| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | /*****************************************************************************/ |
| 5 | |
| 6 | #ifndef _LSRA_H_ |
| 7 | #define _LSRA_H_ |
| 8 | |
| 9 | #include "arraylist.h" |
| 10 | #include "smallhash.h" |
| 11 | |
| 12 | // Minor and forward-reference types |
| 13 | class Interval; |
| 14 | class RefPosition; |
| 15 | class LinearScan; |
| 16 | class RegRecord; |
| 17 | |
| 18 | template <class T> |
| 19 | class ArrayStack; |
| 20 | |
| 21 | // LsraLocation tracks the linearized order of the nodes. |
| 22 | // Each node is assigned two LsraLocations - one for all the uses and all but the last |
| 23 | // def, and a second location for the last def (if any) |
| 24 | |
| 25 | typedef unsigned int LsraLocation; |
| 26 | const unsigned int MinLocation = 0; |
| 27 | const unsigned int MaxLocation = UINT_MAX; |
| 28 | // max number of registers an operation could require internally (in addition to uses and defs) |
| 29 | const unsigned int MaxInternalRegisters = 8; |
| 30 | const unsigned int RegisterTypeCount = 2; |
| 31 | |
| 32 | /***************************************************************************** |
| 33 | * Register types |
| 34 | *****************************************************************************/ |
| 35 | typedef var_types RegisterType; |
| 36 | #define IntRegisterType TYP_INT |
| 37 | #define FloatRegisterType TYP_FLOAT |
| 38 | |
| 39 | //------------------------------------------------------------------------ |
| 40 | // regType: Return the RegisterType to use for a given type |
| 41 | // |
| 42 | // Arguments: |
| 43 | // type - the type of interest |
| 44 | // |
| 45 | template <class T> |
| 46 | RegisterType regType(T type) |
| 47 | { |
| 48 | #ifdef FEATURE_SIMD |
| 49 | if (varTypeIsSIMD(type)) |
| 50 | { |
| 51 | return FloatRegisterType; |
| 52 | } |
| 53 | #endif // FEATURE_SIMD |
| 54 | return varTypeIsFloating(TypeGet(type)) ? FloatRegisterType : IntRegisterType; |
| 55 | } |
| 56 | |
| 57 | //------------------------------------------------------------------------ |
| 58 | // useFloatReg: Check if the given var_type should be allocated to a FloatRegisterType |
| 59 | // |
| 60 | inline bool useFloatReg(var_types type) |
| 61 | { |
| 62 | return (regType(type) == FloatRegisterType); |
| 63 | } |
| 64 | |
| 65 | //------------------------------------------------------------------------ |
| 66 | // registerTypesEquivalent: Check to see if two RegisterTypes are equivalent |
| 67 | // |
| 68 | inline bool registerTypesEquivalent(RegisterType a, RegisterType b) |
| 69 | { |
| 70 | return varTypeIsIntegralOrI(a) == varTypeIsIntegralOrI(b); |
| 71 | } |
| 72 | |
| 73 | //------------------------------------------------------------------------ |
| 74 | // registerTypesEquivalent: Get the set of callee-save registers of the given RegisterType |
| 75 | // |
| 76 | inline regMaskTP calleeSaveRegs(RegisterType rt) |
| 77 | { |
| 78 | return varTypeIsIntegralOrI(rt) ? RBM_INT_CALLEE_SAVED : RBM_FLT_CALLEE_SAVED; |
| 79 | } |
| 80 | |
| 81 | //------------------------------------------------------------------------ |
| 82 | // RefInfo: Captures the necessary information for a definition that is "in-flight" |
| 83 | // during `buildIntervals` (i.e. a tree-node definition has been encountered, |
| 84 | // but not its use). This includes the RefPosition and its associated |
| 85 | // GenTree node. |
| 86 | // |
| 87 | struct RefInfo |
| 88 | { |
| 89 | RefPosition* ref; |
| 90 | GenTree* treeNode; |
| 91 | |
| 92 | RefInfo(RefPosition* r, GenTree* t) : ref(r), treeNode(t) |
| 93 | { |
| 94 | } |
| 95 | |
| 96 | // default constructor for data structures |
| 97 | RefInfo() |
| 98 | { |
| 99 | } |
| 100 | }; |
| 101 | |
| 102 | //------------------------------------------------------------------------ |
| 103 | // RefInfoListNode: used to store a single `RefInfo` value for a |
| 104 | // node during `buildIntervals`. |
| 105 | // |
| 106 | // This is the node type for `RefInfoList` below. |
| 107 | // |
| 108 | class RefInfoListNode final : public RefInfo |
| 109 | { |
| 110 | friend class RefInfoList; |
| 111 | friend class RefInfoListNodePool; |
| 112 | |
| 113 | RefInfoListNode* m_next; // The next node in the list |
| 114 | |
| 115 | public: |
| 116 | RefInfoListNode(RefPosition* r, GenTree* t) : RefInfo(r, t) |
| 117 | { |
| 118 | } |
| 119 | |
| 120 | //------------------------------------------------------------------------ |
| 121 | // RefInfoListNode::Next: Returns the next node in the list. |
| 122 | RefInfoListNode* Next() const |
| 123 | { |
| 124 | return m_next; |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | //------------------------------------------------------------------------ |
| 129 | // RefInfoList: used to store a list of `RefInfo` values for a |
| 130 | // node during `buildIntervals`. |
| 131 | // |
| 132 | // This list of 'RefInfoListNode's contains the source nodes consumed by |
| 133 | // a node, and is created by 'BuildNode'. |
| 134 | // |
| 135 | class RefInfoList final |
| 136 | { |
| 137 | friend class RefInfoListNodePool; |
| 138 | |
| 139 | RefInfoListNode* m_head; // The head of the list |
| 140 | RefInfoListNode* m_tail; // The tail of the list |
| 141 | |
| 142 | public: |
| 143 | RefInfoList() : m_head(nullptr), m_tail(nullptr) |
| 144 | { |
| 145 | } |
| 146 | |
| 147 | RefInfoList(RefInfoListNode* node) : m_head(node), m_tail(node) |
| 148 | { |
| 149 | assert(m_head->m_next == nullptr); |
| 150 | } |
| 151 | |
| 152 | //------------------------------------------------------------------------ |
| 153 | // RefInfoList::IsEmpty: Returns true if the list is empty. |
| 154 | // |
| 155 | bool IsEmpty() const |
| 156 | { |
| 157 | return m_head == nullptr; |
| 158 | } |
| 159 | |
| 160 | //------------------------------------------------------------------------ |
| 161 | // RefInfoList::Begin: Returns the first node in the list. |
| 162 | // |
| 163 | RefInfoListNode* Begin() const |
| 164 | { |
| 165 | return m_head; |
| 166 | } |
| 167 | |
| 168 | //------------------------------------------------------------------------ |
| 169 | // RefInfoList::End: Returns the position after the last node in the |
| 170 | // list. The returned value is suitable for use as |
| 171 | // a sentinel for iteration. |
| 172 | // |
| 173 | RefInfoListNode* End() const |
| 174 | { |
| 175 | return nullptr; |
| 176 | } |
| 177 | |
| 178 | //------------------------------------------------------------------------ |
| 179 | // RefInfoList::End: Returns the position after the last node in the |
| 180 | // list. The returned value is suitable for use as |
| 181 | // a sentinel for iteration. |
| 182 | // |
| 183 | RefInfoListNode* Last() const |
| 184 | { |
| 185 | return m_tail; |
| 186 | } |
| 187 | |
| 188 | //------------------------------------------------------------------------ |
| 189 | // RefInfoList::Append: Appends a node to the list. |
| 190 | // |
| 191 | // Arguments: |
| 192 | // node - The node to append. Must not be part of an existing list. |
| 193 | // |
| 194 | void Append(RefInfoListNode* node) |
| 195 | { |
| 196 | assert(node->m_next == nullptr); |
| 197 | |
| 198 | if (m_tail == nullptr) |
| 199 | { |
| 200 | assert(m_head == nullptr); |
| 201 | m_head = node; |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | m_tail->m_next = node; |
| 206 | } |
| 207 | |
| 208 | m_tail = node; |
| 209 | } |
| 210 | //------------------------------------------------------------------------ |
| 211 | // RefInfoList::Append: Appends another list to this list. |
| 212 | // |
| 213 | // Arguments: |
| 214 | // other - The list to append. |
| 215 | // |
| 216 | void Append(RefInfoList other) |
| 217 | { |
| 218 | if (m_tail == nullptr) |
| 219 | { |
| 220 | assert(m_head == nullptr); |
| 221 | m_head = other.m_head; |
| 222 | } |
| 223 | else |
| 224 | { |
| 225 | m_tail->m_next = other.m_head; |
| 226 | } |
| 227 | |
| 228 | m_tail = other.m_tail; |
| 229 | } |
| 230 | |
| 231 | //------------------------------------------------------------------------ |
| 232 | // RefInfoList::Prepend: Prepends a node to the list. |
| 233 | // |
| 234 | // Arguments: |
| 235 | // node - The node to prepend. Must not be part of an existing list. |
| 236 | // |
| 237 | void Prepend(RefInfoListNode* node) |
| 238 | { |
| 239 | assert(node->m_next == nullptr); |
| 240 | |
| 241 | if (m_head == nullptr) |
| 242 | { |
| 243 | assert(m_tail == nullptr); |
| 244 | m_tail = node; |
| 245 | } |
| 246 | else |
| 247 | { |
| 248 | node->m_next = m_head; |
| 249 | } |
| 250 | |
| 251 | m_head = node; |
| 252 | } |
| 253 | |
| 254 | //------------------------------------------------------------------------ |
| 255 | // RefInfoList::Add: Adds a node to the list. |
| 256 | // |
| 257 | // Arguments: |
| 258 | // node - The node to add. Must not be part of an existing list. |
| 259 | // prepend - True if it should be prepended (otherwise is appended) |
| 260 | // |
| 261 | void Add(RefInfoListNode* node, bool prepend) |
| 262 | { |
| 263 | if (prepend) |
| 264 | { |
| 265 | Prepend(node); |
| 266 | } |
| 267 | else |
| 268 | { |
| 269 | Append(node); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | //------------------------------------------------------------------------ |
| 274 | // removeListNode - retrieve the RefInfo for the given node |
| 275 | // |
| 276 | // Notes: |
| 277 | // The BuildNode methods use this helper to retrieve the RefInfo for child nodes |
| 278 | // from the useList being constructed. |
| 279 | // |
| 280 | RefInfoListNode* removeListNode(RefInfoListNode* listNode, RefInfoListNode* prevListNode) |
| 281 | { |
| 282 | RefInfoListNode* nextNode = listNode->Next(); |
| 283 | if (prevListNode == nullptr) |
| 284 | { |
| 285 | m_head = nextNode; |
| 286 | } |
| 287 | else |
| 288 | { |
| 289 | prevListNode->m_next = nextNode; |
| 290 | } |
| 291 | if (nextNode == nullptr) |
| 292 | { |
| 293 | m_tail = prevListNode; |
| 294 | } |
| 295 | listNode->m_next = nullptr; |
| 296 | return listNode; |
| 297 | } |
| 298 | |
| 299 | // removeListNode - remove the RefInfoListNode for the given GenTree node from the defList |
| 300 | RefInfoListNode* removeListNode(GenTree* node); |
| 301 | // Same as above but takes a multiRegIdx to support multi-reg nodes. |
| 302 | RefInfoListNode* removeListNode(GenTree* node, unsigned multiRegIdx); |
| 303 | |
| 304 | //------------------------------------------------------------------------ |
| 305 | // GetRefPosition - retrieve the RefPosition for the given node |
| 306 | // |
| 307 | // Notes: |
| 308 | // The Build methods use this helper to retrieve the RefPosition for child nodes |
| 309 | // from the useList being constructed. Note that, if the user knows the order of the operands, |
| 310 | // it is expected that they should just retrieve them directly. |
| 311 | |
| 312 | RefPosition* GetRefPosition(GenTree* node) |
| 313 | { |
| 314 | for (RefInfoListNode *listNode = Begin(), *end = End(); listNode != end; listNode = listNode->Next()) |
| 315 | { |
| 316 | if (listNode->treeNode == node) |
| 317 | { |
| 318 | return listNode->ref; |
| 319 | } |
| 320 | } |
| 321 | assert(!"GetRefPosition didn't find the node" ); |
| 322 | unreached(); |
| 323 | } |
| 324 | |
| 325 | //------------------------------------------------------------------------ |
| 326 | // RefInfoList::GetSecond: Gets the second node in the list. |
| 327 | // |
| 328 | // Arguments: |
| 329 | // (DEBUG ONLY) treeNode - The GenTree* we expect to be in the second node. |
| 330 | // |
| 331 | RefInfoListNode* GetSecond(INDEBUG(GenTree* treeNode)) |
| 332 | { |
| 333 | noway_assert((Begin() != nullptr) && (Begin()->Next() != nullptr)); |
| 334 | RefInfoListNode* second = Begin()->Next(); |
| 335 | assert(second->treeNode == treeNode); |
| 336 | return second; |
| 337 | } |
| 338 | |
| 339 | #ifdef DEBUG |
| 340 | // Count - return the number of nodes in the list (DEBUG only) |
| 341 | int Count() |
| 342 | { |
| 343 | int count = 0; |
| 344 | for (RefInfoListNode *listNode = Begin(), *end = End(); listNode != end; listNode = listNode->Next()) |
| 345 | { |
| 346 | count++; |
| 347 | } |
| 348 | return count; |
| 349 | } |
| 350 | #endif // DEBUG |
| 351 | }; |
| 352 | |
| 353 | //------------------------------------------------------------------------ |
| 354 | // RefInfoListNodePool: manages a pool of `RefInfoListNode` |
| 355 | // values to decrease overall memory usage |
| 356 | // during `buildIntervals`. |
| 357 | // |
| 358 | // `buildIntervals` involves creating a list of RefInfo items per |
| 359 | // node that either directly produces a set of registers or that is a |
| 360 | // contained node with register-producing sources. However, these lists |
| 361 | // are short-lived: they are destroyed once the use of the corresponding |
| 362 | // node is processed. As such, there is typically only a small number of |
| 363 | // `RefInfoListNode` values in use at any given time. Pooling these |
| 364 | // values avoids otherwise frequent allocations. |
| 365 | class RefInfoListNodePool final |
| 366 | { |
| 367 | RefInfoListNode* m_freeList; |
| 368 | Compiler* m_compiler; |
| 369 | static const unsigned defaultPreallocation = 8; |
| 370 | |
| 371 | public: |
| 372 | RefInfoListNodePool(Compiler* compiler, unsigned preallocate = defaultPreallocation); |
| 373 | RefInfoListNode* GetNode(RefPosition* r, GenTree* t, unsigned regIdx = 0); |
| 374 | void ReturnNode(RefInfoListNode* listNode); |
| 375 | }; |
| 376 | |
| 377 | struct LsraBlockInfo |
| 378 | { |
| 379 | // bbNum of the predecessor to use for the register location of live-in variables. |
| 380 | // 0 for fgFirstBB. |
| 381 | unsigned int predBBNum; |
| 382 | BasicBlock::weight_t weight; |
| 383 | bool hasCriticalInEdge; |
| 384 | bool hasCriticalOutEdge; |
| 385 | |
| 386 | #if TRACK_LSRA_STATS |
| 387 | // Per block maintained LSRA statistics. |
| 388 | |
| 389 | // Number of spills of local vars or tree temps in this basic block. |
| 390 | unsigned spillCount; |
| 391 | |
| 392 | // Number of GT_COPY nodes inserted in this basic block while allocating regs. |
| 393 | // Note that GT_COPY nodes are also inserted as part of basic block boundary |
| 394 | // resolution, which are accounted against resolutionMovCount but not |
| 395 | // against copyRegCount. |
| 396 | unsigned copyRegCount; |
| 397 | |
| 398 | // Number of resolution moves inserted in this basic block. |
| 399 | unsigned resolutionMovCount; |
| 400 | |
| 401 | // Number of critical edges from this block that are split. |
| 402 | unsigned splitEdgeCount; |
| 403 | #endif // TRACK_LSRA_STATS |
| 404 | }; |
| 405 | |
| 406 | // This is sort of a bit mask |
| 407 | // The low order 2 bits will be 1 for defs, and 2 for uses |
| 408 | enum RefType : unsigned char |
| 409 | { |
| 410 | #define DEF_REFTYPE(memberName, memberValue, shortName) memberName = memberValue, |
| 411 | #include "lsra_reftypes.h" |
| 412 | #undef DEF_REFTYPE |
| 413 | }; |
| 414 | |
| 415 | // position in a block (for resolution) |
| 416 | enum BlockStartOrEnd |
| 417 | { |
| 418 | BlockPositionStart = 0, |
| 419 | BlockPositionEnd = 1, |
| 420 | PositionCount = 2 |
| 421 | }; |
| 422 | |
| 423 | inline bool RefTypeIsUse(RefType refType) |
| 424 | { |
| 425 | return ((refType & RefTypeUse) == RefTypeUse); |
| 426 | } |
| 427 | |
| 428 | inline bool RefTypeIsDef(RefType refType) |
| 429 | { |
| 430 | return ((refType & RefTypeDef) == RefTypeDef); |
| 431 | } |
| 432 | |
| 433 | typedef regNumberSmall* VarToRegMap; |
| 434 | |
| 435 | typedef jitstd::list<Interval> IntervalList; |
| 436 | typedef jitstd::list<RefPosition> RefPositionList; |
| 437 | typedef jitstd::list<RefPosition>::iterator RefPositionIterator; |
| 438 | typedef jitstd::list<RefPosition>::reverse_iterator RefPositionReverseIterator; |
| 439 | |
| 440 | class Referenceable |
| 441 | { |
| 442 | public: |
| 443 | Referenceable() |
| 444 | { |
| 445 | firstRefPosition = nullptr; |
| 446 | recentRefPosition = nullptr; |
| 447 | lastRefPosition = nullptr; |
| 448 | isActive = false; |
| 449 | } |
| 450 | |
| 451 | // A linked list of RefPositions. These are only traversed in the forward |
| 452 | // direction, and are not moved, so they don't need to be doubly linked |
| 453 | // (see RefPosition). |
| 454 | |
| 455 | RefPosition* firstRefPosition; |
| 456 | RefPosition* recentRefPosition; |
| 457 | RefPosition* lastRefPosition; |
| 458 | |
| 459 | bool isActive; |
| 460 | |
| 461 | // Get the position of the next reference which is at or greater than |
| 462 | // the current location (relies upon recentRefPosition being udpated |
| 463 | // during traversal). |
| 464 | RefPosition* getNextRefPosition(); |
| 465 | LsraLocation getNextRefLocation(); |
| 466 | }; |
| 467 | |
| 468 | class RegRecord : public Referenceable |
| 469 | { |
| 470 | public: |
| 471 | RegRecord() |
| 472 | { |
| 473 | assignedInterval = nullptr; |
| 474 | previousInterval = nullptr; |
| 475 | regNum = REG_NA; |
| 476 | isCalleeSave = false; |
| 477 | registerType = IntRegisterType; |
| 478 | isBusyUntilNextKill = false; |
| 479 | } |
| 480 | |
| 481 | void init(regNumber reg) |
| 482 | { |
| 483 | #ifdef _TARGET_ARM64_ |
| 484 | // The Zero register, or the SP |
| 485 | if ((reg == REG_ZR) || (reg == REG_SP)) |
| 486 | { |
| 487 | // IsGeneralRegister returns false for REG_ZR and REG_SP |
| 488 | regNum = reg; |
| 489 | registerType = IntRegisterType; |
| 490 | } |
| 491 | else |
| 492 | #endif |
| 493 | if (emitter::isFloatReg(reg)) |
| 494 | { |
| 495 | registerType = FloatRegisterType; |
| 496 | } |
| 497 | else |
| 498 | { |
| 499 | // The constructor defaults to IntRegisterType |
| 500 | assert(emitter::isGeneralRegister(reg) && registerType == IntRegisterType); |
| 501 | } |
| 502 | regNum = reg; |
| 503 | isCalleeSave = ((RBM_CALLEE_SAVED & genRegMask(reg)) != 0); |
| 504 | } |
| 505 | |
| 506 | #ifdef DEBUG |
| 507 | // print out representation |
| 508 | void dump(); |
| 509 | // concise representation for embedding |
| 510 | void tinyDump(); |
| 511 | #endif // DEBUG |
| 512 | |
| 513 | bool isFree(); |
| 514 | |
| 515 | // RefPosition * getNextRefPosition(); |
| 516 | // LsraLocation getNextRefLocation(); |
| 517 | |
| 518 | // DATA |
| 519 | |
| 520 | // interval to which this register is currently allocated. |
| 521 | // If the interval is inactive (isActive == false) then it is not currently live, |
| 522 | // and the register call be unassigned (i.e. setting assignedInterval to nullptr) |
| 523 | // without spilling the register. |
| 524 | Interval* assignedInterval; |
| 525 | // Interval to which this register was previously allocated, and which was unassigned |
| 526 | // because it was inactive. This register will be reassigned to this Interval when |
| 527 | // assignedInterval becomes inactive. |
| 528 | Interval* previousInterval; |
| 529 | |
| 530 | regNumber regNum; |
| 531 | bool isCalleeSave; |
| 532 | RegisterType registerType; |
| 533 | // This register must be considered busy until the next time it is explicitly killed. |
| 534 | // This is used so that putarg_reg can avoid killing its lclVar source, while avoiding |
| 535 | // the problem with the reg becoming free if the last-use is encountered before the call. |
| 536 | bool isBusyUntilNextKill; |
| 537 | |
| 538 | bool conflictingFixedRegReference(RefPosition* refPosition); |
| 539 | }; |
| 540 | |
| 541 | inline bool leafInRange(GenTree* leaf, int lower, int upper) |
| 542 | { |
| 543 | if (!leaf->IsIntCnsFitsInI32()) |
| 544 | { |
| 545 | return false; |
| 546 | } |
| 547 | if (leaf->gtIntCon.gtIconVal < lower) |
| 548 | { |
| 549 | return false; |
| 550 | } |
| 551 | if (leaf->gtIntCon.gtIconVal > upper) |
| 552 | { |
| 553 | return false; |
| 554 | } |
| 555 | |
| 556 | return true; |
| 557 | } |
| 558 | |
| 559 | inline bool leafInRange(GenTree* leaf, int lower, int upper, int multiple) |
| 560 | { |
| 561 | if (!leafInRange(leaf, lower, upper)) |
| 562 | { |
| 563 | return false; |
| 564 | } |
| 565 | if (leaf->gtIntCon.gtIconVal % multiple) |
| 566 | { |
| 567 | return false; |
| 568 | } |
| 569 | |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | inline bool leafAddInRange(GenTree* leaf, int lower, int upper, int multiple = 1) |
| 574 | { |
| 575 | if (leaf->OperGet() != GT_ADD) |
| 576 | { |
| 577 | return false; |
| 578 | } |
| 579 | return leafInRange(leaf->gtGetOp2(), lower, upper, multiple); |
| 580 | } |
| 581 | |
| 582 | inline bool isCandidateVar(LclVarDsc* varDsc) |
| 583 | { |
| 584 | return varDsc->lvLRACandidate; |
| 585 | } |
| 586 | |
| 587 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 588 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 589 | XX XX |
| 590 | XX LinearScan XX |
| 591 | XX XX |
| 592 | XX This is the container for the Linear Scan data structures and methods. XX |
| 593 | XX XX |
| 594 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 595 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 596 | */ |
| 597 | // OPTION 1: The algorithm as described in "Optimized Interval Splitting in a |
| 598 | // Linear Scan Register Allocator". It is driven by iterating over the Interval |
| 599 | // lists. In this case, we need multiple IntervalLists, and Intervals will be |
| 600 | // moved between them so they must be easily updated. |
| 601 | |
| 602 | // OPTION 2: The algorithm is driven by iterating over the RefPositions. In this |
| 603 | // case, we only need a single IntervalList, and it won't be updated. |
| 604 | // The RefPosition must refer to its Interval, and we need to be able to traverse |
| 605 | // to the next RefPosition in code order |
| 606 | // THIS IS THE OPTION CURRENTLY BEING PURSUED |
| 607 | |
| 608 | class LinearScan : public LinearScanInterface |
| 609 | { |
| 610 | friend class RefPosition; |
| 611 | friend class Interval; |
| 612 | friend class Lowering; |
| 613 | |
| 614 | public: |
| 615 | // This could use further abstraction. From Compiler we need the tree, |
| 616 | // the flowgraph and the allocator. |
| 617 | LinearScan(Compiler* theCompiler); |
| 618 | |
| 619 | // This is the main driver |
| 620 | virtual void doLinearScan(); |
| 621 | |
| 622 | static bool isSingleRegister(regMaskTP regMask) |
| 623 | { |
| 624 | return (genExactlyOneBit(regMask)); |
| 625 | } |
| 626 | |
| 627 | // Initialize the block traversal for LSRA. |
| 628 | // This resets the bbVisitedSet, and on the first invocation sets the blockSequence array, |
| 629 | // which determines the order in which blocks will be allocated (currently called during Lowering). |
| 630 | BasicBlock* startBlockSequence(); |
| 631 | // Move to the next block in sequence, updating the current block information. |
| 632 | BasicBlock* moveToNextBlock(); |
| 633 | // Get the next block to be scheduled without changing the current block, |
| 634 | // but updating the blockSequence during the first iteration if it is not fully computed. |
| 635 | BasicBlock* getNextBlock(); |
| 636 | |
| 637 | // This is called during code generation to update the location of variables |
| 638 | virtual void recordVarLocationsAtStartOfBB(BasicBlock* bb); |
| 639 | |
| 640 | // This does the dataflow analysis and builds the intervals |
| 641 | void buildIntervals(); |
| 642 | |
| 643 | // This is where the actual assignment is done |
| 644 | void allocateRegisters(); |
| 645 | |
| 646 | // This is the resolution phase, where cross-block mismatches are fixed up |
| 647 | void resolveRegisters(); |
| 648 | |
| 649 | void writeRegisters(RefPosition* currentRefPosition, GenTree* tree); |
| 650 | |
| 651 | // Insert a copy in the case where a tree node value must be moved to a different |
| 652 | // register at the point of use, or it is reloaded to a different register |
| 653 | // than the one it was spilled from |
| 654 | void insertCopyOrReload(BasicBlock* block, GenTree* tree, unsigned multiRegIdx, RefPosition* refPosition); |
| 655 | |
| 656 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 657 | // Insert code to save and restore the upper half of a vector that lives |
| 658 | // in a callee-save register at the point of a call (the upper half is |
| 659 | // not preserved). |
| 660 | void insertUpperVectorSaveAndReload(GenTree* tree, RefPosition* refPosition, BasicBlock* block); |
| 661 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 662 | |
| 663 | // resolve along one block-block edge |
| 664 | enum ResolveType |
| 665 | { |
| 666 | ResolveSplit, |
| 667 | ResolveJoin, |
| 668 | ResolveCritical, |
| 669 | ResolveSharedCritical, |
| 670 | ResolveTypeCount |
| 671 | }; |
| 672 | #ifdef DEBUG |
| 673 | static const char* resolveTypeName[ResolveTypeCount]; |
| 674 | #endif |
| 675 | |
| 676 | enum WhereToInsert |
| 677 | { |
| 678 | InsertAtTop, |
| 679 | InsertAtBottom |
| 680 | }; |
| 681 | |
| 682 | #ifdef _TARGET_ARM_ |
| 683 | void addResolutionForDouble(BasicBlock* block, |
| 684 | GenTree* insertionPoint, |
| 685 | Interval** sourceIntervals, |
| 686 | regNumberSmall* location, |
| 687 | regNumber toReg, |
| 688 | regNumber fromReg, |
| 689 | ResolveType resolveType); |
| 690 | #endif |
| 691 | void addResolution( |
| 692 | BasicBlock* block, GenTree* insertionPoint, Interval* interval, regNumber outReg, regNumber inReg); |
| 693 | |
| 694 | void handleOutgoingCriticalEdges(BasicBlock* block); |
| 695 | |
| 696 | void resolveEdge(BasicBlock* fromBlock, BasicBlock* toBlock, ResolveType resolveType, VARSET_VALARG_TP liveSet); |
| 697 | |
| 698 | void resolveEdges(); |
| 699 | |
| 700 | // Keep track of how many temp locations we'll need for spill |
| 701 | void initMaxSpill(); |
| 702 | void updateMaxSpill(RefPosition* refPosition); |
| 703 | void recordMaxSpill(); |
| 704 | |
| 705 | // max simultaneous spill locations used of every type |
| 706 | unsigned int maxSpill[TYP_COUNT]; |
| 707 | unsigned int currentSpill[TYP_COUNT]; |
| 708 | bool needFloatTmpForFPCall; |
| 709 | bool needDoubleTmpForFPCall; |
| 710 | |
| 711 | #ifdef DEBUG |
| 712 | private: |
| 713 | //------------------------------------------------------------------------ |
| 714 | // Should we stress lsra? This uses the COMPlus_JitStressRegs variable. |
| 715 | // |
| 716 | // The mask bits are currently divided into fields in which each non-zero value |
| 717 | // is a distinct stress option (e.g. 0x3 is not a combination of 0x1 and 0x2). |
| 718 | // However, subject to possible constraints (to be determined), the different |
| 719 | // fields can be combined (e.g. 0x7 is a combination of 0x3 and 0x4). |
| 720 | // Note that the field values are declared in a public enum, but the actual bits are |
| 721 | // only accessed via accessors. |
| 722 | |
| 723 | unsigned lsraStressMask; |
| 724 | |
| 725 | // This controls the registers available for allocation |
| 726 | enum LsraStressLimitRegs{LSRA_LIMIT_NONE = 0, LSRA_LIMIT_CALLEE = 0x1, LSRA_LIMIT_CALLER = 0x2, |
| 727 | LSRA_LIMIT_SMALL_SET = 0x3, LSRA_LIMIT_MASK = 0x3}; |
| 728 | |
| 729 | // When LSRA_LIMIT_SMALL_SET is specified, it is desirable to select a "mixed" set of caller- and callee-save |
| 730 | // registers, so as to get different coverage than limiting to callee or caller. |
| 731 | // At least for x86 and AMD64, and potentially other architecture that will support SIMD, |
| 732 | // we need a minimum of 5 fp regs in order to support the InitN intrinsic for Vector4. |
| 733 | // Hence the "SmallFPSet" has 5 elements. |
| 734 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 735 | |
| 736 | #if defined(_TARGET_AMD64_) |
| 737 | #ifdef UNIX_AMD64_ABI |
| 738 | // On System V the RDI and RSI are not callee saved. Use R12 ans R13 as callee saved registers. |
| 739 | static const regMaskTP LsraLimitSmallIntSet = |
| 740 | (RBM_EAX | RBM_ECX | RBM_EBX | RBM_ETW_FRAMED_EBP | RBM_R12 | RBM_R13); |
| 741 | #else // !UNIX_AMD64_ABI |
| 742 | // On Windows Amd64 use the RDI and RSI as callee saved registers. |
| 743 | static const regMaskTP LsraLimitSmallIntSet = |
| 744 | (RBM_EAX | RBM_ECX | RBM_EBX | RBM_ETW_FRAMED_EBP | RBM_ESI | RBM_EDI); |
| 745 | #endif // !UNIX_AMD64_ABI |
| 746 | static const regMaskTP LsraLimitSmallFPSet = (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM6 | RBM_XMM7); |
| 747 | #elif defined(_TARGET_ARM_) |
| 748 | // On ARM, we may need two registers to set up the target register for a virtual call, so we need |
| 749 | // to have at least the maximum number of arg registers, plus 2. |
| 750 | static const regMaskTP LsraLimitSmallIntSet = (RBM_R0 | RBM_R1 | RBM_R2 | RBM_R3 | RBM_R4 | RBM_R5); |
| 751 | static const regMaskTP LsraLimitSmallFPSet = (RBM_F0 | RBM_F1 | RBM_F2 | RBM_F16 | RBM_F17); |
| 752 | #elif defined(_TARGET_ARM64_) |
| 753 | static const regMaskTP LsraLimitSmallIntSet = (RBM_R0 | RBM_R1 | RBM_R2 | RBM_R19 | RBM_R20); |
| 754 | static const regMaskTP LsraLimitSmallFPSet = (RBM_V0 | RBM_V1 | RBM_V2 | RBM_V8 | RBM_V9); |
| 755 | #elif defined(_TARGET_X86_) |
| 756 | static const regMaskTP LsraLimitSmallIntSet = (RBM_EAX | RBM_ECX | RBM_EDI); |
| 757 | static const regMaskTP LsraLimitSmallFPSet = (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM6 | RBM_XMM7); |
| 758 | #else |
| 759 | #error Unsupported or unset target architecture |
| 760 | #endif // target |
| 761 | |
| 762 | LsraStressLimitRegs getStressLimitRegs() |
| 763 | { |
| 764 | return (LsraStressLimitRegs)(lsraStressMask & LSRA_LIMIT_MASK); |
| 765 | } |
| 766 | |
| 767 | regMaskTP getConstrainedRegMask(regMaskTP regMaskActual, regMaskTP regMaskConstrain, unsigned minRegCount); |
| 768 | regMaskTP stressLimitRegs(RefPosition* refPosition, regMaskTP mask); |
| 769 | |
| 770 | // This controls the heuristics used to select registers |
| 771 | // These can be combined. |
| 772 | enum LsraSelect{LSRA_SELECT_DEFAULT = 0, LSRA_SELECT_REVERSE_HEURISTICS = 0x04, |
| 773 | LSRA_SELECT_REVERSE_CALLER_CALLEE = 0x08, LSRA_SELECT_NEAREST = 0x10, LSRA_SELECT_MASK = 0x1c}; |
| 774 | LsraSelect getSelectionHeuristics() |
| 775 | { |
| 776 | return (LsraSelect)(lsraStressMask & LSRA_SELECT_MASK); |
| 777 | } |
| 778 | bool doReverseSelect() |
| 779 | { |
| 780 | return ((lsraStressMask & LSRA_SELECT_REVERSE_HEURISTICS) != 0); |
| 781 | } |
| 782 | bool doReverseCallerCallee() |
| 783 | { |
| 784 | return ((lsraStressMask & LSRA_SELECT_REVERSE_CALLER_CALLEE) != 0); |
| 785 | } |
| 786 | bool doSelectNearest() |
| 787 | { |
| 788 | return ((lsraStressMask & LSRA_SELECT_NEAREST) != 0); |
| 789 | } |
| 790 | |
| 791 | // This controls the order in which basic blocks are visited during allocation |
| 792 | enum LsraTraversalOrder{LSRA_TRAVERSE_LAYOUT = 0x20, LSRA_TRAVERSE_PRED_FIRST = 0x40, |
| 793 | LSRA_TRAVERSE_RANDOM = 0x60, // NYI |
| 794 | LSRA_TRAVERSE_DEFAULT = LSRA_TRAVERSE_PRED_FIRST, LSRA_TRAVERSE_MASK = 0x60}; |
| 795 | LsraTraversalOrder getLsraTraversalOrder() |
| 796 | { |
| 797 | if ((lsraStressMask & LSRA_TRAVERSE_MASK) == 0) |
| 798 | { |
| 799 | return LSRA_TRAVERSE_DEFAULT; |
| 800 | } |
| 801 | return (LsraTraversalOrder)(lsraStressMask & LSRA_TRAVERSE_MASK); |
| 802 | } |
| 803 | bool isTraversalLayoutOrder() |
| 804 | { |
| 805 | return getLsraTraversalOrder() == LSRA_TRAVERSE_LAYOUT; |
| 806 | } |
| 807 | bool isTraversalPredFirstOrder() |
| 808 | { |
| 809 | return getLsraTraversalOrder() == LSRA_TRAVERSE_PRED_FIRST; |
| 810 | } |
| 811 | |
| 812 | // This controls whether lifetimes should be extended to the entire method. |
| 813 | // Note that this has no effect under MinOpts |
| 814 | enum LsraExtendLifetimes{LSRA_DONT_EXTEND = 0, LSRA_EXTEND_LIFETIMES = 0x80, LSRA_EXTEND_LIFETIMES_MASK = 0x80}; |
| 815 | LsraExtendLifetimes getLsraExtendLifeTimes() |
| 816 | { |
| 817 | return (LsraExtendLifetimes)(lsraStressMask & LSRA_EXTEND_LIFETIMES_MASK); |
| 818 | } |
| 819 | bool extendLifetimes() |
| 820 | { |
| 821 | return getLsraExtendLifeTimes() == LSRA_EXTEND_LIFETIMES; |
| 822 | } |
| 823 | |
| 824 | // This controls whether variables locations should be set to the previous block in layout order |
| 825 | // (LSRA_BLOCK_BOUNDARY_LAYOUT), or to that of the highest-weight predecessor (LSRA_BLOCK_BOUNDARY_PRED - |
| 826 | // the default), or rotated (LSRA_BLOCK_BOUNDARY_ROTATE). |
| 827 | enum LsraBlockBoundaryLocations{LSRA_BLOCK_BOUNDARY_PRED = 0, LSRA_BLOCK_BOUNDARY_LAYOUT = 0x100, |
| 828 | LSRA_BLOCK_BOUNDARY_ROTATE = 0x200, LSRA_BLOCK_BOUNDARY_MASK = 0x300}; |
| 829 | LsraBlockBoundaryLocations getLsraBlockBoundaryLocations() |
| 830 | { |
| 831 | return (LsraBlockBoundaryLocations)(lsraStressMask & LSRA_BLOCK_BOUNDARY_MASK); |
| 832 | } |
| 833 | regNumber rotateBlockStartLocation(Interval* interval, regNumber targetReg, regMaskTP availableRegs); |
| 834 | |
| 835 | // This controls whether we always insert a GT_RELOAD instruction after a spill |
| 836 | // Note that this can be combined with LSRA_SPILL_ALWAYS (or not) |
| 837 | enum LsraReload{LSRA_NO_RELOAD_IF_SAME = 0, LSRA_ALWAYS_INSERT_RELOAD = 0x400, LSRA_RELOAD_MASK = 0x400}; |
| 838 | LsraReload getLsraReload() |
| 839 | { |
| 840 | return (LsraReload)(lsraStressMask & LSRA_RELOAD_MASK); |
| 841 | } |
| 842 | bool alwaysInsertReload() |
| 843 | { |
| 844 | return getLsraReload() == LSRA_ALWAYS_INSERT_RELOAD; |
| 845 | } |
| 846 | |
| 847 | // This controls whether we spill everywhere |
| 848 | enum LsraSpill{LSRA_DONT_SPILL_ALWAYS = 0, LSRA_SPILL_ALWAYS = 0x800, LSRA_SPILL_MASK = 0x800}; |
| 849 | LsraSpill getLsraSpill() |
| 850 | { |
| 851 | return (LsraSpill)(lsraStressMask & LSRA_SPILL_MASK); |
| 852 | } |
| 853 | bool spillAlways() |
| 854 | { |
| 855 | return getLsraSpill() == LSRA_SPILL_ALWAYS; |
| 856 | } |
| 857 | |
| 858 | // This controls whether RefPositions that lower/codegen indicated as reg optional be |
| 859 | // allocated a reg at all. |
| 860 | enum LsraRegOptionalControl{LSRA_REG_OPTIONAL_DEFAULT = 0, LSRA_REG_OPTIONAL_NO_ALLOC = 0x1000, |
| 861 | LSRA_REG_OPTIONAL_MASK = 0x1000}; |
| 862 | |
| 863 | LsraRegOptionalControl getLsraRegOptionalControl() |
| 864 | { |
| 865 | return (LsraRegOptionalControl)(lsraStressMask & LSRA_REG_OPTIONAL_MASK); |
| 866 | } |
| 867 | |
| 868 | bool regOptionalNoAlloc() |
| 869 | { |
| 870 | return getLsraRegOptionalControl() == LSRA_REG_OPTIONAL_NO_ALLOC; |
| 871 | } |
| 872 | |
| 873 | bool candidatesAreStressLimited() |
| 874 | { |
| 875 | return ((lsraStressMask & (LSRA_LIMIT_MASK | LSRA_SELECT_MASK)) != 0); |
| 876 | } |
| 877 | |
| 878 | // Dump support |
| 879 | void dumpNodeInfo(GenTree* node, regMaskTP dstCandidates, int srcCount, int dstCount); |
| 880 | void dumpDefList(); |
| 881 | void lsraDumpIntervals(const char* msg); |
| 882 | void dumpRefPositions(const char* msg); |
| 883 | void dumpVarRefPositions(const char* msg); |
| 884 | |
| 885 | // Checking code |
| 886 | static bool IsLsraAdded(GenTree* node) |
| 887 | { |
| 888 | return ((node->gtDebugFlags & GTF_DEBUG_NODE_LSRA_ADDED) != 0); |
| 889 | } |
| 890 | static void SetLsraAdded(GenTree* node) |
| 891 | { |
| 892 | node->gtDebugFlags |= GTF_DEBUG_NODE_LSRA_ADDED; |
| 893 | } |
| 894 | static bool IsResolutionMove(GenTree* node); |
| 895 | static bool IsResolutionNode(LIR::Range& containingRange, GenTree* node); |
| 896 | |
| 897 | void verifyFinalAllocation(); |
| 898 | void verifyResolutionMove(GenTree* resolutionNode, LsraLocation currentLocation); |
| 899 | #else // !DEBUG |
| 900 | bool doSelectNearest() |
| 901 | { |
| 902 | return false; |
| 903 | } |
| 904 | bool extendLifetimes() |
| 905 | { |
| 906 | return false; |
| 907 | } |
| 908 | bool spillAlways() |
| 909 | { |
| 910 | return false; |
| 911 | } |
| 912 | // In a retail build we support only the default traversal order |
| 913 | bool isTraversalLayoutOrder() |
| 914 | { |
| 915 | return false; |
| 916 | } |
| 917 | bool isTraversalPredFirstOrder() |
| 918 | { |
| 919 | return true; |
| 920 | } |
| 921 | bool getLsraExtendLifeTimes() |
| 922 | { |
| 923 | return false; |
| 924 | } |
| 925 | static void SetLsraAdded(GenTree* node) |
| 926 | { |
| 927 | // do nothing; checked only under #DEBUG |
| 928 | } |
| 929 | bool candidatesAreStressLimited() |
| 930 | { |
| 931 | return false; |
| 932 | } |
| 933 | #endif // !DEBUG |
| 934 | |
| 935 | public: |
| 936 | // Used by Lowering when considering whether to split Longs, as well as by identifyCandidates(). |
| 937 | bool isRegCandidate(LclVarDsc* varDsc); |
| 938 | |
| 939 | bool isContainableMemoryOp(GenTree* node); |
| 940 | |
| 941 | private: |
| 942 | // Determine which locals are candidates for allocation |
| 943 | void identifyCandidates(); |
| 944 | |
| 945 | // determine which locals are used in EH constructs we don't want to deal with |
| 946 | void identifyCandidatesExceptionDataflow(); |
| 947 | |
| 948 | void buildPhysRegRecords(); |
| 949 | |
| 950 | #ifdef DEBUG |
| 951 | void checkLastUses(BasicBlock* block); |
| 952 | static int ComputeOperandDstCount(GenTree* operand); |
| 953 | static int ComputeAvailableSrcCount(GenTree* node); |
| 954 | #endif // DEBUG |
| 955 | |
| 956 | void setFrameType(); |
| 957 | |
| 958 | // Update allocations at start/end of block |
| 959 | void unassignIntervalBlockStart(RegRecord* regRecord, VarToRegMap inVarToRegMap); |
| 960 | void processBlockEndAllocation(BasicBlock* current); |
| 961 | |
| 962 | // Record variable locations at start/end of block |
| 963 | void processBlockStartLocations(BasicBlock* current, bool allocationPass); |
| 964 | void processBlockEndLocations(BasicBlock* current); |
| 965 | |
| 966 | #ifdef _TARGET_ARM_ |
| 967 | bool isSecondHalfReg(RegRecord* regRec, Interval* interval); |
| 968 | RegRecord* getSecondHalfRegRec(RegRecord* regRec); |
| 969 | RegRecord* findAnotherHalfRegRec(RegRecord* regRec); |
| 970 | bool canSpillDoubleReg(RegRecord* physRegRecord, LsraLocation refLocation, unsigned* recentAssignedRefWeight); |
| 971 | void unassignDoublePhysReg(RegRecord* doubleRegRecord); |
| 972 | #endif |
| 973 | void updateAssignedInterval(RegRecord* reg, Interval* interval, RegisterType regType); |
| 974 | void updatePreviousInterval(RegRecord* reg, Interval* interval, RegisterType regType); |
| 975 | bool canRestorePreviousInterval(RegRecord* regRec, Interval* assignedInterval); |
| 976 | bool isAssignedToInterval(Interval* interval, RegRecord* regRec); |
| 977 | bool isRefPositionActive(RefPosition* refPosition, LsraLocation refLocation); |
| 978 | bool canSpillReg(RegRecord* physRegRecord, LsraLocation refLocation, unsigned* recentAssignedRefWeight); |
| 979 | bool isRegInUse(RegRecord* regRec, RefPosition* refPosition); |
| 980 | |
| 981 | // insert refpositions representing prolog zero-inits which will be added later |
| 982 | void insertZeroInitRefPositions(); |
| 983 | |
| 984 | // add physreg refpositions for a tree node, based on calling convention and instruction selection predictions |
| 985 | void addRefsForPhysRegMask(regMaskTP mask, LsraLocation currentLoc, RefType refType, bool isLastUse); |
| 986 | |
| 987 | void resolveConflictingDefAndUse(Interval* interval, RefPosition* defRefPosition); |
| 988 | |
| 989 | void buildRefPositionsForNode(GenTree* tree, BasicBlock* block, LsraLocation loc); |
| 990 | |
| 991 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 992 | VARSET_VALRET_TP buildUpperVectorSaveRefPositions(GenTree* tree, |
| 993 | LsraLocation currentLoc, |
| 994 | regMaskTP fpCalleeKillSet); |
| 995 | void buildUpperVectorRestoreRefPositions(GenTree* tree, LsraLocation currentLoc, VARSET_VALARG_TP liveLargeVectors); |
| 996 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 997 | |
| 998 | #if defined(UNIX_AMD64_ABI) |
| 999 | // For AMD64 on SystemV machines. This method |
| 1000 | // is called as replacement for raUpdateRegStateForArg |
| 1001 | // that is used on Windows. On System V systems a struct can be passed |
| 1002 | // partially using registers from the 2 register files. |
| 1003 | void unixAmd64UpdateRegStateForArg(LclVarDsc* argDsc); |
| 1004 | #endif // defined(UNIX_AMD64_ABI) |
| 1005 | |
| 1006 | // Update reg state for an incoming register argument |
| 1007 | void updateRegStateForArg(LclVarDsc* argDsc); |
| 1008 | |
| 1009 | inline bool isCandidateLocalRef(GenTree* tree) |
| 1010 | { |
| 1011 | if (tree->IsLocal()) |
| 1012 | { |
| 1013 | unsigned int lclNum = tree->gtLclVarCommon.gtLclNum; |
| 1014 | assert(lclNum < compiler->lvaCount); |
| 1015 | LclVarDsc* varDsc = compiler->lvaTable + tree->gtLclVarCommon.gtLclNum; |
| 1016 | |
| 1017 | return isCandidateVar(varDsc); |
| 1018 | } |
| 1019 | return false; |
| 1020 | } |
| 1021 | |
| 1022 | // Helpers for getKillSetForNode(). |
| 1023 | regMaskTP getKillSetForStoreInd(GenTreeStoreInd* tree); |
| 1024 | regMaskTP getKillSetForShiftRotate(GenTreeOp* tree); |
| 1025 | regMaskTP getKillSetForMul(GenTreeOp* tree); |
| 1026 | regMaskTP getKillSetForCall(GenTreeCall* call); |
| 1027 | regMaskTP getKillSetForModDiv(GenTreeOp* tree); |
| 1028 | regMaskTP getKillSetForBlockStore(GenTreeBlk* blkNode); |
| 1029 | regMaskTP getKillSetForReturn(); |
| 1030 | regMaskTP getKillSetForProfilerHook(); |
| 1031 | #ifdef FEATURE_HW_INTRINSICS |
| 1032 | regMaskTP getKillSetForHWIntrinsic(GenTreeHWIntrinsic* node); |
| 1033 | #endif // FEATURE_HW_INTRINSICS |
| 1034 | |
| 1035 | // Return the registers killed by the given tree node. |
| 1036 | // This is used only for an assert, and for stress, so it is only defined under DEBUG. |
| 1037 | // Otherwise, the Build methods should obtain the killMask from the appropriate method above. |
| 1038 | #ifdef DEBUG |
| 1039 | regMaskTP getKillSetForNode(GenTree* tree); |
| 1040 | #endif |
| 1041 | |
| 1042 | // Given some tree node add refpositions for all the registers this node kills |
| 1043 | bool buildKillPositionsForNode(GenTree* tree, LsraLocation currentLoc, regMaskTP killMask); |
| 1044 | |
| 1045 | regMaskTP allRegs(RegisterType rt); |
| 1046 | regMaskTP allByteRegs(); |
| 1047 | regMaskTP allSIMDRegs(); |
| 1048 | regMaskTP internalFloatRegCandidates(); |
| 1049 | |
| 1050 | bool registerIsFree(regNumber regNum, RegisterType regType); |
| 1051 | bool registerIsAvailable(RegRecord* physRegRecord, |
| 1052 | LsraLocation currentLoc, |
| 1053 | LsraLocation* nextRefLocationPtr, |
| 1054 | RegisterType regType); |
| 1055 | void freeRegister(RegRecord* physRegRecord); |
| 1056 | void freeRegisters(regMaskTP regsToFree); |
| 1057 | |
| 1058 | // Get the type that this tree defines. |
| 1059 | var_types getDefType(GenTree* tree) |
| 1060 | { |
| 1061 | return tree->TypeGet(); |
| 1062 | } |
| 1063 | |
| 1064 | // Managing internal registers during the BuildNode process. |
| 1065 | RefPosition* defineNewInternalTemp(GenTree* tree, RegisterType regType, regMaskTP candidates); |
| 1066 | RefPosition* buildInternalIntRegisterDefForNode(GenTree* tree, regMaskTP internalCands = RBM_NONE); |
| 1067 | RefPosition* buildInternalFloatRegisterDefForNode(GenTree* tree, regMaskTP internalCands = RBM_NONE); |
| 1068 | void buildInternalRegisterUses(); |
| 1069 | |
| 1070 | void resolveLocalRef(BasicBlock* block, GenTree* treeNode, RefPosition* currentRefPosition); |
| 1071 | |
| 1072 | void insertMove(BasicBlock* block, GenTree* insertionPoint, unsigned lclNum, regNumber inReg, regNumber outReg); |
| 1073 | |
| 1074 | void insertSwap( |
| 1075 | BasicBlock* block, GenTree* insertionPoint, unsigned lclNum1, regNumber reg1, unsigned lclNum2, regNumber reg2); |
| 1076 | |
| 1077 | public: |
| 1078 | // TODO-Cleanup: unused? |
| 1079 | class PhysRegIntervalIterator |
| 1080 | { |
| 1081 | public: |
| 1082 | PhysRegIntervalIterator(LinearScan* theLinearScan) |
| 1083 | { |
| 1084 | nextRegNumber = (regNumber)0; |
| 1085 | linearScan = theLinearScan; |
| 1086 | } |
| 1087 | RegRecord* GetNext() |
| 1088 | { |
| 1089 | return &linearScan->physRegs[nextRegNumber]; |
| 1090 | } |
| 1091 | |
| 1092 | private: |
| 1093 | // This assumes that the physical registers are contiguous, starting |
| 1094 | // with a register number of 0 |
| 1095 | regNumber nextRegNumber; |
| 1096 | LinearScan* linearScan; |
| 1097 | }; |
| 1098 | |
| 1099 | private: |
| 1100 | Interval* newInterval(RegisterType regType); |
| 1101 | |
| 1102 | Interval* getIntervalForLocalVar(unsigned varIndex) |
| 1103 | { |
| 1104 | assert(varIndex < compiler->lvaTrackedCount); |
| 1105 | assert(localVarIntervals[varIndex] != nullptr); |
| 1106 | return localVarIntervals[varIndex]; |
| 1107 | } |
| 1108 | |
| 1109 | Interval* getIntervalForLocalVarNode(GenTreeLclVarCommon* tree) |
| 1110 | { |
| 1111 | LclVarDsc* varDsc = &compiler->lvaTable[tree->gtLclNum]; |
| 1112 | assert(varDsc->lvTracked); |
| 1113 | return getIntervalForLocalVar(varDsc->lvVarIndex); |
| 1114 | } |
| 1115 | |
| 1116 | RegRecord* getRegisterRecord(regNumber regNum); |
| 1117 | |
| 1118 | RefPosition* newRefPositionRaw(LsraLocation nodeLocation, GenTree* treeNode, RefType refType); |
| 1119 | |
| 1120 | RefPosition* newRefPosition(Interval* theInterval, |
| 1121 | LsraLocation theLocation, |
| 1122 | RefType theRefType, |
| 1123 | GenTree* theTreeNode, |
| 1124 | regMaskTP mask, |
| 1125 | unsigned multiRegIdx = 0); |
| 1126 | |
| 1127 | // This creates a RefTypeUse at currentLoc. It sets the treeNode to nullptr if it is not a |
| 1128 | // lclVar interval. |
| 1129 | RefPosition* newUseRefPosition(Interval* theInterval, |
| 1130 | GenTree* theTreeNode, |
| 1131 | regMaskTP mask, |
| 1132 | unsigned multiRegIdx = 0); |
| 1133 | |
| 1134 | RefPosition* newRefPosition( |
| 1135 | regNumber reg, LsraLocation theLocation, RefType theRefType, GenTree* theTreeNode, regMaskTP mask); |
| 1136 | |
| 1137 | void applyCalleeSaveHeuristics(RefPosition* rp); |
| 1138 | |
| 1139 | void checkConflictingDefUse(RefPosition* rp); |
| 1140 | |
| 1141 | void associateRefPosWithInterval(RefPosition* rp); |
| 1142 | |
| 1143 | unsigned getWeight(RefPosition* refPos); |
| 1144 | |
| 1145 | /***************************************************************************** |
| 1146 | * Register management |
| 1147 | ****************************************************************************/ |
| 1148 | RegisterType getRegisterType(Interval* currentInterval, RefPosition* refPosition); |
| 1149 | regNumber tryAllocateFreeReg(Interval* current, RefPosition* refPosition); |
| 1150 | regNumber allocateBusyReg(Interval* current, RefPosition* refPosition, bool allocateIfProfitable); |
| 1151 | regNumber assignCopyReg(RefPosition* refPosition); |
| 1152 | |
| 1153 | bool isMatchingConstant(RegRecord* physRegRecord, RefPosition* refPosition); |
| 1154 | bool isSpillCandidate(Interval* current, |
| 1155 | RefPosition* refPosition, |
| 1156 | RegRecord* physRegRecord, |
| 1157 | LsraLocation& nextLocation); |
| 1158 | void checkAndAssignInterval(RegRecord* regRec, Interval* interval); |
| 1159 | void assignPhysReg(RegRecord* regRec, Interval* interval); |
| 1160 | void assignPhysReg(regNumber reg, Interval* interval) |
| 1161 | { |
| 1162 | assignPhysReg(getRegisterRecord(reg), interval); |
| 1163 | } |
| 1164 | |
| 1165 | bool isAssigned(RegRecord* regRec ARM_ARG(RegisterType newRegType)); |
| 1166 | bool isAssigned(RegRecord* regRec, LsraLocation lastLocation ARM_ARG(RegisterType newRegType)); |
| 1167 | void checkAndClearInterval(RegRecord* regRec, RefPosition* spillRefPosition); |
| 1168 | void unassignPhysReg(RegRecord* regRec ARM_ARG(RegisterType newRegType)); |
| 1169 | void unassignPhysReg(RegRecord* regRec, RefPosition* spillRefPosition); |
| 1170 | void unassignPhysRegNoSpill(RegRecord* reg); |
| 1171 | void unassignPhysReg(regNumber reg) |
| 1172 | { |
| 1173 | unassignPhysReg(getRegisterRecord(reg), nullptr); |
| 1174 | } |
| 1175 | |
| 1176 | void setIntervalAsSpilled(Interval* interval); |
| 1177 | void setIntervalAsSplit(Interval* interval); |
| 1178 | void spillInterval(Interval* interval, RefPosition* fromRefPosition, RefPosition* toRefPosition); |
| 1179 | |
| 1180 | void spillGCRefs(RefPosition* killRefPosition); |
| 1181 | |
| 1182 | /***************************************************************************** |
| 1183 | * For Resolution phase |
| 1184 | ****************************************************************************/ |
| 1185 | // TODO-Throughput: Consider refactoring this so that we keep a map from regs to vars for better scaling |
| 1186 | unsigned int regMapCount; |
| 1187 | |
| 1188 | // When we split edges, we create new blocks, and instead of expanding the VarToRegMaps, we |
| 1189 | // rely on the property that the "in" map is the same as the "from" block of the edge, and the |
| 1190 | // "out" map is the same as the "to" block of the edge (by construction). |
| 1191 | // So, for any block whose bbNum is greater than bbNumMaxBeforeResolution, we use the |
| 1192 | // splitBBNumToTargetBBNumMap. |
| 1193 | // TODO-Throughput: We may want to look into the cost/benefit tradeoff of doing this vs. expanding |
| 1194 | // the arrays. |
| 1195 | |
| 1196 | unsigned bbNumMaxBeforeResolution; |
| 1197 | struct SplitEdgeInfo |
| 1198 | { |
| 1199 | unsigned fromBBNum; |
| 1200 | unsigned toBBNum; |
| 1201 | }; |
| 1202 | typedef JitHashTable<unsigned, JitSmallPrimitiveKeyFuncs<unsigned>, SplitEdgeInfo> SplitBBNumToTargetBBNumMap; |
| 1203 | SplitBBNumToTargetBBNumMap* splitBBNumToTargetBBNumMap; |
| 1204 | SplitBBNumToTargetBBNumMap* getSplitBBNumToTargetBBNumMap() |
| 1205 | { |
| 1206 | if (splitBBNumToTargetBBNumMap == nullptr) |
| 1207 | { |
| 1208 | splitBBNumToTargetBBNumMap = |
| 1209 | new (getAllocator(compiler)) SplitBBNumToTargetBBNumMap(getAllocator(compiler)); |
| 1210 | } |
| 1211 | return splitBBNumToTargetBBNumMap; |
| 1212 | } |
| 1213 | SplitEdgeInfo getSplitEdgeInfo(unsigned int bbNum); |
| 1214 | |
| 1215 | void initVarRegMaps(); |
| 1216 | void setInVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg); |
| 1217 | void setOutVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg); |
| 1218 | VarToRegMap getInVarToRegMap(unsigned int bbNum); |
| 1219 | VarToRegMap getOutVarToRegMap(unsigned int bbNum); |
| 1220 | void setVarReg(VarToRegMap map, unsigned int trackedVarIndex, regNumber reg); |
| 1221 | regNumber getVarReg(VarToRegMap map, unsigned int trackedVarIndex); |
| 1222 | // Initialize the incoming VarToRegMap to the given map values (generally a predecessor of |
| 1223 | // the block) |
| 1224 | VarToRegMap setInVarToRegMap(unsigned int bbNum, VarToRegMap srcVarToRegMap); |
| 1225 | |
| 1226 | regNumber getTempRegForResolution(BasicBlock* fromBlock, BasicBlock* toBlock, var_types type); |
| 1227 | |
| 1228 | #ifdef DEBUG |
| 1229 | void dumpVarToRegMap(VarToRegMap map); |
| 1230 | void dumpInVarToRegMap(BasicBlock* block); |
| 1231 | void dumpOutVarToRegMap(BasicBlock* block); |
| 1232 | |
| 1233 | // There are three points at which a tuple-style dump is produced, and each |
| 1234 | // differs slightly: |
| 1235 | // - In LSRA_DUMP_PRE, it does a simple dump of each node, with indications of what |
| 1236 | // tree nodes are consumed. |
| 1237 | // - In LSRA_DUMP_REFPOS, which is after the intervals are built, but before |
| 1238 | // register allocation, each node is dumped, along with all of the RefPositions, |
| 1239 | // The Intervals are identifed as Lnnn for lclVar intervals, Innn for for other |
| 1240 | // intervals, and Tnnn for internal temps. |
| 1241 | // - In LSRA_DUMP_POST, which is after register allocation, the registers are |
| 1242 | // shown. |
| 1243 | |
| 1244 | enum LsraTupleDumpMode{LSRA_DUMP_PRE, LSRA_DUMP_REFPOS, LSRA_DUMP_POST}; |
| 1245 | void lsraGetOperandString(GenTree* tree, LsraTupleDumpMode mode, char* operandString, unsigned operandStringLength); |
| 1246 | void lsraDispNode(GenTree* tree, LsraTupleDumpMode mode, bool hasDest); |
| 1247 | void DumpOperandDefs( |
| 1248 | GenTree* operand, bool& first, LsraTupleDumpMode mode, char* operandString, const unsigned operandStringLength); |
| 1249 | void TupleStyleDump(LsraTupleDumpMode mode); |
| 1250 | |
| 1251 | LsraLocation maxNodeLocation; |
| 1252 | |
| 1253 | // Width of various fields - used to create a streamlined dump during allocation that shows the |
| 1254 | // state of all the registers in columns. |
| 1255 | int regColumnWidth; |
| 1256 | int regTableIndent; |
| 1257 | |
| 1258 | const char* columnSeparator; |
| 1259 | const char* line; |
| 1260 | const char* leftBox; |
| 1261 | const char* middleBox; |
| 1262 | const char* rightBox; |
| 1263 | |
| 1264 | static const int MAX_FORMAT_CHARS = 12; |
| 1265 | char intervalNameFormat[MAX_FORMAT_CHARS]; |
| 1266 | char regNameFormat[MAX_FORMAT_CHARS]; |
| 1267 | char shortRefPositionFormat[MAX_FORMAT_CHARS]; |
| 1268 | char emptyRefPositionFormat[MAX_FORMAT_CHARS]; |
| 1269 | char indentFormat[MAX_FORMAT_CHARS]; |
| 1270 | static const int MAX_LEGEND_FORMAT_CHARS = 25; |
| 1271 | char bbRefPosFormat[MAX_LEGEND_FORMAT_CHARS]; |
| 1272 | char legendFormat[MAX_LEGEND_FORMAT_CHARS]; |
| 1273 | |
| 1274 | // How many rows have we printed since last printing a "title row"? |
| 1275 | static const int MAX_ROWS_BETWEEN_TITLES = 50; |
| 1276 | int rowCountSinceLastTitle; |
| 1277 | // Current mask of registers being printed in the dump. |
| 1278 | regMaskTP lastDumpedRegisters; |
| 1279 | regMaskTP registersToDump; |
| 1280 | int lastUsedRegNumIndex; |
| 1281 | bool shouldDumpReg(regNumber regNum) |
| 1282 | { |
| 1283 | return (registersToDump & genRegMask(regNum)) != 0; |
| 1284 | } |
| 1285 | |
| 1286 | void (); |
| 1287 | void dumpRegRecordTitle(); |
| 1288 | void dumpRegRecordTitleIfNeeded(); |
| 1289 | void dumpRegRecordTitleLines(); |
| 1290 | void dumpRegRecords(); |
| 1291 | // An abbreviated RefPosition dump for printing with column-based register state |
| 1292 | void dumpRefPositionShort(RefPosition* refPosition, BasicBlock* currentBlock); |
| 1293 | // Print the number of spaces occupied by a dumpRefPositionShort() |
| 1294 | void dumpEmptyRefPosition(); |
| 1295 | // A dump of Referent, in exactly regColumnWidth characters |
| 1296 | void dumpIntervalName(Interval* interval); |
| 1297 | |
| 1298 | // Events during the allocation phase that cause some dump output |
| 1299 | enum LsraDumpEvent{ |
| 1300 | // Conflicting def/use |
| 1301 | LSRA_EVENT_DEFUSE_CONFLICT, LSRA_EVENT_DEFUSE_FIXED_DELAY_USE, LSRA_EVENT_DEFUSE_CASE1, LSRA_EVENT_DEFUSE_CASE2, |
| 1302 | LSRA_EVENT_DEFUSE_CASE3, LSRA_EVENT_DEFUSE_CASE4, LSRA_EVENT_DEFUSE_CASE5, LSRA_EVENT_DEFUSE_CASE6, |
| 1303 | |
| 1304 | // Spilling |
| 1305 | LSRA_EVENT_SPILL, LSRA_EVENT_SPILL_EXTENDED_LIFETIME, LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL, |
| 1306 | LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL_AFTER_SPILL, LSRA_EVENT_DONE_KILL_GC_REFS, |
| 1307 | |
| 1308 | // Block boundaries |
| 1309 | LSRA_EVENT_START_BB, LSRA_EVENT_END_BB, |
| 1310 | |
| 1311 | // Miscellaneous |
| 1312 | LSRA_EVENT_FREE_REGS, |
| 1313 | |
| 1314 | // Characteristics of the current RefPosition |
| 1315 | LSRA_EVENT_INCREMENT_RANGE_END, // ??? |
| 1316 | LSRA_EVENT_LAST_USE, LSRA_EVENT_LAST_USE_DELAYED, LSRA_EVENT_NEEDS_NEW_REG, |
| 1317 | |
| 1318 | // Allocation decisions |
| 1319 | LSRA_EVENT_FIXED_REG, LSRA_EVENT_EXP_USE, LSRA_EVENT_ZERO_REF, LSRA_EVENT_NO_ENTRY_REG_ALLOCATED, |
| 1320 | LSRA_EVENT_KEPT_ALLOCATION, LSRA_EVENT_COPY_REG, LSRA_EVENT_MOVE_REG, LSRA_EVENT_ALLOC_REG, |
| 1321 | LSRA_EVENT_ALLOC_SPILLED_REG, LSRA_EVENT_NO_REG_ALLOCATED, LSRA_EVENT_RELOAD, LSRA_EVENT_SPECIAL_PUTARG, |
| 1322 | LSRA_EVENT_REUSE_REG, |
| 1323 | }; |
| 1324 | void dumpLsraAllocationEvent(LsraDumpEvent event, |
| 1325 | Interval* interval = nullptr, |
| 1326 | regNumber reg = REG_NA, |
| 1327 | BasicBlock* currentBlock = nullptr); |
| 1328 | |
| 1329 | void validateIntervals(); |
| 1330 | #endif // DEBUG |
| 1331 | |
| 1332 | #if TRACK_LSRA_STATS |
| 1333 | enum LsraStat{ |
| 1334 | LSRA_STAT_SPILL, LSRA_STAT_COPY_REG, LSRA_STAT_RESOLUTION_MOV, LSRA_STAT_SPLIT_EDGE, |
| 1335 | }; |
| 1336 | |
| 1337 | unsigned regCandidateVarCount; |
| 1338 | void updateLsraStat(LsraStat stat, unsigned currentBBNum); |
| 1339 | |
| 1340 | void dumpLsraStats(FILE* file); |
| 1341 | |
| 1342 | #define INTRACK_STATS(x) x |
| 1343 | #else // !TRACK_LSRA_STATS |
| 1344 | #define INTRACK_STATS(x) |
| 1345 | #endif // !TRACK_LSRA_STATS |
| 1346 | |
| 1347 | Compiler* compiler; |
| 1348 | |
| 1349 | private: |
| 1350 | CompAllocator getAllocator(Compiler* comp) |
| 1351 | { |
| 1352 | return comp->getAllocator(CMK_LSRA); |
| 1353 | } |
| 1354 | |
| 1355 | #ifdef DEBUG |
| 1356 | // This is used for dumping |
| 1357 | RefPosition* activeRefPosition; |
| 1358 | #endif // DEBUG |
| 1359 | |
| 1360 | IntervalList intervals; |
| 1361 | |
| 1362 | RegRecord physRegs[REG_COUNT]; |
| 1363 | |
| 1364 | // Map from tracked variable index to Interval*. |
| 1365 | Interval** localVarIntervals; |
| 1366 | |
| 1367 | // Set of blocks that have been visited. |
| 1368 | BlockSet bbVisitedSet; |
| 1369 | void markBlockVisited(BasicBlock* block) |
| 1370 | { |
| 1371 | BlockSetOps::AddElemD(compiler, bbVisitedSet, block->bbNum); |
| 1372 | } |
| 1373 | void clearVisitedBlocks() |
| 1374 | { |
| 1375 | BlockSetOps::ClearD(compiler, bbVisitedSet); |
| 1376 | } |
| 1377 | bool isBlockVisited(BasicBlock* block) |
| 1378 | { |
| 1379 | return BlockSetOps::IsMember(compiler, bbVisitedSet, block->bbNum); |
| 1380 | } |
| 1381 | |
| 1382 | #if DOUBLE_ALIGN |
| 1383 | bool doDoubleAlign; |
| 1384 | #endif |
| 1385 | |
| 1386 | // A map from bbNum to the block information used during register allocation. |
| 1387 | LsraBlockInfo* blockInfo; |
| 1388 | BasicBlock* findPredBlockForLiveIn(BasicBlock* block, BasicBlock* prevBlock DEBUGARG(bool* pPredBlockIsAllocated)); |
| 1389 | |
| 1390 | // The order in which the blocks will be allocated. |
| 1391 | // This is any array of BasicBlock*, in the order in which they should be traversed. |
| 1392 | BasicBlock** blockSequence; |
| 1393 | // The verifiedAllBBs flag indicates whether we have verified that all BBs have been |
| 1394 | // included in the blockSeuqence above, during setBlockSequence(). |
| 1395 | bool verifiedAllBBs; |
| 1396 | void setBlockSequence(); |
| 1397 | int compareBlocksForSequencing(BasicBlock* block1, BasicBlock* block2, bool useBlockWeights); |
| 1398 | BasicBlockList* blockSequenceWorkList; |
| 1399 | bool blockSequencingDone; |
| 1400 | void addToBlockSequenceWorkList(BlockSet sequencedBlockSet, BasicBlock* block, BlockSet& predSet); |
| 1401 | void removeFromBlockSequenceWorkList(BasicBlockList* listNode, BasicBlockList* prevNode); |
| 1402 | BasicBlock* getNextCandidateFromWorkList(); |
| 1403 | |
| 1404 | // The bbNum of the block being currently allocated or resolved. |
| 1405 | unsigned int curBBNum; |
| 1406 | // The current location |
| 1407 | LsraLocation currentLoc; |
| 1408 | // The ordinal of the block we're on (i.e. this is the curBBSeqNum-th block we've allocated). |
| 1409 | unsigned int curBBSeqNum; |
| 1410 | // The number of blocks that we've sequenced. |
| 1411 | unsigned int bbSeqCount; |
| 1412 | // The Location of the start of the current block. |
| 1413 | LsraLocation curBBStartLocation; |
| 1414 | // True if the method contains any critical edges. |
| 1415 | bool hasCriticalEdges; |
| 1416 | |
| 1417 | // True if there are any register candidate lclVars available for allocation. |
| 1418 | bool enregisterLocalVars; |
| 1419 | |
| 1420 | virtual bool willEnregisterLocalVars() const |
| 1421 | { |
| 1422 | return enregisterLocalVars; |
| 1423 | } |
| 1424 | |
| 1425 | // Ordered list of RefPositions |
| 1426 | RefPositionList refPositions; |
| 1427 | |
| 1428 | // Per-block variable location mappings: an array indexed by block number that yields a |
| 1429 | // pointer to an array of regNumber, one per variable. |
| 1430 | VarToRegMap* inVarToRegMaps; |
| 1431 | VarToRegMap* outVarToRegMaps; |
| 1432 | |
| 1433 | // A temporary VarToRegMap used during the resolution of critical edges. |
| 1434 | VarToRegMap sharedCriticalVarToRegMap; |
| 1435 | |
| 1436 | PhasedVar<regMaskTP> availableIntRegs; |
| 1437 | PhasedVar<regMaskTP> availableFloatRegs; |
| 1438 | PhasedVar<regMaskTP> availableDoubleRegs; |
| 1439 | |
| 1440 | // The set of all register candidates. Note that this may be a subset of tracked vars. |
| 1441 | VARSET_TP registerCandidateVars; |
| 1442 | // Current set of live register candidate vars, used during building of RefPositions to determine |
| 1443 | // whether to preference to callee-save. |
| 1444 | VARSET_TP currentLiveVars; |
| 1445 | // Set of variables that may require resolution across an edge. |
| 1446 | // This is first constructed during interval building, to contain all the lclVars that are live at BB edges. |
| 1447 | // Then, any lclVar that is always in the same register is removed from the set. |
| 1448 | VARSET_TP resolutionCandidateVars; |
| 1449 | // This set contains all the lclVars that are ever spilled or split. |
| 1450 | VARSET_TP splitOrSpilledVars; |
| 1451 | // Set of floating point variables to consider for callee-save registers. |
| 1452 | VARSET_TP fpCalleeSaveCandidateVars; |
| 1453 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 1454 | #if defined(_TARGET_AMD64_) |
| 1455 | static bool varTypeNeedsPartialCalleeSave(var_types type) |
| 1456 | { |
| 1457 | return (emitTypeSize(type) == 32); |
| 1458 | } |
| 1459 | static const var_types LargeVectorSaveType = TYP_SIMD16; |
| 1460 | #elif defined(_TARGET_ARM64_) |
| 1461 | static bool varTypeNeedsPartialCalleeSave(var_types type) |
| 1462 | { |
| 1463 | // ARM64 ABI FP Callee save registers only require Callee to save lower 8 Bytes |
| 1464 | // For SIMD types longer then 8 bytes Caller is responsible for saving and restoring Upper bytes. |
| 1465 | return (emitTypeSize(type) == 16); |
| 1466 | } |
| 1467 | static const var_types LargeVectorSaveType = TYP_DOUBLE; |
| 1468 | #else // !defined(_TARGET_AMD64_) && !defined(_TARGET_ARM64_) |
| 1469 | #error("Unknown target architecture for FEATURE_SIMD") |
| 1470 | #endif // !defined(_TARGET_AMD64_) && !defined(_TARGET_ARM64_) |
| 1471 | |
| 1472 | // Set of large vector (TYP_SIMD32 on AVX) variables. |
| 1473 | VARSET_TP largeVectorVars; |
| 1474 | // Set of large vector (TYP_SIMD32 on AVX) variables to consider for callee-save registers. |
| 1475 | VARSET_TP largeVectorCalleeSaveCandidateVars; |
| 1476 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 1477 | |
| 1478 | //----------------------------------------------------------------------- |
| 1479 | // Build methods |
| 1480 | //----------------------------------------------------------------------- |
| 1481 | |
| 1482 | // The listNodePool is used to maintain the RefInfo for nodes that are "in flight" |
| 1483 | // i.e. whose consuming node has not yet been handled. |
| 1484 | RefInfoListNodePool listNodePool; |
| 1485 | |
| 1486 | // The defList is used for the transient RefInfo that is computed by |
| 1487 | // the Build methods, and used in building RefPositions. |
| 1488 | // When Def RefPositions are built for a node, their NodeInfo is placed |
| 1489 | // in the defList. As the consuming node is handled, it moves the NodeInfo |
| 1490 | // into an ordered useList corresponding to the uses for that node. |
| 1491 | RefInfoList defList; |
| 1492 | |
| 1493 | // As we build uses, we may want to preference the next definition (i.e. the register produced |
| 1494 | // by the current node) to the same register as one of its uses. This is done by setting |
| 1495 | // 'tgtPrefUse' to that RefPosition. |
| 1496 | RefPosition* tgtPrefUse = nullptr; |
| 1497 | |
| 1498 | // The following keep track of information about internal (temporary register) intervals |
| 1499 | // during the building of a single node. |
| 1500 | static const int MaxInternalCount = 4; |
| 1501 | RefPosition* internalDefs[MaxInternalCount]; |
| 1502 | int internalCount = 0; |
| 1503 | bool setInternalRegsDelayFree; |
| 1504 | |
| 1505 | // When a RefTypeUse is marked as 'delayRegFree', we also want to mark the RefTypeDef |
| 1506 | // in the next Location as 'hasInterferingUses'. This is accomplished by setting this |
| 1507 | // 'pendingDelayFree' to true as they are created, and clearing it as a new node is |
| 1508 | // handled in 'BuildNode'. |
| 1509 | bool pendingDelayFree; |
| 1510 | |
| 1511 | // This method clears the "build state" before starting to handle a new node. |
| 1512 | void clearBuildState() |
| 1513 | { |
| 1514 | tgtPrefUse = nullptr; |
| 1515 | internalCount = 0; |
| 1516 | setInternalRegsDelayFree = false; |
| 1517 | pendingDelayFree = false; |
| 1518 | } |
| 1519 | |
| 1520 | RefPosition* BuildUse(GenTree* operand, regMaskTP candidates = RBM_NONE, int multiRegIdx = 0); |
| 1521 | |
| 1522 | void setDelayFree(RefPosition* use); |
| 1523 | int BuildBinaryUses(GenTreeOp* node, regMaskTP candidates = RBM_NONE); |
| 1524 | #ifdef _TARGET_XARCH_ |
| 1525 | int BuildRMWUses(GenTreeOp* node, regMaskTP candidates = RBM_NONE); |
| 1526 | #endif // !_TARGET_XARCH_ |
| 1527 | // This is the main entry point for building the RefPositions for a node. |
| 1528 | // These methods return the number of sources. |
| 1529 | int BuildNode(GenTree* stmt); |
| 1530 | |
| 1531 | GenTree* getTgtPrefOperand(GenTreeOp* tree); |
| 1532 | bool supportsSpecialPutArg(); |
| 1533 | |
| 1534 | int BuildSimple(GenTree* tree); |
| 1535 | int BuildOperandUses(GenTree* node, regMaskTP candidates = RBM_NONE); |
| 1536 | int BuildDelayFreeUses(GenTree* node, regMaskTP candidates = RBM_NONE); |
| 1537 | int BuildIndirUses(GenTreeIndir* indirTree, regMaskTP candidates = RBM_NONE); |
| 1538 | void HandleFloatVarArgs(GenTreeCall* call, GenTree* argNode, bool* callHasFloatRegArgs); |
| 1539 | RefPosition* BuildDef(GenTree* tree, regMaskTP dstCandidates = RBM_NONE, int multiRegIdx = 0); |
| 1540 | void BuildDefs(GenTree* tree, int dstCount, regMaskTP dstCandidates = RBM_NONE); |
| 1541 | void BuildDefsWithKills(GenTree* tree, int dstCount, regMaskTP dstCandidates, regMaskTP killMask); |
| 1542 | |
| 1543 | int BuildStoreLoc(GenTree* tree); |
| 1544 | int BuildReturn(GenTree* tree); |
| 1545 | #ifdef _TARGET_XARCH_ |
| 1546 | // This method, unlike the others, returns the number of sources, since it may be called when |
| 1547 | // 'tree' is contained. |
| 1548 | int BuildShiftRotate(GenTree* tree); |
| 1549 | #endif // _TARGET_XARCH_ |
| 1550 | #ifdef _TARGET_ARM_ |
| 1551 | int BuildShiftLongCarry(GenTree* tree); |
| 1552 | #endif |
| 1553 | int BuildPutArgReg(GenTreeUnOp* node); |
| 1554 | int BuildCall(GenTreeCall* call); |
| 1555 | int BuildCmp(GenTree* tree); |
| 1556 | int BuildBlockStore(GenTreeBlk* blkNode); |
| 1557 | int BuildModDiv(GenTree* tree); |
| 1558 | int BuildIntrinsic(GenTree* tree); |
| 1559 | int BuildStoreLoc(GenTreeLclVarCommon* tree); |
| 1560 | int BuildIndir(GenTreeIndir* indirTree); |
| 1561 | int BuildGCWriteBarrier(GenTree* tree); |
| 1562 | int BuildCast(GenTreeCast* cast); |
| 1563 | |
| 1564 | #if defined(_TARGET_XARCH_) |
| 1565 | // returns true if the tree can use the read-modify-write memory instruction form |
| 1566 | bool isRMWRegOper(GenTree* tree); |
| 1567 | int BuildMul(GenTree* tree); |
| 1568 | void SetContainsAVXFlags(bool isFloatingPointType = true, unsigned sizeOfSIMDVector = 0); |
| 1569 | // Move the last use bit, if any, from 'fromTree' to 'toTree'; 'fromTree' must be contained. |
| 1570 | void CheckAndMoveRMWLastUse(GenTree* fromTree, GenTree* toTree) |
| 1571 | { |
| 1572 | // If 'fromTree' is not a last-use lclVar, there's nothing to do. |
| 1573 | if ((fromTree == nullptr) || !fromTree->OperIs(GT_LCL_VAR) || ((fromTree->gtFlags & GTF_VAR_DEATH) == 0)) |
| 1574 | { |
| 1575 | return; |
| 1576 | } |
| 1577 | // If 'fromTree' was a lclVar, it must be contained and 'toTree' must match. |
| 1578 | if (!fromTree->isContained() || (toTree == nullptr) || !toTree->OperIs(GT_LCL_VAR) || |
| 1579 | (toTree->AsLclVarCommon()->gtLclNum != toTree->AsLclVarCommon()->gtLclNum)) |
| 1580 | { |
| 1581 | assert(!"Unmatched RMW indirections" ); |
| 1582 | return; |
| 1583 | } |
| 1584 | // This is probably not necessary, but keeps things consistent. |
| 1585 | fromTree->gtFlags &= ~GTF_VAR_DEATH; |
| 1586 | if (toTree != nullptr) // Just to be conservative |
| 1587 | { |
| 1588 | toTree->gtFlags |= GTF_VAR_DEATH; |
| 1589 | } |
| 1590 | } |
| 1591 | #endif // defined(_TARGET_XARCH_) |
| 1592 | |
| 1593 | #ifdef FEATURE_SIMD |
| 1594 | int BuildSIMD(GenTreeSIMD* tree); |
| 1595 | #endif // FEATURE_SIMD |
| 1596 | |
| 1597 | #ifdef FEATURE_HW_INTRINSICS |
| 1598 | int BuildHWIntrinsic(GenTreeHWIntrinsic* intrinsicTree); |
| 1599 | #endif // FEATURE_HW_INTRINSICS |
| 1600 | |
| 1601 | int BuildPutArgStk(GenTreePutArgStk* argNode); |
| 1602 | #if FEATURE_ARG_SPLIT |
| 1603 | int BuildPutArgSplit(GenTreePutArgSplit* tree); |
| 1604 | #endif // FEATURE_ARG_SPLIT |
| 1605 | int BuildLclHeap(GenTree* tree); |
| 1606 | }; |
| 1607 | |
| 1608 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1609 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1610 | XX XX |
| 1611 | XX Interval XX |
| 1612 | XX XX |
| 1613 | XX This is the fundamental data structure for linear scan register XX |
| 1614 | XX allocation. It represents the live range(s) for a variable or temp. XX |
| 1615 | XX XX |
| 1616 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1617 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 1618 | */ |
| 1619 | |
| 1620 | class Interval : public Referenceable |
| 1621 | { |
| 1622 | public: |
| 1623 | Interval(RegisterType registerType, regMaskTP registerPreferences) |
| 1624 | : registerPreferences(registerPreferences) |
| 1625 | , relatedInterval(nullptr) |
| 1626 | , assignedReg(nullptr) |
| 1627 | , registerType(registerType) |
| 1628 | , isLocalVar(false) |
| 1629 | , isSplit(false) |
| 1630 | , isSpilled(false) |
| 1631 | , isInternal(false) |
| 1632 | , isStructField(false) |
| 1633 | , isPromotedStruct(false) |
| 1634 | , hasConflictingDefUse(false) |
| 1635 | , hasInterferingUses(false) |
| 1636 | , isSpecialPutArg(false) |
| 1637 | , preferCalleeSave(false) |
| 1638 | , isConstant(false) |
| 1639 | , physReg(REG_COUNT) |
| 1640 | #ifdef DEBUG |
| 1641 | , intervalIndex(0) |
| 1642 | #endif |
| 1643 | , varNum(0) |
| 1644 | { |
| 1645 | } |
| 1646 | |
| 1647 | #ifdef DEBUG |
| 1648 | // print out representation |
| 1649 | void dump(); |
| 1650 | // concise representation for embedding |
| 1651 | void tinyDump(); |
| 1652 | // extremely concise representation |
| 1653 | void microDump(); |
| 1654 | #endif // DEBUG |
| 1655 | |
| 1656 | void setLocalNumber(Compiler* compiler, unsigned lclNum, LinearScan* l); |
| 1657 | |
| 1658 | // Fixed registers for which this Interval has a preference |
| 1659 | regMaskTP registerPreferences; |
| 1660 | |
| 1661 | // The relatedInterval is: |
| 1662 | // - for any other interval, it is the interval to which this interval |
| 1663 | // is currently preferenced (e.g. because they are related by a copy) |
| 1664 | Interval* relatedInterval; |
| 1665 | |
| 1666 | // The assignedReg is the RecRecord for the register to which this interval |
| 1667 | // has been assigned at some point - if the interval is active, this is the |
| 1668 | // register it currently occupies. |
| 1669 | RegRecord* assignedReg; |
| 1670 | |
| 1671 | // DECIDE : put this in a union or do something w/ inheritance? |
| 1672 | // this is an interval for a physical register, not a allocatable entity |
| 1673 | |
| 1674 | RegisterType registerType; |
| 1675 | bool isLocalVar : 1; |
| 1676 | // Indicates whether this interval has been assigned to different registers |
| 1677 | bool isSplit : 1; |
| 1678 | // Indicates whether this interval is ever spilled |
| 1679 | bool isSpilled : 1; |
| 1680 | // indicates an interval representing the internal requirements for |
| 1681 | // generating code for a node (temp registers internal to the node) |
| 1682 | // Note that this interval may live beyond a node in the GT_ARR_LENREF/GT_IND |
| 1683 | // case (though never lives beyond a stmt) |
| 1684 | bool isInternal : 1; |
| 1685 | // true if this is a LocalVar for a struct field |
| 1686 | bool isStructField : 1; |
| 1687 | // true iff this is a GT_LDOBJ for a fully promoted (PROMOTION_TYPE_INDEPENDENT) struct |
| 1688 | bool isPromotedStruct : 1; |
| 1689 | // true if this is an SDSU interval for which the def and use have conflicting register |
| 1690 | // requirements |
| 1691 | bool hasConflictingDefUse : 1; |
| 1692 | // true if this interval's defining node has "delayRegFree" uses, either due to it being an RMW instruction, |
| 1693 | // OR because it requires an internal register that differs from the target. |
| 1694 | bool hasInterferingUses : 1; |
| 1695 | |
| 1696 | // True if this interval is defined by a putArg, whose source is a non-last-use lclVar. |
| 1697 | // During allocation, this flag will be cleared if the source is not already in the required register. |
| 1698 | // Othewise, we will leave the register allocated to the lclVar, but mark the RegRecord as |
| 1699 | // isBusyUntilNextKill, so that it won't be reused if the lclVar goes dead before the call. |
| 1700 | bool isSpecialPutArg : 1; |
| 1701 | |
| 1702 | // True if this interval interferes with a call. |
| 1703 | bool preferCalleeSave : 1; |
| 1704 | |
| 1705 | // True if this interval is defined by a constant node that may be reused and/or may be |
| 1706 | // able to reuse a constant that's already in a register. |
| 1707 | bool isConstant : 1; |
| 1708 | |
| 1709 | // The register to which it is currently assigned. |
| 1710 | regNumber physReg; |
| 1711 | |
| 1712 | #ifdef DEBUG |
| 1713 | unsigned int intervalIndex; |
| 1714 | #endif // DEBUG |
| 1715 | |
| 1716 | unsigned int varNum; // This is the "variable number": the index into the lvaTable array |
| 1717 | |
| 1718 | LclVarDsc* getLocalVar(Compiler* comp) |
| 1719 | { |
| 1720 | assert(isLocalVar); |
| 1721 | return &(comp->lvaTable[this->varNum]); |
| 1722 | } |
| 1723 | |
| 1724 | // Get the local tracked variable "index" (lvVarIndex), used in bitmasks. |
| 1725 | unsigned getVarIndex(Compiler* comp) |
| 1726 | { |
| 1727 | LclVarDsc* varDsc = getLocalVar(comp); |
| 1728 | assert(varDsc->lvTracked); // If this isn't true, we shouldn't be calling this function! |
| 1729 | return varDsc->lvVarIndex; |
| 1730 | } |
| 1731 | |
| 1732 | bool isAssignedTo(regNumber regNum) |
| 1733 | { |
| 1734 | // This uses regMasks to handle the case where a double actually occupies two registers |
| 1735 | // TODO-Throughput: This could/should be done more cheaply. |
| 1736 | return (physReg != REG_NA && (genRegMask(physReg, registerType) & genRegMask(regNum)) != RBM_NONE); |
| 1737 | } |
| 1738 | |
| 1739 | // Assign the related interval. |
| 1740 | void assignRelatedInterval(Interval* newRelatedInterval) |
| 1741 | { |
| 1742 | #ifdef DEBUG |
| 1743 | if (VERBOSE) |
| 1744 | { |
| 1745 | printf("Assigning related " ); |
| 1746 | newRelatedInterval->microDump(); |
| 1747 | printf(" to " ); |
| 1748 | this->microDump(); |
| 1749 | printf("\n" ); |
| 1750 | } |
| 1751 | #endif // DEBUG |
| 1752 | relatedInterval = newRelatedInterval; |
| 1753 | } |
| 1754 | |
| 1755 | // Assign the related interval, but only if it isn't already assigned. |
| 1756 | void assignRelatedIntervalIfUnassigned(Interval* newRelatedInterval) |
| 1757 | { |
| 1758 | if (relatedInterval == nullptr) |
| 1759 | { |
| 1760 | assignRelatedInterval(newRelatedInterval); |
| 1761 | } |
| 1762 | else |
| 1763 | { |
| 1764 | #ifdef DEBUG |
| 1765 | if (VERBOSE) |
| 1766 | { |
| 1767 | printf("Interval " ); |
| 1768 | this->microDump(); |
| 1769 | printf(" already has a related interval\n" ); |
| 1770 | } |
| 1771 | #endif // DEBUG |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | // Update the registerPreferences on the interval. |
| 1776 | // If there are conflicting requirements on this interval, set the preferences to |
| 1777 | // the union of them. That way maybe we'll get at least one of them. |
| 1778 | // An exception is made in the case where one of the existing or new |
| 1779 | // preferences are all callee-save, in which case we "prefer" the callee-save |
| 1780 | |
| 1781 | void updateRegisterPreferences(regMaskTP preferences) |
| 1782 | { |
| 1783 | // We require registerPreferences to have been initialized. |
| 1784 | assert(registerPreferences != RBM_NONE); |
| 1785 | // It is invalid to update with empty preferences |
| 1786 | assert(preferences != RBM_NONE); |
| 1787 | |
| 1788 | regMaskTP commonPreferences = (registerPreferences & preferences); |
| 1789 | if (commonPreferences != RBM_NONE) |
| 1790 | { |
| 1791 | registerPreferences = commonPreferences; |
| 1792 | return; |
| 1793 | } |
| 1794 | |
| 1795 | // There are no preferences in common. |
| 1796 | // Preferences need to reflect both cases where a var must occupy a specific register, |
| 1797 | // as well as cases where a var is live when a register is killed. |
| 1798 | // In the former case, we would like to record all such registers, however we don't |
| 1799 | // really want to use any registers that will interfere. |
| 1800 | // To approximate this, we never "or" together multi-reg sets, which are generally kill sets. |
| 1801 | |
| 1802 | if (!genMaxOneBit(preferences)) |
| 1803 | { |
| 1804 | // The new preference value is a multi-reg set, so it's probably a kill. |
| 1805 | // Keep the new value. |
| 1806 | registerPreferences = preferences; |
| 1807 | return; |
| 1808 | } |
| 1809 | |
| 1810 | if (!genMaxOneBit(registerPreferences)) |
| 1811 | { |
| 1812 | // The old preference value is a multi-reg set. |
| 1813 | // Keep the existing preference set, as it probably reflects one or more kills. |
| 1814 | // It may have been a union of multiple individual registers, but we can't |
| 1815 | // distinguish that case without extra cost. |
| 1816 | return; |
| 1817 | } |
| 1818 | |
| 1819 | // If we reach here, we have two disjoint single-reg sets. |
| 1820 | // Keep only the callee-save preferences, if not empty. |
| 1821 | // Otherwise, take the union of the preferences. |
| 1822 | |
| 1823 | regMaskTP newPreferences = registerPreferences | preferences; |
| 1824 | |
| 1825 | if (preferCalleeSave) |
| 1826 | { |
| 1827 | regMaskTP calleeSaveMask = (calleeSaveRegs(this->registerType) & (newPreferences)); |
| 1828 | if (calleeSaveMask != RBM_NONE) |
| 1829 | { |
| 1830 | newPreferences = calleeSaveMask; |
| 1831 | } |
| 1832 | } |
| 1833 | registerPreferences = newPreferences; |
| 1834 | } |
| 1835 | }; |
| 1836 | |
| 1837 | class RefPosition |
| 1838 | { |
| 1839 | public: |
| 1840 | // A RefPosition refers to either an Interval or a RegRecord. 'referent' points to one |
| 1841 | // of these types. If it refers to a RegRecord, then 'isPhysRegRef' is true. If it |
| 1842 | // refers to an Interval, then 'isPhysRegRef' is false. |
| 1843 | // |
| 1844 | // Q: can 'referent' be NULL? |
| 1845 | |
| 1846 | Referenceable* referent; |
| 1847 | |
| 1848 | // nextRefPosition is the next in code order. |
| 1849 | // Note that in either case there is no need for these to be doubly linked, as they |
| 1850 | // are only traversed in the forward direction, and are not moved. |
| 1851 | RefPosition* nextRefPosition; |
| 1852 | |
| 1853 | // The remaining fields are common to both options |
| 1854 | GenTree* treeNode; |
| 1855 | unsigned int bbNum; |
| 1856 | |
| 1857 | // Prior to the allocation pass, registerAssignment captures the valid registers |
| 1858 | // for this RefPosition. An empty set means that any register is valid. A non-empty |
| 1859 | // set means that it must be one of the given registers (may be the full set if the |
| 1860 | // only constraint is that it must reside in SOME register) |
| 1861 | // After the allocation pass, this contains the actual assignment |
| 1862 | LsraLocation nodeLocation; |
| 1863 | regMaskTP registerAssignment; |
| 1864 | |
| 1865 | RefType refType; |
| 1866 | |
| 1867 | // NOTE: C++ only packs bitfields if the base type is the same. So make all the base |
| 1868 | // NOTE: types of the logically "bool" types that follow 'unsigned char', so they match |
| 1869 | // NOTE: RefType that precedes this, and multiRegIdx can also match. |
| 1870 | |
| 1871 | // Indicates whether this ref position is to be allocated a reg only if profitable. Currently these are the |
| 1872 | // ref positions that lower/codegen has indicated as reg optional and is considered a contained memory operand if |
| 1873 | // no reg is allocated. |
| 1874 | unsigned char allocRegIfProfitable : 1; |
| 1875 | |
| 1876 | // Used by RefTypeDef/Use positions of a multi-reg call node. |
| 1877 | // Indicates the position of the register that this ref position refers to. |
| 1878 | // The max bits needed is based on max value of MAX_RET_REG_COUNT value |
| 1879 | // across all targets and that happens 4 on on Arm. Hence index value |
| 1880 | // would be 0..MAX_RET_REG_COUNT-1. |
| 1881 | unsigned char multiRegIdx : 2; |
| 1882 | |
| 1883 | // Last Use - this may be true for multiple RefPositions in the same Interval |
| 1884 | unsigned char lastUse : 1; |
| 1885 | |
| 1886 | // Spill and Copy info |
| 1887 | // reload indicates that the value was spilled, and must be reloaded here. |
| 1888 | // spillAfter indicates that the value is spilled here, so a spill must be added. |
| 1889 | // copyReg indicates that the value needs to be copied to a specific register, |
| 1890 | // but that it will also retain its current assigned register. |
| 1891 | // moveReg indicates that the value needs to be moved to a different register, |
| 1892 | // and that this will be its new assigned register. |
| 1893 | // A RefPosition may have any flag individually or the following combinations: |
| 1894 | // - reload and spillAfter (i.e. it remains in memory), but not in combination with copyReg or moveReg |
| 1895 | // (reload cannot exist with copyReg or moveReg; it should be reloaded into the appropriate reg) |
| 1896 | // - spillAfter and copyReg (i.e. it must be copied to a new reg for use, but is then spilled) |
| 1897 | // - spillAfter and moveReg (i.e. it most be both spilled and moved) |
| 1898 | // NOTE: a moveReg involves an explicit move, and would usually not be needed for a fixed Reg if it is going |
| 1899 | // to be spilled, because the code generator will do the move to the fixed register, and doesn't need to |
| 1900 | // record the new register location as the new "home" location of the lclVar. However, if there is a conflicting |
| 1901 | // use at the same location (e.g. lclVar V1 is in rdx and needs to be in rcx, but V2 needs to be in rdx), then |
| 1902 | // we need an explicit move. |
| 1903 | // - copyReg and moveReg must not exist with each other. |
| 1904 | |
| 1905 | unsigned char reload : 1; |
| 1906 | unsigned char spillAfter : 1; |
| 1907 | unsigned char copyReg : 1; |
| 1908 | unsigned char moveReg : 1; // true if this var is moved to a new register |
| 1909 | |
| 1910 | unsigned char isPhysRegRef : 1; // true if 'referent' points of a RegRecord, false if it points to an Interval |
| 1911 | unsigned char isFixedRegRef : 1; |
| 1912 | unsigned char isLocalDefUse : 1; |
| 1913 | |
| 1914 | // delayRegFree indicates that the register should not be freed right away, but instead wait |
| 1915 | // until the next Location after it would normally be freed. This is used for the case of |
| 1916 | // non-commutative binary operators, where op2 must not be assigned the same register as |
| 1917 | // the target. We do this by not freeing it until after the target has been defined. |
| 1918 | // Another option would be to actually change the Location of the op2 use until the same |
| 1919 | // Location as the def, but then it could potentially reuse a register that has been freed |
| 1920 | // from the other source(s), e.g. if it's a lastUse or spilled. |
| 1921 | unsigned char delayRegFree : 1; |
| 1922 | |
| 1923 | // outOfOrder is marked on a (non-def) RefPosition that doesn't follow a definition of the |
| 1924 | // register currently assigned to the Interval. This happens when we use the assigned |
| 1925 | // register from a predecessor that is not the most recently allocated BasicBlock. |
| 1926 | unsigned char outOfOrder : 1; |
| 1927 | |
| 1928 | #ifdef DEBUG |
| 1929 | // Minimum number registers that needs to be ensured while |
| 1930 | // constraining candidates for this ref position under |
| 1931 | // LSRA stress. |
| 1932 | unsigned minRegCandidateCount; |
| 1933 | |
| 1934 | // The unique RefPosition number, equal to its index in the |
| 1935 | // refPositions list. Only used for debugging dumps. |
| 1936 | unsigned rpNum; |
| 1937 | #endif // DEBUG |
| 1938 | |
| 1939 | RefPosition(unsigned int bbNum, LsraLocation nodeLocation, GenTree* treeNode, RefType refType) |
| 1940 | : referent(nullptr) |
| 1941 | , nextRefPosition(nullptr) |
| 1942 | , treeNode(treeNode) |
| 1943 | , bbNum(bbNum) |
| 1944 | , nodeLocation(nodeLocation) |
| 1945 | , registerAssignment(RBM_NONE) |
| 1946 | , refType(refType) |
| 1947 | , multiRegIdx(0) |
| 1948 | , lastUse(false) |
| 1949 | , reload(false) |
| 1950 | , spillAfter(false) |
| 1951 | , copyReg(false) |
| 1952 | , moveReg(false) |
| 1953 | , isPhysRegRef(false) |
| 1954 | , isFixedRegRef(false) |
| 1955 | , isLocalDefUse(false) |
| 1956 | , delayRegFree(false) |
| 1957 | , outOfOrder(false) |
| 1958 | #ifdef DEBUG |
| 1959 | , minRegCandidateCount(1) |
| 1960 | , rpNum(0) |
| 1961 | #endif |
| 1962 | { |
| 1963 | } |
| 1964 | |
| 1965 | Interval* getInterval() |
| 1966 | { |
| 1967 | assert(!isPhysRegRef); |
| 1968 | return (Interval*)referent; |
| 1969 | } |
| 1970 | void setInterval(Interval* i) |
| 1971 | { |
| 1972 | referent = i; |
| 1973 | isPhysRegRef = false; |
| 1974 | } |
| 1975 | |
| 1976 | RegRecord* getReg() |
| 1977 | { |
| 1978 | assert(isPhysRegRef); |
| 1979 | return (RegRecord*)referent; |
| 1980 | } |
| 1981 | void setReg(RegRecord* r) |
| 1982 | { |
| 1983 | referent = r; |
| 1984 | isPhysRegRef = true; |
| 1985 | registerAssignment = genRegMask(r->regNum); |
| 1986 | } |
| 1987 | |
| 1988 | regNumber assignedReg() |
| 1989 | { |
| 1990 | if (registerAssignment == RBM_NONE) |
| 1991 | { |
| 1992 | return REG_NA; |
| 1993 | } |
| 1994 | |
| 1995 | return genRegNumFromMask(registerAssignment); |
| 1996 | } |
| 1997 | |
| 1998 | // Returns true if it is a reference on a gentree node. |
| 1999 | bool IsActualRef() |
| 2000 | { |
| 2001 | return (refType == RefTypeDef || refType == RefTypeUse); |
| 2002 | } |
| 2003 | |
| 2004 | bool RequiresRegister() |
| 2005 | { |
| 2006 | return (IsActualRef() |
| 2007 | #if FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 2008 | || refType == RefTypeUpperVectorSaveDef || refType == RefTypeUpperVectorSaveUse |
| 2009 | #endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE |
| 2010 | ) && |
| 2011 | !AllocateIfProfitable(); |
| 2012 | } |
| 2013 | |
| 2014 | void setAllocateIfProfitable(bool val) |
| 2015 | { |
| 2016 | allocRegIfProfitable = val; |
| 2017 | } |
| 2018 | |
| 2019 | // Returns true whether this ref position is to be allocated |
| 2020 | // a reg only if it is profitable. |
| 2021 | bool AllocateIfProfitable() |
| 2022 | { |
| 2023 | // TODO-CQ: Right now if a ref position is marked as |
| 2024 | // copyreg or movereg, then it is not treated as |
| 2025 | // 'allocate if profitable'. This is an implementation |
| 2026 | // limitation that needs to be addressed. |
| 2027 | return allocRegIfProfitable && !copyReg && !moveReg; |
| 2028 | } |
| 2029 | |
| 2030 | void setMultiRegIdx(unsigned idx) |
| 2031 | { |
| 2032 | multiRegIdx = idx; |
| 2033 | assert(multiRegIdx == idx); |
| 2034 | } |
| 2035 | |
| 2036 | unsigned getMultiRegIdx() |
| 2037 | { |
| 2038 | return multiRegIdx; |
| 2039 | } |
| 2040 | |
| 2041 | LsraLocation getRefEndLocation() |
| 2042 | { |
| 2043 | return delayRegFree ? nodeLocation + 1 : nodeLocation; |
| 2044 | } |
| 2045 | |
| 2046 | bool isIntervalRef() |
| 2047 | { |
| 2048 | return (!isPhysRegRef && (referent != nullptr)); |
| 2049 | } |
| 2050 | |
| 2051 | // isTrueDef indicates that the RefPosition is a non-update def of a non-internal |
| 2052 | // interval |
| 2053 | bool isTrueDef() |
| 2054 | { |
| 2055 | return (refType == RefTypeDef && isIntervalRef() && !getInterval()->isInternal); |
| 2056 | } |
| 2057 | |
| 2058 | // isFixedRefOfRegMask indicates that the RefPosition has a fixed assignment to the register |
| 2059 | // specified by the given mask |
| 2060 | bool isFixedRefOfRegMask(regMaskTP regMask) |
| 2061 | { |
| 2062 | assert(genMaxOneBit(regMask)); |
| 2063 | return (registerAssignment == regMask); |
| 2064 | } |
| 2065 | |
| 2066 | // isFixedRefOfReg indicates that the RefPosition has a fixed assignment to the given register |
| 2067 | bool isFixedRefOfReg(regNumber regNum) |
| 2068 | { |
| 2069 | return (isFixedRefOfRegMask(genRegMask(regNum))); |
| 2070 | } |
| 2071 | |
| 2072 | #ifdef DEBUG |
| 2073 | // operator= copies everything except 'rpNum', which must remain unique |
| 2074 | RefPosition& operator=(const RefPosition& rp) |
| 2075 | { |
| 2076 | unsigned rpNumSave = rpNum; |
| 2077 | memcpy(this, &rp, sizeof(rp)); |
| 2078 | rpNum = rpNumSave; |
| 2079 | return *this; |
| 2080 | } |
| 2081 | |
| 2082 | void dump(); |
| 2083 | #endif // DEBUG |
| 2084 | }; |
| 2085 | |
| 2086 | #ifdef DEBUG |
| 2087 | void dumpRegMask(regMaskTP regs); |
| 2088 | #endif // DEBUG |
| 2089 | |
| 2090 | /*****************************************************************************/ |
| 2091 | #endif //_LSRA_H_ |
| 2092 | /*****************************************************************************/ |
| 2093 | |