1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /* |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
8 | |
9 | Linear Scan Register Allocation |
10 | |
11 | a.k.a. LSRA |
12 | |
13 | Preconditions |
14 | - All register requirements are expressed in the code stream, either as destination |
15 | registers of tree nodes, or as internal registers. These requirements are |
16 | expressed in the RefPositions built for each node by BuildNode(), which includes: |
17 | - The register uses and definitions. |
18 | - The register restrictions (candidates) of the target register, both from itself, |
19 | as producer of the value (dstCandidates), and from its consuming node (srcCandidates). |
20 | Note that when we talk about srcCandidates we are referring to the destination register |
21 | (not any of its sources). |
22 | - The number (internalCount) of registers required, and their register restrictions (internalCandidates). |
23 | These are neither inputs nor outputs of the node, but used in the sequence of code generated for the tree. |
24 | "Internal registers" are registers used during the code sequence generated for the node. |
25 | The register lifetimes must obey the following lifetime model: |
26 | - First, any internal registers are defined. |
27 | - Next, any source registers are used (and are then freed if they are last use and are not identified as |
28 | "delayRegFree"). |
29 | - Next, the internal registers are used (and are then freed). |
30 | - Next, any registers in the kill set for the instruction are killed. |
31 | - Next, the destination register(s) are defined (multiple destination registers are only supported on ARM) |
32 | - Finally, any "delayRegFree" source registers are freed. |
33 | There are several things to note about this order: |
34 | - The internal registers will never overlap any use, but they may overlap a destination register. |
35 | - Internal registers are never live beyond the node. |
36 | - The "delayRegFree" annotation is used for instructions that are only available in a Read-Modify-Write form. |
37 | That is, the destination register is one of the sources. In this case, we must not use the same register for |
38 | the non-RMW operand as for the destination. |
39 | |
40 | Overview (doLinearScan): |
41 | - Walk all blocks, building intervals and RefPositions (buildIntervals) |
42 | - Allocate registers (allocateRegisters) |
43 | - Annotate nodes with register assignments (resolveRegisters) |
44 | - Add move nodes as needed to resolve conflicting register |
45 | assignments across non-adjacent edges. (resolveEdges, called from resolveRegisters) |
46 | |
47 | Postconditions: |
48 | |
49 | Tree nodes (GenTree): |
50 | - GenTree::gtRegNum (and gtRegPair for ARM) is annotated with the register |
51 | assignment for a node. If the node does not require a register, it is |
52 | annotated as such (gtRegNum = REG_NA). For a variable definition or interior |
53 | tree node (an "implicit" definition), this is the register to put the result. |
54 | For an expression use, this is the place to find the value that has previously |
55 | been computed. |
56 | - In most cases, this register must satisfy the constraints specified for the RefPosition. |
57 | - In some cases, this is difficult: |
58 | - If a lclVar node currently lives in some register, it may not be desirable to move it |
59 | (i.e. its current location may be desirable for future uses, e.g. if it's a callee save register, |
60 | but needs to be in a specific arg register for a call). |
61 | - In other cases there may be conflicts on the restrictions placed by the defining node and the node which |
62 | consumes it |
63 | - If such a node is constrained to a single fixed register (e.g. an arg register, or a return from a call), |
64 | then LSRA is free to annotate the node with a different register. The code generator must issue the appropriate |
65 | move. |
66 | - However, if such a node is constrained to a set of registers, and its current location does not satisfy that |
67 | requirement, LSRA must insert a GT_COPY node between the node and its parent. The gtRegNum on the GT_COPY node |
68 | must satisfy the register requirement of the parent. |
69 | - GenTree::gtRsvdRegs has a set of registers used for internal temps. |
70 | - A tree node is marked GTF_SPILL if the tree node must be spilled by the code generator after it has been |
71 | evaluated. |
72 | - LSRA currently does not set GTF_SPILLED on such nodes, because it caused problems in the old code generator. |
73 | In the new backend perhaps this should change (see also the note below under CodeGen). |
74 | - A tree node is marked GTF_SPILLED if it is a lclVar that must be reloaded prior to use. |
75 | - The register (gtRegNum) on the node indicates the register to which it must be reloaded. |
76 | - For lclVar nodes, since the uses and defs are distinct tree nodes, it is always possible to annotate the node |
77 | with the register to which the variable must be reloaded. |
78 | - For other nodes, since they represent both the def and use, if the value must be reloaded to a different |
79 | register, LSRA must insert a GT_RELOAD node in order to specify the register to which it should be reloaded. |
80 | |
81 | Local variable table (LclVarDsc): |
82 | - LclVarDsc::lvRegister is set to true if a local variable has the |
83 | same register assignment for its entire lifetime. |
84 | - LclVarDsc::lvRegNum / lvOtherReg: these are initialized to their |
85 | first value at the end of LSRA (it looks like lvOtherReg isn't? |
86 | This is probably a bug (ARM)). Codegen will set them to their current value |
87 | as it processes the trees, since a variable can (now) be assigned different |
88 | registers over its lifetimes. |
89 | |
90 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
91 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
92 | */ |
93 | |
94 | #include "jitpch.h" |
95 | #ifdef _MSC_VER |
96 | #pragma hdrstop |
97 | #endif |
98 | |
99 | #include "lsra.h" |
100 | |
101 | #ifdef DEBUG |
102 | const char* LinearScan::resolveTypeName[] = {"Split" , "Join" , "Critical" , "SharedCritical" }; |
103 | #endif // DEBUG |
104 | |
105 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
106 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
107 | XX XX |
108 | XX Small Helper functions XX |
109 | XX XX |
110 | XX XX |
111 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
112 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
113 | */ |
114 | |
115 | //-------------------------------------------------------------- |
116 | // lsraAssignRegToTree: Assign the given reg to tree node. |
117 | // |
118 | // Arguments: |
119 | // tree - Gentree node |
120 | // reg - register to be assigned |
121 | // regIdx - register idx, if tree is a multi-reg call node. |
122 | // regIdx will be zero for single-reg result producing tree nodes. |
123 | // |
124 | // Return Value: |
125 | // None |
126 | // |
127 | void lsraAssignRegToTree(GenTree* tree, regNumber reg, unsigned regIdx) |
128 | { |
129 | if (regIdx == 0) |
130 | { |
131 | tree->gtRegNum = reg; |
132 | } |
133 | #if !defined(_TARGET_64BIT_) |
134 | else if (tree->OperIsMultiRegOp()) |
135 | { |
136 | assert(regIdx == 1); |
137 | GenTreeMultiRegOp* mul = tree->AsMultiRegOp(); |
138 | mul->gtOtherReg = reg; |
139 | } |
140 | #endif // _TARGET_64BIT_ |
141 | #if FEATURE_MULTIREG_RET |
142 | else if (tree->OperGet() == GT_COPY) |
143 | { |
144 | assert(regIdx == 1); |
145 | GenTreeCopyOrReload* copy = tree->AsCopyOrReload(); |
146 | copy->gtOtherRegs[0] = (regNumberSmall)reg; |
147 | } |
148 | #endif // FEATURE_MULTIREG_RET |
149 | #if FEATURE_ARG_SPLIT |
150 | else if (tree->OperIsPutArgSplit()) |
151 | { |
152 | GenTreePutArgSplit* putArg = tree->AsPutArgSplit(); |
153 | putArg->SetRegNumByIdx(reg, regIdx); |
154 | } |
155 | #endif // FEATURE_ARG_SPLIT |
156 | else |
157 | { |
158 | assert(tree->IsMultiRegCall()); |
159 | GenTreeCall* call = tree->AsCall(); |
160 | call->SetRegNumByIdx(reg, regIdx); |
161 | } |
162 | } |
163 | |
164 | //------------------------------------------------------------- |
165 | // getWeight: Returns the weight of the RefPosition. |
166 | // |
167 | // Arguments: |
168 | // refPos - ref position |
169 | // |
170 | // Returns: |
171 | // Weight of ref position. |
172 | unsigned LinearScan::getWeight(RefPosition* refPos) |
173 | { |
174 | unsigned weight; |
175 | GenTree* treeNode = refPos->treeNode; |
176 | |
177 | if (treeNode != nullptr) |
178 | { |
179 | if (isCandidateLocalRef(treeNode)) |
180 | { |
181 | // Tracked locals: use weighted ref cnt as the weight of the |
182 | // ref position. |
183 | GenTreeLclVarCommon* lclCommon = treeNode->AsLclVarCommon(); |
184 | LclVarDsc* varDsc = &(compiler->lvaTable[lclCommon->gtLclNum]); |
185 | weight = varDsc->lvRefCntWtd(); |
186 | if (refPos->getInterval()->isSpilled) |
187 | { |
188 | // Decrease the weight if the interval has already been spilled. |
189 | weight -= BB_UNITY_WEIGHT; |
190 | } |
191 | } |
192 | else |
193 | { |
194 | // Non-candidate local ref or non-lcl tree node. |
195 | // These are considered to have two references in the basic block: |
196 | // a def and a use and hence weighted ref count would be 2 times |
197 | // the basic block weight in which they appear. |
198 | // However, it is generally more harmful to spill tree temps, so we |
199 | // double that. |
200 | const unsigned TREE_TEMP_REF_COUNT = 2; |
201 | const unsigned TREE_TEMP_BOOST_FACTOR = 2; |
202 | weight = TREE_TEMP_REF_COUNT * TREE_TEMP_BOOST_FACTOR * blockInfo[refPos->bbNum].weight; |
203 | } |
204 | } |
205 | else |
206 | { |
207 | // Non-tree node ref positions. These will have a single |
208 | // reference in the basic block and hence their weighted |
209 | // refcount is equal to the block weight in which they |
210 | // appear. |
211 | weight = blockInfo[refPos->bbNum].weight; |
212 | } |
213 | |
214 | return weight; |
215 | } |
216 | |
217 | // allRegs represents a set of registers that can |
218 | // be used to allocate the specified type in any point |
219 | // in time (more of a 'bank' of registers). |
220 | regMaskTP LinearScan::allRegs(RegisterType rt) |
221 | { |
222 | if (rt == TYP_FLOAT) |
223 | { |
224 | return availableFloatRegs; |
225 | } |
226 | else if (rt == TYP_DOUBLE) |
227 | { |
228 | return availableDoubleRegs; |
229 | } |
230 | #ifdef FEATURE_SIMD |
231 | // TODO-Cleanup: Add an RBM_ALLSIMD |
232 | else if (varTypeIsSIMD(rt)) |
233 | { |
234 | return availableDoubleRegs; |
235 | } |
236 | #endif // FEATURE_SIMD |
237 | else |
238 | { |
239 | return availableIntRegs; |
240 | } |
241 | } |
242 | |
243 | regMaskTP LinearScan::allByteRegs() |
244 | { |
245 | #ifdef _TARGET_X86_ |
246 | return availableIntRegs & RBM_BYTE_REGS; |
247 | #else |
248 | return availableIntRegs; |
249 | #endif |
250 | } |
251 | |
252 | regMaskTP LinearScan::allSIMDRegs() |
253 | { |
254 | return availableFloatRegs; |
255 | } |
256 | |
257 | //------------------------------------------------------------------------ |
258 | // internalFloatRegCandidates: Return the set of registers that are appropriate |
259 | // for use as internal float registers. |
260 | // |
261 | // Return Value: |
262 | // The set of registers (as a regMaskTP). |
263 | // |
264 | // Notes: |
265 | // compFloatingPointUsed is only required to be set if it is possible that we |
266 | // will use floating point callee-save registers. |
267 | // It is unlikely, if an internal register is the only use of floating point, |
268 | // that it will select a callee-save register. But to be safe, we restrict |
269 | // the set of candidates if compFloatingPointUsed is not already set. |
270 | |
271 | regMaskTP LinearScan::internalFloatRegCandidates() |
272 | { |
273 | if (compiler->compFloatingPointUsed) |
274 | { |
275 | return allRegs(TYP_FLOAT); |
276 | } |
277 | else |
278 | { |
279 | return RBM_FLT_CALLEE_TRASH; |
280 | } |
281 | } |
282 | |
283 | /***************************************************************************** |
284 | * Inline functions for RegRecord |
285 | *****************************************************************************/ |
286 | |
287 | bool RegRecord::isFree() |
288 | { |
289 | return ((assignedInterval == nullptr || !assignedInterval->isActive) && !isBusyUntilNextKill); |
290 | } |
291 | |
292 | /***************************************************************************** |
293 | * Inline functions for LinearScan |
294 | *****************************************************************************/ |
295 | RegRecord* LinearScan::getRegisterRecord(regNumber regNum) |
296 | { |
297 | assert((unsigned)regNum < ArrLen(physRegs)); |
298 | return &physRegs[regNum]; |
299 | } |
300 | |
301 | #ifdef DEBUG |
302 | |
303 | //---------------------------------------------------------------------------- |
304 | // getConstrainedRegMask: Returns new regMask which is the intersection of |
305 | // regMaskActual and regMaskConstraint if the new regMask has at least |
306 | // minRegCount registers, otherwise returns regMaskActual. |
307 | // |
308 | // Arguments: |
309 | // regMaskActual - regMask that needs to be constrained |
310 | // regMaskConstraint - regMask constraint that needs to be |
311 | // applied to regMaskActual |
312 | // minRegCount - Minimum number of regs that should be |
313 | // be present in new regMask. |
314 | // |
315 | // Return Value: |
316 | // New regMask that has minRegCount registers after instersection. |
317 | // Otherwise returns regMaskActual. |
318 | regMaskTP LinearScan::getConstrainedRegMask(regMaskTP regMaskActual, regMaskTP regMaskConstraint, unsigned minRegCount) |
319 | { |
320 | regMaskTP newMask = regMaskActual & regMaskConstraint; |
321 | if (genCountBits(newMask) >= minRegCount) |
322 | { |
323 | return newMask; |
324 | } |
325 | |
326 | return regMaskActual; |
327 | } |
328 | |
329 | //------------------------------------------------------------------------ |
330 | // stressLimitRegs: Given a set of registers, expressed as a register mask, reduce |
331 | // them based on the current stress options. |
332 | // |
333 | // Arguments: |
334 | // mask - The current mask of register candidates for a node |
335 | // |
336 | // Return Value: |
337 | // A possibly-modified mask, based on the value of COMPlus_JitStressRegs. |
338 | // |
339 | // Notes: |
340 | // This is the method used to implement the stress options that limit |
341 | // the set of registers considered for allocation. |
342 | |
343 | regMaskTP LinearScan::stressLimitRegs(RefPosition* refPosition, regMaskTP mask) |
344 | { |
345 | if (getStressLimitRegs() != LSRA_LIMIT_NONE) |
346 | { |
347 | // The refPosition could be null, for example when called |
348 | // by getTempRegForResolution(). |
349 | int minRegCount = (refPosition != nullptr) ? refPosition->minRegCandidateCount : 1; |
350 | |
351 | switch (getStressLimitRegs()) |
352 | { |
353 | case LSRA_LIMIT_CALLEE: |
354 | if (!compiler->opts.compDbgEnC) |
355 | { |
356 | mask = getConstrainedRegMask(mask, RBM_CALLEE_SAVED, minRegCount); |
357 | } |
358 | break; |
359 | |
360 | case LSRA_LIMIT_CALLER: |
361 | { |
362 | mask = getConstrainedRegMask(mask, RBM_CALLEE_TRASH, minRegCount); |
363 | } |
364 | break; |
365 | |
366 | case LSRA_LIMIT_SMALL_SET: |
367 | if ((mask & LsraLimitSmallIntSet) != RBM_NONE) |
368 | { |
369 | mask = getConstrainedRegMask(mask, LsraLimitSmallIntSet, minRegCount); |
370 | } |
371 | else if ((mask & LsraLimitSmallFPSet) != RBM_NONE) |
372 | { |
373 | mask = getConstrainedRegMask(mask, LsraLimitSmallFPSet, minRegCount); |
374 | } |
375 | break; |
376 | |
377 | default: |
378 | unreached(); |
379 | } |
380 | |
381 | if (refPosition != nullptr && refPosition->isFixedRegRef) |
382 | { |
383 | mask |= refPosition->registerAssignment; |
384 | } |
385 | } |
386 | |
387 | return mask; |
388 | } |
389 | #endif // DEBUG |
390 | |
391 | //------------------------------------------------------------------------ |
392 | // conflictingFixedRegReference: Determine whether the current RegRecord has a |
393 | // fixed register use that conflicts with 'refPosition' |
394 | // |
395 | // Arguments: |
396 | // refPosition - The RefPosition of interest |
397 | // |
398 | // Return Value: |
399 | // Returns true iff the given RefPosition is NOT a fixed use of this register, |
400 | // AND either: |
401 | // - there is a RefPosition on this RegRecord at the nodeLocation of the given RefPosition, or |
402 | // - the given RefPosition has a delayRegFree, and there is a RefPosition on this RegRecord at |
403 | // the nodeLocation just past the given RefPosition. |
404 | // |
405 | // Assumptions: |
406 | // 'refPosition is non-null. |
407 | |
408 | bool RegRecord::conflictingFixedRegReference(RefPosition* refPosition) |
409 | { |
410 | // Is this a fixed reference of this register? If so, there is no conflict. |
411 | if (refPosition->isFixedRefOfRegMask(genRegMask(regNum))) |
412 | { |
413 | return false; |
414 | } |
415 | // Otherwise, check for conflicts. |
416 | // There is a conflict if: |
417 | // 1. There is a recent RefPosition on this RegRecord that is at this location, |
418 | // except in the case where it is a special "putarg" that is associated with this interval, OR |
419 | // 2. There is an upcoming RefPosition at this location, or at the next location |
420 | // if refPosition is a delayed use (i.e. must be kept live through the next/def location). |
421 | |
422 | LsraLocation refLocation = refPosition->nodeLocation; |
423 | if (recentRefPosition != nullptr && recentRefPosition->refType != RefTypeKill && |
424 | recentRefPosition->nodeLocation == refLocation && |
425 | (!isBusyUntilNextKill || assignedInterval != refPosition->getInterval())) |
426 | { |
427 | return true; |
428 | } |
429 | LsraLocation nextPhysRefLocation = getNextRefLocation(); |
430 | if (nextPhysRefLocation == refLocation || (refPosition->delayRegFree && nextPhysRefLocation == (refLocation + 1))) |
431 | { |
432 | return true; |
433 | } |
434 | return false; |
435 | } |
436 | |
437 | /***************************************************************************** |
438 | * Inline functions for Interval |
439 | *****************************************************************************/ |
440 | RefPosition* Referenceable::getNextRefPosition() |
441 | { |
442 | if (recentRefPosition == nullptr) |
443 | { |
444 | return firstRefPosition; |
445 | } |
446 | else |
447 | { |
448 | return recentRefPosition->nextRefPosition; |
449 | } |
450 | } |
451 | |
452 | LsraLocation Referenceable::getNextRefLocation() |
453 | { |
454 | RefPosition* nextRefPosition = getNextRefPosition(); |
455 | if (nextRefPosition == nullptr) |
456 | { |
457 | return MaxLocation; |
458 | } |
459 | else |
460 | { |
461 | return nextRefPosition->nodeLocation; |
462 | } |
463 | } |
464 | |
465 | // Iterate through all the registers of the given type |
466 | class RegisterIterator |
467 | { |
468 | friend class Registers; |
469 | |
470 | public: |
471 | RegisterIterator(RegisterType type) : regType(type) |
472 | { |
473 | if (useFloatReg(regType)) |
474 | { |
475 | currentRegNum = REG_FP_FIRST; |
476 | } |
477 | else |
478 | { |
479 | currentRegNum = REG_INT_FIRST; |
480 | } |
481 | } |
482 | |
483 | protected: |
484 | static RegisterIterator Begin(RegisterType regType) |
485 | { |
486 | return RegisterIterator(regType); |
487 | } |
488 | static RegisterIterator End(RegisterType regType) |
489 | { |
490 | RegisterIterator endIter = RegisterIterator(regType); |
491 | // This assumes only integer and floating point register types |
492 | // if we target a processor with additional register types, |
493 | // this would have to change |
494 | if (useFloatReg(regType)) |
495 | { |
496 | // This just happens to work for both double & float |
497 | endIter.currentRegNum = REG_NEXT(REG_FP_LAST); |
498 | } |
499 | else |
500 | { |
501 | endIter.currentRegNum = REG_NEXT(REG_INT_LAST); |
502 | } |
503 | return endIter; |
504 | } |
505 | |
506 | public: |
507 | void operator++(int dummy) // int dummy is c++ for "this is postfix ++" |
508 | { |
509 | currentRegNum = REG_NEXT(currentRegNum); |
510 | #ifdef _TARGET_ARM_ |
511 | if (regType == TYP_DOUBLE) |
512 | currentRegNum = REG_NEXT(currentRegNum); |
513 | #endif |
514 | } |
515 | void operator++() // prefix operator++ |
516 | { |
517 | currentRegNum = REG_NEXT(currentRegNum); |
518 | #ifdef _TARGET_ARM_ |
519 | if (regType == TYP_DOUBLE) |
520 | currentRegNum = REG_NEXT(currentRegNum); |
521 | #endif |
522 | } |
523 | regNumber operator*() |
524 | { |
525 | return currentRegNum; |
526 | } |
527 | bool operator!=(const RegisterIterator& other) |
528 | { |
529 | return other.currentRegNum != currentRegNum; |
530 | } |
531 | |
532 | private: |
533 | regNumber currentRegNum; |
534 | RegisterType regType; |
535 | }; |
536 | |
537 | class Registers |
538 | { |
539 | public: |
540 | friend class RegisterIterator; |
541 | RegisterType type; |
542 | Registers(RegisterType t) |
543 | { |
544 | type = t; |
545 | } |
546 | RegisterIterator begin() |
547 | { |
548 | return RegisterIterator::Begin(type); |
549 | } |
550 | RegisterIterator end() |
551 | { |
552 | return RegisterIterator::End(type); |
553 | } |
554 | }; |
555 | |
556 | #ifdef DEBUG |
557 | void LinearScan::dumpVarToRegMap(VarToRegMap map) |
558 | { |
559 | bool anyPrinted = false; |
560 | for (unsigned varIndex = 0; varIndex < compiler->lvaTrackedCount; varIndex++) |
561 | { |
562 | unsigned varNum = compiler->lvaTrackedToVarNum[varIndex]; |
563 | if (map[varIndex] != REG_STK) |
564 | { |
565 | printf("V%02u=%s " , varNum, getRegName(map[varIndex])); |
566 | anyPrinted = true; |
567 | } |
568 | } |
569 | if (!anyPrinted) |
570 | { |
571 | printf("none" ); |
572 | } |
573 | printf("\n" ); |
574 | } |
575 | |
576 | void LinearScan::dumpInVarToRegMap(BasicBlock* block) |
577 | { |
578 | printf("Var=Reg beg of " FMT_BB ": " , block->bbNum); |
579 | VarToRegMap map = getInVarToRegMap(block->bbNum); |
580 | dumpVarToRegMap(map); |
581 | } |
582 | |
583 | void LinearScan::dumpOutVarToRegMap(BasicBlock* block) |
584 | { |
585 | printf("Var=Reg end of " FMT_BB ": " , block->bbNum); |
586 | VarToRegMap map = getOutVarToRegMap(block->bbNum); |
587 | dumpVarToRegMap(map); |
588 | } |
589 | |
590 | #endif // DEBUG |
591 | |
592 | LinearScanInterface* getLinearScanAllocator(Compiler* comp) |
593 | { |
594 | return new (comp, CMK_LSRA) LinearScan(comp); |
595 | } |
596 | |
597 | //------------------------------------------------------------------------ |
598 | // LSRA constructor |
599 | // |
600 | // Arguments: |
601 | // theCompiler |
602 | // |
603 | // Notes: |
604 | // The constructor takes care of initializing the data structures that are used |
605 | // during Lowering, including (in DEBUG) getting the stress environment variables, |
606 | // as they may affect the block ordering. |
607 | |
608 | LinearScan::LinearScan(Compiler* theCompiler) |
609 | : compiler(theCompiler) |
610 | , intervals(theCompiler->getAllocator(CMK_LSRA_Interval)) |
611 | , refPositions(theCompiler->getAllocator(CMK_LSRA_RefPosition)) |
612 | , listNodePool(theCompiler) |
613 | { |
614 | #ifdef DEBUG |
615 | maxNodeLocation = 0; |
616 | activeRefPosition = nullptr; |
617 | |
618 | // Get the value of the environment variable that controls stress for register allocation |
619 | lsraStressMask = JitConfig.JitStressRegs(); |
620 | #if 0 |
621 | if (lsraStressMask != 0) |
622 | { |
623 | // The code in this #if can be used to debug JitStressRegs issues according to |
624 | // method hash. To use, simply set environment variables JitStressRegsHashLo and JitStressRegsHashHi |
625 | unsigned methHash = compiler->info.compMethodHash(); |
626 | char* lostr = getenv("JitStressRegsHashLo" ); |
627 | unsigned methHashLo = 0; |
628 | bool dump = false; |
629 | if (lostr != nullptr) |
630 | { |
631 | sscanf_s(lostr, "%x" , &methHashLo); |
632 | dump = true; |
633 | } |
634 | char* histr = getenv("JitStressRegsHashHi" ); |
635 | unsigned methHashHi = UINT32_MAX; |
636 | if (histr != nullptr) |
637 | { |
638 | sscanf_s(histr, "%x" , &methHashHi); |
639 | dump = true; |
640 | } |
641 | if (methHash < methHashLo || methHash > methHashHi) |
642 | { |
643 | lsraStressMask = 0; |
644 | } |
645 | else if (dump == true) |
646 | { |
647 | printf("JitStressRegs = %x for method %s, hash = 0x%x.\n" , |
648 | lsraStressMask, compiler->info.compFullName, compiler->info.compMethodHash()); |
649 | printf("" ); // in our logic this causes a flush |
650 | } |
651 | } |
652 | #endif // 0 |
653 | #endif // DEBUG |
654 | |
655 | // Assume that we will enregister local variables if it's not disabled. We'll reset it if we |
656 | // have no tracked locals when we start allocating. Note that new tracked lclVars may be added |
657 | // after the first liveness analysis - either by optimizations or by Lowering, and the tracked |
658 | // set won't be recomputed until after Lowering (and this constructor is called prior to Lowering), |
659 | // so we don't want to check that yet. |
660 | enregisterLocalVars = ((compiler->opts.compFlags & CLFLG_REGVAR) != 0); |
661 | #ifdef _TARGET_ARM64_ |
662 | availableIntRegs = (RBM_ALLINT & ~(RBM_PR | RBM_FP | RBM_LR) & ~compiler->codeGen->regSet.rsMaskResvd); |
663 | #else |
664 | availableIntRegs = (RBM_ALLINT & ~compiler->codeGen->regSet.rsMaskResvd); |
665 | #endif |
666 | |
667 | #if ETW_EBP_FRAMED |
668 | availableIntRegs &= ~RBM_FPBASE; |
669 | #endif // ETW_EBP_FRAMED |
670 | |
671 | availableFloatRegs = RBM_ALLFLOAT; |
672 | availableDoubleRegs = RBM_ALLDOUBLE; |
673 | |
674 | #ifdef _TARGET_AMD64_ |
675 | if (compiler->opts.compDbgEnC) |
676 | { |
677 | // On x64 when the EnC option is set, we always save exactly RBP, RSI and RDI. |
678 | // RBP is not available to the register allocator, so RSI and RDI are the only |
679 | // callee-save registers available. |
680 | availableIntRegs &= ~RBM_CALLEE_SAVED | RBM_RSI | RBM_RDI; |
681 | availableFloatRegs &= ~RBM_CALLEE_SAVED; |
682 | availableDoubleRegs &= ~RBM_CALLEE_SAVED; |
683 | } |
684 | #endif // _TARGET_AMD64_ |
685 | compiler->rpFrameType = FT_NOT_SET; |
686 | compiler->rpMustCreateEBPCalled = false; |
687 | |
688 | compiler->codeGen->intRegState.rsIsFloat = false; |
689 | compiler->codeGen->floatRegState.rsIsFloat = true; |
690 | |
691 | // Block sequencing (the order in which we schedule). |
692 | // Note that we don't initialize the bbVisitedSet until we do the first traversal |
693 | // This is so that any blocks that are added during the first traversal |
694 | // are accounted for (and we don't have BasicBlockEpoch issues). |
695 | blockSequencingDone = false; |
696 | blockSequence = nullptr; |
697 | blockSequenceWorkList = nullptr; |
698 | curBBSeqNum = 0; |
699 | bbSeqCount = 0; |
700 | |
701 | // Information about each block, including predecessor blocks used for variable locations at block entry. |
702 | blockInfo = nullptr; |
703 | |
704 | pendingDelayFree = false; |
705 | tgtPrefUse = nullptr; |
706 | } |
707 | |
708 | //------------------------------------------------------------------------ |
709 | // getNextCandidateFromWorkList: Get the next candidate for block sequencing |
710 | // |
711 | // Arguments: |
712 | // None. |
713 | // |
714 | // Return Value: |
715 | // The next block to be placed in the sequence. |
716 | // |
717 | // Notes: |
718 | // This method currently always returns the next block in the list, and relies on having |
719 | // blocks added to the list only when they are "ready", and on the |
720 | // addToBlockSequenceWorkList() method to insert them in the proper order. |
721 | // However, a block may be in the list and already selected, if it was subsequently |
722 | // encountered as both a flow and layout successor of the most recently selected |
723 | // block. |
724 | |
725 | BasicBlock* LinearScan::getNextCandidateFromWorkList() |
726 | { |
727 | BasicBlockList* nextWorkList = nullptr; |
728 | for (BasicBlockList* workList = blockSequenceWorkList; workList != nullptr; workList = nextWorkList) |
729 | { |
730 | nextWorkList = workList->next; |
731 | BasicBlock* candBlock = workList->block; |
732 | removeFromBlockSequenceWorkList(workList, nullptr); |
733 | if (!isBlockVisited(candBlock)) |
734 | { |
735 | return candBlock; |
736 | } |
737 | } |
738 | return nullptr; |
739 | } |
740 | |
741 | //------------------------------------------------------------------------ |
742 | // setBlockSequence:Determine the block order for register allocation. |
743 | // |
744 | // Arguments: |
745 | // None |
746 | // |
747 | // Return Value: |
748 | // None |
749 | // |
750 | // Notes: |
751 | // On return, the blockSequence array contains the blocks, in the order in which they |
752 | // will be allocated. |
753 | // This method clears the bbVisitedSet on LinearScan, and when it returns the set |
754 | // contains all the bbNums for the block. |
755 | |
756 | void LinearScan::setBlockSequence() |
757 | { |
758 | // Reset the "visited" flag on each block. |
759 | compiler->EnsureBasicBlockEpoch(); |
760 | bbVisitedSet = BlockSetOps::MakeEmpty(compiler); |
761 | BlockSet readySet(BlockSetOps::MakeEmpty(compiler)); |
762 | BlockSet predSet(BlockSetOps::MakeEmpty(compiler)); |
763 | |
764 | assert(blockSequence == nullptr && bbSeqCount == 0); |
765 | blockSequence = new (compiler, CMK_LSRA) BasicBlock*[compiler->fgBBcount]; |
766 | bbNumMaxBeforeResolution = compiler->fgBBNumMax; |
767 | blockInfo = new (compiler, CMK_LSRA) LsraBlockInfo[bbNumMaxBeforeResolution + 1]; |
768 | |
769 | assert(blockSequenceWorkList == nullptr); |
770 | |
771 | bool addedInternalBlocks = false; |
772 | verifiedAllBBs = false; |
773 | hasCriticalEdges = false; |
774 | BasicBlock* nextBlock; |
775 | // We use a bbNum of 0 for entry RefPositions. |
776 | // The other information in blockInfo[0] will never be used. |
777 | blockInfo[0].weight = BB_UNITY_WEIGHT; |
778 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = nextBlock) |
779 | { |
780 | blockSequence[bbSeqCount] = block; |
781 | markBlockVisited(block); |
782 | bbSeqCount++; |
783 | nextBlock = nullptr; |
784 | |
785 | // Initialize the blockInfo. |
786 | // predBBNum will be set later. 0 is never used as a bbNum. |
787 | assert(block->bbNum != 0); |
788 | blockInfo[block->bbNum].predBBNum = 0; |
789 | // We check for critical edges below, but initialize to false. |
790 | blockInfo[block->bbNum].hasCriticalInEdge = false; |
791 | blockInfo[block->bbNum].hasCriticalOutEdge = false; |
792 | blockInfo[block->bbNum].weight = block->getBBWeight(compiler); |
793 | |
794 | #if TRACK_LSRA_STATS |
795 | blockInfo[block->bbNum].spillCount = 0; |
796 | blockInfo[block->bbNum].copyRegCount = 0; |
797 | blockInfo[block->bbNum].resolutionMovCount = 0; |
798 | blockInfo[block->bbNum].splitEdgeCount = 0; |
799 | #endif // TRACK_LSRA_STATS |
800 | |
801 | if (block->GetUniquePred(compiler) == nullptr) |
802 | { |
803 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
804 | { |
805 | BasicBlock* predBlock = pred->flBlock; |
806 | if (predBlock->NumSucc(compiler) > 1) |
807 | { |
808 | blockInfo[block->bbNum].hasCriticalInEdge = true; |
809 | hasCriticalEdges = true; |
810 | break; |
811 | } |
812 | else if (predBlock->bbJumpKind == BBJ_SWITCH) |
813 | { |
814 | assert(!"Switch with single successor" ); |
815 | } |
816 | } |
817 | } |
818 | |
819 | // Determine which block to schedule next. |
820 | |
821 | // First, update the NORMAL successors of the current block, adding them to the worklist |
822 | // according to the desired order. We will handle the EH successors below. |
823 | bool checkForCriticalOutEdge = (block->NumSucc(compiler) > 1); |
824 | if (!checkForCriticalOutEdge && block->bbJumpKind == BBJ_SWITCH) |
825 | { |
826 | assert(!"Switch with single successor" ); |
827 | } |
828 | |
829 | const unsigned numSuccs = block->NumSucc(compiler); |
830 | for (unsigned succIndex = 0; succIndex < numSuccs; succIndex++) |
831 | { |
832 | BasicBlock* succ = block->GetSucc(succIndex, compiler); |
833 | if (checkForCriticalOutEdge && succ->GetUniquePred(compiler) == nullptr) |
834 | { |
835 | blockInfo[block->bbNum].hasCriticalOutEdge = true; |
836 | hasCriticalEdges = true; |
837 | // We can stop checking now. |
838 | checkForCriticalOutEdge = false; |
839 | } |
840 | |
841 | if (isTraversalLayoutOrder() || isBlockVisited(succ)) |
842 | { |
843 | continue; |
844 | } |
845 | |
846 | // We've now seen a predecessor, so add it to the work list and the "readySet". |
847 | // It will be inserted in the worklist according to the specified traversal order |
848 | // (i.e. pred-first or random, since layout order is handled above). |
849 | if (!BlockSetOps::IsMember(compiler, readySet, succ->bbNum)) |
850 | { |
851 | addToBlockSequenceWorkList(readySet, succ, predSet); |
852 | BlockSetOps::AddElemD(compiler, readySet, succ->bbNum); |
853 | } |
854 | } |
855 | |
856 | // For layout order, simply use bbNext |
857 | if (isTraversalLayoutOrder()) |
858 | { |
859 | nextBlock = block->bbNext; |
860 | continue; |
861 | } |
862 | |
863 | while (nextBlock == nullptr) |
864 | { |
865 | nextBlock = getNextCandidateFromWorkList(); |
866 | |
867 | // TODO-Throughput: We would like to bypass this traversal if we know we've handled all |
868 | // the blocks - but fgBBcount does not appear to be updated when blocks are removed. |
869 | if (nextBlock == nullptr /* && bbSeqCount != compiler->fgBBcount*/ && !verifiedAllBBs) |
870 | { |
871 | // If we don't encounter all blocks by traversing the regular successor links, do a full |
872 | // traversal of all the blocks, and add them in layout order. |
873 | // This may include: |
874 | // - internal-only blocks (in the fgAddCodeList) which may not be in the flow graph |
875 | // (these are not even in the bbNext links). |
876 | // - blocks that have become unreachable due to optimizations, but that are strongly |
877 | // connected (these are not removed) |
878 | // - EH blocks |
879 | |
880 | for (Compiler::AddCodeDsc* desc = compiler->fgAddCodeList; desc != nullptr; desc = desc->acdNext) |
881 | { |
882 | if (!isBlockVisited(block)) |
883 | { |
884 | addToBlockSequenceWorkList(readySet, block, predSet); |
885 | BlockSetOps::AddElemD(compiler, readySet, block->bbNum); |
886 | } |
887 | } |
888 | |
889 | for (BasicBlock* block = compiler->fgFirstBB; block; block = block->bbNext) |
890 | { |
891 | if (!isBlockVisited(block)) |
892 | { |
893 | addToBlockSequenceWorkList(readySet, block, predSet); |
894 | BlockSetOps::AddElemD(compiler, readySet, block->bbNum); |
895 | } |
896 | } |
897 | verifiedAllBBs = true; |
898 | } |
899 | else |
900 | { |
901 | break; |
902 | } |
903 | } |
904 | } |
905 | blockSequencingDone = true; |
906 | |
907 | #ifdef DEBUG |
908 | // Make sure that we've visited all the blocks. |
909 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
910 | { |
911 | assert(isBlockVisited(block)); |
912 | } |
913 | |
914 | JITDUMP("LSRA Block Sequence: " ); |
915 | int i = 1; |
916 | for (BasicBlock *block = startBlockSequence(); block != nullptr; ++i, block = moveToNextBlock()) |
917 | { |
918 | JITDUMP(FMT_BB, block->bbNum); |
919 | |
920 | if (block->isMaxBBWeight()) |
921 | { |
922 | JITDUMP("(MAX) " ); |
923 | } |
924 | else |
925 | { |
926 | JITDUMP("(%6s) " , refCntWtd2str(block->getBBWeight(compiler))); |
927 | } |
928 | |
929 | if (i % 10 == 0) |
930 | { |
931 | JITDUMP("\n " ); |
932 | } |
933 | } |
934 | JITDUMP("\n\n" ); |
935 | #endif |
936 | } |
937 | |
938 | //------------------------------------------------------------------------ |
939 | // compareBlocksForSequencing: Compare two basic blocks for sequencing order. |
940 | // |
941 | // Arguments: |
942 | // block1 - the first block for comparison |
943 | // block2 - the second block for comparison |
944 | // useBlockWeights - whether to use block weights for comparison |
945 | // |
946 | // Return Value: |
947 | // -1 if block1 is preferred. |
948 | // 0 if the blocks are equivalent. |
949 | // 1 if block2 is preferred. |
950 | // |
951 | // Notes: |
952 | // See addToBlockSequenceWorkList. |
953 | int LinearScan::compareBlocksForSequencing(BasicBlock* block1, BasicBlock* block2, bool useBlockWeights) |
954 | { |
955 | if (useBlockWeights) |
956 | { |
957 | unsigned weight1 = block1->getBBWeight(compiler); |
958 | unsigned weight2 = block2->getBBWeight(compiler); |
959 | |
960 | if (weight1 > weight2) |
961 | { |
962 | return -1; |
963 | } |
964 | else if (weight1 < weight2) |
965 | { |
966 | return 1; |
967 | } |
968 | } |
969 | |
970 | // If weights are the same prefer LOWER bbnum |
971 | if (block1->bbNum < block2->bbNum) |
972 | { |
973 | return -1; |
974 | } |
975 | else if (block1->bbNum == block2->bbNum) |
976 | { |
977 | return 0; |
978 | } |
979 | else |
980 | { |
981 | return 1; |
982 | } |
983 | } |
984 | |
985 | //------------------------------------------------------------------------ |
986 | // addToBlockSequenceWorkList: Add a BasicBlock to the work list for sequencing. |
987 | // |
988 | // Arguments: |
989 | // sequencedBlockSet - the set of blocks that are already sequenced |
990 | // block - the new block to be added |
991 | // predSet - the buffer to save predecessors set. A block set allocated by the caller used here as a |
992 | // temporary block set for constructing a predecessor set. Allocated by the caller to avoid reallocating a new block |
993 | // set with every call to this function |
994 | // |
995 | // Return Value: |
996 | // None. |
997 | // |
998 | // Notes: |
999 | // The first block in the list will be the next one to be sequenced, as soon |
1000 | // as we encounter a block whose successors have all been sequenced, in pred-first |
1001 | // order, or the very next block if we are traversing in random order (once implemented). |
1002 | // This method uses a comparison method to determine the order in which to place |
1003 | // the blocks in the list. This method queries whether all predecessors of the |
1004 | // block are sequenced at the time it is added to the list and if so uses block weights |
1005 | // for inserting the block. A block is never inserted ahead of its predecessors. |
1006 | // A block at the time of insertion may not have all its predecessors sequenced, in |
1007 | // which case it will be sequenced based on its block number. Once a block is inserted, |
1008 | // its priority\order will not be changed later once its remaining predecessors are |
1009 | // sequenced. This would mean that work list may not be sorted entirely based on |
1010 | // block weights alone. |
1011 | // |
1012 | // Note also that, when random traversal order is implemented, this method |
1013 | // should insert the blocks into the list in random order, so that we can always |
1014 | // simply select the first block in the list. |
1015 | void LinearScan::addToBlockSequenceWorkList(BlockSet sequencedBlockSet, BasicBlock* block, BlockSet& predSet) |
1016 | { |
1017 | // The block that is being added is not already sequenced |
1018 | assert(!BlockSetOps::IsMember(compiler, sequencedBlockSet, block->bbNum)); |
1019 | |
1020 | // Get predSet of block |
1021 | BlockSetOps::ClearD(compiler, predSet); |
1022 | flowList* pred; |
1023 | for (pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
1024 | { |
1025 | BlockSetOps::AddElemD(compiler, predSet, pred->flBlock->bbNum); |
1026 | } |
1027 | |
1028 | // If either a rarely run block or all its preds are already sequenced, use block's weight to sequence |
1029 | bool useBlockWeight = block->isRunRarely() || BlockSetOps::IsSubset(compiler, sequencedBlockSet, predSet); |
1030 | |
1031 | BasicBlockList* prevNode = nullptr; |
1032 | BasicBlockList* nextNode = blockSequenceWorkList; |
1033 | |
1034 | while (nextNode != nullptr) |
1035 | { |
1036 | int seqResult; |
1037 | |
1038 | if (nextNode->block->isRunRarely()) |
1039 | { |
1040 | // If the block that is yet to be sequenced is a rarely run block, always use block weights for sequencing |
1041 | seqResult = compareBlocksForSequencing(nextNode->block, block, true); |
1042 | } |
1043 | else if (BlockSetOps::IsMember(compiler, predSet, nextNode->block->bbNum)) |
1044 | { |
1045 | // always prefer unsequenced pred blocks |
1046 | seqResult = -1; |
1047 | } |
1048 | else |
1049 | { |
1050 | seqResult = compareBlocksForSequencing(nextNode->block, block, useBlockWeight); |
1051 | } |
1052 | |
1053 | if (seqResult > 0) |
1054 | { |
1055 | break; |
1056 | } |
1057 | |
1058 | prevNode = nextNode; |
1059 | nextNode = nextNode->next; |
1060 | } |
1061 | |
1062 | BasicBlockList* newListNode = new (compiler, CMK_LSRA) BasicBlockList(block, nextNode); |
1063 | if (prevNode == nullptr) |
1064 | { |
1065 | blockSequenceWorkList = newListNode; |
1066 | } |
1067 | else |
1068 | { |
1069 | prevNode->next = newListNode; |
1070 | } |
1071 | } |
1072 | |
1073 | void LinearScan::removeFromBlockSequenceWorkList(BasicBlockList* listNode, BasicBlockList* prevNode) |
1074 | { |
1075 | if (listNode == blockSequenceWorkList) |
1076 | { |
1077 | assert(prevNode == nullptr); |
1078 | blockSequenceWorkList = listNode->next; |
1079 | } |
1080 | else |
1081 | { |
1082 | assert(prevNode != nullptr && prevNode->next == listNode); |
1083 | prevNode->next = listNode->next; |
1084 | } |
1085 | // TODO-Cleanup: consider merging Compiler::BlockListNode and BasicBlockList |
1086 | // compiler->FreeBlockListNode(listNode); |
1087 | } |
1088 | |
1089 | // Initialize the block order for allocation (called each time a new traversal begins). |
1090 | BasicBlock* LinearScan::startBlockSequence() |
1091 | { |
1092 | if (!blockSequencingDone) |
1093 | { |
1094 | setBlockSequence(); |
1095 | } |
1096 | BasicBlock* curBB = compiler->fgFirstBB; |
1097 | curBBSeqNum = 0; |
1098 | curBBNum = curBB->bbNum; |
1099 | clearVisitedBlocks(); |
1100 | assert(blockSequence[0] == compiler->fgFirstBB); |
1101 | markBlockVisited(curBB); |
1102 | return curBB; |
1103 | } |
1104 | |
1105 | //------------------------------------------------------------------------ |
1106 | // moveToNextBlock: Move to the next block in order for allocation or resolution. |
1107 | // |
1108 | // Arguments: |
1109 | // None |
1110 | // |
1111 | // Return Value: |
1112 | // The next block. |
1113 | // |
1114 | // Notes: |
1115 | // This method is used when the next block is actually going to be handled. |
1116 | // It changes curBBNum. |
1117 | |
1118 | BasicBlock* LinearScan::moveToNextBlock() |
1119 | { |
1120 | BasicBlock* nextBlock = getNextBlock(); |
1121 | curBBSeqNum++; |
1122 | if (nextBlock != nullptr) |
1123 | { |
1124 | curBBNum = nextBlock->bbNum; |
1125 | } |
1126 | return nextBlock; |
1127 | } |
1128 | |
1129 | //------------------------------------------------------------------------ |
1130 | // getNextBlock: Get the next block in order for allocation or resolution. |
1131 | // |
1132 | // Arguments: |
1133 | // None |
1134 | // |
1135 | // Return Value: |
1136 | // The next block. |
1137 | // |
1138 | // Notes: |
1139 | // This method does not actually change the current block - it is used simply |
1140 | // to determine which block will be next. |
1141 | |
1142 | BasicBlock* LinearScan::getNextBlock() |
1143 | { |
1144 | assert(blockSequencingDone); |
1145 | unsigned int nextBBSeqNum = curBBSeqNum + 1; |
1146 | if (nextBBSeqNum < bbSeqCount) |
1147 | { |
1148 | return blockSequence[nextBBSeqNum]; |
1149 | } |
1150 | return nullptr; |
1151 | } |
1152 | |
1153 | //------------------------------------------------------------------------ |
1154 | // doLinearScan: The main method for register allocation. |
1155 | // |
1156 | // Arguments: |
1157 | // None |
1158 | // |
1159 | // Return Value: |
1160 | // None. |
1161 | // |
1162 | |
1163 | void LinearScan::doLinearScan() |
1164 | { |
1165 | // Check to see whether we have any local variables to enregister. |
1166 | // We initialize this in the constructor based on opt settings, |
1167 | // but we don't want to spend time on the lclVar parts of LinearScan |
1168 | // if we have no tracked locals. |
1169 | if (enregisterLocalVars && (compiler->lvaTrackedCount == 0)) |
1170 | { |
1171 | enregisterLocalVars = false; |
1172 | } |
1173 | |
1174 | unsigned lsraBlockEpoch = compiler->GetCurBasicBlockEpoch(); |
1175 | |
1176 | splitBBNumToTargetBBNumMap = nullptr; |
1177 | |
1178 | // This is complicated by the fact that physical registers have refs associated |
1179 | // with locations where they are killed (e.g. calls), but we don't want to |
1180 | // count these as being touched. |
1181 | |
1182 | compiler->codeGen->regSet.rsClearRegsModified(); |
1183 | |
1184 | initMaxSpill(); |
1185 | buildIntervals(); |
1186 | DBEXEC(VERBOSE, TupleStyleDump(LSRA_DUMP_REFPOS)); |
1187 | compiler->EndPhase(PHASE_LINEAR_SCAN_BUILD); |
1188 | |
1189 | DBEXEC(VERBOSE, lsraDumpIntervals("after buildIntervals" )); |
1190 | |
1191 | clearVisitedBlocks(); |
1192 | initVarRegMaps(); |
1193 | allocateRegisters(); |
1194 | compiler->EndPhase(PHASE_LINEAR_SCAN_ALLOC); |
1195 | resolveRegisters(); |
1196 | compiler->EndPhase(PHASE_LINEAR_SCAN_RESOLVE); |
1197 | |
1198 | #if TRACK_LSRA_STATS |
1199 | if ((JitConfig.DisplayLsraStats() != 0) |
1200 | #ifdef DEBUG |
1201 | || VERBOSE |
1202 | #endif |
1203 | ) |
1204 | { |
1205 | dumpLsraStats(jitstdout); |
1206 | } |
1207 | #endif // TRACK_LSRA_STATS |
1208 | |
1209 | DBEXEC(VERBOSE, TupleStyleDump(LSRA_DUMP_POST)); |
1210 | |
1211 | compiler->compLSRADone = true; |
1212 | noway_assert(lsraBlockEpoch = compiler->GetCurBasicBlockEpoch()); |
1213 | } |
1214 | |
1215 | //------------------------------------------------------------------------ |
1216 | // recordVarLocationsAtStartOfBB: Update live-in LclVarDscs with the appropriate |
1217 | // register location at the start of a block, during codegen. |
1218 | // |
1219 | // Arguments: |
1220 | // bb - the block for which code is about to be generated. |
1221 | // |
1222 | // Return Value: |
1223 | // None. |
1224 | // |
1225 | // Assumptions: |
1226 | // CodeGen will take care of updating the reg masks and the current var liveness, |
1227 | // after calling this method. |
1228 | // This is because we need to kill off the dead registers before setting the newly live ones. |
1229 | |
1230 | void LinearScan::recordVarLocationsAtStartOfBB(BasicBlock* bb) |
1231 | { |
1232 | if (!enregisterLocalVars) |
1233 | { |
1234 | return; |
1235 | } |
1236 | JITDUMP("Recording Var Locations at start of " FMT_BB "\n" , bb->bbNum); |
1237 | VarToRegMap map = getInVarToRegMap(bb->bbNum); |
1238 | unsigned count = 0; |
1239 | |
1240 | VarSetOps::AssignNoCopy(compiler, currentLiveVars, |
1241 | VarSetOps::Intersection(compiler, registerCandidateVars, bb->bbLiveIn)); |
1242 | VarSetOps::Iter iter(compiler, currentLiveVars); |
1243 | unsigned varIndex = 0; |
1244 | while (iter.NextElem(&varIndex)) |
1245 | { |
1246 | unsigned varNum = compiler->lvaTrackedToVarNum[varIndex]; |
1247 | LclVarDsc* varDsc = &(compiler->lvaTable[varNum]); |
1248 | regNumber regNum = getVarReg(map, varIndex); |
1249 | |
1250 | regNumber oldRegNum = varDsc->lvRegNum; |
1251 | regNumber newRegNum = regNum; |
1252 | |
1253 | if (oldRegNum != newRegNum) |
1254 | { |
1255 | JITDUMP(" V%02u(%s->%s)" , varNum, compiler->compRegVarName(oldRegNum), |
1256 | compiler->compRegVarName(newRegNum)); |
1257 | varDsc->lvRegNum = newRegNum; |
1258 | count++; |
1259 | } |
1260 | else if (newRegNum != REG_STK) |
1261 | { |
1262 | JITDUMP(" V%02u(%s)" , varNum, compiler->compRegVarName(newRegNum)); |
1263 | count++; |
1264 | } |
1265 | } |
1266 | |
1267 | if (count == 0) |
1268 | { |
1269 | JITDUMP(" <none>\n" ); |
1270 | } |
1271 | |
1272 | JITDUMP("\n" ); |
1273 | } |
1274 | |
1275 | void Interval::setLocalNumber(Compiler* compiler, unsigned lclNum, LinearScan* linScan) |
1276 | { |
1277 | LclVarDsc* varDsc = &compiler->lvaTable[lclNum]; |
1278 | assert(varDsc->lvTracked); |
1279 | assert(varDsc->lvVarIndex < compiler->lvaTrackedCount); |
1280 | |
1281 | linScan->localVarIntervals[varDsc->lvVarIndex] = this; |
1282 | |
1283 | assert(linScan->getIntervalForLocalVar(varDsc->lvVarIndex) == this); |
1284 | this->isLocalVar = true; |
1285 | this->varNum = lclNum; |
1286 | } |
1287 | |
1288 | // identify the candidates which we are not going to enregister due to |
1289 | // being used in EH in a way we don't want to deal with |
1290 | // this logic cloned from fgInterBlockLocalVarLiveness |
1291 | void LinearScan::identifyCandidatesExceptionDataflow() |
1292 | { |
1293 | VARSET_TP exceptVars(VarSetOps::MakeEmpty(compiler)); |
1294 | VARSET_TP filterVars(VarSetOps::MakeEmpty(compiler)); |
1295 | VARSET_TP finallyVars(VarSetOps::MakeEmpty(compiler)); |
1296 | BasicBlock* block; |
1297 | |
1298 | foreach_block(compiler, block) |
1299 | { |
1300 | if (block->bbCatchTyp != BBCT_NONE) |
1301 | { |
1302 | // live on entry to handler |
1303 | VarSetOps::UnionD(compiler, exceptVars, block->bbLiveIn); |
1304 | } |
1305 | |
1306 | if (block->bbJumpKind == BBJ_EHFILTERRET) |
1307 | { |
1308 | // live on exit from filter |
1309 | VarSetOps::UnionD(compiler, filterVars, block->bbLiveOut); |
1310 | } |
1311 | else if (block->bbJumpKind == BBJ_EHFINALLYRET) |
1312 | { |
1313 | // live on exit from finally |
1314 | VarSetOps::UnionD(compiler, finallyVars, block->bbLiveOut); |
1315 | } |
1316 | #if FEATURE_EH_FUNCLETS |
1317 | // Funclets are called and returned from, as such we can only count on the frame |
1318 | // pointer being restored, and thus everything live in or live out must be on the |
1319 | // stack |
1320 | if (block->bbFlags & BBF_FUNCLET_BEG) |
1321 | { |
1322 | VarSetOps::UnionD(compiler, exceptVars, block->bbLiveIn); |
1323 | } |
1324 | if ((block->bbJumpKind == BBJ_EHFINALLYRET) || (block->bbJumpKind == BBJ_EHFILTERRET) || |
1325 | (block->bbJumpKind == BBJ_EHCATCHRET)) |
1326 | { |
1327 | VarSetOps::UnionD(compiler, exceptVars, block->bbLiveOut); |
1328 | } |
1329 | #endif // FEATURE_EH_FUNCLETS |
1330 | } |
1331 | |
1332 | // slam them all together (there was really no need to use more than 2 bitvectors here) |
1333 | VarSetOps::UnionD(compiler, exceptVars, filterVars); |
1334 | VarSetOps::UnionD(compiler, exceptVars, finallyVars); |
1335 | |
1336 | /* Mark all pointer variables live on exit from a 'finally' |
1337 | block as either volatile for non-GC ref types or as |
1338 | 'explicitly initialized' (volatile and must-init) for GC-ref types */ |
1339 | |
1340 | VarSetOps::Iter iter(compiler, exceptVars); |
1341 | unsigned varIndex = 0; |
1342 | while (iter.NextElem(&varIndex)) |
1343 | { |
1344 | unsigned varNum = compiler->lvaTrackedToVarNum[varIndex]; |
1345 | LclVarDsc* varDsc = compiler->lvaTable + varNum; |
1346 | |
1347 | compiler->lvaSetVarDoNotEnregister(varNum DEBUGARG(Compiler::DNER_LiveInOutOfHandler)); |
1348 | |
1349 | if (varTypeIsGC(varDsc)) |
1350 | { |
1351 | if (VarSetOps::IsMember(compiler, finallyVars, varIndex) && !varDsc->lvIsParam) |
1352 | { |
1353 | varDsc->lvMustInit = true; |
1354 | } |
1355 | } |
1356 | } |
1357 | } |
1358 | |
1359 | bool LinearScan::isRegCandidate(LclVarDsc* varDsc) |
1360 | { |
1361 | if (!enregisterLocalVars) |
1362 | { |
1363 | return false; |
1364 | } |
1365 | assert((compiler->opts.compFlags & CLFLG_REGVAR) != 0); |
1366 | |
1367 | if (!varDsc->lvTracked) |
1368 | { |
1369 | return false; |
1370 | } |
1371 | |
1372 | #if !defined(_TARGET_64BIT_) |
1373 | if (varDsc->lvType == TYP_LONG) |
1374 | { |
1375 | // Long variables should not be register candidates. |
1376 | // Lowering will have split any candidate lclVars into lo/hi vars. |
1377 | return false; |
1378 | } |
1379 | #endif // !defined(_TARGET_64BIT) |
1380 | |
1381 | // If we have JMP, reg args must be put on the stack |
1382 | |
1383 | if (compiler->compJmpOpUsed && varDsc->lvIsRegArg) |
1384 | { |
1385 | return false; |
1386 | } |
1387 | |
1388 | // Don't allocate registers for dependently promoted struct fields |
1389 | if (compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc)) |
1390 | { |
1391 | return false; |
1392 | } |
1393 | |
1394 | // Don't enregister if the ref count is zero. |
1395 | if (varDsc->lvRefCnt() == 0) |
1396 | { |
1397 | varDsc->setLvRefCntWtd(0); |
1398 | return false; |
1399 | } |
1400 | |
1401 | // Variables that are address-exposed are never enregistered, or tracked. |
1402 | // A struct may be promoted, and a struct that fits in a register may be fully enregistered. |
1403 | // Pinned variables may not be tracked (a condition of the GCInfo representation) |
1404 | // or enregistered, on x86 -- it is believed that we can enregister pinned (more properly, "pinning") |
1405 | // references when using the general GC encoding. |
1406 | unsigned lclNum = (unsigned)(varDsc - compiler->lvaTable); |
1407 | if (varDsc->lvAddrExposed || !varTypeIsEnregisterableStruct(varDsc)) |
1408 | { |
1409 | #ifdef DEBUG |
1410 | Compiler::DoNotEnregisterReason dner = Compiler::DNER_AddrExposed; |
1411 | if (!varDsc->lvAddrExposed) |
1412 | { |
1413 | dner = Compiler::DNER_IsStruct; |
1414 | } |
1415 | #endif // DEBUG |
1416 | compiler->lvaSetVarDoNotEnregister(lclNum DEBUGARG(dner)); |
1417 | return false; |
1418 | } |
1419 | else if (varDsc->lvPinned) |
1420 | { |
1421 | varDsc->lvTracked = 0; |
1422 | #ifdef JIT32_GCENCODER |
1423 | compiler->lvaSetVarDoNotEnregister(lclNum DEBUGARG(Compiler::DNER_PinningRef)); |
1424 | #endif // JIT32_GCENCODER |
1425 | return false; |
1426 | } |
1427 | |
1428 | // Are we not optimizing and we have exception handlers? |
1429 | // if so mark all args and locals as volatile, so that they |
1430 | // won't ever get enregistered. |
1431 | // |
1432 | if (compiler->opts.MinOpts() && compiler->compHndBBtabCount > 0) |
1433 | { |
1434 | compiler->lvaSetVarDoNotEnregister(lclNum DEBUGARG(Compiler::DNER_LiveInOutOfHandler)); |
1435 | } |
1436 | |
1437 | if (varDsc->lvDoNotEnregister) |
1438 | { |
1439 | return false; |
1440 | } |
1441 | |
1442 | switch (genActualType(varDsc->TypeGet())) |
1443 | { |
1444 | #if CPU_HAS_FP_SUPPORT |
1445 | case TYP_FLOAT: |
1446 | case TYP_DOUBLE: |
1447 | return !compiler->opts.compDbgCode; |
1448 | |
1449 | #endif // CPU_HAS_FP_SUPPORT |
1450 | |
1451 | case TYP_INT: |
1452 | case TYP_LONG: |
1453 | case TYP_REF: |
1454 | case TYP_BYREF: |
1455 | break; |
1456 | |
1457 | #ifdef FEATURE_SIMD |
1458 | case TYP_SIMD12: |
1459 | case TYP_SIMD16: |
1460 | case TYP_SIMD32: |
1461 | return !varDsc->lvPromoted; |
1462 | |
1463 | // TODO-1stClassStructs: Move TYP_SIMD8 up with the other SIMD types, after handling the param issue |
1464 | // (passing & returning as TYP_LONG). |
1465 | case TYP_SIMD8: |
1466 | return false; |
1467 | #endif // FEATURE_SIMD |
1468 | |
1469 | case TYP_STRUCT: |
1470 | return false; |
1471 | |
1472 | case TYP_UNDEF: |
1473 | case TYP_UNKNOWN: |
1474 | noway_assert(!"lvType not set correctly" ); |
1475 | varDsc->lvType = TYP_INT; |
1476 | return false; |
1477 | |
1478 | default: |
1479 | return false; |
1480 | } |
1481 | |
1482 | return true; |
1483 | } |
1484 | |
1485 | // Identify locals & compiler temps that are register candidates |
1486 | // TODO-Cleanup: This was cloned from Compiler::lvaSortByRefCount() in lclvars.cpp in order |
1487 | // to avoid perturbation, but should be merged. |
1488 | |
1489 | void LinearScan::identifyCandidates() |
1490 | { |
1491 | if (enregisterLocalVars) |
1492 | { |
1493 | // Initialize the set of lclVars that are candidates for register allocation. |
1494 | VarSetOps::AssignNoCopy(compiler, registerCandidateVars, VarSetOps::MakeEmpty(compiler)); |
1495 | |
1496 | // Initialize the sets of lclVars that are used to determine whether, and for which lclVars, |
1497 | // we need to perform resolution across basic blocks. |
1498 | // Note that we can't do this in the constructor because the number of tracked lclVars may |
1499 | // change between the constructor and the actual allocation. |
1500 | VarSetOps::AssignNoCopy(compiler, resolutionCandidateVars, VarSetOps::MakeEmpty(compiler)); |
1501 | VarSetOps::AssignNoCopy(compiler, splitOrSpilledVars, VarSetOps::MakeEmpty(compiler)); |
1502 | |
1503 | // We set enregisterLocalVars to true only if there are tracked lclVars |
1504 | assert(compiler->lvaCount != 0); |
1505 | } |
1506 | else if (compiler->lvaCount == 0) |
1507 | { |
1508 | // Nothing to do. Note that even if enregisterLocalVars is false, we still need to set the |
1509 | // lvLRACandidate field on all the lclVars to false if we have any. |
1510 | return; |
1511 | } |
1512 | |
1513 | if (compiler->compHndBBtabCount > 0) |
1514 | { |
1515 | identifyCandidatesExceptionDataflow(); |
1516 | } |
1517 | |
1518 | unsigned lclNum; |
1519 | LclVarDsc* varDsc; |
1520 | |
1521 | // While we build intervals for the candidate lclVars, we will determine the floating point |
1522 | // lclVars, if any, to consider for callee-save register preferencing. |
1523 | // We maintain two sets of FP vars - those that meet the first threshold of weighted ref Count, |
1524 | // and those that meet the second. |
1525 | // The first threshold is used for methods that are heuristically deemed either to have light |
1526 | // fp usage, or other factors that encourage conservative use of callee-save registers, such |
1527 | // as multiple exits (where there might be an early exit that woudl be excessively penalized by |
1528 | // lots of prolog/epilog saves & restores). |
1529 | // The second threshold is used where there are factors deemed to make it more likely that fp |
1530 | // fp callee save registers will be needed, such as loops or many fp vars. |
1531 | // We keep two sets of vars, since we collect some of the information to determine which set to |
1532 | // use as we iterate over the vars. |
1533 | // When we are generating AVX code on non-Unix (FEATURE_PARTIAL_SIMD_CALLEE_SAVE), we maintain an |
1534 | // additional set of LargeVectorType vars, and there is a separate threshold defined for those. |
1535 | // It is assumed that if we encounter these, that we should consider this a "high use" scenario, |
1536 | // so we don't maintain two sets of these vars. |
1537 | // This is defined as thresholdLargeVectorRefCntWtd, as we are likely to use the same mechanism |
1538 | // for vectors on Arm64, though the actual value may differ. |
1539 | |
1540 | unsigned int floatVarCount = 0; |
1541 | unsigned int thresholdFPRefCntWtd = 4 * BB_UNITY_WEIGHT; |
1542 | unsigned int maybeFPRefCntWtd = 2 * BB_UNITY_WEIGHT; |
1543 | VARSET_TP fpMaybeCandidateVars(VarSetOps::UninitVal()); |
1544 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1545 | unsigned int largeVectorVarCount = 0; |
1546 | unsigned int thresholdLargeVectorRefCntWtd = 4 * BB_UNITY_WEIGHT; |
1547 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1548 | if (enregisterLocalVars) |
1549 | { |
1550 | VarSetOps::AssignNoCopy(compiler, fpCalleeSaveCandidateVars, VarSetOps::MakeEmpty(compiler)); |
1551 | VarSetOps::AssignNoCopy(compiler, fpMaybeCandidateVars, VarSetOps::MakeEmpty(compiler)); |
1552 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1553 | VarSetOps::AssignNoCopy(compiler, largeVectorVars, VarSetOps::MakeEmpty(compiler)); |
1554 | VarSetOps::AssignNoCopy(compiler, largeVectorCalleeSaveCandidateVars, VarSetOps::MakeEmpty(compiler)); |
1555 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1556 | } |
1557 | #if DOUBLE_ALIGN |
1558 | unsigned refCntStk = 0; |
1559 | unsigned refCntReg = 0; |
1560 | unsigned refCntWtdReg = 0; |
1561 | unsigned refCntStkParam = 0; // sum of ref counts for all stack based parameters |
1562 | unsigned refCntWtdStkDbl = 0; // sum of wtd ref counts for stack based doubles |
1563 | doDoubleAlign = false; |
1564 | bool checkDoubleAlign = true; |
1565 | if (compiler->codeGen->isFramePointerRequired() || compiler->opts.MinOpts()) |
1566 | { |
1567 | checkDoubleAlign = false; |
1568 | } |
1569 | else |
1570 | { |
1571 | switch (compiler->getCanDoubleAlign()) |
1572 | { |
1573 | case MUST_DOUBLE_ALIGN: |
1574 | doDoubleAlign = true; |
1575 | checkDoubleAlign = false; |
1576 | break; |
1577 | case CAN_DOUBLE_ALIGN: |
1578 | break; |
1579 | case CANT_DOUBLE_ALIGN: |
1580 | doDoubleAlign = false; |
1581 | checkDoubleAlign = false; |
1582 | break; |
1583 | default: |
1584 | unreached(); |
1585 | } |
1586 | } |
1587 | #endif // DOUBLE_ALIGN |
1588 | |
1589 | // Check whether register variables are permitted. |
1590 | if (!enregisterLocalVars) |
1591 | { |
1592 | localVarIntervals = nullptr; |
1593 | } |
1594 | else if (compiler->lvaTrackedCount > 0) |
1595 | { |
1596 | // initialize mapping from tracked local to interval |
1597 | localVarIntervals = new (compiler, CMK_LSRA) Interval*[compiler->lvaTrackedCount]; |
1598 | } |
1599 | |
1600 | INTRACK_STATS(regCandidateVarCount = 0); |
1601 | for (lclNum = 0, varDsc = compiler->lvaTable; lclNum < compiler->lvaCount; lclNum++, varDsc++) |
1602 | { |
1603 | // Initialize all variables to REG_STK |
1604 | varDsc->lvRegNum = REG_STK; |
1605 | #ifndef _TARGET_64BIT_ |
1606 | varDsc->lvOtherReg = REG_STK; |
1607 | #endif // _TARGET_64BIT_ |
1608 | |
1609 | if (!enregisterLocalVars) |
1610 | { |
1611 | varDsc->lvLRACandidate = false; |
1612 | continue; |
1613 | } |
1614 | |
1615 | #if DOUBLE_ALIGN |
1616 | if (checkDoubleAlign) |
1617 | { |
1618 | if (varDsc->lvIsParam && !varDsc->lvIsRegArg) |
1619 | { |
1620 | refCntStkParam += varDsc->lvRefCnt(); |
1621 | } |
1622 | else if (!isRegCandidate(varDsc) || varDsc->lvDoNotEnregister) |
1623 | { |
1624 | refCntStk += varDsc->lvRefCnt(); |
1625 | if ((varDsc->lvType == TYP_DOUBLE) || |
1626 | ((varTypeIsStruct(varDsc) && varDsc->lvStructDoubleAlign && |
1627 | (compiler->lvaGetPromotionType(varDsc) != Compiler::PROMOTION_TYPE_INDEPENDENT)))) |
1628 | { |
1629 | refCntWtdStkDbl += varDsc->lvRefCntWtd(); |
1630 | } |
1631 | } |
1632 | else |
1633 | { |
1634 | refCntReg += varDsc->lvRefCnt(); |
1635 | refCntWtdReg += varDsc->lvRefCntWtd(); |
1636 | } |
1637 | } |
1638 | #endif // DOUBLE_ALIGN |
1639 | |
1640 | // Start with the assumption that it's a candidate. |
1641 | |
1642 | varDsc->lvLRACandidate = 1; |
1643 | |
1644 | // Start with lvRegister as false - set it true only if the variable gets |
1645 | // the same register assignment throughout |
1646 | varDsc->lvRegister = false; |
1647 | |
1648 | if (!isRegCandidate(varDsc)) |
1649 | { |
1650 | varDsc->lvLRACandidate = 0; |
1651 | if (varDsc->lvTracked) |
1652 | { |
1653 | localVarIntervals[varDsc->lvVarIndex] = nullptr; |
1654 | } |
1655 | continue; |
1656 | } |
1657 | |
1658 | if (varDsc->lvLRACandidate) |
1659 | { |
1660 | var_types type = genActualType(varDsc->TypeGet()); |
1661 | Interval* newInt = newInterval(type); |
1662 | newInt->setLocalNumber(compiler, lclNum, this); |
1663 | VarSetOps::AddElemD(compiler, registerCandidateVars, varDsc->lvVarIndex); |
1664 | |
1665 | // we will set this later when we have determined liveness |
1666 | varDsc->lvMustInit = false; |
1667 | |
1668 | if (varDsc->lvIsStructField) |
1669 | { |
1670 | newInt->isStructField = true; |
1671 | } |
1672 | |
1673 | INTRACK_STATS(regCandidateVarCount++); |
1674 | |
1675 | // We maintain two sets of FP vars - those that meet the first threshold of weighted ref Count, |
1676 | // and those that meet the second (see the definitions of thresholdFPRefCntWtd and maybeFPRefCntWtd |
1677 | // above). |
1678 | CLANG_FORMAT_COMMENT_ANCHOR; |
1679 | |
1680 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1681 | // Additionally, when we are generating AVX on non-UNIX amd64, we keep a separate set of the LargeVectorType |
1682 | // vars. |
1683 | if (varTypeNeedsPartialCalleeSave(varDsc->lvType)) |
1684 | { |
1685 | largeVectorVarCount++; |
1686 | VarSetOps::AddElemD(compiler, largeVectorVars, varDsc->lvVarIndex); |
1687 | unsigned refCntWtd = varDsc->lvRefCntWtd(); |
1688 | if (refCntWtd >= thresholdLargeVectorRefCntWtd) |
1689 | { |
1690 | VarSetOps::AddElemD(compiler, largeVectorCalleeSaveCandidateVars, varDsc->lvVarIndex); |
1691 | } |
1692 | } |
1693 | else |
1694 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
1695 | if (regType(type) == FloatRegisterType) |
1696 | { |
1697 | floatVarCount++; |
1698 | unsigned refCntWtd = varDsc->lvRefCntWtd(); |
1699 | if (varDsc->lvIsRegArg) |
1700 | { |
1701 | // Don't count the initial reference for register params. In those cases, |
1702 | // using a callee-save causes an extra copy. |
1703 | refCntWtd -= BB_UNITY_WEIGHT; |
1704 | } |
1705 | if (refCntWtd >= thresholdFPRefCntWtd) |
1706 | { |
1707 | VarSetOps::AddElemD(compiler, fpCalleeSaveCandidateVars, varDsc->lvVarIndex); |
1708 | } |
1709 | else if (refCntWtd >= maybeFPRefCntWtd) |
1710 | { |
1711 | VarSetOps::AddElemD(compiler, fpMaybeCandidateVars, varDsc->lvVarIndex); |
1712 | } |
1713 | } |
1714 | } |
1715 | else |
1716 | { |
1717 | localVarIntervals[varDsc->lvVarIndex] = nullptr; |
1718 | } |
1719 | } |
1720 | |
1721 | #if DOUBLE_ALIGN |
1722 | if (checkDoubleAlign) |
1723 | { |
1724 | // TODO-CQ: Fine-tune this: |
1725 | // In the legacy reg predictor, this runs after allocation, and then demotes any lclVars |
1726 | // allocated to the frame pointer, which is probably the wrong order. |
1727 | // However, because it runs after allocation, it can determine the impact of demoting |
1728 | // the lclVars allocated to the frame pointer. |
1729 | // => Here, estimate of the EBP refCnt and weighted refCnt is a wild guess. |
1730 | // |
1731 | unsigned refCntEBP = refCntReg / 8; |
1732 | unsigned refCntWtdEBP = refCntWtdReg / 8; |
1733 | |
1734 | doDoubleAlign = |
1735 | compiler->shouldDoubleAlign(refCntStk, refCntEBP, refCntWtdEBP, refCntStkParam, refCntWtdStkDbl); |
1736 | } |
1737 | #endif // DOUBLE_ALIGN |
1738 | |
1739 | // The factors we consider to determine which set of fp vars to use as candidates for callee save |
1740 | // registers current include the number of fp vars, whether there are loops, and whether there are |
1741 | // multiple exits. These have been selected somewhat empirically, but there is probably room for |
1742 | // more tuning. |
1743 | CLANG_FORMAT_COMMENT_ANCHOR; |
1744 | |
1745 | #ifdef DEBUG |
1746 | if (VERBOSE) |
1747 | { |
1748 | printf("\nFP callee save candidate vars: " ); |
1749 | if (enregisterLocalVars && !VarSetOps::IsEmpty(compiler, fpCalleeSaveCandidateVars)) |
1750 | { |
1751 | dumpConvertedVarSet(compiler, fpCalleeSaveCandidateVars); |
1752 | printf("\n" ); |
1753 | } |
1754 | else |
1755 | { |
1756 | printf("None\n\n" ); |
1757 | } |
1758 | } |
1759 | #endif |
1760 | |
1761 | JITDUMP("floatVarCount = %d; hasLoops = %d, singleExit = %d\n" , floatVarCount, compiler->fgHasLoops, |
1762 | (compiler->fgReturnBlocks == nullptr || compiler->fgReturnBlocks->next == nullptr)); |
1763 | |
1764 | // Determine whether to use the 2nd, more aggressive, threshold for fp callee saves. |
1765 | if (floatVarCount > 6 && compiler->fgHasLoops && |
1766 | (compiler->fgReturnBlocks == nullptr || compiler->fgReturnBlocks->next == nullptr)) |
1767 | { |
1768 | assert(enregisterLocalVars); |
1769 | #ifdef DEBUG |
1770 | if (VERBOSE) |
1771 | { |
1772 | printf("Adding additional fp callee save candidates: \n" ); |
1773 | if (!VarSetOps::IsEmpty(compiler, fpMaybeCandidateVars)) |
1774 | { |
1775 | dumpConvertedVarSet(compiler, fpMaybeCandidateVars); |
1776 | printf("\n" ); |
1777 | } |
1778 | else |
1779 | { |
1780 | printf("None\n\n" ); |
1781 | } |
1782 | } |
1783 | #endif |
1784 | VarSetOps::UnionD(compiler, fpCalleeSaveCandidateVars, fpMaybeCandidateVars); |
1785 | } |
1786 | |
1787 | #ifdef _TARGET_ARM_ |
1788 | #ifdef DEBUG |
1789 | if (VERBOSE) |
1790 | { |
1791 | // Frame layout is only pre-computed for ARM |
1792 | printf("\nlvaTable after IdentifyCandidates\n" ); |
1793 | compiler->lvaTableDump(Compiler::FrameLayoutState::PRE_REGALLOC_FRAME_LAYOUT); |
1794 | } |
1795 | #endif // DEBUG |
1796 | #endif // _TARGET_ARM_ |
1797 | } |
1798 | |
1799 | // TODO-Throughput: This mapping can surely be more efficiently done |
1800 | void LinearScan::initVarRegMaps() |
1801 | { |
1802 | if (!enregisterLocalVars) |
1803 | { |
1804 | inVarToRegMaps = nullptr; |
1805 | outVarToRegMaps = nullptr; |
1806 | return; |
1807 | } |
1808 | assert(compiler->lvaTrackedFixed); // We should have already set this to prevent us from adding any new tracked |
1809 | // variables. |
1810 | |
1811 | // The compiler memory allocator requires that the allocation be an |
1812 | // even multiple of int-sized objects |
1813 | unsigned int varCount = compiler->lvaTrackedCount; |
1814 | regMapCount = roundUp(varCount, (unsigned)sizeof(int)); |
1815 | |
1816 | // Not sure why blocks aren't numbered from zero, but they don't appear to be. |
1817 | // So, if we want to index by bbNum we have to know the maximum value. |
1818 | unsigned int bbCount = compiler->fgBBNumMax + 1; |
1819 | |
1820 | inVarToRegMaps = new (compiler, CMK_LSRA) regNumberSmall*[bbCount]; |
1821 | outVarToRegMaps = new (compiler, CMK_LSRA) regNumberSmall*[bbCount]; |
1822 | |
1823 | if (varCount > 0) |
1824 | { |
1825 | // This VarToRegMap is used during the resolution of critical edges. |
1826 | sharedCriticalVarToRegMap = new (compiler, CMK_LSRA) regNumberSmall[regMapCount]; |
1827 | |
1828 | for (unsigned int i = 0; i < bbCount; i++) |
1829 | { |
1830 | VarToRegMap inVarToRegMap = new (compiler, CMK_LSRA) regNumberSmall[regMapCount]; |
1831 | VarToRegMap outVarToRegMap = new (compiler, CMK_LSRA) regNumberSmall[regMapCount]; |
1832 | |
1833 | for (unsigned int j = 0; j < regMapCount; j++) |
1834 | { |
1835 | inVarToRegMap[j] = REG_STK; |
1836 | outVarToRegMap[j] = REG_STK; |
1837 | } |
1838 | inVarToRegMaps[i] = inVarToRegMap; |
1839 | outVarToRegMaps[i] = outVarToRegMap; |
1840 | } |
1841 | } |
1842 | else |
1843 | { |
1844 | sharedCriticalVarToRegMap = nullptr; |
1845 | for (unsigned int i = 0; i < bbCount; i++) |
1846 | { |
1847 | inVarToRegMaps[i] = nullptr; |
1848 | outVarToRegMaps[i] = nullptr; |
1849 | } |
1850 | } |
1851 | } |
1852 | |
1853 | void LinearScan::setInVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg) |
1854 | { |
1855 | assert(enregisterLocalVars); |
1856 | assert(reg < UCHAR_MAX && varNum < compiler->lvaCount); |
1857 | inVarToRegMaps[bbNum][compiler->lvaTable[varNum].lvVarIndex] = (regNumberSmall)reg; |
1858 | } |
1859 | |
1860 | void LinearScan::setOutVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg) |
1861 | { |
1862 | assert(enregisterLocalVars); |
1863 | assert(reg < UCHAR_MAX && varNum < compiler->lvaCount); |
1864 | outVarToRegMaps[bbNum][compiler->lvaTable[varNum].lvVarIndex] = (regNumberSmall)reg; |
1865 | } |
1866 | |
1867 | LinearScan::SplitEdgeInfo LinearScan::getSplitEdgeInfo(unsigned int bbNum) |
1868 | { |
1869 | assert(enregisterLocalVars); |
1870 | SplitEdgeInfo splitEdgeInfo; |
1871 | assert(bbNum <= compiler->fgBBNumMax); |
1872 | assert(bbNum > bbNumMaxBeforeResolution); |
1873 | assert(splitBBNumToTargetBBNumMap != nullptr); |
1874 | splitBBNumToTargetBBNumMap->Lookup(bbNum, &splitEdgeInfo); |
1875 | assert(splitEdgeInfo.toBBNum <= bbNumMaxBeforeResolution); |
1876 | assert(splitEdgeInfo.fromBBNum <= bbNumMaxBeforeResolution); |
1877 | return splitEdgeInfo; |
1878 | } |
1879 | |
1880 | VarToRegMap LinearScan::getInVarToRegMap(unsigned int bbNum) |
1881 | { |
1882 | assert(enregisterLocalVars); |
1883 | assert(bbNum <= compiler->fgBBNumMax); |
1884 | // For the blocks inserted to split critical edges, the inVarToRegMap is |
1885 | // equal to the outVarToRegMap at the "from" block. |
1886 | if (bbNum > bbNumMaxBeforeResolution) |
1887 | { |
1888 | SplitEdgeInfo splitEdgeInfo = getSplitEdgeInfo(bbNum); |
1889 | unsigned fromBBNum = splitEdgeInfo.fromBBNum; |
1890 | if (fromBBNum == 0) |
1891 | { |
1892 | assert(splitEdgeInfo.toBBNum != 0); |
1893 | return inVarToRegMaps[splitEdgeInfo.toBBNum]; |
1894 | } |
1895 | else |
1896 | { |
1897 | return outVarToRegMaps[fromBBNum]; |
1898 | } |
1899 | } |
1900 | |
1901 | return inVarToRegMaps[bbNum]; |
1902 | } |
1903 | |
1904 | VarToRegMap LinearScan::getOutVarToRegMap(unsigned int bbNum) |
1905 | { |
1906 | assert(enregisterLocalVars); |
1907 | assert(bbNum <= compiler->fgBBNumMax); |
1908 | // For the blocks inserted to split critical edges, the outVarToRegMap is |
1909 | // equal to the inVarToRegMap at the target. |
1910 | if (bbNum > bbNumMaxBeforeResolution) |
1911 | { |
1912 | // If this is an empty block, its in and out maps are both the same. |
1913 | // We identify this case by setting fromBBNum or toBBNum to 0, and using only the other. |
1914 | SplitEdgeInfo splitEdgeInfo = getSplitEdgeInfo(bbNum); |
1915 | unsigned toBBNum = splitEdgeInfo.toBBNum; |
1916 | if (toBBNum == 0) |
1917 | { |
1918 | assert(splitEdgeInfo.fromBBNum != 0); |
1919 | return outVarToRegMaps[splitEdgeInfo.fromBBNum]; |
1920 | } |
1921 | else |
1922 | { |
1923 | return inVarToRegMaps[toBBNum]; |
1924 | } |
1925 | } |
1926 | return outVarToRegMaps[bbNum]; |
1927 | } |
1928 | |
1929 | //------------------------------------------------------------------------ |
1930 | // setVarReg: Set the register associated with a variable in the given 'bbVarToRegMap'. |
1931 | // |
1932 | // Arguments: |
1933 | // bbVarToRegMap - the map of interest |
1934 | // trackedVarIndex - the lvVarIndex for the variable |
1935 | // reg - the register to which it is being mapped |
1936 | // |
1937 | // Return Value: |
1938 | // None |
1939 | // |
1940 | void LinearScan::setVarReg(VarToRegMap bbVarToRegMap, unsigned int trackedVarIndex, regNumber reg) |
1941 | { |
1942 | assert(trackedVarIndex < compiler->lvaTrackedCount); |
1943 | regNumberSmall regSmall = (regNumberSmall)reg; |
1944 | assert((regNumber)regSmall == reg); |
1945 | bbVarToRegMap[trackedVarIndex] = regSmall; |
1946 | } |
1947 | |
1948 | //------------------------------------------------------------------------ |
1949 | // getVarReg: Get the register associated with a variable in the given 'bbVarToRegMap'. |
1950 | // |
1951 | // Arguments: |
1952 | // bbVarToRegMap - the map of interest |
1953 | // trackedVarIndex - the lvVarIndex for the variable |
1954 | // |
1955 | // Return Value: |
1956 | // The register to which 'trackedVarIndex' is mapped |
1957 | // |
1958 | regNumber LinearScan::getVarReg(VarToRegMap bbVarToRegMap, unsigned int trackedVarIndex) |
1959 | { |
1960 | assert(enregisterLocalVars); |
1961 | assert(trackedVarIndex < compiler->lvaTrackedCount); |
1962 | return (regNumber)bbVarToRegMap[trackedVarIndex]; |
1963 | } |
1964 | |
1965 | // Initialize the incoming VarToRegMap to the given map values (generally a predecessor of |
1966 | // the block) |
1967 | VarToRegMap LinearScan::setInVarToRegMap(unsigned int bbNum, VarToRegMap srcVarToRegMap) |
1968 | { |
1969 | assert(enregisterLocalVars); |
1970 | VarToRegMap inVarToRegMap = inVarToRegMaps[bbNum]; |
1971 | memcpy(inVarToRegMap, srcVarToRegMap, (regMapCount * sizeof(regNumber))); |
1972 | return inVarToRegMap; |
1973 | } |
1974 | |
1975 | //------------------------------------------------------------------------ |
1976 | // checkLastUses: Check correctness of last use flags |
1977 | // |
1978 | // Arguments: |
1979 | // The block for which we are checking last uses. |
1980 | // |
1981 | // Notes: |
1982 | // This does a backward walk of the RefPositions, starting from the liveOut set. |
1983 | // This method was previously used to set the last uses, which were computed by |
1984 | // liveness, but were not create in some cases of multiple lclVar references in the |
1985 | // same tree. However, now that last uses are computed as RefPositions are created, |
1986 | // that is no longer necessary, and this method is simply retained as a check. |
1987 | // The exception to the check-only behavior is when LSRA_EXTEND_LIFETIMES if set via |
1988 | // COMPlus_JitStressRegs. In that case, this method is required, because even though |
1989 | // the RefPositions will not be marked lastUse in that case, we still need to correclty |
1990 | // mark the last uses on the tree nodes, which is done by this method. |
1991 | // |
1992 | #ifdef DEBUG |
1993 | void LinearScan::checkLastUses(BasicBlock* block) |
1994 | { |
1995 | if (VERBOSE) |
1996 | { |
1997 | JITDUMP("\n\nCHECKING LAST USES for " FMT_BB ", liveout=" , block->bbNum); |
1998 | dumpConvertedVarSet(compiler, block->bbLiveOut); |
1999 | JITDUMP("\n==============================\n" ); |
2000 | } |
2001 | |
2002 | unsigned keepAliveVarNum = BAD_VAR_NUM; |
2003 | if (compiler->lvaKeepAliveAndReportThis()) |
2004 | { |
2005 | keepAliveVarNum = compiler->info.compThisArg; |
2006 | assert(compiler->info.compIsStatic == false); |
2007 | } |
2008 | |
2009 | // find which uses are lastUses |
2010 | |
2011 | // Work backwards starting with live out. |
2012 | // 'computedLive' is updated to include any exposed use (including those in this |
2013 | // block that we've already seen). When we encounter a use, if it's |
2014 | // not in that set, then it's a last use. |
2015 | |
2016 | VARSET_TP computedLive(VarSetOps::MakeCopy(compiler, block->bbLiveOut)); |
2017 | |
2018 | bool foundDiff = false; |
2019 | RefPositionReverseIterator reverseIterator = refPositions.rbegin(); |
2020 | RefPosition* currentRefPosition; |
2021 | for (currentRefPosition = &reverseIterator; currentRefPosition->refType != RefTypeBB; |
2022 | reverseIterator++, currentRefPosition = &reverseIterator) |
2023 | { |
2024 | // We should never see ParamDefs or ZeroInits within a basic block. |
2025 | assert(currentRefPosition->refType != RefTypeParamDef && currentRefPosition->refType != RefTypeZeroInit); |
2026 | if (currentRefPosition->isIntervalRef() && currentRefPosition->getInterval()->isLocalVar) |
2027 | { |
2028 | unsigned varNum = currentRefPosition->getInterval()->varNum; |
2029 | unsigned varIndex = currentRefPosition->getInterval()->getVarIndex(compiler); |
2030 | |
2031 | LsraLocation loc = currentRefPosition->nodeLocation; |
2032 | |
2033 | // We should always have a tree node for a localVar, except for the "special" RefPositions. |
2034 | GenTree* tree = currentRefPosition->treeNode; |
2035 | assert(tree != nullptr || currentRefPosition->refType == RefTypeExpUse || |
2036 | currentRefPosition->refType == RefTypeDummyDef); |
2037 | |
2038 | if (!VarSetOps::IsMember(compiler, computedLive, varIndex) && varNum != keepAliveVarNum) |
2039 | { |
2040 | // There was no exposed use, so this is a "last use" (and we mark it thus even if it's a def) |
2041 | |
2042 | if (extendLifetimes()) |
2043 | { |
2044 | // NOTE: this is a bit of a hack. When extending lifetimes, the "last use" bit will be clear. |
2045 | // This bit, however, would normally be used during resolveLocalRef to set the value of |
2046 | // GTF_VAR_DEATH on the node for a ref position. If this bit is not set correctly even when |
2047 | // extending lifetimes, the code generator will assert as it expects to have accurate last |
2048 | // use information. To avoid these asserts, set the GTF_VAR_DEATH bit here. |
2049 | // Note also that extendLifetimes() is an LSRA stress mode, so it will only be true for |
2050 | // Checked or Debug builds, for which this method will be executed. |
2051 | if (tree != nullptr) |
2052 | { |
2053 | tree->gtFlags |= GTF_VAR_DEATH; |
2054 | } |
2055 | } |
2056 | else if (!currentRefPosition->lastUse) |
2057 | { |
2058 | JITDUMP("missing expected last use of V%02u @%u\n" , compiler->lvaTrackedToVarNum[varIndex], loc); |
2059 | foundDiff = true; |
2060 | } |
2061 | VarSetOps::AddElemD(compiler, computedLive, varIndex); |
2062 | } |
2063 | else if (currentRefPosition->lastUse) |
2064 | { |
2065 | JITDUMP("unexpected last use of V%02u @%u\n" , compiler->lvaTrackedToVarNum[varIndex], loc); |
2066 | foundDiff = true; |
2067 | } |
2068 | else if (extendLifetimes() && tree != nullptr) |
2069 | { |
2070 | // NOTE: see the comment above re: the extendLifetimes hack. |
2071 | tree->gtFlags &= ~GTF_VAR_DEATH; |
2072 | } |
2073 | |
2074 | if (currentRefPosition->refType == RefTypeDef || currentRefPosition->refType == RefTypeDummyDef) |
2075 | { |
2076 | VarSetOps::RemoveElemD(compiler, computedLive, varIndex); |
2077 | } |
2078 | } |
2079 | |
2080 | assert(reverseIterator != refPositions.rend()); |
2081 | } |
2082 | |
2083 | VARSET_TP liveInNotComputedLive(VarSetOps::Diff(compiler, block->bbLiveIn, computedLive)); |
2084 | |
2085 | VarSetOps::Iter liveInNotComputedLiveIter(compiler, liveInNotComputedLive); |
2086 | unsigned liveInNotComputedLiveIndex = 0; |
2087 | while (liveInNotComputedLiveIter.NextElem(&liveInNotComputedLiveIndex)) |
2088 | { |
2089 | unsigned varNum = compiler->lvaTrackedToVarNum[liveInNotComputedLiveIndex]; |
2090 | if (compiler->lvaTable[varNum].lvLRACandidate) |
2091 | { |
2092 | JITDUMP(FMT_BB ": V%02u is in LiveIn set, but not computed live.\n" , block->bbNum, varNum); |
2093 | foundDiff = true; |
2094 | } |
2095 | } |
2096 | |
2097 | VarSetOps::DiffD(compiler, computedLive, block->bbLiveIn); |
2098 | const VARSET_TP& computedLiveNotLiveIn(computedLive); // reuse the buffer. |
2099 | VarSetOps::Iter computedLiveNotLiveInIter(compiler, computedLiveNotLiveIn); |
2100 | unsigned computedLiveNotLiveInIndex = 0; |
2101 | while (computedLiveNotLiveInIter.NextElem(&computedLiveNotLiveInIndex)) |
2102 | { |
2103 | unsigned varNum = compiler->lvaTrackedToVarNum[computedLiveNotLiveInIndex]; |
2104 | if (compiler->lvaTable[varNum].lvLRACandidate) |
2105 | { |
2106 | JITDUMP(FMT_BB ": V%02u is computed live, but not in LiveIn set.\n" , block->bbNum, varNum); |
2107 | foundDiff = true; |
2108 | } |
2109 | } |
2110 | |
2111 | assert(!foundDiff); |
2112 | } |
2113 | #endif // DEBUG |
2114 | |
2115 | //------------------------------------------------------------------------ |
2116 | // findPredBlockForLiveIn: Determine which block should be used for the register locations of the live-in variables. |
2117 | // |
2118 | // Arguments: |
2119 | // block - The block for which we're selecting a predecesor. |
2120 | // prevBlock - The previous block in in allocation order. |
2121 | // pPredBlockIsAllocated - A debug-only argument that indicates whether any of the predecessors have been seen |
2122 | // in allocation order. |
2123 | // |
2124 | // Return Value: |
2125 | // The selected predecessor. |
2126 | // |
2127 | // Assumptions: |
2128 | // in DEBUG, caller initializes *pPredBlockIsAllocated to false, and it will be set to true if the block |
2129 | // returned is in fact a predecessor. |
2130 | // |
2131 | // Notes: |
2132 | // This will select a predecessor based on the heuristics obtained by getLsraBlockBoundaryLocations(), which can be |
2133 | // one of: |
2134 | // LSRA_BLOCK_BOUNDARY_PRED - Use the register locations of a predecessor block (default) |
2135 | // LSRA_BLOCK_BOUNDARY_LAYOUT - Use the register locations of the previous block in layout order. |
2136 | // This is the only case where this actually returns a different block. |
2137 | // LSRA_BLOCK_BOUNDARY_ROTATE - Rotate the register locations from a predecessor. |
2138 | // For this case, the block returned is the same as for LSRA_BLOCK_BOUNDARY_PRED, but |
2139 | // the register locations will be "rotated" to stress the resolution and allocation |
2140 | // code. |
2141 | |
2142 | BasicBlock* LinearScan::findPredBlockForLiveIn(BasicBlock* block, |
2143 | BasicBlock* prevBlock DEBUGARG(bool* pPredBlockIsAllocated)) |
2144 | { |
2145 | BasicBlock* predBlock = nullptr; |
2146 | #ifdef DEBUG |
2147 | assert(*pPredBlockIsAllocated == false); |
2148 | if (getLsraBlockBoundaryLocations() == LSRA_BLOCK_BOUNDARY_LAYOUT) |
2149 | { |
2150 | if (prevBlock != nullptr) |
2151 | { |
2152 | predBlock = prevBlock; |
2153 | } |
2154 | } |
2155 | else |
2156 | #endif // DEBUG |
2157 | if (block != compiler->fgFirstBB) |
2158 | { |
2159 | predBlock = block->GetUniquePred(compiler); |
2160 | if (predBlock != nullptr) |
2161 | { |
2162 | if (isBlockVisited(predBlock)) |
2163 | { |
2164 | if (predBlock->bbJumpKind == BBJ_COND) |
2165 | { |
2166 | // Special handling to improve matching on backedges. |
2167 | BasicBlock* otherBlock = (block == predBlock->bbNext) ? predBlock->bbJumpDest : predBlock->bbNext; |
2168 | noway_assert(otherBlock != nullptr); |
2169 | if (isBlockVisited(otherBlock)) |
2170 | { |
2171 | // This is the case when we have a conditional branch where one target has already |
2172 | // been visited. It would be best to use the same incoming regs as that block, |
2173 | // so that we have less likelihood of having to move registers. |
2174 | // For example, in determining the block to use for the starting register locations for |
2175 | // "block" in the following example, we'd like to use the same predecessor for "block" |
2176 | // as for "otherBlock", so that both successors of predBlock have the same locations, reducing |
2177 | // the likelihood of needing a split block on a backedge: |
2178 | // |
2179 | // otherPred |
2180 | // | |
2181 | // otherBlock <-+ |
2182 | // . . . | |
2183 | // | |
2184 | // predBlock----+ |
2185 | // | |
2186 | // block |
2187 | // |
2188 | for (flowList* pred = otherBlock->bbPreds; pred != nullptr; pred = pred->flNext) |
2189 | { |
2190 | BasicBlock* otherPred = pred->flBlock; |
2191 | if (otherPred->bbNum == blockInfo[otherBlock->bbNum].predBBNum) |
2192 | { |
2193 | predBlock = otherPred; |
2194 | break; |
2195 | } |
2196 | } |
2197 | } |
2198 | } |
2199 | } |
2200 | else |
2201 | { |
2202 | predBlock = nullptr; |
2203 | } |
2204 | } |
2205 | else |
2206 | { |
2207 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
2208 | { |
2209 | BasicBlock* candidatePredBlock = pred->flBlock; |
2210 | if (isBlockVisited(candidatePredBlock)) |
2211 | { |
2212 | if (predBlock == nullptr || predBlock->bbWeight < candidatePredBlock->bbWeight) |
2213 | { |
2214 | predBlock = candidatePredBlock; |
2215 | INDEBUG(*pPredBlockIsAllocated = true;) |
2216 | } |
2217 | } |
2218 | } |
2219 | } |
2220 | if (predBlock == nullptr) |
2221 | { |
2222 | predBlock = prevBlock; |
2223 | assert(predBlock != nullptr); |
2224 | JITDUMP("\n\nNo allocated predecessor; " ); |
2225 | } |
2226 | } |
2227 | return predBlock; |
2228 | } |
2229 | |
2230 | #ifdef DEBUG |
2231 | void LinearScan::dumpVarRefPositions(const char* title) |
2232 | { |
2233 | if (enregisterLocalVars) |
2234 | { |
2235 | printf("\nVAR REFPOSITIONS %s\n" , title); |
2236 | |
2237 | for (unsigned i = 0; i < compiler->lvaCount; i++) |
2238 | { |
2239 | printf("--- V%02u\n" , i); |
2240 | |
2241 | LclVarDsc* varDsc = compiler->lvaTable + i; |
2242 | if (varDsc->lvIsRegCandidate()) |
2243 | { |
2244 | Interval* interval = getIntervalForLocalVar(varDsc->lvVarIndex); |
2245 | for (RefPosition* ref = interval->firstRefPosition; ref != nullptr; ref = ref->nextRefPosition) |
2246 | { |
2247 | ref->dump(); |
2248 | } |
2249 | } |
2250 | } |
2251 | printf("\n" ); |
2252 | } |
2253 | } |
2254 | |
2255 | #endif // DEBUG |
2256 | |
2257 | // Set the default rpFrameType based upon codeGen->isFramePointerRequired() |
2258 | // This was lifted from the register predictor |
2259 | // |
2260 | void LinearScan::setFrameType() |
2261 | { |
2262 | FrameType frameType = FT_NOT_SET; |
2263 | #if DOUBLE_ALIGN |
2264 | compiler->codeGen->setDoubleAlign(false); |
2265 | if (doDoubleAlign) |
2266 | { |
2267 | frameType = FT_DOUBLE_ALIGN_FRAME; |
2268 | compiler->codeGen->setDoubleAlign(true); |
2269 | } |
2270 | else |
2271 | #endif // DOUBLE_ALIGN |
2272 | if (compiler->codeGen->isFramePointerRequired()) |
2273 | { |
2274 | frameType = FT_EBP_FRAME; |
2275 | } |
2276 | else |
2277 | { |
2278 | if (compiler->rpMustCreateEBPCalled == false) |
2279 | { |
2280 | #ifdef DEBUG |
2281 | const char* reason; |
2282 | #endif // DEBUG |
2283 | compiler->rpMustCreateEBPCalled = true; |
2284 | if (compiler->rpMustCreateEBPFrame(INDEBUG(&reason))) |
2285 | { |
2286 | JITDUMP("; Decided to create an EBP based frame for ETW stackwalking (%s)\n" , reason); |
2287 | compiler->codeGen->setFrameRequired(true); |
2288 | } |
2289 | } |
2290 | |
2291 | if (compiler->codeGen->isFrameRequired()) |
2292 | { |
2293 | frameType = FT_EBP_FRAME; |
2294 | } |
2295 | else |
2296 | { |
2297 | frameType = FT_ESP_FRAME; |
2298 | } |
2299 | } |
2300 | |
2301 | switch (frameType) |
2302 | { |
2303 | case FT_ESP_FRAME: |
2304 | noway_assert(!compiler->codeGen->isFramePointerRequired()); |
2305 | noway_assert(!compiler->codeGen->isFrameRequired()); |
2306 | compiler->codeGen->setFramePointerUsed(false); |
2307 | break; |
2308 | case FT_EBP_FRAME: |
2309 | compiler->codeGen->setFramePointerUsed(true); |
2310 | break; |
2311 | #if DOUBLE_ALIGN |
2312 | case FT_DOUBLE_ALIGN_FRAME: |
2313 | noway_assert(!compiler->codeGen->isFramePointerRequired()); |
2314 | compiler->codeGen->setFramePointerUsed(false); |
2315 | break; |
2316 | #endif // DOUBLE_ALIGN |
2317 | default: |
2318 | noway_assert(!"rpFrameType not set correctly!" ); |
2319 | break; |
2320 | } |
2321 | |
2322 | // If we are using FPBASE as the frame register, we cannot also use it for |
2323 | // a local var. |
2324 | regMaskTP removeMask = RBM_NONE; |
2325 | if (frameType == FT_EBP_FRAME) |
2326 | { |
2327 | removeMask |= RBM_FPBASE; |
2328 | } |
2329 | |
2330 | compiler->rpFrameType = frameType; |
2331 | |
2332 | #ifdef _TARGET_ARMARCH_ |
2333 | // Determine whether we need to reserve a register for large lclVar offsets. |
2334 | if (compiler->compRsvdRegCheck(Compiler::REGALLOC_FRAME_LAYOUT)) |
2335 | { |
2336 | // We reserve R10/IP1 in this case to hold the offsets in load/store instructions |
2337 | compiler->codeGen->regSet.rsMaskResvd |= RBM_OPT_RSVD; |
2338 | assert(REG_OPT_RSVD != REG_FP); |
2339 | JITDUMP(" Reserved REG_OPT_RSVD (%s) due to large frame\n" , getRegName(REG_OPT_RSVD)); |
2340 | removeMask |= RBM_OPT_RSVD; |
2341 | } |
2342 | #endif // _TARGET_ARMARCH_ |
2343 | |
2344 | if ((removeMask != RBM_NONE) && ((availableIntRegs & removeMask) != 0)) |
2345 | { |
2346 | // We know that we're already in "read mode" for availableIntRegs. However, |
2347 | // we need to remove these registers, so subsequent users (like callers |
2348 | // to allRegs()) get the right thing. The RemoveRegistersFromMasks() code |
2349 | // fixes up everything that already took a dependency on the value that was |
2350 | // previously read, so this completes the picture. |
2351 | availableIntRegs.OverrideAssign(availableIntRegs & ~removeMask); |
2352 | } |
2353 | } |
2354 | |
2355 | //------------------------------------------------------------------------ |
2356 | // copyOrMoveRegInUse: Is 'ref' a copyReg/moveReg that is still busy at the given location? |
2357 | // |
2358 | // Arguments: |
2359 | // ref: The RefPosition of interest |
2360 | // loc: The LsraLocation at which we're determining whether it's busy. |
2361 | // |
2362 | // Return Value: |
2363 | // true iff 'ref' is active at the given location |
2364 | // |
2365 | bool copyOrMoveRegInUse(RefPosition* ref, LsraLocation loc) |
2366 | { |
2367 | if (!ref->copyReg && !ref->moveReg) |
2368 | { |
2369 | return false; |
2370 | } |
2371 | if (ref->getRefEndLocation() >= loc) |
2372 | { |
2373 | return true; |
2374 | } |
2375 | Interval* interval = ref->getInterval(); |
2376 | RefPosition* nextRef = interval->getNextRefPosition(); |
2377 | if (nextRef != nullptr && nextRef->treeNode == ref->treeNode && nextRef->getRefEndLocation() >= loc) |
2378 | { |
2379 | return true; |
2380 | } |
2381 | return false; |
2382 | } |
2383 | |
2384 | // Determine whether the register represented by "physRegRecord" is available at least |
2385 | // at the "currentLoc", and if so, return the next location at which it is in use in |
2386 | // "nextRefLocationPtr" |
2387 | // |
2388 | bool LinearScan::registerIsAvailable(RegRecord* physRegRecord, |
2389 | LsraLocation currentLoc, |
2390 | LsraLocation* nextRefLocationPtr, |
2391 | RegisterType regType) |
2392 | { |
2393 | *nextRefLocationPtr = MaxLocation; |
2394 | LsraLocation nextRefLocation = MaxLocation; |
2395 | regMaskTP regMask = genRegMask(physRegRecord->regNum); |
2396 | if (physRegRecord->isBusyUntilNextKill) |
2397 | { |
2398 | return false; |
2399 | } |
2400 | |
2401 | RefPosition* nextPhysReference = physRegRecord->getNextRefPosition(); |
2402 | if (nextPhysReference != nullptr) |
2403 | { |
2404 | nextRefLocation = nextPhysReference->nodeLocation; |
2405 | // if (nextPhysReference->refType == RefTypeFixedReg) nextRefLocation--; |
2406 | } |
2407 | else if (!physRegRecord->isCalleeSave) |
2408 | { |
2409 | nextRefLocation = MaxLocation - 1; |
2410 | } |
2411 | |
2412 | Interval* assignedInterval = physRegRecord->assignedInterval; |
2413 | |
2414 | if (assignedInterval != nullptr) |
2415 | { |
2416 | RefPosition* recentReference = assignedInterval->recentRefPosition; |
2417 | |
2418 | // The only case where we have an assignedInterval, but recentReference is null |
2419 | // is where this interval is live at procedure entry (i.e. an arg register), in which |
2420 | // case it's still live and its assigned register is not available |
2421 | // (Note that the ParamDef will be recorded as a recentReference when we encounter |
2422 | // it, but we will be allocating registers, potentially to other incoming parameters, |
2423 | // as we process the ParamDefs.) |
2424 | |
2425 | if (recentReference == nullptr) |
2426 | { |
2427 | return false; |
2428 | } |
2429 | |
2430 | // Is this a copyReg/moveReg? It is if the register assignment doesn't match. |
2431 | // (the recentReference may not be a copyReg/moveReg, because we could have seen another |
2432 | // reference since the copyReg/moveReg) |
2433 | |
2434 | if (!assignedInterval->isAssignedTo(physRegRecord->regNum)) |
2435 | { |
2436 | // If the recentReference is for a different register, it can be reassigned, but |
2437 | // otherwise don't reassign it if it's still in use. |
2438 | // (Note that it is unlikely that we have a recent copy or move to a different register, |
2439 | // where this physRegRecord is still pointing at an earlier copy or move, but it is possible, |
2440 | // especially in stress modes.) |
2441 | if ((recentReference->registerAssignment == regMask) && copyOrMoveRegInUse(recentReference, currentLoc)) |
2442 | { |
2443 | return false; |
2444 | } |
2445 | } |
2446 | else if (!assignedInterval->isActive && assignedInterval->isConstant) |
2447 | { |
2448 | // Treat this as unassigned, i.e. do nothing. |
2449 | // TODO-CQ: Consider adjusting the heuristics (probably in the caller of this method) |
2450 | // to avoid reusing these registers. |
2451 | } |
2452 | // If this interval isn't active, it's available if it isn't referenced |
2453 | // at this location (or the previous location, if the recent RefPosition |
2454 | // is a delayRegFree). |
2455 | else if (!assignedInterval->isActive && |
2456 | (recentReference->refType == RefTypeExpUse || recentReference->getRefEndLocation() < currentLoc)) |
2457 | { |
2458 | // This interval must have a next reference (otherwise it wouldn't be assigned to this register) |
2459 | RefPosition* nextReference = recentReference->nextRefPosition; |
2460 | if (nextReference != nullptr) |
2461 | { |
2462 | if (nextReference->nodeLocation < nextRefLocation) |
2463 | { |
2464 | nextRefLocation = nextReference->nodeLocation; |
2465 | } |
2466 | } |
2467 | else |
2468 | { |
2469 | assert(recentReference->copyReg && recentReference->registerAssignment != regMask); |
2470 | } |
2471 | } |
2472 | else |
2473 | { |
2474 | return false; |
2475 | } |
2476 | } |
2477 | if (nextRefLocation < *nextRefLocationPtr) |
2478 | { |
2479 | *nextRefLocationPtr = nextRefLocation; |
2480 | } |
2481 | |
2482 | #ifdef _TARGET_ARM_ |
2483 | if (regType == TYP_DOUBLE) |
2484 | { |
2485 | // Recurse, but check the other half this time (TYP_FLOAT) |
2486 | if (!registerIsAvailable(findAnotherHalfRegRec(physRegRecord), currentLoc, nextRefLocationPtr, TYP_FLOAT)) |
2487 | return false; |
2488 | nextRefLocation = *nextRefLocationPtr; |
2489 | } |
2490 | #endif // _TARGET_ARM_ |
2491 | |
2492 | return (nextRefLocation >= currentLoc); |
2493 | } |
2494 | |
2495 | //------------------------------------------------------------------------ |
2496 | // getRegisterType: Get the RegisterType to use for the given RefPosition |
2497 | // |
2498 | // Arguments: |
2499 | // currentInterval: The interval for the current allocation |
2500 | // refPosition: The RefPosition of the current Interval for which a register is being allocated |
2501 | // |
2502 | // Return Value: |
2503 | // The RegisterType that should be allocated for this RefPosition |
2504 | // |
2505 | // Notes: |
2506 | // This will nearly always be identical to the registerType of the interval, except in the case |
2507 | // of SIMD types of 8 bytes (currently only Vector2) when they are passed and returned in integer |
2508 | // registers, or copied to a return temp. |
2509 | // This method need only be called in situations where we may be dealing with the register requirements |
2510 | // of a RefTypeUse RefPosition (i.e. not when we are only looking at the type of an interval, nor when |
2511 | // we are interested in the "defining" type of the interval). This is because the situation of interest |
2512 | // only happens at the use (where it must be copied to an integer register). |
2513 | |
2514 | RegisterType LinearScan::getRegisterType(Interval* currentInterval, RefPosition* refPosition) |
2515 | { |
2516 | assert(refPosition->getInterval() == currentInterval); |
2517 | RegisterType regType = currentInterval->registerType; |
2518 | regMaskTP candidates = refPosition->registerAssignment; |
2519 | |
2520 | assert((candidates & allRegs(regType)) != RBM_NONE); |
2521 | return regType; |
2522 | } |
2523 | |
2524 | //------------------------------------------------------------------------ |
2525 | // isMatchingConstant: Check to see whether a given register contains the constant referenced |
2526 | // by the given RefPosition |
2527 | // |
2528 | // Arguments: |
2529 | // physRegRecord: The RegRecord for the register we're interested in. |
2530 | // refPosition: The RefPosition for a constant interval. |
2531 | // |
2532 | // Return Value: |
2533 | // True iff the register was defined by an identical constant node as the current interval. |
2534 | // |
2535 | bool LinearScan::isMatchingConstant(RegRecord* physRegRecord, RefPosition* refPosition) |
2536 | { |
2537 | if ((physRegRecord->assignedInterval == nullptr) || !physRegRecord->assignedInterval->isConstant) |
2538 | { |
2539 | return false; |
2540 | } |
2541 | noway_assert(refPosition->treeNode != nullptr); |
2542 | GenTree* otherTreeNode = physRegRecord->assignedInterval->firstRefPosition->treeNode; |
2543 | noway_assert(otherTreeNode != nullptr); |
2544 | |
2545 | if (refPosition->treeNode->OperGet() == otherTreeNode->OperGet()) |
2546 | { |
2547 | switch (otherTreeNode->OperGet()) |
2548 | { |
2549 | case GT_CNS_INT: |
2550 | if ((refPosition->treeNode->AsIntCon()->IconValue() == otherTreeNode->AsIntCon()->IconValue()) && |
2551 | (varTypeGCtype(refPosition->treeNode) == varTypeGCtype(otherTreeNode))) |
2552 | { |
2553 | #ifdef _TARGET_64BIT_ |
2554 | // If the constant is negative, only reuse registers of the same type. |
2555 | // This is because, on a 64-bit system, we do not sign-extend immediates in registers to |
2556 | // 64-bits unless they are actually longs, as this requires a longer instruction. |
2557 | // This doesn't apply to a 32-bit system, on which long values occupy multiple registers. |
2558 | // (We could sign-extend, but we would have to always sign-extend, because if we reuse more |
2559 | // than once, we won't have access to the instruction that originally defines the constant). |
2560 | if ((refPosition->treeNode->TypeGet() == otherTreeNode->TypeGet()) || |
2561 | (refPosition->treeNode->AsIntCon()->IconValue() >= 0)) |
2562 | #endif // _TARGET_64BIT_ |
2563 | { |
2564 | return true; |
2565 | } |
2566 | } |
2567 | break; |
2568 | case GT_CNS_DBL: |
2569 | { |
2570 | // For floating point constants, the values must be identical, not simply compare |
2571 | // equal. So we compare the bits. |
2572 | if (refPosition->treeNode->AsDblCon()->isBitwiseEqual(otherTreeNode->AsDblCon()) && |
2573 | (refPosition->treeNode->TypeGet() == otherTreeNode->TypeGet())) |
2574 | { |
2575 | return true; |
2576 | } |
2577 | break; |
2578 | } |
2579 | default: |
2580 | break; |
2581 | } |
2582 | } |
2583 | return false; |
2584 | } |
2585 | |
2586 | //------------------------------------------------------------------------ |
2587 | // tryAllocateFreeReg: Find a free register that satisfies the requirements for refPosition, |
2588 | // and takes into account the preferences for the given Interval |
2589 | // |
2590 | // Arguments: |
2591 | // currentInterval: The interval for the current allocation |
2592 | // refPosition: The RefPosition of the current Interval for which a register is being allocated |
2593 | // |
2594 | // Return Value: |
2595 | // The regNumber, if any, allocated to the RefPositon. Returns REG_NA if no free register is found. |
2596 | // |
2597 | // Notes: |
2598 | // TODO-CQ: Consider whether we need to use a different order for tree temps than for vars, as |
2599 | // reg predict does |
2600 | |
2601 | static const regNumber lsraRegOrder[] = {REG_VAR_ORDER}; |
2602 | const unsigned lsraRegOrderSize = ArrLen(lsraRegOrder); |
2603 | static const regNumber lsraRegOrderFlt[] = {REG_VAR_ORDER_FLT}; |
2604 | const unsigned lsraRegOrderFltSize = ArrLen(lsraRegOrderFlt); |
2605 | |
2606 | regNumber LinearScan::tryAllocateFreeReg(Interval* currentInterval, RefPosition* refPosition) |
2607 | { |
2608 | regNumber foundReg = REG_NA; |
2609 | |
2610 | RegisterType regType = getRegisterType(currentInterval, refPosition); |
2611 | const regNumber* regOrder; |
2612 | unsigned regOrderSize; |
2613 | if (useFloatReg(regType)) |
2614 | { |
2615 | regOrder = lsraRegOrderFlt; |
2616 | regOrderSize = lsraRegOrderFltSize; |
2617 | } |
2618 | else |
2619 | { |
2620 | regOrder = lsraRegOrder; |
2621 | regOrderSize = lsraRegOrderSize; |
2622 | } |
2623 | |
2624 | LsraLocation currentLocation = refPosition->nodeLocation; |
2625 | RefPosition* nextRefPos = refPosition->nextRefPosition; |
2626 | LsraLocation nextLocation = (nextRefPos == nullptr) ? currentLocation : nextRefPos->nodeLocation; |
2627 | regMaskTP candidates = refPosition->registerAssignment; |
2628 | regMaskTP preferences = currentInterval->registerPreferences; |
2629 | |
2630 | if (RefTypeIsDef(refPosition->refType)) |
2631 | { |
2632 | if (currentInterval->hasConflictingDefUse) |
2633 | { |
2634 | resolveConflictingDefAndUse(currentInterval, refPosition); |
2635 | candidates = refPosition->registerAssignment; |
2636 | } |
2637 | // Otherwise, check for the case of a fixed-reg def of a reg that will be killed before the |
2638 | // use, or interferes at the point of use (which shouldn't happen, but Lower doesn't mark |
2639 | // the contained nodes as interfering). |
2640 | // Note that we may have a ParamDef RefPosition that is marked isFixedRegRef, but which |
2641 | // has had its registerAssignment changed to no longer be a single register. |
2642 | else if (refPosition->isFixedRegRef && nextRefPos != nullptr && RefTypeIsUse(nextRefPos->refType) && |
2643 | !nextRefPos->isFixedRegRef && genMaxOneBit(refPosition->registerAssignment)) |
2644 | { |
2645 | regNumber defReg = refPosition->assignedReg(); |
2646 | RegRecord* defRegRecord = getRegisterRecord(defReg); |
2647 | |
2648 | RefPosition* currFixedRegRefPosition = defRegRecord->recentRefPosition; |
2649 | assert(currFixedRegRefPosition != nullptr && |
2650 | currFixedRegRefPosition->nodeLocation == refPosition->nodeLocation); |
2651 | |
2652 | // If there is another fixed reference to this register before the use, change the candidates |
2653 | // on this RefPosition to include that of nextRefPos. |
2654 | if (currFixedRegRefPosition->nextRefPosition != nullptr && |
2655 | currFixedRegRefPosition->nextRefPosition->nodeLocation <= nextRefPos->getRefEndLocation()) |
2656 | { |
2657 | candidates |= nextRefPos->registerAssignment; |
2658 | if (preferences == refPosition->registerAssignment) |
2659 | { |
2660 | preferences = candidates; |
2661 | } |
2662 | } |
2663 | } |
2664 | } |
2665 | |
2666 | preferences &= candidates; |
2667 | if (preferences == RBM_NONE) |
2668 | { |
2669 | preferences = candidates; |
2670 | } |
2671 | regMaskTP relatedPreferences = RBM_NONE; |
2672 | |
2673 | #ifdef DEBUG |
2674 | candidates = stressLimitRegs(refPosition, candidates); |
2675 | #endif |
2676 | assert(candidates != RBM_NONE); |
2677 | |
2678 | // If the related interval has no further references, it is possible that it is a source of the |
2679 | // node that produces this interval. However, we don't want to use the relatedInterval for preferencing |
2680 | // if its next reference is not a new definition (as it either is or will become live). |
2681 | Interval* relatedInterval = currentInterval->relatedInterval; |
2682 | if (relatedInterval != nullptr) |
2683 | { |
2684 | RefPosition* nextRelatedRefPosition = relatedInterval->getNextRefPosition(); |
2685 | if (nextRelatedRefPosition != nullptr) |
2686 | { |
2687 | // Don't use the relatedInterval for preferencing if its next reference is not a new definition, |
2688 | // or if it is only related because they are multi-reg targets of the same node. |
2689 | if (!RefTypeIsDef(nextRelatedRefPosition->refType)) |
2690 | { |
2691 | relatedInterval = nullptr; |
2692 | } |
2693 | // Is the relatedInterval not assigned and simply a copy to another relatedInterval? |
2694 | else if ((relatedInterval->assignedReg == nullptr) && (relatedInterval->relatedInterval != nullptr) && |
2695 | (nextRelatedRefPosition->nextRefPosition != nullptr) && |
2696 | (nextRelatedRefPosition->nextRefPosition->nextRefPosition == nullptr) && |
2697 | (nextRelatedRefPosition->nextRefPosition->nodeLocation < |
2698 | relatedInterval->relatedInterval->getNextRefLocation())) |
2699 | { |
2700 | // The current relatedInterval has only two remaining RefPositions, both of which |
2701 | // occur prior to the next RefPosition for its relatedInterval. |
2702 | // It is likely a copy. |
2703 | relatedInterval = relatedInterval->relatedInterval; |
2704 | } |
2705 | } |
2706 | } |
2707 | |
2708 | if (relatedInterval != nullptr) |
2709 | { |
2710 | // If the related interval already has an assigned register, then use that |
2711 | // as the related preference. We'll take the related |
2712 | // interval preferences into account in the loop over all the registers. |
2713 | |
2714 | if (relatedInterval->assignedReg != nullptr) |
2715 | { |
2716 | relatedPreferences = genRegMask(relatedInterval->assignedReg->regNum); |
2717 | } |
2718 | else |
2719 | { |
2720 | relatedPreferences = relatedInterval->registerPreferences; |
2721 | } |
2722 | } |
2723 | |
2724 | bool preferCalleeSave = currentInterval->preferCalleeSave; |
2725 | |
2726 | // For floating point, we want to be less aggressive about using callee-save registers. |
2727 | // So in that case, we just need to ensure that the current RefPosition is covered. |
2728 | RefPosition* rangeEndRefPosition; |
2729 | RefPosition* lastRefPosition = currentInterval->lastRefPosition; |
2730 | if (useFloatReg(currentInterval->registerType)) |
2731 | { |
2732 | rangeEndRefPosition = refPosition; |
2733 | } |
2734 | else |
2735 | { |
2736 | rangeEndRefPosition = currentInterval->lastRefPosition; |
2737 | // If we have a relatedInterval that is not currently occupying a register, |
2738 | // and whose lifetime begins after this one ends, |
2739 | // we want to try to select a register that will cover its lifetime. |
2740 | if ((relatedInterval != nullptr) && (relatedInterval->assignedReg == nullptr) && |
2741 | (relatedInterval->getNextRefLocation() >= rangeEndRefPosition->nodeLocation)) |
2742 | { |
2743 | lastRefPosition = relatedInterval->lastRefPosition; |
2744 | preferCalleeSave = relatedInterval->preferCalleeSave; |
2745 | } |
2746 | } |
2747 | |
2748 | // If this has a delayed use (due to being used in a rmw position of a |
2749 | // non-commutative operator), its endLocation is delayed until the "def" |
2750 | // position, which is one location past the use (getRefEndLocation() takes care of this). |
2751 | LsraLocation rangeEndLocation = rangeEndRefPosition->getRefEndLocation(); |
2752 | LsraLocation lastLocation = lastRefPosition->getRefEndLocation(); |
2753 | regNumber prevReg = REG_NA; |
2754 | |
2755 | if (currentInterval->assignedReg) |
2756 | { |
2757 | bool useAssignedReg = false; |
2758 | // This was an interval that was previously allocated to the given |
2759 | // physical register, and we should try to allocate it to that register |
2760 | // again, if possible and reasonable. |
2761 | // Use it preemptively (i.e. before checking other available regs) |
2762 | // only if it is preferred and available. |
2763 | |
2764 | RegRecord* regRec = currentInterval->assignedReg; |
2765 | prevReg = regRec->regNum; |
2766 | regMaskTP prevRegBit = genRegMask(prevReg); |
2767 | |
2768 | // Is it in the preferred set of regs? |
2769 | if ((prevRegBit & preferences) != RBM_NONE) |
2770 | { |
2771 | // Is it currently available? |
2772 | LsraLocation nextPhysRefLoc; |
2773 | if (registerIsAvailable(regRec, currentLocation, &nextPhysRefLoc, currentInterval->registerType)) |
2774 | { |
2775 | // If the register is next referenced at this location, only use it if |
2776 | // this has a fixed reg requirement (i.e. this is the reference that caused |
2777 | // the FixedReg ref to be created) |
2778 | |
2779 | if (!regRec->conflictingFixedRegReference(refPosition)) |
2780 | { |
2781 | useAssignedReg = true; |
2782 | } |
2783 | } |
2784 | } |
2785 | if (useAssignedReg) |
2786 | { |
2787 | regNumber foundReg = prevReg; |
2788 | assignPhysReg(regRec, currentInterval); |
2789 | refPosition->registerAssignment = genRegMask(foundReg); |
2790 | return foundReg; |
2791 | } |
2792 | else |
2793 | { |
2794 | // Don't keep trying to allocate to this register |
2795 | currentInterval->assignedReg = nullptr; |
2796 | } |
2797 | } |
2798 | |
2799 | //------------------------------------------------------------------------- |
2800 | // Register Selection |
2801 | |
2802 | RegRecord* availablePhysRegInterval = nullptr; |
2803 | bool unassignInterval = false; |
2804 | |
2805 | // Each register will receive a score which is the sum of the scoring criteria below. |
2806 | // These were selected on the assumption that they will have an impact on the "goodness" |
2807 | // of a register selection, and have been tuned to a certain extent by observing the impact |
2808 | // of the ordering on asmDiffs. However, there is probably much more room for tuning, |
2809 | // and perhaps additional criteria. |
2810 | // |
2811 | // These are FLAGS (bits) so that we can easily order them and add them together. |
2812 | // If the scores are equal, but one covers more of the current interval's range, |
2813 | // then it wins. Otherwise, the one encountered earlier in the regOrder wins. |
2814 | |
2815 | enum RegisterScore |
2816 | { |
2817 | VALUE_AVAILABLE = 0x40, // It is a constant value that is already in an acceptable register. |
2818 | COVERS = 0x20, // It is in the interval's preference set and it covers the entire lifetime. |
2819 | OWN_PREFERENCE = 0x10, // It is in the preference set of this interval. |
2820 | COVERS_RELATED = 0x08, // It is in the preference set of the related interval and covers the entire lifetime. |
2821 | RELATED_PREFERENCE = 0x04, // It is in the preference set of the related interval. |
2822 | CALLER_CALLEE = 0x02, // It is in the right "set" for the interval (caller or callee-save). |
2823 | UNASSIGNED = 0x01, // It is not currently assigned to an inactive interval. |
2824 | }; |
2825 | |
2826 | int bestScore = 0; |
2827 | |
2828 | // Compute the best possible score so we can stop looping early if we find it. |
2829 | // TODO-Throughput: At some point we may want to short-circuit the computation of each score, but |
2830 | // probably not until we've tuned the order of these criteria. At that point, |
2831 | // we'll need to avoid the short-circuit if we've got a stress option to reverse |
2832 | // the selection. |
2833 | int bestPossibleScore = COVERS + UNASSIGNED + OWN_PREFERENCE + CALLER_CALLEE; |
2834 | if (relatedPreferences != RBM_NONE) |
2835 | { |
2836 | bestPossibleScore |= RELATED_PREFERENCE + COVERS_RELATED; |
2837 | } |
2838 | |
2839 | LsraLocation bestLocation = MinLocation; |
2840 | |
2841 | // In non-debug builds, this will simply get optimized away |
2842 | bool reverseSelect = false; |
2843 | #ifdef DEBUG |
2844 | reverseSelect = doReverseSelect(); |
2845 | #endif // DEBUG |
2846 | |
2847 | // An optimization for the common case where there is only one candidate - |
2848 | // avoid looping over all the other registers |
2849 | |
2850 | regNumber singleReg = REG_NA; |
2851 | |
2852 | if (genMaxOneBit(candidates)) |
2853 | { |
2854 | regOrderSize = 1; |
2855 | singleReg = genRegNumFromMask(candidates); |
2856 | regOrder = &singleReg; |
2857 | } |
2858 | |
2859 | for (unsigned i = 0; i < regOrderSize && (candidates != RBM_NONE); i++) |
2860 | { |
2861 | regNumber regNum = regOrder[i]; |
2862 | regMaskTP candidateBit = genRegMask(regNum); |
2863 | |
2864 | if (!(candidates & candidateBit)) |
2865 | { |
2866 | continue; |
2867 | } |
2868 | |
2869 | candidates &= ~candidateBit; |
2870 | |
2871 | RegRecord* physRegRecord = getRegisterRecord(regNum); |
2872 | |
2873 | int score = 0; |
2874 | LsraLocation nextPhysRefLocation = MaxLocation; |
2875 | |
2876 | // By chance, is this register already holding this interval, as a copyReg or having |
2877 | // been restored as inactive after a kill? |
2878 | if (physRegRecord->assignedInterval == currentInterval) |
2879 | { |
2880 | availablePhysRegInterval = physRegRecord; |
2881 | unassignInterval = false; |
2882 | break; |
2883 | } |
2884 | |
2885 | // Find the next RefPosition of the physical register |
2886 | if (!registerIsAvailable(physRegRecord, currentLocation, &nextPhysRefLocation, regType)) |
2887 | { |
2888 | continue; |
2889 | } |
2890 | |
2891 | // If the register is next referenced at this location, only use it if |
2892 | // this has a fixed reg requirement (i.e. this is the reference that caused |
2893 | // the FixedReg ref to be created) |
2894 | |
2895 | if (physRegRecord->conflictingFixedRegReference(refPosition)) |
2896 | { |
2897 | continue; |
2898 | } |
2899 | |
2900 | // If this is a definition of a constant interval, check to see if its value is already in this register. |
2901 | if (currentInterval->isConstant && RefTypeIsDef(refPosition->refType) && |
2902 | isMatchingConstant(physRegRecord, refPosition)) |
2903 | { |
2904 | score |= VALUE_AVAILABLE; |
2905 | } |
2906 | |
2907 | // If the nextPhysRefLocation is a fixedRef for the rangeEndRefPosition, increment it so that |
2908 | // we don't think it isn't covering the live range. |
2909 | // This doesn't handle the case where earlier RefPositions for this Interval are also |
2910 | // FixedRefs of this regNum, but at least those are only interesting in the case where those |
2911 | // are "local last uses" of the Interval - otherwise the liveRange would interfere with the reg. |
2912 | if (nextPhysRefLocation == rangeEndLocation && rangeEndRefPosition->isFixedRefOfReg(regNum)) |
2913 | { |
2914 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_INCREMENT_RANGE_END, currentInterval, regNum)); |
2915 | nextPhysRefLocation++; |
2916 | } |
2917 | |
2918 | if ((candidateBit & preferences) != RBM_NONE) |
2919 | { |
2920 | score |= OWN_PREFERENCE; |
2921 | if (nextPhysRefLocation > rangeEndLocation) |
2922 | { |
2923 | score |= COVERS; |
2924 | } |
2925 | } |
2926 | if (relatedInterval != nullptr && (candidateBit & relatedPreferences) != RBM_NONE) |
2927 | { |
2928 | score |= RELATED_PREFERENCE; |
2929 | if (nextPhysRefLocation > relatedInterval->lastRefPosition->nodeLocation) |
2930 | { |
2931 | score |= COVERS_RELATED; |
2932 | } |
2933 | } |
2934 | |
2935 | // If we had a fixed-reg def of a reg that will be killed before the use, prefer it to any other registers |
2936 | // with the same score. (Note that we haven't changed the original registerAssignment on the RefPosition). |
2937 | // Overload the RELATED_PREFERENCE value. |
2938 | else if (candidateBit == refPosition->registerAssignment) |
2939 | { |
2940 | score |= RELATED_PREFERENCE; |
2941 | } |
2942 | |
2943 | if ((preferCalleeSave && physRegRecord->isCalleeSave) || (!preferCalleeSave && !physRegRecord->isCalleeSave)) |
2944 | { |
2945 | score |= CALLER_CALLEE; |
2946 | } |
2947 | |
2948 | // The register is considered unassigned if it has no assignedInterval, OR |
2949 | // if its next reference is beyond the range of this interval. |
2950 | if (!isAssigned(physRegRecord, lastLocation ARM_ARG(currentInterval->registerType))) |
2951 | { |
2952 | score |= UNASSIGNED; |
2953 | } |
2954 | |
2955 | bool foundBetterCandidate = false; |
2956 | |
2957 | if (score > bestScore) |
2958 | { |
2959 | foundBetterCandidate = true; |
2960 | } |
2961 | else if (score == bestScore) |
2962 | { |
2963 | // Prefer a register that covers the range. |
2964 | if (bestLocation <= lastLocation) |
2965 | { |
2966 | if (nextPhysRefLocation > bestLocation) |
2967 | { |
2968 | foundBetterCandidate = true; |
2969 | } |
2970 | } |
2971 | // If both cover the range, prefer a register that is killed sooner (leaving the longer range register |
2972 | // available). If both cover the range and also getting killed at the same location, prefer the one which |
2973 | // is same as previous assignment. |
2974 | else if (nextPhysRefLocation > lastLocation) |
2975 | { |
2976 | if (nextPhysRefLocation < bestLocation) |
2977 | { |
2978 | foundBetterCandidate = true; |
2979 | } |
2980 | else if (nextPhysRefLocation == bestLocation && prevReg == regNum) |
2981 | { |
2982 | foundBetterCandidate = true; |
2983 | } |
2984 | } |
2985 | } |
2986 | |
2987 | #ifdef DEBUG |
2988 | if (doReverseSelect() && bestScore != 0) |
2989 | { |
2990 | foundBetterCandidate = !foundBetterCandidate; |
2991 | } |
2992 | #endif // DEBUG |
2993 | |
2994 | if (foundBetterCandidate) |
2995 | { |
2996 | bestLocation = nextPhysRefLocation; |
2997 | availablePhysRegInterval = physRegRecord; |
2998 | unassignInterval = true; |
2999 | bestScore = score; |
3000 | } |
3001 | |
3002 | // there is no way we can get a better score so break out |
3003 | if (!reverseSelect && score == bestPossibleScore && bestLocation == rangeEndLocation + 1) |
3004 | { |
3005 | break; |
3006 | } |
3007 | } |
3008 | |
3009 | if (availablePhysRegInterval != nullptr) |
3010 | { |
3011 | if (unassignInterval && isAssigned(availablePhysRegInterval ARM_ARG(currentInterval->registerType))) |
3012 | { |
3013 | Interval* const intervalToUnassign = availablePhysRegInterval->assignedInterval; |
3014 | unassignPhysReg(availablePhysRegInterval ARM_ARG(currentInterval->registerType)); |
3015 | |
3016 | if ((bestScore & VALUE_AVAILABLE) != 0 && intervalToUnassign != nullptr) |
3017 | { |
3018 | assert(intervalToUnassign->isConstant); |
3019 | refPosition->treeNode->SetReuseRegVal(); |
3020 | } |
3021 | // If we considered this "unassigned" because this interval's lifetime ends before |
3022 | // the next ref, remember it. |
3023 | else if ((bestScore & UNASSIGNED) != 0 && intervalToUnassign != nullptr) |
3024 | { |
3025 | updatePreviousInterval(availablePhysRegInterval, intervalToUnassign, intervalToUnassign->registerType); |
3026 | } |
3027 | } |
3028 | else |
3029 | { |
3030 | assert((bestScore & VALUE_AVAILABLE) == 0); |
3031 | } |
3032 | assignPhysReg(availablePhysRegInterval, currentInterval); |
3033 | foundReg = availablePhysRegInterval->regNum; |
3034 | regMaskTP foundRegMask = genRegMask(foundReg); |
3035 | refPosition->registerAssignment = foundRegMask; |
3036 | if (relatedInterval != nullptr) |
3037 | { |
3038 | relatedInterval->updateRegisterPreferences(foundRegMask); |
3039 | } |
3040 | } |
3041 | |
3042 | return foundReg; |
3043 | } |
3044 | |
3045 | //------------------------------------------------------------------------ |
3046 | // canSpillReg: Determine whether we can spill physRegRecord |
3047 | // |
3048 | // Arguments: |
3049 | // physRegRecord - reg to spill |
3050 | // refLocation - Location of RefPosition where this register will be spilled |
3051 | // recentAssignedRefWeight - Weight of recent assigned RefPosition which will be determined in this function |
3052 | // farthestRefPosWeight - Current farthestRefPosWeight at allocateBusyReg() |
3053 | // |
3054 | // Return Value: |
3055 | // True - if we can spill physRegRecord |
3056 | // False - otherwise |
3057 | // |
3058 | // Note: This helper is designed to be used only from allocateBusyReg() and canSpillDoubleReg() |
3059 | // |
3060 | bool LinearScan::canSpillReg(RegRecord* physRegRecord, LsraLocation refLocation, unsigned* recentAssignedRefWeight) |
3061 | { |
3062 | assert(physRegRecord->assignedInterval != nullptr); |
3063 | RefPosition* recentAssignedRef = physRegRecord->assignedInterval->recentRefPosition; |
3064 | |
3065 | if (recentAssignedRef != nullptr) |
3066 | { |
3067 | if (isRefPositionActive(recentAssignedRef, refLocation)) |
3068 | { |
3069 | // We can't spill a register that's active at the current location |
3070 | return false; |
3071 | } |
3072 | |
3073 | // We don't prefer to spill a register if the weight of recentAssignedRef > weight |
3074 | // of the spill candidate found so far. We would consider spilling a greater weight |
3075 | // ref position only if the refPosition being allocated must need a reg. |
3076 | *recentAssignedRefWeight = getWeight(recentAssignedRef); |
3077 | } |
3078 | return true; |
3079 | } |
3080 | |
3081 | #ifdef _TARGET_ARM_ |
3082 | //------------------------------------------------------------------------ |
3083 | // canSpillDoubleReg: Determine whether we can spill physRegRecord |
3084 | // |
3085 | // Arguments: |
3086 | // physRegRecord - reg to spill (must be a valid double register) |
3087 | // refLocation - Location of RefPosition where this register will be spilled |
3088 | // recentAssignedRefWeight - Weight of recent assigned RefPosition which will be determined in this function |
3089 | // |
3090 | // Return Value: |
3091 | // True - if we can spill physRegRecord |
3092 | // False - otherwise |
3093 | // |
3094 | // Notes: |
3095 | // This helper is designed to be used only from allocateBusyReg() and canSpillDoubleReg(). |
3096 | // The recentAssignedRefWeight is not updated if either register cannot be spilled. |
3097 | // |
3098 | bool LinearScan::canSpillDoubleReg(RegRecord* physRegRecord, |
3099 | LsraLocation refLocation, |
3100 | unsigned* recentAssignedRefWeight) |
3101 | { |
3102 | assert(genIsValidDoubleReg(physRegRecord->regNum)); |
3103 | bool retVal = true; |
3104 | unsigned weight = BB_ZERO_WEIGHT; |
3105 | unsigned weight2 = BB_ZERO_WEIGHT; |
3106 | |
3107 | RegRecord* physRegRecord2 = findAnotherHalfRegRec(physRegRecord); |
3108 | |
3109 | if ((physRegRecord->assignedInterval != nullptr) && !canSpillReg(physRegRecord, refLocation, &weight)) |
3110 | { |
3111 | return false; |
3112 | } |
3113 | if (physRegRecord2->assignedInterval != nullptr) |
3114 | { |
3115 | if (!canSpillReg(physRegRecord2, refLocation, &weight2)) |
3116 | { |
3117 | return false; |
3118 | } |
3119 | if (weight2 > weight) |
3120 | { |
3121 | weight = weight2; |
3122 | } |
3123 | } |
3124 | *recentAssignedRefWeight = weight; |
3125 | return true; |
3126 | } |
3127 | #endif |
3128 | |
3129 | #ifdef _TARGET_ARM_ |
3130 | //------------------------------------------------------------------------ |
3131 | // unassignDoublePhysReg: unassign a double register (pair) |
3132 | // |
3133 | // Arguments: |
3134 | // doubleRegRecord - reg to unassign |
3135 | // |
3136 | // Note: |
3137 | // The given RegRecord must be a valid (even numbered) double register. |
3138 | // |
3139 | void LinearScan::unassignDoublePhysReg(RegRecord* doubleRegRecord) |
3140 | { |
3141 | assert(genIsValidDoubleReg(doubleRegRecord->regNum)); |
3142 | |
3143 | RegRecord* doubleRegRecordLo = doubleRegRecord; |
3144 | RegRecord* doubleRegRecordHi = findAnotherHalfRegRec(doubleRegRecordLo); |
3145 | // For a double register, we has following four cases. |
3146 | // Case 1: doubleRegRecLo is assigned to TYP_DOUBLE interval |
3147 | // Case 2: doubleRegRecLo and doubleRegRecHi are assigned to different TYP_FLOAT intervals |
3148 | // Case 3: doubelRegRecLo is assgined to TYP_FLOAT interval and doubleRegRecHi is nullptr |
3149 | // Case 4: doubleRegRecordLo is nullptr, and doubleRegRecordHi is assigned to a TYP_FLOAT interval |
3150 | if (doubleRegRecordLo->assignedInterval != nullptr) |
3151 | { |
3152 | if (doubleRegRecordLo->assignedInterval->registerType == TYP_DOUBLE) |
3153 | { |
3154 | // Case 1: doubleRegRecLo is assigned to TYP_DOUBLE interval |
3155 | unassignPhysReg(doubleRegRecordLo, doubleRegRecordLo->assignedInterval->recentRefPosition); |
3156 | } |
3157 | else |
3158 | { |
3159 | // Case 2: doubleRegRecLo and doubleRegRecHi are assigned to different TYP_FLOAT intervals |
3160 | // Case 3: doubelRegRecLo is assgined to TYP_FLOAT interval and doubleRegRecHi is nullptr |
3161 | assert(doubleRegRecordLo->assignedInterval->registerType == TYP_FLOAT); |
3162 | unassignPhysReg(doubleRegRecordLo, doubleRegRecordLo->assignedInterval->recentRefPosition); |
3163 | |
3164 | if (doubleRegRecordHi != nullptr) |
3165 | { |
3166 | if (doubleRegRecordHi->assignedInterval != nullptr) |
3167 | { |
3168 | assert(doubleRegRecordHi->assignedInterval->registerType == TYP_FLOAT); |
3169 | unassignPhysReg(doubleRegRecordHi, doubleRegRecordHi->assignedInterval->recentRefPosition); |
3170 | } |
3171 | } |
3172 | } |
3173 | } |
3174 | else |
3175 | { |
3176 | // Case 4: doubleRegRecordLo is nullptr, and doubleRegRecordHi is assigned to a TYP_FLOAT interval |
3177 | assert(doubleRegRecordHi->assignedInterval != nullptr); |
3178 | assert(doubleRegRecordHi->assignedInterval->registerType == TYP_FLOAT); |
3179 | unassignPhysReg(doubleRegRecordHi, doubleRegRecordHi->assignedInterval->recentRefPosition); |
3180 | } |
3181 | } |
3182 | |
3183 | #endif // _TARGET_ARM_ |
3184 | |
3185 | //------------------------------------------------------------------------ |
3186 | // isRefPositionActive: Determine whether a given RefPosition is active at the given location |
3187 | // |
3188 | // Arguments: |
3189 | // refPosition - the RefPosition of interest |
3190 | // refLocation - the LsraLocation at which we want to know if it is active |
3191 | // |
3192 | // Return Value: |
3193 | // True - if this RefPosition occurs at the given location, OR |
3194 | // if it occurs at the previous location and is marked delayRegFree. |
3195 | // False - otherwise |
3196 | // |
3197 | bool LinearScan::isRefPositionActive(RefPosition* refPosition, LsraLocation refLocation) |
3198 | { |
3199 | return (refPosition->nodeLocation == refLocation || |
3200 | ((refPosition->nodeLocation + 1 == refLocation) && refPosition->delayRegFree)); |
3201 | } |
3202 | |
3203 | //---------------------------------------------------------------------------------------- |
3204 | // isRegInUse: Test whether regRec is being used at the refPosition |
3205 | // |
3206 | // Arguments: |
3207 | // regRec - A register to be tested |
3208 | // refPosition - RefPosition where regRec is tested |
3209 | // |
3210 | // Return Value: |
3211 | // True - if regRec is being used |
3212 | // False - otherwise |
3213 | // |
3214 | // Notes: |
3215 | // This helper is designed to be used only from allocateBusyReg(), where: |
3216 | // - This register was *not* found when looking for a free register, and |
3217 | // - The caller must have already checked for the case where 'refPosition' is a fixed ref |
3218 | // (asserted at the beginning of this method). |
3219 | // |
3220 | bool LinearScan::isRegInUse(RegRecord* regRec, RefPosition* refPosition) |
3221 | { |
3222 | // We shouldn't reach this check if 'refPosition' is a FixedReg of this register. |
3223 | assert(!refPosition->isFixedRefOfReg(regRec->regNum)); |
3224 | Interval* assignedInterval = regRec->assignedInterval; |
3225 | if (assignedInterval != nullptr) |
3226 | { |
3227 | if (!assignedInterval->isActive) |
3228 | { |
3229 | // This can only happen if we have a recentRefPosition active at this location that hasn't yet been freed. |
3230 | CLANG_FORMAT_COMMENT_ANCHOR; |
3231 | |
3232 | if (isRefPositionActive(assignedInterval->recentRefPosition, refPosition->nodeLocation)) |
3233 | { |
3234 | return true; |
3235 | } |
3236 | else |
3237 | { |
3238 | #ifdef _TARGET_ARM_ |
3239 | // In the case of TYP_DOUBLE, we may have the case where 'assignedInterval' is inactive, |
3240 | // but the other half register is active. If so, it must be have an active recentRefPosition, |
3241 | // as above. |
3242 | if (refPosition->getInterval()->registerType == TYP_DOUBLE) |
3243 | { |
3244 | RegRecord* otherHalfRegRec = findAnotherHalfRegRec(regRec); |
3245 | if (!otherHalfRegRec->assignedInterval->isActive) |
3246 | { |
3247 | if (isRefPositionActive(otherHalfRegRec->assignedInterval->recentRefPosition, |
3248 | refPosition->nodeLocation)) |
3249 | { |
3250 | return true; |
3251 | } |
3252 | else |
3253 | { |
3254 | assert(!"Unexpected inactive assigned interval in isRegInUse" ); |
3255 | return true; |
3256 | } |
3257 | } |
3258 | } |
3259 | else |
3260 | #endif |
3261 | { |
3262 | assert(!"Unexpected inactive assigned interval in isRegInUse" ); |
3263 | return true; |
3264 | } |
3265 | } |
3266 | } |
3267 | RefPosition* nextAssignedRef = assignedInterval->getNextRefPosition(); |
3268 | |
3269 | // We should never spill a register that's occupied by an Interval with its next use at the current |
3270 | // location. |
3271 | // Normally this won't occur (unless we actually had more uses in a single node than there are registers), |
3272 | // because we'll always find something with a later nextLocation, but it can happen in stress when |
3273 | // we have LSRA_SELECT_NEAREST. |
3274 | if ((nextAssignedRef != nullptr) && isRefPositionActive(nextAssignedRef, refPosition->nodeLocation) && |
3275 | nextAssignedRef->RequiresRegister()) |
3276 | { |
3277 | return true; |
3278 | } |
3279 | } |
3280 | return false; |
3281 | } |
3282 | |
3283 | //------------------------------------------------------------------------ |
3284 | // isSpillCandidate: Determine if a register is a spill candidate for a given RefPosition. |
3285 | // |
3286 | // Arguments: |
3287 | // current The interval for the current allocation |
3288 | // refPosition The RefPosition of the current Interval for which a register is being allocated |
3289 | // physRegRecord The RegRecord for the register we're considering for spill |
3290 | // nextLocation An out (reference) parameter in which the next use location of the |
3291 | // given RegRecord will be returned. |
3292 | // |
3293 | // Return Value: |
3294 | // True iff the given register can be spilled to accommodate the given RefPosition. |
3295 | // |
3296 | bool LinearScan::isSpillCandidate(Interval* current, |
3297 | RefPosition* refPosition, |
3298 | RegRecord* physRegRecord, |
3299 | LsraLocation& nextLocation) |
3300 | { |
3301 | regMaskTP candidateBit = genRegMask(physRegRecord->regNum); |
3302 | LsraLocation refLocation = refPosition->nodeLocation; |
3303 | if (physRegRecord->isBusyUntilNextKill) |
3304 | { |
3305 | return false; |
3306 | } |
3307 | Interval* assignedInterval = physRegRecord->assignedInterval; |
3308 | if (assignedInterval != nullptr) |
3309 | { |
3310 | nextLocation = assignedInterval->getNextRefLocation(); |
3311 | } |
3312 | #ifdef _TARGET_ARM_ |
3313 | RegRecord* physRegRecord2 = nullptr; |
3314 | Interval* assignedInterval2 = nullptr; |
3315 | |
3316 | // For ARM32, a double occupies a consecutive even/odd pair of float registers. |
3317 | if (current->registerType == TYP_DOUBLE) |
3318 | { |
3319 | assert(genIsValidDoubleReg(physRegRecord->regNum)); |
3320 | physRegRecord2 = findAnotherHalfRegRec(physRegRecord); |
3321 | if (physRegRecord2->isBusyUntilNextKill) |
3322 | { |
3323 | return false; |
3324 | } |
3325 | assignedInterval2 = physRegRecord2->assignedInterval; |
3326 | if ((assignedInterval2 != nullptr) && (assignedInterval2->getNextRefLocation() > nextLocation)) |
3327 | { |
3328 | nextLocation = assignedInterval2->getNextRefLocation(); |
3329 | } |
3330 | } |
3331 | #endif |
3332 | |
3333 | // If there is a fixed reference at the same location (and it's not due to this reference), |
3334 | // don't use it. |
3335 | if (physRegRecord->conflictingFixedRegReference(refPosition)) |
3336 | { |
3337 | return false; |
3338 | } |
3339 | |
3340 | if (refPosition->isFixedRefOfRegMask(candidateBit)) |
3341 | { |
3342 | // Either: |
3343 | // - there is a fixed reference due to this node, OR |
3344 | // - or there is a fixed use fed by a def at this node, OR |
3345 | // - or we have restricted the set of registers for stress. |
3346 | // In any case, we must use this register as it's the only candidate |
3347 | // TODO-CQ: At the time we allocate a register to a fixed-reg def, if it's not going |
3348 | // to remain live until the use, we should set the candidates to allRegs(regType) |
3349 | // to avoid a spill - codegen can then insert the copy. |
3350 | // If this is marked as allocateIfProfitable, the caller will compare the weights |
3351 | // of this RefPosition and the RefPosition to which it is currently assigned. |
3352 | assert(refPosition->isFixedRegRef || |
3353 | (refPosition->nextRefPosition != nullptr && refPosition->nextRefPosition->isFixedRegRef) || |
3354 | candidatesAreStressLimited()); |
3355 | return true; |
3356 | } |
3357 | |
3358 | // If this register is not assigned to an interval, either |
3359 | // - it has a FixedReg reference at the current location that is not this reference, OR |
3360 | // - this is the special case of a fixed loReg, where this interval has a use at the same location |
3361 | // In either case, we cannot use it |
3362 | CLANG_FORMAT_COMMENT_ANCHOR; |
3363 | |
3364 | #ifdef _TARGET_ARM_ |
3365 | if (assignedInterval == nullptr && assignedInterval2 == nullptr) |
3366 | #else |
3367 | if (assignedInterval == nullptr) |
3368 | #endif |
3369 | { |
3370 | RefPosition* nextPhysRegPosition = physRegRecord->getNextRefPosition(); |
3371 | assert((nextPhysRegPosition != nullptr) && (nextPhysRegPosition->nodeLocation == refLocation) && |
3372 | (candidateBit != refPosition->registerAssignment)); |
3373 | return false; |
3374 | } |
3375 | |
3376 | if (isRegInUse(physRegRecord, refPosition)) |
3377 | { |
3378 | return false; |
3379 | } |
3380 | |
3381 | #ifdef _TARGET_ARM_ |
3382 | if (current->registerType == TYP_DOUBLE) |
3383 | { |
3384 | if (isRegInUse(physRegRecord2, refPosition)) |
3385 | { |
3386 | return false; |
3387 | } |
3388 | } |
3389 | #endif |
3390 | return true; |
3391 | } |
3392 | |
3393 | //------------------------------------------------------------------------ |
3394 | // allocateBusyReg: Find a busy register that satisfies the requirements for refPosition, |
3395 | // and that can be spilled. |
3396 | // |
3397 | // Arguments: |
3398 | // current The interval for the current allocation |
3399 | // refPosition The RefPosition of the current Interval for which a register is being allocated |
3400 | // allocateIfProfitable If true, a reg may not be allocated if all other ref positions currently |
3401 | // occupying registers are more important than the 'refPosition'. |
3402 | // |
3403 | // Return Value: |
3404 | // The regNumber allocated to the RefPositon. Returns REG_NA if no free register is found. |
3405 | // |
3406 | // Note: Currently this routine uses weight and farthest distance of next reference |
3407 | // to select a ref position for spilling. |
3408 | // a) if allocateIfProfitable = false |
3409 | // The ref position chosen for spilling will be the lowest weight |
3410 | // of all and if there is is more than one ref position with the |
3411 | // same lowest weight, among them choses the one with farthest |
3412 | // distance to its next reference. |
3413 | // |
3414 | // b) if allocateIfProfitable = true |
3415 | // The ref position chosen for spilling will not only be lowest weight |
3416 | // of all but also has a weight lower than 'refPosition'. If there is |
3417 | // no such ref position, reg will not be allocated. |
3418 | // |
3419 | regNumber LinearScan::allocateBusyReg(Interval* current, RefPosition* refPosition, bool allocateIfProfitable) |
3420 | { |
3421 | regNumber foundReg = REG_NA; |
3422 | |
3423 | RegisterType regType = getRegisterType(current, refPosition); |
3424 | regMaskTP candidates = refPosition->registerAssignment; |
3425 | regMaskTP preferences = (current->registerPreferences & candidates); |
3426 | if (preferences == RBM_NONE) |
3427 | { |
3428 | preferences = candidates; |
3429 | } |
3430 | if (candidates == RBM_NONE) |
3431 | { |
3432 | // This assumes only integer and floating point register types |
3433 | // if we target a processor with additional register types, |
3434 | // this would have to change |
3435 | candidates = allRegs(regType); |
3436 | } |
3437 | |
3438 | #ifdef DEBUG |
3439 | candidates = stressLimitRegs(refPosition, candidates); |
3440 | #endif // DEBUG |
3441 | |
3442 | // TODO-CQ: Determine whether/how to take preferences into account in addition to |
3443 | // prefering the one with the furthest ref position when considering |
3444 | // a candidate to spill |
3445 | RegRecord* farthestRefPhysRegRecord = nullptr; |
3446 | #ifdef _TARGET_ARM_ |
3447 | RegRecord* farthestRefPhysRegRecord2 = nullptr; |
3448 | #endif |
3449 | LsraLocation farthestLocation = MinLocation; |
3450 | LsraLocation refLocation = refPosition->nodeLocation; |
3451 | unsigned farthestRefPosWeight; |
3452 | if (allocateIfProfitable) |
3453 | { |
3454 | // If allocating a reg is optional, we will consider those ref positions |
3455 | // whose weight is less than 'refPosition' for spilling. |
3456 | farthestRefPosWeight = getWeight(refPosition); |
3457 | } |
3458 | else |
3459 | { |
3460 | // If allocating a reg is a must, we start off with max weight so |
3461 | // that the first spill candidate will be selected based on |
3462 | // farthest distance alone. Since we start off with farthestLocation |
3463 | // initialized to MinLocation, the first available ref position |
3464 | // will be selected as spill candidate and its weight as the |
3465 | // fathestRefPosWeight. |
3466 | farthestRefPosWeight = BB_MAX_WEIGHT; |
3467 | } |
3468 | |
3469 | for (regNumber regNum : Registers(regType)) |
3470 | { |
3471 | regMaskTP candidateBit = genRegMask(regNum); |
3472 | if (!(candidates & candidateBit)) |
3473 | { |
3474 | continue; |
3475 | } |
3476 | RegRecord* physRegRecord = getRegisterRecord(regNum); |
3477 | RegRecord* physRegRecord2 = nullptr; // only used for _TARGET_ARM_ |
3478 | LsraLocation nextLocation = MinLocation; |
3479 | LsraLocation physRegNextLocation; |
3480 | if (!isSpillCandidate(current, refPosition, physRegRecord, nextLocation)) |
3481 | { |
3482 | assert(candidates != candidateBit); |
3483 | continue; |
3484 | } |
3485 | |
3486 | // We've passed the preliminary checks for a spill candidate. |
3487 | // Now, if we have a recentAssignedRef, check that it is going to be OK to spill it. |
3488 | Interval* assignedInterval = physRegRecord->assignedInterval; |
3489 | unsigned recentAssignedRefWeight = BB_ZERO_WEIGHT; |
3490 | RefPosition* recentAssignedRef = nullptr; |
3491 | RefPosition* recentAssignedRef2 = nullptr; |
3492 | #ifdef _TARGET_ARM_ |
3493 | if (current->registerType == TYP_DOUBLE) |
3494 | { |
3495 | recentAssignedRef = (assignedInterval == nullptr) ? nullptr : assignedInterval->recentRefPosition; |
3496 | physRegRecord2 = findAnotherHalfRegRec(physRegRecord); |
3497 | Interval* assignedInterval2 = physRegRecord2->assignedInterval; |
3498 | recentAssignedRef2 = (assignedInterval2 == nullptr) ? nullptr : assignedInterval2->recentRefPosition; |
3499 | if (!canSpillDoubleReg(physRegRecord, refLocation, &recentAssignedRefWeight)) |
3500 | { |
3501 | continue; |
3502 | } |
3503 | } |
3504 | else |
3505 | #endif |
3506 | { |
3507 | recentAssignedRef = assignedInterval->recentRefPosition; |
3508 | if (!canSpillReg(physRegRecord, refLocation, &recentAssignedRefWeight)) |
3509 | { |
3510 | continue; |
3511 | } |
3512 | } |
3513 | if (recentAssignedRefWeight > farthestRefPosWeight) |
3514 | { |
3515 | continue; |
3516 | } |
3517 | |
3518 | physRegNextLocation = physRegRecord->getNextRefLocation(); |
3519 | if (nextLocation > physRegNextLocation) |
3520 | { |
3521 | nextLocation = physRegNextLocation; |
3522 | } |
3523 | |
3524 | bool isBetterLocation; |
3525 | |
3526 | #ifdef DEBUG |
3527 | if (doSelectNearest() && farthestRefPhysRegRecord != nullptr) |
3528 | { |
3529 | isBetterLocation = (nextLocation <= farthestLocation); |
3530 | } |
3531 | else |
3532 | #endif |
3533 | // This if-stmt is associated with the above else |
3534 | if (recentAssignedRefWeight < farthestRefPosWeight) |
3535 | { |
3536 | isBetterLocation = true; |
3537 | } |
3538 | else |
3539 | { |
3540 | // This would mean the weight of spill ref position we found so far is equal |
3541 | // to the weight of the ref position that is being evaluated. In this case |
3542 | // we prefer to spill ref position whose distance to its next reference is |
3543 | // the farthest. |
3544 | assert(recentAssignedRefWeight == farthestRefPosWeight); |
3545 | |
3546 | // If allocateIfProfitable=true, the first spill candidate selected |
3547 | // will be based on weight alone. After we have found a spill |
3548 | // candidate whose weight is less than the 'refPosition', we will |
3549 | // consider farthest distance when there is a tie in weights. |
3550 | // This is to ensure that we don't spill a ref position whose |
3551 | // weight is equal to weight of 'refPosition'. |
3552 | if (allocateIfProfitable && farthestRefPhysRegRecord == nullptr) |
3553 | { |
3554 | isBetterLocation = false; |
3555 | } |
3556 | else |
3557 | { |
3558 | isBetterLocation = (nextLocation > farthestLocation); |
3559 | |
3560 | if (nextLocation > farthestLocation) |
3561 | { |
3562 | isBetterLocation = true; |
3563 | } |
3564 | else if (nextLocation == farthestLocation) |
3565 | { |
3566 | // Both weight and distance are equal. |
3567 | // Prefer that ref position which is marked both reload and |
3568 | // allocate if profitable. These ref positions don't need |
3569 | // need to be spilled as they are already in memory and |
3570 | // codegen considers them as contained memory operands. |
3571 | CLANG_FORMAT_COMMENT_ANCHOR; |
3572 | #ifdef _TARGET_ARM_ |
3573 | // TODO-CQ-ARM: Just conservatively "and" two condition. We may implement better condision later. |
3574 | isBetterLocation = true; |
3575 | if (recentAssignedRef != nullptr) |
3576 | isBetterLocation &= (recentAssignedRef->reload && recentAssignedRef->AllocateIfProfitable()); |
3577 | |
3578 | if (recentAssignedRef2 != nullptr) |
3579 | isBetterLocation &= (recentAssignedRef2->reload && recentAssignedRef2->AllocateIfProfitable()); |
3580 | #else |
3581 | isBetterLocation = (recentAssignedRef != nullptr) && recentAssignedRef->reload && |
3582 | recentAssignedRef->AllocateIfProfitable(); |
3583 | #endif |
3584 | } |
3585 | else |
3586 | { |
3587 | isBetterLocation = false; |
3588 | } |
3589 | } |
3590 | } |
3591 | |
3592 | if (isBetterLocation) |
3593 | { |
3594 | farthestLocation = nextLocation; |
3595 | farthestRefPhysRegRecord = physRegRecord; |
3596 | #ifdef _TARGET_ARM_ |
3597 | farthestRefPhysRegRecord2 = physRegRecord2; |
3598 | #endif |
3599 | farthestRefPosWeight = recentAssignedRefWeight; |
3600 | } |
3601 | } |
3602 | |
3603 | #if DEBUG |
3604 | if (allocateIfProfitable) |
3605 | { |
3606 | // There may not be a spill candidate or if one is found |
3607 | // its weight must be less than the weight of 'refPosition' |
3608 | assert((farthestRefPhysRegRecord == nullptr) || (farthestRefPosWeight < getWeight(refPosition))); |
3609 | } |
3610 | else |
3611 | { |
3612 | // Must have found a spill candidate. |
3613 | assert(farthestRefPhysRegRecord != nullptr); |
3614 | |
3615 | if (farthestLocation == refLocation) |
3616 | { |
3617 | // This must be a RefPosition that is constrained to use a single register, either directly, |
3618 | // or at the use, or by stress. |
3619 | bool isConstrained = (refPosition->isFixedRegRef || (refPosition->nextRefPosition != nullptr && |
3620 | refPosition->nextRefPosition->isFixedRegRef) || |
3621 | candidatesAreStressLimited()); |
3622 | if (!isConstrained) |
3623 | { |
3624 | #ifdef _TARGET_ARM_ |
3625 | Interval* assignedInterval = |
3626 | (farthestRefPhysRegRecord == nullptr) ? nullptr : farthestRefPhysRegRecord->assignedInterval; |
3627 | Interval* assignedInterval2 = |
3628 | (farthestRefPhysRegRecord2 == nullptr) ? nullptr : farthestRefPhysRegRecord2->assignedInterval; |
3629 | RefPosition* nextRefPosition = |
3630 | (assignedInterval == nullptr) ? nullptr : assignedInterval->getNextRefPosition(); |
3631 | RefPosition* nextRefPosition2 = |
3632 | (assignedInterval2 == nullptr) ? nullptr : assignedInterval2->getNextRefPosition(); |
3633 | if (nextRefPosition != nullptr) |
3634 | { |
3635 | if (nextRefPosition2 != nullptr) |
3636 | { |
3637 | assert(!nextRefPosition->RequiresRegister() || !nextRefPosition2->RequiresRegister()); |
3638 | } |
3639 | else |
3640 | { |
3641 | assert(!nextRefPosition->RequiresRegister()); |
3642 | } |
3643 | } |
3644 | else |
3645 | { |
3646 | assert(nextRefPosition2 != nullptr && !nextRefPosition2->RequiresRegister()); |
3647 | } |
3648 | #else // !_TARGET_ARM_ |
3649 | Interval* assignedInterval = farthestRefPhysRegRecord->assignedInterval; |
3650 | RefPosition* nextRefPosition = assignedInterval->getNextRefPosition(); |
3651 | assert(!nextRefPosition->RequiresRegister()); |
3652 | #endif // !_TARGET_ARM_ |
3653 | } |
3654 | } |
3655 | else |
3656 | { |
3657 | assert(farthestLocation > refLocation); |
3658 | } |
3659 | } |
3660 | #endif // DEBUG |
3661 | |
3662 | if (farthestRefPhysRegRecord != nullptr) |
3663 | { |
3664 | foundReg = farthestRefPhysRegRecord->regNum; |
3665 | |
3666 | #ifdef _TARGET_ARM_ |
3667 | if (current->registerType == TYP_DOUBLE) |
3668 | { |
3669 | assert(genIsValidDoubleReg(foundReg)); |
3670 | unassignDoublePhysReg(farthestRefPhysRegRecord); |
3671 | } |
3672 | else |
3673 | #endif |
3674 | { |
3675 | unassignPhysReg(farthestRefPhysRegRecord, farthestRefPhysRegRecord->assignedInterval->recentRefPosition); |
3676 | } |
3677 | |
3678 | assignPhysReg(farthestRefPhysRegRecord, current); |
3679 | refPosition->registerAssignment = genRegMask(foundReg); |
3680 | } |
3681 | else |
3682 | { |
3683 | foundReg = REG_NA; |
3684 | refPosition->registerAssignment = RBM_NONE; |
3685 | } |
3686 | |
3687 | return foundReg; |
3688 | } |
3689 | |
3690 | // Grab a register to use to copy and then immediately use. |
3691 | // This is called only for localVar intervals that already have a register |
3692 | // assignment that is not compatible with the current RefPosition. |
3693 | // This is not like regular assignment, because we don't want to change |
3694 | // any preferences or existing register assignments. |
3695 | // Prefer a free register that's got the earliest next use. |
3696 | // Otherwise, spill something with the farthest next use |
3697 | // |
3698 | regNumber LinearScan::assignCopyReg(RefPosition* refPosition) |
3699 | { |
3700 | Interval* currentInterval = refPosition->getInterval(); |
3701 | assert(currentInterval != nullptr); |
3702 | assert(currentInterval->isActive); |
3703 | |
3704 | bool foundFreeReg = false; |
3705 | RegRecord* bestPhysReg = nullptr; |
3706 | LsraLocation bestLocation = MinLocation; |
3707 | regMaskTP candidates = refPosition->registerAssignment; |
3708 | |
3709 | // Save the relatedInterval, if any, so that it doesn't get modified during allocation. |
3710 | Interval* savedRelatedInterval = currentInterval->relatedInterval; |
3711 | currentInterval->relatedInterval = nullptr; |
3712 | |
3713 | // We don't want really want to change the default assignment, |
3714 | // so 1) pretend this isn't active, and 2) remember the old reg |
3715 | regNumber oldPhysReg = currentInterval->physReg; |
3716 | RegRecord* oldRegRecord = currentInterval->assignedReg; |
3717 | assert(oldRegRecord->regNum == oldPhysReg); |
3718 | currentInterval->isActive = false; |
3719 | |
3720 | regNumber allocatedReg = tryAllocateFreeReg(currentInterval, refPosition); |
3721 | if (allocatedReg == REG_NA) |
3722 | { |
3723 | allocatedReg = allocateBusyReg(currentInterval, refPosition, false); |
3724 | } |
3725 | |
3726 | // Now restore the old info |
3727 | currentInterval->relatedInterval = savedRelatedInterval; |
3728 | currentInterval->physReg = oldPhysReg; |
3729 | currentInterval->assignedReg = oldRegRecord; |
3730 | currentInterval->isActive = true; |
3731 | |
3732 | refPosition->copyReg = true; |
3733 | return allocatedReg; |
3734 | } |
3735 | |
3736 | //------------------------------------------------------------------------ |
3737 | // isAssigned: This is the function to check if the given RegRecord has an assignedInterval |
3738 | // regardless of lastLocation. |
3739 | // So it would be call isAssigned() with Maxlocation value. |
3740 | // |
3741 | // Arguments: |
3742 | // regRec - The RegRecord to check that it is assigned. |
3743 | // newRegType - There are elements to judge according to the upcoming register type. |
3744 | // |
3745 | // Return Value: |
3746 | // Returns true if the given RegRecord has an assignedInterval. |
3747 | // |
3748 | // Notes: |
3749 | // There is the case to check if the RegRecord has an assignedInterval regardless of Lastlocation. |
3750 | // |
3751 | bool LinearScan::isAssigned(RegRecord* regRec ARM_ARG(RegisterType newRegType)) |
3752 | { |
3753 | return isAssigned(regRec, MaxLocation ARM_ARG(newRegType)); |
3754 | } |
3755 | |
3756 | //------------------------------------------------------------------------ |
3757 | // isAssigned: Check whether the given RegRecord has an assignedInterval |
3758 | // that has a reference prior to the given location. |
3759 | // |
3760 | // Arguments: |
3761 | // regRec - The RegRecord of interest |
3762 | // lastLocation - The LsraLocation up to which we want to check |
3763 | // newRegType - The `RegisterType` of interval we want to check |
3764 | // (this is for the purposes of checking the other half of a TYP_DOUBLE RegRecord) |
3765 | // |
3766 | // Return value: |
3767 | // Returns true if the given RegRecord (and its other half, if TYP_DOUBLE) has an assignedInterval |
3768 | // that is referenced prior to the given location |
3769 | // |
3770 | // Notes: |
3771 | // The register is not considered to be assigned if it has no assignedInterval, or that Interval's |
3772 | // next reference is beyond lastLocation |
3773 | // |
3774 | bool LinearScan::isAssigned(RegRecord* regRec, LsraLocation lastLocation ARM_ARG(RegisterType newRegType)) |
3775 | { |
3776 | Interval* assignedInterval = regRec->assignedInterval; |
3777 | |
3778 | if ((assignedInterval == nullptr) || assignedInterval->getNextRefLocation() > lastLocation) |
3779 | { |
3780 | #ifdef _TARGET_ARM_ |
3781 | if (newRegType == TYP_DOUBLE) |
3782 | { |
3783 | RegRecord* anotherRegRec = findAnotherHalfRegRec(regRec); |
3784 | |
3785 | if ((anotherRegRec->assignedInterval == nullptr) || |
3786 | (anotherRegRec->assignedInterval->getNextRefLocation() > lastLocation)) |
3787 | { |
3788 | // In case the newRegType is a double register, |
3789 | // the score would be set UNASSIGNED if another register is also not set. |
3790 | return false; |
3791 | } |
3792 | } |
3793 | else |
3794 | #endif |
3795 | { |
3796 | return false; |
3797 | } |
3798 | } |
3799 | |
3800 | return true; |
3801 | } |
3802 | |
3803 | // Check if the interval is already assigned and if it is then unassign the physical record |
3804 | // then set the assignedInterval to 'interval' |
3805 | // |
3806 | void LinearScan::checkAndAssignInterval(RegRecord* regRec, Interval* interval) |
3807 | { |
3808 | Interval* assignedInterval = regRec->assignedInterval; |
3809 | if (assignedInterval != nullptr && assignedInterval != interval) |
3810 | { |
3811 | // This is allocated to another interval. Either it is inactive, or it was allocated as a |
3812 | // copyReg and is therefore not the "assignedReg" of the other interval. In the latter case, |
3813 | // we simply unassign it - in the former case we need to set the physReg on the interval to |
3814 | // REG_NA to indicate that it is no longer in that register. |
3815 | // The lack of checking for this case resulted in an assert in the retail version of System.dll, |
3816 | // in method SerialStream.GetDcbFlag. |
3817 | // Note that we can't check for the copyReg case, because we may have seen a more recent |
3818 | // RefPosition for the Interval that was NOT a copyReg. |
3819 | if (assignedInterval->assignedReg == regRec) |
3820 | { |
3821 | assert(assignedInterval->isActive == false); |
3822 | assignedInterval->physReg = REG_NA; |
3823 | } |
3824 | unassignPhysReg(regRec->regNum); |
3825 | } |
3826 | #ifdef _TARGET_ARM_ |
3827 | // If 'interval' and 'assignedInterval' were both TYP_DOUBLE, then we have unassigned 'assignedInterval' |
3828 | // from both halves. Otherwise, if 'interval' is TYP_DOUBLE, we now need to unassign the other half. |
3829 | if ((interval->registerType == TYP_DOUBLE) && |
3830 | ((assignedInterval == nullptr) || (assignedInterval->registerType == TYP_FLOAT))) |
3831 | { |
3832 | RegRecord* otherRegRecord = getSecondHalfRegRec(regRec); |
3833 | assignedInterval = otherRegRecord->assignedInterval; |
3834 | if (assignedInterval != nullptr && assignedInterval != interval) |
3835 | { |
3836 | if (assignedInterval->assignedReg == otherRegRecord) |
3837 | { |
3838 | assert(assignedInterval->isActive == false); |
3839 | assignedInterval->physReg = REG_NA; |
3840 | } |
3841 | unassignPhysReg(otherRegRecord->regNum); |
3842 | } |
3843 | } |
3844 | #endif |
3845 | |
3846 | updateAssignedInterval(regRec, interval, interval->registerType); |
3847 | } |
3848 | |
3849 | // Assign the given physical register interval to the given interval |
3850 | void LinearScan::assignPhysReg(RegRecord* regRec, Interval* interval) |
3851 | { |
3852 | regMaskTP assignedRegMask = genRegMask(regRec->regNum); |
3853 | compiler->codeGen->regSet.rsSetRegsModified(assignedRegMask DEBUGARG(true)); |
3854 | |
3855 | checkAndAssignInterval(regRec, interval); |
3856 | interval->assignedReg = regRec; |
3857 | |
3858 | interval->physReg = regRec->regNum; |
3859 | interval->isActive = true; |
3860 | if (interval->isLocalVar) |
3861 | { |
3862 | // Prefer this register for future references |
3863 | interval->updateRegisterPreferences(assignedRegMask); |
3864 | } |
3865 | } |
3866 | |
3867 | //------------------------------------------------------------------------ |
3868 | // setIntervalAsSplit: Set this Interval as being split |
3869 | // |
3870 | // Arguments: |
3871 | // interval - The Interval which is being split |
3872 | // |
3873 | // Return Value: |
3874 | // None. |
3875 | // |
3876 | // Notes: |
3877 | // The given Interval will be marked as split, and it will be added to the |
3878 | // set of splitOrSpilledVars. |
3879 | // |
3880 | // Assumptions: |
3881 | // "interval" must be a lclVar interval, as tree temps are never split. |
3882 | // This is asserted in the call to getVarIndex(). |
3883 | // |
3884 | void LinearScan::setIntervalAsSplit(Interval* interval) |
3885 | { |
3886 | if (interval->isLocalVar) |
3887 | { |
3888 | unsigned varIndex = interval->getVarIndex(compiler); |
3889 | if (!interval->isSplit) |
3890 | { |
3891 | VarSetOps::AddElemD(compiler, splitOrSpilledVars, varIndex); |
3892 | } |
3893 | else |
3894 | { |
3895 | assert(VarSetOps::IsMember(compiler, splitOrSpilledVars, varIndex)); |
3896 | } |
3897 | } |
3898 | interval->isSplit = true; |
3899 | } |
3900 | |
3901 | //------------------------------------------------------------------------ |
3902 | // setIntervalAsSpilled: Set this Interval as being spilled |
3903 | // |
3904 | // Arguments: |
3905 | // interval - The Interval which is being spilled |
3906 | // |
3907 | // Return Value: |
3908 | // None. |
3909 | // |
3910 | // Notes: |
3911 | // The given Interval will be marked as spilled, and it will be added |
3912 | // to the set of splitOrSpilledVars. |
3913 | // |
3914 | void LinearScan::setIntervalAsSpilled(Interval* interval) |
3915 | { |
3916 | if (interval->isLocalVar) |
3917 | { |
3918 | unsigned varIndex = interval->getVarIndex(compiler); |
3919 | if (!interval->isSpilled) |
3920 | { |
3921 | VarSetOps::AddElemD(compiler, splitOrSpilledVars, varIndex); |
3922 | } |
3923 | else |
3924 | { |
3925 | assert(VarSetOps::IsMember(compiler, splitOrSpilledVars, varIndex)); |
3926 | } |
3927 | } |
3928 | interval->isSpilled = true; |
3929 | } |
3930 | |
3931 | //------------------------------------------------------------------------ |
3932 | // spill: Spill this Interval between "fromRefPosition" and "toRefPosition" |
3933 | // |
3934 | // Arguments: |
3935 | // fromRefPosition - The RefPosition at which the Interval is to be spilled |
3936 | // toRefPosition - The RefPosition at which it must be reloaded |
3937 | // |
3938 | // Return Value: |
3939 | // None. |
3940 | // |
3941 | // Assumptions: |
3942 | // fromRefPosition and toRefPosition must not be null |
3943 | // |
3944 | void LinearScan::spillInterval(Interval* interval, RefPosition* fromRefPosition, RefPosition* toRefPosition) |
3945 | { |
3946 | assert(fromRefPosition != nullptr && toRefPosition != nullptr); |
3947 | assert(fromRefPosition->getInterval() == interval && toRefPosition->getInterval() == interval); |
3948 | assert(fromRefPosition->nextRefPosition == toRefPosition); |
3949 | |
3950 | if (!fromRefPosition->lastUse) |
3951 | { |
3952 | // If not allocated a register, Lcl var def/use ref positions even if reg optional |
3953 | // should be marked as spillAfter. |
3954 | if (!fromRefPosition->RequiresRegister() && !(interval->isLocalVar && fromRefPosition->IsActualRef())) |
3955 | { |
3956 | fromRefPosition->registerAssignment = RBM_NONE; |
3957 | } |
3958 | else |
3959 | { |
3960 | fromRefPosition->spillAfter = true; |
3961 | } |
3962 | } |
3963 | assert(toRefPosition != nullptr); |
3964 | |
3965 | #ifdef DEBUG |
3966 | if (VERBOSE) |
3967 | { |
3968 | dumpLsraAllocationEvent(LSRA_EVENT_SPILL, interval); |
3969 | } |
3970 | #endif // DEBUG |
3971 | |
3972 | INTRACK_STATS(updateLsraStat(LSRA_STAT_SPILL, fromRefPosition->bbNum)); |
3973 | |
3974 | interval->isActive = false; |
3975 | setIntervalAsSpilled(interval); |
3976 | |
3977 | // If fromRefPosition occurs before the beginning of this block, mark this as living in the stack |
3978 | // on entry to this block. |
3979 | if (fromRefPosition->nodeLocation <= curBBStartLocation) |
3980 | { |
3981 | // This must be a lclVar interval |
3982 | assert(interval->isLocalVar); |
3983 | setInVarRegForBB(curBBNum, interval->varNum, REG_STK); |
3984 | } |
3985 | } |
3986 | |
3987 | //------------------------------------------------------------------------ |
3988 | // unassignPhysRegNoSpill: Unassign the given physical register record from |
3989 | // an active interval, without spilling. |
3990 | // |
3991 | // Arguments: |
3992 | // regRec - the RegRecord to be unasssigned |
3993 | // |
3994 | // Return Value: |
3995 | // None. |
3996 | // |
3997 | // Assumptions: |
3998 | // The assignedInterval must not be null, and must be active. |
3999 | // |
4000 | // Notes: |
4001 | // This method is used to unassign a register when an interval needs to be moved to a |
4002 | // different register, but not (yet) spilled. |
4003 | |
4004 | void LinearScan::unassignPhysRegNoSpill(RegRecord* regRec) |
4005 | { |
4006 | Interval* assignedInterval = regRec->assignedInterval; |
4007 | assert(assignedInterval != nullptr && assignedInterval->isActive); |
4008 | assignedInterval->isActive = false; |
4009 | unassignPhysReg(regRec, nullptr); |
4010 | assignedInterval->isActive = true; |
4011 | } |
4012 | |
4013 | //------------------------------------------------------------------------ |
4014 | // checkAndClearInterval: Clear the assignedInterval for the given |
4015 | // physical register record |
4016 | // |
4017 | // Arguments: |
4018 | // regRec - the physical RegRecord to be unasssigned |
4019 | // spillRefPosition - The RefPosition at which the assignedInterval is to be spilled |
4020 | // or nullptr if we aren't spilling |
4021 | // |
4022 | // Return Value: |
4023 | // None. |
4024 | // |
4025 | // Assumptions: |
4026 | // see unassignPhysReg |
4027 | // |
4028 | void LinearScan::checkAndClearInterval(RegRecord* regRec, RefPosition* spillRefPosition) |
4029 | { |
4030 | Interval* assignedInterval = regRec->assignedInterval; |
4031 | assert(assignedInterval != nullptr); |
4032 | regNumber thisRegNum = regRec->regNum; |
4033 | |
4034 | if (spillRefPosition == nullptr) |
4035 | { |
4036 | // Note that we can't assert for the copyReg case |
4037 | // |
4038 | if (assignedInterval->physReg == thisRegNum) |
4039 | { |
4040 | assert(assignedInterval->isActive == false); |
4041 | } |
4042 | } |
4043 | else |
4044 | { |
4045 | assert(spillRefPosition->getInterval() == assignedInterval); |
4046 | } |
4047 | |
4048 | updateAssignedInterval(regRec, nullptr, assignedInterval->registerType); |
4049 | } |
4050 | |
4051 | //------------------------------------------------------------------------ |
4052 | // unassignPhysReg: Unassign the given physical register record, and spill the |
4053 | // assignedInterval at the given spillRefPosition, if any. |
4054 | // |
4055 | // Arguments: |
4056 | // regRec - The RegRecord to be unasssigned |
4057 | // newRegType - The RegisterType of interval that would be assigned |
4058 | // |
4059 | // Return Value: |
4060 | // None. |
4061 | // |
4062 | // Notes: |
4063 | // On ARM architecture, Intervals have to be unassigned considering |
4064 | // with the register type of interval that would be assigned. |
4065 | // |
4066 | void LinearScan::unassignPhysReg(RegRecord* regRec ARM_ARG(RegisterType newRegType)) |
4067 | { |
4068 | RegRecord* regRecToUnassign = regRec; |
4069 | #ifdef _TARGET_ARM_ |
4070 | RegRecord* anotherRegRec = nullptr; |
4071 | |
4072 | if ((regRecToUnassign->assignedInterval != nullptr) && |
4073 | (regRecToUnassign->assignedInterval->registerType == TYP_DOUBLE)) |
4074 | { |
4075 | // If the register type of interval(being unassigned or new) is TYP_DOUBLE, |
4076 | // It should have to be valid double register (even register) |
4077 | if (!genIsValidDoubleReg(regRecToUnassign->regNum)) |
4078 | { |
4079 | regRecToUnassign = findAnotherHalfRegRec(regRec); |
4080 | } |
4081 | } |
4082 | else |
4083 | { |
4084 | if (newRegType == TYP_DOUBLE) |
4085 | { |
4086 | anotherRegRec = findAnotherHalfRegRec(regRecToUnassign); |
4087 | } |
4088 | } |
4089 | #endif |
4090 | |
4091 | if (regRecToUnassign->assignedInterval != nullptr) |
4092 | { |
4093 | unassignPhysReg(regRecToUnassign, regRecToUnassign->assignedInterval->recentRefPosition); |
4094 | } |
4095 | #ifdef _TARGET_ARM_ |
4096 | if ((anotherRegRec != nullptr) && (anotherRegRec->assignedInterval != nullptr)) |
4097 | { |
4098 | unassignPhysReg(anotherRegRec, anotherRegRec->assignedInterval->recentRefPosition); |
4099 | } |
4100 | #endif |
4101 | } |
4102 | |
4103 | //------------------------------------------------------------------------ |
4104 | // unassignPhysReg: Unassign the given physical register record, and spill the |
4105 | // assignedInterval at the given spillRefPosition, if any. |
4106 | // |
4107 | // Arguments: |
4108 | // regRec - the RegRecord to be unasssigned |
4109 | // spillRefPosition - The RefPosition at which the assignedInterval is to be spilled |
4110 | // |
4111 | // Return Value: |
4112 | // None. |
4113 | // |
4114 | // Assumptions: |
4115 | // The assignedInterval must not be null. |
4116 | // If spillRefPosition is null, the assignedInterval must be inactive, or not currently |
4117 | // assigned to this register (e.g. this is a copyReg for that Interval). |
4118 | // Otherwise, spillRefPosition must be associated with the assignedInterval. |
4119 | // |
4120 | void LinearScan::unassignPhysReg(RegRecord* regRec, RefPosition* spillRefPosition) |
4121 | { |
4122 | Interval* assignedInterval = regRec->assignedInterval; |
4123 | assert(assignedInterval != nullptr); |
4124 | regNumber thisRegNum = regRec->regNum; |
4125 | |
4126 | // Is assignedInterval actually still assigned to this register? |
4127 | bool intervalIsAssigned = (assignedInterval->physReg == thisRegNum); |
4128 | |
4129 | #ifdef _TARGET_ARM_ |
4130 | RegRecord* anotherRegRec = nullptr; |
4131 | |
4132 | // Prepare second half RegRecord of a double register for TYP_DOUBLE |
4133 | if (assignedInterval->registerType == TYP_DOUBLE) |
4134 | { |
4135 | assert(isFloatRegType(regRec->registerType)); |
4136 | |
4137 | anotherRegRec = findAnotherHalfRegRec(regRec); |
4138 | |
4139 | // Both two RegRecords should have been assigned to the same interval. |
4140 | assert(assignedInterval == anotherRegRec->assignedInterval); |
4141 | if (!intervalIsAssigned && (assignedInterval->physReg == anotherRegRec->regNum)) |
4142 | { |
4143 | intervalIsAssigned = true; |
4144 | } |
4145 | } |
4146 | #endif // _TARGET_ARM_ |
4147 | |
4148 | checkAndClearInterval(regRec, spillRefPosition); |
4149 | |
4150 | #ifdef _TARGET_ARM_ |
4151 | if (assignedInterval->registerType == TYP_DOUBLE) |
4152 | { |
4153 | // Both two RegRecords should have been unassigned together. |
4154 | assert(regRec->assignedInterval == nullptr); |
4155 | assert(anotherRegRec->assignedInterval == nullptr); |
4156 | } |
4157 | #endif // _TARGET_ARM_ |
4158 | |
4159 | RefPosition* nextRefPosition = nullptr; |
4160 | if (spillRefPosition != nullptr) |
4161 | { |
4162 | nextRefPosition = spillRefPosition->nextRefPosition; |
4163 | } |
4164 | |
4165 | if (!intervalIsAssigned && assignedInterval->physReg != REG_NA) |
4166 | { |
4167 | // This must have been a temporary copy reg, but we can't assert that because there |
4168 | // may have been intervening RefPositions that were not copyRegs. |
4169 | |
4170 | // reg->assignedInterval has already been set to nullptr by checkAndClearInterval() |
4171 | assert(regRec->assignedInterval == nullptr); |
4172 | return; |
4173 | } |
4174 | |
4175 | regNumber victimAssignedReg = assignedInterval->physReg; |
4176 | assignedInterval->physReg = REG_NA; |
4177 | |
4178 | bool spill = assignedInterval->isActive && nextRefPosition != nullptr; |
4179 | if (spill) |
4180 | { |
4181 | // If this is an active interval, it must have a recentRefPosition, |
4182 | // otherwise it would not be active |
4183 | assert(spillRefPosition != nullptr); |
4184 | |
4185 | #if 0 |
4186 | // TODO-CQ: Enable this and insert an explicit GT_COPY (otherwise there's no way to communicate |
4187 | // to codegen that we want the copyReg to be the new home location). |
4188 | // If the last reference was a copyReg, and we're spilling the register |
4189 | // it was copied from, then make the copyReg the new primary location |
4190 | // if possible |
4191 | if (spillRefPosition->copyReg) |
4192 | { |
4193 | regNumber copyFromRegNum = victimAssignedReg; |
4194 | regNumber copyRegNum = genRegNumFromMask(spillRefPosition->registerAssignment); |
4195 | if (copyFromRegNum == thisRegNum && |
4196 | getRegisterRecord(copyRegNum)->assignedInterval == assignedInterval) |
4197 | { |
4198 | assert(copyRegNum != thisRegNum); |
4199 | assignedInterval->physReg = copyRegNum; |
4200 | assignedInterval->assignedReg = this->getRegisterRecord(copyRegNum); |
4201 | return; |
4202 | } |
4203 | } |
4204 | #endif // 0 |
4205 | #ifdef DEBUG |
4206 | // With JitStressRegs == 0x80 (LSRA_EXTEND_LIFETIMES), we may have a RefPosition |
4207 | // that is not marked lastUse even though the treeNode is a lastUse. In that case |
4208 | // we must not mark it for spill because the register will have been immediately freed |
4209 | // after use. While we could conceivably add special handling for this case in codegen, |
4210 | // it would be messy and undesirably cause the "bleeding" of LSRA stress modes outside |
4211 | // of LSRA. |
4212 | if (extendLifetimes() && assignedInterval->isLocalVar && RefTypeIsUse(spillRefPosition->refType) && |
4213 | spillRefPosition->treeNode != nullptr && (spillRefPosition->treeNode->gtFlags & GTF_VAR_DEATH) != 0) |
4214 | { |
4215 | dumpLsraAllocationEvent(LSRA_EVENT_SPILL_EXTENDED_LIFETIME, assignedInterval); |
4216 | assignedInterval->isActive = false; |
4217 | spill = false; |
4218 | // If the spillRefPosition occurs before the beginning of this block, it will have |
4219 | // been marked as living in this register on entry to this block, but we now need |
4220 | // to mark this as living on the stack. |
4221 | if (spillRefPosition->nodeLocation <= curBBStartLocation) |
4222 | { |
4223 | setInVarRegForBB(curBBNum, assignedInterval->varNum, REG_STK); |
4224 | if (spillRefPosition->nextRefPosition != nullptr) |
4225 | { |
4226 | setIntervalAsSpilled(assignedInterval); |
4227 | } |
4228 | } |
4229 | else |
4230 | { |
4231 | // Otherwise, we need to mark spillRefPosition as lastUse, or the interval |
4232 | // will remain active beyond its allocated range during the resolution phase. |
4233 | spillRefPosition->lastUse = true; |
4234 | } |
4235 | } |
4236 | else |
4237 | #endif // DEBUG |
4238 | { |
4239 | spillInterval(assignedInterval, spillRefPosition, nextRefPosition); |
4240 | } |
4241 | } |
4242 | // Maintain the association with the interval, if it has more references. |
4243 | // Or, if we "remembered" an interval assigned to this register, restore it. |
4244 | if (nextRefPosition != nullptr) |
4245 | { |
4246 | assignedInterval->assignedReg = regRec; |
4247 | } |
4248 | else if (canRestorePreviousInterval(regRec, assignedInterval)) |
4249 | { |
4250 | regRec->assignedInterval = regRec->previousInterval; |
4251 | regRec->previousInterval = nullptr; |
4252 | |
4253 | #ifdef _TARGET_ARM_ |
4254 | // Note: |
4255 | // We can not use updateAssignedInterval() and updatePreviousInterval() here, |
4256 | // because regRec may not be a even-numbered float register. |
4257 | |
4258 | // Update second half RegRecord of a double register for TYP_DOUBLE |
4259 | if (regRec->assignedInterval->registerType == TYP_DOUBLE) |
4260 | { |
4261 | RegRecord* anotherHalfRegRec = findAnotherHalfRegRec(regRec); |
4262 | |
4263 | anotherHalfRegRec->assignedInterval = regRec->assignedInterval; |
4264 | anotherHalfRegRec->previousInterval = nullptr; |
4265 | } |
4266 | #endif // _TARGET_ARM_ |
4267 | |
4268 | #ifdef DEBUG |
4269 | if (spill) |
4270 | { |
4271 | dumpLsraAllocationEvent(LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL_AFTER_SPILL, regRec->assignedInterval, |
4272 | thisRegNum); |
4273 | } |
4274 | else |
4275 | { |
4276 | dumpLsraAllocationEvent(LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL, regRec->assignedInterval, thisRegNum); |
4277 | } |
4278 | #endif // DEBUG |
4279 | } |
4280 | else |
4281 | { |
4282 | updateAssignedInterval(regRec, nullptr, assignedInterval->registerType); |
4283 | updatePreviousInterval(regRec, nullptr, assignedInterval->registerType); |
4284 | } |
4285 | } |
4286 | |
4287 | //------------------------------------------------------------------------ |
4288 | // spillGCRefs: Spill any GC-type intervals that are currently in registers.a |
4289 | // |
4290 | // Arguments: |
4291 | // killRefPosition - The RefPosition for the kill |
4292 | // |
4293 | // Return Value: |
4294 | // None. |
4295 | // |
4296 | void LinearScan::spillGCRefs(RefPosition* killRefPosition) |
4297 | { |
4298 | // For each physical register that can hold a GC type, |
4299 | // if it is occupied by an interval of a GC type, spill that interval. |
4300 | regMaskTP candidateRegs = killRefPosition->registerAssignment; |
4301 | while (candidateRegs != RBM_NONE) |
4302 | { |
4303 | regMaskTP nextRegBit = genFindLowestBit(candidateRegs); |
4304 | candidateRegs &= ~nextRegBit; |
4305 | regNumber nextReg = genRegNumFromMask(nextRegBit); |
4306 | RegRecord* regRecord = getRegisterRecord(nextReg); |
4307 | Interval* assignedInterval = regRecord->assignedInterval; |
4308 | if (assignedInterval == nullptr || (assignedInterval->isActive == false) || |
4309 | !varTypeIsGC(assignedInterval->registerType)) |
4310 | { |
4311 | continue; |
4312 | } |
4313 | unassignPhysReg(regRecord, assignedInterval->recentRefPosition); |
4314 | } |
4315 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_DONE_KILL_GC_REFS, nullptr, REG_NA, nullptr)); |
4316 | } |
4317 | |
4318 | //------------------------------------------------------------------------ |
4319 | // processBlockEndAllocation: Update var locations after 'currentBlock' has been allocated |
4320 | // |
4321 | // Arguments: |
4322 | // currentBlock - the BasicBlock we have just finished allocating registers for |
4323 | // |
4324 | // Return Value: |
4325 | // None |
4326 | // |
4327 | // Notes: |
4328 | // Calls processBlockEndLocations() to set the outVarToRegMap, then gets the next block, |
4329 | // and sets the inVarToRegMap appropriately. |
4330 | |
4331 | void LinearScan::processBlockEndAllocation(BasicBlock* currentBlock) |
4332 | { |
4333 | assert(currentBlock != nullptr); |
4334 | if (enregisterLocalVars) |
4335 | { |
4336 | processBlockEndLocations(currentBlock); |
4337 | } |
4338 | markBlockVisited(currentBlock); |
4339 | |
4340 | // Get the next block to allocate. |
4341 | // When the last block in the method has successors, there will be a final "RefTypeBB" to |
4342 | // ensure that we get the varToRegMap set appropriately, but in that case we don't need |
4343 | // to worry about "nextBlock". |
4344 | BasicBlock* nextBlock = getNextBlock(); |
4345 | if (nextBlock != nullptr) |
4346 | { |
4347 | processBlockStartLocations(nextBlock, true); |
4348 | } |
4349 | } |
4350 | |
4351 | //------------------------------------------------------------------------ |
4352 | // rotateBlockStartLocation: When in the LSRA_BLOCK_BOUNDARY_ROTATE stress mode, attempt to |
4353 | // "rotate" the register assignment for a localVar to the next higher |
4354 | // register that is available. |
4355 | // |
4356 | // Arguments: |
4357 | // interval - the Interval for the variable whose register is getting rotated |
4358 | // targetReg - its register assignment from the predecessor block being used for live-in |
4359 | // availableRegs - registers available for use |
4360 | // |
4361 | // Return Value: |
4362 | // The new register to use. |
4363 | |
4364 | #ifdef DEBUG |
4365 | regNumber LinearScan::rotateBlockStartLocation(Interval* interval, regNumber targetReg, regMaskTP availableRegs) |
4366 | { |
4367 | if (targetReg != REG_STK && getLsraBlockBoundaryLocations() == LSRA_BLOCK_BOUNDARY_ROTATE) |
4368 | { |
4369 | // If we're rotating the register locations at block boundaries, try to use |
4370 | // the next higher register number of the appropriate register type. |
4371 | regMaskTP candidateRegs = allRegs(interval->registerType) & availableRegs; |
4372 | regNumber firstReg = REG_NA; |
4373 | regNumber newReg = REG_NA; |
4374 | while (candidateRegs != RBM_NONE) |
4375 | { |
4376 | regMaskTP nextRegBit = genFindLowestBit(candidateRegs); |
4377 | candidateRegs &= ~nextRegBit; |
4378 | regNumber nextReg = genRegNumFromMask(nextRegBit); |
4379 | if (nextReg > targetReg) |
4380 | { |
4381 | newReg = nextReg; |
4382 | break; |
4383 | } |
4384 | else if (firstReg == REG_NA) |
4385 | { |
4386 | firstReg = nextReg; |
4387 | } |
4388 | } |
4389 | if (newReg == REG_NA) |
4390 | { |
4391 | assert(firstReg != REG_NA); |
4392 | newReg = firstReg; |
4393 | } |
4394 | targetReg = newReg; |
4395 | } |
4396 | return targetReg; |
4397 | } |
4398 | #endif // DEBUG |
4399 | |
4400 | #ifdef _TARGET_ARM_ |
4401 | //-------------------------------------------------------------------------------------- |
4402 | // isSecondHalfReg: Test if recRec is second half of double register |
4403 | // which is assigned to an interval. |
4404 | // |
4405 | // Arguments: |
4406 | // regRec - a register to be tested |
4407 | // interval - an interval which is assigned to some register |
4408 | // |
4409 | // Assumptions: |
4410 | // None |
4411 | // |
4412 | // Return Value: |
4413 | // True only if regRec is second half of assignedReg in interval |
4414 | // |
4415 | bool LinearScan::isSecondHalfReg(RegRecord* regRec, Interval* interval) |
4416 | { |
4417 | RegRecord* assignedReg = interval->assignedReg; |
4418 | |
4419 | if (assignedReg != nullptr && interval->registerType == TYP_DOUBLE) |
4420 | { |
4421 | // interval should have been allocated to a valid double register |
4422 | assert(genIsValidDoubleReg(assignedReg->regNum)); |
4423 | |
4424 | // Find a second half RegRecord of double register |
4425 | regNumber firstRegNum = assignedReg->regNum; |
4426 | regNumber secondRegNum = REG_NEXT(firstRegNum); |
4427 | |
4428 | assert(genIsValidFloatReg(secondRegNum) && !genIsValidDoubleReg(secondRegNum)); |
4429 | |
4430 | RegRecord* secondRegRec = getRegisterRecord(secondRegNum); |
4431 | |
4432 | return secondRegRec == regRec; |
4433 | } |
4434 | |
4435 | return false; |
4436 | } |
4437 | |
4438 | //------------------------------------------------------------------------------------------ |
4439 | // getSecondHalfRegRec: Get the second (odd) half of an ARM32 double register |
4440 | // |
4441 | // Arguments: |
4442 | // regRec - A float RegRecord |
4443 | // |
4444 | // Assumptions: |
4445 | // regRec must be a valid double register (i.e. even) |
4446 | // |
4447 | // Return Value: |
4448 | // The RegRecord for the second half of the double register |
4449 | // |
4450 | RegRecord* LinearScan::getSecondHalfRegRec(RegRecord* regRec) |
4451 | { |
4452 | regNumber secondHalfRegNum; |
4453 | RegRecord* secondHalfRegRec; |
4454 | |
4455 | assert(genIsValidDoubleReg(regRec->regNum)); |
4456 | |
4457 | secondHalfRegNum = REG_NEXT(regRec->regNum); |
4458 | secondHalfRegRec = getRegisterRecord(secondHalfRegNum); |
4459 | |
4460 | return secondHalfRegRec; |
4461 | } |
4462 | //------------------------------------------------------------------------------------------ |
4463 | // findAnotherHalfRegRec: Find another half RegRecord which forms same ARM32 double register |
4464 | // |
4465 | // Arguments: |
4466 | // regRec - A float RegRecord |
4467 | // |
4468 | // Assumptions: |
4469 | // None |
4470 | // |
4471 | // Return Value: |
4472 | // A RegRecord which forms same double register with regRec |
4473 | // |
4474 | RegRecord* LinearScan::findAnotherHalfRegRec(RegRecord* regRec) |
4475 | { |
4476 | regNumber anotherHalfRegNum; |
4477 | RegRecord* anotherHalfRegRec; |
4478 | |
4479 | assert(genIsValidFloatReg(regRec->regNum)); |
4480 | |
4481 | // Find another half register for TYP_DOUBLE interval, |
4482 | // following same logic in canRestorePreviousInterval(). |
4483 | if (genIsValidDoubleReg(regRec->regNum)) |
4484 | { |
4485 | anotherHalfRegNum = REG_NEXT(regRec->regNum); |
4486 | assert(!genIsValidDoubleReg(anotherHalfRegNum)); |
4487 | } |
4488 | else |
4489 | { |
4490 | anotherHalfRegNum = REG_PREV(regRec->regNum); |
4491 | assert(genIsValidDoubleReg(anotherHalfRegNum)); |
4492 | } |
4493 | anotherHalfRegRec = getRegisterRecord(anotherHalfRegNum); |
4494 | |
4495 | return anotherHalfRegRec; |
4496 | } |
4497 | #endif |
4498 | |
4499 | //-------------------------------------------------------------------------------------- |
4500 | // canRestorePreviousInterval: Test if we can restore previous interval |
4501 | // |
4502 | // Arguments: |
4503 | // regRec - a register which contains previous interval to be restored |
4504 | // assignedInterval - an interval just unassigned |
4505 | // |
4506 | // Assumptions: |
4507 | // None |
4508 | // |
4509 | // Return Value: |
4510 | // True only if previous interval of regRec can be restored |
4511 | // |
4512 | bool LinearScan::canRestorePreviousInterval(RegRecord* regRec, Interval* assignedInterval) |
4513 | { |
4514 | bool retVal = |
4515 | (regRec->previousInterval != nullptr && regRec->previousInterval != assignedInterval && |
4516 | regRec->previousInterval->assignedReg == regRec && regRec->previousInterval->getNextRefPosition() != nullptr); |
4517 | |
4518 | #ifdef _TARGET_ARM_ |
4519 | if (retVal && regRec->previousInterval->registerType == TYP_DOUBLE) |
4520 | { |
4521 | RegRecord* anotherHalfRegRec = findAnotherHalfRegRec(regRec); |
4522 | |
4523 | retVal = retVal && anotherHalfRegRec->assignedInterval == nullptr; |
4524 | } |
4525 | #endif |
4526 | |
4527 | return retVal; |
4528 | } |
4529 | |
4530 | bool LinearScan::isAssignedToInterval(Interval* interval, RegRecord* regRec) |
4531 | { |
4532 | bool isAssigned = (interval->assignedReg == regRec); |
4533 | #ifdef _TARGET_ARM_ |
4534 | isAssigned |= isSecondHalfReg(regRec, interval); |
4535 | #endif |
4536 | return isAssigned; |
4537 | } |
4538 | |
4539 | void LinearScan::unassignIntervalBlockStart(RegRecord* regRecord, VarToRegMap inVarToRegMap) |
4540 | { |
4541 | // Is there another interval currently assigned to this register? If so unassign it. |
4542 | Interval* assignedInterval = regRecord->assignedInterval; |
4543 | if (assignedInterval != nullptr) |
4544 | { |
4545 | if (isAssignedToInterval(assignedInterval, regRecord)) |
4546 | { |
4547 | // Only localVars or constants should be assigned to registers at block boundaries. |
4548 | if (!assignedInterval->isLocalVar) |
4549 | { |
4550 | assert(assignedInterval->isConstant); |
4551 | // Don't need to update the VarToRegMap. |
4552 | inVarToRegMap = nullptr; |
4553 | } |
4554 | |
4555 | regNumber assignedRegNum = assignedInterval->assignedReg->regNum; |
4556 | |
4557 | // If the interval is active, it will be set to active when we reach its new |
4558 | // register assignment (which we must not yet have done, or it wouldn't still be |
4559 | // assigned to this register). |
4560 | assignedInterval->isActive = false; |
4561 | unassignPhysReg(assignedInterval->assignedReg, nullptr); |
4562 | if ((inVarToRegMap != nullptr) && inVarToRegMap[assignedInterval->getVarIndex(compiler)] == assignedRegNum) |
4563 | { |
4564 | inVarToRegMap[assignedInterval->getVarIndex(compiler)] = REG_STK; |
4565 | } |
4566 | } |
4567 | else |
4568 | { |
4569 | // This interval is no longer assigned to this register. |
4570 | updateAssignedInterval(regRecord, nullptr, assignedInterval->registerType); |
4571 | } |
4572 | } |
4573 | } |
4574 | |
4575 | //------------------------------------------------------------------------ |
4576 | // processBlockStartLocations: Update var locations on entry to 'currentBlock' and clear constant |
4577 | // registers. |
4578 | // |
4579 | // Arguments: |
4580 | // currentBlock - the BasicBlock we are about to allocate registers for |
4581 | // allocationPass - true if we are currently allocating registers (versus writing them back) |
4582 | // |
4583 | // Return Value: |
4584 | // None |
4585 | // |
4586 | // Notes: |
4587 | // During the allocation pass, we use the outVarToRegMap of the selected predecessor to |
4588 | // determine the lclVar locations for the inVarToRegMap. |
4589 | // During the resolution (write-back) pass, we only modify the inVarToRegMap in cases where |
4590 | // a lclVar was spilled after the block had been completed. |
4591 | void LinearScan::processBlockStartLocations(BasicBlock* currentBlock, bool allocationPass) |
4592 | { |
4593 | // If we have no register candidates we should only call this method during allocation. |
4594 | |
4595 | assert(enregisterLocalVars || allocationPass); |
4596 | |
4597 | if (!enregisterLocalVars) |
4598 | { |
4599 | // Just clear any constant registers and return. |
4600 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
4601 | { |
4602 | RegRecord* physRegRecord = getRegisterRecord(reg); |
4603 | Interval* assignedInterval = physRegRecord->assignedInterval; |
4604 | |
4605 | if (assignedInterval != nullptr) |
4606 | { |
4607 | assert(assignedInterval->isConstant); |
4608 | physRegRecord->assignedInterval = nullptr; |
4609 | } |
4610 | } |
4611 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_START_BB, nullptr, REG_NA, currentBlock)); |
4612 | return; |
4613 | } |
4614 | |
4615 | unsigned predBBNum = blockInfo[currentBlock->bbNum].predBBNum; |
4616 | VarToRegMap predVarToRegMap = getOutVarToRegMap(predBBNum); |
4617 | VarToRegMap inVarToRegMap = getInVarToRegMap(currentBlock->bbNum); |
4618 | bool hasCriticalInEdge = blockInfo[currentBlock->bbNum].hasCriticalInEdge; |
4619 | |
4620 | VarSetOps::AssignNoCopy(compiler, currentLiveVars, |
4621 | VarSetOps::Intersection(compiler, registerCandidateVars, currentBlock->bbLiveIn)); |
4622 | #ifdef DEBUG |
4623 | if (getLsraExtendLifeTimes()) |
4624 | { |
4625 | VarSetOps::AssignNoCopy(compiler, currentLiveVars, registerCandidateVars); |
4626 | } |
4627 | // If we are rotating register assignments at block boundaries, we want to make the |
4628 | // inactive registers available for the rotation. |
4629 | regMaskTP inactiveRegs = RBM_NONE; |
4630 | #endif // DEBUG |
4631 | regMaskTP liveRegs = RBM_NONE; |
4632 | VarSetOps::Iter iter(compiler, currentLiveVars); |
4633 | unsigned varIndex = 0; |
4634 | while (iter.NextElem(&varIndex)) |
4635 | { |
4636 | unsigned varNum = compiler->lvaTrackedToVarNum[varIndex]; |
4637 | if (!compiler->lvaTable[varNum].lvLRACandidate) |
4638 | { |
4639 | continue; |
4640 | } |
4641 | regNumber targetReg; |
4642 | Interval* interval = getIntervalForLocalVar(varIndex); |
4643 | RefPosition* nextRefPosition = interval->getNextRefPosition(); |
4644 | assert(nextRefPosition != nullptr); |
4645 | |
4646 | if (allocationPass) |
4647 | { |
4648 | targetReg = getVarReg(predVarToRegMap, varIndex); |
4649 | #ifdef DEBUG |
4650 | regNumber newTargetReg = rotateBlockStartLocation(interval, targetReg, (~liveRegs | inactiveRegs)); |
4651 | if (newTargetReg != targetReg) |
4652 | { |
4653 | targetReg = newTargetReg; |
4654 | setIntervalAsSplit(interval); |
4655 | } |
4656 | #endif // DEBUG |
4657 | setVarReg(inVarToRegMap, varIndex, targetReg); |
4658 | } |
4659 | else // !allocationPass (i.e. resolution/write-back pass) |
4660 | { |
4661 | targetReg = getVarReg(inVarToRegMap, varIndex); |
4662 | // There are four cases that we need to consider during the resolution pass: |
4663 | // 1. This variable had a register allocated initially, and it was not spilled in the RefPosition |
4664 | // that feeds this block. In this case, both targetReg and predVarToRegMap[varIndex] will be targetReg. |
4665 | // 2. This variable had not been spilled prior to the end of predBB, but was later spilled, so |
4666 | // predVarToRegMap[varIndex] will be REG_STK, but targetReg is its former allocated value. |
4667 | // In this case, we will normally change it to REG_STK. We will update its "spilled" status when we |
4668 | // encounter it in resolveLocalRef(). |
4669 | // 2a. If the next RefPosition is marked as a copyReg, we need to retain the allocated register. This is |
4670 | // because the copyReg RefPosition will not have recorded the "home" register, yet downstream |
4671 | // RefPositions rely on the correct "home" register. |
4672 | // 3. This variable was spilled before we reached the end of predBB. In this case, both targetReg and |
4673 | // predVarToRegMap[varIndex] will be REG_STK, and the next RefPosition will have been marked |
4674 | // as reload during allocation time if necessary (note that by the time we actually reach the next |
4675 | // RefPosition, we may be using a different predecessor, at which it is still in a register). |
4676 | // 4. This variable was spilled during the allocation of this block, so targetReg is REG_STK |
4677 | // (because we set inVarToRegMap at the time we spilled it), but predVarToRegMap[varIndex] |
4678 | // is not REG_STK. We retain the REG_STK value in the inVarToRegMap. |
4679 | if (targetReg != REG_STK) |
4680 | { |
4681 | if (getVarReg(predVarToRegMap, varIndex) != REG_STK) |
4682 | { |
4683 | // Case #1 above. |
4684 | assert(getVarReg(predVarToRegMap, varIndex) == targetReg || |
4685 | getLsraBlockBoundaryLocations() == LSRA_BLOCK_BOUNDARY_ROTATE); |
4686 | } |
4687 | else if (!nextRefPosition->copyReg) |
4688 | { |
4689 | // case #2 above. |
4690 | setVarReg(inVarToRegMap, varIndex, REG_STK); |
4691 | targetReg = REG_STK; |
4692 | } |
4693 | // Else case 2a. - retain targetReg. |
4694 | } |
4695 | // Else case #3 or #4, we retain targetReg and nothing further to do or assert. |
4696 | } |
4697 | if (interval->physReg == targetReg) |
4698 | { |
4699 | if (interval->isActive) |
4700 | { |
4701 | assert(targetReg != REG_STK); |
4702 | assert(interval->assignedReg != nullptr && interval->assignedReg->regNum == targetReg && |
4703 | interval->assignedReg->assignedInterval == interval); |
4704 | liveRegs |= genRegMask(targetReg); |
4705 | continue; |
4706 | } |
4707 | } |
4708 | else if (interval->physReg != REG_NA) |
4709 | { |
4710 | // This can happen if we are using the locations from a basic block other than the |
4711 | // immediately preceding one - where the variable was in a different location. |
4712 | if (targetReg != REG_STK) |
4713 | { |
4714 | // Unassign it from the register (it will get a new register below). |
4715 | if (interval->assignedReg != nullptr && interval->assignedReg->assignedInterval == interval) |
4716 | { |
4717 | interval->isActive = false; |
4718 | unassignPhysReg(getRegisterRecord(interval->physReg), nullptr); |
4719 | } |
4720 | else |
4721 | { |
4722 | // This interval was live in this register the last time we saw a reference to it, |
4723 | // but has since been displaced. |
4724 | interval->physReg = REG_NA; |
4725 | } |
4726 | } |
4727 | else if (allocationPass) |
4728 | { |
4729 | // Keep the register assignment - if another var has it, it will get unassigned. |
4730 | // Otherwise, resolution will fix it up later, and it will be more |
4731 | // likely to match other assignments this way. |
4732 | interval->isActive = true; |
4733 | liveRegs |= genRegMask(interval->physReg); |
4734 | INDEBUG(inactiveRegs |= genRegMask(interval->physReg)); |
4735 | setVarReg(inVarToRegMap, varIndex, interval->physReg); |
4736 | } |
4737 | else |
4738 | { |
4739 | interval->physReg = REG_NA; |
4740 | } |
4741 | } |
4742 | if (targetReg != REG_STK) |
4743 | { |
4744 | RegRecord* targetRegRecord = getRegisterRecord(targetReg); |
4745 | liveRegs |= genRegMask(targetReg); |
4746 | if (!interval->isActive) |
4747 | { |
4748 | interval->isActive = true; |
4749 | interval->physReg = targetReg; |
4750 | interval->assignedReg = targetRegRecord; |
4751 | } |
4752 | if (targetRegRecord->assignedInterval != interval) |
4753 | { |
4754 | #ifdef _TARGET_ARM_ |
4755 | // If this is a TYP_DOUBLE interval, and the assigned interval is either null or is TYP_FLOAT, |
4756 | // we also need to unassign the other half of the register. |
4757 | // Note that if the assigned interval is TYP_DOUBLE, it will be unassigned below. |
4758 | if ((interval->registerType == TYP_DOUBLE) && |
4759 | ((targetRegRecord->assignedInterval == nullptr) || |
4760 | (targetRegRecord->assignedInterval->registerType == TYP_FLOAT))) |
4761 | { |
4762 | assert(genIsValidDoubleReg(targetReg)); |
4763 | unassignIntervalBlockStart(findAnotherHalfRegRec(targetRegRecord), |
4764 | allocationPass ? inVarToRegMap : nullptr); |
4765 | } |
4766 | #endif // _TARGET_ARM_ |
4767 | unassignIntervalBlockStart(targetRegRecord, allocationPass ? inVarToRegMap : nullptr); |
4768 | assignPhysReg(targetRegRecord, interval); |
4769 | } |
4770 | if (interval->recentRefPosition != nullptr && !interval->recentRefPosition->copyReg && |
4771 | interval->recentRefPosition->registerAssignment != genRegMask(targetReg)) |
4772 | { |
4773 | interval->getNextRefPosition()->outOfOrder = true; |
4774 | } |
4775 | } |
4776 | } |
4777 | |
4778 | // Unassign any registers that are no longer live. |
4779 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
4780 | { |
4781 | if ((liveRegs & genRegMask(reg)) == 0) |
4782 | { |
4783 | RegRecord* physRegRecord = getRegisterRecord(reg); |
4784 | Interval* assignedInterval = physRegRecord->assignedInterval; |
4785 | |
4786 | if (assignedInterval != nullptr) |
4787 | { |
4788 | assert(assignedInterval->isLocalVar || assignedInterval->isConstant); |
4789 | |
4790 | if (!assignedInterval->isConstant && assignedInterval->assignedReg == physRegRecord) |
4791 | { |
4792 | assignedInterval->isActive = false; |
4793 | if (assignedInterval->getNextRefPosition() == nullptr) |
4794 | { |
4795 | unassignPhysReg(physRegRecord, nullptr); |
4796 | } |
4797 | inVarToRegMap[assignedInterval->getVarIndex(compiler)] = REG_STK; |
4798 | } |
4799 | else |
4800 | { |
4801 | // This interval may still be active, but was in another register in an |
4802 | // intervening block. |
4803 | updateAssignedInterval(physRegRecord, nullptr, assignedInterval->registerType); |
4804 | } |
4805 | |
4806 | #ifdef _TARGET_ARM_ |
4807 | // unassignPhysReg, above, may have restored a 'previousInterval', in which case we need to |
4808 | // get the value of 'physRegRecord->assignedInterval' rather than using 'assignedInterval'. |
4809 | if (physRegRecord->assignedInterval != nullptr) |
4810 | { |
4811 | assignedInterval = physRegRecord->assignedInterval; |
4812 | } |
4813 | if (assignedInterval->registerType == TYP_DOUBLE) |
4814 | { |
4815 | // Skip next float register, because we already addressed a double register |
4816 | assert(genIsValidDoubleReg(reg)); |
4817 | reg = REG_NEXT(reg); |
4818 | } |
4819 | #endif // _TARGET_ARM_ |
4820 | } |
4821 | } |
4822 | #ifdef _TARGET_ARM_ |
4823 | else |
4824 | { |
4825 | RegRecord* physRegRecord = getRegisterRecord(reg); |
4826 | Interval* assignedInterval = physRegRecord->assignedInterval; |
4827 | |
4828 | if (assignedInterval != nullptr && assignedInterval->registerType == TYP_DOUBLE) |
4829 | { |
4830 | // Skip next float register, because we already addressed a double register |
4831 | assert(genIsValidDoubleReg(reg)); |
4832 | reg = REG_NEXT(reg); |
4833 | } |
4834 | } |
4835 | #endif // _TARGET_ARM_ |
4836 | } |
4837 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_START_BB, nullptr, REG_NA, currentBlock)); |
4838 | } |
4839 | |
4840 | //------------------------------------------------------------------------ |
4841 | // processBlockEndLocations: Record the variables occupying registers after completing the current block. |
4842 | // |
4843 | // Arguments: |
4844 | // currentBlock - the block we have just completed. |
4845 | // |
4846 | // Return Value: |
4847 | // None |
4848 | // |
4849 | // Notes: |
4850 | // This must be called both during the allocation and resolution (write-back) phases. |
4851 | // This is because we need to have the outVarToRegMap locations in order to set the locations |
4852 | // at successor blocks during allocation time, but if lclVars are spilled after a block has been |
4853 | // completed, we need to record the REG_STK location for those variables at resolution time. |
4854 | |
4855 | void LinearScan::processBlockEndLocations(BasicBlock* currentBlock) |
4856 | { |
4857 | assert(currentBlock != nullptr && currentBlock->bbNum == curBBNum); |
4858 | VarToRegMap outVarToRegMap = getOutVarToRegMap(curBBNum); |
4859 | |
4860 | VarSetOps::AssignNoCopy(compiler, currentLiveVars, |
4861 | VarSetOps::Intersection(compiler, registerCandidateVars, currentBlock->bbLiveOut)); |
4862 | #ifdef DEBUG |
4863 | if (getLsraExtendLifeTimes()) |
4864 | { |
4865 | VarSetOps::Assign(compiler, currentLiveVars, registerCandidateVars); |
4866 | } |
4867 | #endif // DEBUG |
4868 | regMaskTP liveRegs = RBM_NONE; |
4869 | VarSetOps::Iter iter(compiler, currentLiveVars); |
4870 | unsigned varIndex = 0; |
4871 | while (iter.NextElem(&varIndex)) |
4872 | { |
4873 | Interval* interval = getIntervalForLocalVar(varIndex); |
4874 | if (interval->isActive) |
4875 | { |
4876 | assert(interval->physReg != REG_NA && interval->physReg != REG_STK); |
4877 | setVarReg(outVarToRegMap, varIndex, interval->physReg); |
4878 | } |
4879 | else |
4880 | { |
4881 | outVarToRegMap[varIndex] = REG_STK; |
4882 | } |
4883 | } |
4884 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_END_BB)); |
4885 | } |
4886 | |
4887 | #ifdef DEBUG |
4888 | void LinearScan::dumpRefPositions(const char* str) |
4889 | { |
4890 | printf("------------\n" ); |
4891 | printf("REFPOSITIONS %s: \n" , str); |
4892 | printf("------------\n" ); |
4893 | for (RefPosition& refPos : refPositions) |
4894 | { |
4895 | refPos.dump(); |
4896 | } |
4897 | } |
4898 | #endif // DEBUG |
4899 | |
4900 | bool LinearScan::registerIsFree(regNumber regNum, RegisterType regType) |
4901 | { |
4902 | RegRecord* physRegRecord = getRegisterRecord(regNum); |
4903 | |
4904 | bool isFree = physRegRecord->isFree(); |
4905 | |
4906 | #ifdef _TARGET_ARM_ |
4907 | if (isFree && regType == TYP_DOUBLE) |
4908 | { |
4909 | isFree = getSecondHalfRegRec(physRegRecord)->isFree(); |
4910 | } |
4911 | #endif // _TARGET_ARM_ |
4912 | |
4913 | return isFree; |
4914 | } |
4915 | |
4916 | //------------------------------------------------------------------------ |
4917 | // LinearScan::freeRegister: Make a register available for use |
4918 | // |
4919 | // Arguments: |
4920 | // physRegRecord - the RegRecord for the register to be freed. |
4921 | // |
4922 | // Return Value: |
4923 | // None. |
4924 | // |
4925 | // Assumptions: |
4926 | // None. |
4927 | // It may be that the RegRecord has already been freed, e.g. due to a kill, |
4928 | // in which case this method has no effect. |
4929 | // |
4930 | // Notes: |
4931 | // If there is currently an Interval assigned to this register, and it has |
4932 | // more references (i.e. this is a local last-use, but more uses and/or |
4933 | // defs remain), it will remain assigned to the physRegRecord. However, since |
4934 | // it is marked inactive, the register will be available, albeit less desirable |
4935 | // to allocate. |
4936 | void LinearScan::freeRegister(RegRecord* physRegRecord) |
4937 | { |
4938 | Interval* assignedInterval = physRegRecord->assignedInterval; |
4939 | // It may have already been freed by a "Kill" |
4940 | if (assignedInterval != nullptr) |
4941 | { |
4942 | assignedInterval->isActive = false; |
4943 | // If this is a constant node, that we may encounter again (e.g. constant), |
4944 | // don't unassign it until we need the register. |
4945 | if (!assignedInterval->isConstant) |
4946 | { |
4947 | RefPosition* nextRefPosition = assignedInterval->getNextRefPosition(); |
4948 | // Unassign the register only if there are no more RefPositions, or the next |
4949 | // one is a def. Note that the latter condition doesn't actually ensure that |
4950 | // there aren't subsequent uses that could be reached by a def in the assigned |
4951 | // register, but is merely a heuristic to avoid tying up the register (or using |
4952 | // it when it's non-optimal). A better alternative would be to use SSA, so that |
4953 | // we wouldn't unnecessarily link separate live ranges to the same register. |
4954 | if (nextRefPosition == nullptr || RefTypeIsDef(nextRefPosition->refType)) |
4955 | { |
4956 | #ifdef _TARGET_ARM_ |
4957 | assert((assignedInterval->registerType != TYP_DOUBLE) || genIsValidDoubleReg(physRegRecord->regNum)); |
4958 | #endif // _TARGET_ARM_ |
4959 | unassignPhysReg(physRegRecord, nullptr); |
4960 | } |
4961 | } |
4962 | } |
4963 | } |
4964 | |
4965 | void LinearScan::freeRegisters(regMaskTP regsToFree) |
4966 | { |
4967 | if (regsToFree == RBM_NONE) |
4968 | { |
4969 | return; |
4970 | } |
4971 | |
4972 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_FREE_REGS)); |
4973 | while (regsToFree != RBM_NONE) |
4974 | { |
4975 | regMaskTP nextRegBit = genFindLowestBit(regsToFree); |
4976 | regsToFree &= ~nextRegBit; |
4977 | regNumber nextReg = genRegNumFromMask(nextRegBit); |
4978 | freeRegister(getRegisterRecord(nextReg)); |
4979 | } |
4980 | } |
4981 | |
4982 | // Actual register allocation, accomplished by iterating over all of the previously |
4983 | // constructed Intervals |
4984 | // Loosely based on raAssignVars() |
4985 | // |
4986 | void LinearScan::allocateRegisters() |
4987 | { |
4988 | JITDUMP("*************** In LinearScan::allocateRegisters()\n" ); |
4989 | DBEXEC(VERBOSE, lsraDumpIntervals("before allocateRegisters" )); |
4990 | |
4991 | // at start, nothing is active except for register args |
4992 | for (Interval& interval : intervals) |
4993 | { |
4994 | Interval* currentInterval = &interval; |
4995 | currentInterval->recentRefPosition = nullptr; |
4996 | currentInterval->isActive = false; |
4997 | if (currentInterval->isLocalVar) |
4998 | { |
4999 | LclVarDsc* varDsc = currentInterval->getLocalVar(compiler); |
5000 | if (varDsc->lvIsRegArg && currentInterval->firstRefPosition != nullptr) |
5001 | { |
5002 | currentInterval->isActive = true; |
5003 | } |
5004 | } |
5005 | } |
5006 | |
5007 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
5008 | { |
5009 | getRegisterRecord(reg)->recentRefPosition = nullptr; |
5010 | getRegisterRecord(reg)->isActive = false; |
5011 | } |
5012 | |
5013 | #ifdef DEBUG |
5014 | regNumber lastAllocatedReg = REG_NA; |
5015 | if (VERBOSE) |
5016 | { |
5017 | dumpRefPositions("BEFORE ALLOCATION" ); |
5018 | dumpVarRefPositions("BEFORE ALLOCATION" ); |
5019 | |
5020 | printf("\n\nAllocating Registers\n" |
5021 | "--------------------\n" ); |
5022 | // Start with a small set of commonly used registers, so that we don't keep having to print a new title. |
5023 | registersToDump = LsraLimitSmallIntSet | LsraLimitSmallFPSet; |
5024 | dumpRegRecordHeader(); |
5025 | // Now print an empty "RefPosition", since we complete the dump of the regs at the beginning of the loop. |
5026 | printf(indentFormat, "" ); |
5027 | } |
5028 | #endif // DEBUG |
5029 | |
5030 | BasicBlock* currentBlock = nullptr; |
5031 | |
5032 | LsraLocation prevLocation = MinLocation; |
5033 | regMaskTP regsToFree = RBM_NONE; |
5034 | regMaskTP delayRegsToFree = RBM_NONE; |
5035 | |
5036 | // This is the most recent RefPosition for which a register was allocated |
5037 | // - currently only used for DEBUG but maintained in non-debug, for clarity of code |
5038 | // (and will be optimized away because in non-debug spillAlways() unconditionally returns false) |
5039 | RefPosition* lastAllocatedRefPosition = nullptr; |
5040 | |
5041 | bool handledBlockEnd = false; |
5042 | |
5043 | for (RefPosition& refPositionIterator : refPositions) |
5044 | { |
5045 | RefPosition* currentRefPosition = &refPositionIterator; |
5046 | |
5047 | #ifdef DEBUG |
5048 | // Set the activeRefPosition to null until we're done with any boundary handling. |
5049 | activeRefPosition = nullptr; |
5050 | if (VERBOSE) |
5051 | { |
5052 | // We're really dumping the RegRecords "after" the previous RefPosition, but it's more convenient |
5053 | // to do this here, since there are a number of "continue"s in this loop. |
5054 | dumpRegRecords(); |
5055 | } |
5056 | #endif // DEBUG |
5057 | |
5058 | // This is the previousRefPosition of the current Referent, if any |
5059 | RefPosition* previousRefPosition = nullptr; |
5060 | |
5061 | Interval* currentInterval = nullptr; |
5062 | Referenceable* currentReferent = nullptr; |
5063 | bool isInternalRef = false; |
5064 | RefType refType = currentRefPosition->refType; |
5065 | |
5066 | currentReferent = currentRefPosition->referent; |
5067 | |
5068 | if (spillAlways() && lastAllocatedRefPosition != nullptr && !lastAllocatedRefPosition->isPhysRegRef && |
5069 | !lastAllocatedRefPosition->getInterval()->isInternal && |
5070 | (RefTypeIsDef(lastAllocatedRefPosition->refType) || lastAllocatedRefPosition->getInterval()->isLocalVar)) |
5071 | { |
5072 | assert(lastAllocatedRefPosition->registerAssignment != RBM_NONE); |
5073 | RegRecord* regRecord = lastAllocatedRefPosition->getInterval()->assignedReg; |
5074 | unassignPhysReg(regRecord, lastAllocatedRefPosition); |
5075 | // Now set lastAllocatedRefPosition to null, so that we don't try to spill it again |
5076 | lastAllocatedRefPosition = nullptr; |
5077 | } |
5078 | |
5079 | // We wait to free any registers until we've completed all the |
5080 | // uses for the current node. |
5081 | // This avoids reusing registers too soon. |
5082 | // We free before the last true def (after all the uses & internal |
5083 | // registers), and then again at the beginning of the next node. |
5084 | // This is made easier by assigning two LsraLocations per node - one |
5085 | // for all the uses, internal registers & all but the last def, and |
5086 | // another for the final def (if any). |
5087 | |
5088 | LsraLocation currentLocation = currentRefPosition->nodeLocation; |
5089 | |
5090 | if ((regsToFree | delayRegsToFree) != RBM_NONE) |
5091 | { |
5092 | // Free at a new location, or at a basic block boundary |
5093 | if (refType == RefTypeBB) |
5094 | { |
5095 | assert(currentLocation > prevLocation); |
5096 | } |
5097 | if (currentLocation > prevLocation) |
5098 | { |
5099 | freeRegisters(regsToFree); |
5100 | if ((currentLocation > (prevLocation + 1)) && (delayRegsToFree != RBM_NONE)) |
5101 | { |
5102 | // We should never see a delayReg that is delayed until a Location that has no RefPosition |
5103 | // (that would be the RefPosition that it was supposed to interfere with). |
5104 | assert(!"Found a delayRegFree associated with Location with no reference" ); |
5105 | // However, to be cautious for the Release build case, we will free them. |
5106 | freeRegisters(delayRegsToFree); |
5107 | delayRegsToFree = RBM_NONE; |
5108 | } |
5109 | regsToFree = delayRegsToFree; |
5110 | delayRegsToFree = RBM_NONE; |
5111 | } |
5112 | } |
5113 | prevLocation = currentLocation; |
5114 | |
5115 | // get previous refposition, then current refpos is the new previous |
5116 | if (currentReferent != nullptr) |
5117 | { |
5118 | previousRefPosition = currentReferent->recentRefPosition; |
5119 | currentReferent->recentRefPosition = currentRefPosition; |
5120 | } |
5121 | else |
5122 | { |
5123 | assert((refType == RefTypeBB) || (refType == RefTypeKillGCRefs)); |
5124 | } |
5125 | |
5126 | #ifdef DEBUG |
5127 | activeRefPosition = currentRefPosition; |
5128 | #endif // DEBUG |
5129 | |
5130 | // For the purposes of register resolution, we handle the DummyDefs before |
5131 | // the block boundary - so the RefTypeBB is after all the DummyDefs. |
5132 | // However, for the purposes of allocation, we want to handle the block |
5133 | // boundary first, so that we can free any registers occupied by lclVars |
5134 | // that aren't live in the next block and make them available for the |
5135 | // DummyDefs. |
5136 | |
5137 | if (!handledBlockEnd && (refType == RefTypeBB || refType == RefTypeDummyDef)) |
5138 | { |
5139 | // Free any delayed regs (now in regsToFree) before processing the block boundary |
5140 | freeRegisters(regsToFree); |
5141 | regsToFree = RBM_NONE; |
5142 | handledBlockEnd = true; |
5143 | curBBStartLocation = currentRefPosition->nodeLocation; |
5144 | if (currentBlock == nullptr) |
5145 | { |
5146 | currentBlock = startBlockSequence(); |
5147 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_START_BB, nullptr, REG_NA, compiler->fgFirstBB)); |
5148 | } |
5149 | else |
5150 | { |
5151 | processBlockEndAllocation(currentBlock); |
5152 | currentBlock = moveToNextBlock(); |
5153 | } |
5154 | } |
5155 | |
5156 | if (refType == RefTypeBB) |
5157 | { |
5158 | handledBlockEnd = false; |
5159 | continue; |
5160 | } |
5161 | |
5162 | if (refType == RefTypeKillGCRefs) |
5163 | { |
5164 | spillGCRefs(currentRefPosition); |
5165 | continue; |
5166 | } |
5167 | |
5168 | // If this is a FixedReg, disassociate any inactive constant interval from this register. |
5169 | // Otherwise, do nothing. |
5170 | if (refType == RefTypeFixedReg) |
5171 | { |
5172 | RegRecord* regRecord = currentRefPosition->getReg(); |
5173 | Interval* assignedInterval = regRecord->assignedInterval; |
5174 | |
5175 | if (assignedInterval != nullptr && !assignedInterval->isActive && assignedInterval->isConstant) |
5176 | { |
5177 | regRecord->assignedInterval = nullptr; |
5178 | |
5179 | #ifdef _TARGET_ARM_ |
5180 | // Update overlapping floating point register for TYP_DOUBLE |
5181 | if (assignedInterval->registerType == TYP_DOUBLE) |
5182 | { |
5183 | regRecord = findAnotherHalfRegRec(regRecord); |
5184 | assert(regRecord->assignedInterval == assignedInterval); |
5185 | regRecord->assignedInterval = nullptr; |
5186 | } |
5187 | #endif |
5188 | } |
5189 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_FIXED_REG, nullptr, currentRefPosition->assignedReg())); |
5190 | continue; |
5191 | } |
5192 | |
5193 | // If this is an exposed use, do nothing - this is merely a placeholder to attempt to |
5194 | // ensure that a register is allocated for the full lifetime. The resolution logic |
5195 | // will take care of moving to the appropriate register if needed. |
5196 | |
5197 | if (refType == RefTypeExpUse) |
5198 | { |
5199 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_EXP_USE)); |
5200 | continue; |
5201 | } |
5202 | |
5203 | regNumber assignedRegister = REG_NA; |
5204 | |
5205 | if (currentRefPosition->isIntervalRef()) |
5206 | { |
5207 | currentInterval = currentRefPosition->getInterval(); |
5208 | assignedRegister = currentInterval->physReg; |
5209 | |
5210 | // Identify the special cases where we decide up-front not to allocate |
5211 | bool allocate = true; |
5212 | bool didDump = false; |
5213 | |
5214 | if (refType == RefTypeParamDef || refType == RefTypeZeroInit) |
5215 | { |
5216 | // For a ParamDef with a weighted refCount less than unity, don't enregister it at entry. |
5217 | // TODO-CQ: Consider doing this only for stack parameters, since otherwise we may be needlessly |
5218 | // inserting a store. |
5219 | LclVarDsc* varDsc = currentInterval->getLocalVar(compiler); |
5220 | assert(varDsc != nullptr); |
5221 | if (refType == RefTypeParamDef && varDsc->lvRefCntWtd() <= BB_UNITY_WEIGHT) |
5222 | { |
5223 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_NO_ENTRY_REG_ALLOCATED, currentInterval)); |
5224 | didDump = true; |
5225 | allocate = false; |
5226 | setIntervalAsSpilled(currentInterval); |
5227 | } |
5228 | // If it has no actual references, mark it as "lastUse"; since they're not actually part |
5229 | // of any flow they won't have been marked during dataflow. Otherwise, if we allocate a |
5230 | // register we won't unassign it. |
5231 | else if (currentRefPosition->nextRefPosition == nullptr) |
5232 | { |
5233 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_ZERO_REF, currentInterval)); |
5234 | currentRefPosition->lastUse = true; |
5235 | } |
5236 | } |
5237 | #ifdef FEATURE_SIMD |
5238 | else if (refType == RefTypeUpperVectorSaveDef || refType == RefTypeUpperVectorSaveUse) |
5239 | { |
5240 | Interval* lclVarInterval = currentInterval->relatedInterval; |
5241 | if (lclVarInterval->physReg == REG_NA) |
5242 | { |
5243 | allocate = false; |
5244 | } |
5245 | } |
5246 | #endif // FEATURE_SIMD |
5247 | |
5248 | if (allocate == false) |
5249 | { |
5250 | if (assignedRegister != REG_NA) |
5251 | { |
5252 | unassignPhysReg(getRegisterRecord(assignedRegister), currentRefPosition); |
5253 | } |
5254 | else if (!didDump) |
5255 | { |
5256 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_NO_REG_ALLOCATED, currentInterval)); |
5257 | didDump = true; |
5258 | } |
5259 | currentRefPosition->registerAssignment = RBM_NONE; |
5260 | continue; |
5261 | } |
5262 | |
5263 | if (currentInterval->isSpecialPutArg) |
5264 | { |
5265 | assert(!currentInterval->isLocalVar); |
5266 | Interval* srcInterval = currentInterval->relatedInterval; |
5267 | assert(srcInterval != nullptr && srcInterval->isLocalVar); |
5268 | if (refType == RefTypeDef) |
5269 | { |
5270 | assert(srcInterval->recentRefPosition->nodeLocation == currentLocation - 1); |
5271 | RegRecord* physRegRecord = srcInterval->assignedReg; |
5272 | |
5273 | // For a putarg_reg to be special, its next use location has to be the same |
5274 | // as fixed reg's next kill location. Otherwise, if source lcl var's next use |
5275 | // is after the kill of fixed reg but before putarg_reg's next use, fixed reg's |
5276 | // kill would lead to spill of source but not the putarg_reg if it were treated |
5277 | // as special. |
5278 | if (srcInterval->isActive && |
5279 | genRegMask(srcInterval->physReg) == currentRefPosition->registerAssignment && |
5280 | currentInterval->getNextRefLocation() == physRegRecord->getNextRefLocation()) |
5281 | { |
5282 | assert(physRegRecord->regNum == srcInterval->physReg); |
5283 | |
5284 | // Special putarg_reg acts as a pass-thru since both source lcl var |
5285 | // and putarg_reg have the same register allocated. Physical reg |
5286 | // record of reg continue to point to source lcl var's interval |
5287 | // instead of to putarg_reg's interval. So if a spill of reg |
5288 | // allocated to source lcl var happens, to reallocate to another |
5289 | // tree node, before its use at call node it will lead to spill of |
5290 | // lcl var instead of putarg_reg since physical reg record is pointing |
5291 | // to lcl var's interval. As a result, arg reg would get trashed leading |
5292 | // to bad codegen. The assumption here is that source lcl var of a |
5293 | // special putarg_reg doesn't get spilled and re-allocated prior to |
5294 | // its use at the call node. This is ensured by marking physical reg |
5295 | // record as busy until next kill. |
5296 | physRegRecord->isBusyUntilNextKill = true; |
5297 | } |
5298 | else |
5299 | { |
5300 | currentInterval->isSpecialPutArg = false; |
5301 | } |
5302 | } |
5303 | // If this is still a SpecialPutArg, continue; |
5304 | if (currentInterval->isSpecialPutArg) |
5305 | { |
5306 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_SPECIAL_PUTARG, currentInterval, |
5307 | currentRefPosition->assignedReg())); |
5308 | continue; |
5309 | } |
5310 | } |
5311 | |
5312 | if (assignedRegister == REG_NA && RefTypeIsUse(refType)) |
5313 | { |
5314 | currentRefPosition->reload = true; |
5315 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_RELOAD, currentInterval, assignedRegister)); |
5316 | } |
5317 | } |
5318 | |
5319 | regMaskTP assignedRegBit = RBM_NONE; |
5320 | bool isInRegister = false; |
5321 | if (assignedRegister != REG_NA) |
5322 | { |
5323 | isInRegister = true; |
5324 | assignedRegBit = genRegMask(assignedRegister); |
5325 | if (!currentInterval->isActive) |
5326 | { |
5327 | // If this is a use, it must have started the block on the stack, but the register |
5328 | // was available for use so we kept the association. |
5329 | if (RefTypeIsUse(refType)) |
5330 | { |
5331 | assert(enregisterLocalVars); |
5332 | assert(inVarToRegMaps[curBBNum][currentInterval->getVarIndex(compiler)] == REG_STK && |
5333 | previousRefPosition->nodeLocation <= curBBStartLocation); |
5334 | isInRegister = false; |
5335 | } |
5336 | else |
5337 | { |
5338 | currentInterval->isActive = true; |
5339 | } |
5340 | } |
5341 | assert(currentInterval->assignedReg != nullptr && |
5342 | currentInterval->assignedReg->regNum == assignedRegister && |
5343 | currentInterval->assignedReg->assignedInterval == currentInterval); |
5344 | } |
5345 | |
5346 | // If this is a physical register, we unconditionally assign it to itself! |
5347 | if (currentRefPosition->isPhysRegRef) |
5348 | { |
5349 | RegRecord* currentReg = currentRefPosition->getReg(); |
5350 | Interval* assignedInterval = currentReg->assignedInterval; |
5351 | |
5352 | if (assignedInterval != nullptr) |
5353 | { |
5354 | unassignPhysReg(currentReg, assignedInterval->recentRefPosition); |
5355 | } |
5356 | currentReg->isActive = true; |
5357 | assignedRegister = currentReg->regNum; |
5358 | assignedRegBit = genRegMask(assignedRegister); |
5359 | if (refType == RefTypeKill) |
5360 | { |
5361 | currentReg->isBusyUntilNextKill = false; |
5362 | } |
5363 | } |
5364 | else if (previousRefPosition != nullptr) |
5365 | { |
5366 | assert(previousRefPosition->nextRefPosition == currentRefPosition); |
5367 | assert(assignedRegister == REG_NA || assignedRegBit == previousRefPosition->registerAssignment || |
5368 | currentRefPosition->outOfOrder || previousRefPosition->copyReg || |
5369 | previousRefPosition->refType == RefTypeExpUse || currentRefPosition->refType == RefTypeDummyDef); |
5370 | } |
5371 | else if (assignedRegister != REG_NA) |
5372 | { |
5373 | // Handle the case where this is a preassigned register (i.e. parameter). |
5374 | // We don't want to actually use the preassigned register if it's not |
5375 | // going to cover the lifetime - but we had to preallocate it to ensure |
5376 | // that it remained live. |
5377 | // TODO-CQ: At some point we may want to refine the analysis here, in case |
5378 | // it might be beneficial to keep it in this reg for PART of the lifetime |
5379 | if (currentInterval->isLocalVar) |
5380 | { |
5381 | regMaskTP preferences = currentInterval->registerPreferences; |
5382 | bool keepAssignment = true; |
5383 | bool matchesPreferences = (preferences & genRegMask(assignedRegister)) != RBM_NONE; |
5384 | |
5385 | // Will the assigned register cover the lifetime? If not, does it at least |
5386 | // meet the preferences for the next RefPosition? |
5387 | RegRecord* physRegRecord = getRegisterRecord(currentInterval->physReg); |
5388 | RefPosition* nextPhysRegRefPos = physRegRecord->getNextRefPosition(); |
5389 | if (nextPhysRegRefPos != nullptr && |
5390 | nextPhysRegRefPos->nodeLocation <= currentInterval->lastRefPosition->nodeLocation) |
5391 | { |
5392 | // Check to see if the existing assignment matches the preferences (e.g. callee save registers) |
5393 | // and ensure that the next use of this localVar does not occur after the nextPhysRegRefPos |
5394 | // There must be a next RefPosition, because we know that the Interval extends beyond the |
5395 | // nextPhysRegRefPos. |
5396 | RefPosition* nextLclVarRefPos = currentRefPosition->nextRefPosition; |
5397 | assert(nextLclVarRefPos != nullptr); |
5398 | if (!matchesPreferences || nextPhysRegRefPos->nodeLocation < nextLclVarRefPos->nodeLocation || |
5399 | physRegRecord->conflictingFixedRegReference(nextLclVarRefPos)) |
5400 | { |
5401 | keepAssignment = false; |
5402 | } |
5403 | } |
5404 | else if (refType == RefTypeParamDef && !matchesPreferences) |
5405 | { |
5406 | // Don't use the register, even if available, if it doesn't match the preferences. |
5407 | // Note that this case is only for ParamDefs, for which we haven't yet taken preferences |
5408 | // into account (we've just automatically got the initial location). In other cases, |
5409 | // we would already have put it in a preferenced register, if it was available. |
5410 | // TODO-CQ: Consider expanding this to check availability - that would duplicate |
5411 | // code here, but otherwise we may wind up in this register anyway. |
5412 | keepAssignment = false; |
5413 | } |
5414 | |
5415 | if (keepAssignment == false) |
5416 | { |
5417 | currentRefPosition->registerAssignment = allRegs(currentInterval->registerType); |
5418 | unassignPhysRegNoSpill(physRegRecord); |
5419 | |
5420 | // If the preferences are currently set to just this register, reset them to allRegs |
5421 | // of the appropriate type (just as we just reset the registerAssignment for this |
5422 | // RefPosition. |
5423 | // Otherwise, simply remove this register from the preferences, if it's there. |
5424 | |
5425 | if (currentInterval->registerPreferences == assignedRegBit) |
5426 | { |
5427 | currentInterval->registerPreferences = currentRefPosition->registerAssignment; |
5428 | } |
5429 | else |
5430 | { |
5431 | currentInterval->registerPreferences &= ~assignedRegBit; |
5432 | } |
5433 | |
5434 | assignedRegister = REG_NA; |
5435 | assignedRegBit = RBM_NONE; |
5436 | } |
5437 | } |
5438 | } |
5439 | |
5440 | if (assignedRegister != REG_NA) |
5441 | { |
5442 | // If there is a conflicting fixed reference, insert a copy. |
5443 | RegRecord* physRegRecord = getRegisterRecord(assignedRegister); |
5444 | if (physRegRecord->conflictingFixedRegReference(currentRefPosition)) |
5445 | { |
5446 | // We may have already reassigned the register to the conflicting reference. |
5447 | // If not, we need to unassign this interval. |
5448 | if (physRegRecord->assignedInterval == currentInterval) |
5449 | { |
5450 | unassignPhysRegNoSpill(physRegRecord); |
5451 | } |
5452 | currentRefPosition->moveReg = true; |
5453 | assignedRegister = REG_NA; |
5454 | setIntervalAsSplit(currentInterval); |
5455 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_MOVE_REG, currentInterval, assignedRegister)); |
5456 | } |
5457 | else if ((genRegMask(assignedRegister) & currentRefPosition->registerAssignment) != 0) |
5458 | { |
5459 | currentRefPosition->registerAssignment = assignedRegBit; |
5460 | if (!currentReferent->isActive) |
5461 | { |
5462 | // If we've got an exposed use at the top of a block, the |
5463 | // interval might not have been active. Otherwise if it's a use, |
5464 | // the interval must be active. |
5465 | if (refType == RefTypeDummyDef) |
5466 | { |
5467 | currentReferent->isActive = true; |
5468 | assert(getRegisterRecord(assignedRegister)->assignedInterval == currentInterval); |
5469 | } |
5470 | else |
5471 | { |
5472 | currentRefPosition->reload = true; |
5473 | } |
5474 | } |
5475 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_KEPT_ALLOCATION, currentInterval, assignedRegister)); |
5476 | } |
5477 | else |
5478 | { |
5479 | assert(currentInterval != nullptr); |
5480 | |
5481 | // It's already in a register, but not one we need. |
5482 | if (!RefTypeIsDef(currentRefPosition->refType)) |
5483 | { |
5484 | regNumber copyReg = assignCopyReg(currentRefPosition); |
5485 | assert(copyReg != REG_NA); |
5486 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_COPY_REG, currentInterval, copyReg)); |
5487 | lastAllocatedRefPosition = currentRefPosition; |
5488 | if (currentRefPosition->lastUse) |
5489 | { |
5490 | if (currentRefPosition->delayRegFree) |
5491 | { |
5492 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_LAST_USE_DELAYED, currentInterval, |
5493 | assignedRegister)); |
5494 | delayRegsToFree |= (genRegMask(assignedRegister) | currentRefPosition->registerAssignment); |
5495 | } |
5496 | else |
5497 | { |
5498 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_LAST_USE, currentInterval, assignedRegister)); |
5499 | regsToFree |= (genRegMask(assignedRegister) | currentRefPosition->registerAssignment); |
5500 | } |
5501 | } |
5502 | // If this is a tree temp (non-localVar) interval, we will need an explicit move. |
5503 | if (!currentInterval->isLocalVar) |
5504 | { |
5505 | currentRefPosition->moveReg = true; |
5506 | currentRefPosition->copyReg = false; |
5507 | } |
5508 | continue; |
5509 | } |
5510 | else |
5511 | { |
5512 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_NEEDS_NEW_REG, nullptr, assignedRegister)); |
5513 | regsToFree |= genRegMask(assignedRegister); |
5514 | // We want a new register, but we don't want this to be considered a spill. |
5515 | assignedRegister = REG_NA; |
5516 | if (physRegRecord->assignedInterval == currentInterval) |
5517 | { |
5518 | unassignPhysRegNoSpill(physRegRecord); |
5519 | } |
5520 | } |
5521 | } |
5522 | } |
5523 | |
5524 | if (assignedRegister == REG_NA) |
5525 | { |
5526 | bool allocateReg = true; |
5527 | |
5528 | if (currentRefPosition->AllocateIfProfitable()) |
5529 | { |
5530 | // We can avoid allocating a register if it is a the last use requiring a reload. |
5531 | if (currentRefPosition->lastUse && currentRefPosition->reload) |
5532 | { |
5533 | allocateReg = false; |
5534 | } |
5535 | |
5536 | #ifdef DEBUG |
5537 | // Under stress mode, don't attempt to allocate a reg to |
5538 | // reg optional ref position. |
5539 | if (allocateReg && regOptionalNoAlloc()) |
5540 | { |
5541 | allocateReg = false; |
5542 | } |
5543 | #endif |
5544 | } |
5545 | |
5546 | if (allocateReg) |
5547 | { |
5548 | // Try to allocate a register |
5549 | assignedRegister = tryAllocateFreeReg(currentInterval, currentRefPosition); |
5550 | } |
5551 | |
5552 | // If no register was found, and if the currentRefPosition must have a register, |
5553 | // then find a register to spill |
5554 | if (assignedRegister == REG_NA) |
5555 | { |
5556 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
5557 | if (refType == RefTypeUpperVectorSaveDef) |
5558 | { |
5559 | // TODO-CQ: Determine whether copying to two integer callee-save registers would be profitable. |
5560 | // TODO CQ: Save the value directly to memory, #18144. |
5561 | // TODO-ARM64-CQ: Determine whether copying to one integer callee-save registers would be |
5562 | // profitable. |
5563 | |
5564 | // SaveDef position occurs after the Use of args and at the same location as Kill/Def |
5565 | // positions of a call node. But SaveDef position cannot use any of the arg regs as |
5566 | // they are needed for call node. |
5567 | currentRefPosition->registerAssignment = |
5568 | (allRegs(TYP_FLOAT) & RBM_FLT_CALLEE_TRASH & ~RBM_FLTARG_REGS); |
5569 | assignedRegister = tryAllocateFreeReg(currentInterval, currentRefPosition); |
5570 | |
5571 | // There MUST be caller-save registers available, because they have all just been killed. |
5572 | // Amd64 Windows: xmm4-xmm5 are guaranteed to be available as xmm0-xmm3 are used for passing args. |
5573 | // Amd64 Unix: xmm8-xmm15 are guaranteed to be available as xmm0-xmm7 are used for passing args. |
5574 | // X86 RyuJIT Windows: xmm4-xmm7 are guanrateed to be available. |
5575 | assert(assignedRegister != REG_NA); |
5576 | |
5577 | // Now, spill it. |
5578 | // Note: |
5579 | // i) The reason we have to spill is that SaveDef position is allocated after the Kill positions |
5580 | // of the call node are processed. Since callee-trash registers are killed by call node |
5581 | // we explicitly spill and unassign the register. |
5582 | // ii) These will look a bit backward in the dump, but it's a pain to dump the alloc before the |
5583 | // spill). |
5584 | unassignPhysReg(getRegisterRecord(assignedRegister), currentRefPosition); |
5585 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_ALLOC_REG, currentInterval, assignedRegister)); |
5586 | |
5587 | // Now set assignedRegister to REG_NA again so that we don't re-activate it. |
5588 | assignedRegister = REG_NA; |
5589 | } |
5590 | else |
5591 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
5592 | if (currentRefPosition->RequiresRegister() || currentRefPosition->AllocateIfProfitable()) |
5593 | { |
5594 | if (allocateReg) |
5595 | { |
5596 | assignedRegister = allocateBusyReg(currentInterval, currentRefPosition, |
5597 | currentRefPosition->AllocateIfProfitable()); |
5598 | } |
5599 | |
5600 | if (assignedRegister != REG_NA) |
5601 | { |
5602 | INDEBUG( |
5603 | dumpLsraAllocationEvent(LSRA_EVENT_ALLOC_SPILLED_REG, currentInterval, assignedRegister)); |
5604 | } |
5605 | else |
5606 | { |
5607 | // This can happen only for those ref positions that are to be allocated |
5608 | // only if profitable. |
5609 | noway_assert(currentRefPosition->AllocateIfProfitable()); |
5610 | |
5611 | currentRefPosition->registerAssignment = RBM_NONE; |
5612 | currentRefPosition->reload = false; |
5613 | setIntervalAsSpilled(currentInterval); |
5614 | |
5615 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_NO_REG_ALLOCATED, currentInterval)); |
5616 | } |
5617 | } |
5618 | else |
5619 | { |
5620 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_NO_REG_ALLOCATED, currentInterval)); |
5621 | currentRefPosition->registerAssignment = RBM_NONE; |
5622 | currentInterval->isActive = false; |
5623 | setIntervalAsSpilled(currentInterval); |
5624 | } |
5625 | } |
5626 | #ifdef DEBUG |
5627 | else |
5628 | { |
5629 | if (VERBOSE) |
5630 | { |
5631 | if (currentInterval->isConstant && (currentRefPosition->treeNode != nullptr) && |
5632 | currentRefPosition->treeNode->IsReuseRegVal()) |
5633 | { |
5634 | dumpLsraAllocationEvent(LSRA_EVENT_REUSE_REG, currentInterval, assignedRegister, currentBlock); |
5635 | } |
5636 | else |
5637 | { |
5638 | dumpLsraAllocationEvent(LSRA_EVENT_ALLOC_REG, currentInterval, assignedRegister, currentBlock); |
5639 | } |
5640 | } |
5641 | } |
5642 | #endif // DEBUG |
5643 | |
5644 | if (refType == RefTypeDummyDef && assignedRegister != REG_NA) |
5645 | { |
5646 | setInVarRegForBB(curBBNum, currentInterval->varNum, assignedRegister); |
5647 | } |
5648 | |
5649 | // If we allocated a register, and this is a use of a spilled value, |
5650 | // it should have been marked for reload above. |
5651 | if (assignedRegister != REG_NA && RefTypeIsUse(refType) && !isInRegister) |
5652 | { |
5653 | assert(currentRefPosition->reload); |
5654 | } |
5655 | } |
5656 | |
5657 | // If we allocated a register, record it |
5658 | if (currentInterval != nullptr && assignedRegister != REG_NA) |
5659 | { |
5660 | assignedRegBit = genRegMask(assignedRegister); |
5661 | currentRefPosition->registerAssignment = assignedRegBit; |
5662 | currentInterval->physReg = assignedRegister; |
5663 | regsToFree &= ~assignedRegBit; // we'll set it again later if it's dead |
5664 | |
5665 | // If this interval is dead, free the register. |
5666 | // The interval could be dead if this is a user variable, or if the |
5667 | // node is being evaluated for side effects, or a call whose result |
5668 | // is not used, etc. |
5669 | if (currentRefPosition->lastUse || currentRefPosition->nextRefPosition == nullptr) |
5670 | { |
5671 | assert(currentRefPosition->isIntervalRef()); |
5672 | |
5673 | if (refType != RefTypeExpUse && currentRefPosition->nextRefPosition == nullptr) |
5674 | { |
5675 | if (currentRefPosition->delayRegFree) |
5676 | { |
5677 | delayRegsToFree |= assignedRegBit; |
5678 | |
5679 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_LAST_USE_DELAYED)); |
5680 | } |
5681 | else |
5682 | { |
5683 | regsToFree |= assignedRegBit; |
5684 | |
5685 | INDEBUG(dumpLsraAllocationEvent(LSRA_EVENT_LAST_USE)); |
5686 | } |
5687 | } |
5688 | else |
5689 | { |
5690 | currentInterval->isActive = false; |
5691 | } |
5692 | } |
5693 | |
5694 | lastAllocatedRefPosition = currentRefPosition; |
5695 | } |
5696 | } |
5697 | |
5698 | // Free registers to clear associated intervals for resolution phase |
5699 | CLANG_FORMAT_COMMENT_ANCHOR; |
5700 | |
5701 | #ifdef DEBUG |
5702 | if (getLsraExtendLifeTimes()) |
5703 | { |
5704 | // If we have extended lifetimes, we need to make sure all the registers are freed. |
5705 | for (int regNumIndex = 0; regNumIndex <= REG_FP_LAST; regNumIndex++) |
5706 | { |
5707 | RegRecord& regRecord = physRegs[regNumIndex]; |
5708 | Interval* interval = regRecord.assignedInterval; |
5709 | if (interval != nullptr) |
5710 | { |
5711 | interval->isActive = false; |
5712 | unassignPhysReg(®Record, nullptr); |
5713 | } |
5714 | } |
5715 | } |
5716 | else |
5717 | #endif // DEBUG |
5718 | { |
5719 | freeRegisters(regsToFree | delayRegsToFree); |
5720 | } |
5721 | |
5722 | #ifdef DEBUG |
5723 | if (VERBOSE) |
5724 | { |
5725 | // Dump the RegRecords after the last RefPosition is handled. |
5726 | dumpRegRecords(); |
5727 | printf("\n" ); |
5728 | |
5729 | dumpRefPositions("AFTER ALLOCATION" ); |
5730 | dumpVarRefPositions("AFTER ALLOCATION" ); |
5731 | |
5732 | // Dump the intervals that remain active |
5733 | printf("Active intervals at end of allocation:\n" ); |
5734 | |
5735 | // We COULD just reuse the intervalIter from above, but ArrayListIterator doesn't |
5736 | // provide a Reset function (!) - we'll probably replace this so don't bother |
5737 | // adding it |
5738 | |
5739 | for (Interval& interval : intervals) |
5740 | { |
5741 | if (interval.isActive) |
5742 | { |
5743 | printf("Active " ); |
5744 | interval.dump(); |
5745 | } |
5746 | } |
5747 | |
5748 | printf("\n" ); |
5749 | } |
5750 | #endif // DEBUG |
5751 | } |
5752 | |
5753 | //----------------------------------------------------------------------------- |
5754 | // updateAssignedInterval: Update assigned interval of register. |
5755 | // |
5756 | // Arguments: |
5757 | // reg - register to be updated |
5758 | // interval - interval to be assigned |
5759 | // regType - register type |
5760 | // |
5761 | // Return Value: |
5762 | // None |
5763 | // |
5764 | // Assumptions: |
5765 | // For ARM32, when "regType" is TYP_DOUBLE, "reg" should be a even-numbered |
5766 | // float register, i.e. lower half of double register. |
5767 | // |
5768 | // Note: |
5769 | // For ARM32, two float registers consisting a double register are updated |
5770 | // together when "regType" is TYP_DOUBLE. |
5771 | // |
5772 | void LinearScan::updateAssignedInterval(RegRecord* reg, Interval* interval, RegisterType regType) |
5773 | { |
5774 | #ifdef _TARGET_ARM_ |
5775 | // Update overlapping floating point register for TYP_DOUBLE. |
5776 | Interval* oldAssignedInterval = reg->assignedInterval; |
5777 | if (regType == TYP_DOUBLE) |
5778 | { |
5779 | RegRecord* anotherHalfReg = findAnotherHalfRegRec(reg); |
5780 | |
5781 | anotherHalfReg->assignedInterval = interval; |
5782 | } |
5783 | else if ((oldAssignedInterval != nullptr) && (oldAssignedInterval->registerType == TYP_DOUBLE)) |
5784 | { |
5785 | RegRecord* anotherHalfReg = findAnotherHalfRegRec(reg); |
5786 | |
5787 | anotherHalfReg->assignedInterval = nullptr; |
5788 | } |
5789 | #endif |
5790 | reg->assignedInterval = interval; |
5791 | } |
5792 | |
5793 | //----------------------------------------------------------------------------- |
5794 | // updatePreviousInterval: Update previous interval of register. |
5795 | // |
5796 | // Arguments: |
5797 | // reg - register to be updated |
5798 | // interval - interval to be assigned |
5799 | // regType - register type |
5800 | // |
5801 | // Return Value: |
5802 | // None |
5803 | // |
5804 | // Assumptions: |
5805 | // For ARM32, when "regType" is TYP_DOUBLE, "reg" should be a even-numbered |
5806 | // float register, i.e. lower half of double register. |
5807 | // |
5808 | // Note: |
5809 | // For ARM32, two float registers consisting a double register are updated |
5810 | // together when "regType" is TYP_DOUBLE. |
5811 | // |
5812 | void LinearScan::updatePreviousInterval(RegRecord* reg, Interval* interval, RegisterType regType) |
5813 | { |
5814 | reg->previousInterval = interval; |
5815 | |
5816 | #ifdef _TARGET_ARM_ |
5817 | // Update overlapping floating point register for TYP_DOUBLE |
5818 | if (regType == TYP_DOUBLE) |
5819 | { |
5820 | RegRecord* anotherHalfReg = findAnotherHalfRegRec(reg); |
5821 | |
5822 | anotherHalfReg->previousInterval = interval; |
5823 | } |
5824 | #endif |
5825 | } |
5826 | |
5827 | // LinearScan::resolveLocalRef |
5828 | // Description: |
5829 | // Update the graph for a local reference. |
5830 | // Also, track the register (if any) that is currently occupied. |
5831 | // Arguments: |
5832 | // treeNode: The lclVar that's being resolved |
5833 | // currentRefPosition: the RefPosition associated with the treeNode |
5834 | // |
5835 | // Details: |
5836 | // This method is called for each local reference, during the resolveRegisters |
5837 | // phase of LSRA. It is responsible for keeping the following in sync: |
5838 | // - varDsc->lvRegNum (and lvOtherReg) contain the unique register location. |
5839 | // If it is not in the same register through its lifetime, it is set to REG_STK. |
5840 | // - interval->physReg is set to the assigned register |
5841 | // (i.e. at the code location which is currently being handled by resolveRegisters()) |
5842 | // - interval->isActive is true iff the interval is live and occupying a register |
5843 | // - interval->isSpilled should have already been set to true if the interval is EVER spilled |
5844 | // - interval->isSplit is set to true if the interval does not occupy the same |
5845 | // register throughout the method |
5846 | // - RegRecord->assignedInterval points to the interval which currently occupies |
5847 | // the register |
5848 | // - For each lclVar node: |
5849 | // - gtRegNum/gtRegPair is set to the currently allocated register(s). |
5850 | // - GTF_SPILLED is set on a use if it must be reloaded prior to use. |
5851 | // - GTF_SPILL is set if it must be spilled after use. |
5852 | // |
5853 | // A copyReg is an ugly case where the variable must be in a specific (fixed) register, |
5854 | // but it currently resides elsewhere. The register allocator must track the use of the |
5855 | // fixed register, but it marks the lclVar node with the register it currently lives in |
5856 | // and the code generator does the necessary move. |
5857 | // |
5858 | // Before beginning, the varDsc for each parameter must be set to its initial location. |
5859 | // |
5860 | // NICE: Consider tracking whether an Interval is always in the same location (register/stack) |
5861 | // in which case it will require no resolution. |
5862 | // |
5863 | void LinearScan::resolveLocalRef(BasicBlock* block, GenTree* treeNode, RefPosition* currentRefPosition) |
5864 | { |
5865 | assert((block == nullptr) == (treeNode == nullptr)); |
5866 | assert(enregisterLocalVars); |
5867 | |
5868 | // Is this a tracked local? Or just a register allocated for loading |
5869 | // a non-tracked one? |
5870 | Interval* interval = currentRefPosition->getInterval(); |
5871 | if (!interval->isLocalVar) |
5872 | { |
5873 | return; |
5874 | } |
5875 | interval->recentRefPosition = currentRefPosition; |
5876 | LclVarDsc* varDsc = interval->getLocalVar(compiler); |
5877 | |
5878 | // NOTE: we set the GTF_VAR_DEATH flag here unless we are extending lifetimes, in which case we write |
5879 | // this bit in checkLastUses. This is a bit of a hack, but is necessary because codegen requires |
5880 | // accurate last use info that is not reflected in the lastUse bit on ref positions when we are extending |
5881 | // lifetimes. See also the comments in checkLastUses. |
5882 | if ((treeNode != nullptr) && !extendLifetimes()) |
5883 | { |
5884 | if (currentRefPosition->lastUse) |
5885 | { |
5886 | treeNode->gtFlags |= GTF_VAR_DEATH; |
5887 | } |
5888 | else |
5889 | { |
5890 | treeNode->gtFlags &= ~GTF_VAR_DEATH; |
5891 | } |
5892 | } |
5893 | |
5894 | if (currentRefPosition->registerAssignment == RBM_NONE) |
5895 | { |
5896 | assert(!currentRefPosition->RequiresRegister()); |
5897 | assert(interval->isSpilled); |
5898 | |
5899 | varDsc->lvRegNum = REG_STK; |
5900 | if (interval->assignedReg != nullptr && interval->assignedReg->assignedInterval == interval) |
5901 | { |
5902 | updateAssignedInterval(interval->assignedReg, nullptr, interval->registerType); |
5903 | } |
5904 | interval->assignedReg = nullptr; |
5905 | interval->physReg = REG_NA; |
5906 | if (treeNode != nullptr) |
5907 | { |
5908 | treeNode->SetContained(); |
5909 | } |
5910 | |
5911 | return; |
5912 | } |
5913 | |
5914 | // In most cases, assigned and home registers will be the same |
5915 | // The exception is the copyReg case, where we've assigned a register |
5916 | // for a specific purpose, but will be keeping the register assignment |
5917 | regNumber assignedReg = currentRefPosition->assignedReg(); |
5918 | regNumber homeReg = assignedReg; |
5919 | |
5920 | // Undo any previous association with a physical register, UNLESS this |
5921 | // is a copyReg |
5922 | if (!currentRefPosition->copyReg) |
5923 | { |
5924 | regNumber oldAssignedReg = interval->physReg; |
5925 | if (oldAssignedReg != REG_NA && assignedReg != oldAssignedReg) |
5926 | { |
5927 | RegRecord* oldRegRecord = getRegisterRecord(oldAssignedReg); |
5928 | if (oldRegRecord->assignedInterval == interval) |
5929 | { |
5930 | updateAssignedInterval(oldRegRecord, nullptr, interval->registerType); |
5931 | } |
5932 | } |
5933 | } |
5934 | |
5935 | if (currentRefPosition->refType == RefTypeUse && !currentRefPosition->reload) |
5936 | { |
5937 | // Was this spilled after our predecessor was scheduled? |
5938 | if (interval->physReg == REG_NA) |
5939 | { |
5940 | assert(inVarToRegMaps[curBBNum][varDsc->lvVarIndex] == REG_STK); |
5941 | currentRefPosition->reload = true; |
5942 | } |
5943 | } |
5944 | |
5945 | bool reload = currentRefPosition->reload; |
5946 | bool spillAfter = currentRefPosition->spillAfter; |
5947 | |
5948 | // In the reload case we either: |
5949 | // - Set the register to REG_STK if it will be referenced only from the home location, or |
5950 | // - Set the register to the assigned register and set GTF_SPILLED if it must be loaded into a register. |
5951 | if (reload) |
5952 | { |
5953 | assert(currentRefPosition->refType != RefTypeDef); |
5954 | assert(interval->isSpilled); |
5955 | varDsc->lvRegNum = REG_STK; |
5956 | if (!spillAfter) |
5957 | { |
5958 | interval->physReg = assignedReg; |
5959 | } |
5960 | |
5961 | // If there is no treeNode, this must be a RefTypeExpUse, in |
5962 | // which case we did the reload already |
5963 | if (treeNode != nullptr) |
5964 | { |
5965 | treeNode->gtFlags |= GTF_SPILLED; |
5966 | if (spillAfter) |
5967 | { |
5968 | if (currentRefPosition->AllocateIfProfitable()) |
5969 | { |
5970 | // This is a use of lclVar that is flagged as reg-optional |
5971 | // by lower/codegen and marked for both reload and spillAfter. |
5972 | // In this case we can avoid unnecessary reload and spill |
5973 | // by setting reg on lclVar to REG_STK and reg on tree node |
5974 | // to REG_NA. Codegen will generate the code by considering |
5975 | // it as a contained memory operand. |
5976 | // |
5977 | // Note that varDsc->lvRegNum is already to REG_STK above. |
5978 | interval->physReg = REG_NA; |
5979 | treeNode->gtRegNum = REG_NA; |
5980 | treeNode->gtFlags &= ~GTF_SPILLED; |
5981 | treeNode->SetContained(); |
5982 | } |
5983 | else |
5984 | { |
5985 | treeNode->gtFlags |= GTF_SPILL; |
5986 | } |
5987 | } |
5988 | } |
5989 | else |
5990 | { |
5991 | assert(currentRefPosition->refType == RefTypeExpUse); |
5992 | } |
5993 | } |
5994 | else if (spillAfter && !RefTypeIsUse(currentRefPosition->refType)) |
5995 | { |
5996 | // In the case of a pure def, don't bother spilling - just assign it to the |
5997 | // stack. However, we need to remember that it was spilled. |
5998 | |
5999 | assert(interval->isSpilled); |
6000 | varDsc->lvRegNum = REG_STK; |
6001 | interval->physReg = REG_NA; |
6002 | if (treeNode != nullptr) |
6003 | { |
6004 | treeNode->gtRegNum = REG_NA; |
6005 | } |
6006 | } |
6007 | else |
6008 | { |
6009 | // Not reload and Not pure-def that's spillAfter |
6010 | |
6011 | if (currentRefPosition->copyReg || currentRefPosition->moveReg) |
6012 | { |
6013 | // For a copyReg or moveReg, we have two cases: |
6014 | // - In the first case, we have a fixedReg - i.e. a register which the code |
6015 | // generator is constrained to use. |
6016 | // The code generator will generate the appropriate move to meet the requirement. |
6017 | // - In the second case, we were forced to use a different register because of |
6018 | // interference (or JitStressRegs). |
6019 | // In this case, we generate a GT_COPY. |
6020 | // In either case, we annotate the treeNode with the register in which the value |
6021 | // currently lives. For moveReg, the homeReg is the new register (as assigned above). |
6022 | // But for copyReg, the homeReg remains unchanged. |
6023 | |
6024 | assert(treeNode != nullptr); |
6025 | treeNode->gtRegNum = interval->physReg; |
6026 | |
6027 | if (currentRefPosition->copyReg) |
6028 | { |
6029 | homeReg = interval->physReg; |
6030 | } |
6031 | else |
6032 | { |
6033 | assert(interval->isSplit); |
6034 | interval->physReg = assignedReg; |
6035 | } |
6036 | |
6037 | if (!currentRefPosition->isFixedRegRef || currentRefPosition->moveReg) |
6038 | { |
6039 | // This is the second case, where we need to generate a copy |
6040 | insertCopyOrReload(block, treeNode, currentRefPosition->getMultiRegIdx(), currentRefPosition); |
6041 | } |
6042 | } |
6043 | else |
6044 | { |
6045 | interval->physReg = assignedReg; |
6046 | |
6047 | if (!interval->isSpilled && !interval->isSplit) |
6048 | { |
6049 | if (varDsc->lvRegNum != REG_STK) |
6050 | { |
6051 | // If the register assignments don't match, then this interval is split. |
6052 | if (varDsc->lvRegNum != assignedReg) |
6053 | { |
6054 | setIntervalAsSplit(interval); |
6055 | varDsc->lvRegNum = REG_STK; |
6056 | } |
6057 | } |
6058 | else |
6059 | { |
6060 | varDsc->lvRegNum = assignedReg; |
6061 | } |
6062 | } |
6063 | } |
6064 | if (spillAfter) |
6065 | { |
6066 | if (treeNode != nullptr) |
6067 | { |
6068 | treeNode->gtFlags |= GTF_SPILL; |
6069 | } |
6070 | assert(interval->isSpilled); |
6071 | interval->physReg = REG_NA; |
6072 | varDsc->lvRegNum = REG_STK; |
6073 | } |
6074 | } |
6075 | |
6076 | // Update the physRegRecord for the register, so that we know what vars are in |
6077 | // regs at the block boundaries |
6078 | RegRecord* physRegRecord = getRegisterRecord(homeReg); |
6079 | if (spillAfter || currentRefPosition->lastUse) |
6080 | { |
6081 | interval->isActive = false; |
6082 | interval->assignedReg = nullptr; |
6083 | interval->physReg = REG_NA; |
6084 | |
6085 | updateAssignedInterval(physRegRecord, nullptr, interval->registerType); |
6086 | } |
6087 | else |
6088 | { |
6089 | interval->isActive = true; |
6090 | interval->assignedReg = physRegRecord; |
6091 | |
6092 | updateAssignedInterval(physRegRecord, interval, interval->registerType); |
6093 | } |
6094 | } |
6095 | |
6096 | void LinearScan::writeRegisters(RefPosition* currentRefPosition, GenTree* tree) |
6097 | { |
6098 | lsraAssignRegToTree(tree, currentRefPosition->assignedReg(), currentRefPosition->getMultiRegIdx()); |
6099 | } |
6100 | |
6101 | //------------------------------------------------------------------------ |
6102 | // insertCopyOrReload: Insert a copy in the case where a tree node value must be moved |
6103 | // to a different register at the point of use (GT_COPY), or it is reloaded to a different register |
6104 | // than the one it was spilled from (GT_RELOAD). |
6105 | // |
6106 | // Arguments: |
6107 | // block - basic block in which GT_COPY/GT_RELOAD is inserted. |
6108 | // tree - This is the node to copy or reload. |
6109 | // Insert copy or reload node between this node and its parent. |
6110 | // multiRegIdx - register position of tree node for which copy or reload is needed. |
6111 | // refPosition - The RefPosition at which copy or reload will take place. |
6112 | // |
6113 | // Notes: |
6114 | // The GT_COPY or GT_RELOAD will be inserted in the proper spot in execution order where the reload is to occur. |
6115 | // |
6116 | // For example, for this tree (numbers are execution order, lower is earlier and higher is later): |
6117 | // |
6118 | // +---------+----------+ |
6119 | // | GT_ADD (3) | |
6120 | // +---------+----------+ |
6121 | // | |
6122 | // / \ |
6123 | // / \ |
6124 | // / \ |
6125 | // +-------------------+ +----------------------+ |
6126 | // | x (1) | "tree" | y (2) | |
6127 | // +-------------------+ +----------------------+ |
6128 | // |
6129 | // generate this tree: |
6130 | // |
6131 | // +---------+----------+ |
6132 | // | GT_ADD (4) | |
6133 | // +---------+----------+ |
6134 | // | |
6135 | // / \ |
6136 | // / \ |
6137 | // / \ |
6138 | // +-------------------+ +----------------------+ |
6139 | // | GT_RELOAD (3) | | y (2) | |
6140 | // +-------------------+ +----------------------+ |
6141 | // | |
6142 | // +-------------------+ |
6143 | // | x (1) | "tree" |
6144 | // +-------------------+ |
6145 | // |
6146 | // Note in particular that the GT_RELOAD node gets inserted in execution order immediately before the parent of "tree", |
6147 | // which seems a bit weird since normally a node's parent (in this case, the parent of "x", GT_RELOAD in the "after" |
6148 | // picture) immediately follows all of its children (that is, normally the execution ordering is postorder). |
6149 | // The ordering must be this weird "out of normal order" way because the "x" node is being spilled, probably |
6150 | // because the expression in the tree represented above by "y" has high register requirements. We don't want |
6151 | // to reload immediately, of course. So we put GT_RELOAD where the reload should actually happen. |
6152 | // |
6153 | // Note that GT_RELOAD is required when we reload to a different register than the one we spilled to. It can also be |
6154 | // used if we reload to the same register. Normally, though, in that case we just mark the node with GTF_SPILLED, |
6155 | // and the unspilling code automatically reuses the same register, and does the reload when it notices that flag |
6156 | // when considering a node's operands. |
6157 | // |
6158 | void LinearScan::insertCopyOrReload(BasicBlock* block, GenTree* tree, unsigned multiRegIdx, RefPosition* refPosition) |
6159 | { |
6160 | LIR::Range& blockRange = LIR::AsRange(block); |
6161 | |
6162 | LIR::Use treeUse; |
6163 | bool foundUse = blockRange.TryGetUse(tree, &treeUse); |
6164 | assert(foundUse); |
6165 | |
6166 | GenTree* parent = treeUse.User(); |
6167 | |
6168 | genTreeOps oper; |
6169 | if (refPosition->reload) |
6170 | { |
6171 | oper = GT_RELOAD; |
6172 | } |
6173 | else |
6174 | { |
6175 | oper = GT_COPY; |
6176 | |
6177 | #if TRACK_LSRA_STATS |
6178 | updateLsraStat(LSRA_STAT_COPY_REG, block->bbNum); |
6179 | #endif |
6180 | } |
6181 | |
6182 | // If the parent is a reload/copy node, then tree must be a multi-reg node |
6183 | // that has already had one of its registers spilled. |
6184 | // It is possible that one of its RefTypeDef positions got spilled and the next |
6185 | // use of it requires it to be in a different register. |
6186 | // |
6187 | // In this case set the i'th position reg of reload/copy node to the reg allocated |
6188 | // for copy/reload refPosition. Essentially a copy/reload node will have a reg |
6189 | // for each multi-reg position of its child. If there is a valid reg in i'th |
6190 | // position of GT_COPY or GT_RELOAD node then the corresponding result of its |
6191 | // child needs to be copied or reloaded to that reg. |
6192 | if (parent->IsCopyOrReload()) |
6193 | { |
6194 | noway_assert(parent->OperGet() == oper); |
6195 | noway_assert(tree->IsMultiRegNode()); |
6196 | GenTreeCopyOrReload* copyOrReload = parent->AsCopyOrReload(); |
6197 | noway_assert(copyOrReload->GetRegNumByIdx(multiRegIdx) == REG_NA); |
6198 | copyOrReload->SetRegNumByIdx(refPosition->assignedReg(), multiRegIdx); |
6199 | } |
6200 | else |
6201 | { |
6202 | // Create the new node, with "tree" as its only child. |
6203 | var_types treeType = tree->TypeGet(); |
6204 | |
6205 | GenTreeCopyOrReload* newNode = new (compiler, oper) GenTreeCopyOrReload(oper, treeType, tree); |
6206 | assert(refPosition->registerAssignment != RBM_NONE); |
6207 | SetLsraAdded(newNode); |
6208 | newNode->SetRegNumByIdx(refPosition->assignedReg(), multiRegIdx); |
6209 | if (refPosition->copyReg) |
6210 | { |
6211 | // This is a TEMPORARY copy |
6212 | assert(isCandidateLocalRef(tree)); |
6213 | newNode->gtFlags |= GTF_VAR_DEATH; |
6214 | } |
6215 | |
6216 | // Insert the copy/reload after the spilled node and replace the use of the original node with a use |
6217 | // of the copy/reload. |
6218 | blockRange.InsertAfter(tree, newNode); |
6219 | treeUse.ReplaceWith(compiler, newNode); |
6220 | } |
6221 | } |
6222 | |
6223 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6224 | //------------------------------------------------------------------------ |
6225 | // insertUpperVectorSaveAndReload: Insert code to save and restore the upper half of a vector that lives |
6226 | // in a callee-save register at the point of a kill (the upper half is |
6227 | // not preserved). |
6228 | // |
6229 | // Arguments: |
6230 | // tree - This is the node around which we will insert the Save & Reload. |
6231 | // It will be a call or some node that turns into a call. |
6232 | // refPosition - The RefTypeUpperVectorSaveDef RefPosition. |
6233 | // |
6234 | void LinearScan::insertUpperVectorSaveAndReload(GenTree* tree, RefPosition* refPosition, BasicBlock* block) |
6235 | { |
6236 | Interval* lclVarInterval = refPosition->getInterval()->relatedInterval; |
6237 | assert(lclVarInterval->isLocalVar == true); |
6238 | LclVarDsc* varDsc = compiler->lvaTable + lclVarInterval->varNum; |
6239 | assert(varTypeNeedsPartialCalleeSave(varDsc->lvType)); |
6240 | regNumber lclVarReg = lclVarInterval->physReg; |
6241 | if (lclVarReg == REG_NA) |
6242 | { |
6243 | return; |
6244 | } |
6245 | |
6246 | assert((genRegMask(lclVarReg) & RBM_FLT_CALLEE_SAVED) != RBM_NONE); |
6247 | |
6248 | regNumber spillReg = refPosition->assignedReg(); |
6249 | bool spillToMem = refPosition->spillAfter; |
6250 | |
6251 | LIR::Range& blockRange = LIR::AsRange(block); |
6252 | |
6253 | // First, insert the save before the call. |
6254 | |
6255 | GenTree* saveLcl = compiler->gtNewLclvNode(lclVarInterval->varNum, varDsc->lvType); |
6256 | saveLcl->gtRegNum = lclVarReg; |
6257 | SetLsraAdded(saveLcl); |
6258 | |
6259 | GenTreeSIMD* simdNode = |
6260 | new (compiler, GT_SIMD) GenTreeSIMD(LargeVectorSaveType, saveLcl, nullptr, SIMDIntrinsicUpperSave, |
6261 | varDsc->lvBaseType, genTypeSize(varDsc->lvType)); |
6262 | SetLsraAdded(simdNode); |
6263 | simdNode->gtRegNum = spillReg; |
6264 | if (spillToMem) |
6265 | { |
6266 | simdNode->gtFlags |= GTF_SPILL; |
6267 | } |
6268 | |
6269 | blockRange.InsertBefore(tree, LIR::SeqTree(compiler, simdNode)); |
6270 | |
6271 | // Now insert the restore after the call. |
6272 | |
6273 | GenTree* restoreLcl = compiler->gtNewLclvNode(lclVarInterval->varNum, varDsc->lvType); |
6274 | restoreLcl->gtRegNum = lclVarReg; |
6275 | SetLsraAdded(restoreLcl); |
6276 | |
6277 | simdNode = new (compiler, GT_SIMD) GenTreeSIMD(varDsc->lvType, restoreLcl, nullptr, SIMDIntrinsicUpperRestore, |
6278 | varDsc->lvBaseType, genTypeSize(varDsc->lvType)); |
6279 | simdNode->gtRegNum = spillReg; |
6280 | SetLsraAdded(simdNode); |
6281 | if (spillToMem) |
6282 | { |
6283 | simdNode->gtFlags |= GTF_SPILLED; |
6284 | } |
6285 | |
6286 | blockRange.InsertAfter(tree, LIR::SeqTree(compiler, simdNode)); |
6287 | } |
6288 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6289 | |
6290 | //------------------------------------------------------------------------ |
6291 | // initMaxSpill: Initializes the LinearScan members used to track the max number |
6292 | // of concurrent spills. This is needed so that we can set the |
6293 | // fields in Compiler, so that the code generator, in turn can |
6294 | // allocate the right number of spill locations. |
6295 | // |
6296 | // Arguments: |
6297 | // None. |
6298 | // |
6299 | // Return Value: |
6300 | // None. |
6301 | // |
6302 | // Assumptions: |
6303 | // This is called before any calls to updateMaxSpill(). |
6304 | |
6305 | void LinearScan::initMaxSpill() |
6306 | { |
6307 | needDoubleTmpForFPCall = false; |
6308 | needFloatTmpForFPCall = false; |
6309 | for (int i = 0; i < TYP_COUNT; i++) |
6310 | { |
6311 | maxSpill[i] = 0; |
6312 | currentSpill[i] = 0; |
6313 | } |
6314 | } |
6315 | |
6316 | //------------------------------------------------------------------------ |
6317 | // recordMaxSpill: Sets the fields in Compiler for the max number of concurrent spills. |
6318 | // (See the comment on initMaxSpill.) |
6319 | // |
6320 | // Arguments: |
6321 | // None. |
6322 | // |
6323 | // Return Value: |
6324 | // None. |
6325 | // |
6326 | // Assumptions: |
6327 | // This is called after updateMaxSpill() has been called for all "real" |
6328 | // RefPositions. |
6329 | |
6330 | void LinearScan::recordMaxSpill() |
6331 | { |
6332 | // Note: due to the temp normalization process (see tmpNormalizeType) |
6333 | // only a few types should actually be seen here. |
6334 | JITDUMP("Recording the maximum number of concurrent spills:\n" ); |
6335 | #ifdef _TARGET_X86_ |
6336 | var_types returnType = RegSet::tmpNormalizeType(compiler->info.compRetType); |
6337 | if (needDoubleTmpForFPCall || (returnType == TYP_DOUBLE)) |
6338 | { |
6339 | JITDUMP("Adding a spill temp for moving a double call/return value between xmm reg and x87 stack.\n" ); |
6340 | maxSpill[TYP_DOUBLE] += 1; |
6341 | } |
6342 | if (needFloatTmpForFPCall || (returnType == TYP_FLOAT)) |
6343 | { |
6344 | JITDUMP("Adding a spill temp for moving a float call/return value between xmm reg and x87 stack.\n" ); |
6345 | maxSpill[TYP_FLOAT] += 1; |
6346 | } |
6347 | #endif // _TARGET_X86_ |
6348 | for (int i = 0; i < TYP_COUNT; i++) |
6349 | { |
6350 | if (var_types(i) != RegSet::tmpNormalizeType(var_types(i))) |
6351 | { |
6352 | // Only normalized types should have anything in the maxSpill array. |
6353 | // We assume here that if type 'i' does not normalize to itself, then |
6354 | // nothing else normalizes to 'i', either. |
6355 | assert(maxSpill[i] == 0); |
6356 | } |
6357 | if (maxSpill[i] != 0) |
6358 | { |
6359 | JITDUMP(" %s: %d\n" , varTypeName(var_types(i)), maxSpill[i]); |
6360 | compiler->codeGen->regSet.tmpPreAllocateTemps(var_types(i), maxSpill[i]); |
6361 | } |
6362 | } |
6363 | JITDUMP("\n" ); |
6364 | } |
6365 | |
6366 | //------------------------------------------------------------------------ |
6367 | // updateMaxSpill: Update the maximum number of concurrent spills |
6368 | // |
6369 | // Arguments: |
6370 | // refPosition - the current RefPosition being handled |
6371 | // |
6372 | // Return Value: |
6373 | // None. |
6374 | // |
6375 | // Assumptions: |
6376 | // The RefPosition has an associated interval (getInterval() will |
6377 | // otherwise assert). |
6378 | // |
6379 | // Notes: |
6380 | // This is called for each "real" RefPosition during the writeback |
6381 | // phase of LSRA. It keeps track of how many concurrently-live |
6382 | // spills there are, and the largest number seen so far. |
6383 | |
6384 | void LinearScan::updateMaxSpill(RefPosition* refPosition) |
6385 | { |
6386 | RefType refType = refPosition->refType; |
6387 | |
6388 | if (refPosition->spillAfter || refPosition->reload || |
6389 | (refPosition->AllocateIfProfitable() && refPosition->assignedReg() == REG_NA)) |
6390 | { |
6391 | Interval* interval = refPosition->getInterval(); |
6392 | if (!interval->isLocalVar) |
6393 | { |
6394 | // The tmp allocation logic 'normalizes' types to a small number of |
6395 | // types that need distinct stack locations from each other. |
6396 | // Those types are currently gc refs, byrefs, <= 4 byte non-GC items, |
6397 | // 8-byte non-GC items, and 16-byte or 32-byte SIMD vectors. |
6398 | // LSRA is agnostic to those choices but needs |
6399 | // to know what they are here. |
6400 | var_types typ; |
6401 | |
6402 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6403 | if ((refType == RefTypeUpperVectorSaveDef) || (refType == RefTypeUpperVectorSaveUse)) |
6404 | { |
6405 | typ = LargeVectorSaveType; |
6406 | } |
6407 | else |
6408 | #endif // !FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6409 | { |
6410 | GenTree* treeNode = refPosition->treeNode; |
6411 | if (treeNode == nullptr) |
6412 | { |
6413 | assert(RefTypeIsUse(refType)); |
6414 | treeNode = interval->firstRefPosition->treeNode; |
6415 | } |
6416 | assert(treeNode != nullptr); |
6417 | |
6418 | // In case of multi-reg call nodes, we need to use the type |
6419 | // of the return register given by multiRegIdx of the refposition. |
6420 | if (treeNode->IsMultiRegCall()) |
6421 | { |
6422 | ReturnTypeDesc* retTypeDesc = treeNode->AsCall()->GetReturnTypeDesc(); |
6423 | typ = retTypeDesc->GetReturnRegType(refPosition->getMultiRegIdx()); |
6424 | } |
6425 | #if FEATURE_ARG_SPLIT |
6426 | else if (treeNode->OperIsPutArgSplit()) |
6427 | { |
6428 | typ = treeNode->AsPutArgSplit()->GetRegType(refPosition->getMultiRegIdx()); |
6429 | } |
6430 | #if !defined(_TARGET_64BIT_) |
6431 | else if (treeNode->OperIsPutArgReg()) |
6432 | { |
6433 | // For double arg regs, the type is changed to long since they must be passed via `r0-r3`. |
6434 | // However when they get spilled, they should be treated as separated int registers. |
6435 | var_types typNode = treeNode->TypeGet(); |
6436 | typ = (typNode == TYP_LONG) ? TYP_INT : typNode; |
6437 | } |
6438 | #endif // !_TARGET_64BIT_ |
6439 | #endif // FEATURE_ARG_SPLIT |
6440 | else |
6441 | { |
6442 | typ = treeNode->TypeGet(); |
6443 | } |
6444 | typ = RegSet::tmpNormalizeType(typ); |
6445 | } |
6446 | |
6447 | if (refPosition->spillAfter && !refPosition->reload) |
6448 | { |
6449 | currentSpill[typ]++; |
6450 | if (currentSpill[typ] > maxSpill[typ]) |
6451 | { |
6452 | maxSpill[typ] = currentSpill[typ]; |
6453 | } |
6454 | } |
6455 | else if (refPosition->reload) |
6456 | { |
6457 | assert(currentSpill[typ] > 0); |
6458 | currentSpill[typ]--; |
6459 | } |
6460 | else if (refPosition->AllocateIfProfitable() && refPosition->assignedReg() == REG_NA) |
6461 | { |
6462 | // A spill temp not getting reloaded into a reg because it is |
6463 | // marked as allocate if profitable and getting used from its |
6464 | // memory location. To properly account max spill for typ we |
6465 | // decrement spill count. |
6466 | assert(RefTypeIsUse(refType)); |
6467 | assert(currentSpill[typ] > 0); |
6468 | currentSpill[typ]--; |
6469 | } |
6470 | JITDUMP(" Max spill for %s is %d\n" , varTypeName(typ), maxSpill[typ]); |
6471 | } |
6472 | } |
6473 | } |
6474 | |
6475 | // This is the final phase of register allocation. It writes the register assignments to |
6476 | // the tree, and performs resolution across joins and backedges. |
6477 | // |
6478 | void LinearScan::resolveRegisters() |
6479 | { |
6480 | // Iterate over the tree and the RefPositions in lockstep |
6481 | // - annotate the tree with register assignments by setting gtRegNum or gtRegPair (for longs) |
6482 | // on the tree node |
6483 | // - track globally-live var locations |
6484 | // - add resolution points at split/merge/critical points as needed |
6485 | |
6486 | // Need to use the same traversal order as the one that assigns the location numbers. |
6487 | |
6488 | // Dummy RefPositions have been added at any split, join or critical edge, at the |
6489 | // point where resolution may be required. These are located: |
6490 | // - for a split, at the top of the non-adjacent block |
6491 | // - for a join, at the bottom of the non-adjacent joining block |
6492 | // - for a critical edge, at the top of the target block of each critical |
6493 | // edge. |
6494 | // Note that a target block may have multiple incoming critical or split edges |
6495 | // |
6496 | // These RefPositions record the expected location of the Interval at that point. |
6497 | // At each branch, we identify the location of each liveOut interval, and check |
6498 | // against the RefPositions at the target. |
6499 | |
6500 | BasicBlock* block; |
6501 | LsraLocation currentLocation = MinLocation; |
6502 | |
6503 | // Clear register assignments - these will be reestablished as lclVar defs (including RefTypeParamDefs) |
6504 | // are encountered. |
6505 | if (enregisterLocalVars) |
6506 | { |
6507 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
6508 | { |
6509 | RegRecord* physRegRecord = getRegisterRecord(reg); |
6510 | Interval* assignedInterval = physRegRecord->assignedInterval; |
6511 | if (assignedInterval != nullptr) |
6512 | { |
6513 | assignedInterval->assignedReg = nullptr; |
6514 | assignedInterval->physReg = REG_NA; |
6515 | } |
6516 | physRegRecord->assignedInterval = nullptr; |
6517 | physRegRecord->recentRefPosition = nullptr; |
6518 | } |
6519 | |
6520 | // Clear "recentRefPosition" for lclVar intervals |
6521 | for (unsigned varIndex = 0; varIndex < compiler->lvaTrackedCount; varIndex++) |
6522 | { |
6523 | if (localVarIntervals[varIndex] != nullptr) |
6524 | { |
6525 | localVarIntervals[varIndex]->recentRefPosition = nullptr; |
6526 | localVarIntervals[varIndex]->isActive = false; |
6527 | } |
6528 | else |
6529 | { |
6530 | assert(compiler->lvaTable[compiler->lvaTrackedToVarNum[varIndex]].lvLRACandidate == false); |
6531 | } |
6532 | } |
6533 | } |
6534 | |
6535 | // handle incoming arguments and special temps |
6536 | RefPositionIterator refPosIterator = refPositions.begin(); |
6537 | RefPosition* currentRefPosition = &refPosIterator; |
6538 | |
6539 | if (enregisterLocalVars) |
6540 | { |
6541 | VarToRegMap entryVarToRegMap = inVarToRegMaps[compiler->fgFirstBB->bbNum]; |
6542 | for (; refPosIterator != refPositions.end() && |
6543 | (currentRefPosition->refType == RefTypeParamDef || currentRefPosition->refType == RefTypeZeroInit); |
6544 | ++refPosIterator, currentRefPosition = &refPosIterator) |
6545 | { |
6546 | Interval* interval = currentRefPosition->getInterval(); |
6547 | assert(interval != nullptr && interval->isLocalVar); |
6548 | resolveLocalRef(nullptr, nullptr, currentRefPosition); |
6549 | regNumber reg = REG_STK; |
6550 | int varIndex = interval->getVarIndex(compiler); |
6551 | |
6552 | if (!currentRefPosition->spillAfter && currentRefPosition->registerAssignment != RBM_NONE) |
6553 | { |
6554 | reg = currentRefPosition->assignedReg(); |
6555 | } |
6556 | else |
6557 | { |
6558 | reg = REG_STK; |
6559 | interval->isActive = false; |
6560 | } |
6561 | setVarReg(entryVarToRegMap, varIndex, reg); |
6562 | } |
6563 | } |
6564 | else |
6565 | { |
6566 | assert(refPosIterator == refPositions.end() || |
6567 | (refPosIterator->refType != RefTypeParamDef && refPosIterator->refType != RefTypeZeroInit)); |
6568 | } |
6569 | |
6570 | BasicBlock* insertionBlock = compiler->fgFirstBB; |
6571 | GenTree* insertionPoint = LIR::AsRange(insertionBlock).FirstNonPhiNode(); |
6572 | |
6573 | // write back assignments |
6574 | for (block = startBlockSequence(); block != nullptr; block = moveToNextBlock()) |
6575 | { |
6576 | assert(curBBNum == block->bbNum); |
6577 | |
6578 | if (enregisterLocalVars) |
6579 | { |
6580 | // Record the var locations at the start of this block. |
6581 | // (If it's fgFirstBB, we've already done that above, see entryVarToRegMap) |
6582 | |
6583 | curBBStartLocation = currentRefPosition->nodeLocation; |
6584 | if (block != compiler->fgFirstBB) |
6585 | { |
6586 | processBlockStartLocations(block, false); |
6587 | } |
6588 | |
6589 | // Handle the DummyDefs, updating the incoming var location. |
6590 | for (; refPosIterator != refPositions.end() && currentRefPosition->refType == RefTypeDummyDef; |
6591 | ++refPosIterator, currentRefPosition = &refPosIterator) |
6592 | { |
6593 | assert(currentRefPosition->isIntervalRef()); |
6594 | // Don't mark dummy defs as reload |
6595 | currentRefPosition->reload = false; |
6596 | resolveLocalRef(nullptr, nullptr, currentRefPosition); |
6597 | regNumber reg; |
6598 | if (currentRefPosition->registerAssignment != RBM_NONE) |
6599 | { |
6600 | reg = currentRefPosition->assignedReg(); |
6601 | } |
6602 | else |
6603 | { |
6604 | reg = REG_STK; |
6605 | currentRefPosition->getInterval()->isActive = false; |
6606 | } |
6607 | setInVarRegForBB(curBBNum, currentRefPosition->getInterval()->varNum, reg); |
6608 | } |
6609 | } |
6610 | |
6611 | // The next RefPosition should be for the block. Move past it. |
6612 | assert(refPosIterator != refPositions.end()); |
6613 | assert(currentRefPosition->refType == RefTypeBB); |
6614 | ++refPosIterator; |
6615 | currentRefPosition = &refPosIterator; |
6616 | |
6617 | // Handle the RefPositions for the block |
6618 | for (; refPosIterator != refPositions.end() && currentRefPosition->refType != RefTypeBB && |
6619 | currentRefPosition->refType != RefTypeDummyDef; |
6620 | ++refPosIterator, currentRefPosition = &refPosIterator) |
6621 | { |
6622 | currentLocation = currentRefPosition->nodeLocation; |
6623 | |
6624 | // Ensure that the spill & copy info is valid. |
6625 | // First, if it's reload, it must not be copyReg or moveReg |
6626 | assert(!currentRefPosition->reload || (!currentRefPosition->copyReg && !currentRefPosition->moveReg)); |
6627 | // If it's copyReg it must not be moveReg, and vice-versa |
6628 | assert(!currentRefPosition->copyReg || !currentRefPosition->moveReg); |
6629 | |
6630 | switch (currentRefPosition->refType) |
6631 | { |
6632 | #ifdef FEATURE_SIMD |
6633 | case RefTypeUpperVectorSaveUse: |
6634 | case RefTypeUpperVectorSaveDef: |
6635 | #endif // FEATURE_SIMD |
6636 | case RefTypeUse: |
6637 | case RefTypeDef: |
6638 | // These are the ones we're interested in |
6639 | break; |
6640 | case RefTypeKill: |
6641 | case RefTypeFixedReg: |
6642 | // These require no handling at resolution time |
6643 | assert(currentRefPosition->referent != nullptr); |
6644 | currentRefPosition->referent->recentRefPosition = currentRefPosition; |
6645 | continue; |
6646 | case RefTypeExpUse: |
6647 | // Ignore the ExpUse cases - a RefTypeExpUse would only exist if the |
6648 | // variable is dead at the entry to the next block. So we'll mark |
6649 | // it as in its current location and resolution will take care of any |
6650 | // mismatch. |
6651 | assert(getNextBlock() == nullptr || |
6652 | !VarSetOps::IsMember(compiler, getNextBlock()->bbLiveIn, |
6653 | currentRefPosition->getInterval()->getVarIndex(compiler))); |
6654 | currentRefPosition->referent->recentRefPosition = currentRefPosition; |
6655 | continue; |
6656 | case RefTypeKillGCRefs: |
6657 | // No action to take at resolution time, and no interval to update recentRefPosition for. |
6658 | continue; |
6659 | case RefTypeDummyDef: |
6660 | case RefTypeParamDef: |
6661 | case RefTypeZeroInit: |
6662 | // Should have handled all of these already |
6663 | default: |
6664 | unreached(); |
6665 | break; |
6666 | } |
6667 | updateMaxSpill(currentRefPosition); |
6668 | GenTree* treeNode = currentRefPosition->treeNode; |
6669 | |
6670 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6671 | if (currentRefPosition->refType == RefTypeUpperVectorSaveDef) |
6672 | { |
6673 | // The treeNode must be a call, and this must be a RefPosition for a LargeVectorType LocalVar. |
6674 | // If the LocalVar is in a callee-save register, we are going to spill its upper half around the call. |
6675 | // If we have allocated a register to spill it to, we will use that; otherwise, we will spill it |
6676 | // to the stack. We can use as a temp register any non-arg caller-save register. |
6677 | noway_assert(treeNode != nullptr); |
6678 | currentRefPosition->referent->recentRefPosition = currentRefPosition; |
6679 | insertUpperVectorSaveAndReload(treeNode, currentRefPosition, block); |
6680 | } |
6681 | else if (currentRefPosition->refType == RefTypeUpperVectorSaveUse) |
6682 | { |
6683 | continue; |
6684 | } |
6685 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
6686 | |
6687 | // Most uses won't actually need to be recorded (they're on the def). |
6688 | // In those cases, treeNode will be nullptr. |
6689 | if (treeNode == nullptr) |
6690 | { |
6691 | // This is either a use, a dead def, or a field of a struct |
6692 | Interval* interval = currentRefPosition->getInterval(); |
6693 | assert(currentRefPosition->refType == RefTypeUse || |
6694 | currentRefPosition->registerAssignment == RBM_NONE || interval->isStructField); |
6695 | |
6696 | // TODO-Review: Need to handle the case where any of the struct fields |
6697 | // are reloaded/spilled at this use |
6698 | assert(!interval->isStructField || |
6699 | (currentRefPosition->reload == false && currentRefPosition->spillAfter == false)); |
6700 | |
6701 | if (interval->isLocalVar && !interval->isStructField) |
6702 | { |
6703 | LclVarDsc* varDsc = interval->getLocalVar(compiler); |
6704 | |
6705 | // This must be a dead definition. We need to mark the lclVar |
6706 | // so that it's not considered a candidate for lvRegister, as |
6707 | // this dead def will have to go to the stack. |
6708 | assert(currentRefPosition->refType == RefTypeDef); |
6709 | varDsc->lvRegNum = REG_STK; |
6710 | } |
6711 | continue; |
6712 | } |
6713 | |
6714 | if (currentRefPosition->isIntervalRef() && currentRefPosition->getInterval()->isInternal) |
6715 | { |
6716 | treeNode->gtRsvdRegs |= currentRefPosition->registerAssignment; |
6717 | } |
6718 | else |
6719 | { |
6720 | writeRegisters(currentRefPosition, treeNode); |
6721 | |
6722 | if (treeNode->IsLocal() && currentRefPosition->getInterval()->isLocalVar) |
6723 | { |
6724 | resolveLocalRef(block, treeNode, currentRefPosition); |
6725 | } |
6726 | |
6727 | // Mark spill locations on temps |
6728 | // (local vars are handled in resolveLocalRef, above) |
6729 | // Note that the tree node will be changed from GTF_SPILL to GTF_SPILLED |
6730 | // in codegen, taking care of the "reload" case for temps |
6731 | else if (currentRefPosition->spillAfter || (currentRefPosition->nextRefPosition != nullptr && |
6732 | currentRefPosition->nextRefPosition->moveReg)) |
6733 | { |
6734 | if (treeNode != nullptr && currentRefPosition->isIntervalRef()) |
6735 | { |
6736 | if (currentRefPosition->spillAfter) |
6737 | { |
6738 | treeNode->gtFlags |= GTF_SPILL; |
6739 | |
6740 | // If this is a constant interval that is reusing a pre-existing value, we actually need |
6741 | // to generate the value at this point in order to spill it. |
6742 | if (treeNode->IsReuseRegVal()) |
6743 | { |
6744 | treeNode->ResetReuseRegVal(); |
6745 | } |
6746 | |
6747 | // In case of multi-reg call node, also set spill flag on the |
6748 | // register specified by multi-reg index of current RefPosition. |
6749 | // Note that the spill flag on treeNode indicates that one or |
6750 | // more its allocated registers are in that state. |
6751 | if (treeNode->IsMultiRegCall()) |
6752 | { |
6753 | GenTreeCall* call = treeNode->AsCall(); |
6754 | call->SetRegSpillFlagByIdx(GTF_SPILL, currentRefPosition->getMultiRegIdx()); |
6755 | } |
6756 | #if FEATURE_ARG_SPLIT |
6757 | else if (treeNode->OperIsPutArgSplit()) |
6758 | { |
6759 | GenTreePutArgSplit* splitArg = treeNode->AsPutArgSplit(); |
6760 | splitArg->SetRegSpillFlagByIdx(GTF_SPILL, currentRefPosition->getMultiRegIdx()); |
6761 | } |
6762 | #ifdef _TARGET_ARM_ |
6763 | else if (treeNode->OperIsMultiRegOp()) |
6764 | { |
6765 | GenTreeMultiRegOp* multiReg = treeNode->AsMultiRegOp(); |
6766 | multiReg->SetRegSpillFlagByIdx(GTF_SPILL, currentRefPosition->getMultiRegIdx()); |
6767 | } |
6768 | #endif // _TARGET_ARM_ |
6769 | #endif // FEATURE_ARG_SPLIT |
6770 | } |
6771 | |
6772 | // If the value is reloaded or moved to a different register, we need to insert |
6773 | // a node to hold the register to which it should be reloaded |
6774 | RefPosition* nextRefPosition = currentRefPosition->nextRefPosition; |
6775 | assert(nextRefPosition != nullptr); |
6776 | if (INDEBUG(alwaysInsertReload() ||) |
6777 | nextRefPosition->assignedReg() != currentRefPosition->assignedReg()) |
6778 | { |
6779 | if (nextRefPosition->assignedReg() != REG_NA) |
6780 | { |
6781 | insertCopyOrReload(block, treeNode, currentRefPosition->getMultiRegIdx(), |
6782 | nextRefPosition); |
6783 | } |
6784 | else |
6785 | { |
6786 | assert(nextRefPosition->AllocateIfProfitable()); |
6787 | |
6788 | // In case of tree temps, if def is spilled and use didn't |
6789 | // get a register, set a flag on tree node to be treated as |
6790 | // contained at the point of its use. |
6791 | if (currentRefPosition->spillAfter && currentRefPosition->refType == RefTypeDef && |
6792 | nextRefPosition->refType == RefTypeUse) |
6793 | { |
6794 | assert(nextRefPosition->treeNode == nullptr); |
6795 | treeNode->gtFlags |= GTF_NOREG_AT_USE; |
6796 | } |
6797 | } |
6798 | } |
6799 | } |
6800 | |
6801 | // We should never have to "spill after" a temp use, since |
6802 | // they're single use |
6803 | else |
6804 | { |
6805 | unreached(); |
6806 | } |
6807 | } |
6808 | } |
6809 | } |
6810 | |
6811 | if (enregisterLocalVars) |
6812 | { |
6813 | processBlockEndLocations(block); |
6814 | } |
6815 | } |
6816 | |
6817 | if (enregisterLocalVars) |
6818 | { |
6819 | #ifdef DEBUG |
6820 | if (VERBOSE) |
6821 | { |
6822 | printf("-----------------------\n" ); |
6823 | printf("RESOLVING BB BOUNDARIES\n" ); |
6824 | printf("-----------------------\n" ); |
6825 | |
6826 | printf("Resolution Candidates: " ); |
6827 | dumpConvertedVarSet(compiler, resolutionCandidateVars); |
6828 | printf("\n" ); |
6829 | printf("Has %sCritical Edges\n\n" , hasCriticalEdges ? "" : "No" ); |
6830 | |
6831 | printf("Prior to Resolution\n" ); |
6832 | foreach_block(compiler, block) |
6833 | { |
6834 | printf("\n" FMT_BB " use def in out\n" , block->bbNum); |
6835 | dumpConvertedVarSet(compiler, block->bbVarUse); |
6836 | printf("\n" ); |
6837 | dumpConvertedVarSet(compiler, block->bbVarDef); |
6838 | printf("\n" ); |
6839 | dumpConvertedVarSet(compiler, block->bbLiveIn); |
6840 | printf("\n" ); |
6841 | dumpConvertedVarSet(compiler, block->bbLiveOut); |
6842 | printf("\n" ); |
6843 | |
6844 | dumpInVarToRegMap(block); |
6845 | dumpOutVarToRegMap(block); |
6846 | } |
6847 | |
6848 | printf("\n\n" ); |
6849 | } |
6850 | #endif // DEBUG |
6851 | |
6852 | resolveEdges(); |
6853 | |
6854 | // Verify register assignments on variables |
6855 | unsigned lclNum; |
6856 | LclVarDsc* varDsc; |
6857 | for (lclNum = 0, varDsc = compiler->lvaTable; lclNum < compiler->lvaCount; lclNum++, varDsc++) |
6858 | { |
6859 | if (!isCandidateVar(varDsc)) |
6860 | { |
6861 | varDsc->lvRegNum = REG_STK; |
6862 | } |
6863 | else |
6864 | { |
6865 | Interval* interval = getIntervalForLocalVar(varDsc->lvVarIndex); |
6866 | |
6867 | // Determine initial position for parameters |
6868 | |
6869 | if (varDsc->lvIsParam) |
6870 | { |
6871 | regMaskTP initialRegMask = interval->firstRefPosition->registerAssignment; |
6872 | regNumber initialReg = (initialRegMask == RBM_NONE || interval->firstRefPosition->spillAfter) |
6873 | ? REG_STK |
6874 | : genRegNumFromMask(initialRegMask); |
6875 | regNumber sourceReg = (varDsc->lvIsRegArg) ? varDsc->lvArgReg : REG_STK; |
6876 | |
6877 | #ifdef _TARGET_ARM_ |
6878 | if (varTypeIsMultiReg(varDsc)) |
6879 | { |
6880 | // TODO-ARM-NYI: Map the hi/lo intervals back to lvRegNum and lvOtherReg (these should NYI |
6881 | // before this) |
6882 | assert(!"Multi-reg types not yet supported" ); |
6883 | } |
6884 | else |
6885 | #endif // _TARGET_ARM_ |
6886 | { |
6887 | varDsc->lvArgInitReg = initialReg; |
6888 | JITDUMP(" Set V%02u argument initial register to %s\n" , lclNum, getRegName(initialReg)); |
6889 | } |
6890 | |
6891 | // Stack args that are part of dependently-promoted structs should never be register candidates (see |
6892 | // LinearScan::isRegCandidate). |
6893 | assert(varDsc->lvIsRegArg || !compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc)); |
6894 | } |
6895 | |
6896 | // If lvRegNum is REG_STK, that means that either no register |
6897 | // was assigned, or (more likely) that the same register was not |
6898 | // used for all references. In that case, codegen gets the register |
6899 | // from the tree node. |
6900 | if (varDsc->lvRegNum == REG_STK || interval->isSpilled || interval->isSplit) |
6901 | { |
6902 | // For codegen purposes, we'll set lvRegNum to whatever register |
6903 | // it's currently in as we go. |
6904 | // However, we never mark an interval as lvRegister if it has either been spilled |
6905 | // or split. |
6906 | varDsc->lvRegister = false; |
6907 | |
6908 | // Skip any dead defs or exposed uses |
6909 | // (first use exposed will only occur when there is no explicit initialization) |
6910 | RefPosition* firstRefPosition = interval->firstRefPosition; |
6911 | while ((firstRefPosition != nullptr) && (firstRefPosition->refType == RefTypeExpUse)) |
6912 | { |
6913 | firstRefPosition = firstRefPosition->nextRefPosition; |
6914 | } |
6915 | if (firstRefPosition == nullptr) |
6916 | { |
6917 | // Dead interval |
6918 | varDsc->lvLRACandidate = false; |
6919 | if (varDsc->lvRefCnt() == 0) |
6920 | { |
6921 | varDsc->lvOnFrame = false; |
6922 | } |
6923 | else |
6924 | { |
6925 | // We may encounter cases where a lclVar actually has no references, but |
6926 | // a non-zero refCnt. For safety (in case this is some "hidden" lclVar that we're |
6927 | // not correctly recognizing), we'll mark those as needing a stack location. |
6928 | // TODO-Cleanup: Make this an assert if/when we correct the refCnt |
6929 | // updating. |
6930 | varDsc->lvOnFrame = true; |
6931 | } |
6932 | } |
6933 | else |
6934 | { |
6935 | // If the interval was not spilled, it doesn't need a stack location. |
6936 | if (!interval->isSpilled) |
6937 | { |
6938 | varDsc->lvOnFrame = false; |
6939 | } |
6940 | if (firstRefPosition->registerAssignment == RBM_NONE || firstRefPosition->spillAfter) |
6941 | { |
6942 | // Either this RefPosition is spilled, or regOptional or it is not a "real" def or use |
6943 | assert( |
6944 | firstRefPosition->spillAfter || firstRefPosition->AllocateIfProfitable() || |
6945 | (firstRefPosition->refType != RefTypeDef && firstRefPosition->refType != RefTypeUse)); |
6946 | varDsc->lvRegNum = REG_STK; |
6947 | } |
6948 | else |
6949 | { |
6950 | varDsc->lvRegNum = firstRefPosition->assignedReg(); |
6951 | } |
6952 | } |
6953 | } |
6954 | else |
6955 | { |
6956 | { |
6957 | varDsc->lvRegister = true; |
6958 | varDsc->lvOnFrame = false; |
6959 | } |
6960 | #ifdef DEBUG |
6961 | regMaskTP registerAssignment = genRegMask(varDsc->lvRegNum); |
6962 | assert(!interval->isSpilled && !interval->isSplit); |
6963 | RefPosition* refPosition = interval->firstRefPosition; |
6964 | assert(refPosition != nullptr); |
6965 | |
6966 | while (refPosition != nullptr) |
6967 | { |
6968 | // All RefPositions must match, except for dead definitions, |
6969 | // copyReg/moveReg and RefTypeExpUse positions |
6970 | if (refPosition->registerAssignment != RBM_NONE && !refPosition->copyReg && |
6971 | !refPosition->moveReg && refPosition->refType != RefTypeExpUse) |
6972 | { |
6973 | assert(refPosition->registerAssignment == registerAssignment); |
6974 | } |
6975 | refPosition = refPosition->nextRefPosition; |
6976 | } |
6977 | #endif // DEBUG |
6978 | } |
6979 | } |
6980 | } |
6981 | } |
6982 | |
6983 | #ifdef DEBUG |
6984 | if (VERBOSE) |
6985 | { |
6986 | printf("Trees after linear scan register allocator (LSRA)\n" ); |
6987 | compiler->fgDispBasicBlocks(true); |
6988 | } |
6989 | |
6990 | verifyFinalAllocation(); |
6991 | #endif // DEBUG |
6992 | |
6993 | compiler->raMarkStkVars(); |
6994 | recordMaxSpill(); |
6995 | |
6996 | // TODO-CQ: Review this comment and address as needed. |
6997 | // Change all unused promoted non-argument struct locals to a non-GC type (in this case TYP_INT) |
6998 | // so that the gc tracking logic and lvMustInit logic will ignore them. |
6999 | // Extract the code that does this from raAssignVars, and call it here. |
7000 | // PRECONDITIONS: Ensure that lvPromoted is set on promoted structs, if and |
7001 | // only if it is promoted on all paths. |
7002 | // Call might be something like: |
7003 | // compiler->BashUnusedStructLocals(); |
7004 | } |
7005 | |
7006 | // |
7007 | //------------------------------------------------------------------------ |
7008 | // insertMove: Insert a move of a lclVar with the given lclNum into the given block. |
7009 | // |
7010 | // Arguments: |
7011 | // block - the BasicBlock into which the move will be inserted. |
7012 | // insertionPoint - the instruction before which to insert the move |
7013 | // lclNum - the lclNum of the var to be moved |
7014 | // fromReg - the register from which the var is moving |
7015 | // toReg - the register to which the var is moving |
7016 | // |
7017 | // Return Value: |
7018 | // None. |
7019 | // |
7020 | // Notes: |
7021 | // If insertionPoint is non-NULL, insert before that instruction; |
7022 | // otherwise, insert "near" the end (prior to the branch, if any). |
7023 | // If fromReg or toReg is REG_STK, then move from/to memory, respectively. |
7024 | |
7025 | void LinearScan::insertMove( |
7026 | BasicBlock* block, GenTree* insertionPoint, unsigned lclNum, regNumber fromReg, regNumber toReg) |
7027 | { |
7028 | LclVarDsc* varDsc = compiler->lvaTable + lclNum; |
7029 | // the lclVar must be a register candidate |
7030 | assert(isRegCandidate(varDsc)); |
7031 | // One or both MUST be a register |
7032 | assert(fromReg != REG_STK || toReg != REG_STK); |
7033 | // They must not be the same register. |
7034 | assert(fromReg != toReg); |
7035 | |
7036 | // This var can't be marked lvRegister now |
7037 | varDsc->lvRegNum = REG_STK; |
7038 | |
7039 | GenTree* src = compiler->gtNewLclvNode(lclNum, varDsc->TypeGet()); |
7040 | SetLsraAdded(src); |
7041 | |
7042 | // There are three cases we need to handle: |
7043 | // - We are loading a lclVar from the stack. |
7044 | // - We are storing a lclVar to the stack. |
7045 | // - We are copying a lclVar between registers. |
7046 | // |
7047 | // In the first and second cases, the lclVar node will be marked with GTF_SPILLED and GTF_SPILL, respectively. |
7048 | // It is up to the code generator to ensure that any necessary normalization is done when loading or storing the |
7049 | // lclVar's value. |
7050 | // |
7051 | // In the third case, we generate GT_COPY(GT_LCL_VAR) and type each node with the normalized type of the lclVar. |
7052 | // This is safe because a lclVar is always normalized once it is in a register. |
7053 | |
7054 | GenTree* dst = src; |
7055 | if (fromReg == REG_STK) |
7056 | { |
7057 | src->gtFlags |= GTF_SPILLED; |
7058 | src->gtRegNum = toReg; |
7059 | } |
7060 | else if (toReg == REG_STK) |
7061 | { |
7062 | src->gtFlags |= GTF_SPILL; |
7063 | src->gtRegNum = fromReg; |
7064 | } |
7065 | else |
7066 | { |
7067 | var_types movType = genActualType(varDsc->TypeGet()); |
7068 | src->gtType = movType; |
7069 | |
7070 | dst = new (compiler, GT_COPY) GenTreeCopyOrReload(GT_COPY, movType, src); |
7071 | // This is the new home of the lclVar - indicate that by clearing the GTF_VAR_DEATH flag. |
7072 | // Note that if src is itself a lastUse, this will have no effect. |
7073 | dst->gtFlags &= ~(GTF_VAR_DEATH); |
7074 | src->gtRegNum = fromReg; |
7075 | dst->gtRegNum = toReg; |
7076 | SetLsraAdded(dst); |
7077 | } |
7078 | dst->SetUnusedValue(); |
7079 | |
7080 | LIR::Range treeRange = LIR::SeqTree(compiler, dst); |
7081 | LIR::Range& blockRange = LIR::AsRange(block); |
7082 | |
7083 | if (insertionPoint != nullptr) |
7084 | { |
7085 | blockRange.InsertBefore(insertionPoint, std::move(treeRange)); |
7086 | } |
7087 | else |
7088 | { |
7089 | // Put the copy at the bottom |
7090 | // If there's a branch, make an embedded statement that executes just prior to the branch |
7091 | if (block->bbJumpKind == BBJ_COND || block->bbJumpKind == BBJ_SWITCH) |
7092 | { |
7093 | noway_assert(!blockRange.IsEmpty()); |
7094 | |
7095 | GenTree* branch = blockRange.LastNode(); |
7096 | assert(branch->OperIsConditionalJump() || branch->OperGet() == GT_SWITCH_TABLE || |
7097 | branch->OperGet() == GT_SWITCH); |
7098 | |
7099 | blockRange.InsertBefore(branch, std::move(treeRange)); |
7100 | } |
7101 | else |
7102 | { |
7103 | assert(block->bbJumpKind == BBJ_NONE || block->bbJumpKind == BBJ_ALWAYS); |
7104 | blockRange.InsertAtEnd(std::move(treeRange)); |
7105 | } |
7106 | } |
7107 | } |
7108 | |
7109 | void LinearScan::insertSwap( |
7110 | BasicBlock* block, GenTree* insertionPoint, unsigned lclNum1, regNumber reg1, unsigned lclNum2, regNumber reg2) |
7111 | { |
7112 | #ifdef DEBUG |
7113 | if (VERBOSE) |
7114 | { |
7115 | const char* insertionPointString = "top" ; |
7116 | if (insertionPoint == nullptr) |
7117 | { |
7118 | insertionPointString = "bottom" ; |
7119 | } |
7120 | printf(" " FMT_BB " %s: swap V%02u in %s with V%02u in %s\n" , block->bbNum, insertionPointString, lclNum1, |
7121 | getRegName(reg1), lclNum2, getRegName(reg2)); |
7122 | } |
7123 | #endif // DEBUG |
7124 | |
7125 | LclVarDsc* varDsc1 = compiler->lvaTable + lclNum1; |
7126 | LclVarDsc* varDsc2 = compiler->lvaTable + lclNum2; |
7127 | assert(reg1 != REG_STK && reg1 != REG_NA && reg2 != REG_STK && reg2 != REG_NA); |
7128 | |
7129 | GenTree* lcl1 = compiler->gtNewLclvNode(lclNum1, varDsc1->TypeGet()); |
7130 | lcl1->gtRegNum = reg1; |
7131 | SetLsraAdded(lcl1); |
7132 | |
7133 | GenTree* lcl2 = compiler->gtNewLclvNode(lclNum2, varDsc2->TypeGet()); |
7134 | lcl2->gtRegNum = reg2; |
7135 | SetLsraAdded(lcl2); |
7136 | |
7137 | GenTree* swap = compiler->gtNewOperNode(GT_SWAP, TYP_VOID, lcl1, lcl2); |
7138 | swap->gtRegNum = REG_NA; |
7139 | SetLsraAdded(swap); |
7140 | |
7141 | lcl1->gtNext = lcl2; |
7142 | lcl2->gtPrev = lcl1; |
7143 | lcl2->gtNext = swap; |
7144 | swap->gtPrev = lcl2; |
7145 | |
7146 | LIR::Range swapRange = LIR::SeqTree(compiler, swap); |
7147 | LIR::Range& blockRange = LIR::AsRange(block); |
7148 | |
7149 | if (insertionPoint != nullptr) |
7150 | { |
7151 | blockRange.InsertBefore(insertionPoint, std::move(swapRange)); |
7152 | } |
7153 | else |
7154 | { |
7155 | // Put the copy at the bottom |
7156 | // If there's a branch, make an embedded statement that executes just prior to the branch |
7157 | if (block->bbJumpKind == BBJ_COND || block->bbJumpKind == BBJ_SWITCH) |
7158 | { |
7159 | noway_assert(!blockRange.IsEmpty()); |
7160 | |
7161 | GenTree* branch = blockRange.LastNode(); |
7162 | assert(branch->OperIsConditionalJump() || branch->OperGet() == GT_SWITCH_TABLE || |
7163 | branch->OperGet() == GT_SWITCH); |
7164 | |
7165 | blockRange.InsertBefore(branch, std::move(swapRange)); |
7166 | } |
7167 | else |
7168 | { |
7169 | assert(block->bbJumpKind == BBJ_NONE || block->bbJumpKind == BBJ_ALWAYS); |
7170 | blockRange.InsertAtEnd(std::move(swapRange)); |
7171 | } |
7172 | } |
7173 | } |
7174 | |
7175 | //------------------------------------------------------------------------ |
7176 | // getTempRegForResolution: Get a free register to use for resolution code. |
7177 | // |
7178 | // Arguments: |
7179 | // fromBlock - The "from" block on the edge being resolved. |
7180 | // toBlock - The "to"block on the edge |
7181 | // type - the type of register required |
7182 | // |
7183 | // Return Value: |
7184 | // Returns a register that is free on the given edge, or REG_NA if none is available. |
7185 | // |
7186 | // Notes: |
7187 | // It is up to the caller to check the return value, and to determine whether a register is |
7188 | // available, and to handle that case appropriately. |
7189 | // It is also up to the caller to cache the return value, as this is not cheap to compute. |
7190 | |
7191 | regNumber LinearScan::getTempRegForResolution(BasicBlock* fromBlock, BasicBlock* toBlock, var_types type) |
7192 | { |
7193 | // TODO-Throughput: This would be much more efficient if we add RegToVarMaps instead of VarToRegMaps |
7194 | // and they would be more space-efficient as well. |
7195 | VarToRegMap fromVarToRegMap = getOutVarToRegMap(fromBlock->bbNum); |
7196 | VarToRegMap toVarToRegMap = getInVarToRegMap(toBlock->bbNum); |
7197 | |
7198 | #ifdef _TARGET_ARM_ |
7199 | regMaskTP freeRegs; |
7200 | if (type == TYP_DOUBLE) |
7201 | { |
7202 | // We have to consider all float registers for TYP_DOUBLE |
7203 | freeRegs = allRegs(TYP_FLOAT); |
7204 | } |
7205 | else |
7206 | { |
7207 | freeRegs = allRegs(type); |
7208 | } |
7209 | #else // !_TARGET_ARM_ |
7210 | regMaskTP freeRegs = allRegs(type); |
7211 | #endif // !_TARGET_ARM_ |
7212 | |
7213 | #ifdef DEBUG |
7214 | if (getStressLimitRegs() == LSRA_LIMIT_SMALL_SET) |
7215 | { |
7216 | return REG_NA; |
7217 | } |
7218 | #endif // DEBUG |
7219 | INDEBUG(freeRegs = stressLimitRegs(nullptr, freeRegs)); |
7220 | |
7221 | // We are only interested in the variables that are live-in to the "to" block. |
7222 | VarSetOps::Iter iter(compiler, toBlock->bbLiveIn); |
7223 | unsigned varIndex = 0; |
7224 | while (iter.NextElem(&varIndex) && freeRegs != RBM_NONE) |
7225 | { |
7226 | regNumber fromReg = getVarReg(fromVarToRegMap, varIndex); |
7227 | regNumber toReg = getVarReg(toVarToRegMap, varIndex); |
7228 | assert(fromReg != REG_NA && toReg != REG_NA); |
7229 | if (fromReg != REG_STK) |
7230 | { |
7231 | freeRegs &= ~genRegMask(fromReg, getIntervalForLocalVar(varIndex)->registerType); |
7232 | } |
7233 | if (toReg != REG_STK) |
7234 | { |
7235 | freeRegs &= ~genRegMask(toReg, getIntervalForLocalVar(varIndex)->registerType); |
7236 | } |
7237 | } |
7238 | |
7239 | #ifdef _TARGET_ARM_ |
7240 | if (type == TYP_DOUBLE) |
7241 | { |
7242 | // Exclude any doubles for which the odd half isn't in freeRegs. |
7243 | freeRegs = freeRegs & ((freeRegs << 1) & RBM_ALLDOUBLE); |
7244 | } |
7245 | #endif |
7246 | |
7247 | if (freeRegs == RBM_NONE) |
7248 | { |
7249 | return REG_NA; |
7250 | } |
7251 | else |
7252 | { |
7253 | regNumber tempReg = genRegNumFromMask(genFindLowestBit(freeRegs)); |
7254 | return tempReg; |
7255 | } |
7256 | } |
7257 | |
7258 | #ifdef _TARGET_ARM_ |
7259 | //------------------------------------------------------------------------ |
7260 | // addResolutionForDouble: Add resolution move(s) for TYP_DOUBLE interval |
7261 | // and update location. |
7262 | // |
7263 | // Arguments: |
7264 | // block - the BasicBlock into which the move will be inserted. |
7265 | // insertionPoint - the instruction before which to insert the move |
7266 | // sourceIntervals - maintains sourceIntervals[reg] which each 'reg' is associated with |
7267 | // location - maintains location[reg] which is the location of the var that was originally in 'reg'. |
7268 | // toReg - the register to which the var is moving |
7269 | // fromReg - the register from which the var is moving |
7270 | // resolveType - the type of resolution to be performed |
7271 | // |
7272 | // Return Value: |
7273 | // None. |
7274 | // |
7275 | // Notes: |
7276 | // It inserts at least one move and updates incoming parameter 'location'. |
7277 | // |
7278 | void LinearScan::addResolutionForDouble(BasicBlock* block, |
7279 | GenTree* insertionPoint, |
7280 | Interval** sourceIntervals, |
7281 | regNumberSmall* location, |
7282 | regNumber toReg, |
7283 | regNumber fromReg, |
7284 | ResolveType resolveType) |
7285 | { |
7286 | regNumber secondHalfTargetReg = REG_NEXT(fromReg); |
7287 | Interval* intervalToBeMoved1 = sourceIntervals[fromReg]; |
7288 | Interval* intervalToBeMoved2 = sourceIntervals[secondHalfTargetReg]; |
7289 | |
7290 | assert(!(intervalToBeMoved1 == nullptr && intervalToBeMoved2 == nullptr)); |
7291 | |
7292 | if (intervalToBeMoved1 != nullptr) |
7293 | { |
7294 | if (intervalToBeMoved1->registerType == TYP_DOUBLE) |
7295 | { |
7296 | // TYP_DOUBLE interval occupies a double register, i.e. two float registers. |
7297 | assert(intervalToBeMoved2 == nullptr); |
7298 | assert(genIsValidDoubleReg(toReg)); |
7299 | } |
7300 | else |
7301 | { |
7302 | // TYP_FLOAT interval occupies 1st half of double register, i.e. 1st float register |
7303 | assert(genIsValidFloatReg(toReg)); |
7304 | } |
7305 | addResolution(block, insertionPoint, intervalToBeMoved1, toReg, fromReg); |
7306 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
7307 | location[fromReg] = (regNumberSmall)toReg; |
7308 | } |
7309 | |
7310 | if (intervalToBeMoved2 != nullptr) |
7311 | { |
7312 | // TYP_FLOAT interval occupies 2nd half of double register. |
7313 | assert(intervalToBeMoved2->registerType == TYP_FLOAT); |
7314 | regNumber secondHalfTempReg = REG_NEXT(toReg); |
7315 | |
7316 | addResolution(block, insertionPoint, intervalToBeMoved2, secondHalfTempReg, secondHalfTargetReg); |
7317 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
7318 | location[secondHalfTargetReg] = (regNumberSmall)secondHalfTempReg; |
7319 | } |
7320 | |
7321 | return; |
7322 | } |
7323 | #endif // _TARGET_ARM_ |
7324 | |
7325 | //------------------------------------------------------------------------ |
7326 | // addResolution: Add a resolution move of the given interval |
7327 | // |
7328 | // Arguments: |
7329 | // block - the BasicBlock into which the move will be inserted. |
7330 | // insertionPoint - the instruction before which to insert the move |
7331 | // interval - the interval of the var to be moved |
7332 | // toReg - the register to which the var is moving |
7333 | // fromReg - the register from which the var is moving |
7334 | // |
7335 | // Return Value: |
7336 | // None. |
7337 | // |
7338 | // Notes: |
7339 | // For joins, we insert at the bottom (indicated by an insertionPoint |
7340 | // of nullptr), while for splits we insert at the top. |
7341 | // This is because for joins 'block' is a pred of the join, while for splits it is a succ. |
7342 | // For critical edges, this function may be called twice - once to move from |
7343 | // the source (fromReg), if any, to the stack, in which case toReg will be |
7344 | // REG_STK, and we insert at the bottom (leave insertionPoint as nullptr). |
7345 | // The next time, we want to move from the stack to the destination (toReg), |
7346 | // in which case fromReg will be REG_STK, and we insert at the top. |
7347 | |
7348 | void LinearScan::addResolution( |
7349 | BasicBlock* block, GenTree* insertionPoint, Interval* interval, regNumber toReg, regNumber fromReg) |
7350 | { |
7351 | #ifdef DEBUG |
7352 | const char* insertionPointString = "top" ; |
7353 | #endif // DEBUG |
7354 | if (insertionPoint == nullptr) |
7355 | { |
7356 | #ifdef DEBUG |
7357 | insertionPointString = "bottom" ; |
7358 | #endif // DEBUG |
7359 | } |
7360 | |
7361 | JITDUMP(" " FMT_BB " %s: move V%02u from " , block->bbNum, insertionPointString, interval->varNum); |
7362 | JITDUMP("%s to %s" , getRegName(fromReg), getRegName(toReg)); |
7363 | |
7364 | insertMove(block, insertionPoint, interval->varNum, fromReg, toReg); |
7365 | if (fromReg == REG_STK || toReg == REG_STK) |
7366 | { |
7367 | assert(interval->isSpilled); |
7368 | } |
7369 | else |
7370 | { |
7371 | // We should have already marked this as spilled or split. |
7372 | assert((interval->isSpilled) || (interval->isSplit)); |
7373 | } |
7374 | |
7375 | INTRACK_STATS(updateLsraStat(LSRA_STAT_RESOLUTION_MOV, block->bbNum)); |
7376 | } |
7377 | |
7378 | //------------------------------------------------------------------------ |
7379 | // handleOutgoingCriticalEdges: Performs the necessary resolution on all critical edges that feed out of 'block' |
7380 | // |
7381 | // Arguments: |
7382 | // block - the block with outgoing critical edges. |
7383 | // |
7384 | // Return Value: |
7385 | // None.. |
7386 | // |
7387 | // Notes: |
7388 | // For all outgoing critical edges (i.e. any successor of this block which is |
7389 | // a join edge), if there are any conflicts, split the edge by adding a new block, |
7390 | // and generate the resolution code into that block. |
7391 | |
7392 | void LinearScan::handleOutgoingCriticalEdges(BasicBlock* block) |
7393 | { |
7394 | VARSET_TP outResolutionSet(VarSetOps::Intersection(compiler, block->bbLiveOut, resolutionCandidateVars)); |
7395 | if (VarSetOps::IsEmpty(compiler, outResolutionSet)) |
7396 | { |
7397 | return; |
7398 | } |
7399 | VARSET_TP sameResolutionSet(VarSetOps::MakeEmpty(compiler)); |
7400 | VARSET_TP sameLivePathsSet(VarSetOps::MakeEmpty(compiler)); |
7401 | VARSET_TP singleTargetSet(VarSetOps::MakeEmpty(compiler)); |
7402 | VARSET_TP diffResolutionSet(VarSetOps::MakeEmpty(compiler)); |
7403 | |
7404 | // Get the outVarToRegMap for this block |
7405 | VarToRegMap outVarToRegMap = getOutVarToRegMap(block->bbNum); |
7406 | unsigned succCount = block->NumSucc(compiler); |
7407 | assert(succCount > 1); |
7408 | VarToRegMap firstSuccInVarToRegMap = nullptr; |
7409 | BasicBlock* firstSucc = nullptr; |
7410 | |
7411 | // First, determine the live regs at the end of this block so that we know what regs are |
7412 | // available to copy into. |
7413 | // Note that for this purpose we use the full live-out set, because we must ensure that |
7414 | // even the registers that remain the same across the edge are preserved correctly. |
7415 | regMaskTP liveOutRegs = RBM_NONE; |
7416 | VarSetOps::Iter liveOutIter(compiler, block->bbLiveOut); |
7417 | unsigned liveOutVarIndex = 0; |
7418 | while (liveOutIter.NextElem(&liveOutVarIndex)) |
7419 | { |
7420 | regNumber fromReg = getVarReg(outVarToRegMap, liveOutVarIndex); |
7421 | if (fromReg != REG_STK) |
7422 | { |
7423 | regMaskTP fromRegMask = genRegMask(fromReg, getIntervalForLocalVar(liveOutVarIndex)->registerType); |
7424 | liveOutRegs |= fromRegMask; |
7425 | } |
7426 | } |
7427 | |
7428 | // Next, if this blocks ends with a switch table, we have to make sure not to copy |
7429 | // into the registers that it uses. |
7430 | regMaskTP switchRegs = RBM_NONE; |
7431 | if (block->bbJumpKind == BBJ_SWITCH) |
7432 | { |
7433 | // At this point, Lowering has transformed any non-switch-table blocks into |
7434 | // cascading ifs. |
7435 | GenTree* switchTable = LIR::AsRange(block).LastNode(); |
7436 | assert(switchTable != nullptr && switchTable->OperGet() == GT_SWITCH_TABLE); |
7437 | |
7438 | switchRegs = switchTable->gtRsvdRegs; |
7439 | GenTree* op1 = switchTable->gtGetOp1(); |
7440 | GenTree* op2 = switchTable->gtGetOp2(); |
7441 | noway_assert(op1 != nullptr && op2 != nullptr); |
7442 | assert(op1->gtRegNum != REG_NA && op2->gtRegNum != REG_NA); |
7443 | // No floating point values, so no need to worry about the register type |
7444 | // (i.e. for ARM32, where we used the genRegMask overload with a type). |
7445 | assert(varTypeIsIntegralOrI(op1) && varTypeIsIntegralOrI(op2)); |
7446 | switchRegs |= genRegMask(op1->gtRegNum); |
7447 | switchRegs |= genRegMask(op2->gtRegNum); |
7448 | } |
7449 | |
7450 | #ifdef _TARGET_ARM64_ |
7451 | // Next, if this blocks ends with a JCMP, we have to make sure not to copy |
7452 | // into the register that it uses or modify the local variable it must consume |
7453 | LclVarDsc* jcmpLocalVarDsc = nullptr; |
7454 | if (block->bbJumpKind == BBJ_COND) |
7455 | { |
7456 | GenTree* lastNode = LIR::AsRange(block).LastNode(); |
7457 | |
7458 | if (lastNode->OperIs(GT_JCMP)) |
7459 | { |
7460 | GenTree* op1 = lastNode->gtGetOp1(); |
7461 | switchRegs |= genRegMask(op1->gtRegNum); |
7462 | |
7463 | if (op1->IsLocal()) |
7464 | { |
7465 | GenTreeLclVarCommon* lcl = op1->AsLclVarCommon(); |
7466 | jcmpLocalVarDsc = &compiler->lvaTable[lcl->gtLclNum]; |
7467 | } |
7468 | } |
7469 | } |
7470 | #endif |
7471 | |
7472 | VarToRegMap sameVarToRegMap = sharedCriticalVarToRegMap; |
7473 | regMaskTP sameWriteRegs = RBM_NONE; |
7474 | regMaskTP diffReadRegs = RBM_NONE; |
7475 | |
7476 | // For each var that may require resolution, classify them as: |
7477 | // - in the same register at the end of this block and at each target (no resolution needed) |
7478 | // - in different registers at different targets (resolve separately): |
7479 | // diffResolutionSet |
7480 | // - in the same register at each target at which it's live, but different from the end of |
7481 | // this block. We may be able to resolve these as if it is "join", but only if they do not |
7482 | // write to any registers that are read by those in the diffResolutionSet: |
7483 | // sameResolutionSet |
7484 | |
7485 | VarSetOps::Iter outResolutionSetIter(compiler, outResolutionSet); |
7486 | unsigned outResolutionSetVarIndex = 0; |
7487 | while (outResolutionSetIter.NextElem(&outResolutionSetVarIndex)) |
7488 | { |
7489 | regNumber fromReg = getVarReg(outVarToRegMap, outResolutionSetVarIndex); |
7490 | bool isMatch = true; |
7491 | bool isSame = false; |
7492 | bool maybeSingleTarget = false; |
7493 | bool maybeSameLivePaths = false; |
7494 | bool liveOnlyAtSplitEdge = true; |
7495 | regNumber sameToReg = REG_NA; |
7496 | for (unsigned succIndex = 0; succIndex < succCount; succIndex++) |
7497 | { |
7498 | BasicBlock* succBlock = block->GetSucc(succIndex, compiler); |
7499 | if (!VarSetOps::IsMember(compiler, succBlock->bbLiveIn, outResolutionSetVarIndex)) |
7500 | { |
7501 | maybeSameLivePaths = true; |
7502 | continue; |
7503 | } |
7504 | else if (liveOnlyAtSplitEdge) |
7505 | { |
7506 | // Is the var live only at those target blocks which are connected by a split edge to this block |
7507 | liveOnlyAtSplitEdge = ((succBlock->bbPreds->flNext == nullptr) && (succBlock != compiler->fgFirstBB)); |
7508 | } |
7509 | |
7510 | regNumber toReg = getVarReg(getInVarToRegMap(succBlock->bbNum), outResolutionSetVarIndex); |
7511 | if (sameToReg == REG_NA) |
7512 | { |
7513 | sameToReg = toReg; |
7514 | continue; |
7515 | } |
7516 | if (toReg == sameToReg) |
7517 | { |
7518 | continue; |
7519 | } |
7520 | sameToReg = REG_NA; |
7521 | break; |
7522 | } |
7523 | |
7524 | // Check for the cases where we can't write to a register. |
7525 | // We only need to check for these cases if sameToReg is an actual register (not REG_STK). |
7526 | if (sameToReg != REG_NA && sameToReg != REG_STK) |
7527 | { |
7528 | // If there's a path on which this var isn't live, it may use the original value in sameToReg. |
7529 | // In this case, sameToReg will be in the liveOutRegs of this block. |
7530 | // Similarly, if sameToReg is in sameWriteRegs, it has already been used (i.e. for a lclVar that's |
7531 | // live only at another target), and we can't copy another lclVar into that reg in this block. |
7532 | regMaskTP sameToRegMask = |
7533 | genRegMask(sameToReg, getIntervalForLocalVar(outResolutionSetVarIndex)->registerType); |
7534 | if (maybeSameLivePaths && |
7535 | (((sameToRegMask & liveOutRegs) != RBM_NONE) || ((sameToRegMask & sameWriteRegs) != RBM_NONE))) |
7536 | { |
7537 | sameToReg = REG_NA; |
7538 | } |
7539 | // If this register is used by a switch table at the end of the block, we can't do the copy |
7540 | // in this block (since we can't insert it after the switch). |
7541 | if ((sameToRegMask & switchRegs) != RBM_NONE) |
7542 | { |
7543 | sameToReg = REG_NA; |
7544 | } |
7545 | |
7546 | #ifdef _TARGET_ARM64_ |
7547 | if (jcmpLocalVarDsc && (jcmpLocalVarDsc->lvVarIndex == outResolutionSetVarIndex)) |
7548 | { |
7549 | sameToReg = REG_NA; |
7550 | } |
7551 | #endif |
7552 | |
7553 | // If the var is live only at those blocks connected by a split edge and not live-in at some of the |
7554 | // target blocks, we will resolve it the same way as if it were in diffResolutionSet and resolution |
7555 | // will be deferred to the handling of split edges, which means copy will only be at those target(s). |
7556 | // |
7557 | // Another way to achieve similar resolution for vars live only at split edges is by removing them |
7558 | // from consideration up-front but it requires that we traverse those edges anyway to account for |
7559 | // the registers that must note be overwritten. |
7560 | if (liveOnlyAtSplitEdge && maybeSameLivePaths) |
7561 | { |
7562 | sameToReg = REG_NA; |
7563 | } |
7564 | } |
7565 | |
7566 | if (sameToReg == REG_NA) |
7567 | { |
7568 | VarSetOps::AddElemD(compiler, diffResolutionSet, outResolutionSetVarIndex); |
7569 | if (fromReg != REG_STK) |
7570 | { |
7571 | diffReadRegs |= genRegMask(fromReg, getIntervalForLocalVar(outResolutionSetVarIndex)->registerType); |
7572 | } |
7573 | } |
7574 | else if (sameToReg != fromReg) |
7575 | { |
7576 | VarSetOps::AddElemD(compiler, sameResolutionSet, outResolutionSetVarIndex); |
7577 | setVarReg(sameVarToRegMap, outResolutionSetVarIndex, sameToReg); |
7578 | if (sameToReg != REG_STK) |
7579 | { |
7580 | sameWriteRegs |= genRegMask(sameToReg, getIntervalForLocalVar(outResolutionSetVarIndex)->registerType); |
7581 | } |
7582 | } |
7583 | } |
7584 | |
7585 | if (!VarSetOps::IsEmpty(compiler, sameResolutionSet)) |
7586 | { |
7587 | if ((sameWriteRegs & diffReadRegs) != RBM_NONE) |
7588 | { |
7589 | // We cannot split the "same" and "diff" regs if the "same" set writes registers |
7590 | // that must be read by the "diff" set. (Note that when these are done as a "batch" |
7591 | // we carefully order them to ensure all the input regs are read before they are |
7592 | // overwritten.) |
7593 | VarSetOps::UnionD(compiler, diffResolutionSet, sameResolutionSet); |
7594 | VarSetOps::ClearD(compiler, sameResolutionSet); |
7595 | } |
7596 | else |
7597 | { |
7598 | // For any vars in the sameResolutionSet, we can simply add the move at the end of "block". |
7599 | resolveEdge(block, nullptr, ResolveSharedCritical, sameResolutionSet); |
7600 | } |
7601 | } |
7602 | if (!VarSetOps::IsEmpty(compiler, diffResolutionSet)) |
7603 | { |
7604 | for (unsigned succIndex = 0; succIndex < succCount; succIndex++) |
7605 | { |
7606 | BasicBlock* succBlock = block->GetSucc(succIndex, compiler); |
7607 | |
7608 | // Any "diffResolutionSet" resolution for a block with no other predecessors will be handled later |
7609 | // as split resolution. |
7610 | if ((succBlock->bbPreds->flNext == nullptr) && (succBlock != compiler->fgFirstBB)) |
7611 | { |
7612 | continue; |
7613 | } |
7614 | |
7615 | // Now collect the resolution set for just this edge, if any. |
7616 | // Check only the vars in diffResolutionSet that are live-in to this successor. |
7617 | bool needsResolution = false; |
7618 | VarToRegMap succInVarToRegMap = getInVarToRegMap(succBlock->bbNum); |
7619 | VARSET_TP edgeResolutionSet(VarSetOps::Intersection(compiler, diffResolutionSet, succBlock->bbLiveIn)); |
7620 | VarSetOps::Iter iter(compiler, edgeResolutionSet); |
7621 | unsigned varIndex = 0; |
7622 | while (iter.NextElem(&varIndex)) |
7623 | { |
7624 | regNumber fromReg = getVarReg(outVarToRegMap, varIndex); |
7625 | regNumber toReg = getVarReg(succInVarToRegMap, varIndex); |
7626 | |
7627 | if (fromReg == toReg) |
7628 | { |
7629 | VarSetOps::RemoveElemD(compiler, edgeResolutionSet, varIndex); |
7630 | } |
7631 | } |
7632 | if (!VarSetOps::IsEmpty(compiler, edgeResolutionSet)) |
7633 | { |
7634 | resolveEdge(block, succBlock, ResolveCritical, edgeResolutionSet); |
7635 | } |
7636 | } |
7637 | } |
7638 | } |
7639 | |
7640 | //------------------------------------------------------------------------ |
7641 | // resolveEdges: Perform resolution across basic block edges |
7642 | // |
7643 | // Arguments: |
7644 | // None. |
7645 | // |
7646 | // Return Value: |
7647 | // None. |
7648 | // |
7649 | // Notes: |
7650 | // Traverse the basic blocks. |
7651 | // - If this block has a single predecessor that is not the immediately |
7652 | // preceding block, perform any needed 'split' resolution at the beginning of this block |
7653 | // - Otherwise if this block has critical incoming edges, handle them. |
7654 | // - If this block has a single successor that has multiple predecesors, perform any needed |
7655 | // 'join' resolution at the end of this block. |
7656 | // Note that a block may have both 'split' or 'critical' incoming edge(s) and 'join' outgoing |
7657 | // edges. |
7658 | |
7659 | void LinearScan::resolveEdges() |
7660 | { |
7661 | JITDUMP("RESOLVING EDGES\n" ); |
7662 | |
7663 | // The resolutionCandidateVars set was initialized with all the lclVars that are live-in to |
7664 | // any block. We now intersect that set with any lclVars that ever spilled or split. |
7665 | // If there are no candidates for resoultion, simply return. |
7666 | |
7667 | VarSetOps::IntersectionD(compiler, resolutionCandidateVars, splitOrSpilledVars); |
7668 | if (VarSetOps::IsEmpty(compiler, resolutionCandidateVars)) |
7669 | { |
7670 | return; |
7671 | } |
7672 | |
7673 | BasicBlock *block, *prevBlock = nullptr; |
7674 | |
7675 | // Handle all the critical edges first. |
7676 | // We will try to avoid resolution across critical edges in cases where all the critical-edge |
7677 | // targets of a block have the same home. We will then split the edges only for the |
7678 | // remaining mismatches. We visit the out-edges, as that allows us to share the moves that are |
7679 | // common among all the targets. |
7680 | |
7681 | if (hasCriticalEdges) |
7682 | { |
7683 | foreach_block(compiler, block) |
7684 | { |
7685 | if (block->bbNum > bbNumMaxBeforeResolution) |
7686 | { |
7687 | // This is a new block added during resolution - we don't need to visit these now. |
7688 | continue; |
7689 | } |
7690 | if (blockInfo[block->bbNum].hasCriticalOutEdge) |
7691 | { |
7692 | handleOutgoingCriticalEdges(block); |
7693 | } |
7694 | prevBlock = block; |
7695 | } |
7696 | } |
7697 | |
7698 | prevBlock = nullptr; |
7699 | foreach_block(compiler, block) |
7700 | { |
7701 | if (block->bbNum > bbNumMaxBeforeResolution) |
7702 | { |
7703 | // This is a new block added during resolution - we don't need to visit these now. |
7704 | continue; |
7705 | } |
7706 | |
7707 | unsigned succCount = block->NumSucc(compiler); |
7708 | flowList* preds = block->bbPreds; |
7709 | BasicBlock* uniquePredBlock = block->GetUniquePred(compiler); |
7710 | |
7711 | // First, if this block has a single predecessor, |
7712 | // we may need resolution at the beginning of this block. |
7713 | // This may be true even if it's the block we used for starting locations, |
7714 | // if a variable was spilled. |
7715 | VARSET_TP inResolutionSet(VarSetOps::Intersection(compiler, block->bbLiveIn, resolutionCandidateVars)); |
7716 | if (!VarSetOps::IsEmpty(compiler, inResolutionSet)) |
7717 | { |
7718 | if (uniquePredBlock != nullptr) |
7719 | { |
7720 | // We may have split edges during critical edge resolution, and in the process split |
7721 | // a non-critical edge as well. |
7722 | // It is unlikely that we would ever have more than one of these in sequence (indeed, |
7723 | // I don't think it's possible), but there's no need to assume that it can't. |
7724 | while (uniquePredBlock->bbNum > bbNumMaxBeforeResolution) |
7725 | { |
7726 | uniquePredBlock = uniquePredBlock->GetUniquePred(compiler); |
7727 | noway_assert(uniquePredBlock != nullptr); |
7728 | } |
7729 | resolveEdge(uniquePredBlock, block, ResolveSplit, inResolutionSet); |
7730 | } |
7731 | } |
7732 | |
7733 | // Finally, if this block has a single successor: |
7734 | // - and that has at least one other predecessor (otherwise we will do the resolution at the |
7735 | // top of the successor), |
7736 | // - and that is not the target of a critical edge (otherwise we've already handled it) |
7737 | // we may need resolution at the end of this block. |
7738 | |
7739 | if (succCount == 1) |
7740 | { |
7741 | BasicBlock* succBlock = block->GetSucc(0, compiler); |
7742 | if (succBlock->GetUniquePred(compiler) == nullptr) |
7743 | { |
7744 | VARSET_TP outResolutionSet( |
7745 | VarSetOps::Intersection(compiler, succBlock->bbLiveIn, resolutionCandidateVars)); |
7746 | if (!VarSetOps::IsEmpty(compiler, outResolutionSet)) |
7747 | { |
7748 | resolveEdge(block, succBlock, ResolveJoin, outResolutionSet); |
7749 | } |
7750 | } |
7751 | } |
7752 | } |
7753 | |
7754 | // Now, fixup the mapping for any blocks that were adding for edge splitting. |
7755 | // See the comment prior to the call to fgSplitEdge() in resolveEdge(). |
7756 | // Note that we could fold this loop in with the checking code below, but that |
7757 | // would only improve the debug case, and would clutter up the code somewhat. |
7758 | if (compiler->fgBBNumMax > bbNumMaxBeforeResolution) |
7759 | { |
7760 | foreach_block(compiler, block) |
7761 | { |
7762 | if (block->bbNum > bbNumMaxBeforeResolution) |
7763 | { |
7764 | // There may be multiple blocks inserted when we split. But we must always have exactly |
7765 | // one path (i.e. all blocks must be single-successor and single-predecessor), |
7766 | // and only one block along the path may be non-empty. |
7767 | // Note that we may have a newly-inserted block that is empty, but which connects |
7768 | // two non-resolution blocks. This happens when an edge is split that requires it. |
7769 | |
7770 | BasicBlock* succBlock = block; |
7771 | do |
7772 | { |
7773 | succBlock = succBlock->GetUniqueSucc(); |
7774 | noway_assert(succBlock != nullptr); |
7775 | } while ((succBlock->bbNum > bbNumMaxBeforeResolution) && succBlock->isEmpty()); |
7776 | |
7777 | BasicBlock* predBlock = block; |
7778 | do |
7779 | { |
7780 | predBlock = predBlock->GetUniquePred(compiler); |
7781 | noway_assert(predBlock != nullptr); |
7782 | } while ((predBlock->bbNum > bbNumMaxBeforeResolution) && predBlock->isEmpty()); |
7783 | |
7784 | unsigned succBBNum = succBlock->bbNum; |
7785 | unsigned predBBNum = predBlock->bbNum; |
7786 | if (block->isEmpty()) |
7787 | { |
7788 | // For the case of the empty block, find the non-resolution block (succ or pred). |
7789 | if (predBBNum > bbNumMaxBeforeResolution) |
7790 | { |
7791 | assert(succBBNum <= bbNumMaxBeforeResolution); |
7792 | predBBNum = 0; |
7793 | } |
7794 | else |
7795 | { |
7796 | succBBNum = 0; |
7797 | } |
7798 | } |
7799 | else |
7800 | { |
7801 | assert((succBBNum <= bbNumMaxBeforeResolution) && (predBBNum <= bbNumMaxBeforeResolution)); |
7802 | } |
7803 | SplitEdgeInfo info = {predBBNum, succBBNum}; |
7804 | getSplitBBNumToTargetBBNumMap()->Set(block->bbNum, info); |
7805 | } |
7806 | } |
7807 | } |
7808 | |
7809 | #ifdef DEBUG |
7810 | // Make sure the varToRegMaps match up on all edges. |
7811 | bool foundMismatch = false; |
7812 | foreach_block(compiler, block) |
7813 | { |
7814 | if (block->isEmpty() && block->bbNum > bbNumMaxBeforeResolution) |
7815 | { |
7816 | continue; |
7817 | } |
7818 | VarToRegMap toVarToRegMap = getInVarToRegMap(block->bbNum); |
7819 | for (flowList* pred = block->bbPreds; pred != nullptr; pred = pred->flNext) |
7820 | { |
7821 | BasicBlock* predBlock = pred->flBlock; |
7822 | VarToRegMap fromVarToRegMap = getOutVarToRegMap(predBlock->bbNum); |
7823 | VarSetOps::Iter iter(compiler, block->bbLiveIn); |
7824 | unsigned varIndex = 0; |
7825 | while (iter.NextElem(&varIndex)) |
7826 | { |
7827 | regNumber fromReg = getVarReg(fromVarToRegMap, varIndex); |
7828 | regNumber toReg = getVarReg(toVarToRegMap, varIndex); |
7829 | if (fromReg != toReg) |
7830 | { |
7831 | if (!foundMismatch) |
7832 | { |
7833 | foundMismatch = true; |
7834 | printf("Found mismatched var locations after resolution!\n" ); |
7835 | } |
7836 | unsigned varNum = compiler->lvaTrackedToVarNum[varIndex]; |
7837 | printf(" V%02u: " FMT_BB " to " FMT_BB ": %s to %s\n" , varNum, predBlock->bbNum, block->bbNum, |
7838 | getRegName(fromReg), getRegName(toReg)); |
7839 | } |
7840 | } |
7841 | } |
7842 | } |
7843 | assert(!foundMismatch); |
7844 | #endif |
7845 | JITDUMP("\n" ); |
7846 | } |
7847 | |
7848 | //------------------------------------------------------------------------ |
7849 | // resolveEdge: Perform the specified type of resolution between two blocks. |
7850 | // |
7851 | // Arguments: |
7852 | // fromBlock - the block from which the edge originates |
7853 | // toBlock - the block at which the edge terminates |
7854 | // resolveType - the type of resolution to be performed |
7855 | // liveSet - the set of tracked lclVar indices which may require resolution |
7856 | // |
7857 | // Return Value: |
7858 | // None. |
7859 | // |
7860 | // Assumptions: |
7861 | // The caller must have performed the analysis to determine the type of the edge. |
7862 | // |
7863 | // Notes: |
7864 | // This method emits the correctly ordered moves necessary to place variables in the |
7865 | // correct registers across a Split, Join or Critical edge. |
7866 | // In order to avoid overwriting register values before they have been moved to their |
7867 | // new home (register/stack), it first does the register-to-stack moves (to free those |
7868 | // registers), then the register to register moves, ensuring that the target register |
7869 | // is free before the move, and then finally the stack to register moves. |
7870 | |
7871 | void LinearScan::resolveEdge(BasicBlock* fromBlock, |
7872 | BasicBlock* toBlock, |
7873 | ResolveType resolveType, |
7874 | VARSET_VALARG_TP liveSet) |
7875 | { |
7876 | VarToRegMap fromVarToRegMap = getOutVarToRegMap(fromBlock->bbNum); |
7877 | VarToRegMap toVarToRegMap; |
7878 | if (resolveType == ResolveSharedCritical) |
7879 | { |
7880 | toVarToRegMap = sharedCriticalVarToRegMap; |
7881 | } |
7882 | else |
7883 | { |
7884 | toVarToRegMap = getInVarToRegMap(toBlock->bbNum); |
7885 | } |
7886 | |
7887 | // The block to which we add the resolution moves depends on the resolveType |
7888 | BasicBlock* block; |
7889 | switch (resolveType) |
7890 | { |
7891 | case ResolveJoin: |
7892 | case ResolveSharedCritical: |
7893 | block = fromBlock; |
7894 | break; |
7895 | case ResolveSplit: |
7896 | block = toBlock; |
7897 | break; |
7898 | case ResolveCritical: |
7899 | // fgSplitEdge may add one or two BasicBlocks. It returns the block that splits |
7900 | // the edge from 'fromBlock' and 'toBlock', but if it inserts that block right after |
7901 | // a block with a fall-through it will have to create another block to handle that edge. |
7902 | // These new blocks can be mapped to existing blocks in order to correctly handle |
7903 | // the calls to recordVarLocationsAtStartOfBB() from codegen. That mapping is handled |
7904 | // in resolveEdges(), after all the edge resolution has been done (by calling this |
7905 | // method for each edge). |
7906 | block = compiler->fgSplitEdge(fromBlock, toBlock); |
7907 | |
7908 | // Split edges are counted against fromBlock. |
7909 | INTRACK_STATS(updateLsraStat(LSRA_STAT_SPLIT_EDGE, fromBlock->bbNum)); |
7910 | break; |
7911 | default: |
7912 | unreached(); |
7913 | break; |
7914 | } |
7915 | |
7916 | #ifndef _TARGET_XARCH_ |
7917 | // We record tempregs for beginning and end of each block. |
7918 | // For amd64/x86 we only need a tempReg for float - we'll use xchg for int. |
7919 | // TODO-Throughput: It would be better to determine the tempRegs on demand, but the code below |
7920 | // modifies the varToRegMaps so we don't have all the correct registers at the time |
7921 | // we need to get the tempReg. |
7922 | regNumber tempRegInt = |
7923 | (resolveType == ResolveSharedCritical) ? REG_NA : getTempRegForResolution(fromBlock, toBlock, TYP_INT); |
7924 | #endif // !_TARGET_XARCH_ |
7925 | regNumber tempRegFlt = REG_NA; |
7926 | regNumber tempRegDbl = REG_NA; // Used only for ARM |
7927 | if ((compiler->compFloatingPointUsed) && (resolveType != ResolveSharedCritical)) |
7928 | { |
7929 | #ifdef _TARGET_ARM_ |
7930 | // Try to reserve a double register for TYP_DOUBLE and use it for TYP_FLOAT too if available. |
7931 | tempRegDbl = getTempRegForResolution(fromBlock, toBlock, TYP_DOUBLE); |
7932 | if (tempRegDbl != REG_NA) |
7933 | { |
7934 | tempRegFlt = tempRegDbl; |
7935 | } |
7936 | else |
7937 | #endif // _TARGET_ARM_ |
7938 | { |
7939 | tempRegFlt = getTempRegForResolution(fromBlock, toBlock, TYP_FLOAT); |
7940 | } |
7941 | } |
7942 | |
7943 | regMaskTP targetRegsToDo = RBM_NONE; |
7944 | regMaskTP targetRegsReady = RBM_NONE; |
7945 | regMaskTP targetRegsFromStack = RBM_NONE; |
7946 | |
7947 | // The following arrays capture the location of the registers as they are moved: |
7948 | // - location[reg] gives the current location of the var that was originally in 'reg'. |
7949 | // (Note that a var may be moved more than once.) |
7950 | // - source[reg] gives the original location of the var that needs to be moved to 'reg'. |
7951 | // For example, if a var is in rax and needs to be moved to rsi, then we would start with: |
7952 | // location[rax] == rax |
7953 | // source[rsi] == rax -- this doesn't change |
7954 | // Then, if for some reason we need to move it temporary to rbx, we would have: |
7955 | // location[rax] == rbx |
7956 | // Once we have completed the move, we will have: |
7957 | // location[rax] == REG_NA |
7958 | // This indicates that the var originally in rax is now in its target register. |
7959 | |
7960 | regNumberSmall location[REG_COUNT]; |
7961 | C_ASSERT(sizeof(char) == sizeof(regNumberSmall)); // for memset to work |
7962 | memset(location, REG_NA, REG_COUNT); |
7963 | regNumberSmall source[REG_COUNT]; |
7964 | memset(source, REG_NA, REG_COUNT); |
7965 | |
7966 | // What interval is this register associated with? |
7967 | // (associated with incoming reg) |
7968 | Interval* sourceIntervals[REG_COUNT]; |
7969 | memset(&sourceIntervals, 0, sizeof(sourceIntervals)); |
7970 | |
7971 | // Intervals for vars that need to be loaded from the stack |
7972 | Interval* stackToRegIntervals[REG_COUNT]; |
7973 | memset(&stackToRegIntervals, 0, sizeof(stackToRegIntervals)); |
7974 | |
7975 | // Get the starting insertion point for the "to" resolution |
7976 | GenTree* insertionPoint = nullptr; |
7977 | if (resolveType == ResolveSplit || resolveType == ResolveCritical) |
7978 | { |
7979 | insertionPoint = LIR::AsRange(block).FirstNonPhiNode(); |
7980 | } |
7981 | |
7982 | // First: |
7983 | // - Perform all moves from reg to stack (no ordering needed on these) |
7984 | // - For reg to reg moves, record the current location, associating their |
7985 | // source location with the target register they need to go into |
7986 | // - For stack to reg moves (done last, no ordering needed between them) |
7987 | // record the interval associated with the target reg |
7988 | // TODO-Throughput: We should be looping over the liveIn and liveOut registers, since |
7989 | // that will scale better than the live variables |
7990 | |
7991 | VarSetOps::Iter iter(compiler, liveSet); |
7992 | unsigned varIndex = 0; |
7993 | while (iter.NextElem(&varIndex)) |
7994 | { |
7995 | regNumber fromReg = getVarReg(fromVarToRegMap, varIndex); |
7996 | regNumber toReg = getVarReg(toVarToRegMap, varIndex); |
7997 | if (fromReg == toReg) |
7998 | { |
7999 | continue; |
8000 | } |
8001 | |
8002 | // For Critical edges, the location will not change on either side of the edge, |
8003 | // since we'll add a new block to do the move. |
8004 | if (resolveType == ResolveSplit) |
8005 | { |
8006 | setVarReg(toVarToRegMap, varIndex, fromReg); |
8007 | } |
8008 | else if (resolveType == ResolveJoin || resolveType == ResolveSharedCritical) |
8009 | { |
8010 | setVarReg(fromVarToRegMap, varIndex, toReg); |
8011 | } |
8012 | |
8013 | assert(fromReg < UCHAR_MAX && toReg < UCHAR_MAX); |
8014 | |
8015 | Interval* interval = getIntervalForLocalVar(varIndex); |
8016 | |
8017 | if (fromReg == REG_STK) |
8018 | { |
8019 | stackToRegIntervals[toReg] = interval; |
8020 | targetRegsFromStack |= genRegMask(toReg); |
8021 | } |
8022 | else if (toReg == REG_STK) |
8023 | { |
8024 | // Do the reg to stack moves now |
8025 | addResolution(block, insertionPoint, interval, REG_STK, fromReg); |
8026 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8027 | } |
8028 | else |
8029 | { |
8030 | location[fromReg] = (regNumberSmall)fromReg; |
8031 | source[toReg] = (regNumberSmall)fromReg; |
8032 | sourceIntervals[fromReg] = interval; |
8033 | targetRegsToDo |= genRegMask(toReg); |
8034 | } |
8035 | } |
8036 | |
8037 | // REGISTER to REGISTER MOVES |
8038 | |
8039 | // First, find all the ones that are ready to move now |
8040 | regMaskTP targetCandidates = targetRegsToDo; |
8041 | while (targetCandidates != RBM_NONE) |
8042 | { |
8043 | regMaskTP targetRegMask = genFindLowestBit(targetCandidates); |
8044 | targetCandidates &= ~targetRegMask; |
8045 | regNumber targetReg = genRegNumFromMask(targetRegMask); |
8046 | if (location[targetReg] == REG_NA) |
8047 | { |
8048 | #ifdef _TARGET_ARM_ |
8049 | regNumber sourceReg = (regNumber)source[targetReg]; |
8050 | Interval* interval = sourceIntervals[sourceReg]; |
8051 | if (interval->registerType == TYP_DOUBLE) |
8052 | { |
8053 | // For ARM32, make sure that both of the float halves of the double register are available. |
8054 | assert(genIsValidDoubleReg(targetReg)); |
8055 | regNumber anotherHalfRegNum = REG_NEXT(targetReg); |
8056 | if (location[anotherHalfRegNum] == REG_NA) |
8057 | { |
8058 | targetRegsReady |= targetRegMask; |
8059 | } |
8060 | } |
8061 | else |
8062 | #endif // _TARGET_ARM_ |
8063 | { |
8064 | targetRegsReady |= targetRegMask; |
8065 | } |
8066 | } |
8067 | } |
8068 | |
8069 | // Perform reg to reg moves |
8070 | while (targetRegsToDo != RBM_NONE) |
8071 | { |
8072 | while (targetRegsReady != RBM_NONE) |
8073 | { |
8074 | regMaskTP targetRegMask = genFindLowestBit(targetRegsReady); |
8075 | targetRegsToDo &= ~targetRegMask; |
8076 | targetRegsReady &= ~targetRegMask; |
8077 | regNumber targetReg = genRegNumFromMask(targetRegMask); |
8078 | assert(location[targetReg] != targetReg); |
8079 | regNumber sourceReg = (regNumber)source[targetReg]; |
8080 | regNumber fromReg = (regNumber)location[sourceReg]; |
8081 | assert(fromReg < UCHAR_MAX && sourceReg < UCHAR_MAX); |
8082 | Interval* interval = sourceIntervals[sourceReg]; |
8083 | assert(interval != nullptr); |
8084 | addResolution(block, insertionPoint, interval, targetReg, fromReg); |
8085 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8086 | sourceIntervals[sourceReg] = nullptr; |
8087 | location[sourceReg] = REG_NA; |
8088 | |
8089 | // Do we have a free targetReg? |
8090 | if (fromReg == sourceReg) |
8091 | { |
8092 | if (source[fromReg] != REG_NA) |
8093 | { |
8094 | regMaskTP fromRegMask = genRegMask(fromReg); |
8095 | targetRegsReady |= fromRegMask; |
8096 | #ifdef _TARGET_ARM_ |
8097 | if (genIsValidDoubleReg(fromReg)) |
8098 | { |
8099 | // Ensure that either: |
8100 | // - the Interval targeting fromReg is not double, or |
8101 | // - the other half of the double is free. |
8102 | Interval* otherInterval = sourceIntervals[source[fromReg]]; |
8103 | regNumber upperHalfReg = REG_NEXT(fromReg); |
8104 | if ((otherInterval->registerType == TYP_DOUBLE) && (location[upperHalfReg] != REG_NA)) |
8105 | { |
8106 | targetRegsReady &= ~fromRegMask; |
8107 | } |
8108 | } |
8109 | } |
8110 | else if (genIsValidFloatReg(fromReg) && !genIsValidDoubleReg(fromReg)) |
8111 | { |
8112 | // We may have freed up the other half of a double where the lower half |
8113 | // was already free. |
8114 | regNumber lowerHalfReg = REG_PREV(fromReg); |
8115 | regNumber lowerHalfSrcReg = (regNumber)source[lowerHalfReg]; |
8116 | regNumber lowerHalfSrcLoc = (regNumber)location[lowerHalfReg]; |
8117 | // Necessary conditions: |
8118 | // - There is a source register for this reg (lowerHalfSrcReg != REG_NA) |
8119 | // - It is currently free (lowerHalfSrcLoc == REG_NA) |
8120 | // - The source interval isn't yet completed (sourceIntervals[lowerHalfSrcReg] != nullptr) |
8121 | // - It's not in the ready set ((targetRegsReady & genRegMask(lowerHalfReg)) == |
8122 | // RBM_NONE) |
8123 | // |
8124 | if ((lowerHalfSrcReg != REG_NA) && (lowerHalfSrcLoc == REG_NA) && |
8125 | (sourceIntervals[lowerHalfSrcReg] != nullptr) && |
8126 | ((targetRegsReady & genRegMask(lowerHalfReg)) == RBM_NONE)) |
8127 | { |
8128 | // This must be a double interval, otherwise it would be in targetRegsReady, or already |
8129 | // completed. |
8130 | assert(sourceIntervals[lowerHalfSrcReg]->registerType == TYP_DOUBLE); |
8131 | targetRegsReady |= genRegMask(lowerHalfReg); |
8132 | } |
8133 | #endif // _TARGET_ARM_ |
8134 | } |
8135 | } |
8136 | } |
8137 | if (targetRegsToDo != RBM_NONE) |
8138 | { |
8139 | regMaskTP targetRegMask = genFindLowestBit(targetRegsToDo); |
8140 | regNumber targetReg = genRegNumFromMask(targetRegMask); |
8141 | |
8142 | // Is it already there due to other moves? |
8143 | // If not, move it to the temp reg, OR swap it with another register |
8144 | regNumber sourceReg = (regNumber)source[targetReg]; |
8145 | regNumber fromReg = (regNumber)location[sourceReg]; |
8146 | if (targetReg == fromReg) |
8147 | { |
8148 | targetRegsToDo &= ~targetRegMask; |
8149 | } |
8150 | else |
8151 | { |
8152 | regNumber tempReg = REG_NA; |
8153 | bool useSwap = false; |
8154 | if (emitter::isFloatReg(targetReg)) |
8155 | { |
8156 | #ifdef _TARGET_ARM_ |
8157 | if (sourceIntervals[fromReg]->registerType == TYP_DOUBLE) |
8158 | { |
8159 | // ARM32 requires a double temp register for TYP_DOUBLE. |
8160 | tempReg = tempRegDbl; |
8161 | } |
8162 | else |
8163 | #endif // _TARGET_ARM_ |
8164 | tempReg = tempRegFlt; |
8165 | } |
8166 | #ifdef _TARGET_XARCH_ |
8167 | else |
8168 | { |
8169 | useSwap = true; |
8170 | } |
8171 | #else // !_TARGET_XARCH_ |
8172 | |
8173 | else |
8174 | { |
8175 | tempReg = tempRegInt; |
8176 | } |
8177 | |
8178 | #endif // !_TARGET_XARCH_ |
8179 | if (useSwap || tempReg == REG_NA) |
8180 | { |
8181 | // First, we have to figure out the destination register for what's currently in fromReg, |
8182 | // so that we can find its sourceInterval. |
8183 | regNumber otherTargetReg = REG_NA; |
8184 | |
8185 | // By chance, is fromReg going where it belongs? |
8186 | if (location[source[fromReg]] == targetReg) |
8187 | { |
8188 | otherTargetReg = fromReg; |
8189 | // If we can swap, we will be done with otherTargetReg as well. |
8190 | // Otherwise, we'll spill it to the stack and reload it later. |
8191 | if (useSwap) |
8192 | { |
8193 | regMaskTP fromRegMask = genRegMask(fromReg); |
8194 | targetRegsToDo &= ~fromRegMask; |
8195 | } |
8196 | } |
8197 | else |
8198 | { |
8199 | // Look at the remaining registers from targetRegsToDo (which we expect to be relatively |
8200 | // small at this point) to find out what's currently in targetReg. |
8201 | regMaskTP mask = targetRegsToDo; |
8202 | while (mask != RBM_NONE && otherTargetReg == REG_NA) |
8203 | { |
8204 | regMaskTP nextRegMask = genFindLowestBit(mask); |
8205 | regNumber nextReg = genRegNumFromMask(nextRegMask); |
8206 | mask &= ~nextRegMask; |
8207 | if (location[source[nextReg]] == targetReg) |
8208 | { |
8209 | otherTargetReg = nextReg; |
8210 | } |
8211 | } |
8212 | } |
8213 | assert(otherTargetReg != REG_NA); |
8214 | |
8215 | if (useSwap) |
8216 | { |
8217 | // Generate a "swap" of fromReg and targetReg |
8218 | insertSwap(block, insertionPoint, sourceIntervals[source[otherTargetReg]]->varNum, targetReg, |
8219 | sourceIntervals[sourceReg]->varNum, fromReg); |
8220 | location[sourceReg] = REG_NA; |
8221 | location[source[otherTargetReg]] = (regNumberSmall)fromReg; |
8222 | |
8223 | INTRACK_STATS(updateLsraStat(LSRA_STAT_RESOLUTION_MOV, block->bbNum)); |
8224 | } |
8225 | else |
8226 | { |
8227 | // Spill "targetReg" to the stack and add its eventual target (otherTargetReg) |
8228 | // to "targetRegsFromStack", which will be handled below. |
8229 | // NOTE: This condition is very rare. Setting COMPlus_JitStressRegs=0x203 |
8230 | // has been known to trigger it in JIT SH. |
8231 | |
8232 | // First, spill "otherInterval" from targetReg to the stack. |
8233 | Interval* otherInterval = sourceIntervals[source[otherTargetReg]]; |
8234 | setIntervalAsSpilled(otherInterval); |
8235 | addResolution(block, insertionPoint, otherInterval, REG_STK, targetReg); |
8236 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8237 | location[source[otherTargetReg]] = REG_STK; |
8238 | |
8239 | // Now, move the interval that is going to targetReg, and add its "fromReg" to |
8240 | // "targetRegsReady". |
8241 | addResolution(block, insertionPoint, sourceIntervals[sourceReg], targetReg, fromReg); |
8242 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8243 | location[sourceReg] = REG_NA; |
8244 | targetRegsReady |= genRegMask(fromReg); |
8245 | } |
8246 | targetRegsToDo &= ~targetRegMask; |
8247 | } |
8248 | else |
8249 | { |
8250 | compiler->codeGen->regSet.rsSetRegsModified(genRegMask(tempReg) DEBUGARG(true)); |
8251 | #ifdef _TARGET_ARM_ |
8252 | if (sourceIntervals[fromReg]->registerType == TYP_DOUBLE) |
8253 | { |
8254 | assert(genIsValidDoubleReg(targetReg)); |
8255 | assert(genIsValidDoubleReg(tempReg)); |
8256 | |
8257 | addResolutionForDouble(block, insertionPoint, sourceIntervals, location, tempReg, targetReg, |
8258 | resolveType); |
8259 | } |
8260 | else |
8261 | #endif // _TARGET_ARM_ |
8262 | { |
8263 | assert(sourceIntervals[targetReg] != nullptr); |
8264 | |
8265 | addResolution(block, insertionPoint, sourceIntervals[targetReg], tempReg, targetReg); |
8266 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8267 | location[targetReg] = (regNumberSmall)tempReg; |
8268 | } |
8269 | targetRegsReady |= targetRegMask; |
8270 | } |
8271 | } |
8272 | } |
8273 | } |
8274 | |
8275 | // Finally, perform stack to reg moves |
8276 | // All the target regs will be empty at this point |
8277 | while (targetRegsFromStack != RBM_NONE) |
8278 | { |
8279 | regMaskTP targetRegMask = genFindLowestBit(targetRegsFromStack); |
8280 | targetRegsFromStack &= ~targetRegMask; |
8281 | regNumber targetReg = genRegNumFromMask(targetRegMask); |
8282 | |
8283 | Interval* interval = stackToRegIntervals[targetReg]; |
8284 | assert(interval != nullptr); |
8285 | |
8286 | addResolution(block, insertionPoint, interval, targetReg, REG_STK); |
8287 | JITDUMP(" (%s)\n" , resolveTypeName[resolveType]); |
8288 | } |
8289 | } |
8290 | |
8291 | #if TRACK_LSRA_STATS |
8292 | // ---------------------------------------------------------- |
8293 | // updateLsraStat: Increment LSRA stat counter. |
8294 | // |
8295 | // Arguments: |
8296 | // stat - LSRA stat enum |
8297 | // bbNum - Basic block to which LSRA stat needs to be |
8298 | // associated with. |
8299 | // |
8300 | void LinearScan::updateLsraStat(LsraStat stat, unsigned bbNum) |
8301 | { |
8302 | if (bbNum > bbNumMaxBeforeResolution) |
8303 | { |
8304 | // This is a newly created basic block as part of resolution. |
8305 | // These blocks contain resolution moves that are already accounted. |
8306 | return; |
8307 | } |
8308 | |
8309 | switch (stat) |
8310 | { |
8311 | case LSRA_STAT_SPILL: |
8312 | ++(blockInfo[bbNum].spillCount); |
8313 | break; |
8314 | |
8315 | case LSRA_STAT_COPY_REG: |
8316 | ++(blockInfo[bbNum].copyRegCount); |
8317 | break; |
8318 | |
8319 | case LSRA_STAT_RESOLUTION_MOV: |
8320 | ++(blockInfo[bbNum].resolutionMovCount); |
8321 | break; |
8322 | |
8323 | case LSRA_STAT_SPLIT_EDGE: |
8324 | ++(blockInfo[bbNum].splitEdgeCount); |
8325 | break; |
8326 | |
8327 | default: |
8328 | break; |
8329 | } |
8330 | } |
8331 | |
8332 | // ----------------------------------------------------------- |
8333 | // dumpLsraStats - dumps Lsra stats to given file. |
8334 | // |
8335 | // Arguments: |
8336 | // file - file to which stats are to be written. |
8337 | // |
8338 | void LinearScan::dumpLsraStats(FILE* file) |
8339 | { |
8340 | unsigned sumSpillCount = 0; |
8341 | unsigned sumCopyRegCount = 0; |
8342 | unsigned sumResolutionMovCount = 0; |
8343 | unsigned sumSplitEdgeCount = 0; |
8344 | UINT64 wtdSpillCount = 0; |
8345 | UINT64 wtdCopyRegCount = 0; |
8346 | UINT64 wtdResolutionMovCount = 0; |
8347 | |
8348 | fprintf(file, "----------\n" ); |
8349 | fprintf(file, "LSRA Stats" ); |
8350 | #ifdef DEBUG |
8351 | if (!VERBOSE) |
8352 | { |
8353 | fprintf(file, " : %s\n" , compiler->info.compFullName); |
8354 | } |
8355 | else |
8356 | { |
8357 | // In verbose mode no need to print full name |
8358 | // while printing lsra stats. |
8359 | fprintf(file, "\n" ); |
8360 | } |
8361 | #else |
8362 | fprintf(file, " : %s\n" , compiler->eeGetMethodFullName(compiler->info.compCompHnd)); |
8363 | #endif |
8364 | |
8365 | fprintf(file, "----------\n" ); |
8366 | |
8367 | for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext) |
8368 | { |
8369 | if (block->bbNum > bbNumMaxBeforeResolution) |
8370 | { |
8371 | continue; |
8372 | } |
8373 | |
8374 | unsigned spillCount = blockInfo[block->bbNum].spillCount; |
8375 | unsigned copyRegCount = blockInfo[block->bbNum].copyRegCount; |
8376 | unsigned resolutionMovCount = blockInfo[block->bbNum].resolutionMovCount; |
8377 | unsigned splitEdgeCount = blockInfo[block->bbNum].splitEdgeCount; |
8378 | |
8379 | if (spillCount != 0 || copyRegCount != 0 || resolutionMovCount != 0 || splitEdgeCount != 0) |
8380 | { |
8381 | fprintf(file, FMT_BB " [%8d]: " , block->bbNum, block->bbWeight); |
8382 | fprintf(file, "SpillCount = %d, ResolutionMovs = %d, SplitEdges = %d, CopyReg = %d\n" , spillCount, |
8383 | resolutionMovCount, splitEdgeCount, copyRegCount); |
8384 | } |
8385 | |
8386 | sumSpillCount += spillCount; |
8387 | sumCopyRegCount += copyRegCount; |
8388 | sumResolutionMovCount += resolutionMovCount; |
8389 | sumSplitEdgeCount += splitEdgeCount; |
8390 | |
8391 | wtdSpillCount += (UINT64)spillCount * block->bbWeight; |
8392 | wtdCopyRegCount += (UINT64)copyRegCount * block->bbWeight; |
8393 | wtdResolutionMovCount += (UINT64)resolutionMovCount * block->bbWeight; |
8394 | } |
8395 | |
8396 | fprintf(file, "Total Tracked Vars: %d\n" , compiler->lvaTrackedCount); |
8397 | fprintf(file, "Total Reg Cand Vars: %d\n" , regCandidateVarCount); |
8398 | fprintf(file, "Total number of Intervals: %d\n" , static_cast<unsigned>(intervals.size() - 1)); |
8399 | fprintf(file, "Total number of RefPositions: %d\n" , static_cast<unsigned>(refPositions.size() - 1)); |
8400 | fprintf(file, "Total Spill Count: %d Weighted: %I64u\n" , sumSpillCount, wtdSpillCount); |
8401 | fprintf(file, "Total CopyReg Count: %d Weighted: %I64u\n" , sumCopyRegCount, wtdCopyRegCount); |
8402 | fprintf(file, "Total ResolutionMov Count: %d Weighted: %I64u\n" , sumResolutionMovCount, wtdResolutionMovCount); |
8403 | fprintf(file, "Total number of split edges: %d\n" , sumSplitEdgeCount); |
8404 | |
8405 | // compute total number of spill temps created |
8406 | unsigned numSpillTemps = 0; |
8407 | for (int i = 0; i < TYP_COUNT; i++) |
8408 | { |
8409 | numSpillTemps += maxSpill[i]; |
8410 | } |
8411 | fprintf(file, "Total Number of spill temps created: %d\n\n" , numSpillTemps); |
8412 | } |
8413 | #endif // TRACK_LSRA_STATS |
8414 | |
8415 | #ifdef DEBUG |
8416 | void dumpRegMask(regMaskTP regs) |
8417 | { |
8418 | if (regs == RBM_ALLINT) |
8419 | { |
8420 | printf("[allInt]" ); |
8421 | } |
8422 | else if (regs == (RBM_ALLINT & ~RBM_FPBASE)) |
8423 | { |
8424 | printf("[allIntButFP]" ); |
8425 | } |
8426 | else if (regs == RBM_ALLFLOAT) |
8427 | { |
8428 | printf("[allFloat]" ); |
8429 | } |
8430 | else if (regs == RBM_ALLDOUBLE) |
8431 | { |
8432 | printf("[allDouble]" ); |
8433 | } |
8434 | else |
8435 | { |
8436 | dspRegMask(regs); |
8437 | } |
8438 | } |
8439 | |
8440 | static const char* getRefTypeName(RefType refType) |
8441 | { |
8442 | switch (refType) |
8443 | { |
8444 | #define DEF_REFTYPE(memberName, memberValue, shortName) \ |
8445 | case memberName: \ |
8446 | return #memberName; |
8447 | #include "lsra_reftypes.h" |
8448 | #undef DEF_REFTYPE |
8449 | default: |
8450 | return nullptr; |
8451 | } |
8452 | } |
8453 | |
8454 | static const char* getRefTypeShortName(RefType refType) |
8455 | { |
8456 | switch (refType) |
8457 | { |
8458 | #define DEF_REFTYPE(memberName, memberValue, shortName) \ |
8459 | case memberName: \ |
8460 | return shortName; |
8461 | #include "lsra_reftypes.h" |
8462 | #undef DEF_REFTYPE |
8463 | default: |
8464 | return nullptr; |
8465 | } |
8466 | } |
8467 | |
8468 | void RefPosition::dump() |
8469 | { |
8470 | printf("<RefPosition #%-3u @%-3u" , rpNum, nodeLocation); |
8471 | |
8472 | printf(" %s " , getRefTypeName(refType)); |
8473 | |
8474 | if (this->isPhysRegRef) |
8475 | { |
8476 | this->getReg()->tinyDump(); |
8477 | } |
8478 | else if (getInterval()) |
8479 | { |
8480 | this->getInterval()->tinyDump(); |
8481 | } |
8482 | |
8483 | if (this->treeNode) |
8484 | { |
8485 | printf("%s " , treeNode->OpName(treeNode->OperGet())); |
8486 | } |
8487 | printf(FMT_BB " " , this->bbNum); |
8488 | |
8489 | printf("regmask=" ); |
8490 | dumpRegMask(registerAssignment); |
8491 | |
8492 | printf(" minReg=%d" , minRegCandidateCount); |
8493 | |
8494 | if (this->lastUse) |
8495 | { |
8496 | printf(" last" ); |
8497 | } |
8498 | if (this->reload) |
8499 | { |
8500 | printf(" reload" ); |
8501 | } |
8502 | if (this->spillAfter) |
8503 | { |
8504 | printf(" spillAfter" ); |
8505 | } |
8506 | if (this->moveReg) |
8507 | { |
8508 | printf(" move" ); |
8509 | } |
8510 | if (this->copyReg) |
8511 | { |
8512 | printf(" copy" ); |
8513 | } |
8514 | if (this->isFixedRegRef) |
8515 | { |
8516 | printf(" fixed" ); |
8517 | } |
8518 | if (this->isLocalDefUse) |
8519 | { |
8520 | printf(" local" ); |
8521 | } |
8522 | if (this->delayRegFree) |
8523 | { |
8524 | printf(" delay" ); |
8525 | } |
8526 | if (this->outOfOrder) |
8527 | { |
8528 | printf(" outOfOrder" ); |
8529 | } |
8530 | |
8531 | if (this->AllocateIfProfitable()) |
8532 | { |
8533 | printf(" regOptional" ); |
8534 | } |
8535 | printf(">\n" ); |
8536 | } |
8537 | |
8538 | void RegRecord::dump() |
8539 | { |
8540 | tinyDump(); |
8541 | } |
8542 | |
8543 | void Interval::dump() |
8544 | { |
8545 | printf("Interval %2u:" , intervalIndex); |
8546 | |
8547 | if (isLocalVar) |
8548 | { |
8549 | printf(" (V%02u)" , varNum); |
8550 | } |
8551 | if (isInternal) |
8552 | { |
8553 | printf(" (INTERNAL)" ); |
8554 | } |
8555 | if (isSpilled) |
8556 | { |
8557 | printf(" (SPILLED)" ); |
8558 | } |
8559 | if (isSplit) |
8560 | { |
8561 | printf(" (SPLIT)" ); |
8562 | } |
8563 | if (isStructField) |
8564 | { |
8565 | printf(" (struct)" ); |
8566 | } |
8567 | if (isPromotedStruct) |
8568 | { |
8569 | printf(" (promoted struct)" ); |
8570 | } |
8571 | if (hasConflictingDefUse) |
8572 | { |
8573 | printf(" (def-use conflict)" ); |
8574 | } |
8575 | if (hasInterferingUses) |
8576 | { |
8577 | printf(" (interfering uses)" ); |
8578 | } |
8579 | if (isSpecialPutArg) |
8580 | { |
8581 | printf(" (specialPutArg)" ); |
8582 | } |
8583 | if (isConstant) |
8584 | { |
8585 | printf(" (constant)" ); |
8586 | } |
8587 | |
8588 | printf(" RefPositions {" ); |
8589 | for (RefPosition* refPosition = this->firstRefPosition; refPosition != nullptr; |
8590 | refPosition = refPosition->nextRefPosition) |
8591 | { |
8592 | printf("#%u@%u" , refPosition->rpNum, refPosition->nodeLocation); |
8593 | if (refPosition->nextRefPosition) |
8594 | { |
8595 | printf(" " ); |
8596 | } |
8597 | } |
8598 | printf("}" ); |
8599 | |
8600 | // this is not used (yet?) |
8601 | // printf(" SpillOffset %d", this->spillOffset); |
8602 | |
8603 | printf(" physReg:%s" , getRegName(physReg)); |
8604 | |
8605 | printf(" Preferences=" ); |
8606 | dumpRegMask(this->registerPreferences); |
8607 | |
8608 | if (relatedInterval) |
8609 | { |
8610 | printf(" RelatedInterval " ); |
8611 | relatedInterval->microDump(); |
8612 | printf("[%p]" , dspPtr(relatedInterval)); |
8613 | } |
8614 | |
8615 | printf("\n" ); |
8616 | } |
8617 | |
8618 | // print out very concise representation |
8619 | void Interval::tinyDump() |
8620 | { |
8621 | printf("<Ivl:%u" , intervalIndex); |
8622 | if (isLocalVar) |
8623 | { |
8624 | printf(" V%02u" , varNum); |
8625 | } |
8626 | if (isInternal) |
8627 | { |
8628 | printf(" internal" ); |
8629 | } |
8630 | printf("> " ); |
8631 | } |
8632 | |
8633 | // print out extremely concise representation |
8634 | void Interval::microDump() |
8635 | { |
8636 | char intervalTypeChar = 'I'; |
8637 | if (isInternal) |
8638 | { |
8639 | intervalTypeChar = 'T'; |
8640 | } |
8641 | else if (isLocalVar) |
8642 | { |
8643 | intervalTypeChar = 'L'; |
8644 | } |
8645 | |
8646 | printf("<%c%u>" , intervalTypeChar, intervalIndex); |
8647 | } |
8648 | |
8649 | void RegRecord::tinyDump() |
8650 | { |
8651 | printf("<Reg:%-3s> " , getRegName(regNum)); |
8652 | } |
8653 | |
8654 | void LinearScan::dumpNodeInfo(GenTree* node, regMaskTP dstCandidates, int srcCount, int dstCount) |
8655 | { |
8656 | if (!VERBOSE) |
8657 | { |
8658 | return; |
8659 | } |
8660 | // This is formatted like the old dump to make diffs easier. TODO-Cleanup: improve. |
8661 | int internalIntCount = 0; |
8662 | int internalFloatCount = 0; |
8663 | regMaskTP internalCandidates = RBM_NONE; |
8664 | for (int i = 0; i < internalCount; i++) |
8665 | { |
8666 | RefPosition* def = internalDefs[i]; |
8667 | if (def->getInterval()->registerType == TYP_INT) |
8668 | { |
8669 | internalIntCount++; |
8670 | } |
8671 | else |
8672 | { |
8673 | internalFloatCount++; |
8674 | } |
8675 | internalCandidates |= def->registerAssignment; |
8676 | } |
8677 | if (dstCandidates == RBM_NONE) |
8678 | { |
8679 | dstCandidates = varTypeIsFloating(node) ? allRegs(TYP_FLOAT) : allRegs(TYP_INT); |
8680 | } |
8681 | if (internalCandidates == RBM_NONE) |
8682 | { |
8683 | internalCandidates = allRegs(TYP_INT); |
8684 | } |
8685 | printf(" +<TreeNodeInfo %d=%d %di %df" , dstCount, srcCount, internalIntCount, internalFloatCount); |
8686 | printf(" src=" ); |
8687 | dumpRegMask(varTypeIsFloating(node) ? allRegs(TYP_FLOAT) : allRegs(TYP_INT)); |
8688 | printf(" int=" ); |
8689 | dumpRegMask(internalCandidates); |
8690 | printf(" dst=" ); |
8691 | dumpRegMask(dstCandidates); |
8692 | if (node->IsUnusedValue()) |
8693 | { |
8694 | printf(" L" ); |
8695 | } |
8696 | printf(" I" ); |
8697 | if (pendingDelayFree) |
8698 | { |
8699 | printf(" D" ); |
8700 | } |
8701 | if (setInternalRegsDelayFree) |
8702 | { |
8703 | printf(" ID" ); |
8704 | } |
8705 | printf(">" ); |
8706 | node->dumpLIRFlags(); |
8707 | printf("\n consume= %d produce=%d\n" , srcCount, dstCount); |
8708 | } |
8709 | |
8710 | void LinearScan::dumpDefList() |
8711 | { |
8712 | if (!VERBOSE) |
8713 | { |
8714 | return; |
8715 | } |
8716 | JITDUMP("DefList: { " ); |
8717 | bool first = true; |
8718 | for (RefInfoListNode *listNode = defList.Begin(), *end = defList.End(); listNode != end; |
8719 | listNode = listNode->Next()) |
8720 | { |
8721 | GenTree* node = listNode->treeNode; |
8722 | JITDUMP("%sN%03u.t%d. %s" , first ? "" : "; " , node->gtSeqNum, node->gtTreeID, GenTree::OpName(node->OperGet())); |
8723 | first = false; |
8724 | } |
8725 | JITDUMP(" }\n" ); |
8726 | } |
8727 | |
8728 | void LinearScan::lsraDumpIntervals(const char* msg) |
8729 | { |
8730 | printf("\nLinear scan intervals %s:\n" , msg); |
8731 | for (Interval& interval : intervals) |
8732 | { |
8733 | // only dump something if it has references |
8734 | // if (interval->firstRefPosition) |
8735 | interval.dump(); |
8736 | } |
8737 | |
8738 | printf("\n" ); |
8739 | } |
8740 | |
8741 | // Dumps a tree node as a destination or source operand, with the style |
8742 | // of dump dependent on the mode |
8743 | void LinearScan::lsraGetOperandString(GenTree* tree, |
8744 | LsraTupleDumpMode mode, |
8745 | char* operandString, |
8746 | unsigned operandStringLength) |
8747 | { |
8748 | const char* lastUseChar = "" ; |
8749 | if ((tree->gtFlags & GTF_VAR_DEATH) != 0) |
8750 | { |
8751 | lastUseChar = "*" ; |
8752 | } |
8753 | switch (mode) |
8754 | { |
8755 | case LinearScan::LSRA_DUMP_PRE: |
8756 | _snprintf_s(operandString, operandStringLength, operandStringLength, "t%d%s" , tree->gtTreeID, lastUseChar); |
8757 | break; |
8758 | case LinearScan::LSRA_DUMP_REFPOS: |
8759 | _snprintf_s(operandString, operandStringLength, operandStringLength, "t%d%s" , tree->gtTreeID, lastUseChar); |
8760 | break; |
8761 | case LinearScan::LSRA_DUMP_POST: |
8762 | { |
8763 | Compiler* compiler = JitTls::GetCompiler(); |
8764 | |
8765 | if (!tree->gtHasReg()) |
8766 | { |
8767 | _snprintf_s(operandString, operandStringLength, operandStringLength, "STK%s" , lastUseChar); |
8768 | } |
8769 | else |
8770 | { |
8771 | regNumber reg = tree->gtRegNum; |
8772 | int charCount = _snprintf_s(operandString, operandStringLength, operandStringLength, "%s%s" , |
8773 | getRegName(reg, genIsValidFloatReg(reg)), lastUseChar); |
8774 | operandString += charCount; |
8775 | operandStringLength -= charCount; |
8776 | |
8777 | if (tree->IsMultiRegNode()) |
8778 | { |
8779 | unsigned regCount = tree->GetMultiRegCount(); |
8780 | for (unsigned regIndex = 1; regIndex < regCount; regIndex++) |
8781 | { |
8782 | regNumber reg = tree->GetRegByIndex(regIndex); |
8783 | charCount = _snprintf_s(operandString, operandStringLength, operandStringLength, ",%s%s" , |
8784 | getRegName(reg, genIsValidFloatReg(reg)), lastUseChar); |
8785 | operandString += charCount; |
8786 | operandStringLength -= charCount; |
8787 | } |
8788 | } |
8789 | } |
8790 | } |
8791 | break; |
8792 | default: |
8793 | printf("ERROR: INVALID TUPLE DUMP MODE\n" ); |
8794 | break; |
8795 | } |
8796 | } |
8797 | void LinearScan::lsraDispNode(GenTree* tree, LsraTupleDumpMode mode, bool hasDest) |
8798 | { |
8799 | Compiler* compiler = JitTls::GetCompiler(); |
8800 | const unsigned operandStringLength = 16; |
8801 | char operandString[operandStringLength]; |
8802 | const char* emptyDestOperand = " " ; |
8803 | char spillChar = ' '; |
8804 | |
8805 | if (mode == LinearScan::LSRA_DUMP_POST) |
8806 | { |
8807 | if ((tree->gtFlags & GTF_SPILL) != 0) |
8808 | { |
8809 | spillChar = 'S'; |
8810 | } |
8811 | if (!hasDest && tree->gtHasReg()) |
8812 | { |
8813 | // A node can define a register, but not produce a value for a parent to consume, |
8814 | // i.e. in the "localDefUse" case. |
8815 | // There used to be an assert here that we wouldn't spill such a node. |
8816 | // However, we can have unused lclVars that wind up being the node at which |
8817 | // it is spilled. This probably indicates a bug, but we don't realy want to |
8818 | // assert during a dump. |
8819 | if (spillChar == 'S') |
8820 | { |
8821 | spillChar = '$'; |
8822 | } |
8823 | else |
8824 | { |
8825 | spillChar = '*'; |
8826 | } |
8827 | hasDest = true; |
8828 | } |
8829 | } |
8830 | printf("%c N%03u. " , spillChar, tree->gtSeqNum); |
8831 | |
8832 | LclVarDsc* varDsc = nullptr; |
8833 | unsigned varNum = UINT_MAX; |
8834 | if (tree->IsLocal()) |
8835 | { |
8836 | varNum = tree->gtLclVarCommon.gtLclNum; |
8837 | varDsc = &(compiler->lvaTable[varNum]); |
8838 | if (varDsc->lvLRACandidate) |
8839 | { |
8840 | hasDest = false; |
8841 | } |
8842 | } |
8843 | if (hasDest) |
8844 | { |
8845 | if (mode == LinearScan::LSRA_DUMP_POST && tree->gtFlags & GTF_SPILLED) |
8846 | { |
8847 | assert(tree->gtHasReg()); |
8848 | } |
8849 | lsraGetOperandString(tree, mode, operandString, operandStringLength); |
8850 | printf("%-15s =" , operandString); |
8851 | } |
8852 | else |
8853 | { |
8854 | printf("%-15s " , emptyDestOperand); |
8855 | } |
8856 | if (varDsc != nullptr) |
8857 | { |
8858 | if (varDsc->lvLRACandidate) |
8859 | { |
8860 | if (mode == LSRA_DUMP_REFPOS) |
8861 | { |
8862 | printf(" V%02u(L%d)" , varNum, getIntervalForLocalVar(varDsc->lvVarIndex)->intervalIndex); |
8863 | } |
8864 | else |
8865 | { |
8866 | lsraGetOperandString(tree, mode, operandString, operandStringLength); |
8867 | printf(" V%02u(%s)" , varNum, operandString); |
8868 | if (mode == LinearScan::LSRA_DUMP_POST && tree->gtFlags & GTF_SPILLED) |
8869 | { |
8870 | printf("R" ); |
8871 | } |
8872 | } |
8873 | } |
8874 | else |
8875 | { |
8876 | printf(" V%02u MEM" , varNum); |
8877 | } |
8878 | } |
8879 | else if (tree->OperIs(GT_ASG)) |
8880 | { |
8881 | assert(!tree->gtHasReg()); |
8882 | printf(" asg%s " , GenTree::OpName(tree->OperGet())); |
8883 | } |
8884 | else |
8885 | { |
8886 | compiler->gtDispNodeName(tree); |
8887 | if (tree->OperKind() & GTK_LEAF) |
8888 | { |
8889 | compiler->gtDispLeaf(tree, nullptr); |
8890 | } |
8891 | } |
8892 | } |
8893 | |
8894 | //------------------------------------------------------------------------ |
8895 | // DumpOperandDefs: dumps the registers defined by a node. |
8896 | // |
8897 | // Arguments: |
8898 | // operand - The operand for which to compute a register count. |
8899 | // |
8900 | // Returns: |
8901 | // The number of registers defined by `operand`. |
8902 | // |
8903 | void LinearScan::DumpOperandDefs( |
8904 | GenTree* operand, bool& first, LsraTupleDumpMode mode, char* operandString, const unsigned operandStringLength) |
8905 | { |
8906 | assert(operand != nullptr); |
8907 | assert(operandString != nullptr); |
8908 | if (!operand->IsLIR()) |
8909 | { |
8910 | return; |
8911 | } |
8912 | |
8913 | int dstCount = ComputeOperandDstCount(operand); |
8914 | |
8915 | if (dstCount != 0) |
8916 | { |
8917 | // This operand directly produces registers; print it. |
8918 | if (!first) |
8919 | { |
8920 | printf("," ); |
8921 | } |
8922 | lsraGetOperandString(operand, mode, operandString, operandStringLength); |
8923 | printf("%s" , operandString); |
8924 | first = false; |
8925 | } |
8926 | else if (operand->isContained()) |
8927 | { |
8928 | // This is a contained node. Dump the defs produced by its operands. |
8929 | for (GenTree* op : operand->Operands()) |
8930 | { |
8931 | DumpOperandDefs(op, first, mode, operandString, operandStringLength); |
8932 | } |
8933 | } |
8934 | } |
8935 | |
8936 | void LinearScan::TupleStyleDump(LsraTupleDumpMode mode) |
8937 | { |
8938 | BasicBlock* block; |
8939 | LsraLocation currentLoc = 1; // 0 is the entry |
8940 | const unsigned operandStringLength = 16; |
8941 | char operandString[operandStringLength]; |
8942 | |
8943 | // currentRefPosition is not used for LSRA_DUMP_PRE |
8944 | // We keep separate iterators for defs, so that we can print them |
8945 | // on the lhs of the dump |
8946 | RefPositionIterator refPosIterator = refPositions.begin(); |
8947 | RefPosition* currentRefPosition = &refPosIterator; |
8948 | |
8949 | switch (mode) |
8950 | { |
8951 | case LSRA_DUMP_PRE: |
8952 | printf("TUPLE STYLE DUMP BEFORE LSRA\n" ); |
8953 | break; |
8954 | case LSRA_DUMP_REFPOS: |
8955 | printf("TUPLE STYLE DUMP WITH REF POSITIONS\n" ); |
8956 | break; |
8957 | case LSRA_DUMP_POST: |
8958 | printf("TUPLE STYLE DUMP WITH REGISTER ASSIGNMENTS\n" ); |
8959 | break; |
8960 | default: |
8961 | printf("ERROR: INVALID TUPLE DUMP MODE\n" ); |
8962 | return; |
8963 | } |
8964 | |
8965 | if (mode != LSRA_DUMP_PRE) |
8966 | { |
8967 | printf("Incoming Parameters: " ); |
8968 | for (; refPosIterator != refPositions.end() && currentRefPosition->refType != RefTypeBB; |
8969 | ++refPosIterator, currentRefPosition = &refPosIterator) |
8970 | { |
8971 | Interval* interval = currentRefPosition->getInterval(); |
8972 | assert(interval != nullptr && interval->isLocalVar); |
8973 | printf(" V%02d" , interval->varNum); |
8974 | if (mode == LSRA_DUMP_POST) |
8975 | { |
8976 | regNumber reg; |
8977 | if (currentRefPosition->registerAssignment == RBM_NONE) |
8978 | { |
8979 | reg = REG_STK; |
8980 | } |
8981 | else |
8982 | { |
8983 | reg = currentRefPosition->assignedReg(); |
8984 | } |
8985 | LclVarDsc* varDsc = &(compiler->lvaTable[interval->varNum]); |
8986 | printf("(" ); |
8987 | regNumber assignedReg = varDsc->lvRegNum; |
8988 | regNumber argReg = (varDsc->lvIsRegArg) ? varDsc->lvArgReg : REG_STK; |
8989 | |
8990 | assert(reg == assignedReg || varDsc->lvRegister == false); |
8991 | if (reg != argReg) |
8992 | { |
8993 | printf(getRegName(argReg, isFloatRegType(interval->registerType))); |
8994 | printf("=>" ); |
8995 | } |
8996 | printf("%s)" , getRegName(reg, isFloatRegType(interval->registerType))); |
8997 | } |
8998 | } |
8999 | printf("\n" ); |
9000 | } |
9001 | |
9002 | for (block = startBlockSequence(); block != nullptr; block = moveToNextBlock()) |
9003 | { |
9004 | currentLoc += 2; |
9005 | |
9006 | if (mode == LSRA_DUMP_REFPOS) |
9007 | { |
9008 | bool = false; |
9009 | // We should find the boundary RefPositions in the order of exposed uses, dummy defs, and the blocks |
9010 | for (; refPosIterator != refPositions.end() && |
9011 | (currentRefPosition->refType == RefTypeExpUse || currentRefPosition->refType == RefTypeDummyDef || |
9012 | (currentRefPosition->refType == RefTypeBB && !printedBlockHeader)); |
9013 | ++refPosIterator, currentRefPosition = &refPosIterator) |
9014 | { |
9015 | Interval* interval = nullptr; |
9016 | if (currentRefPosition->isIntervalRef()) |
9017 | { |
9018 | interval = currentRefPosition->getInterval(); |
9019 | } |
9020 | switch (currentRefPosition->refType) |
9021 | { |
9022 | case RefTypeExpUse: |
9023 | assert(interval != nullptr); |
9024 | assert(interval->isLocalVar); |
9025 | printf(" Exposed use of V%02u at #%d\n" , interval->varNum, currentRefPosition->rpNum); |
9026 | break; |
9027 | case RefTypeDummyDef: |
9028 | assert(interval != nullptr); |
9029 | assert(interval->isLocalVar); |
9030 | printf(" Dummy def of V%02u at #%d\n" , interval->varNum, currentRefPosition->rpNum); |
9031 | break; |
9032 | case RefTypeBB: |
9033 | block->dspBlockHeader(compiler); |
9034 | printedBlockHeader = true; |
9035 | printf("=====\n" ); |
9036 | break; |
9037 | default: |
9038 | printf("Unexpected RefPosition type at #%d\n" , currentRefPosition->rpNum); |
9039 | break; |
9040 | } |
9041 | } |
9042 | } |
9043 | else |
9044 | { |
9045 | block->dspBlockHeader(compiler); |
9046 | printf("=====\n" ); |
9047 | } |
9048 | if (enregisterLocalVars && mode == LSRA_DUMP_POST && block != compiler->fgFirstBB && |
9049 | block->bbNum <= bbNumMaxBeforeResolution) |
9050 | { |
9051 | printf("Predecessor for variable locations: " FMT_BB "\n" , blockInfo[block->bbNum].predBBNum); |
9052 | dumpInVarToRegMap(block); |
9053 | } |
9054 | if (block->bbNum > bbNumMaxBeforeResolution) |
9055 | { |
9056 | SplitEdgeInfo splitEdgeInfo; |
9057 | splitBBNumToTargetBBNumMap->Lookup(block->bbNum, &splitEdgeInfo); |
9058 | assert(splitEdgeInfo.toBBNum <= bbNumMaxBeforeResolution); |
9059 | assert(splitEdgeInfo.fromBBNum <= bbNumMaxBeforeResolution); |
9060 | printf("New block introduced for resolution from " FMT_BB " to " FMT_BB "\n" , splitEdgeInfo.fromBBNum, |
9061 | splitEdgeInfo.toBBNum); |
9062 | } |
9063 | |
9064 | for (GenTree* node : LIR::AsRange(block).NonPhiNodes()) |
9065 | { |
9066 | GenTree* tree = node; |
9067 | |
9068 | genTreeOps oper = tree->OperGet(); |
9069 | int produce = tree->IsValue() ? ComputeOperandDstCount(tree) : 0; |
9070 | int consume = ComputeAvailableSrcCount(tree); |
9071 | regMaskTP killMask = RBM_NONE; |
9072 | regMaskTP fixedMask = RBM_NONE; |
9073 | |
9074 | lsraDispNode(tree, mode, produce != 0 && mode != LSRA_DUMP_REFPOS); |
9075 | |
9076 | if (mode != LSRA_DUMP_REFPOS) |
9077 | { |
9078 | if (consume > 0) |
9079 | { |
9080 | printf("; " ); |
9081 | |
9082 | bool first = true; |
9083 | for (GenTree* operand : tree->Operands()) |
9084 | { |
9085 | DumpOperandDefs(operand, first, mode, operandString, operandStringLength); |
9086 | } |
9087 | } |
9088 | } |
9089 | else |
9090 | { |
9091 | // Print each RefPosition on a new line, but |
9092 | // printing all the kills for each node on a single line |
9093 | // and combining the fixed regs with their associated def or use |
9094 | bool killPrinted = false; |
9095 | RefPosition* lastFixedRegRefPos = nullptr; |
9096 | for (; refPosIterator != refPositions.end() && |
9097 | (currentRefPosition->refType == RefTypeUse || currentRefPosition->refType == RefTypeFixedReg || |
9098 | currentRefPosition->refType == RefTypeKill || currentRefPosition->refType == RefTypeDef) && |
9099 | (currentRefPosition->nodeLocation == tree->gtSeqNum || |
9100 | currentRefPosition->nodeLocation == tree->gtSeqNum + 1); |
9101 | ++refPosIterator, currentRefPosition = &refPosIterator) |
9102 | { |
9103 | Interval* interval = nullptr; |
9104 | if (currentRefPosition->isIntervalRef()) |
9105 | { |
9106 | interval = currentRefPosition->getInterval(); |
9107 | } |
9108 | switch (currentRefPosition->refType) |
9109 | { |
9110 | case RefTypeUse: |
9111 | if (currentRefPosition->isPhysRegRef) |
9112 | { |
9113 | printf("\n Use:R%d(#%d)" , |
9114 | currentRefPosition->getReg()->regNum, currentRefPosition->rpNum); |
9115 | } |
9116 | else |
9117 | { |
9118 | assert(interval != nullptr); |
9119 | printf("\n Use:" ); |
9120 | interval->microDump(); |
9121 | printf("(#%d)" , currentRefPosition->rpNum); |
9122 | if (currentRefPosition->isFixedRegRef && !interval->isInternal) |
9123 | { |
9124 | assert(genMaxOneBit(currentRefPosition->registerAssignment)); |
9125 | assert(lastFixedRegRefPos != nullptr); |
9126 | printf(" Fixed:%s(#%d)" , getRegName(currentRefPosition->assignedReg(), |
9127 | isFloatRegType(interval->registerType)), |
9128 | lastFixedRegRefPos->rpNum); |
9129 | lastFixedRegRefPos = nullptr; |
9130 | } |
9131 | if (currentRefPosition->isLocalDefUse) |
9132 | { |
9133 | printf(" LocalDefUse" ); |
9134 | } |
9135 | if (currentRefPosition->lastUse) |
9136 | { |
9137 | printf(" *" ); |
9138 | } |
9139 | } |
9140 | break; |
9141 | case RefTypeDef: |
9142 | { |
9143 | // Print each def on a new line |
9144 | assert(interval != nullptr); |
9145 | printf("\n Def:" ); |
9146 | interval->microDump(); |
9147 | printf("(#%d)" , currentRefPosition->rpNum); |
9148 | if (currentRefPosition->isFixedRegRef) |
9149 | { |
9150 | assert(genMaxOneBit(currentRefPosition->registerAssignment)); |
9151 | printf(" %s" , getRegName(currentRefPosition->assignedReg(), |
9152 | isFloatRegType(interval->registerType))); |
9153 | } |
9154 | if (currentRefPosition->isLocalDefUse) |
9155 | { |
9156 | printf(" LocalDefUse" ); |
9157 | } |
9158 | if (currentRefPosition->lastUse) |
9159 | { |
9160 | printf(" *" ); |
9161 | } |
9162 | if (interval->relatedInterval != nullptr) |
9163 | { |
9164 | printf(" Pref:" ); |
9165 | interval->relatedInterval->microDump(); |
9166 | } |
9167 | } |
9168 | break; |
9169 | case RefTypeKill: |
9170 | if (!killPrinted) |
9171 | { |
9172 | printf("\n Kill: " ); |
9173 | killPrinted = true; |
9174 | } |
9175 | printf(getRegName(currentRefPosition->assignedReg(), |
9176 | isFloatRegType(currentRefPosition->getReg()->registerType))); |
9177 | printf(" " ); |
9178 | break; |
9179 | case RefTypeFixedReg: |
9180 | lastFixedRegRefPos = currentRefPosition; |
9181 | break; |
9182 | default: |
9183 | printf("Unexpected RefPosition type at #%d\n" , currentRefPosition->rpNum); |
9184 | break; |
9185 | } |
9186 | } |
9187 | } |
9188 | printf("\n" ); |
9189 | } |
9190 | if (enregisterLocalVars && mode == LSRA_DUMP_POST) |
9191 | { |
9192 | dumpOutVarToRegMap(block); |
9193 | } |
9194 | printf("\n" ); |
9195 | } |
9196 | printf("\n\n" ); |
9197 | } |
9198 | |
9199 | void LinearScan::dumpLsraAllocationEvent(LsraDumpEvent event, |
9200 | Interval* interval, |
9201 | regNumber reg, |
9202 | BasicBlock* currentBlock) |
9203 | { |
9204 | if (!(VERBOSE)) |
9205 | { |
9206 | return; |
9207 | } |
9208 | if ((interval != nullptr) && (reg != REG_NA) && (reg != REG_STK)) |
9209 | { |
9210 | registersToDump |= genRegMask(reg); |
9211 | dumpRegRecordTitleIfNeeded(); |
9212 | } |
9213 | |
9214 | switch (event) |
9215 | { |
9216 | // Conflicting def/use |
9217 | case LSRA_EVENT_DEFUSE_CONFLICT: |
9218 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9219 | printf("DUconflict " ); |
9220 | dumpRegRecords(); |
9221 | break; |
9222 | case LSRA_EVENT_DEFUSE_CASE1: |
9223 | printf(indentFormat, " Case #1 use defRegAssignment" ); |
9224 | dumpRegRecords(); |
9225 | break; |
9226 | case LSRA_EVENT_DEFUSE_CASE2: |
9227 | printf(indentFormat, " Case #2 use useRegAssignment" ); |
9228 | dumpRegRecords(); |
9229 | break; |
9230 | case LSRA_EVENT_DEFUSE_CASE3: |
9231 | printf(indentFormat, " Case #3 use useRegAssignment" ); |
9232 | dumpRegRecords(); |
9233 | dumpRegRecords(); |
9234 | break; |
9235 | case LSRA_EVENT_DEFUSE_CASE4: |
9236 | printf(indentFormat, " Case #4 use defRegAssignment" ); |
9237 | dumpRegRecords(); |
9238 | break; |
9239 | case LSRA_EVENT_DEFUSE_CASE5: |
9240 | printf(indentFormat, " Case #5 set def to all regs" ); |
9241 | dumpRegRecords(); |
9242 | break; |
9243 | case LSRA_EVENT_DEFUSE_CASE6: |
9244 | printf(indentFormat, " Case #6 need a copy" ); |
9245 | dumpRegRecords(); |
9246 | if (interval == nullptr) |
9247 | { |
9248 | printf(indentFormat, " NULL interval" ); |
9249 | dumpRegRecords(); |
9250 | } |
9251 | else if (interval->firstRefPosition->multiRegIdx != 0) |
9252 | { |
9253 | printf(indentFormat, " (multiReg)" ); |
9254 | dumpRegRecords(); |
9255 | } |
9256 | break; |
9257 | |
9258 | case LSRA_EVENT_SPILL: |
9259 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9260 | assert(interval != nullptr && interval->assignedReg != nullptr); |
9261 | printf("Spill %-4s " , getRegName(interval->assignedReg->regNum)); |
9262 | dumpRegRecords(); |
9263 | break; |
9264 | |
9265 | // Restoring the previous register |
9266 | case LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL_AFTER_SPILL: |
9267 | assert(interval != nullptr); |
9268 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9269 | printf("SRstr %-4s " , getRegName(reg)); |
9270 | dumpRegRecords(); |
9271 | break; |
9272 | |
9273 | case LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL: |
9274 | assert(interval != nullptr); |
9275 | if (activeRefPosition == nullptr) |
9276 | { |
9277 | printf(emptyRefPositionFormat, "" ); |
9278 | } |
9279 | else |
9280 | { |
9281 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9282 | } |
9283 | printf("Restr %-4s " , getRegName(reg)); |
9284 | dumpRegRecords(); |
9285 | if (activeRefPosition != nullptr) |
9286 | { |
9287 | printf(emptyRefPositionFormat, "" ); |
9288 | } |
9289 | break; |
9290 | |
9291 | // Done with GC Kills |
9292 | case LSRA_EVENT_DONE_KILL_GC_REFS: |
9293 | printf(indentFormat, " DoneKillGC " ); |
9294 | break; |
9295 | |
9296 | // Block boundaries |
9297 | case LSRA_EVENT_START_BB: |
9298 | assert(currentBlock != nullptr); |
9299 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9300 | break; |
9301 | |
9302 | // Allocation decisions |
9303 | case LSRA_EVENT_NEEDS_NEW_REG: |
9304 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9305 | printf("Free %-4s " , getRegName(reg)); |
9306 | dumpRegRecords(); |
9307 | break; |
9308 | |
9309 | case LSRA_EVENT_ZERO_REF: |
9310 | assert(interval != nullptr && interval->isLocalVar); |
9311 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9312 | printf("NoRef " ); |
9313 | dumpRegRecords(); |
9314 | break; |
9315 | |
9316 | case LSRA_EVENT_FIXED_REG: |
9317 | case LSRA_EVENT_EXP_USE: |
9318 | case LSRA_EVENT_KEPT_ALLOCATION: |
9319 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9320 | printf("Keep %-4s " , getRegName(reg)); |
9321 | break; |
9322 | |
9323 | case LSRA_EVENT_COPY_REG: |
9324 | assert(interval != nullptr && interval->recentRefPosition != nullptr); |
9325 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9326 | printf("Copy %-4s " , getRegName(reg)); |
9327 | break; |
9328 | |
9329 | case LSRA_EVENT_MOVE_REG: |
9330 | assert(interval != nullptr && interval->recentRefPosition != nullptr); |
9331 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9332 | printf("Move %-4s " , getRegName(reg)); |
9333 | dumpRegRecords(); |
9334 | break; |
9335 | |
9336 | case LSRA_EVENT_ALLOC_REG: |
9337 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9338 | printf("Alloc %-4s " , getRegName(reg)); |
9339 | break; |
9340 | |
9341 | case LSRA_EVENT_REUSE_REG: |
9342 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9343 | printf("Reuse %-4s " , getRegName(reg)); |
9344 | break; |
9345 | |
9346 | case LSRA_EVENT_ALLOC_SPILLED_REG: |
9347 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9348 | printf("Steal %-4s " , getRegName(reg)); |
9349 | break; |
9350 | |
9351 | case LSRA_EVENT_NO_ENTRY_REG_ALLOCATED: |
9352 | assert(interval != nullptr && interval->isLocalVar); |
9353 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9354 | printf("LoRef " ); |
9355 | break; |
9356 | |
9357 | case LSRA_EVENT_NO_REG_ALLOCATED: |
9358 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9359 | printf("NoReg " ); |
9360 | break; |
9361 | |
9362 | case LSRA_EVENT_RELOAD: |
9363 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9364 | printf("ReLod %-4s " , getRegName(reg)); |
9365 | dumpRegRecords(); |
9366 | break; |
9367 | |
9368 | case LSRA_EVENT_SPECIAL_PUTARG: |
9369 | dumpRefPositionShort(activeRefPosition, currentBlock); |
9370 | printf("PtArg %-4s " , getRegName(reg)); |
9371 | break; |
9372 | |
9373 | // We currently don't dump anything for these events. |
9374 | case LSRA_EVENT_DEFUSE_FIXED_DELAY_USE: |
9375 | case LSRA_EVENT_SPILL_EXTENDED_LIFETIME: |
9376 | case LSRA_EVENT_END_BB: |
9377 | case LSRA_EVENT_FREE_REGS: |
9378 | case LSRA_EVENT_INCREMENT_RANGE_END: |
9379 | case LSRA_EVENT_LAST_USE: |
9380 | case LSRA_EVENT_LAST_USE_DELAYED: |
9381 | break; |
9382 | |
9383 | default: |
9384 | unreached(); |
9385 | } |
9386 | } |
9387 | |
9388 | //------------------------------------------------------------------------ |
9389 | // dumpRegRecordHeader: Dump the header for a column-based dump of the register state. |
9390 | // |
9391 | // Arguments: |
9392 | // None. |
9393 | // |
9394 | // Return Value: |
9395 | // None. |
9396 | // |
9397 | // Assumptions: |
9398 | // Reg names fit in 4 characters (minimum width of the columns) |
9399 | // |
9400 | // Notes: |
9401 | // In order to make the table as dense as possible (for ease of reading the dumps), |
9402 | // we determine the minimum regColumnWidth width required to represent: |
9403 | // regs, by name (e.g. eax or xmm0) - this is fixed at 4 characters. |
9404 | // intervals, as Vnn for lclVar intervals, or as I<num> for other intervals. |
9405 | // The table is indented by the amount needed for dumpRefPositionShort, which is |
9406 | // captured in shortRefPositionDumpWidth. |
9407 | // |
9408 | void LinearScan::() |
9409 | { |
9410 | printf("The following table has one or more rows for each RefPosition that is handled during allocation.\n" |
9411 | "The first column provides the basic information about the RefPosition, with its type (e.g. Def,\n" |
9412 | "Use, Fixd) followed by a '*' if it is a last use, and a 'D' if it is delayRegFree, and then the\n" |
9413 | "action taken during allocation (e.g. Alloc a new register, or Keep an existing one).\n" |
9414 | "The subsequent columns show the Interval occupying each register, if any, followed by 'a' if it is\n" |
9415 | "active, and 'i'if it is inactive. Columns are only printed up to the last modifed register, which\n" |
9416 | "may increase during allocation, in which case additional columns will appear. Registers which are\n" |
9417 | "not marked modified have ---- in their column.\n\n" ); |
9418 | |
9419 | // First, determine the width of each register column (which holds a reg name in the |
9420 | // header, and an interval name in each subsequent row). |
9421 | int intervalNumberWidth = (int)log10((double)intervals.size()) + 1; |
9422 | // The regColumnWidth includes the identifying character (I or V) and an 'i' or 'a' (inactive or active) |
9423 | regColumnWidth = intervalNumberWidth + 2; |
9424 | if (regColumnWidth < 4) |
9425 | { |
9426 | regColumnWidth = 4; |
9427 | } |
9428 | sprintf_s(intervalNameFormat, MAX_FORMAT_CHARS, "%%c%%-%dd" , regColumnWidth - 2); |
9429 | sprintf_s(regNameFormat, MAX_FORMAT_CHARS, "%%-%ds" , regColumnWidth); |
9430 | |
9431 | // Next, determine the width of the short RefPosition (see dumpRefPositionShort()). |
9432 | // This is in the form: |
9433 | // nnn.#mmm NAME TYPEld |
9434 | // Where: |
9435 | // nnn is the Location, right-justified to the width needed for the highest location. |
9436 | // mmm is the RefPosition rpNum, left-justified to the width needed for the highest rpNum. |
9437 | // NAME is dumped by dumpReferentName(), and is "regColumnWidth". |
9438 | // TYPE is RefTypeNameShort, and is 4 characters |
9439 | // l is either '*' (if a last use) or ' ' (otherwise) |
9440 | // d is either 'D' (if a delayed use) or ' ' (otherwise) |
9441 | |
9442 | maxNodeLocation = (maxNodeLocation == 0) |
9443 | ? 1 |
9444 | : maxNodeLocation; // corner case of a method with an infinite loop without any gentree nodes |
9445 | assert(maxNodeLocation >= 1); |
9446 | assert(refPositions.size() >= 1); |
9447 | int nodeLocationWidth = (int)log10((double)maxNodeLocation) + 1; |
9448 | int refPositionWidth = (int)log10((double)refPositions.size()) + 1; |
9449 | int refTypeInfoWidth = 4 /*TYPE*/ + 2 /* last-use and delayed */ + 1 /* space */; |
9450 | int locationAndRPNumWidth = nodeLocationWidth + 2 /* .# */ + refPositionWidth + 1 /* space */; |
9451 | int shortRefPositionDumpWidth = locationAndRPNumWidth + regColumnWidth + 1 /* space */ + refTypeInfoWidth; |
9452 | sprintf_s(shortRefPositionFormat, MAX_FORMAT_CHARS, "%%%dd.#%%-%dd " , nodeLocationWidth, refPositionWidth); |
9453 | sprintf_s(emptyRefPositionFormat, MAX_FORMAT_CHARS, "%%-%ds" , shortRefPositionDumpWidth); |
9454 | |
9455 | // The width of the "allocation info" |
9456 | // - a 5-character allocation decision |
9457 | // - a space |
9458 | // - a 4-character register |
9459 | // - a space |
9460 | int allocationInfoWidth = 5 + 1 + 4 + 1; |
9461 | |
9462 | // Next, determine the width of the legend for each row. This includes: |
9463 | // - a short RefPosition dump (shortRefPositionDumpWidth), which includes a space |
9464 | // - the allocation info (allocationInfoWidth), which also includes a space |
9465 | |
9466 | regTableIndent = shortRefPositionDumpWidth + allocationInfoWidth; |
9467 | |
9468 | // BBnn printed left-justified in the NAME Typeld and allocationInfo space. |
9469 | int bbDumpWidth = regColumnWidth + 1 + refTypeInfoWidth + allocationInfoWidth; |
9470 | int bbNumWidth = (int)log10((double)compiler->fgBBNumMax) + 1; |
9471 | // In the unlikely event that BB numbers overflow the space, we'll simply omit the predBB |
9472 | int predBBNumDumpSpace = regTableIndent - locationAndRPNumWidth - bbNumWidth - 9; // 'BB' + ' PredBB' |
9473 | if (predBBNumDumpSpace < bbNumWidth) |
9474 | { |
9475 | sprintf_s(bbRefPosFormat, MAX_LEGEND_FORMAT_CHARS, "BB%%-%dd" , shortRefPositionDumpWidth - 2); |
9476 | } |
9477 | else |
9478 | { |
9479 | sprintf_s(bbRefPosFormat, MAX_LEGEND_FORMAT_CHARS, "BB%%-%dd PredBB%%-%dd" , bbNumWidth, predBBNumDumpSpace); |
9480 | } |
9481 | |
9482 | if (compiler->shouldDumpASCIITrees()) |
9483 | { |
9484 | columnSeparator = "|" ; |
9485 | line = "-" ; |
9486 | leftBox = "+" ; |
9487 | middleBox = "+" ; |
9488 | rightBox = "+" ; |
9489 | } |
9490 | else |
9491 | { |
9492 | columnSeparator = "\xe2\x94\x82" ; |
9493 | line = "\xe2\x94\x80" ; |
9494 | leftBox = "\xe2\x94\x9c" ; |
9495 | middleBox = "\xe2\x94\xbc" ; |
9496 | rightBox = "\xe2\x94\xa4" ; |
9497 | } |
9498 | sprintf_s(indentFormat, MAX_FORMAT_CHARS, "%%-%ds" , regTableIndent); |
9499 | |
9500 | // Now, set up the legend format for the RefPosition info |
9501 | sprintf_s(legendFormat, MAX_LEGEND_FORMAT_CHARS, "%%-%d.%ds%%-%d.%ds%%-%ds%%s" , nodeLocationWidth + 1, |
9502 | nodeLocationWidth + 1, refPositionWidth + 2, refPositionWidth + 2, regColumnWidth + 1); |
9503 | |
9504 | // Print a "title row" including the legend and the reg names. |
9505 | lastDumpedRegisters = RBM_NONE; |
9506 | dumpRegRecordTitleIfNeeded(); |
9507 | } |
9508 | |
9509 | void LinearScan::dumpRegRecordTitleIfNeeded() |
9510 | { |
9511 | if ((lastDumpedRegisters != registersToDump) || (rowCountSinceLastTitle > MAX_ROWS_BETWEEN_TITLES)) |
9512 | { |
9513 | lastUsedRegNumIndex = 0; |
9514 | int lastRegNumIndex = compiler->compFloatingPointUsed ? REG_FP_LAST : REG_INT_LAST; |
9515 | for (int regNumIndex = 0; regNumIndex <= lastRegNumIndex; regNumIndex++) |
9516 | { |
9517 | if ((registersToDump & genRegMask((regNumber)regNumIndex)) != 0) |
9518 | { |
9519 | lastUsedRegNumIndex = regNumIndex; |
9520 | } |
9521 | } |
9522 | dumpRegRecordTitle(); |
9523 | lastDumpedRegisters = registersToDump; |
9524 | } |
9525 | } |
9526 | |
9527 | void LinearScan::dumpRegRecordTitleLines() |
9528 | { |
9529 | for (int i = 0; i < regTableIndent; i++) |
9530 | { |
9531 | printf("%s" , line); |
9532 | } |
9533 | for (int regNumIndex = 0; regNumIndex <= lastUsedRegNumIndex; regNumIndex++) |
9534 | { |
9535 | regNumber regNum = (regNumber)regNumIndex; |
9536 | if (shouldDumpReg(regNum)) |
9537 | { |
9538 | printf("%s" , middleBox); |
9539 | for (int i = 0; i < regColumnWidth; i++) |
9540 | { |
9541 | printf("%s" , line); |
9542 | } |
9543 | } |
9544 | } |
9545 | printf("%s\n" , rightBox); |
9546 | } |
9547 | void LinearScan::dumpRegRecordTitle() |
9548 | { |
9549 | dumpRegRecordTitleLines(); |
9550 | |
9551 | // Print out the legend for the RefPosition info |
9552 | printf(legendFormat, "Loc " , "RP# " , "Name " , "Type Action Reg " ); |
9553 | |
9554 | // Print out the register name column headers |
9555 | char columnFormatArray[MAX_FORMAT_CHARS]; |
9556 | sprintf_s(columnFormatArray, MAX_FORMAT_CHARS, "%s%%-%d.%ds" , columnSeparator, regColumnWidth, regColumnWidth); |
9557 | for (int regNumIndex = 0; regNumIndex <= lastUsedRegNumIndex; regNumIndex++) |
9558 | { |
9559 | regNumber regNum = (regNumber)regNumIndex; |
9560 | if (shouldDumpReg(regNum)) |
9561 | { |
9562 | const char* regName = getRegName(regNum); |
9563 | printf(columnFormatArray, regName); |
9564 | } |
9565 | } |
9566 | printf("%s\n" , columnSeparator); |
9567 | |
9568 | rowCountSinceLastTitle = 0; |
9569 | |
9570 | dumpRegRecordTitleLines(); |
9571 | } |
9572 | |
9573 | void LinearScan::dumpRegRecords() |
9574 | { |
9575 | static char columnFormatArray[18]; |
9576 | |
9577 | for (int regNumIndex = 0; regNumIndex <= lastUsedRegNumIndex; regNumIndex++) |
9578 | { |
9579 | if (shouldDumpReg((regNumber)regNumIndex)) |
9580 | { |
9581 | printf("%s" , columnSeparator); |
9582 | RegRecord& regRecord = physRegs[regNumIndex]; |
9583 | Interval* interval = regRecord.assignedInterval; |
9584 | if (interval != nullptr) |
9585 | { |
9586 | dumpIntervalName(interval); |
9587 | char activeChar = interval->isActive ? 'a' : 'i'; |
9588 | printf("%c" , activeChar); |
9589 | } |
9590 | else if (regRecord.isBusyUntilNextKill) |
9591 | { |
9592 | printf(columnFormatArray, "Busy" ); |
9593 | } |
9594 | else |
9595 | { |
9596 | sprintf_s(columnFormatArray, MAX_FORMAT_CHARS, "%%-%ds" , regColumnWidth); |
9597 | printf(columnFormatArray, "" ); |
9598 | } |
9599 | } |
9600 | } |
9601 | printf("%s\n" , columnSeparator); |
9602 | rowCountSinceLastTitle++; |
9603 | } |
9604 | |
9605 | void LinearScan::dumpIntervalName(Interval* interval) |
9606 | { |
9607 | if (interval->isLocalVar) |
9608 | { |
9609 | printf(intervalNameFormat, 'V', interval->varNum); |
9610 | } |
9611 | else if (interval->isConstant) |
9612 | { |
9613 | printf(intervalNameFormat, 'C', interval->intervalIndex); |
9614 | } |
9615 | else |
9616 | { |
9617 | printf(intervalNameFormat, 'I', interval->intervalIndex); |
9618 | } |
9619 | } |
9620 | |
9621 | void LinearScan::dumpEmptyRefPosition() |
9622 | { |
9623 | printf(emptyRefPositionFormat, "" ); |
9624 | } |
9625 | |
9626 | // Note that the size of this dump is computed in dumpRegRecordHeader(). |
9627 | // |
9628 | void LinearScan::dumpRefPositionShort(RefPosition* refPosition, BasicBlock* currentBlock) |
9629 | { |
9630 | BasicBlock* block = currentBlock; |
9631 | static RefPosition* lastPrintedRefPosition = nullptr; |
9632 | if (refPosition == lastPrintedRefPosition) |
9633 | { |
9634 | dumpEmptyRefPosition(); |
9635 | return; |
9636 | } |
9637 | lastPrintedRefPosition = refPosition; |
9638 | if (refPosition->refType == RefTypeBB) |
9639 | { |
9640 | // Always print a title row before a RefTypeBB (except for the first, because we |
9641 | // will already have printed it before the parameters) |
9642 | if (refPosition->refType == RefTypeBB && block != compiler->fgFirstBB && block != nullptr) |
9643 | { |
9644 | dumpRegRecordTitle(); |
9645 | } |
9646 | } |
9647 | printf(shortRefPositionFormat, refPosition->nodeLocation, refPosition->rpNum); |
9648 | if (refPosition->refType == RefTypeBB) |
9649 | { |
9650 | if (block == nullptr) |
9651 | { |
9652 | printf(regNameFormat, "END" ); |
9653 | printf(" " ); |
9654 | printf(regNameFormat, "" ); |
9655 | } |
9656 | else |
9657 | { |
9658 | printf(bbRefPosFormat, block->bbNum, block == compiler->fgFirstBB ? 0 : blockInfo[block->bbNum].predBBNum); |
9659 | } |
9660 | } |
9661 | else if (refPosition->isIntervalRef()) |
9662 | { |
9663 | Interval* interval = refPosition->getInterval(); |
9664 | dumpIntervalName(interval); |
9665 | char lastUseChar = ' '; |
9666 | char delayChar = ' '; |
9667 | if (refPosition->lastUse) |
9668 | { |
9669 | lastUseChar = '*'; |
9670 | if (refPosition->delayRegFree) |
9671 | { |
9672 | delayChar = 'D'; |
9673 | } |
9674 | } |
9675 | printf(" %s%c%c " , getRefTypeShortName(refPosition->refType), lastUseChar, delayChar); |
9676 | } |
9677 | else if (refPosition->isPhysRegRef) |
9678 | { |
9679 | RegRecord* regRecord = refPosition->getReg(); |
9680 | printf(regNameFormat, getRegName(regRecord->regNum)); |
9681 | printf(" %s " , getRefTypeShortName(refPosition->refType)); |
9682 | } |
9683 | else |
9684 | { |
9685 | assert(refPosition->refType == RefTypeKillGCRefs); |
9686 | // There's no interval or reg name associated with this. |
9687 | printf(regNameFormat, " " ); |
9688 | printf(" %s " , getRefTypeShortName(refPosition->refType)); |
9689 | } |
9690 | } |
9691 | |
9692 | //------------------------------------------------------------------------ |
9693 | // LinearScan::IsResolutionMove: |
9694 | // Returns true if the given node is a move inserted by LSRA |
9695 | // resolution. |
9696 | // |
9697 | // Arguments: |
9698 | // node - the node to check. |
9699 | // |
9700 | bool LinearScan::IsResolutionMove(GenTree* node) |
9701 | { |
9702 | if (!IsLsraAdded(node)) |
9703 | { |
9704 | return false; |
9705 | } |
9706 | |
9707 | switch (node->OperGet()) |
9708 | { |
9709 | case GT_LCL_VAR: |
9710 | case GT_COPY: |
9711 | return node->IsUnusedValue(); |
9712 | |
9713 | case GT_SWAP: |
9714 | return true; |
9715 | |
9716 | default: |
9717 | return false; |
9718 | } |
9719 | } |
9720 | |
9721 | //------------------------------------------------------------------------ |
9722 | // LinearScan::IsResolutionNode: |
9723 | // Returns true if the given node is either a move inserted by LSRA |
9724 | // resolution or an operand to such a move. |
9725 | // |
9726 | // Arguments: |
9727 | // containingRange - the range that contains the node to check. |
9728 | // node - the node to check. |
9729 | // |
9730 | bool LinearScan::IsResolutionNode(LIR::Range& containingRange, GenTree* node) |
9731 | { |
9732 | for (;;) |
9733 | { |
9734 | if (IsResolutionMove(node)) |
9735 | { |
9736 | return true; |
9737 | } |
9738 | |
9739 | if (!IsLsraAdded(node) || (node->OperGet() != GT_LCL_VAR)) |
9740 | { |
9741 | return false; |
9742 | } |
9743 | |
9744 | LIR::Use use; |
9745 | bool foundUse = containingRange.TryGetUse(node, &use); |
9746 | assert(foundUse); |
9747 | |
9748 | node = use.User(); |
9749 | } |
9750 | } |
9751 | |
9752 | //------------------------------------------------------------------------ |
9753 | // verifyFinalAllocation: Traverse the RefPositions and verify various invariants. |
9754 | // |
9755 | // Arguments: |
9756 | // None. |
9757 | // |
9758 | // Return Value: |
9759 | // None. |
9760 | // |
9761 | // Notes: |
9762 | // If verbose is set, this will also dump a table of the final allocations. |
9763 | void LinearScan::verifyFinalAllocation() |
9764 | { |
9765 | if (VERBOSE) |
9766 | { |
9767 | printf("\nFinal allocation\n" ); |
9768 | } |
9769 | |
9770 | // Clear register assignments. |
9771 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
9772 | { |
9773 | RegRecord* physRegRecord = getRegisterRecord(reg); |
9774 | physRegRecord->assignedInterval = nullptr; |
9775 | } |
9776 | |
9777 | for (Interval& interval : intervals) |
9778 | { |
9779 | interval.assignedReg = nullptr; |
9780 | interval.physReg = REG_NA; |
9781 | } |
9782 | |
9783 | DBEXEC(VERBOSE, dumpRegRecordTitle()); |
9784 | |
9785 | BasicBlock* currentBlock = nullptr; |
9786 | GenTree* firstBlockEndResolutionNode = nullptr; |
9787 | regMaskTP regsToFree = RBM_NONE; |
9788 | regMaskTP delayRegsToFree = RBM_NONE; |
9789 | LsraLocation currentLocation = MinLocation; |
9790 | for (RefPosition& refPosition : refPositions) |
9791 | { |
9792 | RefPosition* currentRefPosition = &refPosition; |
9793 | Interval* interval = nullptr; |
9794 | RegRecord* regRecord = nullptr; |
9795 | regNumber regNum = REG_NA; |
9796 | activeRefPosition = currentRefPosition; |
9797 | |
9798 | if (currentRefPosition->refType == RefTypeBB) |
9799 | { |
9800 | regsToFree |= delayRegsToFree; |
9801 | delayRegsToFree = RBM_NONE; |
9802 | } |
9803 | else |
9804 | { |
9805 | if (currentRefPosition->isPhysRegRef) |
9806 | { |
9807 | regRecord = currentRefPosition->getReg(); |
9808 | regRecord->recentRefPosition = currentRefPosition; |
9809 | regNum = regRecord->regNum; |
9810 | } |
9811 | else if (currentRefPosition->isIntervalRef()) |
9812 | { |
9813 | interval = currentRefPosition->getInterval(); |
9814 | interval->recentRefPosition = currentRefPosition; |
9815 | if (currentRefPosition->registerAssignment != RBM_NONE) |
9816 | { |
9817 | if (!genMaxOneBit(currentRefPosition->registerAssignment)) |
9818 | { |
9819 | assert(currentRefPosition->refType == RefTypeExpUse || |
9820 | currentRefPosition->refType == RefTypeDummyDef); |
9821 | } |
9822 | else |
9823 | { |
9824 | regNum = currentRefPosition->assignedReg(); |
9825 | regRecord = getRegisterRecord(regNum); |
9826 | } |
9827 | } |
9828 | } |
9829 | } |
9830 | |
9831 | LsraLocation newLocation = currentRefPosition->nodeLocation; |
9832 | |
9833 | if (newLocation > currentLocation) |
9834 | { |
9835 | // Free Registers. |
9836 | // We could use the freeRegisters() method, but we'd have to carefully manage the active intervals. |
9837 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
9838 | { |
9839 | regMaskTP regMask = genRegMask(reg); |
9840 | if ((regsToFree & regMask) != RBM_NONE) |
9841 | { |
9842 | RegRecord* physRegRecord = getRegisterRecord(reg); |
9843 | physRegRecord->assignedInterval = nullptr; |
9844 | } |
9845 | } |
9846 | regsToFree = delayRegsToFree; |
9847 | regsToFree = RBM_NONE; |
9848 | } |
9849 | currentLocation = newLocation; |
9850 | |
9851 | switch (currentRefPosition->refType) |
9852 | { |
9853 | case RefTypeBB: |
9854 | { |
9855 | if (currentBlock == nullptr) |
9856 | { |
9857 | currentBlock = startBlockSequence(); |
9858 | } |
9859 | else |
9860 | { |
9861 | // Verify the resolution moves at the end of the previous block. |
9862 | for (GenTree* node = firstBlockEndResolutionNode; node != nullptr; node = node->gtNext) |
9863 | { |
9864 | assert(enregisterLocalVars); |
9865 | // Only verify nodes that are actually moves; don't bother with the nodes that are |
9866 | // operands to moves. |
9867 | if (IsResolutionMove(node)) |
9868 | { |
9869 | verifyResolutionMove(node, currentLocation); |
9870 | } |
9871 | } |
9872 | |
9873 | // Validate the locations at the end of the previous block. |
9874 | if (enregisterLocalVars) |
9875 | { |
9876 | VarToRegMap outVarToRegMap = outVarToRegMaps[currentBlock->bbNum]; |
9877 | VarSetOps::Iter iter(compiler, currentBlock->bbLiveOut); |
9878 | unsigned varIndex = 0; |
9879 | while (iter.NextElem(&varIndex)) |
9880 | { |
9881 | if (localVarIntervals[varIndex] == nullptr) |
9882 | { |
9883 | assert(!compiler->lvaTable[compiler->lvaTrackedToVarNum[varIndex]].lvLRACandidate); |
9884 | continue; |
9885 | } |
9886 | regNumber regNum = getVarReg(outVarToRegMap, varIndex); |
9887 | interval = getIntervalForLocalVar(varIndex); |
9888 | assert(interval->physReg == regNum || (interval->physReg == REG_NA && regNum == REG_STK)); |
9889 | interval->physReg = REG_NA; |
9890 | interval->assignedReg = nullptr; |
9891 | interval->isActive = false; |
9892 | } |
9893 | } |
9894 | |
9895 | // Clear register assignments. |
9896 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
9897 | { |
9898 | RegRecord* physRegRecord = getRegisterRecord(reg); |
9899 | physRegRecord->assignedInterval = nullptr; |
9900 | } |
9901 | |
9902 | // Now, record the locations at the beginning of this block. |
9903 | currentBlock = moveToNextBlock(); |
9904 | } |
9905 | |
9906 | if (currentBlock != nullptr) |
9907 | { |
9908 | if (enregisterLocalVars) |
9909 | { |
9910 | VarToRegMap inVarToRegMap = inVarToRegMaps[currentBlock->bbNum]; |
9911 | VarSetOps::Iter iter(compiler, currentBlock->bbLiveIn); |
9912 | unsigned varIndex = 0; |
9913 | while (iter.NextElem(&varIndex)) |
9914 | { |
9915 | if (localVarIntervals[varIndex] == nullptr) |
9916 | { |
9917 | assert(!compiler->lvaTable[compiler->lvaTrackedToVarNum[varIndex]].lvLRACandidate); |
9918 | continue; |
9919 | } |
9920 | regNumber regNum = getVarReg(inVarToRegMap, varIndex); |
9921 | interval = getIntervalForLocalVar(varIndex); |
9922 | interval->physReg = regNum; |
9923 | interval->assignedReg = &(physRegs[regNum]); |
9924 | interval->isActive = true; |
9925 | physRegs[regNum].assignedInterval = interval; |
9926 | } |
9927 | } |
9928 | |
9929 | if (VERBOSE) |
9930 | { |
9931 | dumpRefPositionShort(currentRefPosition, currentBlock); |
9932 | dumpRegRecords(); |
9933 | } |
9934 | |
9935 | // Finally, handle the resolution moves, if any, at the beginning of the next block. |
9936 | firstBlockEndResolutionNode = nullptr; |
9937 | bool foundNonResolutionNode = false; |
9938 | |
9939 | LIR::Range& currentBlockRange = LIR::AsRange(currentBlock); |
9940 | for (GenTree* node : currentBlockRange.NonPhiNodes()) |
9941 | { |
9942 | if (IsResolutionNode(currentBlockRange, node)) |
9943 | { |
9944 | assert(enregisterLocalVars); |
9945 | if (foundNonResolutionNode) |
9946 | { |
9947 | firstBlockEndResolutionNode = node; |
9948 | break; |
9949 | } |
9950 | else if (IsResolutionMove(node)) |
9951 | { |
9952 | // Only verify nodes that are actually moves; don't bother with the nodes that are |
9953 | // operands to moves. |
9954 | verifyResolutionMove(node, currentLocation); |
9955 | } |
9956 | } |
9957 | else |
9958 | { |
9959 | foundNonResolutionNode = true; |
9960 | } |
9961 | } |
9962 | } |
9963 | } |
9964 | |
9965 | break; |
9966 | |
9967 | case RefTypeKill: |
9968 | assert(regRecord != nullptr); |
9969 | assert(regRecord->assignedInterval == nullptr); |
9970 | dumpLsraAllocationEvent(LSRA_EVENT_KEPT_ALLOCATION, nullptr, regRecord->regNum, currentBlock); |
9971 | break; |
9972 | case RefTypeFixedReg: |
9973 | assert(regRecord != nullptr); |
9974 | dumpLsraAllocationEvent(LSRA_EVENT_KEPT_ALLOCATION, nullptr, regRecord->regNum, currentBlock); |
9975 | break; |
9976 | |
9977 | case RefTypeUpperVectorSaveDef: |
9978 | case RefTypeUpperVectorSaveUse: |
9979 | case RefTypeDef: |
9980 | case RefTypeUse: |
9981 | case RefTypeParamDef: |
9982 | case RefTypeZeroInit: |
9983 | assert(interval != nullptr); |
9984 | |
9985 | if (interval->isSpecialPutArg) |
9986 | { |
9987 | dumpLsraAllocationEvent(LSRA_EVENT_SPECIAL_PUTARG, interval, regNum); |
9988 | break; |
9989 | } |
9990 | if (currentRefPosition->reload) |
9991 | { |
9992 | interval->isActive = true; |
9993 | assert(regNum != REG_NA); |
9994 | interval->physReg = regNum; |
9995 | interval->assignedReg = regRecord; |
9996 | regRecord->assignedInterval = interval; |
9997 | dumpLsraAllocationEvent(LSRA_EVENT_RELOAD, nullptr, regRecord->regNum, currentBlock); |
9998 | } |
9999 | if (regNum == REG_NA) |
10000 | { |
10001 | dumpLsraAllocationEvent(LSRA_EVENT_NO_REG_ALLOCATED, interval); |
10002 | } |
10003 | else if (RefTypeIsDef(currentRefPosition->refType)) |
10004 | { |
10005 | interval->isActive = true; |
10006 | if (VERBOSE) |
10007 | { |
10008 | if (interval->isConstant && (currentRefPosition->treeNode != nullptr) && |
10009 | currentRefPosition->treeNode->IsReuseRegVal()) |
10010 | { |
10011 | dumpLsraAllocationEvent(LSRA_EVENT_REUSE_REG, nullptr, regRecord->regNum, currentBlock); |
10012 | } |
10013 | else |
10014 | { |
10015 | dumpLsraAllocationEvent(LSRA_EVENT_ALLOC_REG, nullptr, regRecord->regNum, currentBlock); |
10016 | } |
10017 | } |
10018 | } |
10019 | else if (currentRefPosition->copyReg) |
10020 | { |
10021 | dumpLsraAllocationEvent(LSRA_EVENT_COPY_REG, interval, regRecord->regNum, currentBlock); |
10022 | } |
10023 | else if (currentRefPosition->moveReg) |
10024 | { |
10025 | assert(interval->assignedReg != nullptr); |
10026 | interval->assignedReg->assignedInterval = nullptr; |
10027 | interval->physReg = regNum; |
10028 | interval->assignedReg = regRecord; |
10029 | regRecord->assignedInterval = interval; |
10030 | if (VERBOSE) |
10031 | { |
10032 | printf("Move %-4s " , getRegName(regRecord->regNum)); |
10033 | } |
10034 | } |
10035 | else |
10036 | { |
10037 | dumpLsraAllocationEvent(LSRA_EVENT_KEPT_ALLOCATION, nullptr, regRecord->regNum, currentBlock); |
10038 | } |
10039 | if (currentRefPosition->lastUse || currentRefPosition->spillAfter) |
10040 | { |
10041 | interval->isActive = false; |
10042 | } |
10043 | if (regNum != REG_NA) |
10044 | { |
10045 | if (currentRefPosition->spillAfter) |
10046 | { |
10047 | if (VERBOSE) |
10048 | { |
10049 | // If refPos is marked as copyReg, then the reg that is spilled |
10050 | // is the homeReg of the interval not the reg currently assigned |
10051 | // to refPos. |
10052 | regNumber spillReg = regNum; |
10053 | if (currentRefPosition->copyReg) |
10054 | { |
10055 | assert(interval != nullptr); |
10056 | spillReg = interval->physReg; |
10057 | } |
10058 | dumpRegRecords(); |
10059 | dumpEmptyRefPosition(); |
10060 | printf("Spill %-4s " , getRegName(spillReg)); |
10061 | } |
10062 | } |
10063 | else if (currentRefPosition->copyReg) |
10064 | { |
10065 | regRecord->assignedInterval = interval; |
10066 | } |
10067 | else |
10068 | { |
10069 | interval->physReg = regNum; |
10070 | interval->assignedReg = regRecord; |
10071 | regRecord->assignedInterval = interval; |
10072 | } |
10073 | } |
10074 | break; |
10075 | case RefTypeKillGCRefs: |
10076 | // No action to take. |
10077 | // However, we will assert that, at resolution time, no registers contain GC refs. |
10078 | { |
10079 | DBEXEC(VERBOSE, printf(" " )); |
10080 | regMaskTP candidateRegs = currentRefPosition->registerAssignment; |
10081 | while (candidateRegs != RBM_NONE) |
10082 | { |
10083 | regMaskTP nextRegBit = genFindLowestBit(candidateRegs); |
10084 | candidateRegs &= ~nextRegBit; |
10085 | regNumber nextReg = genRegNumFromMask(nextRegBit); |
10086 | RegRecord* regRecord = getRegisterRecord(nextReg); |
10087 | Interval* assignedInterval = regRecord->assignedInterval; |
10088 | assert(assignedInterval == nullptr || !varTypeIsGC(assignedInterval->registerType)); |
10089 | } |
10090 | } |
10091 | break; |
10092 | |
10093 | case RefTypeExpUse: |
10094 | case RefTypeDummyDef: |
10095 | // Do nothing; these will be handled by the RefTypeBB. |
10096 | DBEXEC(VERBOSE, printf(" " )); |
10097 | break; |
10098 | |
10099 | case RefTypeInvalid: |
10100 | // for these 'currentRefPosition->refType' values, No action to take |
10101 | break; |
10102 | } |
10103 | |
10104 | if (currentRefPosition->refType != RefTypeBB) |
10105 | { |
10106 | DBEXEC(VERBOSE, dumpRegRecords()); |
10107 | if (interval != nullptr) |
10108 | { |
10109 | if (currentRefPosition->copyReg) |
10110 | { |
10111 | assert(interval->physReg != regNum); |
10112 | regRecord->assignedInterval = nullptr; |
10113 | assert(interval->assignedReg != nullptr); |
10114 | regRecord = interval->assignedReg; |
10115 | } |
10116 | if (currentRefPosition->spillAfter || currentRefPosition->lastUse) |
10117 | { |
10118 | interval->physReg = REG_NA; |
10119 | interval->assignedReg = nullptr; |
10120 | |
10121 | // regRegcord could be null if the RefPosition does not require a register. |
10122 | if (regRecord != nullptr) |
10123 | { |
10124 | regRecord->assignedInterval = nullptr; |
10125 | } |
10126 | else |
10127 | { |
10128 | assert(!currentRefPosition->RequiresRegister()); |
10129 | } |
10130 | } |
10131 | } |
10132 | } |
10133 | } |
10134 | |
10135 | // Now, verify the resolution blocks. |
10136 | // Currently these are nearly always at the end of the method, but that may not always be the case. |
10137 | // So, we'll go through all the BBs looking for blocks whose bbNum is greater than bbNumMaxBeforeResolution. |
10138 | for (BasicBlock* currentBlock = compiler->fgFirstBB; currentBlock != nullptr; currentBlock = currentBlock->bbNext) |
10139 | { |
10140 | if (currentBlock->bbNum > bbNumMaxBeforeResolution) |
10141 | { |
10142 | // If we haven't enregistered an lclVars, we have no resolution blocks. |
10143 | assert(enregisterLocalVars); |
10144 | |
10145 | if (VERBOSE) |
10146 | { |
10147 | dumpRegRecordTitle(); |
10148 | printf(shortRefPositionFormat, 0, 0); |
10149 | assert(currentBlock->bbPreds != nullptr && currentBlock->bbPreds->flBlock != nullptr); |
10150 | printf(bbRefPosFormat, currentBlock->bbNum, currentBlock->bbPreds->flBlock->bbNum); |
10151 | dumpRegRecords(); |
10152 | } |
10153 | |
10154 | // Clear register assignments. |
10155 | for (regNumber reg = REG_FIRST; reg < ACTUAL_REG_COUNT; reg = REG_NEXT(reg)) |
10156 | { |
10157 | RegRecord* physRegRecord = getRegisterRecord(reg); |
10158 | physRegRecord->assignedInterval = nullptr; |
10159 | } |
10160 | |
10161 | // Set the incoming register assignments |
10162 | VarToRegMap inVarToRegMap = getInVarToRegMap(currentBlock->bbNum); |
10163 | VarSetOps::Iter iter(compiler, currentBlock->bbLiveIn); |
10164 | unsigned varIndex = 0; |
10165 | while (iter.NextElem(&varIndex)) |
10166 | { |
10167 | if (localVarIntervals[varIndex] == nullptr) |
10168 | { |
10169 | assert(!compiler->lvaTable[compiler->lvaTrackedToVarNum[varIndex]].lvLRACandidate); |
10170 | continue; |
10171 | } |
10172 | regNumber regNum = getVarReg(inVarToRegMap, varIndex); |
10173 | Interval* interval = getIntervalForLocalVar(varIndex); |
10174 | interval->physReg = regNum; |
10175 | interval->assignedReg = &(physRegs[regNum]); |
10176 | interval->isActive = true; |
10177 | physRegs[regNum].assignedInterval = interval; |
10178 | } |
10179 | |
10180 | // Verify the moves in this block |
10181 | LIR::Range& currentBlockRange = LIR::AsRange(currentBlock); |
10182 | for (GenTree* node : currentBlockRange.NonPhiNodes()) |
10183 | { |
10184 | assert(IsResolutionNode(currentBlockRange, node)); |
10185 | if (IsResolutionMove(node)) |
10186 | { |
10187 | // Only verify nodes that are actually moves; don't bother with the nodes that are |
10188 | // operands to moves. |
10189 | verifyResolutionMove(node, currentLocation); |
10190 | } |
10191 | } |
10192 | |
10193 | // Verify the outgoing register assignments |
10194 | { |
10195 | VarToRegMap outVarToRegMap = getOutVarToRegMap(currentBlock->bbNum); |
10196 | VarSetOps::Iter iter(compiler, currentBlock->bbLiveOut); |
10197 | unsigned varIndex = 0; |
10198 | while (iter.NextElem(&varIndex)) |
10199 | { |
10200 | if (localVarIntervals[varIndex] == nullptr) |
10201 | { |
10202 | assert(!compiler->lvaTable[compiler->lvaTrackedToVarNum[varIndex]].lvLRACandidate); |
10203 | continue; |
10204 | } |
10205 | regNumber regNum = getVarReg(outVarToRegMap, varIndex); |
10206 | Interval* interval = getIntervalForLocalVar(varIndex); |
10207 | assert(interval->physReg == regNum || (interval->physReg == REG_NA && regNum == REG_STK)); |
10208 | interval->physReg = REG_NA; |
10209 | interval->assignedReg = nullptr; |
10210 | interval->isActive = false; |
10211 | } |
10212 | } |
10213 | } |
10214 | } |
10215 | |
10216 | DBEXEC(VERBOSE, printf("\n" )); |
10217 | } |
10218 | |
10219 | //------------------------------------------------------------------------ |
10220 | // verifyResolutionMove: Verify a resolution statement. Called by verifyFinalAllocation() |
10221 | // |
10222 | // Arguments: |
10223 | // resolutionMove - A GenTree* that must be a resolution move. |
10224 | // currentLocation - The LsraLocation of the most recent RefPosition that has been verified. |
10225 | // |
10226 | // Return Value: |
10227 | // None. |
10228 | // |
10229 | // Notes: |
10230 | // If verbose is set, this will also dump the moves into the table of final allocations. |
10231 | void LinearScan::verifyResolutionMove(GenTree* resolutionMove, LsraLocation currentLocation) |
10232 | { |
10233 | GenTree* dst = resolutionMove; |
10234 | assert(IsResolutionMove(dst)); |
10235 | |
10236 | if (dst->OperGet() == GT_SWAP) |
10237 | { |
10238 | GenTreeLclVarCommon* left = dst->gtGetOp1()->AsLclVarCommon(); |
10239 | GenTreeLclVarCommon* right = dst->gtGetOp2()->AsLclVarCommon(); |
10240 | regNumber leftRegNum = left->gtRegNum; |
10241 | regNumber rightRegNum = right->gtRegNum; |
10242 | LclVarDsc* leftVarDsc = compiler->lvaTable + left->gtLclNum; |
10243 | LclVarDsc* rightVarDsc = compiler->lvaTable + right->gtLclNum; |
10244 | Interval* leftInterval = getIntervalForLocalVar(leftVarDsc->lvVarIndex); |
10245 | Interval* rightInterval = getIntervalForLocalVar(rightVarDsc->lvVarIndex); |
10246 | assert(leftInterval->physReg == leftRegNum && rightInterval->physReg == rightRegNum); |
10247 | leftInterval->physReg = rightRegNum; |
10248 | rightInterval->physReg = leftRegNum; |
10249 | leftInterval->assignedReg = &physRegs[rightRegNum]; |
10250 | rightInterval->assignedReg = &physRegs[leftRegNum]; |
10251 | physRegs[rightRegNum].assignedInterval = leftInterval; |
10252 | physRegs[leftRegNum].assignedInterval = rightInterval; |
10253 | if (VERBOSE) |
10254 | { |
10255 | printf(shortRefPositionFormat, currentLocation, 0); |
10256 | dumpIntervalName(leftInterval); |
10257 | printf(" Swap " ); |
10258 | printf(" %-4s " , getRegName(rightRegNum)); |
10259 | dumpRegRecords(); |
10260 | printf(shortRefPositionFormat, currentLocation, 0); |
10261 | dumpIntervalName(rightInterval); |
10262 | printf(" \" " ); |
10263 | printf(" %-4s " , getRegName(leftRegNum)); |
10264 | dumpRegRecords(); |
10265 | } |
10266 | return; |
10267 | } |
10268 | regNumber dstRegNum = dst->gtRegNum; |
10269 | regNumber srcRegNum; |
10270 | GenTreeLclVarCommon* lcl; |
10271 | if (dst->OperGet() == GT_COPY) |
10272 | { |
10273 | lcl = dst->gtGetOp1()->AsLclVarCommon(); |
10274 | srcRegNum = lcl->gtRegNum; |
10275 | } |
10276 | else |
10277 | { |
10278 | lcl = dst->AsLclVarCommon(); |
10279 | if ((lcl->gtFlags & GTF_SPILLED) != 0) |
10280 | { |
10281 | srcRegNum = REG_STK; |
10282 | } |
10283 | else |
10284 | { |
10285 | assert((lcl->gtFlags & GTF_SPILL) != 0); |
10286 | srcRegNum = dstRegNum; |
10287 | dstRegNum = REG_STK; |
10288 | } |
10289 | } |
10290 | |
10291 | Interval* interval = getIntervalForLocalVarNode(lcl); |
10292 | assert(interval->physReg == srcRegNum || (srcRegNum == REG_STK && interval->physReg == REG_NA)); |
10293 | if (srcRegNum != REG_STK) |
10294 | { |
10295 | physRegs[srcRegNum].assignedInterval = nullptr; |
10296 | } |
10297 | if (dstRegNum != REG_STK) |
10298 | { |
10299 | interval->physReg = dstRegNum; |
10300 | interval->assignedReg = &(physRegs[dstRegNum]); |
10301 | physRegs[dstRegNum].assignedInterval = interval; |
10302 | interval->isActive = true; |
10303 | } |
10304 | else |
10305 | { |
10306 | interval->physReg = REG_NA; |
10307 | interval->assignedReg = nullptr; |
10308 | interval->isActive = false; |
10309 | } |
10310 | if (VERBOSE) |
10311 | { |
10312 | printf(shortRefPositionFormat, currentLocation, 0); |
10313 | dumpIntervalName(interval); |
10314 | printf(" Move " ); |
10315 | printf(" %-4s " , getRegName(dstRegNum)); |
10316 | dumpRegRecords(); |
10317 | } |
10318 | } |
10319 | #endif // DEBUG |
10320 | |