 | |
21637 | // Not only will this stress fgMorphBlockStmt(), but we also get all the checks |
21638 | // done by fgMorphTree() |
21639 | |
21640 | if (morphTrees) |
21641 | { |
21642 | // If 'stmt' is removed from the block, start a new check for the current block, |
21643 | // break the current check. |
21644 | if (fgMorphBlockStmt(block, stmt DEBUGARG("test morphing" ))) |
21645 | { |
21646 | fgDebugCheckStmtsList(block, morphTrees); |
21647 | break; |
21648 | } |
21649 | } |
21650 | |
21651 | /* For each GT_STMT node check that the nodes are threaded correcly - gtStmtList */ |
21652 | |
21653 | if (fgStmtListThreaded) |
21654 | { |
21655 | fgDebugCheckNodeLinks(block, stmt); |
21656 | } |
21657 | } |
21658 | } |
21659 | |
21660 | // ensure that bbNext and bbPrev are consistent |
21661 | void Compiler::fgDebugCheckBlockLinks() |
21662 | { |
21663 | assert(fgFirstBB->bbPrev == nullptr); |
21664 | |
21665 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
21666 | { |
21667 | if (block->bbNext) |
21668 | { |
21669 | assert(block->bbNext->bbPrev == block); |
21670 | } |
21671 | else |
21672 | { |
21673 | assert(block == fgLastBB); |
21674 | } |
21675 | |
21676 | if (block->bbPrev) |
21677 | { |
21678 | assert(block->bbPrev->bbNext == block); |
21679 | } |
21680 | else |
21681 | { |
21682 | assert(block == fgFirstBB); |
21683 | } |
21684 | |
21685 | // If this is a switch, check that the tables are consistent. |
21686 | // Note that we don't call GetSwitchDescMap(), because it has the side-effect |
21687 | // of allocating it if it is not present. |
21688 | if (block->bbJumpKind == BBJ_SWITCH && m_switchDescMap != nullptr) |
21689 | { |
21690 | SwitchUniqueSuccSet uniqueSuccSet; |
21691 | if (m_switchDescMap->Lookup(block, &uniqueSuccSet)) |
21692 | { |
21693 | // Create a set with all the successors. Don't use BlockSet, so we don't need to worry |
21694 | // about the BlockSet epoch. |
21695 | BitVecTraits bitVecTraits(fgBBNumMax + 1, this); |
21696 | BitVec succBlocks(BitVecOps::MakeEmpty(&bitVecTraits)); |
21697 | BasicBlock** jumpTable = block->bbJumpSwt->bbsDstTab; |
21698 | unsigned jumpCount = block->bbJumpSwt->bbsCount; |
21699 | for (unsigned i = 0; i < jumpCount; i++) |
21700 | { |
21701 | BitVecOps::AddElemD(&bitVecTraits, succBlocks, jumpTable[i]->bbNum); |
21702 | } |
21703 | // Now we should have a set of unique successors that matches what's in the switchMap. |
21704 | // First, check the number of entries, then make sure all the blocks in uniqueSuccSet |
21705 | // are in the BlockSet. |
21706 | unsigned count = BitVecOps::Count(&bitVecTraits, succBlocks); |
21707 | assert(uniqueSuccSet.numDistinctSuccs == count); |
21708 | for (unsigned i = 0; i < uniqueSuccSet.numDistinctSuccs; i++) |
21709 | { |
21710 | assert(BitVecOps::IsMember(&bitVecTraits, succBlocks, uniqueSuccSet.nonDuplicates[i]->bbNum)); |
21711 | } |
21712 | } |
21713 | } |
21714 | } |
21715 | } |
21716 | |
21717 | // UniquenessCheckWalker keeps data that is neccesary to check |
21718 | // that each tree has it is own unique id and they do not repeat. |
21719 | class UniquenessCheckWalker |
21720 | { |
21721 | public: |
21722 | UniquenessCheckWalker(Compiler* comp) |
21723 | : comp(comp), nodesVecTraits(comp->compGenTreeID, comp), uniqueNodes(BitVecOps::MakeEmpty(&nodesVecTraits)) |
21724 | { |
21725 | } |
21726 | |
21727 | //------------------------------------------------------------------------ |
21728 | // fgMarkTreeId: Visit all subtrees in the tree and check gtTreeIDs. |
21729 | // |
21730 | // Arguments: |
21731 | // pTree - Pointer to the tree to walk |
21732 | // fgWalkPre - the UniquenessCheckWalker instance |
21733 | // |
21734 | static Compiler::fgWalkResult MarkTreeId(GenTree** pTree, Compiler::fgWalkData* fgWalkPre) |
21735 | { |
21736 | UniquenessCheckWalker* walker = static_cast<UniquenessCheckWalker*>(fgWalkPre->pCallbackData); |
21737 | unsigned gtTreeID = (*pTree)->gtTreeID; |
21738 | walker->CheckTreeId(gtTreeID); |
21739 | return Compiler::WALK_CONTINUE; |
21740 | } |
21741 | |
21742 | //------------------------------------------------------------------------ |
21743 | // CheckTreeId: Check that this tree was not visit before and memorize it as visited. |
21744 | // |
21745 | // Arguments: |
21746 | // gtTreeID - identificator of GenTree. |
21747 | // |
21748 | void CheckTreeId(unsigned gtTreeID) |
21749 | { |
21750 | assert(!BitVecOps::IsMember(&nodesVecTraits, uniqueNodes, gtTreeID)); |
21751 | BitVecOps::AddElemD(&nodesVecTraits, uniqueNodes, gtTreeID); |
21752 | } |
21753 | |
21754 | private: |
21755 | Compiler* comp; |
21756 | BitVecTraits nodesVecTraits; |
21757 | BitVec uniqueNodes; |
21758 | }; |
21759 | |
21760 | //------------------------------------------------------------------------------ |
21761 | // fgDebugCheckNodesUniqueness: Check that each tree in the method has its own unique gtTreeId. |
21762 | // |
21763 | void Compiler::fgDebugCheckNodesUniqueness() |
21764 | { |
21765 | UniquenessCheckWalker walker(this); |
21766 | |
21767 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
21768 | { |
21769 | if (block->IsLIR()) |
21770 | { |
21771 | for (GenTree* i : LIR::AsRange(block)) |
21772 | { |
21773 | walker.CheckTreeId(i->gtTreeID); |
21774 | } |
21775 | } |
21776 | else |
21777 | { |
21778 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
21779 | { |
21780 | GenTree* root = stmt->gtStmtExpr; |
21781 | fgWalkTreePre(&root, UniquenessCheckWalker::MarkTreeId, &walker); |
21782 | } |
21783 | } |
21784 | } |
21785 | } |
21786 | |
21787 | /*****************************************************************************/ |
21788 | #endif // DEBUG |
21789 | /*****************************************************************************/ |
21790 | |
21791 | //------------------------------------------------------------------------ |
21792 | // fgCheckForInlineDepthAndRecursion: compute depth of the candidate, and |
21793 | // check for recursion. |
21794 | // |
21795 | // Return Value: |
21796 | // The depth of the inline candidate. The root method is a depth 0, top-level |
21797 | // candidates at depth 1, etc. |
21798 | // |
21799 | // Notes: |
21800 | // We generally disallow recursive inlines by policy. However, they are |
21801 | // supported by the underlying machinery. |
21802 | // |
21803 | // Likewise the depth limit is a policy consideration, and serves mostly |
21804 | // as a safeguard to prevent runaway inlining of small methods. |
21805 | // |
21806 | unsigned Compiler::fgCheckInlineDepthAndRecursion(InlineInfo* inlineInfo) |
21807 | { |
21808 | BYTE* candidateCode = inlineInfo->inlineCandidateInfo->methInfo.ILCode; |
21809 | InlineContext* inlineContext = inlineInfo->iciStmt->gtInlineContext; |
21810 | InlineResult* inlineResult = inlineInfo->inlineResult; |
21811 | |
21812 | // There should be a context for all candidates. |
21813 | assert(inlineContext != nullptr); |
21814 | int depth = 0; |
21815 | |
21816 | for (; inlineContext != nullptr; inlineContext = inlineContext->GetParent()) |
21817 | { |
21818 | |
21819 | depth++; |
21820 | |
21821 | if (inlineContext->GetCode() == candidateCode) |
21822 | { |
21823 | // This inline candidate has the same IL code buffer as an already |
21824 | // inlined method does. |
21825 | inlineResult->NoteFatal(InlineObservation::CALLSITE_IS_RECURSIVE); |
21826 | break; |
21827 | } |
21828 | |
21829 | if (depth > InlineStrategy::IMPLEMENTATION_MAX_INLINE_DEPTH) |
21830 | { |
21831 | break; |
21832 | } |
21833 | } |
21834 | |
21835 | inlineResult->NoteInt(InlineObservation::CALLSITE_DEPTH, depth); |
21836 | return depth; |
21837 | } |
21838 | |
21839 | /***************************************************************************** |
21840 | * |
21841 | * Inlining phase |
21842 | */ |
21843 | |
21844 | void Compiler::fgInline() |
21845 | { |
21846 | if (!opts.OptEnabled(CLFLG_INLINING)) |
21847 | { |
21848 | return; |
21849 | } |
21850 | |
21851 | #ifdef DEBUG |
21852 | if (verbose) |
21853 | { |
21854 | printf("*************** In fgInline()\n" ); |
21855 | } |
21856 | #endif // DEBUG |
21857 | |
21858 | BasicBlock* block = fgFirstBB; |
21859 | noway_assert(block != nullptr); |
21860 | |
21861 | // Set the root inline context on all statements |
21862 | InlineContext* rootContext = m_inlineStrategy->GetRootContext(); |
21863 | |
21864 | for (; block != nullptr; block = block->bbNext) |
21865 | { |
21866 | for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
21867 | { |
21868 | stmt->gtInlineContext = rootContext; |
21869 | } |
21870 | } |
21871 | |
21872 | // Reset block back to start for inlining |
21873 | block = fgFirstBB; |
21874 | |
21875 | do |
21876 | { |
21877 | // Make the current basic block address available globally |
21878 | compCurBB = block; |
21879 | |
21880 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
21881 | { |
21882 | |
21883 | #ifdef DEBUG |
21884 | // In debug builds we want the inline tree to show all failed |
21885 | // inlines. Some inlines may fail very early and never make it to |
21886 | // candidate stage. So scan the tree looking for those early failures. |
21887 | fgWalkTreePre(&stmt->gtStmtExpr, fgFindNonInlineCandidate, stmt); |
21888 | #endif |
21889 | |
21890 | GenTree* expr = stmt->gtStmtExpr; |
21891 | |
21892 | // The importer ensures that all inline candidates are |
21893 | // statement expressions. So see if we have a call. |
21894 | if (expr->IsCall()) |
21895 | { |
21896 | GenTreeCall* call = expr->AsCall(); |
21897 | |
21898 | // We do. Is it an inline candidate? |
21899 | // |
21900 | // Note we also process GuardeDevirtualizationCandidates here as we've |
21901 | // split off GT_RET_EXPRs for them even when they are not inline candidates |
21902 | // as we need similar processing to ensure they get patched back to where |
21903 | // they belong. |
21904 | if (call->IsInlineCandidate() || call->IsGuardedDevirtualizationCandidate()) |
21905 | { |
21906 | InlineResult inlineResult(this, call, stmt, "fgInline" ); |
21907 | |
21908 | fgMorphStmt = stmt; |
21909 | |
21910 | fgMorphCallInline(call, &inlineResult); |
21911 | |
21912 | // fgMorphCallInline may have updated the |
21913 | // statement expression to a GT_NOP if the |
21914 | // call returned a value, regardless of |
21915 | // whether the inline succeeded or failed. |
21916 | // |
21917 | // If so, remove the GT_NOP and continue |
21918 | // on with the next statement. |
21919 | if (stmt->gtStmtExpr->IsNothingNode()) |
21920 | { |
21921 | fgRemoveStmt(block, stmt); |
21922 | continue; |
21923 | } |
21924 | } |
21925 | } |
21926 | |
21927 | // See if we need to replace some return value place holders. |
21928 | // Also, see if this replacement enables further devirtualization. |
21929 | // |
21930 | // Note we have both preorder and postorder callbacks here. |
21931 | // |
21932 | // The preorder callback is responsible for replacing GT_RET_EXPRs |
21933 | // with the appropriate expansion (call or inline result). |
21934 | // Replacement may introduce subtrees with GT_RET_EXPR and so |
21935 | // we rely on the preorder to recursively process those as well. |
21936 | // |
21937 | // On the way back up, the postorder callback then re-examines nodes for |
21938 | // possible further optimization, as the (now complete) GT_RET_EXPR |
21939 | // replacement may have enabled optimizations by providing more |
21940 | // specific types for trees or variables. |
21941 | fgWalkTree(&stmt->gtStmtExpr, fgUpdateInlineReturnExpressionPlaceHolder, fgLateDevirtualization, |
21942 | (void*)this); |
21943 | |
21944 | // See if stmt is of the form GT_COMMA(call, nop) |
21945 | // If yes, we can get rid of GT_COMMA. |
21946 | if (expr->OperGet() == GT_COMMA && expr->gtOp.gtOp1->OperGet() == GT_CALL && |
21947 | expr->gtOp.gtOp2->OperGet() == GT_NOP) |
21948 | { |
21949 | stmt->gtStmtExpr = expr->gtOp.gtOp1; |
21950 | } |
21951 | } |
21952 | |
21953 | block = block->bbNext; |
21954 | |
21955 | } while (block); |
21956 | |
21957 | #ifdef DEBUG |
21958 | |
21959 | // Check that we should not have any inline candidate or return value place holder left. |
21960 | |
21961 | block = fgFirstBB; |
21962 | noway_assert(block); |
21963 | |
21964 | do |
21965 | { |
21966 | GenTreeStmt* stmt; |
21967 | |
21968 | for (stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
21969 | { |
21970 | // Call Compiler::fgDebugCheckInlineCandidates on each node |
21971 | fgWalkTreePre(&stmt->gtStmtExpr, fgDebugCheckInlineCandidates); |
21972 | } |
21973 | |
21974 | block = block->bbNext; |
21975 | |
21976 | } while (block); |
21977 | |
21978 | fgVerifyHandlerTab(); |
21979 | |
21980 | if (verbose) |
21981 | { |
21982 | printf("*************** After fgInline()\n" ); |
21983 | fgDispBasicBlocks(true); |
21984 | fgDispHandlerTab(); |
21985 | } |
21986 | |
21987 | if (verbose || fgPrintInlinedMethods) |
21988 | { |
21989 | JITDUMP("**************** Inline Tree" ); |
21990 | printf("\n" ); |
21991 | m_inlineStrategy->Dump(verbose); |
21992 | } |
21993 | |
21994 | #endif // DEBUG |
21995 | } |
21996 | |
21997 | #ifdef DEBUG |
21998 | |
21999 | //------------------------------------------------------------------------ |
22000 | // fgFindNonInlineCandidate: tree walk helper to ensure that a tree node |
22001 | // that is not an inline candidate is noted as a failed inline. |
22002 | // |
22003 | // Arguments: |
22004 | // pTree - pointer to pointer tree node being walked |
22005 | // data - contextual data for the walk |
22006 | // |
22007 | // Return Value: |
22008 | // walk result |
22009 | // |
22010 | // Note: |
22011 | // Invokes fgNoteNonInlineCandidate on the nodes it finds. |
22012 | |
22013 | Compiler::fgWalkResult Compiler::fgFindNonInlineCandidate(GenTree** pTree, fgWalkData* data) |
22014 | { |
22015 | GenTree* tree = *pTree; |
22016 | if (tree->gtOper == GT_CALL) |
22017 | { |
22018 | Compiler* compiler = data->compiler; |
22019 | GenTreeStmt* stmt = (GenTreeStmt*)data->pCallbackData; |
22020 | GenTreeCall* call = tree->AsCall(); |
22021 | |
22022 | compiler->fgNoteNonInlineCandidate(stmt, call); |
22023 | } |
22024 | return WALK_CONTINUE; |
22025 | } |
22026 | |
22027 | //------------------------------------------------------------------------ |
22028 | // fgNoteNonInlineCandidate: account for inlining failures in calls |
22029 | // not marked as inline candidates. |
22030 | // |
22031 | // Arguments: |
22032 | // stmt - statement containing the call |
22033 | // call - the call itself |
22034 | // |
22035 | // Notes: |
22036 | // Used in debug only to try and place descriptions of inline failures |
22037 | // into the proper context in the inline tree. |
22038 | |
22039 | void Compiler::fgNoteNonInlineCandidate(GenTreeStmt* stmt, GenTreeCall* call) |
22040 | { |
22041 | if (call->IsInlineCandidate() || call->IsGuardedDevirtualizationCandidate()) |
22042 | { |
22043 | return; |
22044 | } |
22045 | |
22046 | InlineResult inlineResult(this, call, nullptr, "fgNotInlineCandidate" ); |
22047 | InlineObservation currentObservation = InlineObservation::CALLSITE_NOT_CANDIDATE; |
22048 | |
22049 | // Try and recover the reason left behind when the jit decided |
22050 | // this call was not a candidate. |
22051 | InlineObservation priorObservation = call->gtInlineObservation; |
22052 | |
22053 | if (InlIsValidObservation(priorObservation)) |
22054 | { |
22055 | currentObservation = priorObservation; |
22056 | } |
22057 | |
22058 | // Propagate the prior failure observation to this result. |
22059 | inlineResult.NotePriorFailure(currentObservation); |
22060 | inlineResult.SetReported(); |
22061 | |
22062 | if (call->gtCallType == CT_USER_FUNC) |
22063 | { |
22064 | // Create InlineContext for the failure |
22065 | m_inlineStrategy->NewFailure(stmt, &inlineResult); |
22066 | } |
22067 | } |
22068 | |
22069 | #endif |
22070 | |
22071 | #if FEATURE_MULTIREG_RET |
22072 | |
22073 | /********************************************************************************* |
22074 | * |
22075 | * tree - The node which needs to be converted to a struct pointer. |
22076 | * |
22077 | * Return the pointer by either __replacing__ the tree node with a suitable pointer |
22078 | * type or __without replacing__ and just returning a subtree or by __modifying__ |
22079 | * a subtree. |
22080 | */ |
22081 | GenTree* Compiler::fgGetStructAsStructPtr(GenTree* tree) |
22082 | { |
22083 | noway_assert((tree->gtOper == GT_LCL_VAR) || (tree->gtOper == GT_FIELD) || (tree->gtOper == GT_IND) || |
22084 | (tree->gtOper == GT_BLK) || (tree->gtOper == GT_OBJ) || tree->OperIsSIMD() || |
22085 | // tree->gtOper == GT_CALL || cannot get address of call. |
22086 | // tree->gtOper == GT_MKREFANY || inlining should've been aborted due to mkrefany opcode. |
22087 | // tree->gtOper == GT_RET_EXPR || cannot happen after fgUpdateInlineReturnExpressionPlaceHolder |
22088 | (tree->gtOper == GT_COMMA)); |
22089 | |
22090 | switch (tree->OperGet()) |
22091 | { |
22092 | case GT_BLK: |
22093 | case GT_OBJ: |
22094 | case GT_IND: |
22095 | return tree->gtOp.gtOp1; |
22096 | |
22097 | case GT_COMMA: |
22098 | tree->gtOp.gtOp2 = fgGetStructAsStructPtr(tree->gtOp.gtOp2); |
22099 | tree->gtType = TYP_BYREF; |
22100 | return tree; |
22101 | |
22102 | default: |
22103 | return gtNewOperNode(GT_ADDR, TYP_BYREF, tree); |
22104 | } |
22105 | } |
22106 | |
22107 | /*************************************************************************************************** |
22108 | * child - The inlinee of the retExpr node. |
22109 | * retClsHnd - The struct class handle of the type of the inlinee. |
22110 | * |
22111 | * Assign the inlinee to a tmp, if it is a call, just assign it to a lclVar, else we can |
22112 | * use a copyblock to do the assignment. |
22113 | */ |
22114 | GenTree* Compiler::fgAssignStructInlineeToVar(GenTree* child, CORINFO_CLASS_HANDLE retClsHnd) |
22115 | { |
22116 | assert(child->gtOper != GT_RET_EXPR && child->gtOper != GT_MKREFANY); |
22117 | |
22118 | unsigned tmpNum = lvaGrabTemp(false DEBUGARG("RetBuf for struct inline return candidates." )); |
22119 | lvaSetStruct(tmpNum, retClsHnd, false); |
22120 | var_types structType = lvaTable[tmpNum].lvType; |
22121 | |
22122 | GenTree* dst = gtNewLclvNode(tmpNum, structType); |
22123 | |
22124 | // If we have a call, we'd like it to be: V00 = call(), but first check if |
22125 | // we have a ", , , call()" -- this is very defensive as we may never get |
22126 | // an inlinee that is made of commas. If the inlinee is not a call, then |
22127 | // we use a copy block to do the assignment. |
22128 | GenTree* src = child; |
22129 | GenTree* lastComma = nullptr; |
22130 | while (src->gtOper == GT_COMMA) |
22131 | { |
22132 | lastComma = src; |
22133 | src = src->gtOp.gtOp2; |
22134 | } |
22135 | |
22136 | GenTree* newInlinee = nullptr; |
22137 | if (src->gtOper == GT_CALL) |
22138 | { |
22139 | // If inlinee was just a call, new inlinee is v05 = call() |
22140 | newInlinee = gtNewAssignNode(dst, src); |
22141 | |
22142 | // When returning a multi-register value in a local var, make sure the variable is |
22143 | // marked as lvIsMultiRegRet, so it does not get promoted. |
22144 | if (src->AsCall()->HasMultiRegRetVal()) |
22145 | { |
22146 | lvaTable[tmpNum].lvIsMultiRegRet = true; |
22147 | } |
22148 | |
22149 | // If inlinee was comma, but a deeper call, new inlinee is (, , , v05 = call()) |
22150 | if (child->gtOper == GT_COMMA) |
22151 | { |
22152 | lastComma->gtOp.gtOp2 = newInlinee; |
22153 | newInlinee = child; |
22154 | } |
22155 | } |
22156 | else |
22157 | { |
22158 | // Inlinee is not a call, so just create a copy block to the tmp. |
22159 | src = child; |
22160 | GenTree* dstAddr = fgGetStructAsStructPtr(dst); |
22161 | GenTree* srcAddr = fgGetStructAsStructPtr(src); |
22162 | newInlinee = gtNewCpObjNode(dstAddr, srcAddr, retClsHnd, false); |
22163 | } |
22164 | |
22165 | GenTree* production = gtNewLclvNode(tmpNum, structType); |
22166 | return gtNewOperNode(GT_COMMA, structType, newInlinee, production); |
22167 | } |
22168 | |
22169 | /*************************************************************************************************** |
22170 | * tree - The tree pointer that has one of its child nodes as retExpr. |
22171 | * child - The inlinee child. |
22172 | * retClsHnd - The struct class handle of the type of the inlinee. |
22173 | * |
22174 | * V04 = call() assignments are okay as we codegen it. Everything else needs to be a copy block or |
22175 | * would need a temp. For example, a cast(ldobj) will then be, cast(v05 = ldobj, v05); But it is |
22176 | * a very rare (or impossible) scenario that we'd have a retExpr transform into a ldobj other than |
22177 | * a lclVar/call. So it is not worthwhile to do pattern matching optimizations like addr(ldobj(op1)) |
22178 | * can just be op1. |
22179 | */ |
22180 | void Compiler::fgAttachStructInlineeToAsg(GenTree* tree, GenTree* child, CORINFO_CLASS_HANDLE retClsHnd) |
22181 | { |
22182 | // We are okay to have: |
22183 | // 1. V02 = call(); |
22184 | // 2. copyBlk(dstAddr, srcAddr); |
22185 | assert(tree->gtOper == GT_ASG); |
22186 | |
22187 | // We have an assignment, we codegen only V05 = call(). |
22188 | if (child->gtOper == GT_CALL && tree->gtOp.gtOp1->gtOper == GT_LCL_VAR) |
22189 | { |
22190 | // If it is a multireg return on x64/ux, the local variable should be marked as lvIsMultiRegRet |
22191 | if (child->AsCall()->HasMultiRegRetVal()) |
22192 | { |
22193 | unsigned lclNum = tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum; |
22194 | lvaTable[lclNum].lvIsMultiRegRet = true; |
22195 | } |
22196 | return; |
22197 | } |
22198 | |
22199 | GenTree* dstAddr = fgGetStructAsStructPtr(tree->gtOp.gtOp1); |
22200 | GenTree* srcAddr = fgGetStructAsStructPtr( |
22201 | (child->gtOper == GT_CALL) |
22202 | ? fgAssignStructInlineeToVar(child, retClsHnd) // Assign to a variable if it is a call. |
22203 | : child); // Just get the address, if not a call. |
22204 | |
22205 | tree->ReplaceWith(gtNewCpObjNode(dstAddr, srcAddr, retClsHnd, false), this); |
22206 | } |
22207 | |
22208 | #endif // FEATURE_MULTIREG_RET |
22209 | |
22210 | //------------------------------------------------------------------------ |
22211 | // fgUpdateInlineReturnExpressionPlaceHolder: callback to replace the |
22212 | // inline return expression placeholder. |
22213 | // |
22214 | // Arguments: |
22215 | // pTree -- pointer to tree to examine for updates |
22216 | // data -- context data for the tree walk |
22217 | // |
22218 | // Returns: |
22219 | // fgWalkResult indicating the walk should continue; that |
22220 | // is we wish to fully explore the tree. |
22221 | // |
22222 | // Notes: |
22223 | // Looks for GT_RET_EXPR nodes that arose from tree splitting done |
22224 | // during importation for inline candidates, and replaces them. |
22225 | // |
22226 | // For successful inlines, substitutes the return value expression |
22227 | // from the inline body for the GT_RET_EXPR. |
22228 | // |
22229 | // For failed inlines, rejoins the original call into the tree from |
22230 | // whence it was split during importation. |
22231 | // |
22232 | // The code doesn't actually know if the corresponding inline |
22233 | // succeeded or not; it relies on the fact that gtInlineCandidate |
22234 | // initially points back at the call and is modified in place to |
22235 | // the inlinee return expression if the inline is successful (see |
22236 | // tail end of fgInsertInlineeBlocks for the update of iciCall). |
22237 | // |
22238 | // If the return type is a struct type and we're on a platform |
22239 | // where structs can be returned in multiple registers, ensure the |
22240 | // call has a suitable parent. |
22241 | |
22242 | Compiler::fgWalkResult Compiler::fgUpdateInlineReturnExpressionPlaceHolder(GenTree** pTree, fgWalkData* data) |
22243 | { |
22244 | // All the operations here and in the corresponding postorder |
22245 | // callback (fgLateDevirtualization) are triggered by GT_CALL or |
22246 | // GT_RET_EXPR trees, and these (should) have the call side |
22247 | // effect flag. |
22248 | // |
22249 | // So bail out for any trees that don't have this flag. |
22250 | GenTree* tree = *pTree; |
22251 | |
22252 | if ((tree->gtFlags & GTF_CALL) == 0) |
22253 | { |
22254 | return WALK_SKIP_SUBTREES; |
22255 | } |
22256 | |
22257 | Compiler* comp = data->compiler; |
22258 | CORINFO_CLASS_HANDLE retClsHnd = NO_CLASS_HANDLE; |
22259 | |
22260 | if (tree->OperGet() == GT_RET_EXPR) |
22261 | { |
22262 | // We are going to copy the tree from the inlinee, |
22263 | // so record the handle now. |
22264 | // |
22265 | if (varTypeIsStruct(tree)) |
22266 | { |
22267 | retClsHnd = tree->gtRetExpr.gtRetClsHnd; |
22268 | } |
22269 | |
22270 | // Skip through chains of GT_RET_EXPRs (say from nested inlines) |
22271 | // to the actual tree to use. |
22272 | GenTree* inlineCandidate = tree->gtRetExprVal(); |
22273 | var_types retType = tree->TypeGet(); |
22274 | |
22275 | #ifdef DEBUG |
22276 | if (comp->verbose) |
22277 | { |
22278 | printf("\nReplacing the return expression placeholder " ); |
22279 | printTreeID(tree); |
22280 | printf(" with " ); |
22281 | printTreeID(inlineCandidate); |
22282 | printf("\n" ); |
22283 | // Dump out the old return expression placeholder it will be overwritten by the ReplaceWith below |
22284 | comp->gtDispTree(tree); |
22285 | } |
22286 | #endif // DEBUG |
22287 | |
22288 | tree->ReplaceWith(inlineCandidate, comp); |
22289 | |
22290 | #ifdef DEBUG |
22291 | if (comp->verbose) |
22292 | { |
22293 | printf("\nInserting the inline return expression\n" ); |
22294 | comp->gtDispTree(tree); |
22295 | printf("\n" ); |
22296 | } |
22297 | #endif // DEBUG |
22298 | |
22299 | var_types newType = tree->TypeGet(); |
22300 | |
22301 | // If we end up swapping in an RVA static we may need to retype it here, |
22302 | // if we've reinterpreted it as a byref. |
22303 | if ((retType != newType) && (retType == TYP_BYREF) && (tree->OperGet() == GT_IND)) |
22304 | { |
22305 | assert(newType == TYP_I_IMPL); |
22306 | JITDUMP("Updating type of the return GT_IND expression to TYP_BYREF\n" ); |
22307 | tree->gtType = TYP_BYREF; |
22308 | } |
22309 | } |
22310 | |
22311 | // If an inline was rejected and the call returns a struct, we may |
22312 | // have deferred some work when importing call for cases where the |
22313 | // struct is returned in register(s). |
22314 | // |
22315 | // See the bail-out clauses in impFixupCallStructReturn for inline |
22316 | // candidates. |
22317 | // |
22318 | // Do the deferred work now. |
22319 | if (retClsHnd != NO_CLASS_HANDLE) |
22320 | { |
22321 | structPassingKind howToReturnStruct; |
22322 | var_types returnType = comp->getReturnTypeForStruct(retClsHnd, &howToReturnStruct); |
22323 | GenTree* parent = data->parent; |
22324 | |
22325 | switch (howToReturnStruct) |
22326 | { |
22327 | |
22328 | #if FEATURE_MULTIREG_RET |
22329 | |
22330 | // Is this a type that is returned in multiple registers |
22331 | // or a via a primitve type that is larger than the struct type? |
22332 | // if so we need to force into into a form we accept. |
22333 | // i.e. LclVar = call() |
22334 | case SPK_ByValue: |
22335 | case SPK_ByValueAsHfa: |
22336 | { |
22337 | // See assert below, we only look one level above for an asg parent. |
22338 | if (parent->gtOper == GT_ASG) |
22339 | { |
22340 | // Either lhs is a call V05 = call(); or lhs is addr, and asg becomes a copyBlk. |
22341 | comp->fgAttachStructInlineeToAsg(parent, tree, retClsHnd); |
22342 | } |
22343 | else |
22344 | { |
22345 | // Just assign the inlinee to a variable to keep it simple. |
22346 | tree->ReplaceWith(comp->fgAssignStructInlineeToVar(tree, retClsHnd), comp); |
22347 | } |
22348 | } |
22349 | break; |
22350 | |
22351 | #endif // FEATURE_MULTIREG_RET |
22352 | |
22353 | case SPK_EnclosingType: |
22354 | { |
22355 | // For enclosing type returns, we must return the call value to a temp since |
22356 | // the return type is larger than the struct type. |
22357 | if (!tree->IsCall()) |
22358 | { |
22359 | break; |
22360 | } |
22361 | |
22362 | GenTreeCall* call = tree->AsCall(); |
22363 | |
22364 | assert(call->gtReturnType == TYP_STRUCT); |
22365 | |
22366 | if (call->gtReturnType != TYP_STRUCT) |
22367 | { |
22368 | break; |
22369 | } |
22370 | |
22371 | JITDUMP("\nCall returns small struct via enclosing type, retyping. Before:\n" ); |
22372 | DISPTREE(call); |
22373 | |
22374 | // Create new struct typed temp for return value |
22375 | const unsigned tmpNum = |
22376 | comp->lvaGrabTemp(true DEBUGARG("small struct return temp for rejected inline" )); |
22377 | comp->lvaSetStruct(tmpNum, retClsHnd, false); |
22378 | GenTree* assign = comp->gtNewTempAssign(tmpNum, call); |
22379 | |
22380 | // Modify assign tree and call return types to the primitive return type |
22381 | call->gtReturnType = returnType; |
22382 | call->gtType = returnType; |
22383 | assign->gtType = returnType; |
22384 | |
22385 | // Modify the temp reference in the assign as a primitive reference via GT_LCL_FLD |
22386 | GenTree* tempAsPrimitive = assign->gtOp.gtOp1; |
22387 | assert(tempAsPrimitive->gtOper == GT_LCL_VAR); |
22388 | tempAsPrimitive->gtType = returnType; |
22389 | tempAsPrimitive->ChangeOper(GT_LCL_FLD); |
22390 | |
22391 | // Return temp as value of call tree via comma |
22392 | GenTree* tempAsStruct = comp->gtNewLclvNode(tmpNum, TYP_STRUCT); |
22393 | GenTree* comma = comp->gtNewOperNode(GT_COMMA, TYP_STRUCT, assign, tempAsStruct); |
22394 | parent->ReplaceOperand(pTree, comma); |
22395 | |
22396 | JITDUMP("\nAfter:\n" ); |
22397 | DISPTREE(comma); |
22398 | } |
22399 | break; |
22400 | |
22401 | case SPK_PrimitiveType: |
22402 | // We should have already retyped the call as a primitive type |
22403 | // when we first imported the call |
22404 | break; |
22405 | |
22406 | case SPK_ByReference: |
22407 | // We should have already added the return buffer |
22408 | // when we first imported the call |
22409 | break; |
22410 | |
22411 | default: |
22412 | noway_assert(!"Unexpected struct passing kind" ); |
22413 | break; |
22414 | } |
22415 | } |
22416 | |
22417 | #if FEATURE_MULTIREG_RET |
22418 | #if defined(DEBUG) |
22419 | |
22420 | // Make sure we don't have a tree like so: V05 = (, , , retExpr); |
22421 | // Since we only look one level above for the parent for '=' and |
22422 | // do not check if there is a series of COMMAs. See above. |
22423 | // Importer and FlowGraph will not generate such a tree, so just |
22424 | // leaving an assert in here. This can be fixed by looking ahead |
22425 | // when we visit GT_ASG similar to fgAttachStructInlineeToAsg. |
22426 | // |
22427 | if (tree->OperGet() == GT_ASG) |
22428 | { |
22429 | GenTree* value = tree->gtOp.gtOp2; |
22430 | |
22431 | if (value->OperGet() == GT_COMMA) |
22432 | { |
22433 | GenTree* effectiveValue = value->gtEffectiveVal(/*commaOnly*/ true); |
22434 | |
22435 | noway_assert(!varTypeIsStruct(effectiveValue) || (effectiveValue->OperGet() != GT_RET_EXPR) || |
22436 | !comp->IsMultiRegReturnedType(effectiveValue->gtRetExpr.gtRetClsHnd)); |
22437 | } |
22438 | } |
22439 | |
22440 | #endif // defined(DEBUG) |
22441 | #endif // FEATURE_MULTIREG_RET |
22442 | |
22443 | return WALK_CONTINUE; |
22444 | } |
22445 | |
22446 | //------------------------------------------------------------------------ |
22447 | // fgLateDevirtualization: re-examine calls after inlining to see if we |
22448 | // can do more devirtualization |
22449 | // |
22450 | // Arguments: |
22451 | // pTree -- pointer to tree to examine for updates |
22452 | // data -- context data for the tree walk |
22453 | // |
22454 | // Returns: |
22455 | // fgWalkResult indicating the walk should continue; that |
22456 | // is we wish to fully explore the tree. |
22457 | // |
22458 | // Notes: |
22459 | // We used to check this opportunistically in the preorder callback for |
22460 | // calls where the `obj` was fed by a return, but we now re-examine |
22461 | // all calls. |
22462 | // |
22463 | // Late devirtualization (and eventually, perhaps, other type-driven |
22464 | // opts like cast optimization) can happen now because inlining or other |
22465 | // optimizations may have provided more accurate types than we saw when |
22466 | // first importing the trees. |
22467 | // |
22468 | // It would be nice to screen candidate sites based on the likelihood |
22469 | // that something has changed. Otherwise we'll waste some time retrying |
22470 | // an optimization that will just fail again. |
22471 | |
22472 | Compiler::fgWalkResult Compiler::fgLateDevirtualization(GenTree** pTree, fgWalkData* data) |
22473 | { |
22474 | GenTree* tree = *pTree; |
22475 | GenTree* parent = data->parent; |
22476 | Compiler* comp = data->compiler; |
22477 | |
22478 | // In some (rare) cases the parent node of tree will be smashed to a NOP during |
22479 | // the preorder by fgAttachStructToInlineeArg. |
22480 | // |
22481 | // jit\Methodical\VT\callconv\_il_reljumper3 for x64 linux |
22482 | // |
22483 | // If so, just bail out here. |
22484 | if (tree == nullptr) |
22485 | { |
22486 | assert((parent != nullptr) && parent->OperGet() == GT_NOP); |
22487 | return WALK_CONTINUE; |
22488 | } |
22489 | |
22490 | if (tree->OperGet() == GT_CALL) |
22491 | { |
22492 | GenTreeCall* call = tree->AsCall(); |
22493 | bool tryLateDevirt = call->IsVirtual() && (call->gtCallType == CT_USER_FUNC); |
22494 | |
22495 | #ifdef DEBUG |
22496 | tryLateDevirt = tryLateDevirt && (JitConfig.JitEnableLateDevirtualization() == 1); |
22497 | #endif // DEBUG |
22498 | |
22499 | if (tryLateDevirt) |
22500 | { |
22501 | #ifdef DEBUG |
22502 | if (comp->verbose) |
22503 | { |
22504 | printf("**** Late devirt opportunity\n" ); |
22505 | comp->gtDispTree(call); |
22506 | } |
22507 | #endif // DEBUG |
22508 | |
22509 | CORINFO_METHOD_HANDLE method = call->gtCallMethHnd; |
22510 | unsigned methodFlags = 0; |
22511 | CORINFO_CONTEXT_HANDLE context = nullptr; |
22512 | const bool isLateDevirtualization = true; |
22513 | comp->impDevirtualizeCall(call, &method, &methodFlags, &context, nullptr, isLateDevirtualization); |
22514 | } |
22515 | } |
22516 | else if (tree->OperGet() == GT_ASG) |
22517 | { |
22518 | // If we're assigning to a ref typed local that has one definition, |
22519 | // we may be able to sharpen the type for the local. |
22520 | GenTree* lhs = tree->gtGetOp1()->gtEffectiveVal(); |
22521 | |
22522 | if ((lhs->OperGet() == GT_LCL_VAR) && (lhs->TypeGet() == TYP_REF)) |
22523 | { |
22524 | const unsigned lclNum = lhs->gtLclVarCommon.gtLclNum; |
22525 | LclVarDsc* lcl = comp->lvaGetDesc(lclNum); |
22526 | |
22527 | if (lcl->lvSingleDef) |
22528 | { |
22529 | GenTree* rhs = tree->gtGetOp2(); |
22530 | bool isExact = false; |
22531 | bool isNonNull = false; |
22532 | CORINFO_CLASS_HANDLE newClass = comp->gtGetClassHandle(rhs, &isExact, &isNonNull); |
22533 | |
22534 | if (newClass != NO_CLASS_HANDLE) |
22535 | { |
22536 | comp->lvaUpdateClass(lclNum, newClass, isExact); |
22537 | } |
22538 | } |
22539 | } |
22540 | } |
22541 | |
22542 | return WALK_CONTINUE; |
22543 | } |
22544 | |
22545 | #ifdef DEBUG |
22546 | |
22547 | /***************************************************************************** |
22548 | * Callback to make sure there is no more GT_RET_EXPR and GTF_CALL_INLINE_CANDIDATE nodes. |
22549 | */ |
22550 | |
22551 | /* static */ |
22552 | Compiler::fgWalkResult Compiler::fgDebugCheckInlineCandidates(GenTree** pTree, fgWalkData* data) |
22553 | { |
22554 | GenTree* tree = *pTree; |
22555 | if (tree->gtOper == GT_CALL) |
22556 | { |
22557 | assert((tree->gtFlags & GTF_CALL_INLINE_CANDIDATE) == 0); |
22558 | } |
22559 | else |
22560 | { |
22561 | assert(tree->gtOper != GT_RET_EXPR); |
22562 | } |
22563 | |
22564 | return WALK_CONTINUE; |
22565 | } |
22566 | |
22567 | #endif // DEBUG |
22568 | |
22569 | void Compiler::fgInvokeInlineeCompiler(GenTreeCall* call, InlineResult* inlineResult) |
22570 | { |
22571 | noway_assert(call->gtOper == GT_CALL); |
22572 | noway_assert((call->gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0); |
22573 | noway_assert(opts.OptEnabled(CLFLG_INLINING)); |
22574 | |
22575 | // This is the InlineInfo struct representing a method to be inlined. |
22576 | InlineInfo inlineInfo; |
22577 | memset(&inlineInfo, 0, sizeof(inlineInfo)); |
22578 | CORINFO_METHOD_HANDLE fncHandle = call->gtCallMethHnd; |
22579 | |
22580 | inlineInfo.fncHandle = fncHandle; |
22581 | inlineInfo.iciCall = call; |
22582 | inlineInfo.iciStmt = fgMorphStmt; |
22583 | inlineInfo.iciBlock = compCurBB; |
22584 | inlineInfo.thisDereferencedFirst = false; |
22585 | inlineInfo.retExpr = nullptr; |
22586 | inlineInfo.retExprClassHnd = nullptr; |
22587 | inlineInfo.retExprClassHndIsExact = false; |
22588 | inlineInfo.inlineResult = inlineResult; |
22589 | #ifdef FEATURE_SIMD |
22590 | inlineInfo.hasSIMDTypeArgLocalOrReturn = false; |
22591 | #endif // FEATURE_SIMD |
22592 | |
22593 | InlineCandidateInfo* inlineCandidateInfo = call->gtInlineCandidateInfo; |
22594 | noway_assert(inlineCandidateInfo); |
22595 | // Store the link to inlineCandidateInfo into inlineInfo |
22596 | inlineInfo.inlineCandidateInfo = inlineCandidateInfo; |
22597 | |
22598 | unsigned inlineDepth = fgCheckInlineDepthAndRecursion(&inlineInfo); |
22599 | |
22600 | if (inlineResult->IsFailure()) |
22601 | { |
22602 | #ifdef DEBUG |
22603 | if (verbose) |
22604 | { |
22605 | printf("Recursive or deep inline recursion detected. Will not expand this INLINECANDIDATE \n" ); |
22606 | } |
22607 | #endif // DEBUG |
22608 | return; |
22609 | } |
22610 | |
22611 | // Set the trap to catch all errors (including recoverable ones from the EE) |
22612 | struct Param |
22613 | { |
22614 | Compiler* pThis; |
22615 | GenTree* call; |
22616 | CORINFO_METHOD_HANDLE fncHandle; |
22617 | InlineCandidateInfo* inlineCandidateInfo; |
22618 | InlineInfo* inlineInfo; |
22619 | } param; |
22620 | memset(¶m, 0, sizeof(param)); |
22621 | |
22622 | param.pThis = this; |
22623 | param.call = call; |
22624 | param.fncHandle = fncHandle; |
22625 | param.inlineCandidateInfo = inlineCandidateInfo; |
22626 | param.inlineInfo = &inlineInfo; |
22627 | bool success = eeRunWithErrorTrap<Param>( |
22628 | [](Param* pParam) { |
22629 | // Init the local var info of the inlinee |
22630 | pParam->pThis->impInlineInitVars(pParam->inlineInfo); |
22631 | |
22632 | if (pParam->inlineInfo->inlineResult->IsCandidate()) |
22633 | { |
22634 | /* Clear the temp table */ |
22635 | memset(pParam->inlineInfo->lclTmpNum, -1, sizeof(pParam->inlineInfo->lclTmpNum)); |
22636 | |
22637 | // |
22638 | // Prepare the call to jitNativeCode |
22639 | // |
22640 | |
22641 | pParam->inlineInfo->InlinerCompiler = pParam->pThis; |
22642 | if (pParam->pThis->impInlineInfo == nullptr) |
22643 | { |
22644 | pParam->inlineInfo->InlineRoot = pParam->pThis; |
22645 | } |
22646 | else |
22647 | { |
22648 | pParam->inlineInfo->InlineRoot = pParam->pThis->impInlineInfo->InlineRoot; |
22649 | } |
22650 | pParam->inlineInfo->argCnt = pParam->inlineCandidateInfo->methInfo.args.totalILArgs(); |
22651 | pParam->inlineInfo->tokenLookupContextHandle = pParam->inlineCandidateInfo->exactContextHnd; |
22652 | |
22653 | JITLOG_THIS(pParam->pThis, |
22654 | (LL_INFO100000, "INLINER: inlineInfo.tokenLookupContextHandle for %s set to 0x%p:\n" , |
22655 | pParam->pThis->eeGetMethodFullName(pParam->fncHandle), |
22656 | pParam->pThis->dspPtr(pParam->inlineInfo->tokenLookupContextHandle))); |
22657 | |
22658 | JitFlags compileFlagsForInlinee = *pParam->pThis->opts.jitFlags; |
22659 | |
22660 | // The following flags are lost when inlining. |
22661 | // (This is checked in Compiler::compInitOptions().) |
22662 | compileFlagsForInlinee.Clear(JitFlags::JIT_FLAG_BBOPT); |
22663 | compileFlagsForInlinee.Clear(JitFlags::JIT_FLAG_BBINSTR); |
22664 | compileFlagsForInlinee.Clear(JitFlags::JIT_FLAG_PROF_ENTERLEAVE); |
22665 | compileFlagsForInlinee.Clear(JitFlags::JIT_FLAG_DEBUG_EnC); |
22666 | compileFlagsForInlinee.Clear(JitFlags::JIT_FLAG_DEBUG_INFO); |
22667 | |
22668 | compileFlagsForInlinee.Set(JitFlags::JIT_FLAG_SKIP_VERIFICATION); |
22669 | |
22670 | #ifdef DEBUG |
22671 | if (pParam->pThis->verbose) |
22672 | { |
22673 | printf("\nInvoking compiler for the inlinee method %s :\n" , |
22674 | pParam->pThis->eeGetMethodFullName(pParam->fncHandle)); |
22675 | } |
22676 | #endif // DEBUG |
22677 | |
22678 | int result = |
22679 | jitNativeCode(pParam->fncHandle, pParam->inlineCandidateInfo->methInfo.scope, |
22680 | pParam->pThis->info.compCompHnd, &pParam->inlineCandidateInfo->methInfo, |
22681 | (void**)pParam->inlineInfo, nullptr, &compileFlagsForInlinee, pParam->inlineInfo); |
22682 | |
22683 | if (result != CORJIT_OK) |
22684 | { |
22685 | // If we haven't yet determined why this inline fails, use |
22686 | // a catch-all something bad happened observation. |
22687 | InlineResult* innerInlineResult = pParam->inlineInfo->inlineResult; |
22688 | |
22689 | if (!innerInlineResult->IsFailure()) |
22690 | { |
22691 | innerInlineResult->NoteFatal(InlineObservation::CALLSITE_COMPILATION_FAILURE); |
22692 | } |
22693 | } |
22694 | } |
22695 | }, |
22696 | ¶m); |
22697 | if (!success) |
22698 | { |
22699 | #ifdef DEBUG |
22700 | if (verbose) |
22701 | { |
22702 | printf("\nInlining failed due to an exception during invoking the compiler for the inlinee method %s.\n" , |
22703 | eeGetMethodFullName(fncHandle)); |
22704 | } |
22705 | #endif // DEBUG |
22706 | |
22707 | // If we haven't yet determined why this inline fails, use |
22708 | // a catch-all something bad happened observation. |
22709 | if (!inlineResult->IsFailure()) |
22710 | { |
22711 | inlineResult->NoteFatal(InlineObservation::CALLSITE_COMPILATION_ERROR); |
22712 | } |
22713 | } |
22714 | |
22715 | if (inlineResult->IsFailure()) |
22716 | { |
22717 | return; |
22718 | } |
22719 | |
22720 | #ifdef DEBUG |
22721 | if (0 && verbose) |
22722 | { |
22723 | printf("\nDone invoking compiler for the inlinee method %s\n" , eeGetMethodFullName(fncHandle)); |
22724 | } |
22725 | #endif // DEBUG |
22726 | |
22727 | // If there is non-NULL return, but we haven't set the pInlineInfo->retExpr, |
22728 | // That means we haven't imported any BB that contains CEE_RET opcode. |
22729 | // (This could happen for example for a BBJ_THROW block fall through a BBJ_RETURN block which |
22730 | // causes the BBJ_RETURN block not to be imported at all.) |
22731 | // Fail the inlining attempt |
22732 | if (inlineCandidateInfo->fncRetType != TYP_VOID && inlineInfo.retExpr == nullptr) |
22733 | { |
22734 | #ifdef DEBUG |
22735 | if (verbose) |
22736 | { |
22737 | printf("\nInlining failed because pInlineInfo->retExpr is not set in the inlinee method %s.\n" , |
22738 | eeGetMethodFullName(fncHandle)); |
22739 | } |
22740 | #endif // DEBUG |
22741 | inlineResult->NoteFatal(InlineObservation::CALLEE_LACKS_RETURN); |
22742 | return; |
22743 | } |
22744 | |
22745 | if (inlineCandidateInfo->initClassResult & CORINFO_INITCLASS_SPECULATIVE) |
22746 | { |
22747 | // we defer the call to initClass() until inlining is completed in case it fails. If inlining succeeds, |
22748 | // we will call initClass(). |
22749 | if (!(info.compCompHnd->initClass(nullptr /* field */, fncHandle /* method */, |
22750 | inlineCandidateInfo->exactContextHnd /* context */) & |
22751 | CORINFO_INITCLASS_INITIALIZED)) |
22752 | { |
22753 | inlineResult->NoteFatal(InlineObservation::CALLEE_CLASS_INIT_FAILURE); |
22754 | return; |
22755 | } |
22756 | } |
22757 | |
22758 | // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
22759 | // The inlining attempt cannot be failed starting from this point. |
22760 | // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
22761 | |
22762 | // We've successfully obtain the list of inlinee's basic blocks. |
22763 | // Let's insert it to inliner's basic block list. |
22764 | fgInsertInlineeBlocks(&inlineInfo); |
22765 | |
22766 | #ifdef DEBUG |
22767 | |
22768 | if (verbose) |
22769 | { |
22770 | printf("Successfully inlined %s (%d IL bytes) (depth %d) [%s]\n" , eeGetMethodFullName(fncHandle), |
22771 | inlineCandidateInfo->methInfo.ILCodeSize, inlineDepth, inlineResult->ReasonString()); |
22772 | } |
22773 | |
22774 | if (verbose) |
22775 | { |
22776 | printf("--------------------------------------------------------------------------------------------\n" ); |
22777 | } |
22778 | #endif // DEBUG |
22779 | |
22780 | #if defined(DEBUG) |
22781 | impInlinedCodeSize += inlineCandidateInfo->methInfo.ILCodeSize; |
22782 | #endif |
22783 | |
22784 | // We inlined... |
22785 | inlineResult->NoteSuccess(); |
22786 | } |
22787 | |
22788 | //------------------------------------------------------------------------ |
22789 | // fgInsertInlineeBlocks: incorporate statements for an inline into the |
22790 | // root method. |
22791 | // |
22792 | // Arguments: |
22793 | // inlineInfo -- info for the inline |
22794 | // |
22795 | // Notes: |
22796 | // The inlining attempt cannot be failed once this method is called. |
22797 | // |
22798 | // Adds all inlinee statements, plus any glue statements needed |
22799 | // either before or after the inlined call. |
22800 | // |
22801 | // Updates flow graph and assigns weights to inlinee |
22802 | // blocks. Currently does not attempt to read IBC data for the |
22803 | // inlinee. |
22804 | // |
22805 | // Updates relevant root method status flags (eg optMethodFlags) to |
22806 | // include information from the inlinee. |
22807 | // |
22808 | // Marks newly added statements with an appropriate inline context. |
22809 | |
22810 | void Compiler::fgInsertInlineeBlocks(InlineInfo* pInlineInfo) |
22811 | { |
22812 | GenTreeCall* iciCall = pInlineInfo->iciCall; |
22813 | GenTreeStmt* iciStmt = pInlineInfo->iciStmt; |
22814 | BasicBlock* iciBlock = pInlineInfo->iciBlock; |
22815 | BasicBlock* block; |
22816 | |
22817 | // We can write better assert here. For example, we can check that |
22818 | // iciBlock contains iciStmt, which in turn contains iciCall. |
22819 | noway_assert(iciBlock->bbTreeList != nullptr); |
22820 | noway_assert(iciStmt->gtStmtExpr != nullptr); |
22821 | noway_assert(iciCall->gtOper == GT_CALL); |
22822 | |
22823 | #ifdef DEBUG |
22824 | |
22825 | GenTree* currentDumpStmt = nullptr; |
22826 | |
22827 | if (verbose) |
22828 | { |
22829 | printf("\n\n----------- Statements (and blocks) added due to the inlining of call " ); |
22830 | printTreeID(iciCall); |
22831 | printf(" -----------\n" ); |
22832 | } |
22833 | |
22834 | #endif // DEBUG |
22835 | |
22836 | // Create a new inline context and mark the inlined statements with it |
22837 | InlineContext* calleeContext = m_inlineStrategy->NewSuccess(pInlineInfo); |
22838 | |
22839 | for (block = InlineeCompiler->fgFirstBB; block != nullptr; block = block->bbNext) |
22840 | { |
22841 | for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt) |
22842 | { |
22843 | stmt->gtInlineContext = calleeContext; |
22844 | } |
22845 | } |
22846 | |
22847 | // Prepend statements |
22848 | GenTree* stmtAfter = fgInlinePrependStatements(pInlineInfo); |
22849 | |
22850 | #ifdef DEBUG |
22851 | if (verbose) |
22852 | { |
22853 | currentDumpStmt = stmtAfter; |
22854 | printf("\nInlinee method body:" ); |
22855 | } |
22856 | #endif // DEBUG |
22857 | |
22858 | BasicBlock* topBlock = iciBlock; |
22859 | BasicBlock* bottomBlock = nullptr; |
22860 | |
22861 | if (InlineeCompiler->fgBBcount == 1) |
22862 | { |
22863 | // When fgBBCount is 1 we will always have a non-NULL fgFirstBB |
22864 | // |
22865 | PREFAST_ASSUME(InlineeCompiler->fgFirstBB != nullptr); |
22866 | |
22867 | // DDB 91389: Don't throw away the (only) inlinee block |
22868 | // when its return type is not BBJ_RETURN. |
22869 | // In other words, we need its BBJ_ to perform the right thing. |
22870 | if (InlineeCompiler->fgFirstBB->bbJumpKind == BBJ_RETURN) |
22871 | { |
22872 | // Inlinee contains just one BB. So just insert its statement list to topBlock. |
22873 | if (InlineeCompiler->fgFirstBB->bbTreeList) |
22874 | { |
22875 | stmtAfter = fgInsertStmtListAfter(iciBlock, stmtAfter, InlineeCompiler->fgFirstBB->bbTreeList); |
22876 | |
22877 | // Copy inlinee bbFlags to caller bbFlags. |
22878 | const unsigned __int64 inlineeBlockFlags = InlineeCompiler->fgFirstBB->bbFlags; |
22879 | noway_assert((inlineeBlockFlags & BBF_HAS_JMP) == 0); |
22880 | noway_assert((inlineeBlockFlags & BBF_KEEP_BBJ_ALWAYS) == 0); |
22881 | iciBlock->bbFlags |= inlineeBlockFlags; |
22882 | } |
22883 | |
22884 | #ifdef DEBUG |
22885 | if (verbose) |
22886 | { |
22887 | noway_assert(currentDumpStmt); |
22888 | |
22889 | if (currentDumpStmt != stmtAfter) |
22890 | { |
22891 | do |
22892 | { |
22893 | currentDumpStmt = currentDumpStmt->gtNext; |
22894 | |
22895 | printf("\n" ); |
22896 | |
22897 | noway_assert(currentDumpStmt->gtOper == GT_STMT); |
22898 | |
22899 | gtDispTree(currentDumpStmt); |
22900 | printf("\n" ); |
22901 | |
22902 | } while (currentDumpStmt != stmtAfter); |
22903 | } |
22904 | } |
22905 | #endif // DEBUG |
22906 | |
22907 | // Append statements to null out gc ref locals, if necessary. |
22908 | fgInlineAppendStatements(pInlineInfo, iciBlock, stmtAfter); |
22909 | |
22910 | goto _Done; |
22911 | } |
22912 | } |
22913 | |
22914 | // |
22915 | // ======= Inserting inlinee's basic blocks =============== |
22916 | // |
22917 | |
22918 | bottomBlock = fgNewBBafter(topBlock->bbJumpKind, topBlock, true); |
22919 | bottomBlock->bbRefs = 1; |
22920 | bottomBlock->bbJumpDest = topBlock->bbJumpDest; |
22921 | bottomBlock->inheritWeight(topBlock); |
22922 | |
22923 | topBlock->bbJumpKind = BBJ_NONE; |
22924 | |
22925 | // Update block flags |
22926 | { |
22927 | const unsigned __int64 originalFlags = topBlock->bbFlags; |
22928 | noway_assert((originalFlags & BBF_SPLIT_NONEXIST) == 0); |
22929 | topBlock->bbFlags &= ~(BBF_SPLIT_LOST); |
22930 | bottomBlock->bbFlags |= originalFlags & BBF_SPLIT_GAINED; |
22931 | } |
22932 | |
22933 | // |
22934 | // Split statements between topBlock and bottomBlock |
22935 | // |
22936 | GenTree* topBlock_Begin; |
22937 | GenTree* topBlock_End; |
22938 | GenTree* bottomBlock_Begin; |
22939 | GenTree* bottomBlock_End; |
22940 | |
22941 | topBlock_Begin = nullptr; |
22942 | topBlock_End = nullptr; |
22943 | bottomBlock_Begin = nullptr; |
22944 | bottomBlock_End = nullptr; |
22945 | |
22946 | // |
22947 | // First figure out bottomBlock_Begin |
22948 | // |
22949 | |
22950 | bottomBlock_Begin = stmtAfter->gtNext; |
22951 | |
22952 | if (topBlock->bbTreeList == nullptr) |
22953 | { |
22954 | // topBlock is empty before the split. |
22955 | // In this case, both topBlock and bottomBlock should be empty |
22956 | noway_assert(bottomBlock_Begin == nullptr); |
22957 | topBlock->bbTreeList = nullptr; |
22958 | bottomBlock->bbTreeList = nullptr; |
22959 | } |
22960 | else if (topBlock->bbTreeList == bottomBlock_Begin) |
22961 | { |
22962 | noway_assert(bottomBlock_Begin); |
22963 | |
22964 | // topBlock contains at least one statement before the split. |
22965 | // And the split is before the first statement. |
22966 | // In this case, topBlock should be empty, and everything else should be moved to the bottonBlock. |
22967 | bottomBlock->bbTreeList = topBlock->bbTreeList; |
22968 | topBlock->bbTreeList = nullptr; |
22969 | } |
22970 | else if (bottomBlock_Begin == nullptr) |
22971 | { |
22972 | noway_assert(topBlock->bbTreeList); |
22973 | |
22974 | // topBlock contains at least one statement before the split. |
22975 | // And the split is at the end of the topBlock. |
22976 | // In this case, everything should be kept in the topBlock, and the bottomBlock should be empty |
22977 | |
22978 | bottomBlock->bbTreeList = nullptr; |
22979 | } |
22980 | else |
22981 | { |
22982 | noway_assert(topBlock->bbTreeList); |
22983 | noway_assert(bottomBlock_Begin); |
22984 | |
22985 | // This is the normal case where both blocks should contain at least one statement. |
22986 | topBlock_Begin = topBlock->bbTreeList; |
22987 | noway_assert(topBlock_Begin); |
22988 | topBlock_End = bottomBlock_Begin->gtPrev; |
22989 | noway_assert(topBlock_End); |
22990 | bottomBlock_End = topBlock->lastStmt(); |
22991 | noway_assert(bottomBlock_End); |
22992 | |
22993 | // Break the linkage between 2 blocks. |
22994 | topBlock_End->gtNext = nullptr; |
22995 | |
22996 | // Fix up all the pointers. |
22997 | topBlock->bbTreeList = topBlock_Begin; |
22998 | topBlock->bbTreeList->gtPrev = topBlock_End; |
22999 | |
23000 | bottomBlock->bbTreeList = bottomBlock_Begin; |
23001 | bottomBlock->bbTreeList->gtPrev = bottomBlock_End; |
23002 | } |
23003 | |
23004 | // |
23005 | // Set the try and handler index and fix the jump types of inlinee's blocks. |
23006 | // |
23007 | |
23008 | bool inheritWeight; |
23009 | inheritWeight = true; // The firstBB does inherit the weight from the iciBlock |
23010 | |
23011 | for (block = InlineeCompiler->fgFirstBB; block != nullptr; block = block->bbNext) |
23012 | { |
23013 | noway_assert(!block->hasTryIndex()); |
23014 | noway_assert(!block->hasHndIndex()); |
23015 | block->copyEHRegion(iciBlock); |
23016 | block->bbFlags |= iciBlock->bbFlags & BBF_BACKWARD_JUMP; |
23017 | |
23018 | if (iciStmt->gtStmtILoffsx != BAD_IL_OFFSET) |
23019 | { |
23020 | block->bbCodeOffs = jitGetILoffs(iciStmt->gtStmtILoffsx); |
23021 | block->bbCodeOffsEnd = block->bbCodeOffs + 1; // TODO: is code size of 1 some magic number for inlining? |
23022 | } |
23023 | else |
23024 | { |
23025 | block->bbCodeOffs = 0; // TODO: why not BAD_IL_OFFSET? |
23026 | block->bbCodeOffsEnd = 0; |
23027 | block->bbFlags |= BBF_INTERNAL; |
23028 | } |
23029 | |
23030 | if (block->bbJumpKind == BBJ_RETURN) |
23031 | { |
23032 | inheritWeight = true; // A return block does inherit the weight from the iciBlock |
23033 | noway_assert((block->bbFlags & BBF_HAS_JMP) == 0); |
23034 | if (block->bbNext) |
23035 | { |
23036 | block->bbJumpKind = BBJ_ALWAYS; |
23037 | block->bbJumpDest = bottomBlock; |
23038 | #ifdef DEBUG |
23039 | if (verbose) |
23040 | { |
23041 | printf("\nConvert bbJumpKind of " FMT_BB " to BBJ_ALWAYS to bottomBlock " FMT_BB "\n" , block->bbNum, |
23042 | bottomBlock->bbNum); |
23043 | } |
23044 | #endif // DEBUG |
23045 | } |
23046 | else |
23047 | { |
23048 | #ifdef DEBUG |
23049 | if (verbose) |
23050 | { |
23051 | printf("\nConvert bbJumpKind of " FMT_BB " to BBJ_NONE\n" , block->bbNum); |
23052 | } |
23053 | #endif // DEBUG |
23054 | block->bbJumpKind = BBJ_NONE; |
23055 | } |
23056 | } |
23057 | if (inheritWeight) |
23058 | { |
23059 | block->inheritWeight(iciBlock); |
23060 | inheritWeight = false; |
23061 | } |
23062 | else |
23063 | { |
23064 | block->modifyBBWeight(iciBlock->bbWeight / 2); |
23065 | } |
23066 | } |
23067 | |
23068 | // Insert inlinee's blocks into inliner's block list. |
23069 | topBlock->setNext(InlineeCompiler->fgFirstBB); |
23070 | InlineeCompiler->fgLastBB->setNext(bottomBlock); |
23071 | |
23072 | // |
23073 | // Add inlinee's block count to inliner's. |
23074 | // |
23075 | fgBBcount += InlineeCompiler->fgBBcount; |
23076 | |
23077 | // Append statements to null out gc ref locals, if necessary. |
23078 | fgInlineAppendStatements(pInlineInfo, bottomBlock, nullptr); |
23079 | |
23080 | #ifdef DEBUG |
23081 | if (verbose) |
23082 | { |
23083 | fgDispBasicBlocks(InlineeCompiler->fgFirstBB, InlineeCompiler->fgLastBB, true); |
23084 | } |
23085 | #endif // DEBUG |
23086 | |
23087 | _Done: |
23088 | |
23089 | // |
23090 | // At this point, we have successully inserted inlinee's code. |
23091 | // |
23092 | |
23093 | // |
23094 | // Copy out some flags |
23095 | // |
23096 | compLongUsed |= InlineeCompiler->compLongUsed; |
23097 | compFloatingPointUsed |= InlineeCompiler->compFloatingPointUsed; |
23098 | compLocallocUsed |= InlineeCompiler->compLocallocUsed; |
23099 | compLocallocOptimized |= InlineeCompiler->compLocallocOptimized; |
23100 | compQmarkUsed |= InlineeCompiler->compQmarkUsed; |
23101 | compUnsafeCastUsed |= InlineeCompiler->compUnsafeCastUsed; |
23102 | compNeedsGSSecurityCookie |= InlineeCompiler->compNeedsGSSecurityCookie; |
23103 | compGSReorderStackLayout |= InlineeCompiler->compGSReorderStackLayout; |
23104 | |
23105 | #ifdef FEATURE_SIMD |
23106 | if (InlineeCompiler->usesSIMDTypes()) |
23107 | { |
23108 | setUsesSIMDTypes(true); |
23109 | } |
23110 | #endif // FEATURE_SIMD |
23111 | |
23112 | // Update unmanaged call count |
23113 | info.compCallUnmanaged += InlineeCompiler->info.compCallUnmanaged; |
23114 | |
23115 | // Update optMethodFlags |
23116 | |
23117 | #ifdef DEBUG |
23118 | unsigned optMethodFlagsBefore = optMethodFlags; |
23119 | #endif |
23120 | |
23121 | optMethodFlags |= InlineeCompiler->optMethodFlags; |
23122 | |
23123 | #ifdef DEBUG |
23124 | if (optMethodFlags != optMethodFlagsBefore) |
23125 | { |
23126 | JITDUMP("INLINER: Updating optMethodFlags -- root:%0x callee:%0x new:%0x\n" , optMethodFlagsBefore, |
23127 | InlineeCompiler->optMethodFlags, optMethodFlags); |
23128 | } |
23129 | #endif |
23130 | |
23131 | // If there is non-NULL return, replace the GT_CALL with its return value expression, |
23132 | // so later it will be picked up by the GT_RET_EXPR node. |
23133 | if ((pInlineInfo->inlineCandidateInfo->fncRetType != TYP_VOID) || (iciCall->gtReturnType == TYP_STRUCT)) |
23134 | { |
23135 | noway_assert(pInlineInfo->retExpr); |
23136 | #ifdef DEBUG |
23137 | if (verbose) |
23138 | { |
23139 | printf("\nReturn expression for call at " ); |
23140 | printTreeID(iciCall); |
23141 | printf(" is\n" ); |
23142 | gtDispTree(pInlineInfo->retExpr); |
23143 | } |
23144 | #endif // DEBUG |
23145 | // Replace the call with the return expression |
23146 | iciCall->ReplaceWith(pInlineInfo->retExpr, this); |
23147 | } |
23148 | |
23149 | // |
23150 | // Detach the GT_CALL node from the original statement by hanging a "nothing" node under it, |
23151 | // so that fgMorphStmts can remove the statement once we return from here. |
23152 | // |
23153 | iciStmt->gtStmtExpr = gtNewNothingNode(); |
23154 | } |
23155 | |
23156 | //------------------------------------------------------------------------ |
23157 | // fgInlinePrependStatements: prepend statements needed to match up |
23158 | // caller and inlined callee |
23159 | // |
23160 | // Arguments: |
23161 | // inlineInfo -- info for the inline |
23162 | // |
23163 | // Return Value: |
23164 | // The last statement that was added, or the original call if no |
23165 | // statements were added. |
23166 | // |
23167 | // Notes: |
23168 | // Statements prepended may include the following: |
23169 | // * This pointer null check |
23170 | // * Class initialization |
23171 | // * Zeroing of must-init locals in the callee |
23172 | // * Passing of call arguments via temps |
23173 | // |
23174 | // Newly added statements are placed just after the original call |
23175 | // and are are given the same inline context as the call any calls |
23176 | // added here will appear to have been part of the immediate caller. |
23177 | |
23178 | GenTree* Compiler::fgInlinePrependStatements(InlineInfo* inlineInfo) |
23179 | { |
23180 | BasicBlock* block = inlineInfo->iciBlock; |
23181 | GenTreeStmt* callStmt = inlineInfo->iciStmt; |
23182 | IL_OFFSETX callILOffset = callStmt->gtStmtILoffsx; |
23183 | GenTreeStmt* postStmt = callStmt->gtNextStmt; |
23184 | GenTree* afterStmt = callStmt; // afterStmt is the place where the new statements should be inserted after. |
23185 | GenTree* newStmt = nullptr; |
23186 | GenTreeCall* call = inlineInfo->iciCall->AsCall(); |
23187 | |
23188 | noway_assert(call->gtOper == GT_CALL); |
23189 | |
23190 | #ifdef DEBUG |
23191 | if (0 && verbose) |
23192 | { |
23193 | printf("\nfgInlinePrependStatements for iciCall= " ); |
23194 | printTreeID(call); |
23195 | printf(":\n" ); |
23196 | } |
23197 | #endif |
23198 | |
23199 | // Prepend statements for any initialization / side effects |
23200 | |
23201 | InlArgInfo* inlArgInfo = inlineInfo->inlArgInfo; |
23202 | InlLclVarInfo* lclVarInfo = inlineInfo->lclVarInfo; |
23203 | |
23204 | GenTree* tree; |
23205 | |
23206 | // Create the null check statement (but not appending it to the statement list yet) for the 'this' pointer if |
23207 | // necessary. |
23208 | // The NULL check should be done after "argument setup statements". |
23209 | // The only reason we move it here is for calling "impInlineFetchArg(0,..." to reserve a temp |
23210 | // for the "this" pointer. |
23211 | // Note: Here we no longer do the optimization that was done by thisDereferencedFirst in the old inliner. |
23212 | // However the assetionProp logic will remove any unecessary null checks that we may have added |
23213 | // |
23214 | GenTree* nullcheck = nullptr; |
23215 | |
23216 | if (call->gtFlags & GTF_CALL_NULLCHECK && !inlineInfo->thisDereferencedFirst) |
23217 | { |
23218 | // Call impInlineFetchArg to "reserve" a temp for the "this" pointer. |
23219 | nullcheck = gtNewOperNode(GT_IND, TYP_INT, impInlineFetchArg(0, inlArgInfo, lclVarInfo)); |
23220 | nullcheck->gtFlags |= GTF_EXCEPT; |
23221 | |
23222 | // The NULL-check statement will be inserted to the statement list after those statements |
23223 | // that assign arguments to temps and before the actual body of the inlinee method. |
23224 | } |
23225 | |
23226 | /* Treat arguments that had to be assigned to temps */ |
23227 | if (inlineInfo->argCnt) |
23228 | { |
23229 | |
23230 | #ifdef DEBUG |
23231 | if (verbose) |
23232 | { |
23233 | printf("\nArguments setup:\n" ); |
23234 | } |
23235 | #endif // DEBUG |
23236 | |
23237 | for (unsigned argNum = 0; argNum < inlineInfo->argCnt; argNum++) |
23238 | { |
23239 | const InlArgInfo& argInfo = inlArgInfo[argNum]; |
23240 | const bool argIsSingleDef = !argInfo.argHasLdargaOp && !argInfo.argHasStargOp; |
23241 | GenTree* const argNode = inlArgInfo[argNum].argNode; |
23242 | |
23243 | if (argInfo.argHasTmp) |
23244 | { |
23245 | noway_assert(argInfo.argIsUsed); |
23246 | |
23247 | /* argBashTmpNode is non-NULL iff the argument's value was |
23248 | referenced exactly once by the original IL. This offers an |
23249 | opportunity to avoid an intermediate temp and just insert |
23250 | the original argument tree. |
23251 | |
23252 | However, if the temp node has been cloned somewhere while |
23253 | importing (e.g. when handling isinst or dup), or if the IL |
23254 | took the address of the argument, then argBashTmpNode will |
23255 | be set (because the value was only explicitly retrieved |
23256 | once) but the optimization cannot be applied. |
23257 | */ |
23258 | |
23259 | GenTree* argSingleUseNode = argInfo.argBashTmpNode; |
23260 | |
23261 | if ((argSingleUseNode != nullptr) && !(argSingleUseNode->gtFlags & GTF_VAR_CLONED) && argIsSingleDef) |
23262 | { |
23263 | // Change the temp in-place to the actual argument. |
23264 | // We currently do not support this for struct arguments, so it must not be a GT_OBJ. |
23265 | assert(argNode->gtOper != GT_OBJ); |
23266 | argSingleUseNode->ReplaceWith(argNode, this); |
23267 | continue; |
23268 | } |
23269 | else |
23270 | { |
23271 | // We're going to assign the argument value to the |
23272 | // temp we use for it in the inline body. |
23273 | const unsigned tmpNum = argInfo.argTmpNum; |
23274 | const var_types argType = lclVarInfo[argNum].lclTypeInfo; |
23275 | |
23276 | // Create the temp assignment for this argument |
23277 | CORINFO_CLASS_HANDLE structHnd = NO_CLASS_HANDLE; |
23278 | |
23279 | if (varTypeIsStruct(argType)) |
23280 | { |
23281 | structHnd = gtGetStructHandleIfPresent(argNode); |
23282 | noway_assert(structHnd != NO_CLASS_HANDLE); |
23283 | } |
23284 | |
23285 | // Unsafe value cls check is not needed for |
23286 | // argTmpNum here since in-linee compiler instance |
23287 | // would have iterated over these and marked them |
23288 | // accordingly. |
23289 | impAssignTempGen(tmpNum, argNode, structHnd, (unsigned)CHECK_SPILL_NONE, &afterStmt, callILOffset, |
23290 | block); |
23291 | |
23292 | // We used to refine the temp type here based on |
23293 | // the actual arg, but we now do this up front, when |
23294 | // creating the temp, over in impInlineFetchArg. |
23295 | CLANG_FORMAT_COMMENT_ANCHOR; |
23296 | |
23297 | #ifdef DEBUG |
23298 | if (verbose) |
23299 | { |
23300 | gtDispTree(afterStmt); |
23301 | } |
23302 | #endif // DEBUG |
23303 | } |
23304 | } |
23305 | else if (argInfo.argIsByRefToStructLocal) |
23306 | { |
23307 | // Do nothing. Arg was directly substituted as we read |
23308 | // the inlinee. |
23309 | } |
23310 | else |
23311 | { |
23312 | /* The argument is either not used or a const or lcl var */ |
23313 | |
23314 | noway_assert(!argInfo.argIsUsed || argInfo.argIsInvariant || argInfo.argIsLclVar); |
23315 | |
23316 | /* Make sure we didnt change argNode's along the way, or else |
23317 | subsequent uses of the arg would have worked with the bashed value */ |
23318 | if (argInfo.argIsInvariant) |
23319 | { |
23320 | assert(argNode->OperIsConst() || argNode->gtOper == GT_ADDR); |
23321 | } |
23322 | noway_assert((argInfo.argIsLclVar == 0) == |
23323 | (argNode->gtOper != GT_LCL_VAR || (argNode->gtFlags & GTF_GLOB_REF))); |
23324 | |
23325 | /* If the argument has side effects, append it */ |
23326 | |
23327 | if (argInfo.argHasSideEff) |
23328 | { |
23329 | noway_assert(argInfo.argIsUsed == false); |
23330 | newStmt = nullptr; |
23331 | bool append = true; |
23332 | |
23333 | if (argNode->gtOper == GT_OBJ || argNode->gtOper == GT_MKREFANY) |
23334 | { |
23335 | // Don't put GT_OBJ node under a GT_COMMA. |
23336 | // Codegen can't deal with it. |
23337 | // Just hang the address here in case there are side-effect. |
23338 | newStmt = gtNewStmt(gtUnusedValNode(argNode->gtOp.gtOp1), callILOffset); |
23339 | } |
23340 | else |
23341 | { |
23342 | // In some special cases, unused args with side effects can |
23343 | // trigger further changes. |
23344 | // |
23345 | // (1) If the arg is a static field access and the field access |
23346 | // was produced by a call to EqualityComparer<T>.get_Default, the |
23347 | // helper call to ensure the field has a value can be suppressed. |
23348 | // This helper call is marked as a "Special DCE" helper during |
23349 | // importation, over in fgGetStaticsCCtorHelper. |
23350 | // |
23351 | // (2) NYI. If, after tunneling through GT_RET_VALs, we find that |
23352 | // the actual arg expression has no side effects, we can skip |
23353 | // appending all together. This will help jit TP a bit. |
23354 | // |
23355 | // Chase through any GT_RET_EXPRs to find the actual argument |
23356 | // expression. |
23357 | GenTree* actualArgNode = argNode->gtRetExprVal(); |
23358 | |
23359 | // For case (1) |
23360 | // |
23361 | // Look for the following tree shapes |
23362 | // prejit: (IND (ADD (CONST, CALL(special dce helper...)))) |
23363 | // jit : (COMMA (CALL(special dce helper...), (FIELD ...))) |
23364 | if (actualArgNode->gtOper == GT_COMMA) |
23365 | { |
23366 | // Look for (COMMA (CALL(special dce helper...), (FIELD ...))) |
23367 | GenTree* op1 = actualArgNode->gtOp.gtOp1; |
23368 | GenTree* op2 = actualArgNode->gtOp.gtOp2; |
23369 | if (op1->IsCall() && ((op1->gtCall.gtCallMoreFlags & GTF_CALL_M_HELPER_SPECIAL_DCE) != 0) && |
23370 | (op2->gtOper == GT_FIELD) && ((op2->gtFlags & GTF_EXCEPT) == 0)) |
23371 | { |
23372 | JITDUMP("\nPerforming special dce on unused arg [%06u]:" |
23373 | " actual arg [%06u] helper call [%06u]\n" , |
23374 | argNode->gtTreeID, actualArgNode->gtTreeID, op1->gtTreeID); |
23375 | // Drop the whole tree |
23376 | append = false; |
23377 | } |
23378 | } |
23379 | else if (actualArgNode->gtOper == GT_IND) |
23380 | { |
23381 | // Look for (IND (ADD (CONST, CALL(special dce helper...)))) |
23382 | GenTree* addr = actualArgNode->gtOp.gtOp1; |
23383 | |
23384 | if (addr->gtOper == GT_ADD) |
23385 | { |
23386 | GenTree* op1 = addr->gtOp.gtOp1; |
23387 | GenTree* op2 = addr->gtOp.gtOp2; |
23388 | if (op1->IsCall() && |
23389 | ((op1->gtCall.gtCallMoreFlags & GTF_CALL_M_HELPER_SPECIAL_DCE) != 0) && |
23390 | op2->IsCnsIntOrI()) |
23391 | { |
23392 | // Drop the whole tree |
23393 | JITDUMP("\nPerforming special dce on unused arg [%06u]:" |
23394 | " actual arg [%06u] helper call [%06u]\n" , |
23395 | argNode->gtTreeID, actualArgNode->gtTreeID, op1->gtTreeID); |
23396 | append = false; |
23397 | } |
23398 | } |
23399 | } |
23400 | } |
23401 | |
23402 | if (!append) |
23403 | { |
23404 | assert(newStmt == nullptr); |
23405 | JITDUMP("Arg tree side effects were discardable, not appending anything for arg\n" ); |
23406 | } |
23407 | else |
23408 | { |
23409 | // If we don't have something custom to append, |
23410 | // just append the arg node as an unused value. |
23411 | if (newStmt == nullptr) |
23412 | { |
23413 | newStmt = gtNewStmt(gtUnusedValNode(argNode), callILOffset); |
23414 | } |
23415 | |
23416 | afterStmt = fgInsertStmtAfter(block, afterStmt, newStmt); |
23417 | #ifdef DEBUG |
23418 | if (verbose) |
23419 | { |
23420 | gtDispTree(afterStmt); |
23421 | } |
23422 | #endif // DEBUG |
23423 | } |
23424 | } |
23425 | else if (argNode->IsBoxedValue()) |
23426 | { |
23427 | // Try to clean up any unnecessary boxing side effects |
23428 | // since the box itself will be ignored. |
23429 | gtTryRemoveBoxUpstreamEffects(argNode); |
23430 | } |
23431 | } |
23432 | } |
23433 | } |
23434 | |
23435 | // Add the CCTOR check if asked for. |
23436 | // Note: We no longer do the optimization that is done before by staticAccessedFirstUsingHelper in the old inliner. |
23437 | // Therefore we might prepend redundant call to HELPER.CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE |
23438 | // before the inlined method body, even if a static field of this type was accessed in the inlinee |
23439 | // using a helper before any other observable side-effect. |
23440 | |
23441 | if (inlineInfo->inlineCandidateInfo->initClassResult & CORINFO_INITCLASS_USE_HELPER) |
23442 | { |
23443 | CORINFO_CONTEXT_HANDLE exactContext = inlineInfo->inlineCandidateInfo->exactContextHnd; |
23444 | CORINFO_CLASS_HANDLE exactClass; |
23445 | |
23446 | if (((SIZE_T)exactContext & CORINFO_CONTEXTFLAGS_MASK) == CORINFO_CONTEXTFLAGS_CLASS) |
23447 | { |
23448 | exactClass = CORINFO_CLASS_HANDLE((SIZE_T)exactContext & ~CORINFO_CONTEXTFLAGS_MASK); |
23449 | } |
23450 | else |
23451 | { |
23452 | exactClass = info.compCompHnd->getMethodClass( |
23453 | CORINFO_METHOD_HANDLE((SIZE_T)exactContext & ~CORINFO_CONTEXTFLAGS_MASK)); |
23454 | } |
23455 | |
23456 | tree = fgGetSharedCCtor(exactClass); |
23457 | newStmt = gtNewStmt(tree, callILOffset); |
23458 | afterStmt = fgInsertStmtAfter(block, afterStmt, newStmt); |
23459 | } |
23460 | |
23461 | // Insert the nullcheck statement now. |
23462 | if (nullcheck) |
23463 | { |
23464 | newStmt = gtNewStmt(nullcheck, callILOffset); |
23465 | afterStmt = fgInsertStmtAfter(block, afterStmt, newStmt); |
23466 | } |
23467 | |
23468 | // |
23469 | // Now zero-init inlinee locals |
23470 | // |
23471 | |
23472 | CORINFO_METHOD_INFO* InlineeMethodInfo = InlineeCompiler->info.compMethodInfo; |
23473 | |
23474 | unsigned lclCnt = InlineeMethodInfo->locals.numArgs; |
23475 | |
23476 | // Does callee contain any zero-init local? |
23477 | if ((lclCnt != 0) && (InlineeMethodInfo->options & CORINFO_OPT_INIT_LOCALS) != 0) |
23478 | { |
23479 | |
23480 | #ifdef DEBUG |
23481 | if (verbose) |
23482 | { |
23483 | printf("\nZero init inlinee locals:\n" ); |
23484 | } |
23485 | #endif // DEBUG |
23486 | |
23487 | for (unsigned lclNum = 0; lclNum < lclCnt; lclNum++) |
23488 | { |
23489 | unsigned tmpNum = inlineInfo->lclTmpNum[lclNum]; |
23490 | |
23491 | // Is the local used at all? |
23492 | if (tmpNum != BAD_VAR_NUM) |
23493 | { |
23494 | var_types lclTyp = (var_types)lvaTable[tmpNum].lvType; |
23495 | noway_assert(lclTyp == lclVarInfo[lclNum + inlineInfo->argCnt].lclTypeInfo); |
23496 | |
23497 | if (!varTypeIsStruct(lclTyp)) |
23498 | { |
23499 | // Unsafe value cls check is not needed here since in-linee compiler instance would have |
23500 | // iterated over locals and marked accordingly. |
23501 | impAssignTempGen(tmpNum, gtNewZeroConNode(genActualType(lclTyp)), NO_CLASS_HANDLE, |
23502 | (unsigned)CHECK_SPILL_NONE, &afterStmt, callILOffset, block); |
23503 | } |
23504 | else |
23505 | { |
23506 | CORINFO_CLASS_HANDLE structType = |
23507 | lclVarInfo[lclNum + inlineInfo->argCnt].lclVerTypeInfo.GetClassHandle(); |
23508 | |
23509 | if (fgStructTempNeedsExplicitZeroInit(lvaTable + tmpNum, block)) |
23510 | { |
23511 | tree = gtNewBlkOpNode(gtNewLclvNode(tmpNum, lclTyp), // Dest |
23512 | gtNewIconNode(0), // Value |
23513 | info.compCompHnd->getClassSize(structType), // Size |
23514 | false, // isVolatile |
23515 | false); // not copyBlock |
23516 | |
23517 | newStmt = gtNewStmt(tree, callILOffset); |
23518 | afterStmt = fgInsertStmtAfter(block, afterStmt, newStmt); |
23519 | } |
23520 | } |
23521 | |
23522 | #ifdef DEBUG |
23523 | if (verbose) |
23524 | { |
23525 | gtDispTree(afterStmt); |
23526 | } |
23527 | #endif // DEBUG |
23528 | } |
23529 | } |
23530 | } |
23531 | |
23532 | // Update any newly added statements with the appropriate context. |
23533 | InlineContext* context = callStmt->gtInlineContext; |
23534 | assert(context != nullptr); |
23535 | for (GenTreeStmt* addedStmt = callStmt->gtNextStmt; addedStmt != postStmt; addedStmt = addedStmt->gtNextStmt) |
23536 | { |
23537 | assert(addedStmt->gtInlineContext == nullptr); |
23538 | addedStmt->gtInlineContext = context; |
23539 | } |
23540 | |
23541 | return afterStmt; |
23542 | } |
23543 | |
23544 | //------------------------------------------------------------------------ |
23545 | // fgInlineAppendStatements: Append statements that are needed |
23546 | // after the inlined call. |
23547 | // |
23548 | // Arguments: |
23549 | // inlineInfo - information about the inline |
23550 | // block - basic block for the new statements |
23551 | // stmtAfter - (optional) insertion point for mid-block cases |
23552 | // |
23553 | // Notes: |
23554 | // If the call we're inlining is in tail position then |
23555 | // we skip nulling the locals, since it can interfere |
23556 | // with tail calls introduced by the local. |
23557 | |
23558 | void Compiler::fgInlineAppendStatements(InlineInfo* inlineInfo, BasicBlock* block, GenTree* stmtAfter) |
23559 | { |
23560 | // If this inlinee was passed a runtime lookup generic context and |
23561 | // ignores it, we can decrement the "generic context was used" ref |
23562 | // count, because we created a new lookup tree and incremented the |
23563 | // count when we imported the type parameter argument to pass to |
23564 | // the inlinee. See corresponding logic in impImportCall that |
23565 | // checks the sig for CORINFO_CALLCONV_PARAMTYPE. |
23566 | // |
23567 | // Does this method require a context (type) parameter? |
23568 | if ((inlineInfo->inlineCandidateInfo->methInfo.args.callConv & CORINFO_CALLCONV_PARAMTYPE) != 0) |
23569 | { |
23570 | // Did the computation of that parameter require the |
23571 | // caller to perform a runtime lookup? |
23572 | if (inlineInfo->inlineCandidateInfo->exactContextNeedsRuntimeLookup) |
23573 | { |
23574 | // Fetch the temp for the generic context as it would |
23575 | // appear in the inlinee's body. |
23576 | const unsigned typeCtxtArg = inlineInfo->typeContextArg; |
23577 | const unsigned tmpNum = inlineInfo->lclTmpNum[typeCtxtArg]; |
23578 | |
23579 | // Was it used in the inline body? |
23580 | if (tmpNum == BAD_VAR_NUM) |
23581 | { |
23582 | // No -- so the associated runtime lookup is not needed |
23583 | // and also no longer provides evidence that the generic |
23584 | // context should be kept alive. |
23585 | JITDUMP("Inlinee ignores runtime lookup generics context\n" ); |
23586 | assert(lvaGenericsContextUseCount > 0); |
23587 | lvaGenericsContextUseCount--; |
23588 | } |
23589 | } |
23590 | } |
23591 | |
23592 | // Null out any gc ref locals |
23593 | if (!inlineInfo->HasGcRefLocals()) |
23594 | { |
23595 | // No ref locals, nothing to do. |
23596 | JITDUMP("fgInlineAppendStatements: no gc ref inline locals.\n" ); |
23597 | return; |
23598 | } |
23599 | |
23600 | if (inlineInfo->iciCall->IsImplicitTailCall()) |
23601 | { |
23602 | JITDUMP("fgInlineAppendStatements: implicit tail call; skipping nulling.\n" ); |
23603 | return; |
23604 | } |
23605 | |
23606 | JITDUMP("fgInlineAppendStatements: nulling out gc ref inlinee locals.\n" ); |
23607 | |
23608 | GenTree* callStmt = inlineInfo->iciStmt; |
23609 | IL_OFFSETX callILOffset = callStmt->gtStmt.gtStmtILoffsx; |
23610 | CORINFO_METHOD_INFO* InlineeMethodInfo = InlineeCompiler->info.compMethodInfo; |
23611 | const unsigned lclCnt = InlineeMethodInfo->locals.numArgs; |
23612 | InlLclVarInfo* lclVarInfo = inlineInfo->lclVarInfo; |
23613 | unsigned gcRefLclCnt = inlineInfo->numberOfGcRefLocals; |
23614 | const unsigned argCnt = inlineInfo->argCnt; |
23615 | |
23616 | noway_assert(callStmt->gtOper == GT_STMT); |
23617 | |
23618 | for (unsigned lclNum = 0; lclNum < lclCnt; lclNum++) |
23619 | { |
23620 | // Is the local a gc ref type? Need to look at the |
23621 | // inline info for this since we will not have local |
23622 | // temps for unused inlinee locals. |
23623 | const var_types lclTyp = lclVarInfo[argCnt + lclNum].lclTypeInfo; |
23624 | |
23625 | if (!varTypeIsGC(lclTyp)) |
23626 | { |
23627 | // Nope, nothing to null out. |
23628 | continue; |
23629 | } |
23630 | |
23631 | // Ensure we're examining just the right number of locals. |
23632 | assert(gcRefLclCnt > 0); |
23633 | gcRefLclCnt--; |
23634 | |
23635 | // Fetch the temp for this inline local |
23636 | const unsigned tmpNum = inlineInfo->lclTmpNum[lclNum]; |
23637 | |
23638 | // Is the local used at all? |
23639 | if (tmpNum == BAD_VAR_NUM) |
23640 | { |
23641 | // Nope, nothing to null out. |
23642 | continue; |
23643 | } |
23644 | |
23645 | // Local was used, make sure the type is consistent. |
23646 | assert(lvaTable[tmpNum].lvType == lclTyp); |
23647 | |
23648 | // Does the local we're about to null out appear in the return |
23649 | // expression? If so we somehow messed up and didn't properly |
23650 | // spill the return value. See impInlineFetchLocal. |
23651 | GenTree* retExpr = inlineInfo->retExpr; |
23652 | if (retExpr != nullptr) |
23653 | { |
23654 | const bool interferesWithReturn = gtHasRef(inlineInfo->retExpr, tmpNum, false); |
23655 | noway_assert(!interferesWithReturn); |
23656 | } |
23657 | |
23658 | // Assign null to the local. |
23659 | GenTree* nullExpr = gtNewTempAssign(tmpNum, gtNewZeroConNode(lclTyp)); |
23660 | GenTree* nullStmt = gtNewStmt(nullExpr, callILOffset); |
23661 | |
23662 | if (stmtAfter == nullptr) |
23663 | { |
23664 | stmtAfter = fgInsertStmtAtBeg(block, nullStmt); |
23665 | } |
23666 | else |
23667 | { |
23668 | stmtAfter = fgInsertStmtAfter(block, stmtAfter, nullStmt); |
23669 | } |
23670 | |
23671 | #ifdef DEBUG |
23672 | if (verbose) |
23673 | { |
23674 | gtDispTree(nullStmt); |
23675 | } |
23676 | #endif // DEBUG |
23677 | } |
23678 | |
23679 | // There should not be any GC ref locals left to null out. |
23680 | assert(gcRefLclCnt == 0); |
23681 | } |
23682 | |
23683 | /*****************************************************************************/ |
23684 | /*static*/ |
23685 | Compiler::fgWalkResult Compiler::fgChkThrowCB(GenTree** pTree, fgWalkData* data) |
23686 | { |
23687 | GenTree* tree = *pTree; |
23688 | |
23689 | // If this tree doesn't have the EXCEPT flag set, then there is no |
23690 | // way any of the child nodes could throw, so we can stop recursing. |
23691 | if (!(tree->gtFlags & GTF_EXCEPT)) |
23692 | { |
23693 | return Compiler::WALK_SKIP_SUBTREES; |
23694 | } |
23695 | |
23696 | switch (tree->gtOper) |
23697 | { |
23698 | case GT_MUL: |
23699 | case GT_ADD: |
23700 | case GT_SUB: |
23701 | case GT_CAST: |
23702 | if (tree->gtOverflow()) |
23703 | { |
23704 | return Compiler::WALK_ABORT; |
23705 | } |
23706 | break; |
23707 | |
23708 | case GT_INDEX: |
23709 | case GT_INDEX_ADDR: |
23710 | // These two call CORINFO_HELP_RNGCHKFAIL for Debug code |
23711 | if (tree->gtFlags & GTF_INX_RNGCHK) |
23712 | { |
23713 | return Compiler::WALK_ABORT; |
23714 | } |
23715 | break; |
23716 | |
23717 | case GT_ARR_BOUNDS_CHECK: |
23718 | return Compiler::WALK_ABORT; |
23719 | |
23720 | default: |
23721 | break; |
23722 | } |
23723 | |
23724 | return Compiler::WALK_CONTINUE; |
23725 | } |
23726 | |
23727 | /*****************************************************************************/ |
23728 | /*static*/ |
23729 | Compiler::fgWalkResult Compiler::fgChkLocAllocCB(GenTree** pTree, fgWalkData* data) |
23730 | { |
23731 | GenTree* tree = *pTree; |
23732 | |
23733 | if (tree->gtOper == GT_LCLHEAP) |
23734 | { |
23735 | return Compiler::WALK_ABORT; |
23736 | } |
23737 | |
23738 | return Compiler::WALK_CONTINUE; |
23739 | } |
23740 | |
23741 | /*****************************************************************************/ |
23742 | /*static*/ |
23743 | Compiler::fgWalkResult Compiler::fgChkQmarkCB(GenTree** pTree, fgWalkData* data) |
23744 | { |
23745 | GenTree* tree = *pTree; |
23746 | |
23747 | if (tree->gtOper == GT_QMARK) |
23748 | { |
23749 | return Compiler::WALK_ABORT; |
23750 | } |
23751 | |
23752 | return Compiler::WALK_CONTINUE; |
23753 | } |
23754 | |
23755 | void Compiler::fgLclFldAssign(unsigned lclNum) |
23756 | { |
23757 | assert(varTypeIsStruct(lvaTable[lclNum].lvType)); |
23758 | if (lvaTable[lclNum].lvPromoted && lvaTable[lclNum].lvFieldCnt > 1) |
23759 | { |
23760 | lvaSetVarDoNotEnregister(lclNum DEBUGARG(DNER_LocalField)); |
23761 | } |
23762 | } |
23763 | |
23764 | //------------------------------------------------------------------------ |
23765 | // fgRemoveEmptyFinally: Remove try/finallys where the finally is empty |
23766 | // |
23767 | // Notes: |
23768 | // Removes all try/finallys in the method with empty finallys. |
23769 | // These typically arise from inlining empty Dispose methods. |
23770 | // |
23771 | // Converts callfinally to a jump to the finally continuation. |
23772 | // Removes the finally, and reparents all blocks in the try to the |
23773 | // enclosing try or method region. |
23774 | // |
23775 | // Currently limited to trivially empty finallys: those with one basic |
23776 | // block containing only single RETFILT statement. It is possible but |
23777 | // not likely that more complex-looking finallys will eventually become |
23778 | // empty (from say subsequent optimization). An SPMI run with |
23779 | // just the "detection" part of this phase run after optimization |
23780 | // found only one example where a new empty finally was detected. |
23781 | |
23782 | void Compiler::fgRemoveEmptyFinally() |
23783 | { |
23784 | JITDUMP("\n*************** In fgRemoveEmptyFinally()\n" ); |
23785 | |
23786 | #if FEATURE_EH_FUNCLETS |
23787 | // We need to do this transformation before funclets are created. |
23788 | assert(!fgFuncletsCreated); |
23789 | #endif // FEATURE_EH_FUNCLETS |
23790 | |
23791 | // Assume we don't need to update the bbPreds lists. |
23792 | assert(!fgComputePredsDone); |
23793 | |
23794 | if (compHndBBtabCount == 0) |
23795 | { |
23796 | JITDUMP("No EH in this method, nothing to remove.\n" ); |
23797 | return; |
23798 | } |
23799 | |
23800 | if (opts.MinOpts()) |
23801 | { |
23802 | JITDUMP("Method compiled with minOpts, no removal.\n" ); |
23803 | return; |
23804 | } |
23805 | |
23806 | if (opts.compDbgCode) |
23807 | { |
23808 | JITDUMP("Method compiled with debug codegen, no removal.\n" ); |
23809 | return; |
23810 | } |
23811 | |
23812 | #ifdef DEBUG |
23813 | if (verbose) |
23814 | { |
23815 | printf("\n*************** Before fgRemoveEmptyFinally()\n" ); |
23816 | fgDispBasicBlocks(); |
23817 | fgDispHandlerTab(); |
23818 | printf("\n" ); |
23819 | } |
23820 | #endif // DEBUG |
23821 | |
23822 | // Look for finallys or faults that are empty. |
23823 | unsigned finallyCount = 0; |
23824 | unsigned emptyCount = 0; |
23825 | unsigned XTnum = 0; |
23826 | while (XTnum < compHndBBtabCount) |
23827 | { |
23828 | EHblkDsc* const HBtab = &compHndBBtab[XTnum]; |
23829 | |
23830 | // Check if this is a try/finally. We could also look for empty |
23831 | // try/fault but presumably those are rare. |
23832 | if (!HBtab->HasFinallyHandler()) |
23833 | { |
23834 | JITDUMP("EH#%u is not a try-finally; skipping.\n" , XTnum); |
23835 | XTnum++; |
23836 | continue; |
23837 | } |
23838 | |
23839 | finallyCount++; |
23840 | |
23841 | // Look at blocks involved. |
23842 | BasicBlock* const firstBlock = HBtab->ebdHndBeg; |
23843 | BasicBlock* const lastBlock = HBtab->ebdHndLast; |
23844 | |
23845 | // Limit for now to finallys that are single blocks. |
23846 | if (firstBlock != lastBlock) |
23847 | { |
23848 | JITDUMP("EH#%u finally has multiple basic blocks; skipping.\n" , XTnum); |
23849 | XTnum++; |
23850 | continue; |
23851 | } |
23852 | |
23853 | // Limit for now to finallys that contain only a GT_RETFILT. |
23854 | bool isEmpty = true; |
23855 | |
23856 | for (GenTreeStmt* stmt = firstBlock->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
23857 | { |
23858 | GenTree* stmtExpr = stmt->gtStmtExpr; |
23859 | |
23860 | if (stmtExpr->gtOper != GT_RETFILT) |
23861 | { |
23862 | isEmpty = false; |
23863 | break; |
23864 | } |
23865 | } |
23866 | |
23867 | if (!isEmpty) |
23868 | { |
23869 | JITDUMP("EH#%u finally is not empty; skipping.\n" , XTnum); |
23870 | XTnum++; |
23871 | continue; |
23872 | } |
23873 | |
23874 | JITDUMP("EH#%u has empty finally, removing the region.\n" , XTnum); |
23875 | |
23876 | // Find all the call finallys that invoke this finally, |
23877 | // and modify them to jump to the return point. |
23878 | BasicBlock* firstCallFinallyRangeBlock = nullptr; |
23879 | BasicBlock* endCallFinallyRangeBlock = nullptr; |
23880 | ehGetCallFinallyBlockRange(XTnum, &firstCallFinallyRangeBlock, &endCallFinallyRangeBlock); |
23881 | |
23882 | BasicBlock* currentBlock = firstCallFinallyRangeBlock; |
23883 | |
23884 | while (currentBlock != endCallFinallyRangeBlock) |
23885 | { |
23886 | BasicBlock* nextBlock = currentBlock->bbNext; |
23887 | |
23888 | if ((currentBlock->bbJumpKind == BBJ_CALLFINALLY) && (currentBlock->bbJumpDest == firstBlock)) |
23889 | { |
23890 | // Retarget the call finally to jump to the return |
23891 | // point. |
23892 | // |
23893 | // We don't expect to see retless finallys here, since |
23894 | // the finally is empty. |
23895 | noway_assert(currentBlock->isBBCallAlwaysPair()); |
23896 | |
23897 | BasicBlock* const leaveBlock = currentBlock->bbNext; |
23898 | BasicBlock* const postTryFinallyBlock = leaveBlock->bbJumpDest; |
23899 | |
23900 | JITDUMP("Modifying callfinally " FMT_BB " leave " FMT_BB " finally " FMT_BB " continuation " FMT_BB |
23901 | "\n" , |
23902 | currentBlock->bbNum, leaveBlock->bbNum, firstBlock->bbNum, postTryFinallyBlock->bbNum); |
23903 | JITDUMP("so that " FMT_BB " jumps to " FMT_BB "; then remove " FMT_BB "\n" , currentBlock->bbNum, |
23904 | postTryFinallyBlock->bbNum, leaveBlock->bbNum); |
23905 | |
23906 | noway_assert(leaveBlock->bbJumpKind == BBJ_ALWAYS); |
23907 | |
23908 | currentBlock->bbJumpDest = postTryFinallyBlock; |
23909 | currentBlock->bbJumpKind = BBJ_ALWAYS; |
23910 | |
23911 | // Ref count updates. |
23912 | fgAddRefPred(postTryFinallyBlock, currentBlock); |
23913 | // fgRemoveRefPred(firstBlock, currentBlock); |
23914 | |
23915 | // Delete the leave block, which should be marked as |
23916 | // keep always. |
23917 | assert((leaveBlock->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0); |
23918 | nextBlock = leaveBlock->bbNext; |
23919 | |
23920 | leaveBlock->bbFlags &= ~BBF_KEEP_BBJ_ALWAYS; |
23921 | fgRemoveBlock(leaveBlock, true); |
23922 | |
23923 | // Cleanup the postTryFinallyBlock |
23924 | fgCleanupContinuation(postTryFinallyBlock); |
23925 | |
23926 | // Make sure iteration isn't going off the deep end. |
23927 | assert(leaveBlock != endCallFinallyRangeBlock); |
23928 | } |
23929 | |
23930 | currentBlock = nextBlock; |
23931 | } |
23932 | |
23933 | JITDUMP("Remove now-unreachable handler " FMT_BB "\n" , firstBlock->bbNum); |
23934 | |
23935 | // Handler block should now be unreferenced, since the only |
23936 | // explicit references to it were in call finallys. |
23937 | firstBlock->bbRefs = 0; |
23938 | |
23939 | // Remove the handler block. |
23940 | const bool unreachable = true; |
23941 | firstBlock->bbFlags &= ~BBF_DONT_REMOVE; |
23942 | fgRemoveBlock(firstBlock, unreachable); |
23943 | |
23944 | // Find enclosing try region for the try, if any, and update |
23945 | // the try region. Note the handler region (if any) won't |
23946 | // change. |
23947 | BasicBlock* const firstTryBlock = HBtab->ebdTryBeg; |
23948 | BasicBlock* const lastTryBlock = HBtab->ebdTryLast; |
23949 | assert(firstTryBlock->getTryIndex() == XTnum); |
23950 | |
23951 | for (BasicBlock* block = firstTryBlock; block != nullptr; block = block->bbNext) |
23952 | { |
23953 | // Look for blocks directly contained in this try, and |
23954 | // update the try region appropriately. |
23955 | // |
23956 | // Try region for blocks transitively contained (say in a |
23957 | // child try) will get updated by the subsequent call to |
23958 | // fgRemoveEHTableEntry. |
23959 | if (block->getTryIndex() == XTnum) |
23960 | { |
23961 | if (firstBlock->hasTryIndex()) |
23962 | { |
23963 | block->setTryIndex(firstBlock->getTryIndex()); |
23964 | } |
23965 | else |
23966 | { |
23967 | block->clearTryIndex(); |
23968 | } |
23969 | } |
23970 | |
23971 | if (block == firstTryBlock) |
23972 | { |
23973 | assert((block->bbFlags & BBF_TRY_BEG) != 0); |
23974 | block->bbFlags &= ~BBF_TRY_BEG; |
23975 | } |
23976 | |
23977 | if (block == lastTryBlock) |
23978 | { |
23979 | break; |
23980 | } |
23981 | } |
23982 | |
23983 | // Remove the try-finally EH region. This will compact the EH table |
23984 | // so XTnum now points at the next entry. |
23985 | fgRemoveEHTableEntry(XTnum); |
23986 | |
23987 | emptyCount++; |
23988 | } |
23989 | |
23990 | if (emptyCount > 0) |
23991 | { |
23992 | JITDUMP("fgRemoveEmptyFinally() removed %u try-finally clauses from %u finallys\n" , emptyCount, finallyCount); |
23993 | fgOptimizedFinally = true; |
23994 | |
23995 | #ifdef DEBUG |
23996 | if (verbose) |
23997 | { |
23998 | printf("\n*************** After fgRemoveEmptyFinally()\n" ); |
23999 | fgDispBasicBlocks(); |
24000 | fgDispHandlerTab(); |
24001 | printf("\n" ); |
24002 | } |
24003 | |
24004 | fgVerifyHandlerTab(); |
24005 | fgDebugCheckBBlist(false, false); |
24006 | |
24007 | #endif // DEBUG |
24008 | } |
24009 | } |
24010 | |
24011 | //------------------------------------------------------------------------ |
24012 | // fgRemoveEmptyTry: Optimize try/finallys where the try is empty |
24013 | // |
24014 | // Notes: |
24015 | // In runtimes where thread abort is not possible, `try {} finally {S}` |
24016 | // can be optimized to simply `S`. This method looks for such |
24017 | // cases and removes the try-finally from the EH table, making |
24018 | // suitable flow, block flag, statement, and region updates. |
24019 | // |
24020 | // This optimization is not legal in runtimes that support thread |
24021 | // abort because those runtimes ensure that a finally is completely |
24022 | // executed before continuing to process the thread abort. With |
24023 | // this optimization, the code block `S` can lose special |
24024 | // within-finally status and so complete execution is no longer |
24025 | // guaranteed. |
24026 | |
24027 | void Compiler::fgRemoveEmptyTry() |
24028 | { |
24029 | JITDUMP("\n*************** In fgRemoveEmptyTry()\n" ); |
24030 | |
24031 | #if FEATURE_EH_FUNCLETS |
24032 | // We need to do this transformation before funclets are created. |
24033 | assert(!fgFuncletsCreated); |
24034 | #endif // FEATURE_EH_FUNCLETS |
24035 | |
24036 | // Assume we don't need to update the bbPreds lists. |
24037 | assert(!fgComputePredsDone); |
24038 | |
24039 | #ifdef FEATURE_CORECLR |
24040 | bool enableRemoveEmptyTry = true; |
24041 | #else |
24042 | // Code in a finally gets special treatment in the presence of |
24043 | // thread abort. |
24044 | bool enableRemoveEmptyTry = false; |
24045 | #endif // FEATURE_CORECLR |
24046 | |
24047 | #ifdef DEBUG |
24048 | // Allow override to enable/disable. |
24049 | enableRemoveEmptyTry = (JitConfig.JitEnableRemoveEmptyTry() == 1); |
24050 | #endif // DEBUG |
24051 | |
24052 | if (!enableRemoveEmptyTry) |
24053 | { |
24054 | JITDUMP("Empty try removal disabled.\n" ); |
24055 | return; |
24056 | } |
24057 | |
24058 | if (compHndBBtabCount == 0) |
24059 | { |
24060 | JITDUMP("No EH in this method, nothing to remove.\n" ); |
24061 | return; |
24062 | } |
24063 | |
24064 | if (opts.MinOpts()) |
24065 | { |
24066 | JITDUMP("Method compiled with minOpts, no removal.\n" ); |
24067 | return; |
24068 | } |
24069 | |
24070 | if (opts.compDbgCode) |
24071 | { |
24072 | JITDUMP("Method compiled with debug codegen, no removal.\n" ); |
24073 | return; |
24074 | } |
24075 | |
24076 | #ifdef DEBUG |
24077 | if (verbose) |
24078 | { |
24079 | printf("\n*************** Before fgRemoveEmptyTry()\n" ); |
24080 | fgDispBasicBlocks(); |
24081 | fgDispHandlerTab(); |
24082 | printf("\n" ); |
24083 | } |
24084 | #endif // DEBUG |
24085 | |
24086 | // Look for try-finallys where the try is empty. |
24087 | unsigned emptyCount = 0; |
24088 | unsigned XTnum = 0; |
24089 | while (XTnum < compHndBBtabCount) |
24090 | { |
24091 | EHblkDsc* const HBtab = &compHndBBtab[XTnum]; |
24092 | |
24093 | // Check if this is a try/finally. We could also look for empty |
24094 | // try/fault but presumably those are rare. |
24095 | if (!HBtab->HasFinallyHandler()) |
24096 | { |
24097 | JITDUMP("EH#%u is not a try-finally; skipping.\n" , XTnum); |
24098 | XTnum++; |
24099 | continue; |
24100 | } |
24101 | |
24102 | // Examine the try region |
24103 | BasicBlock* const firstTryBlock = HBtab->ebdTryBeg; |
24104 | BasicBlock* const lastTryBlock = HBtab->ebdTryLast; |
24105 | BasicBlock* const firstHandlerBlock = HBtab->ebdHndBeg; |
24106 | BasicBlock* const lastHandlerBlock = HBtab->ebdHndLast; |
24107 | BasicBlock* const endHandlerBlock = lastHandlerBlock->bbNext; |
24108 | |
24109 | assert(firstTryBlock->getTryIndex() == XTnum); |
24110 | |
24111 | // Limit for now to trys that contain only a callfinally pair |
24112 | // or branch to same. |
24113 | if (!firstTryBlock->isEmpty()) |
24114 | { |
24115 | JITDUMP("EH#%u first try block " FMT_BB " not empty; skipping.\n" , XTnum, firstTryBlock->bbNum); |
24116 | XTnum++; |
24117 | continue; |
24118 | } |
24119 | |
24120 | #if FEATURE_EH_CALLFINALLY_THUNKS |
24121 | |
24122 | // Look for blocks that are always jumps to a call finally |
24123 | // pair that targets the finally |
24124 | if (firstTryBlock->bbJumpKind != BBJ_ALWAYS) |
24125 | { |
24126 | JITDUMP("EH#%u first try block " FMT_BB " not jump to a callfinally; skipping.\n" , XTnum, |
24127 | firstTryBlock->bbNum); |
24128 | XTnum++; |
24129 | continue; |
24130 | } |
24131 | |
24132 | BasicBlock* const callFinally = firstTryBlock->bbJumpDest; |
24133 | |
24134 | // Look for call always pair. Note this will also disqualify |
24135 | // empty try removal in cases where the finally doesn't |
24136 | // return. |
24137 | if (!callFinally->isBBCallAlwaysPair() || (callFinally->bbJumpDest != firstHandlerBlock)) |
24138 | { |
24139 | JITDUMP("EH#%u first try block " FMT_BB " always jumps but not to a callfinally; skipping.\n" , XTnum, |
24140 | firstTryBlock->bbNum); |
24141 | XTnum++; |
24142 | continue; |
24143 | } |
24144 | |
24145 | // Try itself must be a single block. |
24146 | if (firstTryBlock != lastTryBlock) |
24147 | { |
24148 | JITDUMP("EH#%u first try block " FMT_BB " not only block in try; skipping.\n" , XTnum, |
24149 | firstTryBlock->bbNext->bbNum); |
24150 | XTnum++; |
24151 | continue; |
24152 | } |
24153 | |
24154 | #else |
24155 | // Look for call always pair within the try itself. Note this |
24156 | // will also disqualify empty try removal in cases where the |
24157 | // finally doesn't return. |
24158 | if (!firstTryBlock->isBBCallAlwaysPair() || (firstTryBlock->bbJumpDest != firstHandlerBlock)) |
24159 | { |
24160 | JITDUMP("EH#%u first try block " FMT_BB " not a callfinally; skipping.\n" , XTnum, firstTryBlock->bbNum); |
24161 | XTnum++; |
24162 | continue; |
24163 | } |
24164 | |
24165 | BasicBlock* const callFinally = firstTryBlock; |
24166 | |
24167 | // Try must be a callalways pair of blocks. |
24168 | if (firstTryBlock->bbNext != lastTryBlock) |
24169 | { |
24170 | JITDUMP("EH#%u block " FMT_BB " not last block in try; skipping.\n" , XTnum, firstTryBlock->bbNext->bbNum); |
24171 | XTnum++; |
24172 | continue; |
24173 | } |
24174 | |
24175 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
24176 | |
24177 | JITDUMP("EH#%u has empty try, removing the try region and promoting the finally.\n" , XTnum); |
24178 | |
24179 | // There should be just one callfinally that invokes this |
24180 | // finally, the one we found above. Verify this. |
24181 | BasicBlock* firstCallFinallyRangeBlock = nullptr; |
24182 | BasicBlock* endCallFinallyRangeBlock = nullptr; |
24183 | bool verifiedSingleCallfinally = true; |
24184 | ehGetCallFinallyBlockRange(XTnum, &firstCallFinallyRangeBlock, &endCallFinallyRangeBlock); |
24185 | |
24186 | for (BasicBlock* block = firstCallFinallyRangeBlock; block != endCallFinallyRangeBlock; block = block->bbNext) |
24187 | { |
24188 | if ((block->bbJumpKind == BBJ_CALLFINALLY) && (block->bbJumpDest == firstHandlerBlock)) |
24189 | { |
24190 | assert(block->isBBCallAlwaysPair()); |
24191 | |
24192 | if (block != callFinally) |
24193 | { |
24194 | JITDUMP("EH#%u found unexpected callfinally " FMT_BB "; skipping.\n" ); |
24195 | verifiedSingleCallfinally = false; |
24196 | break; |
24197 | } |
24198 | |
24199 | block = block->bbNext; |
24200 | } |
24201 | } |
24202 | |
24203 | if (!verifiedSingleCallfinally) |
24204 | { |
24205 | JITDUMP("EH#%u -- unexpectedly -- has multiple callfinallys; skipping.\n" ); |
24206 | XTnum++; |
24207 | assert(verifiedSingleCallfinally); |
24208 | continue; |
24209 | } |
24210 | |
24211 | // Time to optimize. |
24212 | // |
24213 | // (1) Convert the callfinally to a normal jump to the handler |
24214 | callFinally->bbJumpKind = BBJ_ALWAYS; |
24215 | |
24216 | // Identify the leave block and the continuation |
24217 | BasicBlock* const leave = callFinally->bbNext; |
24218 | BasicBlock* const continuation = leave->bbJumpDest; |
24219 | |
24220 | // (2) Cleanup the leave so it can be deleted by subsequent opts |
24221 | assert((leave->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0); |
24222 | leave->bbFlags &= ~BBF_KEEP_BBJ_ALWAYS; |
24223 | |
24224 | // (3) Cleanup the continuation |
24225 | fgCleanupContinuation(continuation); |
24226 | |
24227 | // (4) Find enclosing try region for the try, if any, and |
24228 | // update the try region for the blocks in the try. Note the |
24229 | // handler region (if any) won't change. |
24230 | // |
24231 | // Kind of overkill to loop here, but hey. |
24232 | for (BasicBlock* block = firstTryBlock; block != nullptr; block = block->bbNext) |
24233 | { |
24234 | // Look for blocks directly contained in this try, and |
24235 | // update the try region appropriately. |
24236 | // |
24237 | // The try region for blocks transitively contained (say in a |
24238 | // child try) will get updated by the subsequent call to |
24239 | // fgRemoveEHTableEntry. |
24240 | if (block->getTryIndex() == XTnum) |
24241 | { |
24242 | if (firstHandlerBlock->hasTryIndex()) |
24243 | { |
24244 | block->setTryIndex(firstHandlerBlock->getTryIndex()); |
24245 | } |
24246 | else |
24247 | { |
24248 | block->clearTryIndex(); |
24249 | } |
24250 | } |
24251 | |
24252 | if (block == firstTryBlock) |
24253 | { |
24254 | assert((block->bbFlags & BBF_TRY_BEG) != 0); |
24255 | block->bbFlags &= ~BBF_TRY_BEG; |
24256 | } |
24257 | |
24258 | if (block == lastTryBlock) |
24259 | { |
24260 | break; |
24261 | } |
24262 | } |
24263 | |
24264 | // (5) Update the directly contained handler blocks' handler index. |
24265 | // Handler index of any nested blocks will update when we |
24266 | // remove the EH table entry. Change handler exits to jump to |
24267 | // the continuation. Clear catch type on handler entry. |
24268 | // Decrement nesting level of enclosed GT_END_LFINs. |
24269 | for (BasicBlock* block = firstHandlerBlock; block != endHandlerBlock; block = block->bbNext) |
24270 | { |
24271 | if (block == firstHandlerBlock) |
24272 | { |
24273 | block->bbCatchTyp = BBCT_NONE; |
24274 | } |
24275 | |
24276 | if (block->getHndIndex() == XTnum) |
24277 | { |
24278 | if (firstTryBlock->hasHndIndex()) |
24279 | { |
24280 | block->setHndIndex(firstTryBlock->getHndIndex()); |
24281 | } |
24282 | else |
24283 | { |
24284 | block->clearHndIndex(); |
24285 | } |
24286 | |
24287 | if (block->bbJumpKind == BBJ_EHFINALLYRET) |
24288 | { |
24289 | GenTreeStmt* finallyRet = block->lastStmt(); |
24290 | GenTree* finallyRetExpr = finallyRet->gtStmtExpr; |
24291 | assert(finallyRetExpr->gtOper == GT_RETFILT); |
24292 | fgRemoveStmt(block, finallyRet); |
24293 | block->bbJumpKind = BBJ_ALWAYS; |
24294 | block->bbJumpDest = continuation; |
24295 | fgAddRefPred(continuation, block); |
24296 | } |
24297 | } |
24298 | |
24299 | #if !FEATURE_EH_FUNCLETS |
24300 | // If we're in a non-funclet model, decrement the nesting |
24301 | // level of any GT_END_LFIN we find in the handler region, |
24302 | // since we're removing the enclosing handler. |
24303 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
24304 | { |
24305 | GenTree* expr = stmt->gtStmtExpr; |
24306 | if (expr->gtOper == GT_END_LFIN) |
24307 | { |
24308 | const unsigned nestLevel = expr->gtVal.gtVal1; |
24309 | assert(nestLevel > 0); |
24310 | expr->gtVal.gtVal1 = nestLevel - 1; |
24311 | } |
24312 | } |
24313 | #endif // !FEATURE_EH_FUNCLETS |
24314 | } |
24315 | |
24316 | // (6) Remove the try-finally EH region. This will compact the |
24317 | // EH table so XTnum now points at the next entry and will update |
24318 | // the EH region indices of any nested EH in the (former) handler. |
24319 | fgRemoveEHTableEntry(XTnum); |
24320 | |
24321 | // Another one bites the dust... |
24322 | emptyCount++; |
24323 | } |
24324 | |
24325 | if (emptyCount > 0) |
24326 | { |
24327 | JITDUMP("fgRemoveEmptyTry() optimized %u empty-try try-finally clauses\n" , emptyCount); |
24328 | fgOptimizedFinally = true; |
24329 | |
24330 | #ifdef DEBUG |
24331 | if (verbose) |
24332 | { |
24333 | printf("\n*************** After fgRemoveEmptyTry()\n" ); |
24334 | fgDispBasicBlocks(); |
24335 | fgDispHandlerTab(); |
24336 | printf("\n" ); |
24337 | } |
24338 | |
24339 | fgVerifyHandlerTab(); |
24340 | fgDebugCheckBBlist(false, false); |
24341 | |
24342 | #endif // DEBUG |
24343 | } |
24344 | } |
24345 | |
24346 | //------------------------------------------------------------------------ |
24347 | // fgCloneFinally: Optimize normal exit path from a try/finally |
24348 | // |
24349 | // Notes: |
24350 | // Handles finallys that are not enclosed by or enclosing other |
24351 | // handler regions. |
24352 | // |
24353 | // Converts the "normal exit" callfinally to a jump to a cloned copy |
24354 | // of the finally, which in turn jumps to the finally continuation. |
24355 | // |
24356 | // If all callfinallys for a given finally are converted to jump to |
24357 | // the clone, the try-finally is modified into a try-fault, |
24358 | // distingushable from organic try-faults by handler type |
24359 | // EH_HANDLER_FAULT_WAS_FINALLY vs the organic EH_HANDLER_FAULT. |
24360 | // |
24361 | // Does not yet handle thread abort. The open issues here are how |
24362 | // to maintain the proper description of the cloned finally blocks |
24363 | // as a handler (for thread abort purposes), how to prevent code |
24364 | // motion in or out of these blocks, and how to report this cloned |
24365 | // handler to the runtime. Some building blocks for thread abort |
24366 | // exist (see below) but more work needed. |
24367 | // |
24368 | // The first and last blocks of the cloned finally are marked with |
24369 | // BBF_CLONED_FINALLY_BEGIN and BBF_CLONED_FINALLY_END. However |
24370 | // these markers currently can get lost during subsequent |
24371 | // optimizations. |
24372 | |
24373 | void Compiler::fgCloneFinally() |
24374 | { |
24375 | JITDUMP("\n*************** In fgCloneFinally()\n" ); |
24376 | |
24377 | #if FEATURE_EH_FUNCLETS |
24378 | // We need to do this transformation before funclets are created. |
24379 | assert(!fgFuncletsCreated); |
24380 | #endif // FEATURE_EH_FUNCLETS |
24381 | |
24382 | // Assume we don't need to update the bbPreds lists. |
24383 | assert(!fgComputePredsDone); |
24384 | |
24385 | #ifdef FEATURE_CORECLR |
24386 | bool enableCloning = true; |
24387 | #else |
24388 | // Finally cloning currently doesn't provide sufficient protection |
24389 | // for the cloned code in the presence of thread abort. |
24390 | bool enableCloning = false; |
24391 | #endif // FEATURE_CORECLR |
24392 | |
24393 | #ifdef DEBUG |
24394 | // Allow override to enable/disable. |
24395 | enableCloning = (JitConfig.JitEnableFinallyCloning() == 1); |
24396 | #endif // DEBUG |
24397 | |
24398 | if (!enableCloning) |
24399 | { |
24400 | JITDUMP("Finally cloning disabled.\n" ); |
24401 | return; |
24402 | } |
24403 | |
24404 | if (compHndBBtabCount == 0) |
24405 | { |
24406 | JITDUMP("No EH in this method, no cloning.\n" ); |
24407 | return; |
24408 | } |
24409 | |
24410 | if (opts.MinOpts()) |
24411 | { |
24412 | JITDUMP("Method compiled with minOpts, no cloning.\n" ); |
24413 | return; |
24414 | } |
24415 | |
24416 | if (opts.compDbgCode) |
24417 | { |
24418 | JITDUMP("Method compiled with debug codegen, no cloning.\n" ); |
24419 | return; |
24420 | } |
24421 | |
24422 | #ifdef DEBUG |
24423 | if (verbose) |
24424 | { |
24425 | printf("\n*************** Before fgCloneFinally()\n" ); |
24426 | fgDispBasicBlocks(); |
24427 | fgDispHandlerTab(); |
24428 | printf("\n" ); |
24429 | } |
24430 | |
24431 | // Verify try-finally exits look good before we start. |
24432 | fgDebugCheckTryFinallyExits(); |
24433 | |
24434 | #endif // DEBUG |
24435 | |
24436 | // Look for finallys that are not contained within other handlers, |
24437 | // and which do not themselves contain EH. |
24438 | // |
24439 | // Note these cases potentially could be handled, but are less |
24440 | // obviously profitable and require modification of the handler |
24441 | // table. |
24442 | unsigned XTnum = 0; |
24443 | EHblkDsc* HBtab = compHndBBtab; |
24444 | unsigned cloneCount = 0; |
24445 | for (; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
24446 | { |
24447 | // Check if this is a try/finally |
24448 | if (!HBtab->HasFinallyHandler()) |
24449 | { |
24450 | JITDUMP("EH#%u is not a try-finally; skipping.\n" , XTnum); |
24451 | continue; |
24452 | } |
24453 | |
24454 | // Check if enclosed by another handler. |
24455 | const unsigned enclosingHandlerRegion = ehGetEnclosingHndIndex(XTnum); |
24456 | |
24457 | if (enclosingHandlerRegion != EHblkDsc::NO_ENCLOSING_INDEX) |
24458 | { |
24459 | JITDUMP("EH#%u is enclosed by handler EH#%u; skipping.\n" , XTnum, enclosingHandlerRegion); |
24460 | continue; |
24461 | } |
24462 | |
24463 | bool containsEH = false; |
24464 | unsigned exampleEnclosedHandlerRegion = 0; |
24465 | |
24466 | // Only need to look at lower numbered regions because the |
24467 | // handler table is ordered by nesting. |
24468 | for (unsigned i = 0; i < XTnum; i++) |
24469 | { |
24470 | if (ehGetEnclosingHndIndex(i) == XTnum) |
24471 | { |
24472 | exampleEnclosedHandlerRegion = i; |
24473 | containsEH = true; |
24474 | break; |
24475 | } |
24476 | } |
24477 | |
24478 | if (containsEH) |
24479 | { |
24480 | JITDUMP("Finally for EH#%u encloses handler EH#%u; skipping.\n" , XTnum, exampleEnclosedHandlerRegion); |
24481 | continue; |
24482 | } |
24483 | |
24484 | // Look at blocks involved. |
24485 | BasicBlock* const firstBlock = HBtab->ebdHndBeg; |
24486 | BasicBlock* const lastBlock = HBtab->ebdHndLast; |
24487 | assert(firstBlock != nullptr); |
24488 | assert(lastBlock != nullptr); |
24489 | BasicBlock* nextBlock = lastBlock->bbNext; |
24490 | unsigned regionBBCount = 0; |
24491 | unsigned regionStmtCount = 0; |
24492 | bool hasFinallyRet = false; |
24493 | bool isAllRare = true; |
24494 | bool hasSwitch = false; |
24495 | |
24496 | for (const BasicBlock* block = firstBlock; block != nextBlock; block = block->bbNext) |
24497 | { |
24498 | if (block->bbJumpKind == BBJ_SWITCH) |
24499 | { |
24500 | hasSwitch = true; |
24501 | break; |
24502 | } |
24503 | |
24504 | regionBBCount++; |
24505 | |
24506 | // Should we compute statement cost here, or is it |
24507 | // premature...? For now just count statements I guess. |
24508 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
24509 | { |
24510 | regionStmtCount++; |
24511 | } |
24512 | |
24513 | hasFinallyRet = hasFinallyRet || (block->bbJumpKind == BBJ_EHFINALLYRET); |
24514 | isAllRare = isAllRare && block->isRunRarely(); |
24515 | } |
24516 | |
24517 | // Skip cloning if the finally has a switch. |
24518 | if (hasSwitch) |
24519 | { |
24520 | JITDUMP("Finally in EH#%u has a switch; skipping.\n" , XTnum); |
24521 | continue; |
24522 | } |
24523 | |
24524 | // Skip cloning if the finally must throw. |
24525 | if (!hasFinallyRet) |
24526 | { |
24527 | JITDUMP("Finally in EH#%u does not return; skipping.\n" , XTnum); |
24528 | continue; |
24529 | } |
24530 | |
24531 | // Skip cloning if the finally is rarely run code. |
24532 | if (isAllRare) |
24533 | { |
24534 | JITDUMP("Finally in EH#%u is run rarely; skipping.\n" , XTnum); |
24535 | continue; |
24536 | } |
24537 | |
24538 | // Empirical studies from CoreCLR and CoreFX show that less |
24539 | // that 1% of finally regions have more than 15 |
24540 | // statements. So, to avoid potentially excessive code growth, |
24541 | // only clone finallys that have 15 or fewer statements. |
24542 | const unsigned stmtCountLimit = 15; |
24543 | if (regionStmtCount > stmtCountLimit) |
24544 | { |
24545 | JITDUMP("Finally in EH#%u has %u statements, limit is %u; skipping.\n" , XTnum, regionStmtCount, |
24546 | stmtCountLimit); |
24547 | continue; |
24548 | } |
24549 | |
24550 | JITDUMP("EH#%u is a candidate for finally cloning:" |
24551 | " %u blocks, %u statements\n" , |
24552 | XTnum, regionBBCount, regionStmtCount); |
24553 | |
24554 | // Walk the try region backwards looking for the last block |
24555 | // that transfers control to a callfinally. |
24556 | BasicBlock* const firstTryBlock = HBtab->ebdTryBeg; |
24557 | BasicBlock* const lastTryBlock = HBtab->ebdTryLast; |
24558 | assert(firstTryBlock->getTryIndex() == XTnum); |
24559 | assert(bbInTryRegions(XTnum, lastTryBlock)); |
24560 | BasicBlock* const beforeTryBlock = firstTryBlock->bbPrev; |
24561 | |
24562 | BasicBlock* normalCallFinallyBlock = nullptr; |
24563 | BasicBlock* normalCallFinallyReturn = nullptr; |
24564 | BasicBlock* cloneInsertAfter = HBtab->ebdTryLast; |
24565 | bool tryToRelocateCallFinally = false; |
24566 | |
24567 | for (BasicBlock* block = lastTryBlock; block != beforeTryBlock; block = block->bbPrev) |
24568 | { |
24569 | #if FEATURE_EH_CALLFINALLY_THUNKS |
24570 | // Blocks that transfer control to callfinallies are usually |
24571 | // BBJ_ALWAYS blocks, but the last block of a try may fall |
24572 | // through to a callfinally. |
24573 | BasicBlock* jumpDest = nullptr; |
24574 | |
24575 | if ((block->bbJumpKind == BBJ_NONE) && (block == lastTryBlock)) |
24576 | { |
24577 | jumpDest = block->bbNext; |
24578 | } |
24579 | else if (block->bbJumpKind == BBJ_ALWAYS) |
24580 | { |
24581 | jumpDest = block->bbJumpDest; |
24582 | } |
24583 | |
24584 | if (jumpDest == nullptr) |
24585 | { |
24586 | continue; |
24587 | } |
24588 | |
24589 | // The jumpDest must be a callfinally that in turn invokes the |
24590 | // finally of interest. |
24591 | if (!jumpDest->isBBCallAlwaysPair() || (jumpDest->bbJumpDest != firstBlock)) |
24592 | { |
24593 | continue; |
24594 | } |
24595 | #else |
24596 | // Look for call finally pair directly within the try |
24597 | if (!block->isBBCallAlwaysPair() || (block->bbJumpDest != firstBlock)) |
24598 | { |
24599 | continue; |
24600 | } |
24601 | |
24602 | BasicBlock* const jumpDest = block; |
24603 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
24604 | |
24605 | // Found our block. |
24606 | BasicBlock* const finallyReturnBlock = jumpDest->bbNext; |
24607 | BasicBlock* const postTryFinallyBlock = finallyReturnBlock->bbJumpDest; |
24608 | |
24609 | normalCallFinallyBlock = jumpDest; |
24610 | normalCallFinallyReturn = postTryFinallyBlock; |
24611 | |
24612 | #if FEATURE_EH_CALLFINALLY_THUNKS |
24613 | // When there are callfinally thunks, we don't expect to see the |
24614 | // callfinally within a handler region either. |
24615 | assert(!jumpDest->hasHndIndex()); |
24616 | |
24617 | // Update the clone insertion point to just after the |
24618 | // call always pair. |
24619 | cloneInsertAfter = finallyReturnBlock; |
24620 | |
24621 | // We will consider moving the callfinally so we can fall |
24622 | // through from the try into the clone. |
24623 | tryToRelocateCallFinally = true; |
24624 | |
24625 | JITDUMP("Chose path to clone: try block " FMT_BB " jumps to callfinally at " FMT_BB ";" |
24626 | " the call returns to " FMT_BB " which jumps to " FMT_BB "\n" , |
24627 | block->bbNum, jumpDest->bbNum, finallyReturnBlock->bbNum, postTryFinallyBlock->bbNum); |
24628 | #else |
24629 | JITDUMP("Chose path to clone: try block " FMT_BB " is a callfinally;" |
24630 | " the call returns to " FMT_BB " which jumps to " FMT_BB "\n" , |
24631 | block->bbNum, finallyReturnBlock->bbNum, postTryFinallyBlock->bbNum); |
24632 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
24633 | |
24634 | break; |
24635 | } |
24636 | |
24637 | // If there is no call to the finally, don't clone. |
24638 | if (normalCallFinallyBlock == nullptr) |
24639 | { |
24640 | JITDUMP("EH#%u: no calls from the try to the finally, skipping.\n" , XTnum); |
24641 | continue; |
24642 | } |
24643 | |
24644 | JITDUMP("Will update callfinally block " FMT_BB " to jump to the clone;" |
24645 | " clone will jump to " FMT_BB "\n" , |
24646 | normalCallFinallyBlock->bbNum, normalCallFinallyReturn->bbNum); |
24647 | |
24648 | // If there are multiple callfinallys and we're in the |
24649 | // callfinally thunk model, all the callfinallys are placed |
24650 | // just outside the try region. We'd like our chosen |
24651 | // callfinally to come first after the try, so we can fall out of the try |
24652 | // into the clone. |
24653 | BasicBlock* firstCallFinallyRangeBlock = nullptr; |
24654 | BasicBlock* endCallFinallyRangeBlock = nullptr; |
24655 | ehGetCallFinallyBlockRange(XTnum, &firstCallFinallyRangeBlock, &endCallFinallyRangeBlock); |
24656 | |
24657 | if (tryToRelocateCallFinally) |
24658 | { |
24659 | BasicBlock* firstCallFinallyBlock = nullptr; |
24660 | |
24661 | for (BasicBlock* block = firstCallFinallyRangeBlock; block != endCallFinallyRangeBlock; |
24662 | block = block->bbNext) |
24663 | { |
24664 | if (block->isBBCallAlwaysPair()) |
24665 | { |
24666 | if (block->bbJumpDest == firstBlock) |
24667 | { |
24668 | firstCallFinallyBlock = block; |
24669 | break; |
24670 | } |
24671 | } |
24672 | } |
24673 | |
24674 | // We better have found at least one call finally. |
24675 | assert(firstCallFinallyBlock != nullptr); |
24676 | |
24677 | // If there is more than one callfinally, we'd like to move |
24678 | // the one we are going to retarget to be first in the callfinally, |
24679 | // but only if it's targeted by the last block in the try range. |
24680 | if (firstCallFinallyBlock != normalCallFinallyBlock) |
24681 | { |
24682 | BasicBlock* const placeToMoveAfter = firstCallFinallyBlock->bbPrev; |
24683 | |
24684 | if ((placeToMoveAfter->bbJumpKind == BBJ_ALWAYS) && |
24685 | (placeToMoveAfter->bbJumpDest == normalCallFinallyBlock)) |
24686 | { |
24687 | JITDUMP("Moving callfinally " FMT_BB " to be first in line, before " FMT_BB "\n" , |
24688 | normalCallFinallyBlock->bbNum, firstCallFinallyBlock->bbNum); |
24689 | |
24690 | BasicBlock* const firstToMove = normalCallFinallyBlock; |
24691 | BasicBlock* const lastToMove = normalCallFinallyBlock->bbNext; |
24692 | |
24693 | fgUnlinkRange(firstToMove, lastToMove); |
24694 | fgMoveBlocksAfter(firstToMove, lastToMove, placeToMoveAfter); |
24695 | |
24696 | #ifdef DEBUG |
24697 | // Sanity checks |
24698 | fgDebugCheckBBlist(false, false); |
24699 | fgVerifyHandlerTab(); |
24700 | #endif // DEBUG |
24701 | |
24702 | assert(nextBlock == lastBlock->bbNext); |
24703 | |
24704 | // Update where the callfinally range begins, since we might |
24705 | // have altered this with callfinally rearrangement, and/or |
24706 | // the range begin might have been pretty loose to begin with. |
24707 | firstCallFinallyRangeBlock = normalCallFinallyBlock; |
24708 | } |
24709 | else |
24710 | { |
24711 | JITDUMP("Can't move callfinally " FMT_BB " to be first in line" |
24712 | " -- last finally block " FMT_BB " doesn't jump to it\n" , |
24713 | normalCallFinallyBlock->bbNum, placeToMoveAfter->bbNum); |
24714 | } |
24715 | } |
24716 | } |
24717 | |
24718 | // Clone the finally and retarget the normal return path and |
24719 | // any other path that happens to share that same return |
24720 | // point. For instance a construct like: |
24721 | // |
24722 | // try { } catch { } finally { } |
24723 | // |
24724 | // will have two call finally blocks, one for the normal exit |
24725 | // from the try, and the the other for the exit from the |
24726 | // catch. They'll both pass the same return point which is the |
24727 | // statement after the finally, so they can share the clone. |
24728 | // |
24729 | // Clone the finally body, and splice it into the flow graph |
24730 | // within in the parent region of the try. |
24731 | const unsigned finallyTryIndex = firstBlock->bbTryIndex; |
24732 | BasicBlock* insertAfter = nullptr; |
24733 | BlockToBlockMap blockMap(getAllocator()); |
24734 | bool clonedOk = true; |
24735 | unsigned cloneBBCount = 0; |
24736 | |
24737 | for (BasicBlock* block = firstBlock; block != nextBlock; block = block->bbNext) |
24738 | { |
24739 | BasicBlock* newBlock; |
24740 | |
24741 | if (block == firstBlock) |
24742 | { |
24743 | // Put first cloned finally block into the appropriate |
24744 | // region, somewhere within or after the range of |
24745 | // callfinallys, depending on the EH implementation. |
24746 | const unsigned hndIndex = 0; |
24747 | BasicBlock* const nearBlk = cloneInsertAfter; |
24748 | newBlock = fgNewBBinRegion(block->bbJumpKind, finallyTryIndex, hndIndex, nearBlk); |
24749 | |
24750 | // If the clone ends up just after the finally, adjust |
24751 | // the stopping point for finally traversal. |
24752 | if (newBlock->bbNext == nextBlock) |
24753 | { |
24754 | assert(newBlock->bbPrev == lastBlock); |
24755 | nextBlock = newBlock; |
24756 | } |
24757 | } |
24758 | else |
24759 | { |
24760 | // Put subsequent blocks in the same region... |
24761 | const bool extendRegion = true; |
24762 | newBlock = fgNewBBafter(block->bbJumpKind, insertAfter, extendRegion); |
24763 | } |
24764 | |
24765 | cloneBBCount++; |
24766 | assert(cloneBBCount <= regionBBCount); |
24767 | |
24768 | insertAfter = newBlock; |
24769 | blockMap.Set(block, newBlock); |
24770 | |
24771 | clonedOk = BasicBlock::CloneBlockState(this, newBlock, block); |
24772 | |
24773 | if (!clonedOk) |
24774 | { |
24775 | break; |
24776 | } |
24777 | |
24778 | // Update block flags. Note a block can be both first and last. |
24779 | if (block == firstBlock) |
24780 | { |
24781 | // Mark the block as the start of the cloned finally. |
24782 | newBlock->bbFlags |= BBF_CLONED_FINALLY_BEGIN; |
24783 | } |
24784 | |
24785 | if (block == lastBlock) |
24786 | { |
24787 | // Mark the block as the end of the cloned finally. |
24788 | newBlock->bbFlags |= BBF_CLONED_FINALLY_END; |
24789 | } |
24790 | |
24791 | // Make sure clone block state hasn't munged the try region. |
24792 | assert(newBlock->bbTryIndex == finallyTryIndex); |
24793 | |
24794 | // Cloned handler block is no longer within the handler. |
24795 | newBlock->clearHndIndex(); |
24796 | |
24797 | // Jump dests are set in a post-pass; make sure CloneBlockState hasn't tried to set them. |
24798 | assert(newBlock->bbJumpDest == nullptr); |
24799 | } |
24800 | |
24801 | if (!clonedOk) |
24802 | { |
24803 | // TODO: cleanup the partial clone? |
24804 | JITDUMP("Unable to clone the finally; skipping.\n" ); |
24805 | continue; |
24806 | } |
24807 | |
24808 | // We should have cloned all the finally region blocks. |
24809 | assert(cloneBBCount == regionBBCount); |
24810 | |
24811 | JITDUMP("Cloned finally blocks are: " FMT_BB " ... " FMT_BB "\n" , blockMap[firstBlock]->bbNum, |
24812 | blockMap[lastBlock]->bbNum); |
24813 | |
24814 | // Redirect redirect any branches within the newly-cloned |
24815 | // finally, and any finally returns to jump to the return |
24816 | // point. |
24817 | for (BasicBlock* block = firstBlock; block != nextBlock; block = block->bbNext) |
24818 | { |
24819 | BasicBlock* newBlock = blockMap[block]; |
24820 | |
24821 | if (block->bbJumpKind == BBJ_EHFINALLYRET) |
24822 | { |
24823 | GenTreeStmt* finallyRet = newBlock->lastStmt(); |
24824 | GenTree* finallyRetExpr = finallyRet->gtStmtExpr; |
24825 | assert(finallyRetExpr->gtOper == GT_RETFILT); |
24826 | fgRemoveStmt(newBlock, finallyRet); |
24827 | newBlock->bbJumpKind = BBJ_ALWAYS; |
24828 | newBlock->bbJumpDest = normalCallFinallyReturn; |
24829 | |
24830 | fgAddRefPred(normalCallFinallyReturn, newBlock); |
24831 | } |
24832 | else |
24833 | { |
24834 | optCopyBlkDest(block, newBlock); |
24835 | optRedirectBlock(newBlock, &blockMap); |
24836 | } |
24837 | } |
24838 | |
24839 | // Modify the targeting call finallys to branch to the cloned |
24840 | // finally. Make a note if we see some calls that can't be |
24841 | // retargeted (since they want to return to other places). |
24842 | BasicBlock* const firstCloneBlock = blockMap[firstBlock]; |
24843 | bool retargetedAllCalls = true; |
24844 | BasicBlock* currentBlock = firstCallFinallyRangeBlock; |
24845 | |
24846 | while (currentBlock != endCallFinallyRangeBlock) |
24847 | { |
24848 | BasicBlock* nextBlockToScan = currentBlock->bbNext; |
24849 | |
24850 | if (currentBlock->isBBCallAlwaysPair()) |
24851 | { |
24852 | if (currentBlock->bbJumpDest == firstBlock) |
24853 | { |
24854 | BasicBlock* const leaveBlock = currentBlock->bbNext; |
24855 | BasicBlock* const postTryFinallyBlock = leaveBlock->bbJumpDest; |
24856 | |
24857 | // Note we must retarget all callfinallies that have this |
24858 | // continuation, or we can't clean up the continuation |
24859 | // block properly below, since it will be reachable both |
24860 | // by the cloned finally and by the called finally. |
24861 | if (postTryFinallyBlock == normalCallFinallyReturn) |
24862 | { |
24863 | // This call returns to the expected spot, so |
24864 | // retarget it to branch to the clone. |
24865 | currentBlock->bbJumpDest = firstCloneBlock; |
24866 | currentBlock->bbJumpKind = BBJ_ALWAYS; |
24867 | |
24868 | // Ref count updates. |
24869 | fgAddRefPred(firstCloneBlock, currentBlock); |
24870 | // fgRemoveRefPred(firstBlock, currentBlock); |
24871 | |
24872 | // Delete the leave block, which should be marked as |
24873 | // keep always. |
24874 | assert((leaveBlock->bbFlags & BBF_KEEP_BBJ_ALWAYS) != 0); |
24875 | nextBlock = leaveBlock->bbNext; |
24876 | |
24877 | leaveBlock->bbFlags &= ~BBF_KEEP_BBJ_ALWAYS; |
24878 | fgRemoveBlock(leaveBlock, true); |
24879 | |
24880 | // Make sure iteration isn't going off the deep end. |
24881 | assert(leaveBlock != endCallFinallyRangeBlock); |
24882 | } |
24883 | else |
24884 | { |
24885 | // We can't retarget this call since it |
24886 | // returns somewhere else. |
24887 | JITDUMP("Can't retarget callfinally in " FMT_BB " as it jumps to " FMT_BB ", not " FMT_BB "\n" , |
24888 | currentBlock->bbNum, postTryFinallyBlock->bbNum, normalCallFinallyReturn->bbNum); |
24889 | |
24890 | retargetedAllCalls = false; |
24891 | } |
24892 | } |
24893 | } |
24894 | |
24895 | currentBlock = nextBlockToScan; |
24896 | } |
24897 | |
24898 | // If we retargeted all calls, modify EH descriptor to be |
24899 | // try-fault instead of try-finally, and then non-cloned |
24900 | // finally catch type to be fault. |
24901 | if (retargetedAllCalls) |
24902 | { |
24903 | JITDUMP("All callfinallys retargeted; changing finally to fault.\n" ); |
24904 | HBtab->ebdHandlerType = EH_HANDLER_FAULT_WAS_FINALLY; |
24905 | firstBlock->bbCatchTyp = BBCT_FAULT; |
24906 | } |
24907 | else |
24908 | { |
24909 | JITDUMP("Some callfinallys *not* retargeted, so region must remain as a finally.\n" ); |
24910 | } |
24911 | |
24912 | // Modify first block of cloned finally to be a "normal" block. |
24913 | BasicBlock* firstClonedBlock = blockMap[firstBlock]; |
24914 | firstClonedBlock->bbCatchTyp = BBCT_NONE; |
24915 | |
24916 | // Cleanup the continuation |
24917 | fgCleanupContinuation(normalCallFinallyReturn); |
24918 | |
24919 | // Todo -- mark cloned blocks as a cloned finally.... |
24920 | |
24921 | // Done! |
24922 | JITDUMP("\nDone with EH#%u\n\n" , XTnum); |
24923 | cloneCount++; |
24924 | } |
24925 | |
24926 | if (cloneCount > 0) |
24927 | { |
24928 | JITDUMP("fgCloneFinally() cloned %u finally handlers\n" , cloneCount); |
24929 | fgOptimizedFinally = true; |
24930 | |
24931 | #ifdef DEBUG |
24932 | if (verbose) |
24933 | { |
24934 | printf("\n*************** After fgCloneFinally()\n" ); |
24935 | fgDispBasicBlocks(); |
24936 | fgDispHandlerTab(); |
24937 | printf("\n" ); |
24938 | } |
24939 | |
24940 | fgVerifyHandlerTab(); |
24941 | fgDebugCheckBBlist(false, false); |
24942 | fgDebugCheckTryFinallyExits(); |
24943 | |
24944 | #endif // DEBUG |
24945 | } |
24946 | } |
24947 | |
24948 | #ifdef DEBUG |
24949 | |
24950 | //------------------------------------------------------------------------ |
24951 | // fgDebugCheckTryFinallyExits: validate normal flow from try-finally |
24952 | // or try-fault-was-finally. |
24953 | // |
24954 | // Notes: |
24955 | // |
24956 | // Normal control flow exiting the try block of a try-finally must |
24957 | // pass through the finally. This checker attempts to verify that by |
24958 | // looking at the control flow graph. |
24959 | // |
24960 | // Each path that exits the try of a try-finally (including try-faults |
24961 | // that were optimized into try-finallys by fgCloneFinally) should |
24962 | // thus either execute a callfinally to the associated finally or else |
24963 | // jump to a block with the BBF_CLONED_FINALLY_BEGIN flag set. |
24964 | // |
24965 | // Depending on when this check is done, there may also be an empty |
24966 | // block along the path. |
24967 | // |
24968 | // Depending on the model for invoking finallys, the callfinallies may |
24969 | // lie within the try region (callfinally thunks) or in the enclosing |
24970 | // region. |
24971 | |
24972 | void Compiler::fgDebugCheckTryFinallyExits() |
24973 | { |
24974 | unsigned XTnum = 0; |
24975 | EHblkDsc* HBtab = compHndBBtab; |
24976 | unsigned cloneCount = 0; |
24977 | bool allTryExitsValid = true; |
24978 | for (; XTnum < compHndBBtabCount; XTnum++, HBtab++) |
24979 | { |
24980 | const EHHandlerType handlerType = HBtab->ebdHandlerType; |
24981 | const bool isFinally = (handlerType == EH_HANDLER_FINALLY); |
24982 | const bool wasFinally = (handlerType == EH_HANDLER_FAULT_WAS_FINALLY); |
24983 | |
24984 | // Screen out regions that are or were not finallys. |
24985 | if (!isFinally && !wasFinally) |
24986 | { |
24987 | continue; |
24988 | } |
24989 | |
24990 | // Walk blocks of the try, looking for normal control flow to |
24991 | // an ancestor region. |
24992 | |
24993 | BasicBlock* const firstTryBlock = HBtab->ebdTryBeg; |
24994 | BasicBlock* const lastTryBlock = HBtab->ebdTryLast; |
24995 | assert(firstTryBlock->getTryIndex() <= XTnum); |
24996 | assert(lastTryBlock->getTryIndex() <= XTnum); |
24997 | BasicBlock* const afterTryBlock = lastTryBlock->bbNext; |
24998 | BasicBlock* const finallyBlock = isFinally ? HBtab->ebdHndBeg : nullptr; |
24999 | |
25000 | for (BasicBlock* block = firstTryBlock; block != afterTryBlock; block = block->bbNext) |
25001 | { |
25002 | // Only check the directly contained blocks. |
25003 | assert(block->hasTryIndex()); |
25004 | |
25005 | if (block->getTryIndex() != XTnum) |
25006 | { |
25007 | continue; |
25008 | } |
25009 | |
25010 | // Look at each of the normal control flow possibilities. |
25011 | const unsigned numSuccs = block->NumSucc(); |
25012 | |
25013 | for (unsigned i = 0; i < numSuccs; i++) |
25014 | { |
25015 | BasicBlock* const succBlock = block->GetSucc(i); |
25016 | |
25017 | if (succBlock->hasTryIndex() && succBlock->getTryIndex() <= XTnum) |
25018 | { |
25019 | // Successor does not exit this try region. |
25020 | continue; |
25021 | } |
25022 | |
25023 | #if FEATURE_EH_CALLFINALLY_THUNKS |
25024 | |
25025 | // When there are callfinally thunks, callfinallies |
25026 | // logically "belong" to a child region and the exit |
25027 | // path validity will be checked when looking at the |
25028 | // try blocks in that region. |
25029 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
25030 | { |
25031 | continue; |
25032 | } |
25033 | |
25034 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
25035 | |
25036 | // Now we know block lies directly within the try of a |
25037 | // try-finally, and succBlock is in an enclosing |
25038 | // region (possibly the method region). So this path |
25039 | // represents flow out of the try and should be |
25040 | // checked. |
25041 | // |
25042 | // There are various ways control can properly leave a |
25043 | // try-finally (or try-fault-was-finally): |
25044 | // |
25045 | // (a1) via a jump to a callfinally (only for finallys, only for call finally thunks) |
25046 | // (a2) via a callfinally (only for finallys, only for !call finally thunks) |
25047 | // (b) via a jump to a begin finally clone block |
25048 | // (c) via a jump to an empty block to (b) |
25049 | // (d) via a fallthrough to an empty block to (b) |
25050 | // (e) via the always half of a callfinally pair |
25051 | // (f) via an always jump clonefinally exit |
25052 | bool isCallToFinally = false; |
25053 | |
25054 | #if FEATURE_EH_CALLFINALLY_THUNKS |
25055 | if (succBlock->bbJumpKind == BBJ_CALLFINALLY) |
25056 | { |
25057 | // case (a1) |
25058 | isCallToFinally = isFinally && (succBlock->bbJumpDest == finallyBlock); |
25059 | } |
25060 | #else |
25061 | if (block->bbJumpKind == BBJ_CALLFINALLY) |
25062 | { |
25063 | // case (a2) |
25064 | isCallToFinally = isFinally && (block->bbJumpDest == finallyBlock); |
25065 | } |
25066 | #endif // FEATURE_EH_CALLFINALLY_THUNKS |
25067 | |
25068 | bool isJumpToClonedFinally = false; |
25069 | |
25070 | if (succBlock->bbFlags & BBF_CLONED_FINALLY_BEGIN) |
25071 | { |
25072 | // case (b) |
25073 | isJumpToClonedFinally = true; |
25074 | } |
25075 | else if (succBlock->bbJumpKind == BBJ_ALWAYS) |
25076 | { |
25077 | if (succBlock->isEmpty()) |
25078 | { |
25079 | // case (c) |
25080 | BasicBlock* const succSuccBlock = succBlock->bbJumpDest; |
25081 | |
25082 | if (succSuccBlock->bbFlags & BBF_CLONED_FINALLY_BEGIN) |
25083 | { |
25084 | isJumpToClonedFinally = true; |
25085 | } |
25086 | } |
25087 | } |
25088 | else if (succBlock->bbJumpKind == BBJ_NONE) |
25089 | { |
25090 | if (succBlock->isEmpty()) |
25091 | { |
25092 | BasicBlock* const succSuccBlock = succBlock->bbNext; |
25093 | |
25094 | // case (d) |
25095 | if (succSuccBlock->bbFlags & BBF_CLONED_FINALLY_BEGIN) |
25096 | { |
25097 | isJumpToClonedFinally = true; |
25098 | } |
25099 | } |
25100 | } |
25101 | |
25102 | bool isReturnFromFinally = false; |
25103 | |
25104 | // Case (e). Ideally we'd have something stronger to |
25105 | // check here -- eg that we are returning from a call |
25106 | // to the right finally -- but there are odd cases |
25107 | // like orphaned second halves of callfinally pairs |
25108 | // that we need to tolerate. |
25109 | if (block->bbFlags & BBF_KEEP_BBJ_ALWAYS) |
25110 | { |
25111 | isReturnFromFinally = true; |
25112 | } |
25113 | |
25114 | // Case (f) |
25115 | if (block->bbFlags & BBF_CLONED_FINALLY_END) |
25116 | { |
25117 | isReturnFromFinally = true; |
25118 | } |
25119 | |
25120 | const bool thisExitValid = isCallToFinally || isJumpToClonedFinally || isReturnFromFinally; |
25121 | |
25122 | if (!thisExitValid) |
25123 | { |
25124 | JITDUMP("fgCheckTryFinallyExitS: EH#%u exit via " FMT_BB " -> " FMT_BB " is invalid\n" , XTnum, |
25125 | block->bbNum, succBlock->bbNum); |
25126 | } |
25127 | |
25128 | allTryExitsValid = allTryExitsValid & thisExitValid; |
25129 | } |
25130 | } |
25131 | } |
25132 | |
25133 | if (!allTryExitsValid) |
25134 | { |
25135 | JITDUMP("fgCheckTryFinallyExits: method contains invalid try exit paths\n" ); |
25136 | assert(allTryExitsValid); |
25137 | } |
25138 | } |
25139 | |
25140 | #endif // DEBUG |
25141 | |
25142 | //------------------------------------------------------------------------ |
25143 | // fgCleanupContinuation: cleanup a finally continuation after a |
25144 | // finally is removed or converted to normal control flow. |
25145 | // |
25146 | // Notes: |
25147 | // The continuation is the block targeted by the second half of |
25148 | // a callfinally/always pair. |
25149 | // |
25150 | // Used by finally cloning, empty try removal, and empty |
25151 | // finally removal. |
25152 | // |
25153 | // BBF_FINALLY_TARGET bbFlag is left unchanged by this method |
25154 | // since it cannot be incrementally updated. Proper updates happen |
25155 | // when fgUpdateFinallyTargetFlags runs after all finally optimizations. |
25156 | |
25157 | void Compiler::fgCleanupContinuation(BasicBlock* continuation) |
25158 | { |
25159 | // The continuation may be a finalStep block. |
25160 | // It is now a normal block, so clear the special keep |
25161 | // always flag. |
25162 | continuation->bbFlags &= ~BBF_KEEP_BBJ_ALWAYS; |
25163 | |
25164 | #if !FEATURE_EH_FUNCLETS |
25165 | // Remove the GT_END_LFIN from the continuation, |
25166 | // Note we only expect to see one such statement. |
25167 | bool foundEndLFin = false; |
25168 | for (GenTreeStmt* stmt = continuation->firstStmt(); stmt != nullptr; stmt = stmt->gtNextStmt) |
25169 | { |
25170 | GenTree* expr = stmt->gtStmtExpr; |
25171 | if (expr->gtOper == GT_END_LFIN) |
25172 | { |
25173 | assert(!foundEndLFin); |
25174 | fgRemoveStmt(continuation, stmt); |
25175 | foundEndLFin = true; |
25176 | } |
25177 | } |
25178 | assert(foundEndLFin); |
25179 | #endif // !FEATURE_EH_FUNCLETS |
25180 | } |
25181 | |
25182 | //------------------------------------------------------------------------ |
25183 | // fgUpdateFinallyTargetFlags: recompute BBF_FINALLY_TARGET bits for all blocks |
25184 | // after finally optimizations have run. |
25185 | |
25186 | void Compiler::fgUpdateFinallyTargetFlags() |
25187 | { |
25188 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25189 | |
25190 | // Any fixup required? |
25191 | if (!fgOptimizedFinally) |
25192 | { |
25193 | JITDUMP("In fgUpdateFinallyTargetFlags - no finally opts, no fixup required\n" ); |
25194 | return; |
25195 | } |
25196 | |
25197 | JITDUMP("In fgUpdateFinallyTargetFlags, updating finally target flag bits\n" ); |
25198 | |
25199 | fgClearAllFinallyTargetBits(); |
25200 | fgAddFinallyTargetFlags(); |
25201 | |
25202 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25203 | } |
25204 | |
25205 | //------------------------------------------------------------------------ |
25206 | // fgClearAllFinallyTargetBits: Clear all BBF_FINALLY_TARGET bits; these will need to be |
25207 | // recomputed later. |
25208 | // |
25209 | void Compiler::fgClearAllFinallyTargetBits() |
25210 | { |
25211 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25212 | |
25213 | JITDUMP("*************** In fgClearAllFinallyTargetBits()\n" ); |
25214 | |
25215 | // Note that we clear the flags even if there are no EH clauses (compHndBBtabCount == 0) |
25216 | // in case bits are left over from EH clauses being deleted. |
25217 | |
25218 | // Walk all blocks, and reset the target bits. |
25219 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
25220 | { |
25221 | block->bbFlags &= ~BBF_FINALLY_TARGET; |
25222 | } |
25223 | |
25224 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25225 | } |
25226 | |
25227 | //------------------------------------------------------------------------ |
25228 | // fgAddFinallyTargetFlags: Add BBF_FINALLY_TARGET bits to all finally targets. |
25229 | // |
25230 | void Compiler::fgAddFinallyTargetFlags() |
25231 | { |
25232 | #if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25233 | |
25234 | JITDUMP("*************** In fgAddFinallyTargetFlags()\n" ); |
25235 | |
25236 | if (compHndBBtabCount == 0) |
25237 | { |
25238 | JITDUMP("No EH in this method, no flags to set.\n" ); |
25239 | return; |
25240 | } |
25241 | |
25242 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
25243 | { |
25244 | if (block->isBBCallAlwaysPair()) |
25245 | { |
25246 | BasicBlock* const leave = block->bbNext; |
25247 | BasicBlock* const continuation = leave->bbJumpDest; |
25248 | |
25249 | if ((continuation->bbFlags & BBF_FINALLY_TARGET) == 0) |
25250 | { |
25251 | JITDUMP("Found callfinally " FMT_BB "; setting finally target bit on " FMT_BB "\n" , block->bbNum, |
25252 | continuation->bbNum); |
25253 | |
25254 | continuation->bbFlags |= BBF_FINALLY_TARGET; |
25255 | } |
25256 | } |
25257 | } |
25258 | #endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_) |
25259 | } |
25260 | |
25261 | //------------------------------------------------------------------------ |
25262 | // fgMergeFinallyChains: tail merge finally invocations |
25263 | // |
25264 | // Notes: |
25265 | // |
25266 | // Looks for common suffixes in chains of finally invocations |
25267 | // (callfinallys) and merges them. These typically arise from |
25268 | // try-finallys where there are multiple exit points in the try |
25269 | // that have the same target. |
25270 | |
25271 | void Compiler::fgMergeFinallyChains() |
25272 | { |
25273 | JITDUMP("\n*************** In fgMergeFinallyChains()\n" ); |
25274 | |
25275 | #if FEATURE_EH_FUNCLETS |
25276 | // We need to do this transformation before funclets are created. |
25277 | assert(!fgFuncletsCreated); |
25278 | #endif // FEATURE_EH_FUNCLETS |
25279 | |
25280 | // Assume we don't need to update the bbPreds lists. |
25281 | assert(!fgComputePredsDone); |
25282 | |
25283 | if (compHndBBtabCount == 0) |
25284 | { |
25285 | JITDUMP("No EH in this method, nothing to merge.\n" ); |
25286 | return; |
25287 | } |
25288 | |
25289 | if (opts.MinOpts()) |
25290 | { |
25291 | JITDUMP("Method compiled with minOpts, no merging.\n" ); |
25292 | return; |
25293 | } |
25294 | |
25295 | if (opts.compDbgCode) |
25296 | { |
25297 | JITDUMP("Method compiled with debug codegen, no merging.\n" ); |
25298 | return; |
25299 | } |
25300 | |
25301 | bool enableMergeFinallyChains = true; |
25302 | |
25303 | #if !FEATURE_EH_FUNCLETS |
25304 | // For non-funclet models (x86) the callfinallys may contain |
25305 | // statements and the continuations contain GT_END_LFINs. So no |
25306 | // merging is possible until the GT_END_LFIN blocks can be merged |
25307 | // and merging is not safe unless the callfinally blocks are split. |
25308 | JITDUMP("EH using non-funclet model; merging not yet implemented.\n" ); |
25309 | enableMergeFinallyChains = false; |
25310 | #endif // !FEATURE_EH_FUNCLETS |
25311 | |
25312 | #if !FEATURE_EH_CALLFINALLY_THUNKS |
25313 | // For non-thunk EH models (arm32) the callfinallys may contain |
25314 | // statements, and merging is not safe unless the callfinally |
25315 | // blocks are split. |
25316 | JITDUMP("EH using non-callfinally thunk model; merging not yet implemented.\n" ); |
25317 | enableMergeFinallyChains = false; |
25318 | #endif |
25319 | |
25320 | if (!enableMergeFinallyChains) |
25321 | { |
25322 | JITDUMP("fgMergeFinallyChains disabled\n" ); |
25323 | return; |
25324 | } |
25325 | |
25326 | #ifdef DEBUG |
25327 | if (verbose) |
25328 | { |
25329 | printf("\n*************** Before fgMergeFinallyChains()\n" ); |
25330 | fgDispBasicBlocks(); |
25331 | fgDispHandlerTab(); |
25332 | printf("\n" ); |
25333 | } |
25334 | #endif // DEBUG |
25335 | |
25336 | // Look for finallys. |
25337 | bool hasFinally = false; |
25338 | for (unsigned XTnum = 0; XTnum < compHndBBtabCount; XTnum++) |
25339 | { |
25340 | EHblkDsc* const HBtab = &compHndBBtab[XTnum]; |
25341 | |
25342 | // Check if this is a try/finally. |
25343 | if (HBtab->HasFinallyHandler()) |
25344 | { |
25345 | hasFinally = true; |
25346 | break; |
25347 | } |
25348 | } |
25349 | |
25350 | if (!hasFinally) |
25351 | { |
25352 | JITDUMP("Method does not have any try-finallys; no merging.\n" ); |
25353 | return; |
25354 | } |
25355 | |
25356 | // Process finallys from outside in, merging as we go. This gives |
25357 | // us the desired bottom-up tail merge order for callfinally |
25358 | // chains: outer merges may enable inner merges. |
25359 | bool canMerge = false; |
25360 | bool didMerge = false; |
25361 | BlockToBlockMap continuationMap(getAllocator()); |
25362 | |
25363 | // Note XTnum is signed here so we can count down. |
25364 | for (int XTnum = compHndBBtabCount - 1; XTnum >= 0; XTnum--) |
25365 | { |
25366 | EHblkDsc* const HBtab = &compHndBBtab[XTnum]; |
25367 | |
25368 | // Screen out non-finallys |
25369 | if (!HBtab->HasFinallyHandler()) |
25370 | { |
25371 | continue; |
25372 | } |
25373 | |
25374 | JITDUMP("Examining callfinallys for EH#%d.\n" , XTnum); |
25375 | |
25376 | // Find all the callfinallys that invoke this finally. |
25377 | BasicBlock* firstCallFinallyRangeBlock = nullptr; |
25378 | BasicBlock* endCallFinallyRangeBlock = nullptr; |
25379 | ehGetCallFinallyBlockRange(XTnum, &firstCallFinallyRangeBlock, &endCallFinallyRangeBlock); |
25380 | |
25381 | // Clear out any stale entries in the continuation map |
25382 | continuationMap.RemoveAll(); |
25383 | |
25384 | // Build a map from each continuation to the "canonical" |
25385 | // callfinally for that continuation. |
25386 | unsigned callFinallyCount = 0; |
25387 | BasicBlock* const beginHandlerBlock = HBtab->ebdHndBeg; |
25388 | |
25389 | for (BasicBlock* currentBlock = firstCallFinallyRangeBlock; currentBlock != endCallFinallyRangeBlock; |
25390 | currentBlock = currentBlock->bbNext) |
25391 | { |
25392 | // Ignore "retless" callfinallys (where the finally doesn't return). |
25393 | if (currentBlock->isBBCallAlwaysPair() && (currentBlock->bbJumpDest == beginHandlerBlock)) |
25394 | { |
25395 | // The callfinally must be empty, so that we can |
25396 | // safely retarget anything that branches here to |
25397 | // another callfinally with the same contiuation. |
25398 | assert(currentBlock->isEmpty()); |
25399 | |
25400 | // This callfinally invokes the finally for this try. |
25401 | callFinallyCount++; |
25402 | |
25403 | // Locate the continuation |
25404 | BasicBlock* const leaveBlock = currentBlock->bbNext; |
25405 | BasicBlock* const continuationBlock = leaveBlock->bbJumpDest; |
25406 | |
25407 | // If this is the first time we've seen this |
25408 | // continuation, register this callfinally as the |
25409 | // canonical one. |
25410 | if (!continuationMap.Lookup(continuationBlock)) |
25411 | { |
25412 | continuationMap.Set(continuationBlock, currentBlock); |
25413 | } |
25414 | } |
25415 | } |
25416 | |
25417 | // Now we've seen all the callfinallys and their continuations. |
25418 | JITDUMP("EH#%i has %u callfinallys, %u continuations\n" , XTnum, callFinallyCount, continuationMap.GetCount()); |
25419 | |
25420 | // If there are more callfinallys than continuations, some of the |
25421 | // callfinallys must share a continuation, and we can merge them. |
25422 | const bool tryMerge = callFinallyCount > continuationMap.GetCount(); |
25423 | |
25424 | if (!tryMerge) |
25425 | { |
25426 | JITDUMP("EH#%i does not have any mergeable callfinallys\n" , XTnum); |
25427 | continue; |
25428 | } |
25429 | |
25430 | canMerge = true; |
25431 | |
25432 | // Walk the callfinally region, looking for blocks that jump |
25433 | // to a callfinally that invokes this try's finally, and make |
25434 | // sure they all jump to the appropriate canonical |
25435 | // callfinally. |
25436 | for (BasicBlock* currentBlock = firstCallFinallyRangeBlock; currentBlock != endCallFinallyRangeBlock; |
25437 | currentBlock = currentBlock->bbNext) |
25438 | { |
25439 | bool merged = fgRetargetBranchesToCanonicalCallFinally(currentBlock, beginHandlerBlock, continuationMap); |
25440 | didMerge = didMerge || merged; |
25441 | } |
25442 | } |
25443 | |
25444 | if (!canMerge) |
25445 | { |
25446 | JITDUMP("Method had try-finallys, but did not have any mergeable finally chains.\n" ); |
25447 | } |
25448 | else |
25449 | { |
25450 | if (didMerge) |
25451 | { |
25452 | JITDUMP("Method had mergeable try-finallys and some callfinally merges were performed.\n" ); |
25453 | |
25454 | #if DEBUG |
25455 | if (verbose) |
25456 | { |
25457 | printf("\n*************** After fgMergeFinallyChains()\n" ); |
25458 | fgDispBasicBlocks(); |
25459 | fgDispHandlerTab(); |
25460 | printf("\n" ); |
25461 | } |
25462 | |
25463 | #endif // DEBUG |
25464 | } |
25465 | else |
25466 | { |
25467 | // We may not end up doing any merges, because we are only |
25468 | // merging continuations for callfinallys that can |
25469 | // actually be invoked, and the importer may leave |
25470 | // unreachable callfinallys around (for instance, if it |
25471 | // is forced to re-import a leave). |
25472 | JITDUMP("Method had mergeable try-finallys but no callfinally merges were performed,\n" |
25473 | "likely the non-canonical callfinallys were unreachable\n" ); |
25474 | } |
25475 | } |
25476 | } |
25477 | |
25478 | //------------------------------------------------------------------------ |
25479 | // fgRetargetBranchesToCanonicalCallFinally: find non-canonical callfinally |
25480 | // invocations and make them canonical. |
25481 | // |
25482 | // Arguments: |
25483 | // block -- block to examine for call finally invocation |
25484 | // handler -- start of the finally region for the try |
25485 | // continuationMap -- map giving the canonical callfinally for |
25486 | // each continuation |
25487 | // |
25488 | // Returns: |
25489 | // true iff the block's branch was retargeted. |
25490 | |
25491 | bool Compiler::fgRetargetBranchesToCanonicalCallFinally(BasicBlock* block, |
25492 | BasicBlock* handler, |
25493 | BlockToBlockMap& continuationMap) |
25494 | { |
25495 | // We expect callfinallys to be invoked by a BBJ_ALWAYS at this |
25496 | // stage in compilation. |
25497 | if (block->bbJumpKind != BBJ_ALWAYS) |
25498 | { |
25499 | // Possible paranoia assert here -- no flow successor of |
25500 | // this block should be a callfinally for this try. |
25501 | return false; |
25502 | } |
25503 | |
25504 | // Screen out cases that are not callfinallys to the right |
25505 | // handler. |
25506 | BasicBlock* const callFinally = block->bbJumpDest; |
25507 | |
25508 | if (!callFinally->isBBCallAlwaysPair()) |
25509 | { |
25510 | return false; |
25511 | } |
25512 | |
25513 | if (callFinally->bbJumpDest != handler) |
25514 | { |
25515 | return false; |
25516 | } |
25517 | |
25518 | // Ok, this is a callfinally that invokes the right handler. |
25519 | // Get its continuation. |
25520 | BasicBlock* const leaveBlock = callFinally->bbNext; |
25521 | BasicBlock* const continuationBlock = leaveBlock->bbJumpDest; |
25522 | |
25523 | // Find the canonical callfinally for that continuation. |
25524 | BasicBlock* const canonicalCallFinally = continuationMap[continuationBlock]; |
25525 | assert(canonicalCallFinally != nullptr); |
25526 | |
25527 | // If the block already jumps to the canoncial call finally, no work needed. |
25528 | if (block->bbJumpDest == canonicalCallFinally) |
25529 | { |
25530 | JITDUMP(FMT_BB " already canonical\n" , block->bbNum); |
25531 | return false; |
25532 | } |
25533 | |
25534 | // Else, retarget it so that it does... |
25535 | JITDUMP("Redirecting branch in " FMT_BB " from " FMT_BB " to " FMT_BB ".\n" , block->bbNum, callFinally->bbNum, |
25536 | canonicalCallFinally->bbNum); |
25537 | |
25538 | block->bbJumpDest = canonicalCallFinally; |
25539 | fgAddRefPred(canonicalCallFinally, block); |
25540 | assert(callFinally->bbRefs > 0); |
25541 | fgRemoveRefPred(callFinally, block); |
25542 | |
25543 | return true; |
25544 | } |
25545 | |
25546 | //------------------------------------------------------------------------ |
25547 | // fgMeasureIR: count and return the number of IR nodes in the function. |
25548 | // |
25549 | unsigned Compiler::fgMeasureIR() |
25550 | { |
25551 | unsigned nodeCount = 0; |
25552 | |
25553 | for (BasicBlock* block = fgFirstBB; block != nullptr; block = block->bbNext) |
25554 | { |
25555 | if (!block->IsLIR()) |
25556 | { |
25557 | for (GenTreeStmt* stmt = block->firstStmt(); stmt != nullptr; stmt = stmt->getNextStmt()) |
25558 | { |
25559 | fgWalkTreePre(&stmt->gtStmtExpr, |
25560 | [](GenTree** slot, fgWalkData* data) -> Compiler::fgWalkResult { |
25561 | (*reinterpret_cast<unsigned*>(data->pCallbackData))++; |
25562 | return Compiler::WALK_CONTINUE; |
25563 | }, |
25564 | &nodeCount); |
25565 | } |
25566 | } |
25567 | else |
25568 | { |
25569 | for (GenTree* node : LIR::AsRange(block)) |
25570 | { |
25571 | nodeCount++; |
25572 | } |
25573 | } |
25574 | } |
25575 | |
25576 | return nodeCount; |
25577 | } |
25578 | |
25579 | //------------------------------------------------------------------------ |
25580 | // fgCompDominatedByExceptionalEntryBlocks: compute blocks that are |
25581 | // dominated by not normal entry. |
25582 | // |
25583 | void Compiler::fgCompDominatedByExceptionalEntryBlocks() |
25584 | { |
25585 | assert(fgEnterBlksSetValid); |
25586 | if (BlockSetOps::Count(this, fgEnterBlks) != 1) // There are exception entries. |
25587 | { |
25588 | for (unsigned i = 1; i <= fgBBNumMax; ++i) |
25589 | { |
25590 | BasicBlock* block = fgBBInvPostOrder[i]; |
25591 | if (BlockSetOps::IsMember(this, fgEnterBlks, block->bbNum)) |
25592 | { |
25593 | if (fgFirstBB != block) // skip the normal entry. |
25594 | { |
25595 | block->SetDominatedByExceptionalEntryFlag(); |
25596 | } |
25597 | } |
25598 | else if (block->bbIDom->IsDominatedByExceptionalEntryFlag()) |
25599 | { |
25600 | block->SetDominatedByExceptionalEntryFlag(); |
25601 | } |
25602 | } |
25603 | } |
25604 | } |
25605 | |
25606 | //------------------------------------------------------------------------ |
25607 | // fgNeedReturnSpillTemp: Answers does the inlinee need to spill all returns |
25608 | // as a temp. |
25609 | // |
25610 | // Return Value: |
25611 | // true if the inlinee has to spill return exprs. |
25612 | bool Compiler::fgNeedReturnSpillTemp() |
25613 | { |
25614 | assert(compIsForInlining()); |
25615 | return (lvaInlineeReturnSpillTemp != BAD_VAR_NUM); |
25616 | } |
25617 | |
25618 | //------------------------------------------------------------------------ |
25619 | // fgUseThrowHelperBlocks: Determinate does compiler use throw helper blocks. |
25620 | // |
25621 | // Note: |
25622 | // For debuggable code, codegen will generate the 'throw' code inline. |
25623 | // Return Value: |
25624 | // true if 'throw' helper block should be created. |
25625 | bool Compiler::fgUseThrowHelperBlocks() |
25626 | { |
25627 | return !opts.compDbgCode; |
25628 | } |
25629 | |