| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX ValueNum XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | |
| 14 | #include "jitpch.h" |
| 15 | #ifdef _MSC_VER |
| 16 | #pragma hdrstop |
| 17 | #endif |
| 18 | |
| 19 | #include "valuenum.h" |
| 20 | #include "ssaconfig.h" |
| 21 | |
| 22 | // Windows x86 and Windows ARM/ARM64 may not define _isnanf() but they do define _isnan(). |
| 23 | // We will redirect the macros to these other functions if the macro is not defined for the |
| 24 | // platform. This has the side effect of a possible implicit upcasting for arguments passed. |
| 25 | #if (defined(_TARGET_X86_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_)) && !defined(FEATURE_PAL) |
| 26 | |
| 27 | #if !defined(_isnanf) |
| 28 | #define _isnanf _isnan |
| 29 | #endif |
| 30 | |
| 31 | #endif // (defined(_TARGET_X86_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_)) && !defined(FEATURE_PAL) |
| 32 | |
| 33 | // We need to use target-specific NaN values when statically compute expressions. |
| 34 | // Otherwise, cross crossgen (e.g. x86_arm) would have different binary outputs |
| 35 | // from native crossgen (i.e. arm_arm) when the NaN got "embedded" into code. |
| 36 | // |
| 37 | // For example, when placing NaN value in r3 register |
| 38 | // x86_arm crossgen would emit |
| 39 | // movw r3, 0x00 |
| 40 | // movt r3, 0xfff8 |
| 41 | // while arm_arm crossgen (and JIT) output is |
| 42 | // movw r3, 0x00 |
| 43 | // movt r3, 0x7ff8 |
| 44 | |
| 45 | struct FloatTraits |
| 46 | { |
| 47 | //------------------------------------------------------------------------ |
| 48 | // NaN: Return target-specific float NaN value |
| 49 | // |
| 50 | // Notes: |
| 51 | // "Default" NaN value returned by expression 0.0f / 0.0f on x86/x64 has |
| 52 | // different binary representation (0xffc00000) than NaN on |
| 53 | // ARM32/ARM64 (0x7fc00000). |
| 54 | |
| 55 | static float NaN() |
| 56 | { |
| 57 | #if defined(_TARGET_XARCH_) |
| 58 | unsigned bits = 0xFFC00000u; |
| 59 | #elif defined(_TARGET_ARMARCH_) |
| 60 | unsigned bits = 0x7FC00000u; |
| 61 | #else |
| 62 | #error Unsupported or unset target architecture |
| 63 | #endif |
| 64 | float result; |
| 65 | static_assert(sizeof(bits) == sizeof(result), "sizeof(unsigned) must equal sizeof(float)" ); |
| 66 | memcpy(&result, &bits, sizeof(result)); |
| 67 | return result; |
| 68 | } |
| 69 | }; |
| 70 | |
| 71 | struct DoubleTraits |
| 72 | { |
| 73 | //------------------------------------------------------------------------ |
| 74 | // NaN: Return target-specific double NaN value |
| 75 | // |
| 76 | // Notes: |
| 77 | // "Default" NaN value returned by expression 0.0 / 0.0 on x86/x64 has |
| 78 | // different binary representation (0xfff8000000000000) than NaN on |
| 79 | // ARM32/ARM64 (0x7ff8000000000000). |
| 80 | |
| 81 | static double NaN() |
| 82 | { |
| 83 | #if defined(_TARGET_XARCH_) |
| 84 | unsigned long long bits = 0xFFF8000000000000ull; |
| 85 | #elif defined(_TARGET_ARMARCH_) |
| 86 | unsigned long long bits = 0x7FF8000000000000ull; |
| 87 | #else |
| 88 | #error Unsupported or unset target architecture |
| 89 | #endif |
| 90 | double result; |
| 91 | static_assert(sizeof(bits) == sizeof(result), "sizeof(unsigned long long) must equal sizeof(double)" ); |
| 92 | memcpy(&result, &bits, sizeof(result)); |
| 93 | return result; |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | //------------------------------------------------------------------------ |
| 98 | // FpAdd: Computes value1 + value2 |
| 99 | // |
| 100 | // Return Value: |
| 101 | // TFpTraits::NaN() - If target ARM32/ARM64 and result value is NaN |
| 102 | // value1 + value2 - Otherwise |
| 103 | // |
| 104 | // Notes: |
| 105 | // See FloatTraits::NaN() and DoubleTraits::NaN() notes. |
| 106 | |
| 107 | template <typename TFp, typename TFpTraits> |
| 108 | TFp FpAdd(TFp value1, TFp value2) |
| 109 | { |
| 110 | #ifdef _TARGET_ARMARCH_ |
| 111 | // If [value1] is negative infinity and [value2] is positive infinity |
| 112 | // the result is NaN. |
| 113 | // If [value1] is positive infinity and [value2] is negative infinity |
| 114 | // the result is NaN. |
| 115 | |
| 116 | if (!_finite(value1) && !_finite(value2)) |
| 117 | { |
| 118 | if (value1 < 0 && value2 > 0) |
| 119 | { |
| 120 | return TFpTraits::NaN(); |
| 121 | } |
| 122 | |
| 123 | if (value1 > 0 && value2 < 0) |
| 124 | { |
| 125 | return TFpTraits::NaN(); |
| 126 | } |
| 127 | } |
| 128 | #endif // _TARGET_ARMARCH_ |
| 129 | |
| 130 | return value1 + value2; |
| 131 | } |
| 132 | |
| 133 | //------------------------------------------------------------------------ |
| 134 | // FpSub: Computes value1 - value2 |
| 135 | // |
| 136 | // Return Value: |
| 137 | // TFpTraits::NaN() - If target ARM32/ARM64 and result value is NaN |
| 138 | // value1 - value2 - Otherwise |
| 139 | // |
| 140 | // Notes: |
| 141 | // See FloatTraits::NaN() and DoubleTraits::NaN() notes. |
| 142 | |
| 143 | template <typename TFp, typename TFpTraits> |
| 144 | TFp FpSub(TFp value1, TFp value2) |
| 145 | { |
| 146 | #ifdef _TARGET_ARMARCH_ |
| 147 | // If [value1] is positive infinity and [value2] is positive infinity |
| 148 | // the result is NaN. |
| 149 | // If [value1] is negative infinity and [value2] is negative infinity |
| 150 | // the result is NaN. |
| 151 | |
| 152 | if (!_finite(value1) && !_finite(value2)) |
| 153 | { |
| 154 | if (value1 > 0 && value2 > 0) |
| 155 | { |
| 156 | return TFpTraits::NaN(); |
| 157 | } |
| 158 | |
| 159 | if (value1 < 0 && value2 < 0) |
| 160 | { |
| 161 | return TFpTraits::NaN(); |
| 162 | } |
| 163 | } |
| 164 | #endif // _TARGET_ARMARCH_ |
| 165 | |
| 166 | return value1 - value2; |
| 167 | } |
| 168 | |
| 169 | //------------------------------------------------------------------------ |
| 170 | // FpMul: Computes value1 * value2 |
| 171 | // |
| 172 | // Return Value: |
| 173 | // TFpTraits::NaN() - If target ARM32/ARM64 and result value is NaN |
| 174 | // value1 * value2 - Otherwise |
| 175 | // |
| 176 | // Notes: |
| 177 | // See FloatTraits::NaN() and DoubleTraits::NaN() notes. |
| 178 | |
| 179 | template <typename TFp, typename TFpTraits> |
| 180 | TFp FpMul(TFp value1, TFp value2) |
| 181 | { |
| 182 | #ifdef _TARGET_ARMARCH_ |
| 183 | // From the ECMA standard: |
| 184 | // |
| 185 | // If [value1] is zero and [value2] is infinity |
| 186 | // the result is NaN. |
| 187 | // If [value1] is infinity and [value2] is zero |
| 188 | // the result is NaN. |
| 189 | |
| 190 | if (value1 == 0 && !_finite(value2) && !_isnan(value2)) |
| 191 | { |
| 192 | return TFpTraits::NaN(); |
| 193 | } |
| 194 | if (!_finite(value1) && !_isnan(value1) && value2 == 0) |
| 195 | { |
| 196 | return TFpTraits::NaN(); |
| 197 | } |
| 198 | #endif // _TARGET_ARMARCH_ |
| 199 | |
| 200 | return value1 * value2; |
| 201 | } |
| 202 | |
| 203 | //------------------------------------------------------------------------ |
| 204 | // FpDiv: Computes value1 / value2 |
| 205 | // |
| 206 | // Return Value: |
| 207 | // TFpTraits::NaN() - If target ARM32/ARM64 and result value is NaN |
| 208 | // value1 / value2 - Otherwise |
| 209 | // |
| 210 | // Notes: |
| 211 | // See FloatTraits::NaN() and DoubleTraits::NaN() notes. |
| 212 | |
| 213 | template <typename TFp, typename TFpTraits> |
| 214 | TFp FpDiv(TFp dividend, TFp divisor) |
| 215 | { |
| 216 | #ifdef _TARGET_ARMARCH_ |
| 217 | // From the ECMA standard: |
| 218 | // |
| 219 | // If [dividend] is zero and [divisor] is zero |
| 220 | // the result is NaN. |
| 221 | // If [dividend] is infinity and [divisor] is infinity |
| 222 | // the result is NaN. |
| 223 | |
| 224 | if (dividend == 0 && divisor == 0) |
| 225 | { |
| 226 | return TFpTraits::NaN(); |
| 227 | } |
| 228 | else if (!_finite(dividend) && !_isnan(dividend) && !_finite(divisor) && !_isnan(divisor)) |
| 229 | { |
| 230 | return TFpTraits::NaN(); |
| 231 | } |
| 232 | #endif // _TARGET_ARMARCH_ |
| 233 | |
| 234 | return dividend / divisor; |
| 235 | } |
| 236 | |
| 237 | template <typename TFp, typename TFpTraits> |
| 238 | TFp FpRem(TFp dividend, TFp divisor) |
| 239 | { |
| 240 | // From the ECMA standard: |
| 241 | // |
| 242 | // If [divisor] is zero or [dividend] is infinity |
| 243 | // the result is NaN. |
| 244 | // If [divisor] is infinity, |
| 245 | // the result is [dividend] |
| 246 | |
| 247 | if (divisor == 0 || !_finite(dividend)) |
| 248 | { |
| 249 | return TFpTraits::NaN(); |
| 250 | } |
| 251 | else if (!_finite(divisor) && !_isnan(divisor)) |
| 252 | { |
| 253 | return dividend; |
| 254 | } |
| 255 | |
| 256 | return (TFp)fmod((double)dividend, (double)divisor); |
| 257 | } |
| 258 | |
| 259 | //-------------------------------------------------------------------------------- |
| 260 | // VNGetOperKind: - Given two bools: isUnsigned and overFlowCheck |
| 261 | // return the correct VNOperKind for them. |
| 262 | // |
| 263 | // Arguments: |
| 264 | // isUnsigned - The operKind returned should have the unsigned property |
| 265 | // overflowCheck - The operKind returned should have the overflow check property |
| 266 | // |
| 267 | // Return Value: |
| 268 | // - The VNOperKind to use for this pair of (isUnsigned, overflowCheck) |
| 269 | // |
| 270 | VNOperKind VNGetOperKind(bool isUnsigned, bool overflowCheck) |
| 271 | { |
| 272 | if (!isUnsigned) |
| 273 | { |
| 274 | if (!overflowCheck) |
| 275 | { |
| 276 | return VOK_Default; |
| 277 | } |
| 278 | else |
| 279 | { |
| 280 | return VOK_OverflowCheck; |
| 281 | } |
| 282 | } |
| 283 | else // isUnsigned |
| 284 | { |
| 285 | if (!overflowCheck) |
| 286 | { |
| 287 | return VOK_Unsigned; |
| 288 | } |
| 289 | else |
| 290 | { |
| 291 | return VOK_Unsigned_OverflowCheck; |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | //-------------------------------------------------------------------------------- |
| 297 | // GetVNFuncForOper: - Given a genTreeOper this function Returns the correct |
| 298 | // VNFunc to use for ValueNumbering |
| 299 | // |
| 300 | // Arguments: |
| 301 | // oper - The gtOper value from the GenTree node |
| 302 | // operKind - An enum that supports Normal, Unsigned, OverflowCheck, |
| 303 | // and Unsigned_OverflowCheck, |
| 304 | // |
| 305 | // Return Value: |
| 306 | // - The VNFunc to use for this pair of (oper, operKind) |
| 307 | // |
| 308 | // Notes: - An assert will fire when the oper does not support |
| 309 | // the operKInd that is supplied. |
| 310 | // |
| 311 | VNFunc GetVNFuncForOper(genTreeOps oper, VNOperKind operKind) |
| 312 | { |
| 313 | VNFunc result = VNF_COUNT; // An illegal value |
| 314 | bool invalid = false; |
| 315 | |
| 316 | // For most genTreeOpers we just use the VNFunc with the same enum value as the oper |
| 317 | // |
| 318 | if (operKind == VOK_Default) |
| 319 | { |
| 320 | // We can directly use the enum value of oper |
| 321 | result = VNFunc(oper); |
| 322 | } |
| 323 | else if ((oper == GT_EQ) || (oper == GT_NE)) |
| 324 | { |
| 325 | if (operKind == VOK_Unsigned) |
| 326 | { |
| 327 | // We will permit unsignedOper to be used with GT_EQ and GT_NE (as it is a no-op) |
| 328 | // |
| 329 | // Again we directly use the enum value of oper |
| 330 | result = VNFunc(oper); |
| 331 | } |
| 332 | else |
| 333 | { |
| 334 | invalid = true; |
| 335 | } |
| 336 | } |
| 337 | else // We will need to use a VNF_ function |
| 338 | { |
| 339 | switch (oper) |
| 340 | { |
| 341 | case GT_LT: |
| 342 | if (operKind == VOK_Unsigned) |
| 343 | { |
| 344 | result = VNF_LT_UN; |
| 345 | } |
| 346 | else |
| 347 | { |
| 348 | invalid = true; |
| 349 | } |
| 350 | break; |
| 351 | |
| 352 | case GT_LE: |
| 353 | if (operKind == VOK_Unsigned) |
| 354 | { |
| 355 | result = VNF_LE_UN; |
| 356 | } |
| 357 | else |
| 358 | { |
| 359 | invalid = true; |
| 360 | } |
| 361 | break; |
| 362 | |
| 363 | case GT_GE: |
| 364 | if (operKind == VOK_Unsigned) |
| 365 | { |
| 366 | result = VNF_GE_UN; |
| 367 | } |
| 368 | else |
| 369 | { |
| 370 | invalid = true; |
| 371 | } |
| 372 | break; |
| 373 | |
| 374 | case GT_GT: |
| 375 | if (operKind == VOK_Unsigned) |
| 376 | { |
| 377 | result = VNF_GT_UN; |
| 378 | } |
| 379 | else |
| 380 | { |
| 381 | invalid = true; |
| 382 | } |
| 383 | break; |
| 384 | |
| 385 | case GT_ADD: |
| 386 | if (operKind == VOK_OverflowCheck) |
| 387 | { |
| 388 | result = VNF_ADD_OVF; |
| 389 | } |
| 390 | else if (operKind == VOK_Unsigned_OverflowCheck) |
| 391 | { |
| 392 | result = VNF_ADD_UN_OVF; |
| 393 | } |
| 394 | else |
| 395 | { |
| 396 | invalid = true; |
| 397 | } |
| 398 | break; |
| 399 | |
| 400 | case GT_SUB: |
| 401 | if (operKind == VOK_OverflowCheck) |
| 402 | { |
| 403 | result = VNF_SUB_OVF; |
| 404 | } |
| 405 | else if (operKind == VOK_Unsigned_OverflowCheck) |
| 406 | { |
| 407 | result = VNF_SUB_UN_OVF; |
| 408 | } |
| 409 | else |
| 410 | { |
| 411 | invalid = true; |
| 412 | } |
| 413 | break; |
| 414 | |
| 415 | case GT_MUL: |
| 416 | if (operKind == VOK_OverflowCheck) |
| 417 | { |
| 418 | result = VNF_MUL_OVF; |
| 419 | } |
| 420 | else if (operKind == VOK_Unsigned_OverflowCheck) |
| 421 | { |
| 422 | result = VNF_MUL_UN_OVF; |
| 423 | } |
| 424 | #ifndef _TARGET_64BIT_ |
| 425 | else if (operKind == VOK_Unsigned) |
| 426 | { |
| 427 | // This is the special 64-bit unsigned multiply used on 32-bit targets |
| 428 | result = VNF_MUL64_UN; |
| 429 | } |
| 430 | #endif |
| 431 | else |
| 432 | { |
| 433 | invalid = true; |
| 434 | } |
| 435 | break; |
| 436 | |
| 437 | default: |
| 438 | // Will trigger the noway_assert below. |
| 439 | break; |
| 440 | } |
| 441 | } |
| 442 | noway_assert(!invalid && (result != VNF_COUNT)); |
| 443 | |
| 444 | return result; |
| 445 | } |
| 446 | |
| 447 | //-------------------------------------------------------------------------------- |
| 448 | // GetVNFuncForNode: - Given a GenTree node, this returns the proper |
| 449 | // VNFunc to use for ValueNumbering |
| 450 | // |
| 451 | // Arguments: |
| 452 | // node - The GenTree node that we need the VNFunc for. |
| 453 | // |
| 454 | // Return Value: |
| 455 | // - The VNFunc to use for this GenTree node |
| 456 | // |
| 457 | // Notes: - The gtFlags from the node are used to set operKind |
| 458 | // to one of Normal, Unsigned, OverflowCheck, |
| 459 | // or Unsigned_OverflowCheck. Also see GetVNFuncForOper() |
| 460 | // |
| 461 | VNFunc GetVNFuncForNode(GenTree* node) |
| 462 | { |
| 463 | bool isUnsignedOper = ((node->gtFlags & GTF_UNSIGNED) != 0); |
| 464 | bool hasOverflowCheck = node->gtOverflowEx(); |
| 465 | VNOperKind operKind = VNGetOperKind(isUnsignedOper, hasOverflowCheck); |
| 466 | VNFunc result = GetVNFuncForOper(node->gtOper, operKind); |
| 467 | |
| 468 | return result; |
| 469 | } |
| 470 | |
| 471 | unsigned ValueNumStore::VNFuncArity(VNFunc vnf) |
| 472 | { |
| 473 | // Read the bit field out of the table... |
| 474 | return (s_vnfOpAttribs[vnf] & VNFOA_ArityMask) >> VNFOA_ArityShift; |
| 475 | } |
| 476 | |
| 477 | template <> |
| 478 | bool ValueNumStore::IsOverflowIntDiv(int v0, int v1) |
| 479 | { |
| 480 | return (v1 == -1) && (v0 == INT32_MIN); |
| 481 | } |
| 482 | |
| 483 | template <> |
| 484 | bool ValueNumStore::IsOverflowIntDiv(INT64 v0, INT64 v1) |
| 485 | { |
| 486 | return (v1 == -1) && (v0 == INT64_MIN); |
| 487 | } |
| 488 | |
| 489 | template <typename T> |
| 490 | bool ValueNumStore::IsOverflowIntDiv(T v0, T v1) |
| 491 | { |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | template <> |
| 496 | bool ValueNumStore::IsIntZero(int v) |
| 497 | { |
| 498 | return v == 0; |
| 499 | } |
| 500 | template <> |
| 501 | bool ValueNumStore::IsIntZero(unsigned v) |
| 502 | { |
| 503 | return v == 0; |
| 504 | } |
| 505 | template <> |
| 506 | bool ValueNumStore::IsIntZero(INT64 v) |
| 507 | { |
| 508 | return v == 0; |
| 509 | } |
| 510 | template <> |
| 511 | bool ValueNumStore::IsIntZero(UINT64 v) |
| 512 | { |
| 513 | return v == 0; |
| 514 | } |
| 515 | template <typename T> |
| 516 | bool ValueNumStore::IsIntZero(T v) |
| 517 | { |
| 518 | return false; |
| 519 | } |
| 520 | |
| 521 | ValueNumStore::ValueNumStore(Compiler* comp, CompAllocator alloc) |
| 522 | : m_pComp(comp) |
| 523 | , m_alloc(alloc) |
| 524 | , m_nextChunkBase(0) |
| 525 | , m_fixedPointMapSels(alloc, 8) |
| 526 | , m_checkedBoundVNs(alloc) |
| 527 | , m_chunks(alloc, 8) |
| 528 | , m_intCnsMap(nullptr) |
| 529 | , m_longCnsMap(nullptr) |
| 530 | , m_handleMap(nullptr) |
| 531 | , m_floatCnsMap(nullptr) |
| 532 | , m_doubleCnsMap(nullptr) |
| 533 | , m_byrefCnsMap(nullptr) |
| 534 | , m_VNFunc0Map(nullptr) |
| 535 | , m_VNFunc1Map(nullptr) |
| 536 | , m_VNFunc2Map(nullptr) |
| 537 | , m_VNFunc3Map(nullptr) |
| 538 | , m_VNFunc4Map(nullptr) |
| 539 | #ifdef DEBUG |
| 540 | , m_numMapSels(0) |
| 541 | #endif |
| 542 | { |
| 543 | // We have no current allocation chunks. |
| 544 | for (unsigned i = 0; i < TYP_COUNT; i++) |
| 545 | { |
| 546 | for (unsigned j = CEA_None; j <= CEA_Count + MAX_LOOP_NUM; j++) |
| 547 | { |
| 548 | m_curAllocChunk[i][j] = NoChunk; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | for (unsigned i = 0; i < SmallIntConstNum; i++) |
| 553 | { |
| 554 | m_VNsForSmallIntConsts[i] = NoVN; |
| 555 | } |
| 556 | // We will reserve chunk 0 to hold some special constants, like the constant NULL, the "exception" value, and the |
| 557 | // "zero map." |
| 558 | Chunk* specialConstChunk = new (m_alloc) Chunk(m_alloc, &m_nextChunkBase, TYP_REF, CEA_Const, MAX_LOOP_NUM); |
| 559 | specialConstChunk->m_numUsed += |
| 560 | SRC_NumSpecialRefConsts; // Implicitly allocate 0 ==> NULL, and 1 ==> Exception, 2 ==> ZeroMap. |
| 561 | ChunkNum cn = m_chunks.Push(specialConstChunk); |
| 562 | assert(cn == 0); |
| 563 | |
| 564 | m_mapSelectBudget = (int)JitConfig.JitVNMapSelBudget(); // We cast the unsigned DWORD to a signed int. |
| 565 | |
| 566 | // This value must be non-negative and non-zero, reset the value to DEFAULT_MAP_SELECT_BUDGET if it isn't. |
| 567 | if (m_mapSelectBudget <= 0) |
| 568 | { |
| 569 | m_mapSelectBudget = DEFAULT_MAP_SELECT_BUDGET; |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | // |
| 574 | // Unary EvalOp |
| 575 | // |
| 576 | |
| 577 | template <typename T> |
| 578 | T ValueNumStore::EvalOp(VNFunc vnf, T v0) |
| 579 | { |
| 580 | genTreeOps oper = genTreeOps(vnf); |
| 581 | |
| 582 | // Here we handle unary ops that are the same for all types. |
| 583 | switch (oper) |
| 584 | { |
| 585 | case GT_NEG: |
| 586 | // Note that GT_NEG is the only valid unary floating point operation |
| 587 | return -v0; |
| 588 | |
| 589 | default: |
| 590 | break; |
| 591 | } |
| 592 | |
| 593 | // Otherwise must be handled by the type specific method |
| 594 | return EvalOpSpecialized(vnf, v0); |
| 595 | } |
| 596 | |
| 597 | template <> |
| 598 | double ValueNumStore::EvalOpSpecialized<double>(VNFunc vnf, double v0) |
| 599 | { |
| 600 | // Here we handle specialized double unary ops. |
| 601 | noway_assert(!"EvalOpSpecialized<double> - unary" ); |
| 602 | return 0.0; |
| 603 | } |
| 604 | |
| 605 | template <> |
| 606 | float ValueNumStore::EvalOpSpecialized<float>(VNFunc vnf, float v0) |
| 607 | { |
| 608 | // Here we handle specialized float unary ops. |
| 609 | noway_assert(!"EvalOpSpecialized<float> - unary" ); |
| 610 | return 0.0f; |
| 611 | } |
| 612 | |
| 613 | template <typename T> |
| 614 | T ValueNumStore::EvalOpSpecialized(VNFunc vnf, T v0) |
| 615 | { |
| 616 | if (vnf < VNF_Boundary) |
| 617 | { |
| 618 | genTreeOps oper = genTreeOps(vnf); |
| 619 | |
| 620 | switch (oper) |
| 621 | { |
| 622 | case GT_NEG: |
| 623 | return -v0; |
| 624 | |
| 625 | case GT_NOT: |
| 626 | return ~v0; |
| 627 | |
| 628 | case GT_BSWAP16: |
| 629 | { |
| 630 | UINT16 v0_unsigned = UINT16(v0); |
| 631 | |
| 632 | v0_unsigned = ((v0_unsigned >> 8) & 0xFF) | ((v0_unsigned << 8) & 0xFF00); |
| 633 | return T(v0_unsigned); |
| 634 | } |
| 635 | |
| 636 | case GT_BSWAP: |
| 637 | if (sizeof(T) == 4) |
| 638 | { |
| 639 | UINT32 v0_unsigned = UINT32(v0); |
| 640 | |
| 641 | v0_unsigned = ((v0_unsigned >> 24) & 0xFF) | ((v0_unsigned >> 8) & 0xFF00) | |
| 642 | ((v0_unsigned << 8) & 0xFF0000) | ((v0_unsigned << 24) & 0xFF000000); |
| 643 | return T(v0_unsigned); |
| 644 | } |
| 645 | else if (sizeof(T) == 8) |
| 646 | { |
| 647 | UINT64 v0_unsigned = UINT64(v0); |
| 648 | |
| 649 | v0_unsigned = ((v0_unsigned >> 56) & 0xFF) | ((v0_unsigned >> 40) & 0xFF00) | |
| 650 | ((v0_unsigned >> 24) & 0xFF0000) | ((v0_unsigned >> 8) & 0xFF000000) | |
| 651 | ((v0_unsigned << 8) & 0xFF00000000) | ((v0_unsigned << 24) & 0xFF0000000000) | |
| 652 | ((v0_unsigned << 40) & 0xFF000000000000) | ((v0_unsigned << 56) & 0xFF00000000000000); |
| 653 | return T(v0_unsigned); |
| 654 | } |
| 655 | else |
| 656 | { |
| 657 | break; // unknown primitive |
| 658 | } |
| 659 | |
| 660 | default: |
| 661 | break; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | noway_assert(!"Unhandled operation in EvalOpSpecialized<T> - unary" ); |
| 666 | return v0; |
| 667 | } |
| 668 | |
| 669 | // |
| 670 | // Binary EvalOp |
| 671 | // |
| 672 | |
| 673 | template <typename T> |
| 674 | T ValueNumStore::EvalOp(VNFunc vnf, T v0, T v1) |
| 675 | { |
| 676 | // Here we handle the binary ops that are the same for all types. |
| 677 | |
| 678 | // Currently there are none (due to floating point NaN representations) |
| 679 | |
| 680 | // Otherwise must be handled by the type specific method |
| 681 | return EvalOpSpecialized(vnf, v0, v1); |
| 682 | } |
| 683 | |
| 684 | template <> |
| 685 | double ValueNumStore::EvalOpSpecialized<double>(VNFunc vnf, double v0, double v1) |
| 686 | { |
| 687 | // Here we handle specialized double binary ops. |
| 688 | if (vnf < VNF_Boundary) |
| 689 | { |
| 690 | genTreeOps oper = genTreeOps(vnf); |
| 691 | |
| 692 | // Here we handle |
| 693 | switch (oper) |
| 694 | { |
| 695 | case GT_ADD: |
| 696 | return FpAdd<double, DoubleTraits>(v0, v1); |
| 697 | case GT_SUB: |
| 698 | return FpSub<double, DoubleTraits>(v0, v1); |
| 699 | case GT_MUL: |
| 700 | return FpMul<double, DoubleTraits>(v0, v1); |
| 701 | case GT_DIV: |
| 702 | return FpDiv<double, DoubleTraits>(v0, v1); |
| 703 | case GT_MOD: |
| 704 | return FpRem<double, DoubleTraits>(v0, v1); |
| 705 | |
| 706 | default: |
| 707 | // For any other value of 'oper', we will assert below |
| 708 | break; |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | noway_assert(!"EvalOpSpecialized<double> - binary" ); |
| 713 | return v0; |
| 714 | } |
| 715 | |
| 716 | template <> |
| 717 | float ValueNumStore::EvalOpSpecialized<float>(VNFunc vnf, float v0, float v1) |
| 718 | { |
| 719 | // Here we handle specialized float binary ops. |
| 720 | if (vnf < VNF_Boundary) |
| 721 | { |
| 722 | genTreeOps oper = genTreeOps(vnf); |
| 723 | |
| 724 | // Here we handle |
| 725 | switch (oper) |
| 726 | { |
| 727 | case GT_ADD: |
| 728 | return FpAdd<float, FloatTraits>(v0, v1); |
| 729 | case GT_SUB: |
| 730 | return FpSub<float, FloatTraits>(v0, v1); |
| 731 | case GT_MUL: |
| 732 | return FpMul<float, FloatTraits>(v0, v1); |
| 733 | case GT_DIV: |
| 734 | return FpDiv<float, FloatTraits>(v0, v1); |
| 735 | case GT_MOD: |
| 736 | return FpRem<float, FloatTraits>(v0, v1); |
| 737 | |
| 738 | default: |
| 739 | // For any other value of 'oper', we will assert below |
| 740 | break; |
| 741 | } |
| 742 | } |
| 743 | assert(!"EvalOpSpecialized<float> - binary" ); |
| 744 | return v0; |
| 745 | } |
| 746 | |
| 747 | template <typename T> |
| 748 | T ValueNumStore::EvalOpSpecialized(VNFunc vnf, T v0, T v1) |
| 749 | { |
| 750 | typedef typename jitstd::make_unsigned<T>::type UT; |
| 751 | |
| 752 | assert((sizeof(T) == 4) || (sizeof(T) == 8)); |
| 753 | |
| 754 | // Here we handle binary ops that are the same for all integer types |
| 755 | if (vnf < VNF_Boundary) |
| 756 | { |
| 757 | genTreeOps oper = genTreeOps(vnf); |
| 758 | |
| 759 | switch (oper) |
| 760 | { |
| 761 | case GT_ADD: |
| 762 | return v0 + v1; |
| 763 | case GT_SUB: |
| 764 | return v0 - v1; |
| 765 | case GT_MUL: |
| 766 | return v0 * v1; |
| 767 | |
| 768 | case GT_DIV: |
| 769 | assert(IsIntZero(v1) == false); |
| 770 | assert(IsOverflowIntDiv(v0, v1) == false); |
| 771 | return v0 / v1; |
| 772 | |
| 773 | case GT_MOD: |
| 774 | assert(IsIntZero(v1) == false); |
| 775 | assert(IsOverflowIntDiv(v0, v1) == false); |
| 776 | return v0 % v1; |
| 777 | |
| 778 | case GT_UDIV: |
| 779 | assert(IsIntZero(v1) == false); |
| 780 | return T(UT(v0) / UT(v1)); |
| 781 | |
| 782 | case GT_UMOD: |
| 783 | assert(IsIntZero(v1) == false); |
| 784 | return T(UT(v0) % UT(v1)); |
| 785 | |
| 786 | case GT_AND: |
| 787 | return v0 & v1; |
| 788 | case GT_OR: |
| 789 | return v0 | v1; |
| 790 | case GT_XOR: |
| 791 | return v0 ^ v1; |
| 792 | |
| 793 | case GT_LSH: |
| 794 | if (sizeof(T) == 8) |
| 795 | { |
| 796 | return v0 << (v1 & 0x3F); |
| 797 | } |
| 798 | else |
| 799 | { |
| 800 | return v0 << v1; |
| 801 | } |
| 802 | case GT_RSH: |
| 803 | if (sizeof(T) == 8) |
| 804 | { |
| 805 | return v0 >> (v1 & 0x3F); |
| 806 | } |
| 807 | else |
| 808 | { |
| 809 | return v0 >> v1; |
| 810 | } |
| 811 | case GT_RSZ: |
| 812 | if (sizeof(T) == 8) |
| 813 | { |
| 814 | return UINT64(v0) >> (v1 & 0x3F); |
| 815 | } |
| 816 | else |
| 817 | { |
| 818 | return UINT32(v0) >> v1; |
| 819 | } |
| 820 | case GT_ROL: |
| 821 | if (sizeof(T) == 8) |
| 822 | { |
| 823 | return (v0 << v1) | (UINT64(v0) >> (64 - v1)); |
| 824 | } |
| 825 | else |
| 826 | { |
| 827 | return (v0 << v1) | (UINT32(v0) >> (32 - v1)); |
| 828 | } |
| 829 | |
| 830 | case GT_ROR: |
| 831 | if (sizeof(T) == 8) |
| 832 | { |
| 833 | return (v0 << (64 - v1)) | (UINT64(v0) >> v1); |
| 834 | } |
| 835 | else |
| 836 | { |
| 837 | return (v0 << (32 - v1)) | (UINT32(v0) >> v1); |
| 838 | } |
| 839 | |
| 840 | default: |
| 841 | // For any other value of 'oper', we will assert below |
| 842 | break; |
| 843 | } |
| 844 | } |
| 845 | else // must be a VNF_ function |
| 846 | { |
| 847 | switch (vnf) |
| 848 | { |
| 849 | // Here we handle those that are the same for all integer types. |
| 850 | |
| 851 | default: |
| 852 | // For any other value of 'vnf', we will assert below |
| 853 | break; |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | noway_assert(!"Unhandled operation in EvalOpSpecialized<T> - binary" ); |
| 858 | return v0; |
| 859 | } |
| 860 | |
| 861 | template <> |
| 862 | int ValueNumStore::EvalComparison<double>(VNFunc vnf, double v0, double v1) |
| 863 | { |
| 864 | // Here we handle specialized double comparisons. |
| 865 | |
| 866 | // We must check for a NaN argument as they they need special handling |
| 867 | bool hasNanArg = (_isnan(v0) || _isnan(v1)); |
| 868 | |
| 869 | if (vnf < VNF_Boundary) |
| 870 | { |
| 871 | genTreeOps oper = genTreeOps(vnf); |
| 872 | |
| 873 | if (hasNanArg) |
| 874 | { |
| 875 | // return false in all cases except for GT_NE; |
| 876 | return (oper == GT_NE); |
| 877 | } |
| 878 | |
| 879 | switch (oper) |
| 880 | { |
| 881 | case GT_EQ: |
| 882 | return v0 == v1; |
| 883 | case GT_NE: |
| 884 | return v0 != v1; |
| 885 | case GT_GT: |
| 886 | return v0 > v1; |
| 887 | case GT_GE: |
| 888 | return v0 >= v1; |
| 889 | case GT_LT: |
| 890 | return v0 < v1; |
| 891 | case GT_LE: |
| 892 | return v0 <= v1; |
| 893 | default: |
| 894 | // For any other value of 'oper', we will assert below |
| 895 | break; |
| 896 | } |
| 897 | } |
| 898 | noway_assert(!"Unhandled operation in EvalComparison<double>" ); |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | template <> |
| 903 | int ValueNumStore::EvalComparison<float>(VNFunc vnf, float v0, float v1) |
| 904 | { |
| 905 | // Here we handle specialized float comparisons. |
| 906 | |
| 907 | // We must check for a NaN argument as they they need special handling |
| 908 | bool hasNanArg = (_isnanf(v0) || _isnanf(v1)); |
| 909 | |
| 910 | if (vnf < VNF_Boundary) |
| 911 | { |
| 912 | genTreeOps oper = genTreeOps(vnf); |
| 913 | |
| 914 | if (hasNanArg) |
| 915 | { |
| 916 | // return false in all cases except for GT_NE; |
| 917 | return (oper == GT_NE); |
| 918 | } |
| 919 | |
| 920 | switch (oper) |
| 921 | { |
| 922 | case GT_EQ: |
| 923 | return v0 == v1; |
| 924 | case GT_NE: |
| 925 | return v0 != v1; |
| 926 | case GT_GT: |
| 927 | return v0 > v1; |
| 928 | case GT_GE: |
| 929 | return v0 >= v1; |
| 930 | case GT_LT: |
| 931 | return v0 < v1; |
| 932 | case GT_LE: |
| 933 | return v0 <= v1; |
| 934 | default: |
| 935 | // For any other value of 'oper', we will assert below |
| 936 | break; |
| 937 | } |
| 938 | } |
| 939 | else // must be a VNF_ function |
| 940 | { |
| 941 | if (hasNanArg) |
| 942 | { |
| 943 | // always returns true |
| 944 | return false; |
| 945 | } |
| 946 | |
| 947 | switch (vnf) |
| 948 | { |
| 949 | case VNF_GT_UN: |
| 950 | return v0 > v1; |
| 951 | case VNF_GE_UN: |
| 952 | return v0 >= v1; |
| 953 | case VNF_LT_UN: |
| 954 | return v0 < v1; |
| 955 | case VNF_LE_UN: |
| 956 | return v0 <= v1; |
| 957 | default: |
| 958 | // For any other value of 'vnf', we will assert below |
| 959 | break; |
| 960 | } |
| 961 | } |
| 962 | noway_assert(!"Unhandled operation in EvalComparison<float>" ); |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | template <typename T> |
| 967 | int ValueNumStore::EvalComparison(VNFunc vnf, T v0, T v1) |
| 968 | { |
| 969 | typedef typename jitstd::make_unsigned<T>::type UT; |
| 970 | |
| 971 | // Here we handle the compare ops that are the same for all integer types. |
| 972 | if (vnf < VNF_Boundary) |
| 973 | { |
| 974 | genTreeOps oper = genTreeOps(vnf); |
| 975 | switch (oper) |
| 976 | { |
| 977 | case GT_EQ: |
| 978 | return v0 == v1; |
| 979 | case GT_NE: |
| 980 | return v0 != v1; |
| 981 | case GT_GT: |
| 982 | return v0 > v1; |
| 983 | case GT_GE: |
| 984 | return v0 >= v1; |
| 985 | case GT_LT: |
| 986 | return v0 < v1; |
| 987 | case GT_LE: |
| 988 | return v0 <= v1; |
| 989 | default: |
| 990 | // For any other value of 'oper', we will assert below |
| 991 | break; |
| 992 | } |
| 993 | } |
| 994 | else // must be a VNF_ function |
| 995 | { |
| 996 | switch (vnf) |
| 997 | { |
| 998 | case VNF_GT_UN: |
| 999 | return T(UT(v0) > UT(v1)); |
| 1000 | case VNF_GE_UN: |
| 1001 | return T(UT(v0) >= UT(v1)); |
| 1002 | case VNF_LT_UN: |
| 1003 | return T(UT(v0) < UT(v1)); |
| 1004 | case VNF_LE_UN: |
| 1005 | return T(UT(v0) <= UT(v1)); |
| 1006 | default: |
| 1007 | // For any other value of 'vnf', we will assert below |
| 1008 | break; |
| 1009 | } |
| 1010 | } |
| 1011 | noway_assert(!"Unhandled operation in EvalComparison<T>" ); |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | // Create a ValueNum for an exception set singleton for 'x' |
| 1016 | // |
| 1017 | ValueNum ValueNumStore::VNExcSetSingleton(ValueNum x) |
| 1018 | { |
| 1019 | return VNForFunc(TYP_REF, VNF_ExcSetCons, x, VNForEmptyExcSet()); |
| 1020 | } |
| 1021 | // Create a ValueNumPair for an exception set singleton for 'xp' |
| 1022 | // |
| 1023 | ValueNumPair ValueNumStore::VNPExcSetSingleton(ValueNumPair xp) |
| 1024 | { |
| 1025 | return ValueNumPair(VNExcSetSingleton(xp.GetLiberal()), VNExcSetSingleton(xp.GetConservative())); |
| 1026 | } |
| 1027 | |
| 1028 | //------------------------------------------------------------------------------------------- |
| 1029 | // VNCheckAscending: - Helper method used to verify that elements in an exception set list |
| 1030 | // are sorted in ascending order. This method only checks that the |
| 1031 | // next value in the list has a greater value number than 'item'. |
| 1032 | // |
| 1033 | // Arguments: |
| 1034 | // item - The previous item visited in the exception set that we are iterating |
| 1035 | // xs1 - The tail portion of the exception set that we are iterating. |
| 1036 | // |
| 1037 | // Return Value: |
| 1038 | // - Returns true when the next value is greater than 'item' |
| 1039 | // - or whne we have an empty list remaining. |
| 1040 | // |
| 1041 | // Note: - Duplicates items aren't allowed in an exception set |
| 1042 | // Used to verify that exception sets are in ascending order when processing them. |
| 1043 | // |
| 1044 | bool ValueNumStore::VNCheckAscending(ValueNum item, ValueNum xs1) |
| 1045 | { |
| 1046 | if (xs1 == VNForEmptyExcSet()) |
| 1047 | { |
| 1048 | return true; |
| 1049 | } |
| 1050 | else |
| 1051 | { |
| 1052 | VNFuncApp funcXs1; |
| 1053 | bool b1 = GetVNFunc(xs1, &funcXs1); |
| 1054 | assert(b1 && funcXs1.m_func == VNF_ExcSetCons); // Precondition: xs1 is an exception set. |
| 1055 | |
| 1056 | return (item < funcXs1.m_args[0]); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | //------------------------------------------------------------------------------------------- |
| 1061 | // VNExcSetUnion: - Given two exception sets, performs a set Union operation |
| 1062 | // and returns the value number for the combined exception set. |
| 1063 | // |
| 1064 | // Arguments: - The arguments must be applications of VNF_ExcSetCons or the empty set |
| 1065 | // xs0 - The value number of the first exception set |
| 1066 | // xs1 - The value number of the second exception set |
| 1067 | // |
| 1068 | // Return Value: - The value number of the combined exception set |
| 1069 | // |
| 1070 | // Note: - Checks and relies upon the invariant that exceptions sets |
| 1071 | // 1. Have no duplicate values |
| 1072 | // 2. all elements in an exception set are in sorted order. |
| 1073 | // |
| 1074 | ValueNum ValueNumStore::VNExcSetUnion(ValueNum xs0, ValueNum xs1) |
| 1075 | { |
| 1076 | if (xs0 == VNForEmptyExcSet()) |
| 1077 | { |
| 1078 | return xs1; |
| 1079 | } |
| 1080 | else if (xs1 == VNForEmptyExcSet()) |
| 1081 | { |
| 1082 | return xs0; |
| 1083 | } |
| 1084 | else |
| 1085 | { |
| 1086 | VNFuncApp funcXs0; |
| 1087 | bool b0 = GetVNFunc(xs0, &funcXs0); |
| 1088 | assert(b0 && funcXs0.m_func == VNF_ExcSetCons); // Precondition: xs0 is an exception set. |
| 1089 | VNFuncApp funcXs1; |
| 1090 | bool b1 = GetVNFunc(xs1, &funcXs1); |
| 1091 | assert(b1 && funcXs1.m_func == VNF_ExcSetCons); // Precondition: xs1 is an exception set. |
| 1092 | ValueNum res = NoVN; |
| 1093 | if (funcXs0.m_args[0] < funcXs1.m_args[0]) |
| 1094 | { |
| 1095 | assert(VNCheckAscending(funcXs0.m_args[0], funcXs0.m_args[1])); |
| 1096 | |
| 1097 | // add the lower one (from xs0) to the result, advance xs0 |
| 1098 | res = VNForFunc(TYP_REF, VNF_ExcSetCons, funcXs0.m_args[0], VNExcSetUnion(funcXs0.m_args[1], xs1)); |
| 1099 | } |
| 1100 | else if (funcXs0.m_args[0] == funcXs1.m_args[0]) |
| 1101 | { |
| 1102 | assert(VNCheckAscending(funcXs0.m_args[0], funcXs0.m_args[1])); |
| 1103 | assert(VNCheckAscending(funcXs1.m_args[0], funcXs1.m_args[1])); |
| 1104 | |
| 1105 | // Equal elements; add one (from xs0) to the result, advance both sets |
| 1106 | res = VNForFunc(TYP_REF, VNF_ExcSetCons, funcXs0.m_args[0], |
| 1107 | VNExcSetUnion(funcXs0.m_args[1], funcXs1.m_args[1])); |
| 1108 | } |
| 1109 | else |
| 1110 | { |
| 1111 | assert(funcXs0.m_args[0] > funcXs1.m_args[0]); |
| 1112 | assert(VNCheckAscending(funcXs1.m_args[0], funcXs1.m_args[1])); |
| 1113 | |
| 1114 | // add the lower one (from xs1) to the result, advance xs1 |
| 1115 | res = VNForFunc(TYP_REF, VNF_ExcSetCons, funcXs1.m_args[0], VNExcSetUnion(xs0, funcXs1.m_args[1])); |
| 1116 | } |
| 1117 | |
| 1118 | return res; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | //-------------------------------------------------------------------------------- |
| 1123 | // VNPExcSetUnion: - Returns a Value Number Pair that represents the set union |
| 1124 | // for both parts. |
| 1125 | // (see VNExcSetUnion for more details) |
| 1126 | // |
| 1127 | // Notes: - This method is used to form a Value Number Pair when we |
| 1128 | // want both the Liberal and Conservative Value Numbers |
| 1129 | // |
| 1130 | ValueNumPair ValueNumStore::VNPExcSetUnion(ValueNumPair xs0vnp, ValueNumPair xs1vnp) |
| 1131 | { |
| 1132 | return ValueNumPair(VNExcSetUnion(xs0vnp.GetLiberal(), xs1vnp.GetLiberal()), |
| 1133 | VNExcSetUnion(xs0vnp.GetConservative(), xs1vnp.GetConservative())); |
| 1134 | } |
| 1135 | |
| 1136 | //------------------------------------------------------------------------------------------- |
| 1137 | // VNExcSetIntersection: - Given two exception sets, performs a set Intersection operation |
| 1138 | // and returns the value number for this exception set. |
| 1139 | // |
| 1140 | // Arguments: - The arguments must be applications of VNF_ExcSetCons or the empty set |
| 1141 | // xs0 - The value number of the first exception set |
| 1142 | // xs1 - The value number of the second exception set |
| 1143 | // |
| 1144 | // Return Value: - The value number of the new exception set. |
| 1145 | // if the e are no values in common then VNForEmptyExcSet() is returned. |
| 1146 | // |
| 1147 | // Note: - Checks and relies upon the invariant that exceptions sets |
| 1148 | // 1. Have no duplicate values |
| 1149 | // 2. all elements in an exception set are in sorted order. |
| 1150 | // |
| 1151 | ValueNum ValueNumStore::VNExcSetIntersection(ValueNum xs0, ValueNum xs1) |
| 1152 | { |
| 1153 | if ((xs0 == VNForEmptyExcSet()) || (xs1 == VNForEmptyExcSet())) |
| 1154 | { |
| 1155 | return VNForEmptyExcSet(); |
| 1156 | } |
| 1157 | else |
| 1158 | { |
| 1159 | VNFuncApp funcXs0; |
| 1160 | bool b0 = GetVNFunc(xs0, &funcXs0); |
| 1161 | assert(b0 && funcXs0.m_func == VNF_ExcSetCons); // Precondition: xs0 is an exception set. |
| 1162 | VNFuncApp funcXs1; |
| 1163 | bool b1 = GetVNFunc(xs1, &funcXs1); |
| 1164 | assert(b1 && funcXs1.m_func == VNF_ExcSetCons); // Precondition: xs1 is an exception set. |
| 1165 | ValueNum res = NoVN; |
| 1166 | |
| 1167 | if (funcXs0.m_args[0] < funcXs1.m_args[0]) |
| 1168 | { |
| 1169 | assert(VNCheckAscending(funcXs0.m_args[0], funcXs0.m_args[1])); |
| 1170 | res = VNExcSetIntersection(funcXs0.m_args[1], xs1); |
| 1171 | } |
| 1172 | else if (funcXs0.m_args[0] == funcXs1.m_args[0]) |
| 1173 | { |
| 1174 | assert(VNCheckAscending(funcXs0.m_args[0], funcXs0.m_args[1])); |
| 1175 | assert(VNCheckAscending(funcXs1.m_args[0], funcXs1.m_args[1])); |
| 1176 | |
| 1177 | // Equal elements; Add it to the result. |
| 1178 | res = VNForFunc(TYP_REF, VNF_ExcSetCons, funcXs0.m_args[0], |
| 1179 | VNExcSetIntersection(funcXs0.m_args[1], funcXs1.m_args[1])); |
| 1180 | } |
| 1181 | else |
| 1182 | { |
| 1183 | assert(funcXs0.m_args[0] > funcXs1.m_args[0]); |
| 1184 | assert(VNCheckAscending(funcXs1.m_args[0], funcXs1.m_args[1])); |
| 1185 | res = VNExcSetIntersection(xs0, funcXs1.m_args[1]); |
| 1186 | } |
| 1187 | |
| 1188 | return res; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | //-------------------------------------------------------------------------------- |
| 1193 | // VNPExcSetIntersection: - Returns a Value Number Pair that represents the set |
| 1194 | // intersection for both parts. |
| 1195 | // (see VNExcSetIntersection for more details) |
| 1196 | // |
| 1197 | // Notes: - This method is used to form a Value Number Pair when we |
| 1198 | // want both the Liberal and Conservative Value Numbers |
| 1199 | // |
| 1200 | ValueNumPair ValueNumStore::VNPExcSetIntersection(ValueNumPair xs0vnp, ValueNumPair xs1vnp) |
| 1201 | { |
| 1202 | return ValueNumPair(VNExcSetIntersection(xs0vnp.GetLiberal(), xs1vnp.GetLiberal()), |
| 1203 | VNExcSetIntersection(xs0vnp.GetConservative(), xs1vnp.GetConservative())); |
| 1204 | } |
| 1205 | |
| 1206 | //---------------------------------------------------------------------------------------- |
| 1207 | // VNExcIsSubset - Given two exception sets, returns true when vnCandidateSet is a |
| 1208 | // subset of vnFullSet |
| 1209 | // |
| 1210 | // Arguments: - The arguments must be applications of VNF_ExcSetCons or the empty set |
| 1211 | // vnFullSet - The value number of the 'full' exception set |
| 1212 | // vnCandidateSet - The value number of the 'candidate' exception set |
| 1213 | // |
| 1214 | // Return Value: - Returns true if every singleton ExcSet value in the vnCandidateSet |
| 1215 | // is also present in the vnFullSet. |
| 1216 | // |
| 1217 | // Note: - Checks and relies upon the invariant that exceptions sets |
| 1218 | // 1. Have no duplicate values |
| 1219 | // 2. all elements in an exception set are in sorted order. |
| 1220 | // |
| 1221 | bool ValueNumStore::VNExcIsSubset(ValueNum vnFullSet, ValueNum vnCandidateSet) |
| 1222 | { |
| 1223 | if (vnCandidateSet == VNForEmptyExcSet()) |
| 1224 | { |
| 1225 | return true; |
| 1226 | } |
| 1227 | else if ((vnFullSet == VNForEmptyExcSet()) || (vnFullSet == ValueNumStore::NoVN)) |
| 1228 | { |
| 1229 | return false; |
| 1230 | } |
| 1231 | |
| 1232 | VNFuncApp funcXsFull; |
| 1233 | bool b0 = GetVNFunc(vnFullSet, &funcXsFull); |
| 1234 | assert(b0 && funcXsFull.m_func == VNF_ExcSetCons); // Precondition: vnFullSet is an exception set. |
| 1235 | VNFuncApp funcXsCand; |
| 1236 | bool b1 = GetVNFunc(vnCandidateSet, &funcXsCand); |
| 1237 | assert(b1 && funcXsCand.m_func == VNF_ExcSetCons); // Precondition: vnCandidateSet is an exception set. |
| 1238 | |
| 1239 | ValueNum vnFullSetPrev = VNForNull(); |
| 1240 | ValueNum vnCandSetPrev = VNForNull(); |
| 1241 | |
| 1242 | ValueNum vnFullSetRemainder = funcXsFull.m_args[1]; |
| 1243 | ValueNum vnCandSetRemainder = funcXsCand.m_args[1]; |
| 1244 | |
| 1245 | while (true) |
| 1246 | { |
| 1247 | ValueNum vnFullSetItem = funcXsFull.m_args[0]; |
| 1248 | ValueNum vnCandSetItem = funcXsCand.m_args[0]; |
| 1249 | |
| 1250 | // Enforce that both sets are sorted by increasing ValueNumbers |
| 1251 | // |
| 1252 | assert(vnFullSetItem > vnFullSetPrev); |
| 1253 | assert(vnCandSetItem >= vnCandSetPrev); // equal when we didn't advance the candidate set |
| 1254 | |
| 1255 | if (vnFullSetItem > vnCandSetItem) |
| 1256 | { |
| 1257 | // The Full set does not contain the vnCandSetItem |
| 1258 | return false; |
| 1259 | } |
| 1260 | // now we must have (vnFullSetItem <= vnCandSetItem) |
| 1261 | |
| 1262 | // When we have a matching value we advance the candidate set |
| 1263 | // |
| 1264 | if (vnFullSetItem == vnCandSetItem) |
| 1265 | { |
| 1266 | // Have we finished matching? |
| 1267 | // |
| 1268 | if (vnCandSetRemainder == VNForEmptyExcSet()) |
| 1269 | { |
| 1270 | // We matched every item in the candidate set' |
| 1271 | // |
| 1272 | return true; |
| 1273 | } |
| 1274 | |
| 1275 | // Advance the candidate set |
| 1276 | // |
| 1277 | b1 = GetVNFunc(vnCandSetRemainder, &funcXsCand); |
| 1278 | assert(b1 && funcXsCand.m_func == VNF_ExcSetCons); // Precondition: vnCandSetRemainder is an exception set. |
| 1279 | vnCandSetRemainder = funcXsCand.m_args[1]; |
| 1280 | } |
| 1281 | |
| 1282 | if (vnFullSetRemainder == VNForEmptyExcSet()) |
| 1283 | { |
| 1284 | // No more items are left in the full exception set |
| 1285 | return false; |
| 1286 | } |
| 1287 | |
| 1288 | // |
| 1289 | // We will advance the full set |
| 1290 | // |
| 1291 | b0 = GetVNFunc(vnFullSetRemainder, &funcXsFull); |
| 1292 | assert(b0 && funcXsFull.m_func == VNF_ExcSetCons); // Precondition: vnFullSetRemainder is an exception set. |
| 1293 | vnFullSetRemainder = funcXsFull.m_args[1]; |
| 1294 | |
| 1295 | vnFullSetPrev = vnFullSetItem; |
| 1296 | vnCandSetPrev = vnCandSetItem; |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | //------------------------------------------------------------------------------------- |
| 1301 | // VNUnpackExc: - Given a ValueNum 'vnWx, return via write back parameters both |
| 1302 | // the normal and the exception set components. |
| 1303 | // |
| 1304 | // Arguments: |
| 1305 | // vnWx - A value number, it may have an exception set |
| 1306 | // pvn - a write back pointer to the normal value portion of 'vnWx' |
| 1307 | // pvnx - a write back pointer for the exception set portion of 'vnWx' |
| 1308 | // |
| 1309 | // Return Values: - This method signature is void but returns two values using |
| 1310 | // the write back parameters. |
| 1311 | // |
| 1312 | // Note: When 'vnWx' does not have an exception set, the orginal value is the |
| 1313 | // normal value and is written to 'pvn' and VNForEmptyExcSet() is |
| 1314 | // written to 'pvnx'. |
| 1315 | // When we have an exception set 'vnWx' will be a VN func with m_func |
| 1316 | // equal to VNF_ValWithExc. |
| 1317 | // |
| 1318 | void ValueNumStore::VNUnpackExc(ValueNum vnWx, ValueNum* pvn, ValueNum* pvnx) |
| 1319 | { |
| 1320 | assert(vnWx != NoVN); |
| 1321 | VNFuncApp funcApp; |
| 1322 | if (GetVNFunc(vnWx, &funcApp) && funcApp.m_func == VNF_ValWithExc) |
| 1323 | { |
| 1324 | *pvn = funcApp.m_args[0]; |
| 1325 | *pvnx = funcApp.m_args[1]; |
| 1326 | } |
| 1327 | else |
| 1328 | { |
| 1329 | *pvn = vnWx; |
| 1330 | *pvnx = VNForEmptyExcSet(); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | //------------------------------------------------------------------------------------- |
| 1335 | // VNPUnpackExc: - Given a ValueNumPair 'vnpWx, return via write back parameters |
| 1336 | // both the normal and the exception set components. |
| 1337 | // (see VNUnpackExc for more details) |
| 1338 | // |
| 1339 | // Notes: - This method is used to form a Value Number Pair when we |
| 1340 | // want both the Liberal and Conservative Value Numbers |
| 1341 | // |
| 1342 | void ValueNumStore::VNPUnpackExc(ValueNumPair vnpWx, ValueNumPair* pvnp, ValueNumPair* pvnpx) |
| 1343 | { |
| 1344 | VNUnpackExc(vnpWx.GetLiberal(), pvnp->GetLiberalAddr(), pvnpx->GetLiberalAddr()); |
| 1345 | VNUnpackExc(vnpWx.GetConservative(), pvnp->GetConservativeAddr(), pvnpx->GetConservativeAddr()); |
| 1346 | } |
| 1347 | |
| 1348 | //------------------------------------------------------------------------------------- |
| 1349 | // VNUnionExcSet: - Given a ValueNum 'vnWx' and a current 'vnExcSet', return an |
| 1350 | // exception set of the Union of both exception sets. |
| 1351 | // |
| 1352 | // Arguments: |
| 1353 | // vnWx - A value number, it may have an exception set |
| 1354 | // vnExcSet - The value number for the current exception set |
| 1355 | // |
| 1356 | // Return Values: - The value number of the Union of the exception set of 'vnWx' |
| 1357 | // with the current 'vnExcSet'. |
| 1358 | // |
| 1359 | // Note: When 'vnWx' does not have an exception set, 'vnExcSet' is returned. |
| 1360 | // |
| 1361 | ValueNum ValueNumStore::VNUnionExcSet(ValueNum vnWx, ValueNum vnExcSet) |
| 1362 | { |
| 1363 | assert(vnWx != NoVN); |
| 1364 | VNFuncApp funcApp; |
| 1365 | if (GetVNFunc(vnWx, &funcApp) && funcApp.m_func == VNF_ValWithExc) |
| 1366 | { |
| 1367 | vnExcSet = VNExcSetUnion(funcApp.m_args[1], vnExcSet); |
| 1368 | } |
| 1369 | return vnExcSet; |
| 1370 | } |
| 1371 | |
| 1372 | //------------------------------------------------------------------------------------- |
| 1373 | // VNPUnionExcSet: - Given a ValueNum 'vnWx' and a current 'excSet', return an |
| 1374 | // exception set of the Union of both exception sets. |
| 1375 | // (see VNUnionExcSet for more details) |
| 1376 | // |
| 1377 | // Notes: - This method is used to form a Value Number Pair when we |
| 1378 | // want both the Liberal and Conservative Value Numbers |
| 1379 | // |
| 1380 | ValueNumPair ValueNumStore::VNPUnionExcSet(ValueNumPair vnpWx, ValueNumPair vnpExcSet) |
| 1381 | { |
| 1382 | return ValueNumPair(VNUnionExcSet(vnpWx.GetLiberal(), vnpExcSet.GetLiberal()), |
| 1383 | VNUnionExcSet(vnpWx.GetConservative(), vnpExcSet.GetConservative())); |
| 1384 | } |
| 1385 | |
| 1386 | //-------------------------------------------------------------------------------- |
| 1387 | // VNNormalValue: - Returns a Value Number that represents the result for the |
| 1388 | // normal (non-exceptional) evaluation for the expression. |
| 1389 | // |
| 1390 | // Arguments: |
| 1391 | // vn - The Value Number for the expression, including any excSet. |
| 1392 | // This excSet is an optional item and represents the set of |
| 1393 | // possible exceptions for the expression. |
| 1394 | // |
| 1395 | // Return Value: |
| 1396 | // - The Value Number for the expression without the exception set. |
| 1397 | // This can be the orginal 'vn', when there are no exceptions. |
| 1398 | // |
| 1399 | // Notes: - Whenever we have an exception set the Value Number will be |
| 1400 | // a VN func with VNF_ValWithExc. |
| 1401 | // This VN func has the normal value as m_args[0] |
| 1402 | // |
| 1403 | ValueNum ValueNumStore::VNNormalValue(ValueNum vn) |
| 1404 | { |
| 1405 | VNFuncApp funcApp; |
| 1406 | if (GetVNFunc(vn, &funcApp) && funcApp.m_func == VNF_ValWithExc) |
| 1407 | { |
| 1408 | return funcApp.m_args[0]; |
| 1409 | } |
| 1410 | else |
| 1411 | { |
| 1412 | return vn; |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | //------------------------------------------------------------------------------------ |
| 1417 | // VNMakeNormalUnique: |
| 1418 | // |
| 1419 | // Arguments: |
| 1420 | // vn - The current Value Number for the expression, including any excSet. |
| 1421 | // This excSet is an optional item and represents the set of |
| 1422 | // possible exceptions for the expression. |
| 1423 | // |
| 1424 | // Return Value: |
| 1425 | // - The normal value is set to a new unique VN, while keeping |
| 1426 | // the excSet (if any) |
| 1427 | // |
| 1428 | ValueNum ValueNumStore::VNMakeNormalUnique(ValueNum orig) |
| 1429 | { |
| 1430 | // First Unpack the existing Norm,Exc for 'elem' |
| 1431 | ValueNum vnOrigNorm; |
| 1432 | ValueNum vnOrigExcSet; |
| 1433 | VNUnpackExc(orig, &vnOrigNorm, &vnOrigExcSet); |
| 1434 | |
| 1435 | // Replace the normal value with a unique ValueNum |
| 1436 | ValueNum vnUnique = VNForExpr(m_pComp->compCurBB, TypeOfVN(vnOrigNorm)); |
| 1437 | |
| 1438 | // Keep any ExcSet from 'elem' |
| 1439 | return VNWithExc(vnUnique, vnOrigExcSet); |
| 1440 | } |
| 1441 | |
| 1442 | //-------------------------------------------------------------------------------- |
| 1443 | // VNPMakeNormalUniquePair: |
| 1444 | // |
| 1445 | // Arguments: |
| 1446 | // vnp - The Value Number Pair for the expression, including any excSet. |
| 1447 | // |
| 1448 | // Return Value: |
| 1449 | // - The normal values are set to a new unique VNs, while keeping |
| 1450 | // the excSets (if any) |
| 1451 | // |
| 1452 | ValueNumPair ValueNumStore::VNPMakeNormalUniquePair(ValueNumPair vnp) |
| 1453 | { |
| 1454 | return ValueNumPair(VNMakeNormalUnique(vnp.GetLiberal()), VNMakeNormalUnique(vnp.GetConservative())); |
| 1455 | } |
| 1456 | |
| 1457 | //-------------------------------------------------------------------------------- |
| 1458 | // VNNormalValue: - Returns a Value Number that represents the result for the |
| 1459 | // normal (non-exceptional) evaluation for the expression. |
| 1460 | // |
| 1461 | // Arguments: |
| 1462 | // vnp - The Value Number Pair for the expression, including any excSet. |
| 1463 | // This excSet is an optional item and represents the set of |
| 1464 | // possible exceptions for the expression. |
| 1465 | // vnk - The ValueNumKind either liberal or conservative |
| 1466 | // |
| 1467 | // Return Value: |
| 1468 | // - The Value Number for the expression without the exception set. |
| 1469 | // This can be the orginal 'vn', when there are no exceptions. |
| 1470 | // |
| 1471 | // Notes: - Whenever we have an exception set the Value Number will be |
| 1472 | // a VN func with VNF_ValWithExc. |
| 1473 | // This VN func has the normal value as m_args[0] |
| 1474 | // |
| 1475 | ValueNum ValueNumStore::VNNormalValue(ValueNumPair vnp, ValueNumKind vnk) |
| 1476 | { |
| 1477 | return VNNormalValue(vnp.Get(vnk)); |
| 1478 | } |
| 1479 | |
| 1480 | //-------------------------------------------------------------------------------- |
| 1481 | // VNPNormalPair: - Returns a Value Number Pair that represents the result for the |
| 1482 | // normal (non-exceptional) evaluation for the expression. |
| 1483 | // (see VNNormalValue for more details) |
| 1484 | // Arguments: |
| 1485 | // vnp - The Value Number Pair for the expression, including any excSet. |
| 1486 | // |
| 1487 | // Notes: - This method is used to form a Value Number Pair using both |
| 1488 | // the Liberal and Conservative Value Numbers normal (non-exceptional) |
| 1489 | // |
| 1490 | ValueNumPair ValueNumStore::VNPNormalPair(ValueNumPair vnp) |
| 1491 | { |
| 1492 | return ValueNumPair(VNNormalValue(vnp.GetLiberal()), VNNormalValue(vnp.GetConservative())); |
| 1493 | } |
| 1494 | |
| 1495 | //--------------------------------------------------------------------------- |
| 1496 | // VNExceptionSet: - Returns a Value Number that represents the set of possible |
| 1497 | // exceptions that could be encountered for the expression. |
| 1498 | // |
| 1499 | // Arguments: |
| 1500 | // vn - The Value Number for the expression, including any excSet. |
| 1501 | // This excSet is an optional item and represents the set of |
| 1502 | // possible exceptions for the expression. |
| 1503 | // |
| 1504 | // Return Value: |
| 1505 | // - The Value Number for the set of exceptions of the expression. |
| 1506 | // If the 'vn' has no exception set then a special Value Number |
| 1507 | // representing the empty exception set is returned. |
| 1508 | // |
| 1509 | // Notes: - Whenever we have an exception set the Value Number will be |
| 1510 | // a VN func with VNF_ValWithExc. |
| 1511 | // This VN func has the exception set as m_args[1] |
| 1512 | // |
| 1513 | ValueNum ValueNumStore::VNExceptionSet(ValueNum vn) |
| 1514 | { |
| 1515 | VNFuncApp funcApp; |
| 1516 | if (GetVNFunc(vn, &funcApp) && funcApp.m_func == VNF_ValWithExc) |
| 1517 | { |
| 1518 | return funcApp.m_args[1]; |
| 1519 | } |
| 1520 | else |
| 1521 | { |
| 1522 | return VNForEmptyExcSet(); |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | //-------------------------------------------------------------------------------- |
| 1527 | // VNPExceptionSet: - Returns a Value Number Pair that represents the set of possible |
| 1528 | // exceptions that could be encountered for the expression. |
| 1529 | // (see VNExceptionSet for more details) |
| 1530 | // |
| 1531 | // Notes: - This method is used to form a Value Number Pair when we |
| 1532 | // want both the Liberal and Conservative Value Numbers |
| 1533 | // |
| 1534 | ValueNumPair ValueNumStore::VNPExceptionSet(ValueNumPair vnp) |
| 1535 | { |
| 1536 | return ValueNumPair(VNExceptionSet(vnp.GetLiberal()), VNExceptionSet(vnp.GetConservative())); |
| 1537 | } |
| 1538 | |
| 1539 | //--------------------------------------------------------------------------- |
| 1540 | // VNWithExc: - Returns a Value Number that also can have both a normal value |
| 1541 | // as well as am exception set. |
| 1542 | // |
| 1543 | // Arguments: |
| 1544 | // vn - The current Value Number for the expression, it may include |
| 1545 | // an exception set. |
| 1546 | // excSet - The Value Number representing the new exception set that |
| 1547 | // is to be added to any exceptions already present in 'vn' |
| 1548 | // |
| 1549 | // Return Value: |
| 1550 | // - The new Value Number for the combination the two inputs. |
| 1551 | // If the 'excSet' is the special Value Number representing |
| 1552 | // the empty exception set then 'vn' is returned. |
| 1553 | // |
| 1554 | // Notes: - We use a Set Union operation, 'VNExcSetUnion', to add any |
| 1555 | // new exception items from 'excSet' to the existing set. |
| 1556 | // |
| 1557 | ValueNum ValueNumStore::VNWithExc(ValueNum vn, ValueNum excSet) |
| 1558 | { |
| 1559 | if (excSet == VNForEmptyExcSet()) |
| 1560 | { |
| 1561 | return vn; |
| 1562 | } |
| 1563 | else |
| 1564 | { |
| 1565 | ValueNum vnNorm; |
| 1566 | ValueNum vnX; |
| 1567 | VNUnpackExc(vn, &vnNorm, &vnX); |
| 1568 | return VNForFunc(TypeOfVN(vnNorm), VNF_ValWithExc, vnNorm, VNExcSetUnion(vnX, excSet)); |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | //-------------------------------------------------------------------------------- |
| 1573 | // VNPWithExc: - Returns a Value Number Pair that also can have both a normal value |
| 1574 | // as well as am exception set. |
| 1575 | // (see VNWithExc for more details) |
| 1576 | // |
| 1577 | // Notes: = This method is used to form a Value Number Pair when we |
| 1578 | // want both the Liberal and Conservative Value Numbers |
| 1579 | // |
| 1580 | ValueNumPair ValueNumStore::VNPWithExc(ValueNumPair vnp, ValueNumPair excSetVNP) |
| 1581 | { |
| 1582 | return ValueNumPair(VNWithExc(vnp.GetLiberal(), excSetVNP.GetLiberal()), |
| 1583 | VNWithExc(vnp.GetConservative(), excSetVNP.GetConservative())); |
| 1584 | } |
| 1585 | |
| 1586 | bool ValueNumStore::IsKnownNonNull(ValueNum vn) |
| 1587 | { |
| 1588 | if (vn == NoVN) |
| 1589 | { |
| 1590 | return false; |
| 1591 | } |
| 1592 | VNFuncApp funcAttr; |
| 1593 | return GetVNFunc(vn, &funcAttr) && (s_vnfOpAttribs[funcAttr.m_func] & VNFOA_KnownNonNull) != 0; |
| 1594 | } |
| 1595 | |
| 1596 | bool ValueNumStore::IsSharedStatic(ValueNum vn) |
| 1597 | { |
| 1598 | if (vn == NoVN) |
| 1599 | { |
| 1600 | return false; |
| 1601 | } |
| 1602 | VNFuncApp funcAttr; |
| 1603 | return GetVNFunc(vn, &funcAttr) && (s_vnfOpAttribs[funcAttr.m_func] & VNFOA_SharedStatic) != 0; |
| 1604 | } |
| 1605 | |
| 1606 | ValueNumStore::Chunk::(CompAllocator alloc, |
| 1607 | ValueNum* pNextBaseVN, |
| 1608 | var_types typ, |
| 1609 | ChunkExtraAttribs attribs, |
| 1610 | BasicBlock::loopNumber loopNum) |
| 1611 | : m_defs(nullptr), m_numUsed(0), m_baseVN(*pNextBaseVN), m_typ(typ), m_attribs(attribs), m_loopNum(loopNum) |
| 1612 | { |
| 1613 | // Allocate "m_defs" here, according to the typ/attribs pair. |
| 1614 | switch (attribs) |
| 1615 | { |
| 1616 | case CEA_None: |
| 1617 | case CEA_NotAField: |
| 1618 | break; // Nothing to do. |
| 1619 | case CEA_Const: |
| 1620 | switch (typ) |
| 1621 | { |
| 1622 | case TYP_INT: |
| 1623 | m_defs = new (alloc) Alloc<TYP_INT>::Type[ChunkSize]; |
| 1624 | break; |
| 1625 | case TYP_FLOAT: |
| 1626 | m_defs = new (alloc) Alloc<TYP_FLOAT>::Type[ChunkSize]; |
| 1627 | break; |
| 1628 | case TYP_LONG: |
| 1629 | m_defs = new (alloc) Alloc<TYP_LONG>::Type[ChunkSize]; |
| 1630 | break; |
| 1631 | case TYP_DOUBLE: |
| 1632 | m_defs = new (alloc) Alloc<TYP_DOUBLE>::Type[ChunkSize]; |
| 1633 | break; |
| 1634 | case TYP_BYREF: |
| 1635 | m_defs = new (alloc) Alloc<TYP_BYREF>::Type[ChunkSize]; |
| 1636 | break; |
| 1637 | case TYP_REF: |
| 1638 | // We allocate space for a single REF constant, NULL, so we can access these values uniformly. |
| 1639 | // Since this value is always the same, we represent it as a static. |
| 1640 | m_defs = &s_specialRefConsts[0]; |
| 1641 | break; // Nothing to do. |
| 1642 | default: |
| 1643 | assert(false); // Should not reach here. |
| 1644 | } |
| 1645 | break; |
| 1646 | |
| 1647 | case CEA_Handle: |
| 1648 | m_defs = new (alloc) VNHandle[ChunkSize]; |
| 1649 | break; |
| 1650 | |
| 1651 | case CEA_Func0: |
| 1652 | m_defs = new (alloc) VNFunc[ChunkSize]; |
| 1653 | break; |
| 1654 | |
| 1655 | case CEA_Func1: |
| 1656 | m_defs = new (alloc) VNDefFunc1Arg[ChunkSize]; |
| 1657 | break; |
| 1658 | case CEA_Func2: |
| 1659 | m_defs = new (alloc) VNDefFunc2Arg[ChunkSize]; |
| 1660 | break; |
| 1661 | case CEA_Func3: |
| 1662 | m_defs = new (alloc) VNDefFunc3Arg[ChunkSize]; |
| 1663 | break; |
| 1664 | case CEA_Func4: |
| 1665 | m_defs = new (alloc) VNDefFunc4Arg[ChunkSize]; |
| 1666 | break; |
| 1667 | default: |
| 1668 | unreached(); |
| 1669 | } |
| 1670 | *pNextBaseVN += ChunkSize; |
| 1671 | } |
| 1672 | |
| 1673 | ValueNumStore::Chunk* ValueNumStore::(var_types typ, |
| 1674 | ChunkExtraAttribs attribs, |
| 1675 | BasicBlock::loopNumber loopNum) |
| 1676 | { |
| 1677 | Chunk* res; |
| 1678 | unsigned index; |
| 1679 | if (loopNum == MAX_LOOP_NUM) |
| 1680 | { |
| 1681 | // Loop nest is unknown/irrelevant for this VN. |
| 1682 | index = attribs; |
| 1683 | } |
| 1684 | else |
| 1685 | { |
| 1686 | // Loop nest is interesting. Since we know this is only true for unique VNs, we know attribs will |
| 1687 | // be CEA_None and can just index based on loop number. |
| 1688 | noway_assert(attribs == CEA_None); |
| 1689 | // Map NOT_IN_LOOP -> MAX_LOOP_NUM to make the index range contiguous [0..MAX_LOOP_NUM] |
| 1690 | index = CEA_Count + (loopNum == BasicBlock::NOT_IN_LOOP ? MAX_LOOP_NUM : loopNum); |
| 1691 | } |
| 1692 | ChunkNum cn = m_curAllocChunk[typ][index]; |
| 1693 | if (cn != NoChunk) |
| 1694 | { |
| 1695 | res = m_chunks.Get(cn); |
| 1696 | if (res->m_numUsed < ChunkSize) |
| 1697 | { |
| 1698 | return res; |
| 1699 | } |
| 1700 | } |
| 1701 | // Otherwise, must allocate a new one. |
| 1702 | res = new (m_alloc) Chunk(m_alloc, &m_nextChunkBase, typ, attribs, loopNum); |
| 1703 | cn = m_chunks.Push(res); |
| 1704 | m_curAllocChunk[typ][index] = cn; |
| 1705 | return res; |
| 1706 | } |
| 1707 | |
| 1708 | ValueNum ValueNumStore::VNForIntCon(INT32 cnsVal) |
| 1709 | { |
| 1710 | if (IsSmallIntConst(cnsVal)) |
| 1711 | { |
| 1712 | unsigned ind = cnsVal - SmallIntConstMin; |
| 1713 | ValueNum vn = m_VNsForSmallIntConsts[ind]; |
| 1714 | if (vn != NoVN) |
| 1715 | { |
| 1716 | return vn; |
| 1717 | } |
| 1718 | vn = GetVNForIntCon(cnsVal); |
| 1719 | m_VNsForSmallIntConsts[ind] = vn; |
| 1720 | return vn; |
| 1721 | } |
| 1722 | else |
| 1723 | { |
| 1724 | return GetVNForIntCon(cnsVal); |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | ValueNum ValueNumStore::VNForLongCon(INT64 cnsVal) |
| 1729 | { |
| 1730 | ValueNum res; |
| 1731 | if (GetLongCnsMap()->Lookup(cnsVal, &res)) |
| 1732 | { |
| 1733 | return res; |
| 1734 | } |
| 1735 | else |
| 1736 | { |
| 1737 | Chunk* c = GetAllocChunk(TYP_LONG, CEA_Const); |
| 1738 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1739 | res = c->m_baseVN + offsetWithinChunk; |
| 1740 | reinterpret_cast<INT64*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
| 1741 | GetLongCnsMap()->Set(cnsVal, res); |
| 1742 | return res; |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | ValueNum ValueNumStore::VNForFloatCon(float cnsVal) |
| 1747 | { |
| 1748 | ValueNum res; |
| 1749 | if (GetFloatCnsMap()->Lookup(cnsVal, &res)) |
| 1750 | { |
| 1751 | return res; |
| 1752 | } |
| 1753 | else |
| 1754 | { |
| 1755 | Chunk* c = GetAllocChunk(TYP_FLOAT, CEA_Const); |
| 1756 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1757 | res = c->m_baseVN + offsetWithinChunk; |
| 1758 | reinterpret_cast<float*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
| 1759 | GetFloatCnsMap()->Set(cnsVal, res); |
| 1760 | return res; |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | ValueNum ValueNumStore::VNForDoubleCon(double cnsVal) |
| 1765 | { |
| 1766 | ValueNum res; |
| 1767 | if (GetDoubleCnsMap()->Lookup(cnsVal, &res)) |
| 1768 | { |
| 1769 | return res; |
| 1770 | } |
| 1771 | else |
| 1772 | { |
| 1773 | Chunk* c = GetAllocChunk(TYP_DOUBLE, CEA_Const); |
| 1774 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1775 | res = c->m_baseVN + offsetWithinChunk; |
| 1776 | reinterpret_cast<double*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
| 1777 | GetDoubleCnsMap()->Set(cnsVal, res); |
| 1778 | return res; |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | ValueNum ValueNumStore::VNForByrefCon(INT64 cnsVal) |
| 1783 | { |
| 1784 | ValueNum res; |
| 1785 | if (GetByrefCnsMap()->Lookup(cnsVal, &res)) |
| 1786 | { |
| 1787 | return res; |
| 1788 | } |
| 1789 | else |
| 1790 | { |
| 1791 | Chunk* c = GetAllocChunk(TYP_BYREF, CEA_Const); |
| 1792 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1793 | res = c->m_baseVN + offsetWithinChunk; |
| 1794 | reinterpret_cast<INT64*>(c->m_defs)[offsetWithinChunk] = cnsVal; |
| 1795 | GetByrefCnsMap()->Set(cnsVal, res); |
| 1796 | return res; |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | ValueNum ValueNumStore::VNForCastOper(var_types castToType, bool srcIsUnsigned /*=false*/) |
| 1801 | { |
| 1802 | assert(castToType != TYP_STRUCT); |
| 1803 | INT32 cnsVal = INT32(castToType) << INT32(VCA_BitCount); |
| 1804 | assert((cnsVal & INT32(VCA_ReservedBits)) == 0); |
| 1805 | |
| 1806 | if (srcIsUnsigned) |
| 1807 | { |
| 1808 | // We record the srcIsUnsigned by or-ing a 0x01 |
| 1809 | cnsVal |= INT32(VCA_UnsignedSrc); |
| 1810 | } |
| 1811 | ValueNum result = VNForIntCon(cnsVal); |
| 1812 | |
| 1813 | #ifdef DEBUG |
| 1814 | if (m_pComp->verbose) |
| 1815 | { |
| 1816 | printf(" VNForCastOper(%s%s) is " FMT_VN "\n" , varTypeName(castToType), srcIsUnsigned ? ", unsignedSrc" : "" , |
| 1817 | result); |
| 1818 | } |
| 1819 | #endif |
| 1820 | |
| 1821 | return result; |
| 1822 | } |
| 1823 | |
| 1824 | ValueNum ValueNumStore::VNForHandle(ssize_t cnsVal, unsigned handleFlags) |
| 1825 | { |
| 1826 | assert((handleFlags & ~GTF_ICON_HDL_MASK) == 0); |
| 1827 | |
| 1828 | ValueNum res; |
| 1829 | VNHandle handle; |
| 1830 | VNHandle::Initialize(&handle, cnsVal, handleFlags); |
| 1831 | if (GetHandleMap()->Lookup(handle, &res)) |
| 1832 | { |
| 1833 | return res; |
| 1834 | } |
| 1835 | else |
| 1836 | { |
| 1837 | Chunk* c = GetAllocChunk(TYP_I_IMPL, CEA_Handle); |
| 1838 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1839 | res = c->m_baseVN + offsetWithinChunk; |
| 1840 | reinterpret_cast<VNHandle*>(c->m_defs)[offsetWithinChunk] = handle; |
| 1841 | GetHandleMap()->Set(handle, res); |
| 1842 | return res; |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | // Returns the value number for zero of the given "typ". |
| 1847 | // It has an unreached() for a "typ" that has no zero value, such as TYP_VOID. |
| 1848 | ValueNum ValueNumStore::VNZeroForType(var_types typ) |
| 1849 | { |
| 1850 | switch (typ) |
| 1851 | { |
| 1852 | case TYP_BOOL: |
| 1853 | case TYP_BYTE: |
| 1854 | case TYP_UBYTE: |
| 1855 | case TYP_SHORT: |
| 1856 | case TYP_USHORT: |
| 1857 | case TYP_INT: |
| 1858 | case TYP_UINT: |
| 1859 | return VNForIntCon(0); |
| 1860 | case TYP_LONG: |
| 1861 | case TYP_ULONG: |
| 1862 | return VNForLongCon(0); |
| 1863 | case TYP_FLOAT: |
| 1864 | return VNForFloatCon(0.0f); |
| 1865 | case TYP_DOUBLE: |
| 1866 | return VNForDoubleCon(0.0); |
| 1867 | case TYP_REF: |
| 1868 | return VNForNull(); |
| 1869 | case TYP_BYREF: |
| 1870 | return VNForByrefCon(0); |
| 1871 | case TYP_STRUCT: |
| 1872 | #ifdef FEATURE_SIMD |
| 1873 | // TODO-CQ: Improve value numbering for SIMD types. |
| 1874 | case TYP_SIMD8: |
| 1875 | case TYP_SIMD12: |
| 1876 | case TYP_SIMD16: |
| 1877 | case TYP_SIMD32: |
| 1878 | #endif // FEATURE_SIMD |
| 1879 | return VNForZeroMap(); // Recursion! |
| 1880 | |
| 1881 | // These should be unreached. |
| 1882 | default: |
| 1883 | unreached(); // Should handle all types. |
| 1884 | } |
| 1885 | } |
| 1886 | |
| 1887 | // Returns the value number for one of the given "typ". |
| 1888 | // It returns NoVN for a "typ" that has no one value, such as TYP_REF. |
| 1889 | ValueNum ValueNumStore::VNOneForType(var_types typ) |
| 1890 | { |
| 1891 | switch (typ) |
| 1892 | { |
| 1893 | case TYP_BOOL: |
| 1894 | case TYP_BYTE: |
| 1895 | case TYP_UBYTE: |
| 1896 | case TYP_SHORT: |
| 1897 | case TYP_USHORT: |
| 1898 | case TYP_INT: |
| 1899 | case TYP_UINT: |
| 1900 | return VNForIntCon(1); |
| 1901 | case TYP_LONG: |
| 1902 | case TYP_ULONG: |
| 1903 | return VNForLongCon(1); |
| 1904 | case TYP_FLOAT: |
| 1905 | return VNForFloatCon(1.0f); |
| 1906 | case TYP_DOUBLE: |
| 1907 | return VNForDoubleCon(1.0); |
| 1908 | |
| 1909 | default: |
| 1910 | return NoVN; |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | class Object* ValueNumStore::s_specialRefConsts[] = {nullptr, nullptr, nullptr}; |
| 1915 | |
| 1916 | //---------------------------------------------------------------------------------------- |
| 1917 | // VNForFunc - Returns the ValueNum associated with 'func' |
| 1918 | // There is a one-to-one relationship between the ValueNum and 'func' |
| 1919 | // |
| 1920 | // Arguments: |
| 1921 | // typ - The type of the resulting ValueNum produced by 'func' |
| 1922 | // func - Any nullary VNFunc |
| 1923 | // |
| 1924 | // Return Value: - Returns the ValueNum associated with 'func' |
| 1925 | // |
| 1926 | // Note: - This method only handles Nullary operators (i.e., symbolic constants). |
| 1927 | // |
| 1928 | ValueNum ValueNumStore::VNForFunc(var_types typ, VNFunc func) |
| 1929 | { |
| 1930 | assert(VNFuncArity(func) == 0); |
| 1931 | assert(func != VNF_NotAField); |
| 1932 | |
| 1933 | ValueNum resultVN; |
| 1934 | |
| 1935 | // Have we already assigned a ValueNum for 'func' ? |
| 1936 | // |
| 1937 | if (!GetVNFunc0Map()->Lookup(func, &resultVN)) |
| 1938 | { |
| 1939 | // Allocate a new ValueNum for 'func' |
| 1940 | Chunk* c = GetAllocChunk(typ, CEA_Func0); |
| 1941 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1942 | resultVN = c->m_baseVN + offsetWithinChunk; |
| 1943 | reinterpret_cast<VNFunc*>(c->m_defs)[offsetWithinChunk] = func; |
| 1944 | GetVNFunc0Map()->Set(func, resultVN); |
| 1945 | } |
| 1946 | return resultVN; |
| 1947 | } |
| 1948 | |
| 1949 | //---------------------------------------------------------------------------------------- |
| 1950 | // VNForFunc - Returns the ValueNum associated with 'func'('arg0VN') |
| 1951 | // There is a one-to-one relationship between the ValueNum |
| 1952 | // and 'func'('arg0VN') |
| 1953 | // |
| 1954 | // Arguments: |
| 1955 | // typ - The type of the resulting ValueNum produced by 'func' |
| 1956 | // func - Any unary VNFunc |
| 1957 | // arg0VN - The ValueNum of the argument to 'func' |
| 1958 | // |
| 1959 | // Return Value: - Returns the ValueNum associated with 'func'('arg0VN') |
| 1960 | // |
| 1961 | // Note: - This method only handles Unary operators |
| 1962 | // |
| 1963 | ValueNum ValueNumStore::VNForFunc(var_types typ, VNFunc func, ValueNum arg0VN) |
| 1964 | { |
| 1965 | assert(arg0VN == VNNormalValue(arg0VN)); // Arguments don't carry exceptions. |
| 1966 | |
| 1967 | // Try to perform constant-folding. |
| 1968 | if (CanEvalForConstantArgs(func) && IsVNConstant(arg0VN)) |
| 1969 | { |
| 1970 | return EvalFuncForConstantArgs(typ, func, arg0VN); |
| 1971 | } |
| 1972 | |
| 1973 | ValueNum resultVN; |
| 1974 | |
| 1975 | // Have we already assigned a ValueNum for 'func'('arg0VN') ? |
| 1976 | // |
| 1977 | VNDefFunc1Arg fstruct(func, arg0VN); |
| 1978 | if (!GetVNFunc1Map()->Lookup(fstruct, &resultVN)) |
| 1979 | { |
| 1980 | // Otherwise, Allocate a new ValueNum for 'func'('arg0VN') |
| 1981 | // |
| 1982 | Chunk* c = GetAllocChunk(typ, CEA_Func1); |
| 1983 | unsigned offsetWithinChunk = c->AllocVN(); |
| 1984 | resultVN = c->m_baseVN + offsetWithinChunk; |
| 1985 | reinterpret_cast<VNDefFunc1Arg*>(c->m_defs)[offsetWithinChunk] = fstruct; |
| 1986 | // Record 'resultVN' in the Func1Map |
| 1987 | GetVNFunc1Map()->Set(fstruct, resultVN); |
| 1988 | } |
| 1989 | return resultVN; |
| 1990 | } |
| 1991 | |
| 1992 | //---------------------------------------------------------------------------------------- |
| 1993 | // VNForFunc - Returns the ValueNum associated with 'func'('arg0VN','arg1VN') |
| 1994 | // There is a one-to-one relationship between the ValueNum |
| 1995 | // and 'func'('arg0VN','arg1VN') |
| 1996 | // |
| 1997 | // Arguments: |
| 1998 | // typ - The type of the resulting ValueNum produced by 'func' |
| 1999 | // func - Any binary VNFunc |
| 2000 | // arg0VN - The ValueNum of the first argument to 'func' |
| 2001 | // arg1VN - The ValueNum of the second argument to 'func' |
| 2002 | // |
| 2003 | // Return Value: - Returns the ValueNum associated with 'func'('arg0VN','arg1VN') |
| 2004 | // |
| 2005 | // Note: - This method only handles Binary operators |
| 2006 | // |
| 2007 | ValueNum ValueNumStore::VNForFunc(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 2008 | { |
| 2009 | assert(arg0VN != NoVN && arg1VN != NoVN); |
| 2010 | assert(arg0VN == VNNormalValue(arg0VN)); // Arguments carry no exceptions. |
| 2011 | assert(arg1VN == VNNormalValue(arg1VN)); // Arguments carry no exceptions. |
| 2012 | assert(VNFuncArity(func) == 2); |
| 2013 | assert(func != VNF_MapSelect); // Precondition: use the special function VNForMapSelect defined for that. |
| 2014 | |
| 2015 | ValueNum resultVN; |
| 2016 | |
| 2017 | // When both operands are constants we can usually perform constant-folding. |
| 2018 | // |
| 2019 | if (CanEvalForConstantArgs(func) && IsVNConstant(arg0VN) && IsVNConstant(arg1VN)) |
| 2020 | { |
| 2021 | bool canFold = true; // Normally we will be able to fold this 'func' |
| 2022 | |
| 2023 | // Special case for VNF_Cast of constant handles |
| 2024 | // Don't allow an eval/fold of a GT_CAST(non-I_IMPL, Handle) |
| 2025 | // |
| 2026 | if ((func == VNF_Cast) && (typ != TYP_I_IMPL) && IsVNHandle(arg0VN)) |
| 2027 | { |
| 2028 | canFold = false; |
| 2029 | } |
| 2030 | |
| 2031 | // Currently CanEvalForConstantArgs() returns false for VNF_CastOvf |
| 2032 | // In the future we could handle this case in folding. |
| 2033 | assert(func != VNF_CastOvf); |
| 2034 | |
| 2035 | // It is possible for us to have mismatched types (see Bug 750863) |
| 2036 | // We don't try to fold a binary operation when one of the constant operands |
| 2037 | // is a floating-point constant and the other is not. |
| 2038 | // |
| 2039 | var_types arg0VNtyp = TypeOfVN(arg0VN); |
| 2040 | bool arg0IsFloating = varTypeIsFloating(arg0VNtyp); |
| 2041 | |
| 2042 | var_types arg1VNtyp = TypeOfVN(arg1VN); |
| 2043 | bool arg1IsFloating = varTypeIsFloating(arg1VNtyp); |
| 2044 | |
| 2045 | if (arg0IsFloating != arg1IsFloating) |
| 2046 | { |
| 2047 | canFold = false; |
| 2048 | } |
| 2049 | |
| 2050 | // NaNs are unordered wrt to other floats. While an ordered |
| 2051 | // comparison would return false, an unordered comparison |
| 2052 | // will return true if any operands are a NaN. We only perform |
| 2053 | // ordered NaN comparison in EvalComparison. |
| 2054 | if ((arg0IsFloating && (((arg0VNtyp == TYP_FLOAT) && _isnanf(GetConstantSingle(arg0VN))) || |
| 2055 | ((arg0VNtyp == TYP_DOUBLE) && _isnan(GetConstantDouble(arg0VN))))) || |
| 2056 | (arg1IsFloating && (((arg1VNtyp == TYP_FLOAT) && _isnanf(GetConstantSingle(arg1VN))) || |
| 2057 | ((arg1VNtyp == TYP_DOUBLE) && _isnan(GetConstantDouble(arg1VN)))))) |
| 2058 | { |
| 2059 | canFold = false; |
| 2060 | } |
| 2061 | |
| 2062 | if (typ == TYP_BYREF) |
| 2063 | { |
| 2064 | // We don't want to fold expressions that produce TYP_BYREF |
| 2065 | canFold = false; |
| 2066 | } |
| 2067 | |
| 2068 | bool shouldFold = canFold; |
| 2069 | |
| 2070 | if (canFold) |
| 2071 | { |
| 2072 | // We can fold the expression, but we don't want to fold |
| 2073 | // when the expression will always throw an exception |
| 2074 | shouldFold = VNEvalShouldFold(typ, func, arg0VN, arg1VN); |
| 2075 | } |
| 2076 | |
| 2077 | if (shouldFold) |
| 2078 | { |
| 2079 | return EvalFuncForConstantArgs(typ, func, arg0VN, arg1VN); |
| 2080 | } |
| 2081 | } |
| 2082 | // We canonicalize commutative operations. |
| 2083 | // (Perhaps should eventually handle associative/commutative [AC] ops -- but that gets complicated...) |
| 2084 | if (VNFuncIsCommutative(func)) |
| 2085 | { |
| 2086 | // Order arg0 arg1 by numerical VN value. |
| 2087 | if (arg0VN > arg1VN) |
| 2088 | { |
| 2089 | jitstd::swap(arg0VN, arg1VN); |
| 2090 | } |
| 2091 | } |
| 2092 | |
| 2093 | // Have we already assigned a ValueNum for 'func'('arg0VN','arg1VN') ? |
| 2094 | // |
| 2095 | VNDefFunc2Arg fstruct(func, arg0VN, arg1VN); |
| 2096 | if (!GetVNFunc2Map()->Lookup(fstruct, &resultVN)) |
| 2097 | { |
| 2098 | if (func == VNF_CastClass) |
| 2099 | { |
| 2100 | // In terms of values, a castclass always returns its second argument, the object being cast. |
| 2101 | // The operation may also throw an exception |
| 2102 | ValueNum vnExcSet = VNExcSetSingleton(VNForFunc(TYP_REF, VNF_InvalidCastExc, arg1VN, arg0VN)); |
| 2103 | resultVN = VNWithExc(arg1VN, vnExcSet); |
| 2104 | } |
| 2105 | else |
| 2106 | { |
| 2107 | resultVN = EvalUsingMathIdentity(typ, func, arg0VN, arg1VN); |
| 2108 | |
| 2109 | // Do we have a valid resultVN? |
| 2110 | if ((resultVN == NoVN) || (TypeOfVN(resultVN) != typ)) |
| 2111 | { |
| 2112 | // Otherwise, Allocate a new ValueNum for 'func'('arg0VN','arg1VN') |
| 2113 | // |
| 2114 | Chunk* c = GetAllocChunk(typ, CEA_Func2); |
| 2115 | unsigned offsetWithinChunk = c->AllocVN(); |
| 2116 | resultVN = c->m_baseVN + offsetWithinChunk; |
| 2117 | reinterpret_cast<VNDefFunc2Arg*>(c->m_defs)[offsetWithinChunk] = fstruct; |
| 2118 | // Record 'resultVN' in the Func2Map |
| 2119 | GetVNFunc2Map()->Set(fstruct, resultVN); |
| 2120 | } |
| 2121 | } |
| 2122 | } |
| 2123 | return resultVN; |
| 2124 | } |
| 2125 | |
| 2126 | //---------------------------------------------------------------------------------------- |
| 2127 | // VNForFunc - Returns the ValueNum associated with 'func'('arg0VN','arg1VN','arg2VN') |
| 2128 | // There is a one-to-one relationship between the ValueNum |
| 2129 | // and 'func'('arg0VN','arg1VN','arg2VN') |
| 2130 | // |
| 2131 | // Arguments: |
| 2132 | // typ - The type of the resulting ValueNum produced by 'func' |
| 2133 | // func - Any binary VNFunc |
| 2134 | // arg0VN - The ValueNum of the first argument to 'func' |
| 2135 | // arg1VN - The ValueNum of the second argument to 'func' |
| 2136 | // arg2VN - The ValueNum of the third argument to 'func' |
| 2137 | // |
| 2138 | // Return Value: - Returns the ValueNum associated with 'func'('arg0VN','arg1VN','arg1VN) |
| 2139 | // |
| 2140 | // Note: - This method only handles Trinary operations |
| 2141 | // We have to special case VNF_PhiDef, as it's first two arguments are not ValueNums |
| 2142 | // |
| 2143 | ValueNum ValueNumStore::VNForFunc(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN, ValueNum arg2VN) |
| 2144 | { |
| 2145 | assert(arg0VN != NoVN); |
| 2146 | assert(arg1VN != NoVN); |
| 2147 | assert(arg2VN != NoVN); |
| 2148 | assert(VNFuncArity(func) == 3); |
| 2149 | |
| 2150 | #ifdef DEBUG |
| 2151 | // Function arguments carry no exceptions. |
| 2152 | // |
| 2153 | if (func != VNF_PhiDef) |
| 2154 | { |
| 2155 | // For a phi definition first and second argument are "plain" local/ssa numbers. |
| 2156 | // (I don't know if having such non-VN arguments to a VN function is a good idea -- if we wanted to declare |
| 2157 | // ValueNum to be "short" it would be a problem, for example. But we'll leave it for now, with these explicit |
| 2158 | // exceptions.) |
| 2159 | assert(arg0VN == VNNormalValue(arg0VN)); |
| 2160 | assert(arg1VN == VNNormalValue(arg1VN)); |
| 2161 | } |
| 2162 | assert(arg2VN == VNNormalValue(arg2VN)); |
| 2163 | #endif |
| 2164 | assert(VNFuncArity(func) == 3); |
| 2165 | |
| 2166 | ValueNum resultVN; |
| 2167 | |
| 2168 | // Have we already assigned a ValueNum for 'func'('arg0VN','arg1VN','arg2VN') ? |
| 2169 | // |
| 2170 | VNDefFunc3Arg fstruct(func, arg0VN, arg1VN, arg2VN); |
| 2171 | if (!GetVNFunc3Map()->Lookup(fstruct, &resultVN)) |
| 2172 | { |
| 2173 | // Otherwise, Allocate a new ValueNum for 'func'('arg0VN','arg1VN','arg2VN') |
| 2174 | // |
| 2175 | Chunk* c = GetAllocChunk(typ, CEA_Func3); |
| 2176 | unsigned offsetWithinChunk = c->AllocVN(); |
| 2177 | resultVN = c->m_baseVN + offsetWithinChunk; |
| 2178 | reinterpret_cast<VNDefFunc3Arg*>(c->m_defs)[offsetWithinChunk] = fstruct; |
| 2179 | // Record 'resultVN' in the Func3Map |
| 2180 | GetVNFunc3Map()->Set(fstruct, resultVN); |
| 2181 | } |
| 2182 | return resultVN; |
| 2183 | } |
| 2184 | |
| 2185 | // ---------------------------------------------------------------------------------------- |
| 2186 | // VNForFunc - Returns the ValueNum associated with 'func'('arg0VN','arg1VN','arg2VN','arg3VN') |
| 2187 | // There is a one-to-one relationship between the ValueNum |
| 2188 | // and 'func'('arg0VN','arg1VN','arg2VN','arg3VN') |
| 2189 | // |
| 2190 | // Arguments: |
| 2191 | // typ - The type of the resulting ValueNum produced by 'func' |
| 2192 | // func - Any binary VNFunc |
| 2193 | // arg0VN - The ValueNum of the first argument to 'func' |
| 2194 | // arg1VN - The ValueNum of the second argument to 'func' |
| 2195 | // arg2VN - The ValueNum of the third argument to 'func' |
| 2196 | // arg3VN - The ValueNum of the fourth argument to 'func' |
| 2197 | // |
| 2198 | // Return Value: - Returns the ValueNum associated with 'func'('arg0VN','arg1VN','arg2VN','arg3VN') |
| 2199 | // |
| 2200 | // Note: Currently the only four operand func is the VNF_PtrToArrElem operation |
| 2201 | // |
| 2202 | ValueNum ValueNumStore::VNForFunc( |
| 2203 | var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN, ValueNum arg2VN, ValueNum arg3VN) |
| 2204 | { |
| 2205 | assert(arg0VN != NoVN && arg1VN != NoVN && arg2VN != NoVN && arg3VN != NoVN); |
| 2206 | |
| 2207 | // Function arguments carry no exceptions. |
| 2208 | assert(arg0VN == VNNormalValue(arg0VN)); |
| 2209 | assert(arg1VN == VNNormalValue(arg1VN)); |
| 2210 | assert(arg2VN == VNNormalValue(arg2VN)); |
| 2211 | assert(arg3VN == VNNormalValue(arg3VN)); |
| 2212 | assert(VNFuncArity(func) == 4); |
| 2213 | |
| 2214 | ValueNum resultVN; |
| 2215 | |
| 2216 | // Have we already assigned a ValueNum for 'func'('arg0VN','arg1VN','arg2VN','arg3VN') ? |
| 2217 | // |
| 2218 | VNDefFunc4Arg fstruct(func, arg0VN, arg1VN, arg2VN, arg3VN); |
| 2219 | if (!GetVNFunc4Map()->Lookup(fstruct, &resultVN)) |
| 2220 | { |
| 2221 | // Otherwise, Allocate a new ValueNum for 'func'('arg0VN','arg1VN','arg2VN','arg3VN') |
| 2222 | // |
| 2223 | Chunk* c = GetAllocChunk(typ, CEA_Func4); |
| 2224 | unsigned offsetWithinChunk = c->AllocVN(); |
| 2225 | resultVN = c->m_baseVN + offsetWithinChunk; |
| 2226 | reinterpret_cast<VNDefFunc4Arg*>(c->m_defs)[offsetWithinChunk] = fstruct; |
| 2227 | // Record 'resultVN' in the Func4Map |
| 2228 | GetVNFunc4Map()->Set(fstruct, resultVN); |
| 2229 | } |
| 2230 | return resultVN; |
| 2231 | } |
| 2232 | |
| 2233 | //------------------------------------------------------------------------------ |
| 2234 | // VNForMapStore : Evaluate VNF_MapStore with the given arguments. |
| 2235 | // |
| 2236 | // |
| 2237 | // Arguments: |
| 2238 | // typ - Value type |
| 2239 | // arg0VN - Map value number |
| 2240 | // arg1VN - Index value number |
| 2241 | // arg2VN - New value for map[index] |
| 2242 | // |
| 2243 | // Return Value: |
| 2244 | // Value number for the result of the evaluation. |
| 2245 | |
| 2246 | ValueNum ValueNumStore::VNForMapStore(var_types typ, ValueNum arg0VN, ValueNum arg1VN, ValueNum arg2VN) |
| 2247 | { |
| 2248 | ValueNum result = VNForFunc(typ, VNF_MapStore, arg0VN, arg1VN, arg2VN); |
| 2249 | #ifdef DEBUG |
| 2250 | if (m_pComp->verbose) |
| 2251 | { |
| 2252 | printf(" VNForMapStore(" FMT_VN ", " FMT_VN ", " FMT_VN "):%s returns " , arg0VN, arg1VN, arg2VN, |
| 2253 | varTypeName(typ)); |
| 2254 | m_pComp->vnPrint(result, 1); |
| 2255 | printf("\n" ); |
| 2256 | } |
| 2257 | #endif |
| 2258 | return result; |
| 2259 | } |
| 2260 | |
| 2261 | //------------------------------------------------------------------------------ |
| 2262 | // VNForMapSelect : Evaluate VNF_MapSelect with the given arguments. |
| 2263 | // |
| 2264 | // |
| 2265 | // Arguments: |
| 2266 | // vnk - Value number kind |
| 2267 | // typ - Value type |
| 2268 | // arg0VN - Map value number |
| 2269 | // arg1VN - Index value number |
| 2270 | // |
| 2271 | // Return Value: |
| 2272 | // Value number for the result of the evaluation. |
| 2273 | // |
| 2274 | // Notes: |
| 2275 | // This requires a "ValueNumKind" because it will attempt, given "select(phi(m1, ..., mk), ind)", to evaluate |
| 2276 | // "select(m1, ind)", ..., "select(mk, ind)" to see if they agree. It needs to know which kind of value number |
| 2277 | // (liberal/conservative) to read from the SSA def referenced in the phi argument. |
| 2278 | |
| 2279 | ValueNum ValueNumStore::VNForMapSelect(ValueNumKind vnk, var_types typ, ValueNum arg0VN, ValueNum arg1VN) |
| 2280 | { |
| 2281 | int budget = m_mapSelectBudget; |
| 2282 | bool usedRecursiveVN = false; |
| 2283 | ValueNum result = VNForMapSelectWork(vnk, typ, arg0VN, arg1VN, &budget, &usedRecursiveVN); |
| 2284 | |
| 2285 | // The remaining budget should always be between [0..m_mapSelectBudget] |
| 2286 | assert((budget >= 0) && (budget <= m_mapSelectBudget)); |
| 2287 | |
| 2288 | #ifdef DEBUG |
| 2289 | if (m_pComp->verbose) |
| 2290 | { |
| 2291 | printf(" VNForMapSelect(" FMT_VN ", " FMT_VN "):%s returns " , arg0VN, arg1VN, varTypeName(typ)); |
| 2292 | m_pComp->vnPrint(result, 1); |
| 2293 | printf("\n" ); |
| 2294 | } |
| 2295 | #endif |
| 2296 | return result; |
| 2297 | } |
| 2298 | |
| 2299 | //------------------------------------------------------------------------------ |
| 2300 | // VNForMapSelectWork : A method that does the work for VNForMapSelect and may call itself recursively. |
| 2301 | // |
| 2302 | // |
| 2303 | // Arguments: |
| 2304 | // vnk - Value number kind |
| 2305 | // typ - Value type |
| 2306 | // arg0VN - Zeroth argument |
| 2307 | // arg1VN - First argument |
| 2308 | // pBudget - Remaining budget for the outer evaluation |
| 2309 | // pUsedRecursiveVN - Out-parameter that is set to true iff RecursiveVN was returned from this method |
| 2310 | // or from a method called during one of recursive invocations. |
| 2311 | // |
| 2312 | // Return Value: |
| 2313 | // Value number for the result of the evaluation. |
| 2314 | // |
| 2315 | // Notes: |
| 2316 | // This requires a "ValueNumKind" because it will attempt, given "select(phi(m1, ..., mk), ind)", to evaluate |
| 2317 | // "select(m1, ind)", ..., "select(mk, ind)" to see if they agree. It needs to know which kind of value number |
| 2318 | // (liberal/conservative) to read from the SSA def referenced in the phi argument. |
| 2319 | |
| 2320 | ValueNum ValueNumStore::VNForMapSelectWork( |
| 2321 | ValueNumKind vnk, var_types typ, ValueNum arg0VN, ValueNum arg1VN, int* pBudget, bool* pUsedRecursiveVN) |
| 2322 | { |
| 2323 | TailCall: |
| 2324 | // This label allows us to directly implement a tail call by setting up the arguments, and doing a goto to here. |
| 2325 | assert(arg0VN != NoVN && arg1VN != NoVN); |
| 2326 | assert(arg0VN == VNNormalValue(arg0VN)); // Arguments carry no exceptions. |
| 2327 | assert(arg1VN == VNNormalValue(arg1VN)); // Arguments carry no exceptions. |
| 2328 | |
| 2329 | *pUsedRecursiveVN = false; |
| 2330 | |
| 2331 | #ifdef DEBUG |
| 2332 | // Provide a mechanism for writing tests that ensure we don't call this ridiculously often. |
| 2333 | m_numMapSels++; |
| 2334 | #if 1 |
| 2335 | // This printing is sometimes useful in debugging. |
| 2336 | // if ((m_numMapSels % 1000) == 0) printf("%d VNF_MapSelect applications.\n", m_numMapSels); |
| 2337 | #endif |
| 2338 | unsigned selLim = JitConfig.JitVNMapSelLimit(); |
| 2339 | assert(selLim == 0 || m_numMapSels < selLim); |
| 2340 | #endif |
| 2341 | ValueNum res; |
| 2342 | |
| 2343 | VNDefFunc2Arg fstruct(VNF_MapSelect, arg0VN, arg1VN); |
| 2344 | if (GetVNFunc2Map()->Lookup(fstruct, &res)) |
| 2345 | { |
| 2346 | return res; |
| 2347 | } |
| 2348 | else |
| 2349 | { |
| 2350 | // Give up if we've run out of budget. |
| 2351 | if (--(*pBudget) <= 0) |
| 2352 | { |
| 2353 | // We have to use 'nullptr' for the basic block here, because subsequent expressions |
| 2354 | // in different blocks may find this result in the VNFunc2Map -- other expressions in |
| 2355 | // the IR may "evaluate" to this same VNForExpr, so it is not "unique" in the sense |
| 2356 | // that permits the BasicBlock attribution. |
| 2357 | res = VNForExpr(nullptr, typ); |
| 2358 | GetVNFunc2Map()->Set(fstruct, res); |
| 2359 | return res; |
| 2360 | } |
| 2361 | |
| 2362 | // If it's recursive, stop the recursion. |
| 2363 | if (SelectIsBeingEvaluatedRecursively(arg0VN, arg1VN)) |
| 2364 | { |
| 2365 | *pUsedRecursiveVN = true; |
| 2366 | return RecursiveVN; |
| 2367 | } |
| 2368 | |
| 2369 | if (arg0VN == VNForZeroMap()) |
| 2370 | { |
| 2371 | return VNZeroForType(typ); |
| 2372 | } |
| 2373 | else if (IsVNFunc(arg0VN)) |
| 2374 | { |
| 2375 | VNFuncApp funcApp; |
| 2376 | GetVNFunc(arg0VN, &funcApp); |
| 2377 | if (funcApp.m_func == VNF_MapStore) |
| 2378 | { |
| 2379 | // select(store(m, i, v), i) == v |
| 2380 | if (funcApp.m_args[1] == arg1VN) |
| 2381 | { |
| 2382 | #if FEATURE_VN_TRACE_APPLY_SELECTORS |
| 2383 | JITDUMP(" AX1: select([" FMT_VN "]store(" FMT_VN ", " FMT_VN ", " FMT_VN "), " FMT_VN |
| 2384 | ") ==> " FMT_VN ".\n" , |
| 2385 | funcApp.m_args[0], arg0VN, funcApp.m_args[1], funcApp.m_args[2], arg1VN, funcApp.m_args[2]); |
| 2386 | #endif |
| 2387 | return funcApp.m_args[2]; |
| 2388 | } |
| 2389 | // i # j ==> select(store(m, i, v), j) == select(m, j) |
| 2390 | // Currently the only source of distinctions is when both indices are constants. |
| 2391 | else if (IsVNConstant(arg1VN) && IsVNConstant(funcApp.m_args[1])) |
| 2392 | { |
| 2393 | assert(funcApp.m_args[1] != arg1VN); // we already checked this above. |
| 2394 | #if FEATURE_VN_TRACE_APPLY_SELECTORS |
| 2395 | JITDUMP(" AX2: " FMT_VN " != " FMT_VN " ==> select([" FMT_VN "]store(" FMT_VN ", " FMT_VN |
| 2396 | ", " FMT_VN "), " FMT_VN ") ==> select(" FMT_VN ", " FMT_VN ").\n" , |
| 2397 | arg1VN, funcApp.m_args[1], arg0VN, funcApp.m_args[0], funcApp.m_args[1], funcApp.m_args[2], |
| 2398 | arg1VN, funcApp.m_args[0], arg1VN); |
| 2399 | #endif |
| 2400 | // This is the equivalent of the recursive tail call: |
| 2401 | // return VNForMapSelect(vnk, typ, funcApp.m_args[0], arg1VN); |
| 2402 | // Make sure we capture any exceptions from the "i" and "v" of the store... |
| 2403 | arg0VN = funcApp.m_args[0]; |
| 2404 | goto TailCall; |
| 2405 | } |
| 2406 | } |
| 2407 | else if (funcApp.m_func == VNF_PhiDef || funcApp.m_func == VNF_PhiMemoryDef) |
| 2408 | { |
| 2409 | unsigned lclNum = BAD_VAR_NUM; |
| 2410 | bool isMemory = false; |
| 2411 | VNFuncApp phiFuncApp; |
| 2412 | bool defArgIsFunc = false; |
| 2413 | if (funcApp.m_func == VNF_PhiDef) |
| 2414 | { |
| 2415 | lclNum = unsigned(funcApp.m_args[0]); |
| 2416 | defArgIsFunc = GetVNFunc(funcApp.m_args[2], &phiFuncApp); |
| 2417 | } |
| 2418 | else |
| 2419 | { |
| 2420 | assert(funcApp.m_func == VNF_PhiMemoryDef); |
| 2421 | isMemory = true; |
| 2422 | defArgIsFunc = GetVNFunc(funcApp.m_args[1], &phiFuncApp); |
| 2423 | } |
| 2424 | if (defArgIsFunc && phiFuncApp.m_func == VNF_Phi) |
| 2425 | { |
| 2426 | // select(phi(m1, m2), x): if select(m1, x) == select(m2, x), return that, else new fresh. |
| 2427 | // Get the first argument of the phi. |
| 2428 | |
| 2429 | // We need to be careful about breaking infinite recursion. Record the outer select. |
| 2430 | m_fixedPointMapSels.Push(VNDefFunc2Arg(VNF_MapSelect, arg0VN, arg1VN)); |
| 2431 | |
| 2432 | assert(IsVNConstant(phiFuncApp.m_args[0])); |
| 2433 | unsigned phiArgSsaNum = ConstantValue<unsigned>(phiFuncApp.m_args[0]); |
| 2434 | ValueNum phiArgVN; |
| 2435 | if (isMemory) |
| 2436 | { |
| 2437 | phiArgVN = m_pComp->GetMemoryPerSsaData(phiArgSsaNum)->m_vnPair.Get(vnk); |
| 2438 | } |
| 2439 | else |
| 2440 | { |
| 2441 | phiArgVN = m_pComp->lvaTable[lclNum].GetPerSsaData(phiArgSsaNum)->m_vnPair.Get(vnk); |
| 2442 | } |
| 2443 | if (phiArgVN != ValueNumStore::NoVN) |
| 2444 | { |
| 2445 | bool allSame = true; |
| 2446 | ValueNum argRest = phiFuncApp.m_args[1]; |
| 2447 | ValueNum sameSelResult = |
| 2448 | VNForMapSelectWork(vnk, typ, phiArgVN, arg1VN, pBudget, pUsedRecursiveVN); |
| 2449 | |
| 2450 | // It is possible that we just now exceeded our budget, if so we need to force an early exit |
| 2451 | // and stop calling VNForMapSelectWork |
| 2452 | if (*pBudget <= 0) |
| 2453 | { |
| 2454 | // We don't have any budget remaining to verify that all phiArgs are the same |
| 2455 | // so setup the default failure case now. |
| 2456 | allSame = false; |
| 2457 | } |
| 2458 | |
| 2459 | while (allSame && argRest != ValueNumStore::NoVN) |
| 2460 | { |
| 2461 | ValueNum cur = argRest; |
| 2462 | VNFuncApp phiArgFuncApp; |
| 2463 | if (GetVNFunc(argRest, &phiArgFuncApp) && phiArgFuncApp.m_func == VNF_Phi) |
| 2464 | { |
| 2465 | cur = phiArgFuncApp.m_args[0]; |
| 2466 | argRest = phiArgFuncApp.m_args[1]; |
| 2467 | } |
| 2468 | else |
| 2469 | { |
| 2470 | argRest = ValueNumStore::NoVN; // Cause the loop to terminate. |
| 2471 | } |
| 2472 | assert(IsVNConstant(cur)); |
| 2473 | phiArgSsaNum = ConstantValue<unsigned>(cur); |
| 2474 | if (isMemory) |
| 2475 | { |
| 2476 | phiArgVN = m_pComp->GetMemoryPerSsaData(phiArgSsaNum)->m_vnPair.Get(vnk); |
| 2477 | } |
| 2478 | else |
| 2479 | { |
| 2480 | phiArgVN = m_pComp->lvaTable[lclNum].GetPerSsaData(phiArgSsaNum)->m_vnPair.Get(vnk); |
| 2481 | } |
| 2482 | if (phiArgVN == ValueNumStore::NoVN) |
| 2483 | { |
| 2484 | allSame = false; |
| 2485 | } |
| 2486 | else |
| 2487 | { |
| 2488 | bool usedRecursiveVN = false; |
| 2489 | ValueNum curResult = |
| 2490 | VNForMapSelectWork(vnk, typ, phiArgVN, arg1VN, pBudget, &usedRecursiveVN); |
| 2491 | *pUsedRecursiveVN |= usedRecursiveVN; |
| 2492 | if (sameSelResult == ValueNumStore::RecursiveVN) |
| 2493 | { |
| 2494 | sameSelResult = curResult; |
| 2495 | } |
| 2496 | if (curResult != ValueNumStore::RecursiveVN && curResult != sameSelResult) |
| 2497 | { |
| 2498 | allSame = false; |
| 2499 | } |
| 2500 | } |
| 2501 | } |
| 2502 | if (allSame && sameSelResult != ValueNumStore::RecursiveVN) |
| 2503 | { |
| 2504 | // Make sure we're popping what we pushed. |
| 2505 | assert(FixedPointMapSelsTopHasValue(arg0VN, arg1VN)); |
| 2506 | m_fixedPointMapSels.Pop(); |
| 2507 | |
| 2508 | // To avoid exponential searches, we make sure that this result is memo-ized. |
| 2509 | // The result is always valid for memoization if we didn't rely on RecursiveVN to get it. |
| 2510 | // If RecursiveVN was used, we are processing a loop and we can't memo-ize this intermediate |
| 2511 | // result if, e.g., this block is in a multi-entry loop. |
| 2512 | if (!*pUsedRecursiveVN) |
| 2513 | { |
| 2514 | GetVNFunc2Map()->Set(fstruct, sameSelResult); |
| 2515 | } |
| 2516 | |
| 2517 | return sameSelResult; |
| 2518 | } |
| 2519 | // Otherwise, fall through to creating the select(phi(m1, m2), x) function application. |
| 2520 | } |
| 2521 | // Make sure we're popping what we pushed. |
| 2522 | assert(FixedPointMapSelsTopHasValue(arg0VN, arg1VN)); |
| 2523 | m_fixedPointMapSels.Pop(); |
| 2524 | } |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | // Otherwise, assign a new VN for the function application. |
| 2529 | Chunk* c = GetAllocChunk(typ, CEA_Func2); |
| 2530 | unsigned offsetWithinChunk = c->AllocVN(); |
| 2531 | res = c->m_baseVN + offsetWithinChunk; |
| 2532 | reinterpret_cast<VNDefFunc2Arg*>(c->m_defs)[offsetWithinChunk] = fstruct; |
| 2533 | GetVNFunc2Map()->Set(fstruct, res); |
| 2534 | return res; |
| 2535 | } |
| 2536 | } |
| 2537 | |
| 2538 | ValueNum ValueNumStore::EvalFuncForConstantArgs(var_types typ, VNFunc func, ValueNum arg0VN) |
| 2539 | { |
| 2540 | assert(CanEvalForConstantArgs(func)); |
| 2541 | assert(IsVNConstant(arg0VN)); |
| 2542 | switch (TypeOfVN(arg0VN)) |
| 2543 | { |
| 2544 | case TYP_INT: |
| 2545 | { |
| 2546 | int resVal = EvalOp<int>(func, ConstantValue<int>(arg0VN)); |
| 2547 | // Unary op on a handle results in a handle. |
| 2548 | return IsVNHandle(arg0VN) ? VNForHandle(ssize_t(resVal), GetHandleFlags(arg0VN)) : VNForIntCon(resVal); |
| 2549 | } |
| 2550 | case TYP_LONG: |
| 2551 | { |
| 2552 | INT64 resVal = EvalOp<INT64>(func, ConstantValue<INT64>(arg0VN)); |
| 2553 | // Unary op on a handle results in a handle. |
| 2554 | return IsVNHandle(arg0VN) ? VNForHandle(ssize_t(resVal), GetHandleFlags(arg0VN)) : VNForLongCon(resVal); |
| 2555 | } |
| 2556 | case TYP_FLOAT: |
| 2557 | { |
| 2558 | float resVal = EvalOp<float>(func, ConstantValue<float>(arg0VN)); |
| 2559 | return VNForFloatCon(resVal); |
| 2560 | } |
| 2561 | case TYP_DOUBLE: |
| 2562 | { |
| 2563 | double resVal = EvalOp<double>(func, ConstantValue<double>(arg0VN)); |
| 2564 | return VNForDoubleCon(resVal); |
| 2565 | } |
| 2566 | case TYP_REF: |
| 2567 | { |
| 2568 | // If arg0 has a possible exception, it wouldn't have been constant. |
| 2569 | assert(!VNHasExc(arg0VN)); |
| 2570 | // Otherwise... |
| 2571 | assert(arg0VN == VNForNull()); // Only other REF constant. |
| 2572 | assert(func == VNFunc(GT_ARR_LENGTH)); // Only function we can apply to a REF constant! |
| 2573 | return VNWithExc(VNForVoid(), VNExcSetSingleton(VNForFunc(TYP_REF, VNF_NullPtrExc, VNForNull()))); |
| 2574 | } |
| 2575 | default: |
| 2576 | // We will assert below |
| 2577 | break; |
| 2578 | } |
| 2579 | noway_assert(!"Unhandled operation in EvalFuncForConstantArgs" ); |
| 2580 | return NoVN; |
| 2581 | } |
| 2582 | |
| 2583 | bool ValueNumStore::SelectIsBeingEvaluatedRecursively(ValueNum map, ValueNum ind) |
| 2584 | { |
| 2585 | for (unsigned i = 0; i < m_fixedPointMapSels.Size(); i++) |
| 2586 | { |
| 2587 | VNDefFunc2Arg& elem = m_fixedPointMapSels.GetRef(i); |
| 2588 | assert(elem.m_func == VNF_MapSelect); |
| 2589 | if (elem.m_arg0 == map && elem.m_arg1 == ind) |
| 2590 | { |
| 2591 | return true; |
| 2592 | } |
| 2593 | } |
| 2594 | return false; |
| 2595 | } |
| 2596 | |
| 2597 | #ifdef DEBUG |
| 2598 | bool ValueNumStore::FixedPointMapSelsTopHasValue(ValueNum map, ValueNum index) |
| 2599 | { |
| 2600 | if (m_fixedPointMapSels.Size() == 0) |
| 2601 | { |
| 2602 | return false; |
| 2603 | } |
| 2604 | VNDefFunc2Arg& top = m_fixedPointMapSels.TopRef(); |
| 2605 | return top.m_func == VNF_MapSelect && top.m_arg0 == map && top.m_arg1 == index; |
| 2606 | } |
| 2607 | #endif |
| 2608 | |
| 2609 | // Given an integer constant value number return its value as an int. |
| 2610 | // |
| 2611 | int ValueNumStore::GetConstantInt32(ValueNum argVN) |
| 2612 | { |
| 2613 | assert(IsVNConstant(argVN)); |
| 2614 | var_types argVNtyp = TypeOfVN(argVN); |
| 2615 | |
| 2616 | int result = 0; |
| 2617 | |
| 2618 | switch (argVNtyp) |
| 2619 | { |
| 2620 | case TYP_INT: |
| 2621 | result = ConstantValue<int>(argVN); |
| 2622 | break; |
| 2623 | #ifndef _TARGET_64BIT_ |
| 2624 | case TYP_REF: |
| 2625 | case TYP_BYREF: |
| 2626 | result = (int)ConstantValue<size_t>(argVN); |
| 2627 | break; |
| 2628 | #endif |
| 2629 | default: |
| 2630 | unreached(); |
| 2631 | } |
| 2632 | return result; |
| 2633 | } |
| 2634 | |
| 2635 | // Given an integer constant value number return its value as an INT64. |
| 2636 | // |
| 2637 | INT64 ValueNumStore::GetConstantInt64(ValueNum argVN) |
| 2638 | { |
| 2639 | assert(IsVNConstant(argVN)); |
| 2640 | var_types argVNtyp = TypeOfVN(argVN); |
| 2641 | |
| 2642 | INT64 result = 0; |
| 2643 | |
| 2644 | switch (argVNtyp) |
| 2645 | { |
| 2646 | case TYP_INT: |
| 2647 | result = (INT64)ConstantValue<int>(argVN); |
| 2648 | break; |
| 2649 | case TYP_LONG: |
| 2650 | result = ConstantValue<INT64>(argVN); |
| 2651 | break; |
| 2652 | case TYP_REF: |
| 2653 | case TYP_BYREF: |
| 2654 | result = (INT64)ConstantValue<size_t>(argVN); |
| 2655 | break; |
| 2656 | default: |
| 2657 | unreached(); |
| 2658 | } |
| 2659 | return result; |
| 2660 | } |
| 2661 | |
| 2662 | // Given a double constant value number return its value as a double. |
| 2663 | // |
| 2664 | double ValueNumStore::GetConstantDouble(ValueNum argVN) |
| 2665 | { |
| 2666 | assert(IsVNConstant(argVN)); |
| 2667 | assert(TypeOfVN(argVN) == TYP_DOUBLE); |
| 2668 | |
| 2669 | return ConstantValue<double>(argVN); |
| 2670 | } |
| 2671 | |
| 2672 | // Given a float constant value number return its value as a float. |
| 2673 | // |
| 2674 | float ValueNumStore::GetConstantSingle(ValueNum argVN) |
| 2675 | { |
| 2676 | assert(IsVNConstant(argVN)); |
| 2677 | assert(TypeOfVN(argVN) == TYP_FLOAT); |
| 2678 | |
| 2679 | return ConstantValue<float>(argVN); |
| 2680 | } |
| 2681 | |
| 2682 | // Compute the proper value number when the VNFunc has all constant arguments |
| 2683 | // This essentially performs constant folding at value numbering time |
| 2684 | // |
| 2685 | ValueNum ValueNumStore::EvalFuncForConstantArgs(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 2686 | { |
| 2687 | assert(CanEvalForConstantArgs(func)); |
| 2688 | assert(IsVNConstant(arg0VN) && IsVNConstant(arg1VN)); |
| 2689 | assert(!VNHasExc(arg0VN) && !VNHasExc(arg1VN)); // Otherwise, would not be constant. |
| 2690 | |
| 2691 | // if our func is the VNF_Cast operation we handle it first |
| 2692 | if (func == VNF_Cast) |
| 2693 | { |
| 2694 | return EvalCastForConstantArgs(typ, func, arg0VN, arg1VN); |
| 2695 | } |
| 2696 | |
| 2697 | var_types arg0VNtyp = TypeOfVN(arg0VN); |
| 2698 | var_types arg1VNtyp = TypeOfVN(arg1VN); |
| 2699 | |
| 2700 | // When both arguments are floating point types |
| 2701 | // We defer to the EvalFuncForConstantFPArgs() |
| 2702 | if (varTypeIsFloating(arg0VNtyp) && varTypeIsFloating(arg1VNtyp)) |
| 2703 | { |
| 2704 | return EvalFuncForConstantFPArgs(typ, func, arg0VN, arg1VN); |
| 2705 | } |
| 2706 | |
| 2707 | // after this we shouldn't have to deal with floating point types for arg0VN or arg1VN |
| 2708 | assert(!varTypeIsFloating(arg0VNtyp)); |
| 2709 | assert(!varTypeIsFloating(arg1VNtyp)); |
| 2710 | |
| 2711 | // Stack-normalize the result type. |
| 2712 | if (varTypeIsSmall(typ)) |
| 2713 | { |
| 2714 | typ = TYP_INT; |
| 2715 | } |
| 2716 | |
| 2717 | ValueNum result; // left uninitialized, we are required to initialize it on all paths below. |
| 2718 | |
| 2719 | // Are both args of the same type? |
| 2720 | if (arg0VNtyp == arg1VNtyp) |
| 2721 | { |
| 2722 | if (arg0VNtyp == TYP_INT) |
| 2723 | { |
| 2724 | int arg0Val = ConstantValue<int>(arg0VN); |
| 2725 | int arg1Val = ConstantValue<int>(arg1VN); |
| 2726 | |
| 2727 | if (VNFuncIsComparison(func)) |
| 2728 | { |
| 2729 | assert(typ == TYP_INT); |
| 2730 | result = VNForIntCon(EvalComparison(func, arg0Val, arg1Val)); |
| 2731 | } |
| 2732 | else |
| 2733 | { |
| 2734 | assert(typ == TYP_INT); |
| 2735 | int resultVal = EvalOp<int>(func, arg0Val, arg1Val); |
| 2736 | // Bin op on a handle results in a handle. |
| 2737 | ValueNum handleVN = IsVNHandle(arg0VN) ? arg0VN : IsVNHandle(arg1VN) ? arg1VN : NoVN; |
| 2738 | if (handleVN != NoVN) |
| 2739 | { |
| 2740 | result = VNForHandle(ssize_t(resultVal), GetHandleFlags(handleVN)); // Use VN for Handle |
| 2741 | } |
| 2742 | else |
| 2743 | { |
| 2744 | result = VNForIntCon(resultVal); |
| 2745 | } |
| 2746 | } |
| 2747 | } |
| 2748 | else if (arg0VNtyp == TYP_LONG) |
| 2749 | { |
| 2750 | INT64 arg0Val = ConstantValue<INT64>(arg0VN); |
| 2751 | INT64 arg1Val = ConstantValue<INT64>(arg1VN); |
| 2752 | |
| 2753 | if (VNFuncIsComparison(func)) |
| 2754 | { |
| 2755 | assert(typ == TYP_INT); |
| 2756 | result = VNForIntCon(EvalComparison(func, arg0Val, arg1Val)); |
| 2757 | } |
| 2758 | else |
| 2759 | { |
| 2760 | assert(typ == TYP_LONG); |
| 2761 | INT64 resultVal = EvalOp<INT64>(func, arg0Val, arg1Val); |
| 2762 | ValueNum handleVN = IsVNHandle(arg0VN) ? arg0VN : IsVNHandle(arg1VN) ? arg1VN : NoVN; |
| 2763 | |
| 2764 | if (handleVN != NoVN) |
| 2765 | { |
| 2766 | result = VNForHandle(ssize_t(resultVal), GetHandleFlags(handleVN)); // Use VN for Handle |
| 2767 | } |
| 2768 | else |
| 2769 | { |
| 2770 | result = VNForLongCon(resultVal); |
| 2771 | } |
| 2772 | } |
| 2773 | } |
| 2774 | else // both args are TYP_REF or both args are TYP_BYREF |
| 2775 | { |
| 2776 | INT64 arg0Val = ConstantValue<size_t>(arg0VN); // We represent ref/byref constants as size_t's. |
| 2777 | INT64 arg1Val = ConstantValue<size_t>(arg1VN); // Also we consider null to be zero. |
| 2778 | |
| 2779 | if (VNFuncIsComparison(func)) |
| 2780 | { |
| 2781 | assert(typ == TYP_INT); |
| 2782 | result = VNForIntCon(EvalComparison(func, arg0Val, arg1Val)); |
| 2783 | } |
| 2784 | else if (typ == TYP_INT) // We could see GT_OR of a constant ByRef and Null |
| 2785 | { |
| 2786 | int resultVal = (int)EvalOp<INT64>(func, arg0Val, arg1Val); |
| 2787 | result = VNForIntCon(resultVal); |
| 2788 | } |
| 2789 | else // We could see GT_OR of a constant ByRef and Null |
| 2790 | { |
| 2791 | assert((typ == TYP_BYREF) || (typ == TYP_LONG)); |
| 2792 | INT64 resultVal = EvalOp<INT64>(func, arg0Val, arg1Val); |
| 2793 | result = VNForByrefCon(resultVal); |
| 2794 | } |
| 2795 | } |
| 2796 | } |
| 2797 | else // We have args of different types |
| 2798 | { |
| 2799 | // We represent ref/byref constants as size_t's. |
| 2800 | // Also we consider null to be zero. |
| 2801 | // |
| 2802 | INT64 arg0Val = GetConstantInt64(arg0VN); |
| 2803 | INT64 arg1Val = GetConstantInt64(arg1VN); |
| 2804 | |
| 2805 | if (VNFuncIsComparison(func)) |
| 2806 | { |
| 2807 | assert(typ == TYP_INT); |
| 2808 | result = VNForIntCon(EvalComparison(func, arg0Val, arg1Val)); |
| 2809 | } |
| 2810 | else if (typ == TYP_INT) // We could see GT_OR of an int and constant ByRef or Null |
| 2811 | { |
| 2812 | int resultVal = (int)EvalOp<INT64>(func, arg0Val, arg1Val); |
| 2813 | result = VNForIntCon(resultVal); |
| 2814 | } |
| 2815 | else |
| 2816 | { |
| 2817 | assert(typ != TYP_INT); |
| 2818 | INT64 resultVal = EvalOp<INT64>(func, arg0Val, arg1Val); |
| 2819 | |
| 2820 | switch (typ) |
| 2821 | { |
| 2822 | case TYP_BYREF: |
| 2823 | result = VNForByrefCon(resultVal); |
| 2824 | break; |
| 2825 | case TYP_LONG: |
| 2826 | result = VNForLongCon(resultVal); |
| 2827 | break; |
| 2828 | case TYP_REF: |
| 2829 | assert(resultVal == 0); // Only valid REF constant |
| 2830 | result = VNForNull(); |
| 2831 | break; |
| 2832 | default: |
| 2833 | unreached(); |
| 2834 | } |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | return result; |
| 2839 | } |
| 2840 | |
| 2841 | // Compute the proper value number when the VNFunc has all constant floating-point arguments |
| 2842 | // This essentially must perform constant folding at value numbering time |
| 2843 | // |
| 2844 | ValueNum ValueNumStore::EvalFuncForConstantFPArgs(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 2845 | { |
| 2846 | assert(CanEvalForConstantArgs(func)); |
| 2847 | assert(IsVNConstant(arg0VN) && IsVNConstant(arg1VN)); |
| 2848 | |
| 2849 | // We expect both argument types to be floating-point types |
| 2850 | var_types arg0VNtyp = TypeOfVN(arg0VN); |
| 2851 | var_types arg1VNtyp = TypeOfVN(arg1VN); |
| 2852 | |
| 2853 | assert(varTypeIsFloating(arg0VNtyp)); |
| 2854 | assert(varTypeIsFloating(arg1VNtyp)); |
| 2855 | |
| 2856 | // We also expect both arguments to be of the same floating-point type |
| 2857 | assert(arg0VNtyp == arg1VNtyp); |
| 2858 | |
| 2859 | ValueNum result; // left uninitialized, we are required to initialize it on all paths below. |
| 2860 | |
| 2861 | if (VNFuncIsComparison(func)) |
| 2862 | { |
| 2863 | assert(genActualType(typ) == TYP_INT); |
| 2864 | |
| 2865 | if (arg0VNtyp == TYP_FLOAT) |
| 2866 | { |
| 2867 | result = VNForIntCon(EvalComparison<float>(func, GetConstantSingle(arg0VN), GetConstantSingle(arg1VN))); |
| 2868 | } |
| 2869 | else |
| 2870 | { |
| 2871 | assert(arg0VNtyp == TYP_DOUBLE); |
| 2872 | result = VNForIntCon(EvalComparison<double>(func, GetConstantDouble(arg0VN), GetConstantDouble(arg1VN))); |
| 2873 | } |
| 2874 | } |
| 2875 | else |
| 2876 | { |
| 2877 | // We expect the return type to be the same as the argument type |
| 2878 | assert(varTypeIsFloating(typ)); |
| 2879 | assert(arg0VNtyp == typ); |
| 2880 | |
| 2881 | if (typ == TYP_FLOAT) |
| 2882 | { |
| 2883 | float floatResultVal = EvalOp<float>(func, GetConstantSingle(arg0VN), GetConstantSingle(arg1VN)); |
| 2884 | result = VNForFloatCon(floatResultVal); |
| 2885 | } |
| 2886 | else |
| 2887 | { |
| 2888 | assert(typ == TYP_DOUBLE); |
| 2889 | |
| 2890 | double doubleResultVal = EvalOp<double>(func, GetConstantDouble(arg0VN), GetConstantDouble(arg1VN)); |
| 2891 | result = VNForDoubleCon(doubleResultVal); |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | return result; |
| 2896 | } |
| 2897 | |
| 2898 | // Compute the proper value number for a VNF_Cast with constant arguments |
| 2899 | // This essentially must perform constant folding at value numbering time |
| 2900 | // |
| 2901 | ValueNum ValueNumStore::EvalCastForConstantArgs(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 2902 | { |
| 2903 | assert(func == VNF_Cast); |
| 2904 | assert(IsVNConstant(arg0VN) && IsVNConstant(arg1VN)); |
| 2905 | |
| 2906 | // Stack-normalize the result type. |
| 2907 | if (varTypeIsSmall(typ)) |
| 2908 | { |
| 2909 | typ = TYP_INT; |
| 2910 | } |
| 2911 | |
| 2912 | var_types arg0VNtyp = TypeOfVN(arg0VN); |
| 2913 | var_types arg1VNtyp = TypeOfVN(arg1VN); |
| 2914 | |
| 2915 | // arg1VN is really the gtCastType that we are casting to |
| 2916 | assert(arg1VNtyp == TYP_INT); |
| 2917 | int arg1Val = ConstantValue<int>(arg1VN); |
| 2918 | assert(arg1Val >= 0); |
| 2919 | |
| 2920 | if (IsVNHandle(arg0VN)) |
| 2921 | { |
| 2922 | // We don't allow handles to be cast to random var_types. |
| 2923 | assert(typ == TYP_I_IMPL); |
| 2924 | } |
| 2925 | |
| 2926 | // We previously encoded the castToType operation using vnForCastOper() |
| 2927 | // |
| 2928 | bool srcIsUnsigned = ((arg1Val & INT32(VCA_UnsignedSrc)) != 0); |
| 2929 | var_types castToType = var_types(arg1Val >> INT32(VCA_BitCount)); |
| 2930 | |
| 2931 | var_types castFromType = arg0VNtyp; |
| 2932 | |
| 2933 | switch (castFromType) // GT_CAST source type |
| 2934 | { |
| 2935 | #ifndef _TARGET_64BIT_ |
| 2936 | case TYP_REF: |
| 2937 | case TYP_BYREF: |
| 2938 | #endif |
| 2939 | case TYP_INT: |
| 2940 | { |
| 2941 | int arg0Val = GetConstantInt32(arg0VN); |
| 2942 | |
| 2943 | switch (castToType) |
| 2944 | { |
| 2945 | case TYP_BYTE: |
| 2946 | assert(typ == TYP_INT); |
| 2947 | return VNForIntCon(INT8(arg0Val)); |
| 2948 | case TYP_BOOL: |
| 2949 | case TYP_UBYTE: |
| 2950 | assert(typ == TYP_INT); |
| 2951 | return VNForIntCon(UINT8(arg0Val)); |
| 2952 | case TYP_SHORT: |
| 2953 | assert(typ == TYP_INT); |
| 2954 | return VNForIntCon(INT16(arg0Val)); |
| 2955 | case TYP_USHORT: |
| 2956 | assert(typ == TYP_INT); |
| 2957 | return VNForIntCon(UINT16(arg0Val)); |
| 2958 | case TYP_INT: |
| 2959 | case TYP_UINT: |
| 2960 | assert(typ == TYP_INT); |
| 2961 | return arg0VN; |
| 2962 | case TYP_LONG: |
| 2963 | case TYP_ULONG: |
| 2964 | assert(!IsVNHandle(arg0VN)); |
| 2965 | #ifdef _TARGET_64BIT_ |
| 2966 | if (typ == TYP_LONG) |
| 2967 | { |
| 2968 | if (srcIsUnsigned) |
| 2969 | { |
| 2970 | return VNForLongCon(INT64(unsigned(arg0Val))); |
| 2971 | } |
| 2972 | else |
| 2973 | { |
| 2974 | return VNForLongCon(INT64(arg0Val)); |
| 2975 | } |
| 2976 | } |
| 2977 | else |
| 2978 | { |
| 2979 | assert(typ == TYP_BYREF); |
| 2980 | if (srcIsUnsigned) |
| 2981 | { |
| 2982 | return VNForByrefCon(INT64(unsigned(arg0Val))); |
| 2983 | } |
| 2984 | else |
| 2985 | { |
| 2986 | return VNForByrefCon(INT64(arg0Val)); |
| 2987 | } |
| 2988 | } |
| 2989 | #else // TARGET_32BIT |
| 2990 | if (srcIsUnsigned) |
| 2991 | return VNForLongCon(INT64(unsigned(arg0Val))); |
| 2992 | else |
| 2993 | return VNForLongCon(INT64(arg0Val)); |
| 2994 | #endif |
| 2995 | case TYP_BYREF: |
| 2996 | assert(typ == TYP_BYREF); |
| 2997 | return VNForByrefCon((INT64)arg0Val); |
| 2998 | case TYP_FLOAT: |
| 2999 | assert(typ == TYP_FLOAT); |
| 3000 | if (srcIsUnsigned) |
| 3001 | { |
| 3002 | return VNForFloatCon(float(unsigned(arg0Val))); |
| 3003 | } |
| 3004 | else |
| 3005 | { |
| 3006 | return VNForFloatCon(float(arg0Val)); |
| 3007 | } |
| 3008 | case TYP_DOUBLE: |
| 3009 | assert(typ == TYP_DOUBLE); |
| 3010 | if (srcIsUnsigned) |
| 3011 | { |
| 3012 | return VNForDoubleCon(double(unsigned(arg0Val))); |
| 3013 | } |
| 3014 | else |
| 3015 | { |
| 3016 | return VNForDoubleCon(double(arg0Val)); |
| 3017 | } |
| 3018 | default: |
| 3019 | unreached(); |
| 3020 | } |
| 3021 | break; |
| 3022 | } |
| 3023 | { |
| 3024 | #ifdef _TARGET_64BIT_ |
| 3025 | case TYP_REF: |
| 3026 | case TYP_BYREF: |
| 3027 | #endif |
| 3028 | case TYP_LONG: |
| 3029 | INT64 arg0Val = GetConstantInt64(arg0VN); |
| 3030 | |
| 3031 | switch (castToType) |
| 3032 | { |
| 3033 | case TYP_BYTE: |
| 3034 | assert(typ == TYP_INT); |
| 3035 | return VNForIntCon(INT8(arg0Val)); |
| 3036 | case TYP_BOOL: |
| 3037 | case TYP_UBYTE: |
| 3038 | assert(typ == TYP_INT); |
| 3039 | return VNForIntCon(UINT8(arg0Val)); |
| 3040 | case TYP_SHORT: |
| 3041 | assert(typ == TYP_INT); |
| 3042 | return VNForIntCon(INT16(arg0Val)); |
| 3043 | case TYP_USHORT: |
| 3044 | assert(typ == TYP_INT); |
| 3045 | return VNForIntCon(UINT16(arg0Val)); |
| 3046 | case TYP_INT: |
| 3047 | assert(typ == TYP_INT); |
| 3048 | return VNForIntCon(INT32(arg0Val)); |
| 3049 | case TYP_UINT: |
| 3050 | assert(typ == TYP_INT); |
| 3051 | return VNForIntCon(UINT32(arg0Val)); |
| 3052 | case TYP_LONG: |
| 3053 | case TYP_ULONG: |
| 3054 | assert(typ == TYP_LONG); |
| 3055 | return arg0VN; |
| 3056 | case TYP_BYREF: |
| 3057 | assert(typ == TYP_BYREF); |
| 3058 | return VNForByrefCon((INT64)arg0Val); |
| 3059 | case TYP_FLOAT: |
| 3060 | assert(typ == TYP_FLOAT); |
| 3061 | if (srcIsUnsigned) |
| 3062 | { |
| 3063 | return VNForFloatCon(FloatingPointUtils::convertUInt64ToFloat(UINT64(arg0Val))); |
| 3064 | } |
| 3065 | else |
| 3066 | { |
| 3067 | return VNForFloatCon(float(arg0Val)); |
| 3068 | } |
| 3069 | case TYP_DOUBLE: |
| 3070 | assert(typ == TYP_DOUBLE); |
| 3071 | if (srcIsUnsigned) |
| 3072 | { |
| 3073 | return VNForDoubleCon(FloatingPointUtils::convertUInt64ToDouble(UINT64(arg0Val))); |
| 3074 | } |
| 3075 | else |
| 3076 | { |
| 3077 | return VNForDoubleCon(double(arg0Val)); |
| 3078 | } |
| 3079 | default: |
| 3080 | unreached(); |
| 3081 | } |
| 3082 | } |
| 3083 | case TYP_FLOAT: |
| 3084 | { |
| 3085 | float arg0Val = GetConstantSingle(arg0VN); |
| 3086 | |
| 3087 | switch (castToType) |
| 3088 | { |
| 3089 | case TYP_BYTE: |
| 3090 | assert(typ == TYP_INT); |
| 3091 | return VNForIntCon(INT8(arg0Val)); |
| 3092 | case TYP_BOOL: |
| 3093 | case TYP_UBYTE: |
| 3094 | assert(typ == TYP_INT); |
| 3095 | return VNForIntCon(UINT8(arg0Val)); |
| 3096 | case TYP_SHORT: |
| 3097 | assert(typ == TYP_INT); |
| 3098 | return VNForIntCon(INT16(arg0Val)); |
| 3099 | case TYP_USHORT: |
| 3100 | assert(typ == TYP_INT); |
| 3101 | return VNForIntCon(UINT16(arg0Val)); |
| 3102 | case TYP_INT: |
| 3103 | assert(typ == TYP_INT); |
| 3104 | return VNForIntCon(INT32(arg0Val)); |
| 3105 | case TYP_UINT: |
| 3106 | assert(typ == TYP_INT); |
| 3107 | return VNForIntCon(UINT32(arg0Val)); |
| 3108 | case TYP_LONG: |
| 3109 | assert(typ == TYP_LONG); |
| 3110 | return VNForLongCon(INT64(arg0Val)); |
| 3111 | case TYP_ULONG: |
| 3112 | assert(typ == TYP_LONG); |
| 3113 | return VNForLongCon(UINT64(arg0Val)); |
| 3114 | case TYP_FLOAT: |
| 3115 | assert(typ == TYP_FLOAT); |
| 3116 | return VNForFloatCon(arg0Val); |
| 3117 | case TYP_DOUBLE: |
| 3118 | assert(typ == TYP_DOUBLE); |
| 3119 | return VNForDoubleCon(double(arg0Val)); |
| 3120 | default: |
| 3121 | unreached(); |
| 3122 | } |
| 3123 | } |
| 3124 | case TYP_DOUBLE: |
| 3125 | { |
| 3126 | double arg0Val = GetConstantDouble(arg0VN); |
| 3127 | |
| 3128 | switch (castToType) |
| 3129 | { |
| 3130 | case TYP_BYTE: |
| 3131 | assert(typ == TYP_INT); |
| 3132 | return VNForIntCon(INT8(arg0Val)); |
| 3133 | case TYP_BOOL: |
| 3134 | case TYP_UBYTE: |
| 3135 | assert(typ == TYP_INT); |
| 3136 | return VNForIntCon(UINT8(arg0Val)); |
| 3137 | case TYP_SHORT: |
| 3138 | assert(typ == TYP_INT); |
| 3139 | return VNForIntCon(INT16(arg0Val)); |
| 3140 | case TYP_USHORT: |
| 3141 | assert(typ == TYP_INT); |
| 3142 | return VNForIntCon(UINT16(arg0Val)); |
| 3143 | case TYP_INT: |
| 3144 | assert(typ == TYP_INT); |
| 3145 | return VNForIntCon(INT32(arg0Val)); |
| 3146 | case TYP_UINT: |
| 3147 | assert(typ == TYP_INT); |
| 3148 | return VNForIntCon(UINT32(arg0Val)); |
| 3149 | case TYP_LONG: |
| 3150 | assert(typ == TYP_LONG); |
| 3151 | return VNForLongCon(INT64(arg0Val)); |
| 3152 | case TYP_ULONG: |
| 3153 | assert(typ == TYP_LONG); |
| 3154 | return VNForLongCon(UINT64(arg0Val)); |
| 3155 | case TYP_FLOAT: |
| 3156 | assert(typ == TYP_FLOAT); |
| 3157 | return VNForFloatCon(float(arg0Val)); |
| 3158 | case TYP_DOUBLE: |
| 3159 | assert(typ == TYP_DOUBLE); |
| 3160 | return VNForDoubleCon(arg0Val); |
| 3161 | default: |
| 3162 | unreached(); |
| 3163 | } |
| 3164 | } |
| 3165 | default: |
| 3166 | unreached(); |
| 3167 | } |
| 3168 | } |
| 3169 | |
| 3170 | //----------------------------------------------------------------------------------- |
| 3171 | // CanEvalForConstantArgs: - Given a VNFunc value return true when we can perform |
| 3172 | // compile-time constant folding for the operation. |
| 3173 | // |
| 3174 | // Arguments: |
| 3175 | // vnf - The VNFunc that we are inquiring about |
| 3176 | // |
| 3177 | // Return Value: |
| 3178 | // - Returns true if we can always compute a constant result |
| 3179 | // when given all constant args. |
| 3180 | // |
| 3181 | // Notes: - When this method returns true, the logic to compute the |
| 3182 | // compile-time result must also be added to EvalOP, |
| 3183 | // EvalOpspecialized or EvalComparison |
| 3184 | // |
| 3185 | bool ValueNumStore::CanEvalForConstantArgs(VNFunc vnf) |
| 3186 | { |
| 3187 | if (vnf < VNF_Boundary) |
| 3188 | { |
| 3189 | genTreeOps oper = genTreeOps(vnf); |
| 3190 | |
| 3191 | switch (oper) |
| 3192 | { |
| 3193 | // Only return true for the node kinds that have code that supports |
| 3194 | // them in EvalOP, EvalOpspecialized or EvalComparison |
| 3195 | |
| 3196 | // Unary Ops |
| 3197 | case GT_NEG: |
| 3198 | case GT_NOT: |
| 3199 | case GT_BSWAP16: |
| 3200 | case GT_BSWAP: |
| 3201 | |
| 3202 | // Binary Ops |
| 3203 | case GT_ADD: |
| 3204 | case GT_SUB: |
| 3205 | case GT_MUL: |
| 3206 | case GT_DIV: |
| 3207 | case GT_MOD: |
| 3208 | |
| 3209 | case GT_UDIV: |
| 3210 | case GT_UMOD: |
| 3211 | |
| 3212 | case GT_AND: |
| 3213 | case GT_OR: |
| 3214 | case GT_XOR: |
| 3215 | |
| 3216 | case GT_LSH: |
| 3217 | case GT_RSH: |
| 3218 | case GT_RSZ: |
| 3219 | case GT_ROL: |
| 3220 | case GT_ROR: |
| 3221 | |
| 3222 | // Equality Ops |
| 3223 | case GT_EQ: |
| 3224 | case GT_NE: |
| 3225 | case GT_GT: |
| 3226 | case GT_GE: |
| 3227 | case GT_LT: |
| 3228 | case GT_LE: |
| 3229 | |
| 3230 | // We can evaluate these. |
| 3231 | return true; |
| 3232 | |
| 3233 | default: |
| 3234 | // We can not evaluate these. |
| 3235 | return false; |
| 3236 | } |
| 3237 | } |
| 3238 | else |
| 3239 | { |
| 3240 | // some VNF_ that we can evaluate |
| 3241 | switch (vnf) |
| 3242 | { |
| 3243 | // Consider adding: |
| 3244 | // case VNF_GT_UN: |
| 3245 | // case VNF_GE_UN: |
| 3246 | // case VNF_LT_UN: |
| 3247 | // case VNF_LE_UN: |
| 3248 | // |
| 3249 | |
| 3250 | case VNF_Cast: |
| 3251 | // We can evaluate these. |
| 3252 | return true; |
| 3253 | |
| 3254 | default: |
| 3255 | // We can not evaluate these. |
| 3256 | return false; |
| 3257 | } |
| 3258 | } |
| 3259 | } |
| 3260 | |
| 3261 | //---------------------------------------------------------------------------------------- |
| 3262 | // VNEvalShouldFold - Returns true if we should perform the folding operation. |
| 3263 | // It returns false if we don't want to fold the expression, |
| 3264 | // because it will always throw an exception. |
| 3265 | // |
| 3266 | // Arguments: |
| 3267 | // typ - The type of the resulting ValueNum produced by 'func' |
| 3268 | // func - Any binary VNFunc |
| 3269 | // arg0VN - The ValueNum of the first argument to 'func' |
| 3270 | // arg1VN - The ValueNum of the second argument to 'func' |
| 3271 | // |
| 3272 | // Return Value: - Returns true if we should perform a folding operation. |
| 3273 | // |
| 3274 | bool ValueNumStore::VNEvalShouldFold(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 3275 | { |
| 3276 | bool shouldFold = true; |
| 3277 | |
| 3278 | // We have some arithmetic operations that will always throw |
| 3279 | // an exception given particular constant argument(s). |
| 3280 | // (i.e. integer division by zero) |
| 3281 | // |
| 3282 | // We will avoid performing any constant folding on them |
| 3283 | // since they won't actually produce any result. |
| 3284 | // Instead they always will throw an exception. |
| 3285 | // |
| 3286 | if (func < VNF_Boundary) |
| 3287 | { |
| 3288 | genTreeOps oper = genTreeOps(func); |
| 3289 | |
| 3290 | // Floating point operations do not throw exceptions |
| 3291 | // |
| 3292 | if (!varTypeIsFloating(typ)) |
| 3293 | { |
| 3294 | // Is this an integer divide/modulo that will always throw an exception? |
| 3295 | // |
| 3296 | if ((oper == GT_DIV) || (oper == GT_UDIV) || (oper == GT_MOD) || (oper == GT_UMOD)) |
| 3297 | { |
| 3298 | if ((TypeOfVN(arg0VN) != typ) || (TypeOfVN(arg1VN) != typ)) |
| 3299 | { |
| 3300 | // Just in case we have mismatched types |
| 3301 | shouldFold = false; |
| 3302 | } |
| 3303 | else |
| 3304 | { |
| 3305 | bool isUnsigned = (oper == GT_UDIV) || (oper == GT_UMOD); |
| 3306 | if (typ == TYP_LONG) |
| 3307 | { |
| 3308 | INT64 kArg0 = ConstantValue<INT64>(arg0VN); |
| 3309 | INT64 kArg1 = ConstantValue<INT64>(arg1VN); |
| 3310 | |
| 3311 | if (IsIntZero(kArg1)) |
| 3312 | { |
| 3313 | // Don't fold, we have a divide by zero |
| 3314 | shouldFold = false; |
| 3315 | } |
| 3316 | else if (!isUnsigned || IsOverflowIntDiv(kArg0, kArg1)) |
| 3317 | { |
| 3318 | // Don't fold, we have a divide of INT64_MIN/-1 |
| 3319 | shouldFold = false; |
| 3320 | } |
| 3321 | } |
| 3322 | else if (typ == TYP_INT) |
| 3323 | { |
| 3324 | int kArg0 = ConstantValue<int>(arg0VN); |
| 3325 | int kArg1 = ConstantValue<int>(arg1VN); |
| 3326 | |
| 3327 | if (IsIntZero(kArg1)) |
| 3328 | { |
| 3329 | // Don't fold, we have a divide by zero |
| 3330 | shouldFold = false; |
| 3331 | } |
| 3332 | else if (!isUnsigned && IsOverflowIntDiv(kArg0, kArg1)) |
| 3333 | { |
| 3334 | // Don't fold, we have a divide of INT32_MIN/-1 |
| 3335 | shouldFold = false; |
| 3336 | } |
| 3337 | } |
| 3338 | else // strange value for 'typ' |
| 3339 | { |
| 3340 | assert(!"unexpected 'typ' in VNForFunc constant folding" ); |
| 3341 | shouldFold = false; |
| 3342 | } |
| 3343 | } |
| 3344 | } |
| 3345 | } |
| 3346 | } |
| 3347 | else // (func > VNF_Boundary) |
| 3348 | { |
| 3349 | // OK to fold, |
| 3350 | // Add checks in the future if we support folding of VNF_ADD_OVF, etc... |
| 3351 | } |
| 3352 | |
| 3353 | return shouldFold; |
| 3354 | } |
| 3355 | |
| 3356 | //---------------------------------------------------------------------------------------- |
| 3357 | // EvalUsingMathIdentity |
| 3358 | // - Attempts to evaluate 'func' by using mathimatical identities |
| 3359 | // that can be applied to 'func'. |
| 3360 | // |
| 3361 | // Arguments: |
| 3362 | // typ - The type of the resulting ValueNum produced by 'func' |
| 3363 | // func - Any binary VNFunc |
| 3364 | // arg0VN - The ValueNum of the first argument to 'func' |
| 3365 | // arg1VN - The ValueNum of the second argument to 'func' |
| 3366 | // |
| 3367 | // Return Value: - When successful a ValueNum for the expression is returned. |
| 3368 | // When unsuccessful NoVN is returned. |
| 3369 | // |
| 3370 | ValueNum ValueNumStore::EvalUsingMathIdentity(var_types typ, VNFunc func, ValueNum arg0VN, ValueNum arg1VN) |
| 3371 | { |
| 3372 | ValueNum resultVN = NoVN; // set default result to unsuccessful |
| 3373 | |
| 3374 | if (typ == TYP_BYREF) // We don't want/need to optimize a zero byref |
| 3375 | { |
| 3376 | return resultVN; // return the unsuccessful value |
| 3377 | } |
| 3378 | |
| 3379 | // We have ways of evaluating some binary functions. |
| 3380 | if (func < VNF_Boundary) |
| 3381 | { |
| 3382 | switch (genTreeOps(func)) |
| 3383 | { |
| 3384 | ValueNum ZeroVN; |
| 3385 | ValueNum OneVN; |
| 3386 | |
| 3387 | case GT_ADD: |
| 3388 | // (0 + x) == x |
| 3389 | // (x + 0) == x |
| 3390 | // This identity does not apply for floating point (when x == -0.0) |
| 3391 | // |
| 3392 | if (!varTypeIsFloating(typ)) |
| 3393 | { |
| 3394 | ZeroVN = VNZeroForType(typ); |
| 3395 | if (VNIsEqual(arg0VN, ZeroVN)) |
| 3396 | { |
| 3397 | resultVN = arg1VN; |
| 3398 | } |
| 3399 | else if (VNIsEqual(arg1VN, ZeroVN)) |
| 3400 | { |
| 3401 | resultVN = arg0VN; |
| 3402 | } |
| 3403 | } |
| 3404 | break; |
| 3405 | |
| 3406 | case GT_SUB: |
| 3407 | // (x - 0) == x |
| 3408 | // (x - x) == 0 |
| 3409 | // This identity does not apply for floating point (when x == -0.0) |
| 3410 | // |
| 3411 | if (!varTypeIsFloating(typ)) |
| 3412 | { |
| 3413 | ZeroVN = VNZeroForType(typ); |
| 3414 | if (VNIsEqual(arg1VN, ZeroVN)) |
| 3415 | { |
| 3416 | resultVN = arg0VN; |
| 3417 | } |
| 3418 | else if (VNIsEqual(arg0VN, arg1VN)) |
| 3419 | { |
| 3420 | resultVN = ZeroVN; |
| 3421 | } |
| 3422 | } |
| 3423 | break; |
| 3424 | |
| 3425 | case GT_MUL: |
| 3426 | // These identities do not apply for floating point |
| 3427 | // |
| 3428 | if (!varTypeIsFloating(typ)) |
| 3429 | { |
| 3430 | // (0 * x) == 0 |
| 3431 | // (x * 0) == 0 |
| 3432 | ZeroVN = VNZeroForType(typ); |
| 3433 | if (arg0VN == ZeroVN) |
| 3434 | { |
| 3435 | resultVN = ZeroVN; |
| 3436 | } |
| 3437 | else if (arg1VN == ZeroVN) |
| 3438 | { |
| 3439 | resultVN = ZeroVN; |
| 3440 | } |
| 3441 | |
| 3442 | // (x * 1) == x |
| 3443 | // (1 * x) == x |
| 3444 | OneVN = VNOneForType(typ); |
| 3445 | if (arg0VN == OneVN) |
| 3446 | { |
| 3447 | resultVN = arg1VN; |
| 3448 | } |
| 3449 | else if (arg1VN == OneVN) |
| 3450 | { |
| 3451 | resultVN = arg0VN; |
| 3452 | } |
| 3453 | } |
| 3454 | break; |
| 3455 | |
| 3456 | case GT_DIV: |
| 3457 | case GT_UDIV: |
| 3458 | // (x / 1) == x |
| 3459 | // This identity does not apply for floating point |
| 3460 | // |
| 3461 | if (!varTypeIsFloating(typ)) |
| 3462 | { |
| 3463 | OneVN = VNOneForType(typ); |
| 3464 | if (arg1VN == OneVN) |
| 3465 | { |
| 3466 | resultVN = arg0VN; |
| 3467 | } |
| 3468 | } |
| 3469 | break; |
| 3470 | |
| 3471 | case GT_OR: |
| 3472 | case GT_XOR: |
| 3473 | // (0 | x) == x, (0 ^ x) == x |
| 3474 | // (x | 0) == x, (x ^ 0) == x |
| 3475 | ZeroVN = VNZeroForType(typ); |
| 3476 | if (arg0VN == ZeroVN) |
| 3477 | { |
| 3478 | resultVN = arg1VN; |
| 3479 | } |
| 3480 | else if (arg1VN == ZeroVN) |
| 3481 | { |
| 3482 | resultVN = arg0VN; |
| 3483 | } |
| 3484 | break; |
| 3485 | |
| 3486 | case GT_AND: |
| 3487 | // (x & 0) == 0 |
| 3488 | // (0 & x) == 0 |
| 3489 | ZeroVN = VNZeroForType(typ); |
| 3490 | if (arg0VN == ZeroVN) |
| 3491 | { |
| 3492 | resultVN = ZeroVN; |
| 3493 | } |
| 3494 | else if (arg1VN == ZeroVN) |
| 3495 | { |
| 3496 | resultVN = ZeroVN; |
| 3497 | } |
| 3498 | break; |
| 3499 | |
| 3500 | case GT_LSH: |
| 3501 | case GT_RSH: |
| 3502 | case GT_RSZ: |
| 3503 | case GT_ROL: |
| 3504 | case GT_ROR: |
| 3505 | // (x << 0) == x |
| 3506 | // (x >> 0) == x |
| 3507 | // (x rol 0) == x |
| 3508 | // (x ror 0) == x |
| 3509 | ZeroVN = VNZeroForType(typ); |
| 3510 | if (arg1VN == ZeroVN) |
| 3511 | { |
| 3512 | resultVN = arg0VN; |
| 3513 | } |
| 3514 | // (0 << x) == 0 |
| 3515 | // (0 >> x) == 0 |
| 3516 | // (0 rol x) == 0 |
| 3517 | // (0 ror x) == 0 |
| 3518 | if (arg0VN == ZeroVN) |
| 3519 | { |
| 3520 | resultVN = ZeroVN; |
| 3521 | } |
| 3522 | break; |
| 3523 | |
| 3524 | case GT_EQ: |
| 3525 | case GT_GE: |
| 3526 | case GT_LE: |
| 3527 | // (x == x) == true, (null == non-null) == false, (non-null == null) == false |
| 3528 | // (x <= x) == true, (null <= non-null) == false, (non-null <= null) == false |
| 3529 | // (x >= x) == true, (null >= non-null) == false, (non-null >= null) == false |
| 3530 | // |
| 3531 | // This identity does not apply for floating point (when x == NaN) |
| 3532 | // |
| 3533 | if (!varTypeIsFloating(typ)) |
| 3534 | { |
| 3535 | if (VNIsEqual(arg0VN, arg1VN)) |
| 3536 | { |
| 3537 | resultVN = VNOneForType(typ); |
| 3538 | } |
| 3539 | if ((arg0VN == VNForNull()) && IsKnownNonNull(arg1VN)) |
| 3540 | { |
| 3541 | resultVN = VNZeroForType(typ); |
| 3542 | } |
| 3543 | if (IsKnownNonNull(arg0VN) && (arg1VN == VNForNull())) |
| 3544 | { |
| 3545 | resultVN = VNZeroForType(typ); |
| 3546 | } |
| 3547 | } |
| 3548 | break; |
| 3549 | |
| 3550 | case GT_NE: |
| 3551 | case GT_GT: |
| 3552 | case GT_LT: |
| 3553 | // (x != x) == false, (null != non-null) == true, (non-null != null) == true |
| 3554 | // (x > x) == false, (null == non-null) == true, (non-null == null) == true |
| 3555 | // (x < x) == false, (null == non-null) == true, (non-null == null) == true |
| 3556 | // |
| 3557 | // This identity does not apply for floating point (when x == NaN) |
| 3558 | // |
| 3559 | if (!varTypeIsFloating(typ)) |
| 3560 | { |
| 3561 | if (VNIsEqual(arg0VN, arg1VN)) |
| 3562 | { |
| 3563 | resultVN = VNZeroForType(typ); |
| 3564 | } |
| 3565 | if ((arg0VN == VNForNull()) && IsKnownNonNull(arg1VN)) |
| 3566 | { |
| 3567 | resultVN = VNOneForType(typ); |
| 3568 | } |
| 3569 | if (IsKnownNonNull(arg0VN) && (arg1VN == VNForNull())) |
| 3570 | { |
| 3571 | resultVN = VNOneForType(typ); |
| 3572 | } |
| 3573 | } |
| 3574 | break; |
| 3575 | |
| 3576 | default: |
| 3577 | break; |
| 3578 | } |
| 3579 | } |
| 3580 | else // must be a VNF_ function |
| 3581 | { |
| 3582 | // These identities do not apply for floating point (when x == NaN) |
| 3583 | // |
| 3584 | if (VNIsEqual(arg0VN, arg1VN)) |
| 3585 | { |
| 3586 | // x <= x == true |
| 3587 | // x >= x == true |
| 3588 | if ((func == VNF_LE_UN) || (func == VNF_GE_UN)) |
| 3589 | { |
| 3590 | resultVN = VNOneForType(typ); |
| 3591 | } |
| 3592 | // x < x == false |
| 3593 | // x > x == false |
| 3594 | else if ((func == VNF_LT_UN) || (func == VNF_GT_UN)) |
| 3595 | { |
| 3596 | resultVN = VNZeroForType(typ); |
| 3597 | } |
| 3598 | } |
| 3599 | } |
| 3600 | return resultVN; |
| 3601 | } |
| 3602 | |
| 3603 | //------------------------------------------------------------------------ |
| 3604 | // VNForExpr: Opaque value number that is equivalent to itself but unique |
| 3605 | // from all other value numbers. |
| 3606 | // |
| 3607 | // Arguments: |
| 3608 | // block - BasicBlock where the expression that produces this value occurs. |
| 3609 | // May be nullptr to force conservative "could be anywhere" interpretation. |
| 3610 | // typ - Type of the expression in the IR |
| 3611 | // |
| 3612 | // Return Value: |
| 3613 | // A new value number distinct from any previously generated, that compares as equal |
| 3614 | // to itself, but not any other value number, and is annotated with the given |
| 3615 | // type and block. |
| 3616 | |
| 3617 | ValueNum ValueNumStore::VNForExpr(BasicBlock* block, var_types typ) |
| 3618 | { |
| 3619 | BasicBlock::loopNumber loopNum; |
| 3620 | if (block == nullptr) |
| 3621 | { |
| 3622 | loopNum = MAX_LOOP_NUM; |
| 3623 | } |
| 3624 | else |
| 3625 | { |
| 3626 | loopNum = block->bbNatLoopNum; |
| 3627 | } |
| 3628 | |
| 3629 | // We always allocate a new, unique VN in this call. |
| 3630 | // The 'typ' is used to partition the allocation of VNs into different chunks. |
| 3631 | Chunk* c = GetAllocChunk(typ, CEA_None, loopNum); |
| 3632 | unsigned offsetWithinChunk = c->AllocVN(); |
| 3633 | ValueNum result = c->m_baseVN + offsetWithinChunk; |
| 3634 | return result; |
| 3635 | } |
| 3636 | |
| 3637 | ValueNum ValueNumStore::VNApplySelectors(ValueNumKind vnk, |
| 3638 | ValueNum map, |
| 3639 | FieldSeqNode* fieldSeq, |
| 3640 | size_t* wbFinalStructSize) |
| 3641 | { |
| 3642 | if (fieldSeq == nullptr) |
| 3643 | { |
| 3644 | return map; |
| 3645 | } |
| 3646 | else |
| 3647 | { |
| 3648 | assert(fieldSeq != FieldSeqStore::NotAField()); |
| 3649 | |
| 3650 | // Skip any "FirstElem" pseudo-fields or any "ConstantIndex" pseudo-fields |
| 3651 | if (fieldSeq->IsPseudoField()) |
| 3652 | { |
| 3653 | return VNApplySelectors(vnk, map, fieldSeq->m_next, wbFinalStructSize); |
| 3654 | } |
| 3655 | |
| 3656 | // Otherwise, is a real field handle. |
| 3657 | CORINFO_FIELD_HANDLE fldHnd = fieldSeq->m_fieldHnd; |
| 3658 | CORINFO_CLASS_HANDLE structHnd = NO_CLASS_HANDLE; |
| 3659 | ValueNum fldHndVN = VNForHandle(ssize_t(fldHnd), GTF_ICON_FIELD_HDL); |
| 3660 | noway_assert(fldHnd != nullptr); |
| 3661 | CorInfoType fieldCit = m_pComp->info.compCompHnd->getFieldType(fldHnd, &structHnd); |
| 3662 | var_types fieldType = JITtype2varType(fieldCit); |
| 3663 | |
| 3664 | size_t structSize = 0; |
| 3665 | if (varTypeIsStruct(fieldType)) |
| 3666 | { |
| 3667 | structSize = m_pComp->info.compCompHnd->getClassSize(structHnd); |
| 3668 | // We do not normalize the type field accesses during importation unless they |
| 3669 | // are used in a call, return or assignment. |
| 3670 | if ((fieldType == TYP_STRUCT) && (structSize <= m_pComp->largestEnregisterableStructSize())) |
| 3671 | { |
| 3672 | fieldType = m_pComp->impNormStructType(structHnd); |
| 3673 | } |
| 3674 | } |
| 3675 | if (wbFinalStructSize != nullptr) |
| 3676 | { |
| 3677 | *wbFinalStructSize = structSize; |
| 3678 | } |
| 3679 | |
| 3680 | #ifdef DEBUG |
| 3681 | if (m_pComp->verbose) |
| 3682 | { |
| 3683 | printf(" VNApplySelectors:\n" ); |
| 3684 | const char* modName; |
| 3685 | const char* fldName = m_pComp->eeGetFieldName(fldHnd, &modName); |
| 3686 | printf(" VNForHandle(%s) is " FMT_VN ", fieldType is %s" , fldName, fldHndVN, varTypeName(fieldType)); |
| 3687 | if (varTypeIsStruct(fieldType)) |
| 3688 | { |
| 3689 | printf(", size = %d" , structSize); |
| 3690 | } |
| 3691 | printf("\n" ); |
| 3692 | } |
| 3693 | #endif |
| 3694 | |
| 3695 | if (fieldSeq->m_next != nullptr) |
| 3696 | { |
| 3697 | ValueNum newMap = VNForMapSelect(vnk, fieldType, map, fldHndVN); |
| 3698 | return VNApplySelectors(vnk, newMap, fieldSeq->m_next, wbFinalStructSize); |
| 3699 | } |
| 3700 | else // end of fieldSeq |
| 3701 | { |
| 3702 | return VNForMapSelect(vnk, fieldType, map, fldHndVN); |
| 3703 | } |
| 3704 | } |
| 3705 | } |
| 3706 | |
| 3707 | ValueNum ValueNumStore::VNApplySelectorsTypeCheck(ValueNum elem, var_types indType, size_t elemStructSize) |
| 3708 | { |
| 3709 | var_types elemTyp = TypeOfVN(elem); |
| 3710 | |
| 3711 | // Check if the elemTyp is matching/compatible |
| 3712 | |
| 3713 | if (indType != elemTyp) |
| 3714 | { |
| 3715 | // We are trying to read from an 'elem' of type 'elemType' using 'indType' read |
| 3716 | |
| 3717 | size_t elemTypSize = (elemTyp == TYP_STRUCT) ? elemStructSize : genTypeSize(elemTyp); |
| 3718 | size_t indTypeSize = genTypeSize(indType); |
| 3719 | |
| 3720 | if ((indType == TYP_REF) && (varTypeIsStruct(elemTyp))) |
| 3721 | { |
| 3722 | // indType is TYP_REF and elemTyp is TYP_STRUCT |
| 3723 | // |
| 3724 | // We have a pointer to a static that is a Boxed Struct |
| 3725 | // |
| 3726 | return elem; |
| 3727 | } |
| 3728 | else if (indTypeSize > elemTypSize) |
| 3729 | { |
| 3730 | // Reading beyong the end of 'elem' |
| 3731 | |
| 3732 | // return a new unique value number |
| 3733 | elem = VNMakeNormalUnique(elem); |
| 3734 | |
| 3735 | JITDUMP(" *** Mismatched types in VNApplySelectorsTypeCheck (reading beyond the end)\n" ); |
| 3736 | } |
| 3737 | else if (varTypeIsStruct(indType)) |
| 3738 | { |
| 3739 | // return a new unique value number |
| 3740 | elem = VNMakeNormalUnique(elem); |
| 3741 | |
| 3742 | JITDUMP(" *** Mismatched types in VNApplySelectorsTypeCheck (indType is TYP_STRUCT)\n" ); |
| 3743 | } |
| 3744 | else |
| 3745 | { |
| 3746 | // We are trying to read an 'elem' of type 'elemType' using 'indType' read |
| 3747 | |
| 3748 | // insert a cast of elem to 'indType' |
| 3749 | elem = VNForCast(elem, indType, elemTyp); |
| 3750 | } |
| 3751 | } |
| 3752 | |
| 3753 | return elem; |
| 3754 | } |
| 3755 | |
| 3756 | ValueNum ValueNumStore::VNApplySelectorsAssignTypeCoerce(ValueNum elem, var_types indType, BasicBlock* block) |
| 3757 | { |
| 3758 | var_types elemTyp = TypeOfVN(elem); |
| 3759 | |
| 3760 | // Check if the elemTyp is matching/compatible |
| 3761 | |
| 3762 | if (indType != elemTyp) |
| 3763 | { |
| 3764 | bool isConstant = IsVNConstant(elem); |
| 3765 | if (isConstant && (elemTyp == genActualType(indType))) |
| 3766 | { |
| 3767 | // (i.e. We recorded a constant of TYP_INT for a TYP_BYTE field) |
| 3768 | } |
| 3769 | else |
| 3770 | { |
| 3771 | // We are trying to write an 'elem' of type 'elemType' using 'indType' store |
| 3772 | |
| 3773 | if (varTypeIsStruct(indType)) |
| 3774 | { |
| 3775 | // return a new unique value number |
| 3776 | elem = VNMakeNormalUnique(elem); |
| 3777 | |
| 3778 | JITDUMP(" *** Mismatched types in VNApplySelectorsAssignTypeCoerce (indType is TYP_STRUCT)\n" ); |
| 3779 | } |
| 3780 | else |
| 3781 | { |
| 3782 | // We are trying to write an 'elem' of type 'elemType' using 'indType' store |
| 3783 | |
| 3784 | // insert a cast of elem to 'indType' |
| 3785 | elem = VNForCast(elem, indType, elemTyp); |
| 3786 | |
| 3787 | JITDUMP(" Cast to %s inserted in VNApplySelectorsAssignTypeCoerce (elemTyp is %s)\n" , |
| 3788 | varTypeName(indType), varTypeName(elemTyp)); |
| 3789 | } |
| 3790 | } |
| 3791 | } |
| 3792 | return elem; |
| 3793 | } |
| 3794 | |
| 3795 | //------------------------------------------------------------------------ |
| 3796 | // VNApplySelectorsAssign: Compute the value number corresponding to "map" but with |
| 3797 | // the element at "fieldSeq" updated to have type "elem"; this is the new memory |
| 3798 | // value for an assignment of value "elem" into the memory at location "fieldSeq" |
| 3799 | // that occurs in block "block" and has type "indType" (so long as the selectors |
| 3800 | // into that memory occupy disjoint locations, which is true for GcHeap). |
| 3801 | // |
| 3802 | // Arguments: |
| 3803 | // vnk - Identifies whether to recurse to Conservative or Liberal value numbers |
| 3804 | // when recursing through phis |
| 3805 | // map - Value number for the field map before the assignment |
| 3806 | // elem - Value number for the value being stored (to the given field) |
| 3807 | // indType - Type of the indirection storing the value to the field |
| 3808 | // block - Block where the assignment occurs |
| 3809 | // |
| 3810 | // Return Value: |
| 3811 | // The value number corresponding to memory after the assignment. |
| 3812 | |
| 3813 | ValueNum ValueNumStore::VNApplySelectorsAssign( |
| 3814 | ValueNumKind vnk, ValueNum map, FieldSeqNode* fieldSeq, ValueNum elem, var_types indType, BasicBlock* block) |
| 3815 | { |
| 3816 | if (fieldSeq == nullptr) |
| 3817 | { |
| 3818 | return VNApplySelectorsAssignTypeCoerce(elem, indType, block); |
| 3819 | } |
| 3820 | else |
| 3821 | { |
| 3822 | assert(fieldSeq != FieldSeqStore::NotAField()); |
| 3823 | |
| 3824 | // Skip any "FirstElem" pseudo-fields or any "ConstantIndex" pseudo-fields |
| 3825 | // These will occur, at least, in struct static expressions, for method table offsets. |
| 3826 | if (fieldSeq->IsPseudoField()) |
| 3827 | { |
| 3828 | return VNApplySelectorsAssign(vnk, map, fieldSeq->m_next, elem, indType, block); |
| 3829 | } |
| 3830 | |
| 3831 | // Otherwise, fldHnd is a real field handle. |
| 3832 | CORINFO_FIELD_HANDLE fldHnd = fieldSeq->m_fieldHnd; |
| 3833 | ValueNum fldHndVN = VNForHandle(ssize_t(fldHnd), GTF_ICON_FIELD_HDL); |
| 3834 | noway_assert(fldHnd != nullptr); |
| 3835 | CorInfoType fieldCit = m_pComp->info.compCompHnd->getFieldType(fldHnd); |
| 3836 | var_types fieldType = JITtype2varType(fieldCit); |
| 3837 | |
| 3838 | ValueNum elemAfter; |
| 3839 | if (fieldSeq->m_next) |
| 3840 | { |
| 3841 | #ifdef DEBUG |
| 3842 | if (m_pComp->verbose) |
| 3843 | { |
| 3844 | const char* modName; |
| 3845 | const char* fldName = m_pComp->eeGetFieldName(fldHnd, &modName); |
| 3846 | printf(" VNForHandle(%s) is " FMT_VN ", fieldType is %s\n" , fldName, fldHndVN, |
| 3847 | varTypeName(fieldType)); |
| 3848 | } |
| 3849 | #endif |
| 3850 | ValueNum fseqMap = VNForMapSelect(vnk, fieldType, map, fldHndVN); |
| 3851 | elemAfter = VNApplySelectorsAssign(vnk, fseqMap, fieldSeq->m_next, elem, indType, block); |
| 3852 | } |
| 3853 | else |
| 3854 | { |
| 3855 | #ifdef DEBUG |
| 3856 | if (m_pComp->verbose) |
| 3857 | { |
| 3858 | if (fieldSeq->m_next == nullptr) |
| 3859 | { |
| 3860 | printf(" VNApplySelectorsAssign:\n" ); |
| 3861 | } |
| 3862 | const char* modName; |
| 3863 | const char* fldName = m_pComp->eeGetFieldName(fldHnd, &modName); |
| 3864 | printf(" VNForHandle(%s) is " FMT_VN ", fieldType is %s\n" , fldName, fldHndVN, |
| 3865 | varTypeName(fieldType)); |
| 3866 | } |
| 3867 | #endif |
| 3868 | elemAfter = VNApplySelectorsAssignTypeCoerce(elem, indType, block); |
| 3869 | } |
| 3870 | |
| 3871 | ValueNum newMap = VNForMapStore(fieldType, map, fldHndVN, elemAfter); |
| 3872 | return newMap; |
| 3873 | } |
| 3874 | } |
| 3875 | |
| 3876 | ValueNumPair ValueNumStore::VNPairApplySelectors(ValueNumPair map, FieldSeqNode* fieldSeq, var_types indType) |
| 3877 | { |
| 3878 | size_t structSize = 0; |
| 3879 | ValueNum liberalVN = VNApplySelectors(VNK_Liberal, map.GetLiberal(), fieldSeq, &structSize); |
| 3880 | liberalVN = VNApplySelectorsTypeCheck(liberalVN, indType, structSize); |
| 3881 | |
| 3882 | structSize = 0; |
| 3883 | ValueNum conservVN = VNApplySelectors(VNK_Conservative, map.GetConservative(), fieldSeq, &structSize); |
| 3884 | conservVN = VNApplySelectorsTypeCheck(conservVN, indType, structSize); |
| 3885 | |
| 3886 | return ValueNumPair(liberalVN, conservVN); |
| 3887 | } |
| 3888 | |
| 3889 | bool ValueNumStore::IsVNNotAField(ValueNum vn) |
| 3890 | { |
| 3891 | return m_chunks.GetNoExpand(GetChunkNum(vn))->m_attribs == CEA_NotAField; |
| 3892 | } |
| 3893 | |
| 3894 | ValueNum ValueNumStore::VNForFieldSeq(FieldSeqNode* fieldSeq) |
| 3895 | { |
| 3896 | if (fieldSeq == nullptr) |
| 3897 | { |
| 3898 | return VNForNull(); |
| 3899 | } |
| 3900 | else if (fieldSeq == FieldSeqStore::NotAField()) |
| 3901 | { |
| 3902 | // We always allocate a new, unique VN in this call. |
| 3903 | Chunk* c = GetAllocChunk(TYP_REF, CEA_NotAField); |
| 3904 | unsigned offsetWithinChunk = c->AllocVN(); |
| 3905 | ValueNum result = c->m_baseVN + offsetWithinChunk; |
| 3906 | return result; |
| 3907 | } |
| 3908 | else |
| 3909 | { |
| 3910 | ssize_t fieldHndVal = ssize_t(fieldSeq->m_fieldHnd); |
| 3911 | ValueNum fieldHndVN = VNForHandle(fieldHndVal, GTF_ICON_FIELD_HDL); |
| 3912 | ValueNum seqNextVN = VNForFieldSeq(fieldSeq->m_next); |
| 3913 | ValueNum fieldSeqVN = VNForFunc(TYP_REF, VNF_FieldSeq, fieldHndVN, seqNextVN); |
| 3914 | |
| 3915 | #ifdef DEBUG |
| 3916 | if (m_pComp->verbose) |
| 3917 | { |
| 3918 | printf(" FieldSeq" ); |
| 3919 | vnDump(m_pComp, fieldSeqVN); |
| 3920 | printf(" is " FMT_VN "\n" , fieldSeqVN); |
| 3921 | } |
| 3922 | #endif |
| 3923 | |
| 3924 | return fieldSeqVN; |
| 3925 | } |
| 3926 | } |
| 3927 | |
| 3928 | FieldSeqNode* ValueNumStore::FieldSeqVNToFieldSeq(ValueNum vn) |
| 3929 | { |
| 3930 | if (vn == VNForNull()) |
| 3931 | { |
| 3932 | return nullptr; |
| 3933 | } |
| 3934 | |
| 3935 | assert(IsVNFunc(vn)); |
| 3936 | |
| 3937 | VNFuncApp funcApp; |
| 3938 | GetVNFunc(vn, &funcApp); |
| 3939 | if (funcApp.m_func == VNF_NotAField) |
| 3940 | { |
| 3941 | return FieldSeqStore::NotAField(); |
| 3942 | } |
| 3943 | |
| 3944 | assert(funcApp.m_func == VNF_FieldSeq); |
| 3945 | const ssize_t fieldHndVal = ConstantValue<ssize_t>(funcApp.m_args[0]); |
| 3946 | FieldSeqNode* head = |
| 3947 | m_pComp->GetFieldSeqStore()->CreateSingleton(reinterpret_cast<CORINFO_FIELD_HANDLE>(fieldHndVal)); |
| 3948 | FieldSeqNode* tail = FieldSeqVNToFieldSeq(funcApp.m_args[1]); |
| 3949 | return m_pComp->GetFieldSeqStore()->Append(head, tail); |
| 3950 | } |
| 3951 | |
| 3952 | ValueNum ValueNumStore::FieldSeqVNAppend(ValueNum fsVN1, ValueNum fsVN2) |
| 3953 | { |
| 3954 | if (fsVN1 == VNForNull()) |
| 3955 | { |
| 3956 | return fsVN2; |
| 3957 | } |
| 3958 | |
| 3959 | assert(IsVNFunc(fsVN1)); |
| 3960 | |
| 3961 | VNFuncApp funcApp1; |
| 3962 | GetVNFunc(fsVN1, &funcApp1); |
| 3963 | |
| 3964 | if ((funcApp1.m_func == VNF_NotAField) || IsVNNotAField(fsVN2)) |
| 3965 | { |
| 3966 | return VNForFieldSeq(FieldSeqStore::NotAField()); |
| 3967 | } |
| 3968 | |
| 3969 | assert(funcApp1.m_func == VNF_FieldSeq); |
| 3970 | ValueNum tailRes = FieldSeqVNAppend(funcApp1.m_args[1], fsVN2); |
| 3971 | ValueNum fieldSeqVN = VNForFunc(TYP_REF, VNF_FieldSeq, funcApp1.m_args[0], tailRes); |
| 3972 | |
| 3973 | #ifdef DEBUG |
| 3974 | if (m_pComp->verbose) |
| 3975 | { |
| 3976 | printf(" fieldSeq " FMT_VN " is " , fieldSeqVN); |
| 3977 | vnDump(m_pComp, fieldSeqVN); |
| 3978 | printf("\n" ); |
| 3979 | } |
| 3980 | #endif |
| 3981 | |
| 3982 | return fieldSeqVN; |
| 3983 | } |
| 3984 | |
| 3985 | ValueNum ValueNumStore::ExtendPtrVN(GenTree* opA, GenTree* opB) |
| 3986 | { |
| 3987 | if (opB->OperGet() == GT_CNS_INT) |
| 3988 | { |
| 3989 | FieldSeqNode* fldSeq = opB->gtIntCon.gtFieldSeq; |
| 3990 | if (fldSeq != nullptr) |
| 3991 | { |
| 3992 | return ExtendPtrVN(opA, fldSeq); |
| 3993 | } |
| 3994 | } |
| 3995 | return NoVN; |
| 3996 | } |
| 3997 | |
| 3998 | ValueNum ValueNumStore::ExtendPtrVN(GenTree* opA, FieldSeqNode* fldSeq) |
| 3999 | { |
| 4000 | assert(fldSeq != nullptr); |
| 4001 | |
| 4002 | ValueNum res = NoVN; |
| 4003 | |
| 4004 | ValueNum opAvnWx = opA->gtVNPair.GetLiberal(); |
| 4005 | assert(VNIsValid(opAvnWx)); |
| 4006 | ValueNum opAvn; |
| 4007 | ValueNum opAvnx; |
| 4008 | VNUnpackExc(opAvnWx, &opAvn, &opAvnx); |
| 4009 | assert(VNIsValid(opAvn) && VNIsValid(opAvnx)); |
| 4010 | |
| 4011 | VNFuncApp funcApp; |
| 4012 | if (!GetVNFunc(opAvn, &funcApp)) |
| 4013 | { |
| 4014 | return res; |
| 4015 | } |
| 4016 | |
| 4017 | if (funcApp.m_func == VNF_PtrToLoc) |
| 4018 | { |
| 4019 | #ifdef DEBUG |
| 4020 | // For PtrToLoc, lib == cons. |
| 4021 | VNFuncApp consFuncApp; |
| 4022 | assert(GetVNFunc(VNConservativeNormalValue(opA->gtVNPair), &consFuncApp) && consFuncApp.Equals(funcApp)); |
| 4023 | #endif |
| 4024 | ValueNum fldSeqVN = VNForFieldSeq(fldSeq); |
| 4025 | res = VNForFunc(TYP_BYREF, VNF_PtrToLoc, funcApp.m_args[0], FieldSeqVNAppend(funcApp.m_args[1], fldSeqVN)); |
| 4026 | } |
| 4027 | else if (funcApp.m_func == VNF_PtrToStatic) |
| 4028 | { |
| 4029 | ValueNum fldSeqVN = VNForFieldSeq(fldSeq); |
| 4030 | res = VNForFunc(TYP_BYREF, VNF_PtrToStatic, FieldSeqVNAppend(funcApp.m_args[0], fldSeqVN)); |
| 4031 | } |
| 4032 | else if (funcApp.m_func == VNF_PtrToArrElem) |
| 4033 | { |
| 4034 | ValueNum fldSeqVN = VNForFieldSeq(fldSeq); |
| 4035 | res = VNForFunc(TYP_BYREF, VNF_PtrToArrElem, funcApp.m_args[0], funcApp.m_args[1], funcApp.m_args[2], |
| 4036 | FieldSeqVNAppend(funcApp.m_args[3], fldSeqVN)); |
| 4037 | } |
| 4038 | if (res != NoVN) |
| 4039 | { |
| 4040 | res = VNWithExc(res, opAvnx); |
| 4041 | } |
| 4042 | return res; |
| 4043 | } |
| 4044 | |
| 4045 | ValueNum Compiler::fgValueNumberArrIndexAssign(CORINFO_CLASS_HANDLE elemTypeEq, |
| 4046 | ValueNum arrVN, |
| 4047 | ValueNum inxVN, |
| 4048 | FieldSeqNode* fldSeq, |
| 4049 | ValueNum rhsVN, |
| 4050 | var_types indType) |
| 4051 | { |
| 4052 | bool invalidateArray = false; |
| 4053 | ValueNum elemTypeEqVN = vnStore->VNForHandle(ssize_t(elemTypeEq), GTF_ICON_CLASS_HDL); |
| 4054 | var_types arrElemType = DecodeElemType(elemTypeEq); |
| 4055 | ValueNum hAtArrType = vnStore->VNForMapSelect(VNK_Liberal, TYP_REF, fgCurMemoryVN[GcHeap], elemTypeEqVN); |
| 4056 | ValueNum hAtArrTypeAtArr = vnStore->VNForMapSelect(VNK_Liberal, TYP_REF, hAtArrType, arrVN); |
| 4057 | ValueNum hAtArrTypeAtArrAtInx = vnStore->VNForMapSelect(VNK_Liberal, arrElemType, hAtArrTypeAtArr, inxVN); |
| 4058 | |
| 4059 | ValueNum newValAtInx = ValueNumStore::NoVN; |
| 4060 | ValueNum newValAtArr = ValueNumStore::NoVN; |
| 4061 | ValueNum newValAtArrType = ValueNumStore::NoVN; |
| 4062 | |
| 4063 | if (fldSeq == FieldSeqStore::NotAField()) |
| 4064 | { |
| 4065 | // This doesn't represent a proper array access |
| 4066 | JITDUMP(" *** NotAField sequence encountered in fgValueNumberArrIndexAssign\n" ); |
| 4067 | |
| 4068 | // Store a new unique value for newValAtArrType |
| 4069 | newValAtArrType = vnStore->VNForExpr(compCurBB, TYP_REF); |
| 4070 | invalidateArray = true; |
| 4071 | } |
| 4072 | else |
| 4073 | { |
| 4074 | // Note that this does the right thing if "fldSeq" is null -- returns last "rhs" argument. |
| 4075 | // This is the value that should be stored at "arr[inx]". |
| 4076 | newValAtInx = |
| 4077 | vnStore->VNApplySelectorsAssign(VNK_Liberal, hAtArrTypeAtArrAtInx, fldSeq, rhsVN, indType, compCurBB); |
| 4078 | |
| 4079 | var_types arrElemFldType = arrElemType; // Uses arrElemType unless we has a non-null fldSeq |
| 4080 | if (vnStore->IsVNFunc(newValAtInx)) |
| 4081 | { |
| 4082 | VNFuncApp funcApp; |
| 4083 | vnStore->GetVNFunc(newValAtInx, &funcApp); |
| 4084 | if (funcApp.m_func == VNF_MapStore) |
| 4085 | { |
| 4086 | arrElemFldType = vnStore->TypeOfVN(newValAtInx); |
| 4087 | } |
| 4088 | } |
| 4089 | |
| 4090 | if (indType != arrElemFldType) |
| 4091 | { |
| 4092 | // Mismatched types: Store between different types (indType into array of arrElemFldType) |
| 4093 | // |
| 4094 | |
| 4095 | JITDUMP(" *** Mismatched types in fgValueNumberArrIndexAssign\n" ); |
| 4096 | |
| 4097 | // Store a new unique value for newValAtArrType |
| 4098 | newValAtArrType = vnStore->VNForExpr(compCurBB, TYP_REF); |
| 4099 | invalidateArray = true; |
| 4100 | } |
| 4101 | } |
| 4102 | |
| 4103 | if (!invalidateArray) |
| 4104 | { |
| 4105 | newValAtArr = vnStore->VNForMapStore(indType, hAtArrTypeAtArr, inxVN, newValAtInx); |
| 4106 | newValAtArrType = vnStore->VNForMapStore(TYP_REF, hAtArrType, arrVN, newValAtArr); |
| 4107 | } |
| 4108 | |
| 4109 | #ifdef DEBUG |
| 4110 | if (verbose) |
| 4111 | { |
| 4112 | printf(" hAtArrType " FMT_VN " is MapSelect(curGcHeap(" FMT_VN "), " , hAtArrType, fgCurMemoryVN[GcHeap]); |
| 4113 | |
| 4114 | if (arrElemType == TYP_STRUCT) |
| 4115 | { |
| 4116 | printf("%s[]).\n" , eeGetClassName(elemTypeEq)); |
| 4117 | } |
| 4118 | else |
| 4119 | { |
| 4120 | printf("%s[]).\n" , varTypeName(arrElemType)); |
| 4121 | } |
| 4122 | printf(" hAtArrTypeAtArr " FMT_VN " is MapSelect(hAtArrType(" FMT_VN "), arr=" FMT_VN ")\n" , hAtArrTypeAtArr, |
| 4123 | hAtArrType, arrVN); |
| 4124 | printf(" hAtArrTypeAtArrAtInx " FMT_VN " is MapSelect(hAtArrTypeAtArr(" FMT_VN "), inx=" FMT_VN "):%s\n" , |
| 4125 | hAtArrTypeAtArrAtInx, hAtArrTypeAtArr, inxVN, varTypeName(arrElemType)); |
| 4126 | |
| 4127 | if (!invalidateArray) |
| 4128 | { |
| 4129 | printf(" newValAtInd " FMT_VN " is " , newValAtInx); |
| 4130 | vnStore->vnDump(this, newValAtInx); |
| 4131 | printf("\n" ); |
| 4132 | |
| 4133 | printf(" newValAtArr " FMT_VN " is " , newValAtArr); |
| 4134 | vnStore->vnDump(this, newValAtArr); |
| 4135 | printf("\n" ); |
| 4136 | } |
| 4137 | |
| 4138 | printf(" newValAtArrType " FMT_VN " is " , newValAtArrType); |
| 4139 | vnStore->vnDump(this, newValAtArrType); |
| 4140 | printf("\n" ); |
| 4141 | } |
| 4142 | #endif // DEBUG |
| 4143 | |
| 4144 | return vnStore->VNForMapStore(TYP_REF, fgCurMemoryVN[GcHeap], elemTypeEqVN, newValAtArrType); |
| 4145 | } |
| 4146 | |
| 4147 | ValueNum Compiler::fgValueNumberArrIndexVal(GenTree* tree, VNFuncApp* pFuncApp, ValueNum addrXvn) |
| 4148 | { |
| 4149 | assert(vnStore->IsVNHandle(pFuncApp->m_args[0])); |
| 4150 | CORINFO_CLASS_HANDLE arrElemTypeEQ = CORINFO_CLASS_HANDLE(vnStore->ConstantValue<ssize_t>(pFuncApp->m_args[0])); |
| 4151 | ValueNum arrVN = pFuncApp->m_args[1]; |
| 4152 | ValueNum inxVN = pFuncApp->m_args[2]; |
| 4153 | FieldSeqNode* fldSeq = vnStore->FieldSeqVNToFieldSeq(pFuncApp->m_args[3]); |
| 4154 | return fgValueNumberArrIndexVal(tree, arrElemTypeEQ, arrVN, inxVN, addrXvn, fldSeq); |
| 4155 | } |
| 4156 | |
| 4157 | ValueNum Compiler::fgValueNumberArrIndexVal(GenTree* tree, |
| 4158 | CORINFO_CLASS_HANDLE elemTypeEq, |
| 4159 | ValueNum arrVN, |
| 4160 | ValueNum inxVN, |
| 4161 | ValueNum excVN, |
| 4162 | FieldSeqNode* fldSeq) |
| 4163 | { |
| 4164 | assert(tree == nullptr || tree->OperIsIndir()); |
| 4165 | |
| 4166 | // The VN inputs are required to be non-exceptional values. |
| 4167 | assert(arrVN == vnStore->VNNormalValue(arrVN)); |
| 4168 | assert(inxVN == vnStore->VNNormalValue(inxVN)); |
| 4169 | |
| 4170 | var_types elemTyp = DecodeElemType(elemTypeEq); |
| 4171 | var_types indType = (tree == nullptr) ? elemTyp : tree->TypeGet(); |
| 4172 | ValueNum selectedElem; |
| 4173 | |
| 4174 | if (fldSeq == FieldSeqStore::NotAField()) |
| 4175 | { |
| 4176 | // This doesn't represent a proper array access |
| 4177 | JITDUMP(" *** NotAField sequence encountered in fgValueNumberArrIndexVal\n" ); |
| 4178 | |
| 4179 | // a new unique value number |
| 4180 | selectedElem = vnStore->VNForExpr(compCurBB, elemTyp); |
| 4181 | |
| 4182 | #ifdef DEBUG |
| 4183 | if (verbose) |
| 4184 | { |
| 4185 | printf(" IND of PtrToArrElem is unique VN " FMT_VN ".\n" , selectedElem); |
| 4186 | } |
| 4187 | #endif // DEBUG |
| 4188 | |
| 4189 | if (tree != nullptr) |
| 4190 | { |
| 4191 | tree->gtVNPair.SetBoth(selectedElem); |
| 4192 | } |
| 4193 | } |
| 4194 | else |
| 4195 | { |
| 4196 | ValueNum elemTypeEqVN = vnStore->VNForHandle(ssize_t(elemTypeEq), GTF_ICON_CLASS_HDL); |
| 4197 | ValueNum hAtArrType = vnStore->VNForMapSelect(VNK_Liberal, TYP_REF, fgCurMemoryVN[GcHeap], elemTypeEqVN); |
| 4198 | ValueNum hAtArrTypeAtArr = vnStore->VNForMapSelect(VNK_Liberal, TYP_REF, hAtArrType, arrVN); |
| 4199 | ValueNum wholeElem = vnStore->VNForMapSelect(VNK_Liberal, elemTyp, hAtArrTypeAtArr, inxVN); |
| 4200 | |
| 4201 | #ifdef DEBUG |
| 4202 | if (verbose) |
| 4203 | { |
| 4204 | printf(" hAtArrType " FMT_VN " is MapSelect(curGcHeap(" FMT_VN "), " , hAtArrType, fgCurMemoryVN[GcHeap]); |
| 4205 | if (elemTyp == TYP_STRUCT) |
| 4206 | { |
| 4207 | printf("%s[]).\n" , eeGetClassName(elemTypeEq)); |
| 4208 | } |
| 4209 | else |
| 4210 | { |
| 4211 | printf("%s[]).\n" , varTypeName(elemTyp)); |
| 4212 | } |
| 4213 | |
| 4214 | printf(" hAtArrTypeAtArr " FMT_VN " is MapSelect(hAtArrType(" FMT_VN "), arr=" FMT_VN ").\n" , |
| 4215 | hAtArrTypeAtArr, hAtArrType, arrVN); |
| 4216 | |
| 4217 | printf(" wholeElem " FMT_VN " is MapSelect(hAtArrTypeAtArr(" FMT_VN "), ind=" FMT_VN ").\n" , wholeElem, |
| 4218 | hAtArrTypeAtArr, inxVN); |
| 4219 | } |
| 4220 | #endif // DEBUG |
| 4221 | |
| 4222 | selectedElem = wholeElem; |
| 4223 | size_t elemStructSize = 0; |
| 4224 | if (fldSeq) |
| 4225 | { |
| 4226 | selectedElem = vnStore->VNApplySelectors(VNK_Liberal, wholeElem, fldSeq, &elemStructSize); |
| 4227 | elemTyp = vnStore->TypeOfVN(selectedElem); |
| 4228 | } |
| 4229 | selectedElem = vnStore->VNApplySelectorsTypeCheck(selectedElem, indType, elemStructSize); |
| 4230 | selectedElem = vnStore->VNWithExc(selectedElem, excVN); |
| 4231 | |
| 4232 | #ifdef DEBUG |
| 4233 | if (verbose && (selectedElem != wholeElem)) |
| 4234 | { |
| 4235 | printf(" selectedElem is " FMT_VN " after applying selectors.\n" , selectedElem); |
| 4236 | } |
| 4237 | #endif // DEBUG |
| 4238 | |
| 4239 | if (tree != nullptr) |
| 4240 | { |
| 4241 | tree->gtVNPair.SetLiberal(selectedElem); |
| 4242 | |
| 4243 | // TODO-CQ: what to do here about exceptions? We don't have the array and ind conservative |
| 4244 | // values, so we don't have their exceptions. Maybe we should. |
| 4245 | tree->gtVNPair.SetConservative(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 4246 | } |
| 4247 | } |
| 4248 | |
| 4249 | return selectedElem; |
| 4250 | } |
| 4251 | |
| 4252 | ValueNum Compiler::fgValueNumberByrefExposedLoad(var_types type, ValueNum pointerVN) |
| 4253 | { |
| 4254 | ValueNum memoryVN = fgCurMemoryVN[ByrefExposed]; |
| 4255 | // The memoization for VNFunc applications does not factor in the result type, so |
| 4256 | // VNF_ByrefExposedLoad takes the loaded type as an explicit parameter. |
| 4257 | ValueNum typeVN = vnStore->VNForIntCon(type); |
| 4258 | ValueNum loadVN = |
| 4259 | vnStore->VNForFunc(type, VNF_ByrefExposedLoad, typeVN, vnStore->VNNormalValue(pointerVN), memoryVN); |
| 4260 | |
| 4261 | return loadVN; |
| 4262 | } |
| 4263 | |
| 4264 | var_types ValueNumStore::TypeOfVN(ValueNum vn) |
| 4265 | { |
| 4266 | if (vn == NoVN) |
| 4267 | { |
| 4268 | return TYP_UNDEF; |
| 4269 | } |
| 4270 | |
| 4271 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4272 | return c->m_typ; |
| 4273 | } |
| 4274 | |
| 4275 | //------------------------------------------------------------------------ |
| 4276 | // LoopOfVN: If the given value number is an opaque one associated with a particular |
| 4277 | // expression in the IR, give the loop number where the expression occurs; otherwise, |
| 4278 | // returns MAX_LOOP_NUM. |
| 4279 | // |
| 4280 | // Arguments: |
| 4281 | // vn - Value number to query |
| 4282 | // |
| 4283 | // Return Value: |
| 4284 | // The correspondingblock's bbNatLoopNum, which may be BasicBlock::NOT_IN_LOOP. |
| 4285 | // Returns MAX_LOOP_NUM if this VN is not an opaque value number associated with |
| 4286 | // a particular expression/location in the IR. |
| 4287 | |
| 4288 | BasicBlock::loopNumber ValueNumStore::LoopOfVN(ValueNum vn) |
| 4289 | { |
| 4290 | if (vn == NoVN) |
| 4291 | { |
| 4292 | return MAX_LOOP_NUM; |
| 4293 | } |
| 4294 | |
| 4295 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4296 | return c->m_loopNum; |
| 4297 | } |
| 4298 | |
| 4299 | bool ValueNumStore::IsVNConstant(ValueNum vn) |
| 4300 | { |
| 4301 | if (vn == NoVN) |
| 4302 | { |
| 4303 | return false; |
| 4304 | } |
| 4305 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4306 | if (c->m_attribs == CEA_Const) |
| 4307 | { |
| 4308 | return vn != VNForVoid(); // Void is not a "real" constant -- in the sense that it represents no value. |
| 4309 | } |
| 4310 | else |
| 4311 | { |
| 4312 | return c->m_attribs == CEA_Handle; |
| 4313 | } |
| 4314 | } |
| 4315 | |
| 4316 | bool ValueNumStore::IsVNInt32Constant(ValueNum vn) |
| 4317 | { |
| 4318 | if (!IsVNConstant(vn)) |
| 4319 | { |
| 4320 | return false; |
| 4321 | } |
| 4322 | |
| 4323 | return TypeOfVN(vn) == TYP_INT; |
| 4324 | } |
| 4325 | |
| 4326 | unsigned ValueNumStore::GetHandleFlags(ValueNum vn) |
| 4327 | { |
| 4328 | assert(IsVNHandle(vn)); |
| 4329 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4330 | unsigned offset = ChunkOffset(vn); |
| 4331 | VNHandle* handle = &reinterpret_cast<VNHandle*>(c->m_defs)[offset]; |
| 4332 | return handle->m_flags; |
| 4333 | } |
| 4334 | |
| 4335 | bool ValueNumStore::IsVNHandle(ValueNum vn) |
| 4336 | { |
| 4337 | if (vn == NoVN) |
| 4338 | { |
| 4339 | return false; |
| 4340 | } |
| 4341 | |
| 4342 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4343 | return c->m_attribs == CEA_Handle; |
| 4344 | } |
| 4345 | |
| 4346 | bool ValueNumStore::IsVNConstantBound(ValueNum vn) |
| 4347 | { |
| 4348 | // Do we have "var < 100"? |
| 4349 | if (vn == NoVN) |
| 4350 | { |
| 4351 | return false; |
| 4352 | } |
| 4353 | |
| 4354 | VNFuncApp funcAttr; |
| 4355 | if (!GetVNFunc(vn, &funcAttr)) |
| 4356 | { |
| 4357 | return false; |
| 4358 | } |
| 4359 | if (funcAttr.m_func != (VNFunc)GT_LE && funcAttr.m_func != (VNFunc)GT_GE && funcAttr.m_func != (VNFunc)GT_LT && |
| 4360 | funcAttr.m_func != (VNFunc)GT_GT) |
| 4361 | { |
| 4362 | return false; |
| 4363 | } |
| 4364 | |
| 4365 | return IsVNInt32Constant(funcAttr.m_args[0]) != IsVNInt32Constant(funcAttr.m_args[1]); |
| 4366 | } |
| 4367 | |
| 4368 | void ValueNumStore::GetConstantBoundInfo(ValueNum vn, ConstantBoundInfo* info) |
| 4369 | { |
| 4370 | assert(IsVNConstantBound(vn)); |
| 4371 | assert(info); |
| 4372 | |
| 4373 | // Do we have var < 100? |
| 4374 | VNFuncApp funcAttr; |
| 4375 | GetVNFunc(vn, &funcAttr); |
| 4376 | |
| 4377 | bool isOp1Const = IsVNInt32Constant(funcAttr.m_args[1]); |
| 4378 | |
| 4379 | if (isOp1Const) |
| 4380 | { |
| 4381 | info->cmpOper = funcAttr.m_func; |
| 4382 | info->cmpOpVN = funcAttr.m_args[0]; |
| 4383 | info->constVal = GetConstantInt32(funcAttr.m_args[1]); |
| 4384 | } |
| 4385 | else |
| 4386 | { |
| 4387 | info->cmpOper = GenTree::SwapRelop((genTreeOps)funcAttr.m_func); |
| 4388 | info->cmpOpVN = funcAttr.m_args[1]; |
| 4389 | info->constVal = GetConstantInt32(funcAttr.m_args[0]); |
| 4390 | } |
| 4391 | } |
| 4392 | |
| 4393 | //------------------------------------------------------------------------ |
| 4394 | // IsVNArrLenUnsignedBound: Checks if the specified vn represents an expression |
| 4395 | // such as "(uint)i < (uint)len" that implies that the index is valid |
| 4396 | // (0 <= i && i < a.len). |
| 4397 | // |
| 4398 | // Arguments: |
| 4399 | // vn - Value number to query |
| 4400 | // info - Pointer to an UnsignedCompareCheckedBoundInfo object to return information about |
| 4401 | // the expression. Not populated if the vn expression isn't suitable (e.g. i <= len). |
| 4402 | // This enables optCreateJTrueBoundAssertion to immediatly create an OAK_NO_THROW |
| 4403 | // assertion instead of the OAK_EQUAL/NOT_EQUAL assertions created by signed compares |
| 4404 | // (IsVNCompareCheckedBound, IsVNCompareCheckedBoundArith) that require further processing. |
| 4405 | |
| 4406 | bool ValueNumStore::IsVNUnsignedCompareCheckedBound(ValueNum vn, UnsignedCompareCheckedBoundInfo* info) |
| 4407 | { |
| 4408 | VNFuncApp funcApp; |
| 4409 | |
| 4410 | if (GetVNFunc(vn, &funcApp)) |
| 4411 | { |
| 4412 | if ((funcApp.m_func == VNF_LT_UN) || (funcApp.m_func == VNF_GE_UN)) |
| 4413 | { |
| 4414 | // We only care about "(uint)i < (uint)len" and its negation "(uint)i >= (uint)len" |
| 4415 | if (IsVNCheckedBound(funcApp.m_args[1])) |
| 4416 | { |
| 4417 | info->vnIdx = funcApp.m_args[0]; |
| 4418 | info->cmpOper = funcApp.m_func; |
| 4419 | info->vnBound = funcApp.m_args[1]; |
| 4420 | return true; |
| 4421 | } |
| 4422 | } |
| 4423 | else if ((funcApp.m_func == VNF_GT_UN) || (funcApp.m_func == VNF_LE_UN)) |
| 4424 | { |
| 4425 | // We only care about "(uint)a.len > (uint)i" and its negation "(uint)a.len <= (uint)i" |
| 4426 | if (IsVNCheckedBound(funcApp.m_args[0])) |
| 4427 | { |
| 4428 | info->vnIdx = funcApp.m_args[1]; |
| 4429 | // Let's keep a consistent operand order - it's always i < len, never len > i |
| 4430 | info->cmpOper = (funcApp.m_func == VNF_GT_UN) ? VNF_LT_UN : VNF_GE_UN; |
| 4431 | info->vnBound = funcApp.m_args[0]; |
| 4432 | return true; |
| 4433 | } |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | return false; |
| 4438 | } |
| 4439 | |
| 4440 | bool ValueNumStore::IsVNCompareCheckedBound(ValueNum vn) |
| 4441 | { |
| 4442 | // Do we have "var < len"? |
| 4443 | if (vn == NoVN) |
| 4444 | { |
| 4445 | return false; |
| 4446 | } |
| 4447 | |
| 4448 | VNFuncApp funcAttr; |
| 4449 | if (!GetVNFunc(vn, &funcAttr)) |
| 4450 | { |
| 4451 | return false; |
| 4452 | } |
| 4453 | if (funcAttr.m_func != (VNFunc)GT_LE && funcAttr.m_func != (VNFunc)GT_GE && funcAttr.m_func != (VNFunc)GT_LT && |
| 4454 | funcAttr.m_func != (VNFunc)GT_GT) |
| 4455 | { |
| 4456 | return false; |
| 4457 | } |
| 4458 | if (!IsVNCheckedBound(funcAttr.m_args[0]) && !IsVNCheckedBound(funcAttr.m_args[1])) |
| 4459 | { |
| 4460 | return false; |
| 4461 | } |
| 4462 | |
| 4463 | return true; |
| 4464 | } |
| 4465 | |
| 4466 | void ValueNumStore::GetCompareCheckedBound(ValueNum vn, CompareCheckedBoundArithInfo* info) |
| 4467 | { |
| 4468 | assert(IsVNCompareCheckedBound(vn)); |
| 4469 | |
| 4470 | // Do we have var < a.len? |
| 4471 | VNFuncApp funcAttr; |
| 4472 | GetVNFunc(vn, &funcAttr); |
| 4473 | |
| 4474 | bool isOp1CheckedBound = IsVNCheckedBound(funcAttr.m_args[1]); |
| 4475 | if (isOp1CheckedBound) |
| 4476 | { |
| 4477 | info->cmpOper = funcAttr.m_func; |
| 4478 | info->cmpOp = funcAttr.m_args[0]; |
| 4479 | info->vnBound = funcAttr.m_args[1]; |
| 4480 | } |
| 4481 | else |
| 4482 | { |
| 4483 | info->cmpOper = GenTree::SwapRelop((genTreeOps)funcAttr.m_func); |
| 4484 | info->cmpOp = funcAttr.m_args[1]; |
| 4485 | info->vnBound = funcAttr.m_args[0]; |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | bool ValueNumStore::IsVNCheckedBoundArith(ValueNum vn) |
| 4490 | { |
| 4491 | // Do we have "a.len +or- var" |
| 4492 | if (vn == NoVN) |
| 4493 | { |
| 4494 | return false; |
| 4495 | } |
| 4496 | |
| 4497 | VNFuncApp funcAttr; |
| 4498 | |
| 4499 | return GetVNFunc(vn, &funcAttr) && // vn is a func. |
| 4500 | (funcAttr.m_func == (VNFunc)GT_ADD || funcAttr.m_func == (VNFunc)GT_SUB) && // the func is +/- |
| 4501 | (IsVNCheckedBound(funcAttr.m_args[0]) || IsVNCheckedBound(funcAttr.m_args[1])); // either op1 or op2 is a.len |
| 4502 | } |
| 4503 | |
| 4504 | void ValueNumStore::GetCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info) |
| 4505 | { |
| 4506 | // Do we have a.len +/- var? |
| 4507 | assert(IsVNCheckedBoundArith(vn)); |
| 4508 | VNFuncApp funcArith; |
| 4509 | GetVNFunc(vn, &funcArith); |
| 4510 | |
| 4511 | bool isOp1CheckedBound = IsVNCheckedBound(funcArith.m_args[1]); |
| 4512 | if (isOp1CheckedBound) |
| 4513 | { |
| 4514 | info->arrOper = funcArith.m_func; |
| 4515 | info->arrOp = funcArith.m_args[0]; |
| 4516 | info->vnBound = funcArith.m_args[1]; |
| 4517 | } |
| 4518 | else |
| 4519 | { |
| 4520 | info->arrOper = funcArith.m_func; |
| 4521 | info->arrOp = funcArith.m_args[1]; |
| 4522 | info->vnBound = funcArith.m_args[0]; |
| 4523 | } |
| 4524 | } |
| 4525 | |
| 4526 | bool ValueNumStore::IsVNCompareCheckedBoundArith(ValueNum vn) |
| 4527 | { |
| 4528 | // Do we have: "var < a.len - var" |
| 4529 | if (vn == NoVN) |
| 4530 | { |
| 4531 | return false; |
| 4532 | } |
| 4533 | |
| 4534 | VNFuncApp funcAttr; |
| 4535 | if (!GetVNFunc(vn, &funcAttr)) |
| 4536 | { |
| 4537 | return false; |
| 4538 | } |
| 4539 | |
| 4540 | // Suitable comparator. |
| 4541 | if (funcAttr.m_func != (VNFunc)GT_LE && funcAttr.m_func != (VNFunc)GT_GE && funcAttr.m_func != (VNFunc)GT_LT && |
| 4542 | funcAttr.m_func != (VNFunc)GT_GT) |
| 4543 | { |
| 4544 | return false; |
| 4545 | } |
| 4546 | |
| 4547 | // Either the op0 or op1 is arr len arithmetic. |
| 4548 | if (!IsVNCheckedBoundArith(funcAttr.m_args[0]) && !IsVNCheckedBoundArith(funcAttr.m_args[1])) |
| 4549 | { |
| 4550 | return false; |
| 4551 | } |
| 4552 | |
| 4553 | return true; |
| 4554 | } |
| 4555 | |
| 4556 | void ValueNumStore::GetCompareCheckedBoundArithInfo(ValueNum vn, CompareCheckedBoundArithInfo* info) |
| 4557 | { |
| 4558 | assert(IsVNCompareCheckedBoundArith(vn)); |
| 4559 | |
| 4560 | VNFuncApp funcAttr; |
| 4561 | GetVNFunc(vn, &funcAttr); |
| 4562 | |
| 4563 | // Check whether op0 or op1 is checked bound arithmetic. |
| 4564 | bool isOp1CheckedBoundArith = IsVNCheckedBoundArith(funcAttr.m_args[1]); |
| 4565 | if (isOp1CheckedBoundArith) |
| 4566 | { |
| 4567 | info->cmpOper = funcAttr.m_func; |
| 4568 | info->cmpOp = funcAttr.m_args[0]; |
| 4569 | GetCheckedBoundArithInfo(funcAttr.m_args[1], info); |
| 4570 | } |
| 4571 | else |
| 4572 | { |
| 4573 | info->cmpOper = GenTree::SwapRelop((genTreeOps)funcAttr.m_func); |
| 4574 | info->cmpOp = funcAttr.m_args[1]; |
| 4575 | GetCheckedBoundArithInfo(funcAttr.m_args[0], info); |
| 4576 | } |
| 4577 | } |
| 4578 | |
| 4579 | ValueNum ValueNumStore::GetArrForLenVn(ValueNum vn) |
| 4580 | { |
| 4581 | if (vn == NoVN) |
| 4582 | { |
| 4583 | return NoVN; |
| 4584 | } |
| 4585 | |
| 4586 | VNFuncApp funcAttr; |
| 4587 | if (GetVNFunc(vn, &funcAttr) && funcAttr.m_func == (VNFunc)GT_ARR_LENGTH) |
| 4588 | { |
| 4589 | return funcAttr.m_args[0]; |
| 4590 | } |
| 4591 | return NoVN; |
| 4592 | } |
| 4593 | |
| 4594 | bool ValueNumStore::IsVNNewArr(ValueNum vn, VNFuncApp* funcApp) |
| 4595 | { |
| 4596 | if (vn == NoVN) |
| 4597 | { |
| 4598 | return false; |
| 4599 | } |
| 4600 | bool result = false; |
| 4601 | if (GetVNFunc(vn, funcApp)) |
| 4602 | { |
| 4603 | result = (funcApp->m_func == VNF_JitNewArr) || (funcApp->m_func == VNF_JitReadyToRunNewArr); |
| 4604 | } |
| 4605 | return result; |
| 4606 | } |
| 4607 | |
| 4608 | int ValueNumStore::GetNewArrSize(ValueNum vn) |
| 4609 | { |
| 4610 | VNFuncApp funcApp; |
| 4611 | if (IsVNNewArr(vn, &funcApp)) |
| 4612 | { |
| 4613 | ValueNum arg1VN = funcApp.m_args[1]; |
| 4614 | if (IsVNConstant(arg1VN) && TypeOfVN(arg1VN) == TYP_INT) |
| 4615 | { |
| 4616 | return ConstantValue<int>(arg1VN); |
| 4617 | } |
| 4618 | } |
| 4619 | return 0; |
| 4620 | } |
| 4621 | |
| 4622 | bool ValueNumStore::IsVNArrLen(ValueNum vn) |
| 4623 | { |
| 4624 | if (vn == NoVN) |
| 4625 | { |
| 4626 | return false; |
| 4627 | } |
| 4628 | VNFuncApp funcAttr; |
| 4629 | return (GetVNFunc(vn, &funcAttr) && funcAttr.m_func == (VNFunc)GT_ARR_LENGTH); |
| 4630 | } |
| 4631 | |
| 4632 | bool ValueNumStore::IsVNCheckedBound(ValueNum vn) |
| 4633 | { |
| 4634 | bool dummy; |
| 4635 | if (m_checkedBoundVNs.TryGetValue(vn, &dummy)) |
| 4636 | { |
| 4637 | // This VN appeared as the conservative VN of the length argument of some |
| 4638 | // GT_ARR_BOUND node. |
| 4639 | return true; |
| 4640 | } |
| 4641 | if (IsVNArrLen(vn)) |
| 4642 | { |
| 4643 | // Even if we haven't seen this VN in a bounds check, if it is an array length |
| 4644 | // VN then consider it a checked bound VN. This facilitates better bounds check |
| 4645 | // removal by ensuring that compares against array lengths get put in the |
| 4646 | // optCseCheckedBoundMap; such an array length might get CSEd with one that was |
| 4647 | // directly used in a bounds check, and having the map entry will let us update |
| 4648 | // the compare's VN so that OptimizeRangeChecks can recognize such compares. |
| 4649 | return true; |
| 4650 | } |
| 4651 | |
| 4652 | return false; |
| 4653 | } |
| 4654 | |
| 4655 | void ValueNumStore::SetVNIsCheckedBound(ValueNum vn) |
| 4656 | { |
| 4657 | // This is meant to flag VNs for lengths that aren't known at compile time, so we can |
| 4658 | // form and propagate assertions about them. Ensure that callers filter out constant |
| 4659 | // VNs since they're not what we're looking to flag, and assertion prop can reason |
| 4660 | // directly about constants. |
| 4661 | assert(!IsVNConstant(vn)); |
| 4662 | m_checkedBoundVNs.AddOrUpdate(vn, true); |
| 4663 | } |
| 4664 | |
| 4665 | ValueNum ValueNumStore::EvalMathFuncUnary(var_types typ, CorInfoIntrinsics gtMathFN, ValueNum arg0VN) |
| 4666 | { |
| 4667 | assert(arg0VN == VNNormalValue(arg0VN)); |
| 4668 | |
| 4669 | // If the math intrinsic is not implemented by target-specific instructions, such as implemented |
| 4670 | // by user calls, then don't do constant folding on it. This minimizes precision loss. |
| 4671 | |
| 4672 | if (IsVNConstant(arg0VN) && m_pComp->IsTargetIntrinsic(gtMathFN)) |
| 4673 | { |
| 4674 | assert(varTypeIsFloating(TypeOfVN(arg0VN))); |
| 4675 | |
| 4676 | if (typ == TYP_DOUBLE) |
| 4677 | { |
| 4678 | // Both operand and its result must be of the same floating point type. |
| 4679 | assert(typ == TypeOfVN(arg0VN)); |
| 4680 | double arg0Val = GetConstantDouble(arg0VN); |
| 4681 | |
| 4682 | double res = 0.0; |
| 4683 | switch (gtMathFN) |
| 4684 | { |
| 4685 | case CORINFO_INTRINSIC_Sin: |
| 4686 | res = sin(arg0Val); |
| 4687 | break; |
| 4688 | case CORINFO_INTRINSIC_Cos: |
| 4689 | res = cos(arg0Val); |
| 4690 | break; |
| 4691 | case CORINFO_INTRINSIC_Sqrt: |
| 4692 | res = sqrt(arg0Val); |
| 4693 | break; |
| 4694 | case CORINFO_INTRINSIC_Abs: |
| 4695 | res = fabs(arg0Val); |
| 4696 | break; |
| 4697 | case CORINFO_INTRINSIC_Ceiling: |
| 4698 | res = ceil(arg0Val); |
| 4699 | break; |
| 4700 | case CORINFO_INTRINSIC_Floor: |
| 4701 | res = floor(arg0Val); |
| 4702 | break; |
| 4703 | case CORINFO_INTRINSIC_Round: |
| 4704 | res = FloatingPointUtils::round(arg0Val); |
| 4705 | break; |
| 4706 | default: |
| 4707 | unreached(); // the above are the only math intrinsics at the time of this writing. |
| 4708 | } |
| 4709 | |
| 4710 | return VNForDoubleCon(res); |
| 4711 | } |
| 4712 | else if (typ == TYP_FLOAT) |
| 4713 | { |
| 4714 | // Both operand and its result must be of the same floating point type. |
| 4715 | assert(typ == TypeOfVN(arg0VN)); |
| 4716 | float arg0Val = GetConstantSingle(arg0VN); |
| 4717 | |
| 4718 | float res = 0.0f; |
| 4719 | switch (gtMathFN) |
| 4720 | { |
| 4721 | case CORINFO_INTRINSIC_Sin: |
| 4722 | res = sinf(arg0Val); |
| 4723 | break; |
| 4724 | case CORINFO_INTRINSIC_Cos: |
| 4725 | res = cosf(arg0Val); |
| 4726 | break; |
| 4727 | case CORINFO_INTRINSIC_Sqrt: |
| 4728 | res = sqrtf(arg0Val); |
| 4729 | break; |
| 4730 | case CORINFO_INTRINSIC_Abs: |
| 4731 | res = fabsf(arg0Val); |
| 4732 | break; |
| 4733 | case CORINFO_INTRINSIC_Ceiling: |
| 4734 | res = ceilf(arg0Val); |
| 4735 | break; |
| 4736 | case CORINFO_INTRINSIC_Floor: |
| 4737 | res = floorf(arg0Val); |
| 4738 | break; |
| 4739 | case CORINFO_INTRINSIC_Round: |
| 4740 | res = FloatingPointUtils::round(arg0Val); |
| 4741 | break; |
| 4742 | default: |
| 4743 | unreached(); // the above are the only math intrinsics at the time of this writing. |
| 4744 | } |
| 4745 | |
| 4746 | return VNForFloatCon(res); |
| 4747 | } |
| 4748 | else |
| 4749 | { |
| 4750 | // CORINFO_INTRINSIC_Round is currently the only intrinsic that takes floating-point arguments |
| 4751 | // and that returns a non floating-point result. |
| 4752 | |
| 4753 | assert(typ == TYP_INT); |
| 4754 | assert(gtMathFN == CORINFO_INTRINSIC_Round); |
| 4755 | |
| 4756 | int res = 0; |
| 4757 | |
| 4758 | switch (TypeOfVN(arg0VN)) |
| 4759 | { |
| 4760 | case TYP_DOUBLE: |
| 4761 | { |
| 4762 | double arg0Val = GetConstantDouble(arg0VN); |
| 4763 | res = int(FloatingPointUtils::round(arg0Val)); |
| 4764 | break; |
| 4765 | } |
| 4766 | case TYP_FLOAT: |
| 4767 | { |
| 4768 | float arg0Val = GetConstantSingle(arg0VN); |
| 4769 | res = int(FloatingPointUtils::round(arg0Val)); |
| 4770 | break; |
| 4771 | } |
| 4772 | default: |
| 4773 | unreached(); |
| 4774 | } |
| 4775 | |
| 4776 | return VNForIntCon(res); |
| 4777 | } |
| 4778 | } |
| 4779 | else |
| 4780 | { |
| 4781 | assert(typ == TYP_DOUBLE || typ == TYP_FLOAT || (typ == TYP_INT && gtMathFN == CORINFO_INTRINSIC_Round)); |
| 4782 | |
| 4783 | VNFunc vnf = VNF_Boundary; |
| 4784 | switch (gtMathFN) |
| 4785 | { |
| 4786 | case CORINFO_INTRINSIC_Sin: |
| 4787 | vnf = VNF_Sin; |
| 4788 | break; |
| 4789 | case CORINFO_INTRINSIC_Cos: |
| 4790 | vnf = VNF_Cos; |
| 4791 | break; |
| 4792 | case CORINFO_INTRINSIC_Cbrt: |
| 4793 | vnf = VNF_Cbrt; |
| 4794 | break; |
| 4795 | case CORINFO_INTRINSIC_Sqrt: |
| 4796 | vnf = VNF_Sqrt; |
| 4797 | break; |
| 4798 | case CORINFO_INTRINSIC_Abs: |
| 4799 | vnf = VNF_Abs; |
| 4800 | break; |
| 4801 | case CORINFO_INTRINSIC_Round: |
| 4802 | if (typ == TYP_DOUBLE) |
| 4803 | { |
| 4804 | vnf = VNF_RoundDouble; |
| 4805 | } |
| 4806 | else if (typ == TYP_FLOAT) |
| 4807 | { |
| 4808 | vnf = VNF_RoundFloat; |
| 4809 | } |
| 4810 | else if (typ == TYP_INT) |
| 4811 | { |
| 4812 | vnf = VNF_RoundInt; |
| 4813 | } |
| 4814 | else |
| 4815 | { |
| 4816 | noway_assert(!"Invalid INTRINSIC_Round" ); |
| 4817 | } |
| 4818 | break; |
| 4819 | case CORINFO_INTRINSIC_Cosh: |
| 4820 | vnf = VNF_Cosh; |
| 4821 | break; |
| 4822 | case CORINFO_INTRINSIC_Sinh: |
| 4823 | vnf = VNF_Sinh; |
| 4824 | break; |
| 4825 | case CORINFO_INTRINSIC_Tan: |
| 4826 | vnf = VNF_Tan; |
| 4827 | break; |
| 4828 | case CORINFO_INTRINSIC_Tanh: |
| 4829 | vnf = VNF_Tanh; |
| 4830 | break; |
| 4831 | case CORINFO_INTRINSIC_Asin: |
| 4832 | vnf = VNF_Asin; |
| 4833 | break; |
| 4834 | case CORINFO_INTRINSIC_Asinh: |
| 4835 | vnf = VNF_Asinh; |
| 4836 | break; |
| 4837 | case CORINFO_INTRINSIC_Acos: |
| 4838 | vnf = VNF_Acos; |
| 4839 | break; |
| 4840 | case CORINFO_INTRINSIC_Acosh: |
| 4841 | vnf = VNF_Acosh; |
| 4842 | break; |
| 4843 | case CORINFO_INTRINSIC_Atan: |
| 4844 | vnf = VNF_Atan; |
| 4845 | break; |
| 4846 | case CORINFO_INTRINSIC_Atanh: |
| 4847 | vnf = VNF_Atanh; |
| 4848 | break; |
| 4849 | case CORINFO_INTRINSIC_Log10: |
| 4850 | vnf = VNF_Log10; |
| 4851 | break; |
| 4852 | case CORINFO_INTRINSIC_Exp: |
| 4853 | vnf = VNF_Exp; |
| 4854 | break; |
| 4855 | case CORINFO_INTRINSIC_Ceiling: |
| 4856 | vnf = VNF_Ceiling; |
| 4857 | break; |
| 4858 | case CORINFO_INTRINSIC_Floor: |
| 4859 | vnf = VNF_Floor; |
| 4860 | break; |
| 4861 | default: |
| 4862 | unreached(); // the above are the only math intrinsics at the time of this writing. |
| 4863 | } |
| 4864 | |
| 4865 | return VNForFunc(typ, vnf, arg0VN); |
| 4866 | } |
| 4867 | } |
| 4868 | |
| 4869 | ValueNum ValueNumStore::EvalMathFuncBinary(var_types typ, CorInfoIntrinsics gtMathFN, ValueNum arg0VN, ValueNum arg1VN) |
| 4870 | { |
| 4871 | assert(varTypeIsFloating(typ)); |
| 4872 | assert(arg0VN == VNNormalValue(arg0VN)); |
| 4873 | assert(arg1VN == VNNormalValue(arg1VN)); |
| 4874 | |
| 4875 | VNFunc vnf = VNF_Boundary; |
| 4876 | |
| 4877 | // Currently, none of the binary math intrinsic are implemented by target-specific instructions. |
| 4878 | // To minimize precision loss, do not do constant folding on them. |
| 4879 | |
| 4880 | switch (gtMathFN) |
| 4881 | { |
| 4882 | case CORINFO_INTRINSIC_Atan2: |
| 4883 | vnf = VNF_Atan2; |
| 4884 | break; |
| 4885 | |
| 4886 | case CORINFO_INTRINSIC_Pow: |
| 4887 | vnf = VNF_Pow; |
| 4888 | break; |
| 4889 | |
| 4890 | default: |
| 4891 | unreached(); // the above are the only binary math intrinsics at the time of this writing. |
| 4892 | } |
| 4893 | |
| 4894 | return VNForFunc(typ, vnf, arg0VN, arg1VN); |
| 4895 | } |
| 4896 | |
| 4897 | bool ValueNumStore::IsVNFunc(ValueNum vn) |
| 4898 | { |
| 4899 | if (vn == NoVN) |
| 4900 | { |
| 4901 | return false; |
| 4902 | } |
| 4903 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4904 | switch (c->m_attribs) |
| 4905 | { |
| 4906 | case CEA_NotAField: |
| 4907 | case CEA_Func0: |
| 4908 | case CEA_Func1: |
| 4909 | case CEA_Func2: |
| 4910 | case CEA_Func3: |
| 4911 | case CEA_Func4: |
| 4912 | return true; |
| 4913 | default: |
| 4914 | return false; |
| 4915 | } |
| 4916 | } |
| 4917 | |
| 4918 | bool ValueNumStore::GetVNFunc(ValueNum vn, VNFuncApp* funcApp) |
| 4919 | { |
| 4920 | if (vn == NoVN) |
| 4921 | { |
| 4922 | return false; |
| 4923 | } |
| 4924 | |
| 4925 | Chunk* c = m_chunks.GetNoExpand(GetChunkNum(vn)); |
| 4926 | unsigned offset = ChunkOffset(vn); |
| 4927 | assert(offset < c->m_numUsed); |
| 4928 | switch (c->m_attribs) |
| 4929 | { |
| 4930 | case CEA_Func4: |
| 4931 | { |
| 4932 | VNDefFunc4Arg* farg4 = &reinterpret_cast<VNDefFunc4Arg*>(c->m_defs)[offset]; |
| 4933 | funcApp->m_func = farg4->m_func; |
| 4934 | funcApp->m_arity = 4; |
| 4935 | funcApp->m_args[0] = farg4->m_arg0; |
| 4936 | funcApp->m_args[1] = farg4->m_arg1; |
| 4937 | funcApp->m_args[2] = farg4->m_arg2; |
| 4938 | funcApp->m_args[3] = farg4->m_arg3; |
| 4939 | return true; |
| 4940 | } |
| 4941 | case CEA_Func3: |
| 4942 | { |
| 4943 | VNDefFunc3Arg* farg3 = &reinterpret_cast<VNDefFunc3Arg*>(c->m_defs)[offset]; |
| 4944 | funcApp->m_func = farg3->m_func; |
| 4945 | funcApp->m_arity = 3; |
| 4946 | funcApp->m_args[0] = farg3->m_arg0; |
| 4947 | funcApp->m_args[1] = farg3->m_arg1; |
| 4948 | funcApp->m_args[2] = farg3->m_arg2; |
| 4949 | return true; |
| 4950 | } |
| 4951 | case CEA_Func2: |
| 4952 | { |
| 4953 | VNDefFunc2Arg* farg2 = &reinterpret_cast<VNDefFunc2Arg*>(c->m_defs)[offset]; |
| 4954 | funcApp->m_func = farg2->m_func; |
| 4955 | funcApp->m_arity = 2; |
| 4956 | funcApp->m_args[0] = farg2->m_arg0; |
| 4957 | funcApp->m_args[1] = farg2->m_arg1; |
| 4958 | return true; |
| 4959 | } |
| 4960 | case CEA_Func1: |
| 4961 | { |
| 4962 | VNDefFunc1Arg* farg1 = &reinterpret_cast<VNDefFunc1Arg*>(c->m_defs)[offset]; |
| 4963 | funcApp->m_func = farg1->m_func; |
| 4964 | funcApp->m_arity = 1; |
| 4965 | funcApp->m_args[0] = farg1->m_arg0; |
| 4966 | return true; |
| 4967 | } |
| 4968 | case CEA_Func0: |
| 4969 | { |
| 4970 | VNDefFunc0Arg* farg0 = &reinterpret_cast<VNDefFunc0Arg*>(c->m_defs)[offset]; |
| 4971 | funcApp->m_func = farg0->m_func; |
| 4972 | funcApp->m_arity = 0; |
| 4973 | return true; |
| 4974 | } |
| 4975 | case CEA_NotAField: |
| 4976 | { |
| 4977 | funcApp->m_func = VNF_NotAField; |
| 4978 | funcApp->m_arity = 0; |
| 4979 | return true; |
| 4980 | } |
| 4981 | default: |
| 4982 | return false; |
| 4983 | } |
| 4984 | } |
| 4985 | |
| 4986 | ValueNum ValueNumStore::VNForRefInAddr(ValueNum vn) |
| 4987 | { |
| 4988 | var_types vnType = TypeOfVN(vn); |
| 4989 | if (vnType == TYP_REF) |
| 4990 | { |
| 4991 | return vn; |
| 4992 | } |
| 4993 | // Otherwise... |
| 4994 | assert(vnType == TYP_BYREF); |
| 4995 | VNFuncApp funcApp; |
| 4996 | if (GetVNFunc(vn, &funcApp)) |
| 4997 | { |
| 4998 | assert(funcApp.m_arity == 2 && (funcApp.m_func == VNFunc(GT_ADD) || funcApp.m_func == VNFunc(GT_SUB))); |
| 4999 | var_types vnArg0Type = TypeOfVN(funcApp.m_args[0]); |
| 5000 | if (vnArg0Type == TYP_REF || vnArg0Type == TYP_BYREF) |
| 5001 | { |
| 5002 | return VNForRefInAddr(funcApp.m_args[0]); |
| 5003 | } |
| 5004 | else |
| 5005 | { |
| 5006 | assert(funcApp.m_func == VNFunc(GT_ADD) && |
| 5007 | (TypeOfVN(funcApp.m_args[1]) == TYP_REF || TypeOfVN(funcApp.m_args[1]) == TYP_BYREF)); |
| 5008 | return VNForRefInAddr(funcApp.m_args[1]); |
| 5009 | } |
| 5010 | } |
| 5011 | else |
| 5012 | { |
| 5013 | assert(IsVNConstant(vn)); |
| 5014 | return vn; |
| 5015 | } |
| 5016 | } |
| 5017 | |
| 5018 | bool ValueNumStore::VNIsValid(ValueNum vn) |
| 5019 | { |
| 5020 | ChunkNum cn = GetChunkNum(vn); |
| 5021 | if (cn >= m_chunks.Size()) |
| 5022 | { |
| 5023 | return false; |
| 5024 | } |
| 5025 | // Otherwise... |
| 5026 | Chunk* c = m_chunks.GetNoExpand(cn); |
| 5027 | return ChunkOffset(vn) < c->m_numUsed; |
| 5028 | } |
| 5029 | |
| 5030 | #ifdef DEBUG |
| 5031 | |
| 5032 | void ValueNumStore::vnDump(Compiler* comp, ValueNum vn, bool isPtr) |
| 5033 | { |
| 5034 | printf(" {" ); |
| 5035 | if (vn == NoVN) |
| 5036 | { |
| 5037 | printf("NoVN" ); |
| 5038 | } |
| 5039 | else if (IsVNHandle(vn)) |
| 5040 | { |
| 5041 | ssize_t val = ConstantValue<ssize_t>(vn); |
| 5042 | printf("Hnd const: 0x%p" , dspPtr(val)); |
| 5043 | } |
| 5044 | else if (IsVNConstant(vn)) |
| 5045 | { |
| 5046 | var_types vnt = TypeOfVN(vn); |
| 5047 | switch (vnt) |
| 5048 | { |
| 5049 | case TYP_BOOL: |
| 5050 | case TYP_BYTE: |
| 5051 | case TYP_UBYTE: |
| 5052 | case TYP_SHORT: |
| 5053 | case TYP_USHORT: |
| 5054 | case TYP_INT: |
| 5055 | case TYP_UINT: |
| 5056 | { |
| 5057 | int val = ConstantValue<int>(vn); |
| 5058 | if (isPtr) |
| 5059 | { |
| 5060 | printf("PtrCns[%p]" , dspPtr(val)); |
| 5061 | } |
| 5062 | else |
| 5063 | { |
| 5064 | printf("IntCns" ); |
| 5065 | if ((val > -1000) && (val < 1000)) |
| 5066 | { |
| 5067 | printf(" %ld" , val); |
| 5068 | } |
| 5069 | else |
| 5070 | { |
| 5071 | printf(" 0x%X" , val); |
| 5072 | } |
| 5073 | } |
| 5074 | } |
| 5075 | break; |
| 5076 | case TYP_LONG: |
| 5077 | case TYP_ULONG: |
| 5078 | { |
| 5079 | INT64 val = ConstantValue<INT64>(vn); |
| 5080 | if (isPtr) |
| 5081 | { |
| 5082 | printf("LngPtrCns: 0x%p" , dspPtr(val)); |
| 5083 | } |
| 5084 | else |
| 5085 | { |
| 5086 | printf("LngCns: " ); |
| 5087 | if ((val > -1000) && (val < 1000)) |
| 5088 | { |
| 5089 | printf(" %ld" , val); |
| 5090 | } |
| 5091 | else if ((val & 0xFFFFFFFF00000000LL) == 0) |
| 5092 | { |
| 5093 | printf(" 0x%X" , val); |
| 5094 | } |
| 5095 | else |
| 5096 | { |
| 5097 | printf(" 0x%llx" , val); |
| 5098 | } |
| 5099 | } |
| 5100 | } |
| 5101 | break; |
| 5102 | case TYP_FLOAT: |
| 5103 | printf("FltCns[%f]" , ConstantValue<float>(vn)); |
| 5104 | break; |
| 5105 | case TYP_DOUBLE: |
| 5106 | printf("DblCns[%f]" , ConstantValue<double>(vn)); |
| 5107 | break; |
| 5108 | case TYP_REF: |
| 5109 | if (vn == VNForNull()) |
| 5110 | { |
| 5111 | printf("null" ); |
| 5112 | } |
| 5113 | else if (vn == VNForVoid()) |
| 5114 | { |
| 5115 | printf("void" ); |
| 5116 | } |
| 5117 | else |
| 5118 | { |
| 5119 | assert(vn == VNForZeroMap()); |
| 5120 | printf("zeroMap" ); |
| 5121 | } |
| 5122 | break; |
| 5123 | case TYP_BYREF: |
| 5124 | printf("byrefVal" ); |
| 5125 | break; |
| 5126 | case TYP_STRUCT: |
| 5127 | #ifdef FEATURE_SIMD |
| 5128 | case TYP_SIMD8: |
| 5129 | case TYP_SIMD12: |
| 5130 | case TYP_SIMD16: |
| 5131 | case TYP_SIMD32: |
| 5132 | #endif // FEATURE_SIMD |
| 5133 | printf("structVal" ); |
| 5134 | break; |
| 5135 | |
| 5136 | // These should be unreached. |
| 5137 | default: |
| 5138 | unreached(); |
| 5139 | } |
| 5140 | } |
| 5141 | else if (IsVNCompareCheckedBound(vn)) |
| 5142 | { |
| 5143 | CompareCheckedBoundArithInfo info; |
| 5144 | GetCompareCheckedBound(vn, &info); |
| 5145 | info.dump(this); |
| 5146 | } |
| 5147 | else if (IsVNCompareCheckedBoundArith(vn)) |
| 5148 | { |
| 5149 | CompareCheckedBoundArithInfo info; |
| 5150 | GetCompareCheckedBoundArithInfo(vn, &info); |
| 5151 | info.dump(this); |
| 5152 | } |
| 5153 | else if (IsVNFunc(vn)) |
| 5154 | { |
| 5155 | VNFuncApp funcApp; |
| 5156 | GetVNFunc(vn, &funcApp); |
| 5157 | // A few special cases... |
| 5158 | switch (funcApp.m_func) |
| 5159 | { |
| 5160 | case VNF_FieldSeq: |
| 5161 | vnDumpFieldSeq(comp, &funcApp, true); |
| 5162 | break; |
| 5163 | case VNF_MapSelect: |
| 5164 | vnDumpMapSelect(comp, &funcApp); |
| 5165 | break; |
| 5166 | case VNF_MapStore: |
| 5167 | vnDumpMapStore(comp, &funcApp); |
| 5168 | break; |
| 5169 | case VNF_ValWithExc: |
| 5170 | vnDumpValWithExc(comp, &funcApp); |
| 5171 | break; |
| 5172 | default: |
| 5173 | printf("%s(" , VNFuncName(funcApp.m_func)); |
| 5174 | for (unsigned i = 0; i < funcApp.m_arity; i++) |
| 5175 | { |
| 5176 | if (i > 0) |
| 5177 | { |
| 5178 | printf(", " ); |
| 5179 | } |
| 5180 | |
| 5181 | printf(FMT_VN, funcApp.m_args[i]); |
| 5182 | |
| 5183 | #if FEATURE_VN_DUMP_FUNC_ARGS |
| 5184 | printf("=" ); |
| 5185 | vnDump(comp, funcApp.m_args[i]); |
| 5186 | #endif |
| 5187 | } |
| 5188 | printf(")" ); |
| 5189 | } |
| 5190 | } |
| 5191 | else |
| 5192 | { |
| 5193 | // Otherwise, just a VN with no structure; print just the VN. |
| 5194 | printf("%x" , vn); |
| 5195 | } |
| 5196 | printf("}" ); |
| 5197 | } |
| 5198 | |
| 5199 | // Requires "valWithExc" to be a value with an exeception set VNFuncApp. |
| 5200 | // Prints a representation of the exeception set on standard out. |
| 5201 | void ValueNumStore::vnDumpValWithExc(Compiler* comp, VNFuncApp* valWithExc) |
| 5202 | { |
| 5203 | assert(valWithExc->m_func == VNF_ValWithExc); // Precondition. |
| 5204 | |
| 5205 | ValueNum normVN = valWithExc->m_args[0]; // First arg is the VN from normal execution |
| 5206 | ValueNum excVN = valWithExc->m_args[1]; // Second arg is the set of possible exceptions |
| 5207 | |
| 5208 | assert(IsVNFunc(excVN)); |
| 5209 | VNFuncApp excSeq; |
| 5210 | GetVNFunc(excVN, &excSeq); |
| 5211 | |
| 5212 | printf("norm=" ); |
| 5213 | printf(FMT_VN, normVN); |
| 5214 | vnDump(comp, normVN); |
| 5215 | printf(", exc=" ); |
| 5216 | printf(FMT_VN, excVN); |
| 5217 | vnDumpExcSeq(comp, &excSeq, true); |
| 5218 | } |
| 5219 | |
| 5220 | // Requires "excSeq" to be a ExcSetCons sequence. |
| 5221 | // Prints a representation of the set of exceptions on standard out. |
| 5222 | void ValueNumStore::vnDumpExcSeq(Compiler* comp, VNFuncApp* excSeq, bool isHead) |
| 5223 | { |
| 5224 | assert(excSeq->m_func == VNF_ExcSetCons); // Precondition. |
| 5225 | |
| 5226 | ValueNum curExc = excSeq->m_args[0]; |
| 5227 | bool hasTail = (excSeq->m_args[1] != VNForEmptyExcSet()); |
| 5228 | |
| 5229 | if (isHead && hasTail) |
| 5230 | { |
| 5231 | printf("(" ); |
| 5232 | } |
| 5233 | |
| 5234 | vnDump(comp, curExc); |
| 5235 | |
| 5236 | if (hasTail) |
| 5237 | { |
| 5238 | printf(", " ); |
| 5239 | assert(IsVNFunc(excSeq->m_args[1])); |
| 5240 | VNFuncApp tail; |
| 5241 | GetVNFunc(excSeq->m_args[1], &tail); |
| 5242 | vnDumpExcSeq(comp, &tail, false); |
| 5243 | } |
| 5244 | |
| 5245 | if (isHead && hasTail) |
| 5246 | { |
| 5247 | printf(")" ); |
| 5248 | } |
| 5249 | } |
| 5250 | |
| 5251 | void ValueNumStore::vnDumpFieldSeq(Compiler* comp, VNFuncApp* fieldSeq, bool isHead) |
| 5252 | { |
| 5253 | assert(fieldSeq->m_func == VNF_FieldSeq); // Precondition. |
| 5254 | // First arg is the field handle VN. |
| 5255 | assert(IsVNConstant(fieldSeq->m_args[0]) && TypeOfVN(fieldSeq->m_args[0]) == TYP_I_IMPL); |
| 5256 | ssize_t fieldHndVal = ConstantValue<ssize_t>(fieldSeq->m_args[0]); |
| 5257 | bool hasTail = (fieldSeq->m_args[1] != VNForNull()); |
| 5258 | |
| 5259 | if (isHead && hasTail) |
| 5260 | { |
| 5261 | printf("(" ); |
| 5262 | } |
| 5263 | |
| 5264 | CORINFO_FIELD_HANDLE fldHnd = CORINFO_FIELD_HANDLE(fieldHndVal); |
| 5265 | if (fldHnd == FieldSeqStore::FirstElemPseudoField) |
| 5266 | { |
| 5267 | printf("#FirstElem" ); |
| 5268 | } |
| 5269 | else if (fldHnd == FieldSeqStore::ConstantIndexPseudoField) |
| 5270 | { |
| 5271 | printf("#ConstantIndex" ); |
| 5272 | } |
| 5273 | else |
| 5274 | { |
| 5275 | const char* modName; |
| 5276 | const char* fldName = m_pComp->eeGetFieldName(fldHnd, &modName); |
| 5277 | printf("%s" , fldName); |
| 5278 | } |
| 5279 | |
| 5280 | if (hasTail) |
| 5281 | { |
| 5282 | printf(", " ); |
| 5283 | assert(IsVNFunc(fieldSeq->m_args[1])); |
| 5284 | VNFuncApp tail; |
| 5285 | GetVNFunc(fieldSeq->m_args[1], &tail); |
| 5286 | vnDumpFieldSeq(comp, &tail, false); |
| 5287 | } |
| 5288 | |
| 5289 | if (isHead && hasTail) |
| 5290 | { |
| 5291 | printf(")" ); |
| 5292 | } |
| 5293 | } |
| 5294 | |
| 5295 | void ValueNumStore::vnDumpMapSelect(Compiler* comp, VNFuncApp* mapSelect) |
| 5296 | { |
| 5297 | assert(mapSelect->m_func == VNF_MapSelect); // Precondition. |
| 5298 | |
| 5299 | ValueNum mapVN = mapSelect->m_args[0]; // First arg is the map id |
| 5300 | ValueNum indexVN = mapSelect->m_args[1]; // Second arg is the index |
| 5301 | |
| 5302 | comp->vnPrint(mapVN, 0); |
| 5303 | printf("[" ); |
| 5304 | comp->vnPrint(indexVN, 0); |
| 5305 | printf("]" ); |
| 5306 | } |
| 5307 | |
| 5308 | void ValueNumStore::vnDumpMapStore(Compiler* comp, VNFuncApp* mapStore) |
| 5309 | { |
| 5310 | assert(mapStore->m_func == VNF_MapStore); // Precondition. |
| 5311 | |
| 5312 | ValueNum mapVN = mapStore->m_args[0]; // First arg is the map id |
| 5313 | ValueNum indexVN = mapStore->m_args[1]; // Second arg is the index |
| 5314 | ValueNum newValVN = mapStore->m_args[2]; // Third arg is the new value |
| 5315 | |
| 5316 | comp->vnPrint(mapVN, 0); |
| 5317 | printf("[" ); |
| 5318 | comp->vnPrint(indexVN, 0); |
| 5319 | printf(" := " ); |
| 5320 | comp->vnPrint(newValVN, 0); |
| 5321 | printf("]" ); |
| 5322 | } |
| 5323 | #endif // DEBUG |
| 5324 | |
| 5325 | // Static fields, methods. |
| 5326 | static UINT8 vnfOpAttribs[VNF_COUNT]; |
| 5327 | static genTreeOps genTreeOpsIllegalAsVNFunc[] = {GT_IND, // When we do heap memory. |
| 5328 | GT_NULLCHECK, GT_QMARK, GT_COLON, GT_LOCKADD, GT_XADD, GT_XCHG, |
| 5329 | GT_CMPXCHG, GT_LCLHEAP, GT_BOX, |
| 5330 | |
| 5331 | // These need special semantics: |
| 5332 | GT_COMMA, // == second argument (but with exception(s) from first). |
| 5333 | GT_ADDR, GT_ARR_BOUNDS_CHECK, |
| 5334 | GT_OBJ, // May reference heap memory. |
| 5335 | GT_BLK, // May reference heap memory. |
| 5336 | GT_INIT_VAL, // Not strictly a pass-through. |
| 5337 | |
| 5338 | // These control-flow operations need no values. |
| 5339 | GT_JTRUE, GT_RETURN, GT_SWITCH, GT_RETFILT, GT_CKFINITE}; |
| 5340 | |
| 5341 | UINT8* ValueNumStore::s_vnfOpAttribs = nullptr; |
| 5342 | |
| 5343 | void ValueNumStore::InitValueNumStoreStatics() |
| 5344 | { |
| 5345 | // Make sure we've gotten constants right... |
| 5346 | assert(unsigned(VNFOA_Arity) == (1 << VNFOA_ArityShift)); |
| 5347 | assert(unsigned(VNFOA_AfterArity) == (unsigned(VNFOA_Arity) << VNFOA_ArityBits)); |
| 5348 | |
| 5349 | s_vnfOpAttribs = &vnfOpAttribs[0]; |
| 5350 | for (unsigned i = 0; i < GT_COUNT; i++) |
| 5351 | { |
| 5352 | genTreeOps gtOper = static_cast<genTreeOps>(i); |
| 5353 | unsigned arity = 0; |
| 5354 | if (GenTree::OperIsUnary(gtOper)) |
| 5355 | { |
| 5356 | arity = 1; |
| 5357 | } |
| 5358 | else if (GenTree::OperIsBinary(gtOper)) |
| 5359 | { |
| 5360 | arity = 2; |
| 5361 | } |
| 5362 | // Since GT_ARR_BOUNDS_CHECK is not currently GTK_BINOP |
| 5363 | else if (gtOper == GT_ARR_BOUNDS_CHECK) |
| 5364 | { |
| 5365 | arity = 2; |
| 5366 | } |
| 5367 | vnfOpAttribs[i] |= (arity << VNFOA_ArityShift); |
| 5368 | |
| 5369 | if (GenTree::OperIsCommutative(gtOper)) |
| 5370 | { |
| 5371 | vnfOpAttribs[i] |= VNFOA_Commutative; |
| 5372 | } |
| 5373 | } |
| 5374 | |
| 5375 | // I so wish this wasn't the best way to do this... |
| 5376 | |
| 5377 | int vnfNum = VNF_Boundary + 1; // The macro definition below will update this after using it. |
| 5378 | |
| 5379 | #define ValueNumFuncDef(vnf, arity, commute, knownNonNull, sharedStatic) \ |
| 5380 | if (commute) \ |
| 5381 | vnfOpAttribs[vnfNum] |= VNFOA_Commutative; \ |
| 5382 | if (knownNonNull) \ |
| 5383 | vnfOpAttribs[vnfNum] |= VNFOA_KnownNonNull; \ |
| 5384 | if (sharedStatic) \ |
| 5385 | vnfOpAttribs[vnfNum] |= VNFOA_SharedStatic; \ |
| 5386 | vnfOpAttribs[vnfNum] |= (arity << VNFOA_ArityShift); \ |
| 5387 | vnfNum++; |
| 5388 | |
| 5389 | #include "valuenumfuncs.h" |
| 5390 | #undef ValueNumFuncDef |
| 5391 | |
| 5392 | for (unsigned i = 0; i < _countof(genTreeOpsIllegalAsVNFunc); i++) |
| 5393 | { |
| 5394 | vnfOpAttribs[genTreeOpsIllegalAsVNFunc[i]] |= VNFOA_IllegalGenTreeOp; |
| 5395 | } |
| 5396 | } |
| 5397 | |
| 5398 | #ifdef DEBUG |
| 5399 | // Define the name array. |
| 5400 | #define ValueNumFuncDef(vnf, arity, commute, knownNonNull, sharedStatic) #vnf, |
| 5401 | |
| 5402 | const char* ValueNumStore::VNFuncNameArr[] = { |
| 5403 | #include "valuenumfuncs.h" |
| 5404 | #undef ValueNumFuncDef |
| 5405 | }; |
| 5406 | |
| 5407 | // static |
| 5408 | const char* ValueNumStore::VNFuncName(VNFunc vnf) |
| 5409 | { |
| 5410 | if (vnf < VNF_Boundary) |
| 5411 | { |
| 5412 | return GenTree::OpName(genTreeOps(vnf)); |
| 5413 | } |
| 5414 | else |
| 5415 | { |
| 5416 | return VNFuncNameArr[vnf - (VNF_Boundary + 1)]; |
| 5417 | } |
| 5418 | } |
| 5419 | |
| 5420 | static const char* s_reservedNameArr[] = { |
| 5421 | "$VN.Recursive" , // -2 RecursiveVN |
| 5422 | "$VN.No" , // -1 NoVN |
| 5423 | "$VN.Null" , // 0 VNForNull() |
| 5424 | "$VN.ZeroMap" , // 1 VNForZeroMap() |
| 5425 | "$VN.ReadOnlyHeap" , // 2 VNForROH() |
| 5426 | "$VN.Void" , // 3 VNForVoid() |
| 5427 | "$VN.EmptyExcSet" // 4 VNForEmptyExcSet() |
| 5428 | }; |
| 5429 | |
| 5430 | // Returns the string name of "vn" when it is a reserved value number, nullptr otherwise |
| 5431 | // static |
| 5432 | const char* ValueNumStore::reservedName(ValueNum vn) |
| 5433 | { |
| 5434 | int val = vn - ValueNumStore::RecursiveVN; // Add two, making 'RecursiveVN' equal to zero |
| 5435 | int max = ValueNumStore::SRC_NumSpecialRefConsts - ValueNumStore::RecursiveVN; |
| 5436 | |
| 5437 | if ((val >= 0) && (val < max)) |
| 5438 | { |
| 5439 | return s_reservedNameArr[val]; |
| 5440 | } |
| 5441 | return nullptr; |
| 5442 | } |
| 5443 | |
| 5444 | #endif // DEBUG |
| 5445 | |
| 5446 | // Returns true if "vn" is a reserved value number |
| 5447 | |
| 5448 | // static |
| 5449 | bool ValueNumStore::isReservedVN(ValueNum vn) |
| 5450 | { |
| 5451 | int val = vn - ValueNumStore::RecursiveVN; // Adding two, making 'RecursiveVN' equal to zero |
| 5452 | int max = ValueNumStore::SRC_NumSpecialRefConsts - ValueNumStore::RecursiveVN; |
| 5453 | |
| 5454 | if ((val >= 0) && (val < max)) |
| 5455 | { |
| 5456 | return true; |
| 5457 | } |
| 5458 | return false; |
| 5459 | } |
| 5460 | |
| 5461 | #ifdef DEBUG |
| 5462 | void ValueNumStore::RunTests(Compiler* comp) |
| 5463 | { |
| 5464 | VNFunc VNF_Add = GenTreeOpToVNFunc(GT_ADD); |
| 5465 | |
| 5466 | ValueNumStore* vns = new (comp->getAllocatorDebugOnly()) ValueNumStore(comp, comp->getAllocatorDebugOnly()); |
| 5467 | ValueNum vnNull = VNForNull(); |
| 5468 | assert(vnNull == VNForNull()); |
| 5469 | |
| 5470 | ValueNum vnFor1 = vns->VNForIntCon(1); |
| 5471 | assert(vnFor1 == vns->VNForIntCon(1)); |
| 5472 | assert(vns->TypeOfVN(vnFor1) == TYP_INT); |
| 5473 | assert(vns->IsVNConstant(vnFor1)); |
| 5474 | assert(vns->ConstantValue<int>(vnFor1) == 1); |
| 5475 | |
| 5476 | ValueNum vnFor100 = vns->VNForIntCon(100); |
| 5477 | assert(vnFor100 == vns->VNForIntCon(100)); |
| 5478 | assert(vnFor100 != vnFor1); |
| 5479 | assert(vns->TypeOfVN(vnFor100) == TYP_INT); |
| 5480 | assert(vns->IsVNConstant(vnFor100)); |
| 5481 | assert(vns->ConstantValue<int>(vnFor100) == 100); |
| 5482 | |
| 5483 | ValueNum vnFor1F = vns->VNForFloatCon(1.0f); |
| 5484 | assert(vnFor1F == vns->VNForFloatCon(1.0f)); |
| 5485 | assert(vnFor1F != vnFor1 && vnFor1F != vnFor100); |
| 5486 | assert(vns->TypeOfVN(vnFor1F) == TYP_FLOAT); |
| 5487 | assert(vns->IsVNConstant(vnFor1F)); |
| 5488 | assert(vns->ConstantValue<float>(vnFor1F) == 1.0f); |
| 5489 | |
| 5490 | ValueNum vnFor1D = vns->VNForDoubleCon(1.0); |
| 5491 | assert(vnFor1D == vns->VNForDoubleCon(1.0)); |
| 5492 | assert(vnFor1D != vnFor1F && vnFor1D != vnFor1 && vnFor1D != vnFor100); |
| 5493 | assert(vns->TypeOfVN(vnFor1D) == TYP_DOUBLE); |
| 5494 | assert(vns->IsVNConstant(vnFor1D)); |
| 5495 | assert(vns->ConstantValue<double>(vnFor1D) == 1.0); |
| 5496 | |
| 5497 | ValueNum vnRandom1 = vns->VNForExpr(nullptr, TYP_INT); |
| 5498 | ValueNum vnForFunc2a = vns->VNForFunc(TYP_INT, VNF_Add, vnFor1, vnRandom1); |
| 5499 | assert(vnForFunc2a == vns->VNForFunc(TYP_INT, VNF_Add, vnFor1, vnRandom1)); |
| 5500 | assert(vnForFunc2a != vnFor1D && vnForFunc2a != vnFor1F && vnForFunc2a != vnFor1 && vnForFunc2a != vnRandom1); |
| 5501 | assert(vns->TypeOfVN(vnForFunc2a) == TYP_INT); |
| 5502 | assert(!vns->IsVNConstant(vnForFunc2a)); |
| 5503 | assert(vns->IsVNFunc(vnForFunc2a)); |
| 5504 | VNFuncApp fa2a; |
| 5505 | bool b = vns->GetVNFunc(vnForFunc2a, &fa2a); |
| 5506 | assert(b); |
| 5507 | assert(fa2a.m_func == VNF_Add && fa2a.m_arity == 2 && fa2a.m_args[0] == vnFor1 && fa2a.m_args[1] == vnRandom1); |
| 5508 | |
| 5509 | ValueNum vnForFunc2b = vns->VNForFunc(TYP_INT, VNF_Add, vnFor1, vnFor100); |
| 5510 | assert(vnForFunc2b == vns->VNForFunc(TYP_INT, VNF_Add, vnFor1, vnFor100)); |
| 5511 | assert(vnForFunc2b != vnFor1D && vnForFunc2b != vnFor1F && vnForFunc2b != vnFor1 && vnForFunc2b != vnFor100); |
| 5512 | assert(vns->TypeOfVN(vnForFunc2b) == TYP_INT); |
| 5513 | assert(vns->IsVNConstant(vnForFunc2b)); |
| 5514 | assert(vns->ConstantValue<int>(vnForFunc2b) == 101); |
| 5515 | |
| 5516 | // printf("Did ValueNumStore::RunTests.\n"); |
| 5517 | } |
| 5518 | #endif // DEBUG |
| 5519 | |
| 5520 | typedef JitExpandArrayStack<BasicBlock*> BlockStack; |
| 5521 | |
| 5522 | // This represents the "to do" state of the value number computation. |
| 5523 | struct ValueNumberState |
| 5524 | { |
| 5525 | // These two stacks collectively represent the set of blocks that are candidates for |
| 5526 | // processing, because at least one predecessor has been processed. Blocks on "m_toDoAllPredsDone" |
| 5527 | // have had *all* predecessors processed, and thus are candidates for some extra optimizations. |
| 5528 | // Blocks on "m_toDoNotAllPredsDone" have at least one predecessor that has not been processed. |
| 5529 | // Blocks are initially on "m_toDoNotAllPredsDone" may be moved to "m_toDoAllPredsDone" when their last |
| 5530 | // unprocessed predecessor is processed, thus maintaining the invariants. |
| 5531 | BlockStack m_toDoAllPredsDone; |
| 5532 | BlockStack m_toDoNotAllPredsDone; |
| 5533 | |
| 5534 | Compiler* m_comp; |
| 5535 | |
| 5536 | // TBD: This should really be a bitset... |
| 5537 | // For now: |
| 5538 | // first bit indicates completed, |
| 5539 | // second bit indicates that it's been pushed on all-done stack, |
| 5540 | // third bit indicates that it's been pushed on not-all-done stack. |
| 5541 | BYTE* m_visited; |
| 5542 | |
| 5543 | enum BlockVisitBits |
| 5544 | { |
| 5545 | BVB_complete = 0x1, |
| 5546 | BVB_onAllDone = 0x2, |
| 5547 | BVB_onNotAllDone = 0x4, |
| 5548 | }; |
| 5549 | |
| 5550 | bool GetVisitBit(unsigned bbNum, BlockVisitBits bvb) |
| 5551 | { |
| 5552 | return (m_visited[bbNum] & bvb) != 0; |
| 5553 | } |
| 5554 | void SetVisitBit(unsigned bbNum, BlockVisitBits bvb) |
| 5555 | { |
| 5556 | m_visited[bbNum] |= bvb; |
| 5557 | } |
| 5558 | |
| 5559 | ValueNumberState(Compiler* comp) |
| 5560 | : m_toDoAllPredsDone(comp->getAllocator(), /*minSize*/ 4) |
| 5561 | , m_toDoNotAllPredsDone(comp->getAllocator(), /*minSize*/ 4) |
| 5562 | , m_comp(comp) |
| 5563 | , m_visited(new (comp, CMK_ValueNumber) BYTE[comp->fgBBNumMax + 1]()) |
| 5564 | { |
| 5565 | } |
| 5566 | |
| 5567 | BasicBlock* ChooseFromNotAllPredsDone() |
| 5568 | { |
| 5569 | assert(m_toDoAllPredsDone.Size() == 0); |
| 5570 | // If we have no blocks with all preds done, then (ideally, if all cycles have been captured by loops) |
| 5571 | // we must have at least one block within a loop. We want to do the loops first. Doing a loop entry block |
| 5572 | // should break the cycle, making the rest of the body of the loop (unless there's a nested loop) doable by the |
| 5573 | // all-preds-done rule. If several loop entry blocks are available, at least one should have all non-loop preds |
| 5574 | // done -- we choose that. |
| 5575 | for (unsigned i = 0; i < m_toDoNotAllPredsDone.Size(); i++) |
| 5576 | { |
| 5577 | BasicBlock* cand = m_toDoNotAllPredsDone.Get(i); |
| 5578 | |
| 5579 | // Skip any already-completed blocks (a block may have all its preds finished, get added to the |
| 5580 | // all-preds-done todo set, and get processed there). Do this by moving the last one down, to |
| 5581 | // keep the array compact. |
| 5582 | while (GetVisitBit(cand->bbNum, BVB_complete)) |
| 5583 | { |
| 5584 | if (i + 1 < m_toDoNotAllPredsDone.Size()) |
| 5585 | { |
| 5586 | cand = m_toDoNotAllPredsDone.Pop(); |
| 5587 | m_toDoNotAllPredsDone.Set(i, cand); |
| 5588 | } |
| 5589 | else |
| 5590 | { |
| 5591 | // "cand" is the last element; delete it. |
| 5592 | (void)m_toDoNotAllPredsDone.Pop(); |
| 5593 | break; |
| 5594 | } |
| 5595 | } |
| 5596 | // We may have run out of non-complete candidates above. If so, we're done. |
| 5597 | if (i == m_toDoNotAllPredsDone.Size()) |
| 5598 | { |
| 5599 | break; |
| 5600 | } |
| 5601 | |
| 5602 | // See if "cand" is a loop entry. |
| 5603 | unsigned lnum; |
| 5604 | if (m_comp->optBlockIsLoopEntry(cand, &lnum)) |
| 5605 | { |
| 5606 | // "lnum" is the innermost loop of which "cand" is the entry; find the outermost. |
| 5607 | unsigned lnumPar = m_comp->optLoopTable[lnum].lpParent; |
| 5608 | while (lnumPar != BasicBlock::NOT_IN_LOOP) |
| 5609 | { |
| 5610 | if (m_comp->optLoopTable[lnumPar].lpEntry == cand) |
| 5611 | { |
| 5612 | lnum = lnumPar; |
| 5613 | } |
| 5614 | else |
| 5615 | { |
| 5616 | break; |
| 5617 | } |
| 5618 | lnumPar = m_comp->optLoopTable[lnumPar].lpParent; |
| 5619 | } |
| 5620 | |
| 5621 | bool allNonLoopPredsDone = true; |
| 5622 | for (flowList* pred = m_comp->BlockPredsWithEH(cand); pred != nullptr; pred = pred->flNext) |
| 5623 | { |
| 5624 | BasicBlock* predBlock = pred->flBlock; |
| 5625 | if (!m_comp->optLoopTable[lnum].lpContains(predBlock)) |
| 5626 | { |
| 5627 | if (!GetVisitBit(predBlock->bbNum, BVB_complete)) |
| 5628 | { |
| 5629 | allNonLoopPredsDone = false; |
| 5630 | } |
| 5631 | } |
| 5632 | } |
| 5633 | if (allNonLoopPredsDone) |
| 5634 | { |
| 5635 | return cand; |
| 5636 | } |
| 5637 | } |
| 5638 | } |
| 5639 | |
| 5640 | // If we didn't find a loop entry block with all non-loop preds done above, then return a random member (if |
| 5641 | // there is one). |
| 5642 | if (m_toDoNotAllPredsDone.Size() == 0) |
| 5643 | { |
| 5644 | return nullptr; |
| 5645 | } |
| 5646 | else |
| 5647 | { |
| 5648 | return m_toDoNotAllPredsDone.Pop(); |
| 5649 | } |
| 5650 | } |
| 5651 | |
| 5652 | // Debugging output that is too detailed for a normal JIT dump... |
| 5653 | #define DEBUG_VN_VISIT 0 |
| 5654 | |
| 5655 | // Record that "blk" has been visited, and add any unvisited successors of "blk" to the appropriate todo set. |
| 5656 | void FinishVisit(BasicBlock* blk) |
| 5657 | { |
| 5658 | #ifdef DEBUG_VN_VISIT |
| 5659 | JITDUMP("finish(" FMT_BB ").\n" , blk->bbNum); |
| 5660 | #endif // DEBUG_VN_VISIT |
| 5661 | |
| 5662 | SetVisitBit(blk->bbNum, BVB_complete); |
| 5663 | |
| 5664 | for (BasicBlock* succ : blk->GetAllSuccs(m_comp)) |
| 5665 | { |
| 5666 | #ifdef DEBUG_VN_VISIT |
| 5667 | JITDUMP(" Succ(" FMT_BB ").\n" , succ->bbNum); |
| 5668 | #endif // DEBUG_VN_VISIT |
| 5669 | |
| 5670 | if (GetVisitBit(succ->bbNum, BVB_complete)) |
| 5671 | { |
| 5672 | continue; |
| 5673 | } |
| 5674 | #ifdef DEBUG_VN_VISIT |
| 5675 | JITDUMP(" Not yet completed.\n" ); |
| 5676 | #endif // DEBUG_VN_VISIT |
| 5677 | |
| 5678 | bool allPredsVisited = true; |
| 5679 | for (flowList* pred = m_comp->BlockPredsWithEH(succ); pred != nullptr; pred = pred->flNext) |
| 5680 | { |
| 5681 | BasicBlock* predBlock = pred->flBlock; |
| 5682 | if (!GetVisitBit(predBlock->bbNum, BVB_complete)) |
| 5683 | { |
| 5684 | allPredsVisited = false; |
| 5685 | break; |
| 5686 | } |
| 5687 | } |
| 5688 | |
| 5689 | if (allPredsVisited) |
| 5690 | { |
| 5691 | #ifdef DEBUG_VN_VISIT |
| 5692 | JITDUMP(" All preds complete, adding to allDone.\n" ); |
| 5693 | #endif // DEBUG_VN_VISIT |
| 5694 | |
| 5695 | assert(!GetVisitBit(succ->bbNum, BVB_onAllDone)); // Only last completion of last succ should add to |
| 5696 | // this. |
| 5697 | m_toDoAllPredsDone.Push(succ); |
| 5698 | SetVisitBit(succ->bbNum, BVB_onAllDone); |
| 5699 | } |
| 5700 | else |
| 5701 | { |
| 5702 | #ifdef DEBUG_VN_VISIT |
| 5703 | JITDUMP(" Not all preds complete Adding to notallDone, if necessary...\n" ); |
| 5704 | #endif // DEBUG_VN_VISIT |
| 5705 | |
| 5706 | if (!GetVisitBit(succ->bbNum, BVB_onNotAllDone)) |
| 5707 | { |
| 5708 | #ifdef DEBUG_VN_VISIT |
| 5709 | JITDUMP(" Was necessary.\n" ); |
| 5710 | #endif // DEBUG_VN_VISIT |
| 5711 | m_toDoNotAllPredsDone.Push(succ); |
| 5712 | SetVisitBit(succ->bbNum, BVB_onNotAllDone); |
| 5713 | } |
| 5714 | } |
| 5715 | } |
| 5716 | } |
| 5717 | |
| 5718 | bool ToDoExists() |
| 5719 | { |
| 5720 | return m_toDoAllPredsDone.Size() > 0 || m_toDoNotAllPredsDone.Size() > 0; |
| 5721 | } |
| 5722 | }; |
| 5723 | |
| 5724 | void Compiler::fgValueNumber() |
| 5725 | { |
| 5726 | #ifdef DEBUG |
| 5727 | // This could be a JITDUMP, but some people find it convenient to set a breakpoint on the printf. |
| 5728 | if (verbose) |
| 5729 | { |
| 5730 | printf("\n*************** In fgValueNumber()\n" ); |
| 5731 | } |
| 5732 | #endif |
| 5733 | |
| 5734 | // If we skipped SSA, skip VN as well. |
| 5735 | if (fgSsaPassesCompleted == 0) |
| 5736 | { |
| 5737 | return; |
| 5738 | } |
| 5739 | |
| 5740 | // Allocate the value number store. |
| 5741 | assert(fgVNPassesCompleted > 0 || vnStore == nullptr); |
| 5742 | if (fgVNPassesCompleted == 0) |
| 5743 | { |
| 5744 | CompAllocator allocator(getAllocator(CMK_ValueNumber)); |
| 5745 | vnStore = new (allocator) ValueNumStore(this, allocator); |
| 5746 | } |
| 5747 | else |
| 5748 | { |
| 5749 | ValueNumPair noVnp; |
| 5750 | // Make sure the memory SSA names have no value numbers. |
| 5751 | for (unsigned i = 0; i < lvMemoryPerSsaData.GetCount(); i++) |
| 5752 | { |
| 5753 | lvMemoryPerSsaData.GetSsaDefByIndex(i)->m_vnPair = noVnp; |
| 5754 | } |
| 5755 | for (BasicBlock* blk = fgFirstBB; blk != nullptr; blk = blk->bbNext) |
| 5756 | { |
| 5757 | // Now iterate over the block's statements, and their trees. |
| 5758 | for (GenTree* stmts = blk->FirstNonPhiDef(); stmts != nullptr; stmts = stmts->gtNext) |
| 5759 | { |
| 5760 | assert(stmts->IsStatement()); |
| 5761 | for (GenTree* tree = stmts->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
| 5762 | { |
| 5763 | tree->gtVNPair.SetBoth(ValueNumStore::NoVN); |
| 5764 | } |
| 5765 | } |
| 5766 | } |
| 5767 | } |
| 5768 | |
| 5769 | // Compute the side effects of loops. |
| 5770 | optComputeLoopSideEffects(); |
| 5771 | |
| 5772 | // At the block level, we will use a modified worklist algorithm. We will have two |
| 5773 | // "todo" sets of unvisited blocks. Blocks (other than the entry block) are put in a |
| 5774 | // todo set only when some predecessor has been visited, so all blocks have at least one |
| 5775 | // predecessor visited. The distinction between the two sets is whether *all* predecessors have |
| 5776 | // already been visited. We visit such blocks preferentially if they exist, since phi definitions |
| 5777 | // in such blocks will have all arguments defined, enabling a simplification in the case that all |
| 5778 | // arguments to the phi have the same VN. If no such blocks exist, we pick a block with at least |
| 5779 | // one unvisited predecessor. In this case, we assign a new VN for phi definitions. |
| 5780 | |
| 5781 | // Start by giving incoming arguments value numbers. |
| 5782 | // Also give must-init vars a zero of their type. |
| 5783 | for (unsigned lclNum = 0; lclNum < lvaCount; lclNum++) |
| 5784 | { |
| 5785 | if (!lvaInSsa(lclNum)) |
| 5786 | { |
| 5787 | continue; |
| 5788 | } |
| 5789 | |
| 5790 | LclVarDsc* varDsc = &lvaTable[lclNum]; |
| 5791 | assert(varDsc->lvTracked); |
| 5792 | |
| 5793 | if (varDsc->lvIsParam) |
| 5794 | { |
| 5795 | // We assume that code equivalent to this variable initialization loop |
| 5796 | // has been performed when doing SSA naming, so that all the variables we give |
| 5797 | // initial VNs to here have been given initial SSA definitions there. |
| 5798 | // SSA numbers always start from FIRST_SSA_NUM, and we give the value number to SSA name FIRST_SSA_NUM. |
| 5799 | // We use the VNF_InitVal(i) from here so we know that this value is loop-invariant |
| 5800 | // in all loops. |
| 5801 | ValueNum initVal = vnStore->VNForFunc(varDsc->TypeGet(), VNF_InitVal, vnStore->VNForIntCon(lclNum)); |
| 5802 | LclSsaVarDsc* ssaDef = varDsc->GetPerSsaData(SsaConfig::FIRST_SSA_NUM); |
| 5803 | ssaDef->m_vnPair.SetBoth(initVal); |
| 5804 | ssaDef->m_defLoc.m_blk = fgFirstBB; |
| 5805 | } |
| 5806 | else if (info.compInitMem || varDsc->lvMustInit || |
| 5807 | VarSetOps::IsMember(this, fgFirstBB->bbLiveIn, varDsc->lvVarIndex)) |
| 5808 | { |
| 5809 | // The last clause covers the use-before-def variables (the ones that are live-in to the the first block), |
| 5810 | // these are variables that are read before being initialized (at least on some control flow paths) |
| 5811 | // if they are not must-init, then they get VNF_InitVal(i), as with the param case.) |
| 5812 | |
| 5813 | bool isZeroed = (info.compInitMem || varDsc->lvMustInit); |
| 5814 | ValueNum initVal = ValueNumStore::NoVN; // We must assign a new value to initVal |
| 5815 | var_types typ = varDsc->TypeGet(); |
| 5816 | |
| 5817 | switch (typ) |
| 5818 | { |
| 5819 | case TYP_LCLBLK: // The outgoing args area for arm and x64 |
| 5820 | case TYP_BLK: // A blob of memory |
| 5821 | // TYP_BLK is used for the EHSlots LclVar on x86 (aka shadowSPslotsVar) |
| 5822 | // and for the lvaInlinedPInvokeFrameVar on x64, arm and x86 |
| 5823 | // The stack associated with these LclVars are not zero initialized |
| 5824 | // thus we set 'initVN' to a new, unique VN. |
| 5825 | // |
| 5826 | initVal = vnStore->VNForExpr(fgFirstBB); |
| 5827 | break; |
| 5828 | |
| 5829 | case TYP_BYREF: |
| 5830 | if (isZeroed) |
| 5831 | { |
| 5832 | // LclVars of TYP_BYREF can be zero-inited. |
| 5833 | initVal = vnStore->VNForByrefCon(0); |
| 5834 | } |
| 5835 | else |
| 5836 | { |
| 5837 | // Here we have uninitialized TYP_BYREF |
| 5838 | initVal = vnStore->VNForFunc(typ, VNF_InitVal, vnStore->VNForIntCon(lclNum)); |
| 5839 | } |
| 5840 | break; |
| 5841 | |
| 5842 | default: |
| 5843 | if (isZeroed) |
| 5844 | { |
| 5845 | // By default we will zero init these LclVars |
| 5846 | initVal = vnStore->VNZeroForType(typ); |
| 5847 | } |
| 5848 | else |
| 5849 | { |
| 5850 | initVal = vnStore->VNForFunc(typ, VNF_InitVal, vnStore->VNForIntCon(lclNum)); |
| 5851 | } |
| 5852 | break; |
| 5853 | } |
| 5854 | #ifdef _TARGET_X86_ |
| 5855 | bool isVarargParam = (lclNum == lvaVarargsBaseOfStkArgs || lclNum == lvaVarargsHandleArg); |
| 5856 | if (isVarargParam) |
| 5857 | initVal = vnStore->VNForExpr(fgFirstBB); // a new, unique VN. |
| 5858 | #endif |
| 5859 | assert(initVal != ValueNumStore::NoVN); |
| 5860 | |
| 5861 | LclSsaVarDsc* ssaDef = varDsc->GetPerSsaData(SsaConfig::FIRST_SSA_NUM); |
| 5862 | ssaDef->m_vnPair.SetBoth(initVal); |
| 5863 | ssaDef->m_defLoc.m_blk = fgFirstBB; |
| 5864 | } |
| 5865 | } |
| 5866 | // Give memory an initial value number (about which we know nothing). |
| 5867 | ValueNum memoryInitVal = vnStore->VNForFunc(TYP_REF, VNF_InitVal, vnStore->VNForIntCon(-1)); // Use -1 for memory. |
| 5868 | GetMemoryPerSsaData(SsaConfig::FIRST_SSA_NUM)->m_vnPair.SetBoth(memoryInitVal); |
| 5869 | #ifdef DEBUG |
| 5870 | if (verbose) |
| 5871 | { |
| 5872 | printf("Memory Initial Value in BB01 is: " FMT_VN "\n" , memoryInitVal); |
| 5873 | } |
| 5874 | #endif // DEBUG |
| 5875 | |
| 5876 | ValueNumberState vs(this); |
| 5877 | |
| 5878 | // Push the first block. This has no preds. |
| 5879 | vs.m_toDoAllPredsDone.Push(fgFirstBB); |
| 5880 | |
| 5881 | while (vs.ToDoExists()) |
| 5882 | { |
| 5883 | while (vs.m_toDoAllPredsDone.Size() > 0) |
| 5884 | { |
| 5885 | BasicBlock* toDo = vs.m_toDoAllPredsDone.Pop(); |
| 5886 | fgValueNumberBlock(toDo); |
| 5887 | // Record that we've visited "toDo", and add successors to the right sets. |
| 5888 | vs.FinishVisit(toDo); |
| 5889 | } |
| 5890 | // OK, we've run out of blocks whose predecessors are done. Pick one whose predecessors are not all done, |
| 5891 | // process that. This may make more "all-done" blocks, so we'll go around the outer loop again -- |
| 5892 | // note that this is an "if", not a "while" loop. |
| 5893 | if (vs.m_toDoNotAllPredsDone.Size() > 0) |
| 5894 | { |
| 5895 | BasicBlock* toDo = vs.ChooseFromNotAllPredsDone(); |
| 5896 | if (toDo == nullptr) |
| 5897 | { |
| 5898 | continue; // We may have run out, because of completed blocks on the not-all-preds done list. |
| 5899 | } |
| 5900 | |
| 5901 | fgValueNumberBlock(toDo); |
| 5902 | // Record that we've visited "toDo", and add successors to the right sest. |
| 5903 | vs.FinishVisit(toDo); |
| 5904 | } |
| 5905 | } |
| 5906 | |
| 5907 | #ifdef DEBUG |
| 5908 | JitTestCheckVN(); |
| 5909 | #endif // DEBUG |
| 5910 | |
| 5911 | fgVNPassesCompleted++; |
| 5912 | } |
| 5913 | |
| 5914 | void Compiler::fgValueNumberBlock(BasicBlock* blk) |
| 5915 | { |
| 5916 | compCurBB = blk; |
| 5917 | |
| 5918 | #ifdef DEBUG |
| 5919 | compCurStmtNum = blk->bbStmtNum - 1; // Set compCurStmtNum |
| 5920 | #endif |
| 5921 | |
| 5922 | unsigned outerLoopNum = BasicBlock::NOT_IN_LOOP; |
| 5923 | |
| 5924 | // First: visit phi's. If "newVNForPhis", give them new VN's. If not, |
| 5925 | // first check to see if all phi args have the same value. |
| 5926 | GenTree* firstNonPhi = blk->FirstNonPhiDef(); |
| 5927 | for (GenTree* phiDefs = blk->bbTreeList; phiDefs != firstNonPhi; phiDefs = phiDefs->gtNext) |
| 5928 | { |
| 5929 | // TODO-Cleanup: It has been proposed that we should have an IsPhiDef predicate. We would use it |
| 5930 | // in Block::FirstNonPhiDef as well. |
| 5931 | GenTree* phiDef = phiDefs->gtStmt.gtStmtExpr; |
| 5932 | assert(phiDef->OperGet() == GT_ASG); |
| 5933 | GenTreeLclVarCommon* newSsaVar = phiDef->gtOp.gtOp1->AsLclVarCommon(); |
| 5934 | |
| 5935 | ValueNumPair phiAppVNP; |
| 5936 | ValueNumPair sameVNPair; |
| 5937 | |
| 5938 | GenTree* phiFunc = phiDef->gtOp.gtOp2; |
| 5939 | |
| 5940 | // At this point a GT_PHI node should never have a nullptr for gtOp1 |
| 5941 | // and the gtOp1 should always be a GT_LIST node. |
| 5942 | GenTree* phiOp1 = phiFunc->gtOp.gtOp1; |
| 5943 | noway_assert(phiOp1 != nullptr); |
| 5944 | noway_assert(phiOp1->OperGet() == GT_LIST); |
| 5945 | |
| 5946 | GenTreeArgList* phiArgs = phiFunc->gtOp.gtOp1->AsArgList(); |
| 5947 | |
| 5948 | // A GT_PHI node should have more than one argument. |
| 5949 | noway_assert(phiArgs->Rest() != nullptr); |
| 5950 | |
| 5951 | GenTreeLclVarCommon* phiArg = phiArgs->Current()->AsLclVarCommon(); |
| 5952 | phiArgs = phiArgs->Rest(); |
| 5953 | |
| 5954 | phiAppVNP.SetBoth(vnStore->VNForIntCon(phiArg->gtSsaNum)); |
| 5955 | bool allSameLib = true; |
| 5956 | bool allSameCons = true; |
| 5957 | sameVNPair = lvaTable[phiArg->gtLclNum].GetPerSsaData(phiArg->gtSsaNum)->m_vnPair; |
| 5958 | if (!sameVNPair.BothDefined()) |
| 5959 | { |
| 5960 | allSameLib = false; |
| 5961 | allSameCons = false; |
| 5962 | } |
| 5963 | while (phiArgs != nullptr) |
| 5964 | { |
| 5965 | phiArg = phiArgs->Current()->AsLclVarCommon(); |
| 5966 | // Set the VN of the phi arg. |
| 5967 | phiArg->gtVNPair = lvaTable[phiArg->gtLclNum].GetPerSsaData(phiArg->gtSsaNum)->m_vnPair; |
| 5968 | if (phiArg->gtVNPair.BothDefined()) |
| 5969 | { |
| 5970 | if (phiArg->gtVNPair.GetLiberal() != sameVNPair.GetLiberal()) |
| 5971 | { |
| 5972 | allSameLib = false; |
| 5973 | } |
| 5974 | if (phiArg->gtVNPair.GetConservative() != sameVNPair.GetConservative()) |
| 5975 | { |
| 5976 | allSameCons = false; |
| 5977 | } |
| 5978 | } |
| 5979 | else |
| 5980 | { |
| 5981 | allSameLib = false; |
| 5982 | allSameCons = false; |
| 5983 | } |
| 5984 | ValueNumPair phiArgSsaVNP; |
| 5985 | phiArgSsaVNP.SetBoth(vnStore->VNForIntCon(phiArg->gtSsaNum)); |
| 5986 | phiAppVNP = vnStore->VNPairForFunc(newSsaVar->TypeGet(), VNF_Phi, phiArgSsaVNP, phiAppVNP); |
| 5987 | phiArgs = phiArgs->Rest(); |
| 5988 | } |
| 5989 | |
| 5990 | ValueNumPair newVNPair; |
| 5991 | if (allSameLib) |
| 5992 | { |
| 5993 | newVNPair.SetLiberal(sameVNPair.GetLiberal()); |
| 5994 | } |
| 5995 | else |
| 5996 | { |
| 5997 | newVNPair.SetLiberal(phiAppVNP.GetLiberal()); |
| 5998 | } |
| 5999 | if (allSameCons) |
| 6000 | { |
| 6001 | newVNPair.SetConservative(sameVNPair.GetConservative()); |
| 6002 | } |
| 6003 | else |
| 6004 | { |
| 6005 | newVNPair.SetConservative(phiAppVNP.GetConservative()); |
| 6006 | } |
| 6007 | |
| 6008 | LclSsaVarDsc* newSsaVarDsc = lvaTable[newSsaVar->gtLclNum].GetPerSsaData(newSsaVar->GetSsaNum()); |
| 6009 | // If all the args of the phi had the same value(s, liberal and conservative), then there wasn't really |
| 6010 | // a reason to have the phi -- just pass on that value. |
| 6011 | if (allSameLib && allSameCons) |
| 6012 | { |
| 6013 | newSsaVarDsc->m_vnPair = newVNPair; |
| 6014 | #ifdef DEBUG |
| 6015 | if (verbose) |
| 6016 | { |
| 6017 | printf("In SSA definition, incoming phi args all same, set VN of local %d/%d to " , |
| 6018 | newSsaVar->GetLclNum(), newSsaVar->GetSsaNum()); |
| 6019 | vnpPrint(newVNPair, 1); |
| 6020 | printf(".\n" ); |
| 6021 | } |
| 6022 | #endif // DEBUG |
| 6023 | } |
| 6024 | else |
| 6025 | { |
| 6026 | // They were not the same; we need to create a phi definition. |
| 6027 | ValueNumPair lclNumVNP; |
| 6028 | lclNumVNP.SetBoth(ValueNum(newSsaVar->GetLclNum())); |
| 6029 | ValueNumPair ssaNumVNP; |
| 6030 | ssaNumVNP.SetBoth(ValueNum(newSsaVar->GetSsaNum())); |
| 6031 | ValueNumPair vnPhiDef = |
| 6032 | vnStore->VNPairForFunc(newSsaVar->TypeGet(), VNF_PhiDef, lclNumVNP, ssaNumVNP, phiAppVNP); |
| 6033 | newSsaVarDsc->m_vnPair = vnPhiDef; |
| 6034 | #ifdef DEBUG |
| 6035 | if (verbose) |
| 6036 | { |
| 6037 | printf("SSA definition: set VN of local %d/%d to " , newSsaVar->GetLclNum(), newSsaVar->GetSsaNum()); |
| 6038 | vnpPrint(vnPhiDef, 1); |
| 6039 | printf(".\n" ); |
| 6040 | } |
| 6041 | #endif // DEBUG |
| 6042 | } |
| 6043 | } |
| 6044 | |
| 6045 | // Now do the same for each MemoryKind. |
| 6046 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 6047 | { |
| 6048 | // Is there a phi for this block? |
| 6049 | if (blk->bbMemorySsaPhiFunc[memoryKind] == nullptr) |
| 6050 | { |
| 6051 | fgCurMemoryVN[memoryKind] = GetMemoryPerSsaData(blk->bbMemorySsaNumIn[memoryKind])->m_vnPair.GetLiberal(); |
| 6052 | assert(fgCurMemoryVN[memoryKind] != ValueNumStore::NoVN); |
| 6053 | } |
| 6054 | else |
| 6055 | { |
| 6056 | if ((memoryKind == ByrefExposed) && byrefStatesMatchGcHeapStates) |
| 6057 | { |
| 6058 | // The update for GcHeap will copy its result to ByrefExposed. |
| 6059 | assert(memoryKind < GcHeap); |
| 6060 | assert(blk->bbMemorySsaPhiFunc[memoryKind] == blk->bbMemorySsaPhiFunc[GcHeap]); |
| 6061 | continue; |
| 6062 | } |
| 6063 | |
| 6064 | unsigned loopNum; |
| 6065 | ValueNum newMemoryVN; |
| 6066 | if (optBlockIsLoopEntry(blk, &loopNum)) |
| 6067 | { |
| 6068 | newMemoryVN = fgMemoryVNForLoopSideEffects(memoryKind, blk, loopNum); |
| 6069 | } |
| 6070 | else |
| 6071 | { |
| 6072 | // Are all the VN's the same? |
| 6073 | BasicBlock::MemoryPhiArg* phiArgs = blk->bbMemorySsaPhiFunc[memoryKind]; |
| 6074 | assert(phiArgs != BasicBlock::EmptyMemoryPhiDef); |
| 6075 | // There should be > 1 args to a phi. |
| 6076 | assert(phiArgs->m_nextArg != nullptr); |
| 6077 | ValueNum phiAppVN = vnStore->VNForIntCon(phiArgs->GetSsaNum()); |
| 6078 | JITDUMP(" Building phi application: $%x = SSA# %d.\n" , phiAppVN, phiArgs->GetSsaNum()); |
| 6079 | bool allSame = true; |
| 6080 | ValueNum sameVN = GetMemoryPerSsaData(phiArgs->GetSsaNum())->m_vnPair.GetLiberal(); |
| 6081 | if (sameVN == ValueNumStore::NoVN) |
| 6082 | { |
| 6083 | allSame = false; |
| 6084 | } |
| 6085 | phiArgs = phiArgs->m_nextArg; |
| 6086 | while (phiArgs != nullptr) |
| 6087 | { |
| 6088 | ValueNum phiArgVN = GetMemoryPerSsaData(phiArgs->GetSsaNum())->m_vnPair.GetLiberal(); |
| 6089 | if (phiArgVN == ValueNumStore::NoVN || phiArgVN != sameVN) |
| 6090 | { |
| 6091 | allSame = false; |
| 6092 | } |
| 6093 | #ifdef DEBUG |
| 6094 | ValueNum oldPhiAppVN = phiAppVN; |
| 6095 | #endif |
| 6096 | unsigned phiArgSSANum = phiArgs->GetSsaNum(); |
| 6097 | ValueNum phiArgSSANumVN = vnStore->VNForIntCon(phiArgSSANum); |
| 6098 | JITDUMP(" Building phi application: $%x = SSA# %d.\n" , phiArgSSANumVN, phiArgSSANum); |
| 6099 | phiAppVN = vnStore->VNForFunc(TYP_REF, VNF_Phi, phiArgSSANumVN, phiAppVN); |
| 6100 | JITDUMP(" Building phi application: $%x = phi($%x, $%x).\n" , phiAppVN, phiArgSSANumVN, |
| 6101 | oldPhiAppVN); |
| 6102 | phiArgs = phiArgs->m_nextArg; |
| 6103 | } |
| 6104 | if (allSame) |
| 6105 | { |
| 6106 | newMemoryVN = sameVN; |
| 6107 | } |
| 6108 | else |
| 6109 | { |
| 6110 | newMemoryVN = |
| 6111 | vnStore->VNForFunc(TYP_REF, VNF_PhiMemoryDef, vnStore->VNForHandle(ssize_t(blk), 0), phiAppVN); |
| 6112 | } |
| 6113 | } |
| 6114 | GetMemoryPerSsaData(blk->bbMemorySsaNumIn[memoryKind])->m_vnPair.SetLiberal(newMemoryVN); |
| 6115 | fgCurMemoryVN[memoryKind] = newMemoryVN; |
| 6116 | if ((memoryKind == GcHeap) && byrefStatesMatchGcHeapStates) |
| 6117 | { |
| 6118 | // Keep the CurMemoryVNs in sync |
| 6119 | fgCurMemoryVN[ByrefExposed] = newMemoryVN; |
| 6120 | } |
| 6121 | } |
| 6122 | #ifdef DEBUG |
| 6123 | if (verbose) |
| 6124 | { |
| 6125 | printf("The SSA definition for %s (#%d) at start of " FMT_BB " is " , memoryKindNames[memoryKind], |
| 6126 | blk->bbMemorySsaNumIn[memoryKind], blk->bbNum); |
| 6127 | vnPrint(fgCurMemoryVN[memoryKind], 1); |
| 6128 | printf("\n" ); |
| 6129 | } |
| 6130 | #endif // DEBUG |
| 6131 | } |
| 6132 | |
| 6133 | // Now iterate over the remaining statements, and their trees. |
| 6134 | for (GenTree* stmt = firstNonPhi; stmt != nullptr; stmt = stmt->gtNext) |
| 6135 | { |
| 6136 | assert(stmt->IsStatement()); |
| 6137 | |
| 6138 | #ifdef DEBUG |
| 6139 | compCurStmtNum++; |
| 6140 | if (verbose) |
| 6141 | { |
| 6142 | printf("\n***** " FMT_BB ", stmt %d (before)\n" , blk->bbNum, compCurStmtNum); |
| 6143 | gtDispTree(stmt->gtStmt.gtStmtExpr); |
| 6144 | printf("\n" ); |
| 6145 | } |
| 6146 | #endif |
| 6147 | |
| 6148 | for (GenTree* tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext) |
| 6149 | { |
| 6150 | fgValueNumberTree(tree); |
| 6151 | } |
| 6152 | |
| 6153 | #ifdef DEBUG |
| 6154 | if (verbose) |
| 6155 | { |
| 6156 | printf("\n***** " FMT_BB ", stmt %d (after)\n" , blk->bbNum, compCurStmtNum); |
| 6157 | gtDispTree(stmt->gtStmt.gtStmtExpr); |
| 6158 | printf("\n" ); |
| 6159 | if (stmt->gtNext) |
| 6160 | { |
| 6161 | printf("---------\n" ); |
| 6162 | } |
| 6163 | } |
| 6164 | #endif |
| 6165 | } |
| 6166 | |
| 6167 | for (MemoryKind memoryKind : allMemoryKinds()) |
| 6168 | { |
| 6169 | if ((memoryKind == GcHeap) && byrefStatesMatchGcHeapStates) |
| 6170 | { |
| 6171 | // The update to the shared SSA data will have already happened for ByrefExposed. |
| 6172 | assert(memoryKind > ByrefExposed); |
| 6173 | assert(blk->bbMemorySsaNumOut[memoryKind] == blk->bbMemorySsaNumOut[ByrefExposed]); |
| 6174 | assert(GetMemoryPerSsaData(blk->bbMemorySsaNumOut[memoryKind])->m_vnPair.GetLiberal() == |
| 6175 | fgCurMemoryVN[memoryKind]); |
| 6176 | continue; |
| 6177 | } |
| 6178 | |
| 6179 | if (blk->bbMemorySsaNumOut[memoryKind] != blk->bbMemorySsaNumIn[memoryKind]) |
| 6180 | { |
| 6181 | GetMemoryPerSsaData(blk->bbMemorySsaNumOut[memoryKind])->m_vnPair.SetLiberal(fgCurMemoryVN[memoryKind]); |
| 6182 | } |
| 6183 | } |
| 6184 | |
| 6185 | compCurBB = nullptr; |
| 6186 | } |
| 6187 | |
| 6188 | ValueNum Compiler::fgMemoryVNForLoopSideEffects(MemoryKind memoryKind, |
| 6189 | BasicBlock* entryBlock, |
| 6190 | unsigned innermostLoopNum) |
| 6191 | { |
| 6192 | // "loopNum" is the innermost loop for which "blk" is the entry; find the outermost one. |
| 6193 | assert(innermostLoopNum != BasicBlock::NOT_IN_LOOP); |
| 6194 | unsigned loopsInNest = innermostLoopNum; |
| 6195 | unsigned loopNum = innermostLoopNum; |
| 6196 | while (loopsInNest != BasicBlock::NOT_IN_LOOP) |
| 6197 | { |
| 6198 | if (optLoopTable[loopsInNest].lpEntry != entryBlock) |
| 6199 | { |
| 6200 | break; |
| 6201 | } |
| 6202 | loopNum = loopsInNest; |
| 6203 | loopsInNest = optLoopTable[loopsInNest].lpParent; |
| 6204 | } |
| 6205 | |
| 6206 | #ifdef DEBUG |
| 6207 | if (verbose) |
| 6208 | { |
| 6209 | printf("Computing %s state for block " FMT_BB ", entry block for loops %d to %d:\n" , |
| 6210 | memoryKindNames[memoryKind], entryBlock->bbNum, innermostLoopNum, loopNum); |
| 6211 | } |
| 6212 | #endif // DEBUG |
| 6213 | |
| 6214 | // If this loop has memory havoc effects, just use a new, unique VN. |
| 6215 | if (optLoopTable[loopNum].lpLoopHasMemoryHavoc[memoryKind]) |
| 6216 | { |
| 6217 | ValueNum res = vnStore->VNForExpr(entryBlock, TYP_REF); |
| 6218 | #ifdef DEBUG |
| 6219 | if (verbose) |
| 6220 | { |
| 6221 | printf(" Loop %d has memory havoc effect; heap state is new unique $%x.\n" , loopNum, res); |
| 6222 | } |
| 6223 | #endif // DEBUG |
| 6224 | return res; |
| 6225 | } |
| 6226 | |
| 6227 | // Otherwise, find the predecessors of the entry block that are not in the loop. |
| 6228 | // If there is only one such, use its memory value as the "base." If more than one, |
| 6229 | // use a new unique VN. |
| 6230 | BasicBlock* nonLoopPred = nullptr; |
| 6231 | bool multipleNonLoopPreds = false; |
| 6232 | for (flowList* pred = BlockPredsWithEH(entryBlock); pred != nullptr; pred = pred->flNext) |
| 6233 | { |
| 6234 | BasicBlock* predBlock = pred->flBlock; |
| 6235 | if (!optLoopTable[loopNum].lpContains(predBlock)) |
| 6236 | { |
| 6237 | if (nonLoopPred == nullptr) |
| 6238 | { |
| 6239 | nonLoopPred = predBlock; |
| 6240 | } |
| 6241 | else |
| 6242 | { |
| 6243 | #ifdef DEBUG |
| 6244 | if (verbose) |
| 6245 | { |
| 6246 | printf(" Entry block has >1 non-loop preds: (at least) " FMT_BB " and " FMT_BB ".\n" , |
| 6247 | nonLoopPred->bbNum, predBlock->bbNum); |
| 6248 | } |
| 6249 | #endif // DEBUG |
| 6250 | multipleNonLoopPreds = true; |
| 6251 | break; |
| 6252 | } |
| 6253 | } |
| 6254 | } |
| 6255 | if (multipleNonLoopPreds) |
| 6256 | { |
| 6257 | ValueNum res = vnStore->VNForExpr(entryBlock, TYP_REF); |
| 6258 | #ifdef DEBUG |
| 6259 | if (verbose) |
| 6260 | { |
| 6261 | printf(" Therefore, memory state is new, fresh $%x.\n" , res); |
| 6262 | } |
| 6263 | #endif // DEBUG |
| 6264 | return res; |
| 6265 | } |
| 6266 | // Otherwise, there is a single non-loop pred. |
| 6267 | assert(nonLoopPred != nullptr); |
| 6268 | // What is its memory post-state? |
| 6269 | ValueNum newMemoryVN = GetMemoryPerSsaData(nonLoopPred->bbMemorySsaNumOut[memoryKind])->m_vnPair.GetLiberal(); |
| 6270 | assert(newMemoryVN != ValueNumStore::NoVN); // We must have processed the single non-loop pred before reaching the |
| 6271 | // loop entry. |
| 6272 | |
| 6273 | #ifdef DEBUG |
| 6274 | if (verbose) |
| 6275 | { |
| 6276 | printf(" Init %s state is $%x, with new, fresh VN at:\n" , memoryKindNames[memoryKind], newMemoryVN); |
| 6277 | } |
| 6278 | #endif // DEBUG |
| 6279 | // Modify "base" by setting all the modified fields/field maps/array maps to unknown values. |
| 6280 | // These annotations apply specifically to the GcHeap, where we disambiguate across such stores. |
| 6281 | if (memoryKind == GcHeap) |
| 6282 | { |
| 6283 | // First the fields/field maps. |
| 6284 | Compiler::LoopDsc::FieldHandleSet* fieldsMod = optLoopTable[loopNum].lpFieldsModified; |
| 6285 | if (fieldsMod != nullptr) |
| 6286 | { |
| 6287 | for (Compiler::LoopDsc::FieldHandleSet::KeyIterator ki = fieldsMod->Begin(); !ki.Equal(fieldsMod->End()); |
| 6288 | ++ki) |
| 6289 | { |
| 6290 | CORINFO_FIELD_HANDLE fldHnd = ki.Get(); |
| 6291 | ValueNum fldHndVN = vnStore->VNForHandle(ssize_t(fldHnd), GTF_ICON_FIELD_HDL); |
| 6292 | |
| 6293 | #ifdef DEBUG |
| 6294 | if (verbose) |
| 6295 | { |
| 6296 | const char* modName; |
| 6297 | const char* fldName = eeGetFieldName(fldHnd, &modName); |
| 6298 | printf(" VNForHandle(%s) is " FMT_VN "\n" , fldName, fldHndVN); |
| 6299 | } |
| 6300 | #endif // DEBUG |
| 6301 | |
| 6302 | newMemoryVN = |
| 6303 | vnStore->VNForMapStore(TYP_REF, newMemoryVN, fldHndVN, vnStore->VNForExpr(entryBlock, TYP_REF)); |
| 6304 | } |
| 6305 | } |
| 6306 | // Now do the array maps. |
| 6307 | Compiler::LoopDsc::ClassHandleSet* elemTypesMod = optLoopTable[loopNum].lpArrayElemTypesModified; |
| 6308 | if (elemTypesMod != nullptr) |
| 6309 | { |
| 6310 | for (Compiler::LoopDsc::ClassHandleSet::KeyIterator ki = elemTypesMod->Begin(); |
| 6311 | !ki.Equal(elemTypesMod->End()); ++ki) |
| 6312 | { |
| 6313 | CORINFO_CLASS_HANDLE elemClsHnd = ki.Get(); |
| 6314 | |
| 6315 | #ifdef DEBUG |
| 6316 | if (verbose) |
| 6317 | { |
| 6318 | var_types elemTyp = DecodeElemType(elemClsHnd); |
| 6319 | // If a valid class handle is given when the ElemType is set, DecodeElemType will |
| 6320 | // return TYP_STRUCT, and elemClsHnd is that handle. |
| 6321 | // Otherwise, elemClsHnd is NOT a valid class handle, and is the encoded var_types value. |
| 6322 | if (elemTyp == TYP_STRUCT) |
| 6323 | { |
| 6324 | printf(" Array map %s[]\n" , eeGetClassName(elemClsHnd)); |
| 6325 | } |
| 6326 | else |
| 6327 | { |
| 6328 | printf(" Array map %s[]\n" , varTypeName(elemTyp)); |
| 6329 | } |
| 6330 | } |
| 6331 | #endif // DEBUG |
| 6332 | |
| 6333 | ValueNum elemTypeVN = vnStore->VNForHandle(ssize_t(elemClsHnd), GTF_ICON_CLASS_HDL); |
| 6334 | ValueNum uniqueVN = vnStore->VNForExpr(entryBlock, TYP_REF); |
| 6335 | newMemoryVN = vnStore->VNForMapStore(TYP_REF, newMemoryVN, elemTypeVN, uniqueVN); |
| 6336 | } |
| 6337 | } |
| 6338 | } |
| 6339 | else |
| 6340 | { |
| 6341 | // If there were any fields/elements modified, this should have been recorded as havoc |
| 6342 | // for ByrefExposed. |
| 6343 | assert(memoryKind == ByrefExposed); |
| 6344 | assert((optLoopTable[loopNum].lpFieldsModified == nullptr) || |
| 6345 | optLoopTable[loopNum].lpLoopHasMemoryHavoc[memoryKind]); |
| 6346 | assert((optLoopTable[loopNum].lpArrayElemTypesModified == nullptr) || |
| 6347 | optLoopTable[loopNum].lpLoopHasMemoryHavoc[memoryKind]); |
| 6348 | } |
| 6349 | |
| 6350 | #ifdef DEBUG |
| 6351 | if (verbose) |
| 6352 | { |
| 6353 | printf(" Final %s state is $%x.\n" , memoryKindNames[memoryKind], newMemoryVN); |
| 6354 | } |
| 6355 | #endif // DEBUG |
| 6356 | return newMemoryVN; |
| 6357 | } |
| 6358 | |
| 6359 | void Compiler::fgMutateGcHeap(GenTree* tree DEBUGARG(const char* msg)) |
| 6360 | { |
| 6361 | // Update the current memory VN, and if we're tracking the heap SSA # caused by this node, record it. |
| 6362 | recordGcHeapStore(tree, vnStore->VNForExpr(compCurBB, TYP_REF) DEBUGARG(msg)); |
| 6363 | } |
| 6364 | |
| 6365 | void Compiler::fgMutateAddressExposedLocal(GenTree* tree DEBUGARG(const char* msg)) |
| 6366 | { |
| 6367 | // Update the current ByrefExposed VN, and if we're tracking the heap SSA # caused by this node, record it. |
| 6368 | recordAddressExposedLocalStore(tree, vnStore->VNForExpr(compCurBB) DEBUGARG(msg)); |
| 6369 | } |
| 6370 | |
| 6371 | void Compiler::recordGcHeapStore(GenTree* curTree, ValueNum gcHeapVN DEBUGARG(const char* msg)) |
| 6372 | { |
| 6373 | // bbMemoryDef must include GcHeap for any block that mutates the GC Heap |
| 6374 | // and GC Heap mutations are also ByrefExposed mutations |
| 6375 | assert((compCurBB->bbMemoryDef & memoryKindSet(GcHeap, ByrefExposed)) == memoryKindSet(GcHeap, ByrefExposed)); |
| 6376 | fgCurMemoryVN[GcHeap] = gcHeapVN; |
| 6377 | |
| 6378 | if (byrefStatesMatchGcHeapStates) |
| 6379 | { |
| 6380 | // Since GcHeap and ByrefExposed share SSA nodes, they need to share |
| 6381 | // value numbers too. |
| 6382 | fgCurMemoryVN[ByrefExposed] = gcHeapVN; |
| 6383 | } |
| 6384 | else |
| 6385 | { |
| 6386 | // GcHeap and ByrefExposed have different defnums and VNs. We conservatively |
| 6387 | // assume that this GcHeap store may alias any byref load/store, so don't |
| 6388 | // bother trying to record the map/select stuff, and instead just an opaque VN |
| 6389 | // for ByrefExposed |
| 6390 | fgCurMemoryVN[ByrefExposed] = vnStore->VNForExpr(compCurBB); |
| 6391 | } |
| 6392 | |
| 6393 | #ifdef DEBUG |
| 6394 | if (verbose) |
| 6395 | { |
| 6396 | printf(" fgCurMemoryVN[GcHeap] assigned for %s at " , msg); |
| 6397 | Compiler::printTreeID(curTree); |
| 6398 | printf(" to VN: " FMT_VN ".\n" , gcHeapVN); |
| 6399 | } |
| 6400 | #endif // DEBUG |
| 6401 | |
| 6402 | // If byrefStatesMatchGcHeapStates is true, then since GcHeap and ByrefExposed share |
| 6403 | // their SSA map entries, the below will effectively update both. |
| 6404 | fgValueNumberRecordMemorySsa(GcHeap, curTree); |
| 6405 | } |
| 6406 | |
| 6407 | void Compiler::recordAddressExposedLocalStore(GenTree* curTree, ValueNum memoryVN DEBUGARG(const char* msg)) |
| 6408 | { |
| 6409 | // This should only happen if GcHeap and ByrefExposed are being tracked separately; |
| 6410 | // otherwise we'd go through recordGcHeapStore. |
| 6411 | assert(!byrefStatesMatchGcHeapStates); |
| 6412 | |
| 6413 | // bbMemoryDef must include ByrefExposed for any block that mutates an address-exposed local |
| 6414 | assert((compCurBB->bbMemoryDef & memoryKindSet(ByrefExposed)) != 0); |
| 6415 | fgCurMemoryVN[ByrefExposed] = memoryVN; |
| 6416 | |
| 6417 | #ifdef DEBUG |
| 6418 | if (verbose) |
| 6419 | { |
| 6420 | printf(" fgCurMemoryVN[ByrefExposed] assigned for %s at " , msg); |
| 6421 | Compiler::printTreeID(curTree); |
| 6422 | printf(" to VN: " FMT_VN ".\n" , memoryVN); |
| 6423 | } |
| 6424 | #endif // DEBUG |
| 6425 | |
| 6426 | fgValueNumberRecordMemorySsa(ByrefExposed, curTree); |
| 6427 | } |
| 6428 | |
| 6429 | void Compiler::fgValueNumberRecordMemorySsa(MemoryKind memoryKind, GenTree* tree) |
| 6430 | { |
| 6431 | unsigned ssaNum; |
| 6432 | if (GetMemorySsaMap(memoryKind)->Lookup(tree, &ssaNum)) |
| 6433 | { |
| 6434 | GetMemoryPerSsaData(ssaNum)->m_vnPair.SetLiberal(fgCurMemoryVN[memoryKind]); |
| 6435 | #ifdef DEBUG |
| 6436 | if (verbose) |
| 6437 | { |
| 6438 | printf("Node " ); |
| 6439 | Compiler::printTreeID(tree); |
| 6440 | printf(" sets %s SSA # %d to VN $%x: " , memoryKindNames[memoryKind], ssaNum, fgCurMemoryVN[memoryKind]); |
| 6441 | vnStore->vnDump(this, fgCurMemoryVN[memoryKind]); |
| 6442 | printf("\n" ); |
| 6443 | } |
| 6444 | #endif // DEBUG |
| 6445 | } |
| 6446 | } |
| 6447 | |
| 6448 | // The input 'tree' is a leaf node that is a constant |
| 6449 | // Assign the proper value number to the tree |
| 6450 | void Compiler::fgValueNumberTreeConst(GenTree* tree) |
| 6451 | { |
| 6452 | genTreeOps oper = tree->OperGet(); |
| 6453 | var_types typ = tree->TypeGet(); |
| 6454 | assert(GenTree::OperIsConst(oper)); |
| 6455 | |
| 6456 | switch (typ) |
| 6457 | { |
| 6458 | case TYP_LONG: |
| 6459 | case TYP_ULONG: |
| 6460 | case TYP_INT: |
| 6461 | case TYP_UINT: |
| 6462 | case TYP_USHORT: |
| 6463 | case TYP_SHORT: |
| 6464 | case TYP_BYTE: |
| 6465 | case TYP_UBYTE: |
| 6466 | case TYP_BOOL: |
| 6467 | if (tree->IsCnsIntOrI() && tree->IsIconHandle()) |
| 6468 | { |
| 6469 | tree->gtVNPair.SetBoth( |
| 6470 | vnStore->VNForHandle(ssize_t(tree->gtIntConCommon.IconValue()), tree->GetIconHandleFlag())); |
| 6471 | } |
| 6472 | else if ((typ == TYP_LONG) || (typ == TYP_ULONG)) |
| 6473 | { |
| 6474 | tree->gtVNPair.SetBoth(vnStore->VNForLongCon(INT64(tree->gtIntConCommon.LngValue()))); |
| 6475 | } |
| 6476 | else |
| 6477 | { |
| 6478 | tree->gtVNPair.SetBoth(vnStore->VNForIntCon(int(tree->gtIntConCommon.IconValue()))); |
| 6479 | } |
| 6480 | break; |
| 6481 | |
| 6482 | case TYP_FLOAT: |
| 6483 | tree->gtVNPair.SetBoth(vnStore->VNForFloatCon((float)tree->gtDblCon.gtDconVal)); |
| 6484 | break; |
| 6485 | case TYP_DOUBLE: |
| 6486 | tree->gtVNPair.SetBoth(vnStore->VNForDoubleCon(tree->gtDblCon.gtDconVal)); |
| 6487 | break; |
| 6488 | case TYP_REF: |
| 6489 | if (tree->gtIntConCommon.IconValue() == 0) |
| 6490 | { |
| 6491 | tree->gtVNPair.SetBoth(ValueNumStore::VNForNull()); |
| 6492 | } |
| 6493 | else |
| 6494 | { |
| 6495 | assert(tree->gtFlags == GTF_ICON_STR_HDL); // Constant object can be only frozen string. |
| 6496 | tree->gtVNPair.SetBoth( |
| 6497 | vnStore->VNForHandle(ssize_t(tree->gtIntConCommon.IconValue()), tree->GetIconHandleFlag())); |
| 6498 | } |
| 6499 | break; |
| 6500 | |
| 6501 | case TYP_BYREF: |
| 6502 | if (tree->gtIntConCommon.IconValue() == 0) |
| 6503 | { |
| 6504 | tree->gtVNPair.SetBoth(ValueNumStore::VNForNull()); |
| 6505 | } |
| 6506 | else |
| 6507 | { |
| 6508 | assert(tree->IsCnsIntOrI()); |
| 6509 | |
| 6510 | if (tree->IsIconHandle()) |
| 6511 | { |
| 6512 | tree->gtVNPair.SetBoth( |
| 6513 | vnStore->VNForHandle(ssize_t(tree->gtIntConCommon.IconValue()), tree->GetIconHandleFlag())); |
| 6514 | } |
| 6515 | else |
| 6516 | { |
| 6517 | tree->gtVNPair.SetBoth(vnStore->VNForByrefCon(tree->gtIntConCommon.IconValue())); |
| 6518 | } |
| 6519 | } |
| 6520 | break; |
| 6521 | |
| 6522 | default: |
| 6523 | unreached(); |
| 6524 | } |
| 6525 | } |
| 6526 | |
| 6527 | //------------------------------------------------------------------------ |
| 6528 | // fgValueNumberBlockAssignment: Perform value numbering for block assignments. |
| 6529 | // |
| 6530 | // Arguments: |
| 6531 | // tree - the block assignment to be value numbered. |
| 6532 | // |
| 6533 | // Return Value: |
| 6534 | // None. |
| 6535 | // |
| 6536 | // Assumptions: |
| 6537 | // 'tree' must be a block assignment (GT_INITBLK, GT_COPYBLK, GT_COPYOBJ). |
| 6538 | |
| 6539 | void Compiler::fgValueNumberBlockAssignment(GenTree* tree) |
| 6540 | { |
| 6541 | GenTree* lhs = tree->gtGetOp1(); |
| 6542 | GenTree* rhs = tree->gtGetOp2(); |
| 6543 | |
| 6544 | if (tree->OperIsInitBlkOp()) |
| 6545 | { |
| 6546 | GenTreeLclVarCommon* lclVarTree; |
| 6547 | bool isEntire; |
| 6548 | |
| 6549 | if (tree->DefinesLocal(this, &lclVarTree, &isEntire)) |
| 6550 | { |
| 6551 | assert(lclVarTree->gtFlags & GTF_VAR_DEF); |
| 6552 | // Should not have been recorded as updating the GC heap. |
| 6553 | assert(!GetMemorySsaMap(GcHeap)->Lookup(tree)); |
| 6554 | |
| 6555 | unsigned lclNum = lclVarTree->GetLclNum(); |
| 6556 | |
| 6557 | // Ignore vars that we excluded from SSA (for example, because they're address-exposed). They don't have |
| 6558 | // SSA names in which to store VN's on defs. We'll yield unique VN's when we read from them. |
| 6559 | if (lvaInSsa(lclNum)) |
| 6560 | { |
| 6561 | // Should not have been recorded as updating ByrefExposed. |
| 6562 | assert(!GetMemorySsaMap(ByrefExposed)->Lookup(tree)); |
| 6563 | |
| 6564 | unsigned lclDefSsaNum = GetSsaNumForLocalVarDef(lclVarTree); |
| 6565 | |
| 6566 | ValueNum initBlkVN = ValueNumStore::NoVN; |
| 6567 | GenTree* initConst = rhs; |
| 6568 | if (isEntire && initConst->OperGet() == GT_CNS_INT) |
| 6569 | { |
| 6570 | unsigned initVal = 0xFF & (unsigned)initConst->AsIntConCommon()->IconValue(); |
| 6571 | if (initVal == 0) |
| 6572 | { |
| 6573 | initBlkVN = vnStore->VNZeroForType(lclVarTree->TypeGet()); |
| 6574 | } |
| 6575 | } |
| 6576 | ValueNum lclVarVN = (initBlkVN != ValueNumStore::NoVN) |
| 6577 | ? initBlkVN |
| 6578 | : vnStore->VNForExpr(compCurBB, var_types(lvaTable[lclNum].lvType)); |
| 6579 | |
| 6580 | lvaTable[lclNum].GetPerSsaData(lclDefSsaNum)->m_vnPair.SetBoth(lclVarVN); |
| 6581 | #ifdef DEBUG |
| 6582 | if (verbose) |
| 6583 | { |
| 6584 | printf("N%03u " , tree->gtSeqNum); |
| 6585 | Compiler::printTreeID(tree); |
| 6586 | printf(" " ); |
| 6587 | gtDispNodeName(tree); |
| 6588 | printf(" V%02u/%d => " , lclNum, lclDefSsaNum); |
| 6589 | vnPrint(lclVarVN, 1); |
| 6590 | printf("\n" ); |
| 6591 | } |
| 6592 | #endif // DEBUG |
| 6593 | } |
| 6594 | else if (lvaVarAddrExposed(lclVarTree->gtLclNum)) |
| 6595 | { |
| 6596 | fgMutateAddressExposedLocal(tree DEBUGARG("INITBLK - address-exposed local" )); |
| 6597 | } |
| 6598 | } |
| 6599 | else |
| 6600 | { |
| 6601 | // For now, arbitrary side effect on GcHeap/ByrefExposed. |
| 6602 | // TODO-CQ: Why not be complete, and get this case right? |
| 6603 | fgMutateGcHeap(tree DEBUGARG("INITBLK - non local" )); |
| 6604 | } |
| 6605 | // Initblock's are of type void. Give them the void "value" -- they may occur in argument lists, which we |
| 6606 | // want to be able to give VN's to. |
| 6607 | tree->gtVNPair.SetBoth(ValueNumStore::VNForVoid()); |
| 6608 | } |
| 6609 | else |
| 6610 | { |
| 6611 | assert(tree->OperIsCopyBlkOp()); |
| 6612 | // TODO-Cleanup: We should factor things so that we uniformly rely on "PtrTo" VN's, and |
| 6613 | // the memory cases can be shared with assignments. |
| 6614 | GenTreeLclVarCommon* lclVarTree = nullptr; |
| 6615 | bool isEntire = false; |
| 6616 | // Note that we don't care about exceptions here, since we're only using the values |
| 6617 | // to perform an assignment (which happens after any exceptions are raised...) |
| 6618 | |
| 6619 | if (tree->DefinesLocal(this, &lclVarTree, &isEntire)) |
| 6620 | { |
| 6621 | // Should not have been recorded as updating the GC heap. |
| 6622 | assert(!GetMemorySsaMap(GcHeap)->Lookup(tree)); |
| 6623 | |
| 6624 | unsigned lhsLclNum = lclVarTree->GetLclNum(); |
| 6625 | FieldSeqNode* lhsFldSeq = nullptr; |
| 6626 | // If it's excluded from SSA, don't need to do anything. |
| 6627 | if (lvaInSsa(lhsLclNum)) |
| 6628 | { |
| 6629 | // Should not have been recorded as updating ByrefExposed. |
| 6630 | assert(!GetMemorySsaMap(ByrefExposed)->Lookup(tree)); |
| 6631 | |
| 6632 | unsigned lclDefSsaNum = GetSsaNumForLocalVarDef(lclVarTree); |
| 6633 | |
| 6634 | if (lhs->IsLocalExpr(this, &lclVarTree, &lhsFldSeq)) |
| 6635 | { |
| 6636 | noway_assert(lclVarTree->gtLclNum == lhsLclNum); |
| 6637 | } |
| 6638 | else |
| 6639 | { |
| 6640 | GenTree* lhsAddr; |
| 6641 | if (lhs->OperIsBlk()) |
| 6642 | { |
| 6643 | lhsAddr = lhs->AsBlk()->Addr(); |
| 6644 | } |
| 6645 | else |
| 6646 | { |
| 6647 | assert(lhs->OperGet() == GT_IND); |
| 6648 | lhsAddr = lhs->gtOp.gtOp1; |
| 6649 | } |
| 6650 | |
| 6651 | // For addr-of-local expressions, lib/cons shouldn't matter. |
| 6652 | assert(lhsAddr->gtVNPair.BothEqual()); |
| 6653 | ValueNum lhsAddrVN = lhsAddr->GetVN(VNK_Liberal); |
| 6654 | |
| 6655 | // Unpack the PtrToLoc value number of the address. |
| 6656 | assert(vnStore->IsVNFunc(lhsAddrVN)); |
| 6657 | |
| 6658 | VNFuncApp lhsAddrFuncApp; |
| 6659 | vnStore->GetVNFunc(lhsAddrVN, &lhsAddrFuncApp); |
| 6660 | |
| 6661 | assert(lhsAddrFuncApp.m_func == VNF_PtrToLoc); |
| 6662 | assert(vnStore->IsVNConstant(lhsAddrFuncApp.m_args[0]) && |
| 6663 | vnStore->ConstantValue<unsigned>(lhsAddrFuncApp.m_args[0]) == lhsLclNum); |
| 6664 | |
| 6665 | lhsFldSeq = vnStore->FieldSeqVNToFieldSeq(lhsAddrFuncApp.m_args[1]); |
| 6666 | } |
| 6667 | |
| 6668 | // Now we need to get the proper RHS. |
| 6669 | GenTreeLclVarCommon* rhsLclVarTree = nullptr; |
| 6670 | LclVarDsc* rhsVarDsc = nullptr; |
| 6671 | FieldSeqNode* rhsFldSeq = nullptr; |
| 6672 | ValueNumPair rhsVNPair; |
| 6673 | bool isNewUniq = false; |
| 6674 | if (!rhs->OperIsIndir()) |
| 6675 | { |
| 6676 | if (rhs->IsLocalExpr(this, &rhsLclVarTree, &rhsFldSeq)) |
| 6677 | { |
| 6678 | unsigned rhsLclNum = rhsLclVarTree->GetLclNum(); |
| 6679 | rhsVarDsc = &lvaTable[rhsLclNum]; |
| 6680 | if (!lvaInSsa(rhsLclNum) || rhsFldSeq == FieldSeqStore::NotAField()) |
| 6681 | { |
| 6682 | rhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, rhsLclVarTree->TypeGet())); |
| 6683 | isNewUniq = true; |
| 6684 | } |
| 6685 | else |
| 6686 | { |
| 6687 | rhsVNPair = lvaTable[rhsLclVarTree->GetLclNum()] |
| 6688 | .GetPerSsaData(rhsLclVarTree->GetSsaNum()) |
| 6689 | ->m_vnPair; |
| 6690 | var_types indType = rhsLclVarTree->TypeGet(); |
| 6691 | |
| 6692 | rhsVNPair = vnStore->VNPairApplySelectors(rhsVNPair, rhsFldSeq, indType); |
| 6693 | } |
| 6694 | } |
| 6695 | else |
| 6696 | { |
| 6697 | rhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, rhs->TypeGet())); |
| 6698 | isNewUniq = true; |
| 6699 | } |
| 6700 | } |
| 6701 | else |
| 6702 | { |
| 6703 | GenTree* srcAddr = rhs->AsIndir()->Addr(); |
| 6704 | VNFuncApp srcAddrFuncApp; |
| 6705 | if (srcAddr->IsLocalAddrExpr(this, &rhsLclVarTree, &rhsFldSeq)) |
| 6706 | { |
| 6707 | unsigned rhsLclNum = rhsLclVarTree->GetLclNum(); |
| 6708 | rhsVarDsc = &lvaTable[rhsLclNum]; |
| 6709 | if (!lvaInSsa(rhsLclNum) || rhsFldSeq == FieldSeqStore::NotAField()) |
| 6710 | { |
| 6711 | isNewUniq = true; |
| 6712 | } |
| 6713 | else |
| 6714 | { |
| 6715 | rhsVNPair = lvaTable[rhsLclVarTree->GetLclNum()] |
| 6716 | .GetPerSsaData(rhsLclVarTree->GetSsaNum()) |
| 6717 | ->m_vnPair; |
| 6718 | var_types indType = rhsLclVarTree->TypeGet(); |
| 6719 | |
| 6720 | rhsVNPair = vnStore->VNPairApplySelectors(rhsVNPair, rhsFldSeq, indType); |
| 6721 | } |
| 6722 | } |
| 6723 | else if (vnStore->GetVNFunc(vnStore->VNLiberalNormalValue(srcAddr->gtVNPair), &srcAddrFuncApp)) |
| 6724 | { |
| 6725 | if (srcAddrFuncApp.m_func == VNF_PtrToStatic) |
| 6726 | { |
| 6727 | var_types indType = lclVarTree->TypeGet(); |
| 6728 | ValueNum fieldSeqVN = srcAddrFuncApp.m_args[0]; |
| 6729 | |
| 6730 | FieldSeqNode* zeroOffsetFldSeq = nullptr; |
| 6731 | if (GetZeroOffsetFieldMap()->Lookup(srcAddr, &zeroOffsetFldSeq)) |
| 6732 | { |
| 6733 | fieldSeqVN = |
| 6734 | vnStore->FieldSeqVNAppend(fieldSeqVN, vnStore->VNForFieldSeq(zeroOffsetFldSeq)); |
| 6735 | } |
| 6736 | |
| 6737 | FieldSeqNode* fldSeqForStaticVar = vnStore->FieldSeqVNToFieldSeq(fieldSeqVN); |
| 6738 | |
| 6739 | if (fldSeqForStaticVar != FieldSeqStore::NotAField()) |
| 6740 | { |
| 6741 | // We model statics as indices into GcHeap (which is a subset of ByrefExposed). |
| 6742 | ValueNum selectedStaticVar; |
| 6743 | size_t structSize = 0; |
| 6744 | selectedStaticVar = vnStore->VNApplySelectors(VNK_Liberal, fgCurMemoryVN[GcHeap], |
| 6745 | fldSeqForStaticVar, &structSize); |
| 6746 | selectedStaticVar = |
| 6747 | vnStore->VNApplySelectorsTypeCheck(selectedStaticVar, indType, structSize); |
| 6748 | |
| 6749 | rhsVNPair.SetLiberal(selectedStaticVar); |
| 6750 | rhsVNPair.SetConservative(vnStore->VNForExpr(compCurBB, indType)); |
| 6751 | } |
| 6752 | else |
| 6753 | { |
| 6754 | JITDUMP(" *** Missing field sequence info for Src/RHS of COPYBLK\n" ); |
| 6755 | isNewUniq = true; |
| 6756 | } |
| 6757 | } |
| 6758 | else if (srcAddrFuncApp.m_func == VNF_PtrToArrElem) |
| 6759 | { |
| 6760 | ValueNum elemLib = |
| 6761 | fgValueNumberArrIndexVal(nullptr, &srcAddrFuncApp, vnStore->VNForEmptyExcSet()); |
| 6762 | rhsVNPair.SetLiberal(elemLib); |
| 6763 | rhsVNPair.SetConservative(vnStore->VNForExpr(compCurBB, lclVarTree->TypeGet())); |
| 6764 | } |
| 6765 | else |
| 6766 | { |
| 6767 | isNewUniq = true; |
| 6768 | } |
| 6769 | } |
| 6770 | else |
| 6771 | { |
| 6772 | isNewUniq = true; |
| 6773 | } |
| 6774 | } |
| 6775 | |
| 6776 | if (lhsFldSeq == FieldSeqStore::NotAField()) |
| 6777 | { |
| 6778 | // We don't have proper field sequence information for the lhs |
| 6779 | // |
| 6780 | JITDUMP(" *** Missing field sequence info for Dst/LHS of COPYBLK\n" ); |
| 6781 | isNewUniq = true; |
| 6782 | } |
| 6783 | |
| 6784 | if (isNewUniq) |
| 6785 | { |
| 6786 | rhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, lclVarTree->TypeGet())); |
| 6787 | } |
| 6788 | else // We will assign rhsVNPair into a map[lhsFldSeq] |
| 6789 | { |
| 6790 | if (lhsFldSeq != nullptr && isEntire) |
| 6791 | { |
| 6792 | // This can occur for structs with one field, itself of a struct type. |
| 6793 | // We are assigning the one field and it is also the entire enclosing struct. |
| 6794 | // |
| 6795 | // Use an unique value number for the old map, as this is an an entire assignment |
| 6796 | // and we won't have any other values in the map |
| 6797 | ValueNumPair uniqueMap; |
| 6798 | uniqueMap.SetBoth(vnStore->VNForExpr(compCurBB, lclVarTree->TypeGet())); |
| 6799 | rhsVNPair = vnStore->VNPairApplySelectorsAssign(uniqueMap, lhsFldSeq, rhsVNPair, |
| 6800 | lclVarTree->TypeGet(), compCurBB); |
| 6801 | } |
| 6802 | else |
| 6803 | { |
| 6804 | ValueNumPair oldLhsVNPair = |
| 6805 | lvaTable[lhsLclNum].GetPerSsaData(lclVarTree->GetSsaNum())->m_vnPair; |
| 6806 | rhsVNPair = vnStore->VNPairApplySelectorsAssign(oldLhsVNPair, lhsFldSeq, rhsVNPair, |
| 6807 | lclVarTree->TypeGet(), compCurBB); |
| 6808 | } |
| 6809 | } |
| 6810 | |
| 6811 | lvaTable[lhsLclNum].GetPerSsaData(lclDefSsaNum)->m_vnPair = vnStore->VNPNormalPair(rhsVNPair); |
| 6812 | |
| 6813 | #ifdef DEBUG |
| 6814 | if (verbose) |
| 6815 | { |
| 6816 | printf("Tree " ); |
| 6817 | Compiler::printTreeID(tree); |
| 6818 | printf(" assigned VN to local var V%02u/%d: " , lhsLclNum, lclDefSsaNum); |
| 6819 | if (isNewUniq) |
| 6820 | { |
| 6821 | printf("new uniq " ); |
| 6822 | } |
| 6823 | vnpPrint(rhsVNPair, 1); |
| 6824 | printf("\n" ); |
| 6825 | } |
| 6826 | #endif // DEBUG |
| 6827 | } |
| 6828 | else if (lvaVarAddrExposed(lhsLclNum)) |
| 6829 | { |
| 6830 | fgMutateAddressExposedLocal(tree DEBUGARG("COPYBLK - address-exposed local" )); |
| 6831 | } |
| 6832 | } |
| 6833 | else |
| 6834 | { |
| 6835 | // For now, arbitrary side effect on GcHeap/ByrefExposed. |
| 6836 | // TODO-CQ: Why not be complete, and get this case right? |
| 6837 | fgMutateGcHeap(tree DEBUGARG("COPYBLK - non local" )); |
| 6838 | } |
| 6839 | // Copyblock's are of type void. Give them the void "value" -- they may occur in argument lists, which we want |
| 6840 | // to be able to give VN's to. |
| 6841 | tree->gtVNPair.SetBoth(ValueNumStore::VNForVoid()); |
| 6842 | } |
| 6843 | } |
| 6844 | |
| 6845 | void Compiler::fgValueNumberTree(GenTree* tree) |
| 6846 | { |
| 6847 | genTreeOps oper = tree->OperGet(); |
| 6848 | |
| 6849 | #ifdef FEATURE_SIMD |
| 6850 | // TODO-CQ: For now TYP_SIMD values are not handled by value numbering to be amenable for CSE'ing. |
| 6851 | if (oper == GT_SIMD) |
| 6852 | { |
| 6853 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, TYP_UNKNOWN)); |
| 6854 | return; |
| 6855 | } |
| 6856 | #endif |
| 6857 | |
| 6858 | #ifdef FEATURE_HW_INTRINSICS |
| 6859 | if (oper == GT_HWIntrinsic) |
| 6860 | { |
| 6861 | // TODO-CQ: For now hardware intrinsics are not handled by value numbering to be amenable for CSE'ing. |
| 6862 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, TYP_UNKNOWN)); |
| 6863 | |
| 6864 | GenTreeHWIntrinsic* hwIntrinsicNode = tree->AsHWIntrinsic(); |
| 6865 | assert(hwIntrinsicNode != nullptr); |
| 6866 | |
| 6867 | // For safety/correctness we must mutate the global heap valuenumber |
| 6868 | // for any HW intrinsic that performs a memory store operation |
| 6869 | if (hwIntrinsicNode->OperIsMemoryStore()) |
| 6870 | { |
| 6871 | fgMutateGcHeap(tree DEBUGARG("HWIntrinsic - MemoryStore" )); |
| 6872 | } |
| 6873 | |
| 6874 | return; |
| 6875 | } |
| 6876 | #endif // FEATURE_HW_INTRINSICS |
| 6877 | |
| 6878 | var_types typ = tree->TypeGet(); |
| 6879 | if (GenTree::OperIsConst(oper)) |
| 6880 | { |
| 6881 | // If this is a struct assignment, with a constant rhs, it is an initBlk, and it is not |
| 6882 | // really useful to value number the constant. |
| 6883 | if (!varTypeIsStruct(tree)) |
| 6884 | { |
| 6885 | fgValueNumberTreeConst(tree); |
| 6886 | } |
| 6887 | } |
| 6888 | else if (GenTree::OperIsLeaf(oper)) |
| 6889 | { |
| 6890 | switch (oper) |
| 6891 | { |
| 6892 | case GT_LCL_VAR: |
| 6893 | { |
| 6894 | GenTreeLclVarCommon* lcl = tree->AsLclVarCommon(); |
| 6895 | unsigned lclNum = lcl->gtLclNum; |
| 6896 | LclVarDsc* varDsc = &lvaTable[lclNum]; |
| 6897 | |
| 6898 | // Do we have a Use (read) of the LclVar? |
| 6899 | // |
| 6900 | if ((lcl->gtFlags & GTF_VAR_DEF) == 0 || |
| 6901 | (lcl->gtFlags & GTF_VAR_USEASG)) // If it is a "pure" def, will handled as part of the assignment. |
| 6902 | { |
| 6903 | bool generateUniqueVN = false; |
| 6904 | FieldSeqNode* zeroOffsetFldSeq = nullptr; |
| 6905 | |
| 6906 | // When we have a TYP_BYREF LclVar it can have a zero offset field sequence that needs to be added |
| 6907 | if (typ == TYP_BYREF) |
| 6908 | { |
| 6909 | GetZeroOffsetFieldMap()->Lookup(tree, &zeroOffsetFldSeq); |
| 6910 | } |
| 6911 | |
| 6912 | if (varDsc->lvPromoted && varDsc->lvFieldCnt == 1) |
| 6913 | { |
| 6914 | // If the promoted var has only one field var, treat like a use of the field var. |
| 6915 | lclNum = varDsc->lvFieldLclStart; |
| 6916 | } |
| 6917 | |
| 6918 | if (lcl->gtSsaNum == SsaConfig::RESERVED_SSA_NUM) |
| 6919 | { |
| 6920 | // Not an SSA variable. |
| 6921 | |
| 6922 | if (lvaVarAddrExposed(lclNum)) |
| 6923 | { |
| 6924 | // Address-exposed locals are part of ByrefExposed. |
| 6925 | ValueNum addrVN = vnStore->VNForFunc(TYP_BYREF, VNF_PtrToLoc, vnStore->VNForIntCon(lclNum), |
| 6926 | vnStore->VNForFieldSeq(nullptr)); |
| 6927 | ValueNum loadVN = fgValueNumberByrefExposedLoad(typ, addrVN); |
| 6928 | |
| 6929 | lcl->gtVNPair.SetBoth(loadVN); |
| 6930 | } |
| 6931 | else |
| 6932 | { |
| 6933 | // Assign odd cases a new, unique, VN. |
| 6934 | generateUniqueVN = true; |
| 6935 | } |
| 6936 | } |
| 6937 | else |
| 6938 | { |
| 6939 | ValueNumPair wholeLclVarVNP = varDsc->GetPerSsaData(lcl->gtSsaNum)->m_vnPair; |
| 6940 | |
| 6941 | // Check for mismatched LclVar size |
| 6942 | // |
| 6943 | unsigned typSize = genTypeSize(genActualType(typ)); |
| 6944 | unsigned varSize = genTypeSize(genActualType(varDsc->TypeGet())); |
| 6945 | |
| 6946 | if (typSize == varSize) |
| 6947 | { |
| 6948 | lcl->gtVNPair = wholeLclVarVNP; |
| 6949 | } |
| 6950 | else // mismatched LclVar definition and LclVar use size |
| 6951 | { |
| 6952 | if (typSize < varSize) |
| 6953 | { |
| 6954 | // the indirection is reading less that the whole LclVar |
| 6955 | // create a new VN that represent the partial value |
| 6956 | // |
| 6957 | ValueNumPair partialLclVarVNP = |
| 6958 | vnStore->VNPairForCast(wholeLclVarVNP, typ, varDsc->TypeGet()); |
| 6959 | lcl->gtVNPair = partialLclVarVNP; |
| 6960 | } |
| 6961 | else |
| 6962 | { |
| 6963 | assert(typSize > varSize); |
| 6964 | // the indirection is reading beyond the end of the field |
| 6965 | // |
| 6966 | generateUniqueVN = true; |
| 6967 | } |
| 6968 | } |
| 6969 | } |
| 6970 | |
| 6971 | if (!generateUniqueVN) |
| 6972 | { |
| 6973 | // There are a couple of cases where we haven't assigned a valid value number to 'lcl' |
| 6974 | // |
| 6975 | if (lcl->gtVNPair.GetLiberal() == ValueNumStore::NoVN) |
| 6976 | { |
| 6977 | // So far, we know about two of these cases: |
| 6978 | // Case 1) We have a local var who has never been defined but it's seen as a use. |
| 6979 | // This is the case of storeIndir(addr(lclvar)) = expr. In this case since we only |
| 6980 | // take the address of the variable, this doesn't mean it's a use nor we have to |
| 6981 | // initialize it, so in this very rare case, we fabricate a value number. |
| 6982 | // Case 2) Local variables that represent structs which are assigned using CpBlk. |
| 6983 | // |
| 6984 | // Make sure we have either case 1 or case 2 |
| 6985 | // |
| 6986 | GenTree* nextNode = lcl->gtNext; |
| 6987 | assert((nextNode->gtOper == GT_ADDR && nextNode->gtOp.gtOp1 == lcl) || |
| 6988 | varTypeIsStruct(lcl->TypeGet())); |
| 6989 | |
| 6990 | // We will assign a unique value number for these |
| 6991 | // |
| 6992 | generateUniqueVN = true; |
| 6993 | } |
| 6994 | } |
| 6995 | |
| 6996 | if (!generateUniqueVN && (zeroOffsetFldSeq != nullptr)) |
| 6997 | { |
| 6998 | ValueNum addrExtended = vnStore->ExtendPtrVN(lcl, zeroOffsetFldSeq); |
| 6999 | if (addrExtended != ValueNumStore::NoVN) |
| 7000 | { |
| 7001 | lcl->gtVNPair.SetBoth(addrExtended); |
| 7002 | } |
| 7003 | } |
| 7004 | |
| 7005 | if (generateUniqueVN) |
| 7006 | { |
| 7007 | ValueNum uniqVN = vnStore->VNForExpr(compCurBB, lcl->TypeGet()); |
| 7008 | lcl->gtVNPair.SetBoth(uniqVN); |
| 7009 | } |
| 7010 | } |
| 7011 | else if ((lcl->gtFlags & GTF_VAR_DEF) != 0) |
| 7012 | { |
| 7013 | // We have a Def (write) of the LclVar |
| 7014 | |
| 7015 | // TODO-Review: For the short term, we have a workaround for copyblk/initblk. Those that use |
| 7016 | // addrSpillTemp will have a statement like "addrSpillTemp = addr(local)." If we previously decided |
| 7017 | // that this block operation defines the local, we will have labeled the "local" node as a DEF |
| 7018 | // This flag propagates to the "local" on the RHS. So we'll assume that this is correct, |
| 7019 | // and treat it as a def (to a new, unique VN). |
| 7020 | // |
| 7021 | if (lcl->gtSsaNum != SsaConfig::RESERVED_SSA_NUM) |
| 7022 | { |
| 7023 | ValueNum uniqVN = vnStore->VNForExpr(compCurBB, lcl->TypeGet()); |
| 7024 | varDsc->GetPerSsaData(lcl->gtSsaNum)->m_vnPair.SetBoth(uniqVN); |
| 7025 | } |
| 7026 | |
| 7027 | lcl->gtVNPair = ValueNumPair(); // Avoid confusion -- we don't set the VN of a lcl being defined. |
| 7028 | } |
| 7029 | } |
| 7030 | break; |
| 7031 | |
| 7032 | case GT_FTN_ADDR: |
| 7033 | // Use the value of the function pointer (actually, a method handle.) |
| 7034 | tree->gtVNPair.SetBoth( |
| 7035 | vnStore->VNForHandle(ssize_t(tree->gtFptrVal.gtFptrMethod), GTF_ICON_METHOD_HDL)); |
| 7036 | break; |
| 7037 | |
| 7038 | // This group passes through a value from a child node. |
| 7039 | case GT_RET_EXPR: |
| 7040 | tree->SetVNsFromNode(tree->gtRetExpr.gtInlineCandidate); |
| 7041 | break; |
| 7042 | |
| 7043 | case GT_LCL_FLD: |
| 7044 | { |
| 7045 | GenTreeLclFld* lclFld = tree->AsLclFld(); |
| 7046 | assert(!lvaInSsa(lclFld->GetLclNum()) || lclFld->gtFieldSeq != nullptr); |
| 7047 | // If this is a (full) def, then the variable will be labeled with the new SSA number, |
| 7048 | // which will not have a value. We skip; it will be handled by one of the assignment-like |
| 7049 | // forms (assignment, or initBlk or copyBlk). |
| 7050 | if (((lclFld->gtFlags & GTF_VAR_DEF) == 0) || (lclFld->gtFlags & GTF_VAR_USEASG)) |
| 7051 | { |
| 7052 | unsigned lclNum = lclFld->GetLclNum(); |
| 7053 | unsigned ssaNum = lclFld->GetSsaNum(); |
| 7054 | LclVarDsc* varDsc = &lvaTable[lclNum]; |
| 7055 | |
| 7056 | var_types indType = tree->TypeGet(); |
| 7057 | if (lclFld->gtFieldSeq == FieldSeqStore::NotAField() || !lvaInSsa(lclFld->GetLclNum())) |
| 7058 | { |
| 7059 | // This doesn't represent a proper field access or it's a struct |
| 7060 | // with overlapping fields that is hard to reason about; return a new unique VN. |
| 7061 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, indType)); |
| 7062 | } |
| 7063 | else |
| 7064 | { |
| 7065 | ValueNumPair lclVNPair = varDsc->GetPerSsaData(ssaNum)->m_vnPair; |
| 7066 | tree->gtVNPair = vnStore->VNPairApplySelectors(lclVNPair, lclFld->gtFieldSeq, indType); |
| 7067 | } |
| 7068 | } |
| 7069 | } |
| 7070 | break; |
| 7071 | |
| 7072 | // The ones below here all get a new unique VN -- but for various reasons, explained after each. |
| 7073 | case GT_CATCH_ARG: |
| 7074 | // We know nothing about the value of a caught expression. |
| 7075 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 7076 | break; |
| 7077 | |
| 7078 | case GT_CLS_VAR: |
| 7079 | // Skip GT_CLS_VAR nodes that are the LHS of an assignment. (We labeled these earlier.) |
| 7080 | // We will "evaluate" this as part of the assignment. |
| 7081 | // |
| 7082 | if ((tree->gtFlags & GTF_CLS_VAR_ASG_LHS) == 0) |
| 7083 | { |
| 7084 | bool isVolatile = (tree->gtFlags & GTF_FLD_VOLATILE) != 0; |
| 7085 | |
| 7086 | if (isVolatile) |
| 7087 | { |
| 7088 | // For Volatile indirection, first mutate GcHeap/ByrefExposed |
| 7089 | fgMutateGcHeap(tree DEBUGARG("GTF_FLD_VOLATILE - read" )); |
| 7090 | } |
| 7091 | |
| 7092 | // We just mutate GcHeap/ByrefExposed if isVolatile is true, and then do the read as normal. |
| 7093 | // |
| 7094 | // This allows: |
| 7095 | // 1: read s; |
| 7096 | // 2: volatile read s; |
| 7097 | // 3: read s; |
| 7098 | // |
| 7099 | // We should never assume that the values read by 1 and 2 are the same (because the heap was mutated |
| 7100 | // in between them)... but we *should* be able to prove that the values read in 2 and 3 are the |
| 7101 | // same. |
| 7102 | // |
| 7103 | |
| 7104 | ValueNumPair clsVarVNPair; |
| 7105 | |
| 7106 | // If the static field handle is for a struct type field, then the value of the static |
| 7107 | // is a "ref" to the boxed struct -- treat it as the address of the static (we assume that a |
| 7108 | // first element offset will be added to get to the actual struct...) |
| 7109 | GenTreeClsVar* clsVar = tree->AsClsVar(); |
| 7110 | FieldSeqNode* fldSeq = clsVar->gtFieldSeq; |
| 7111 | assert(fldSeq != nullptr); // We need to have one. |
| 7112 | ValueNum selectedStaticVar = ValueNumStore::NoVN; |
| 7113 | if (gtIsStaticFieldPtrToBoxedStruct(clsVar->TypeGet(), fldSeq->m_fieldHnd)) |
| 7114 | { |
| 7115 | clsVarVNPair.SetBoth( |
| 7116 | vnStore->VNForFunc(TYP_BYREF, VNF_PtrToStatic, vnStore->VNForFieldSeq(fldSeq))); |
| 7117 | } |
| 7118 | else |
| 7119 | { |
| 7120 | // This is a reference to heap memory. |
| 7121 | // We model statics as indices into GcHeap (which is a subset of ByrefExposed). |
| 7122 | |
| 7123 | FieldSeqNode* fldSeqForStaticVar = |
| 7124 | GetFieldSeqStore()->CreateSingleton(tree->gtClsVar.gtClsVarHnd); |
| 7125 | size_t structSize = 0; |
| 7126 | selectedStaticVar = vnStore->VNApplySelectors(VNK_Liberal, fgCurMemoryVN[GcHeap], |
| 7127 | fldSeqForStaticVar, &structSize); |
| 7128 | selectedStaticVar = |
| 7129 | vnStore->VNApplySelectorsTypeCheck(selectedStaticVar, tree->TypeGet(), structSize); |
| 7130 | |
| 7131 | clsVarVNPair.SetLiberal(selectedStaticVar); |
| 7132 | // The conservative interpretation always gets a new, unique VN. |
| 7133 | clsVarVNPair.SetConservative(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 7134 | } |
| 7135 | |
| 7136 | // The ValueNum returned must represent the full-sized IL-Stack value |
| 7137 | // If we need to widen this value then we need to introduce a VNF_Cast here to represent |
| 7138 | // the widened value. This is necessary since the CSE package can replace all occurances |
| 7139 | // of a given ValueNum with a LclVar that is a full-sized IL-Stack value |
| 7140 | // |
| 7141 | if (varTypeIsSmall(tree->TypeGet())) |
| 7142 | { |
| 7143 | var_types castToType = tree->TypeGet(); |
| 7144 | clsVarVNPair = vnStore->VNPairForCast(clsVarVNPair, castToType, castToType); |
| 7145 | } |
| 7146 | tree->gtVNPair = clsVarVNPair; |
| 7147 | } |
| 7148 | break; |
| 7149 | |
| 7150 | case GT_MEMORYBARRIER: // Leaf |
| 7151 | // For MEMORYBARRIER add an arbitrary side effect on GcHeap/ByrefExposed. |
| 7152 | fgMutateGcHeap(tree DEBUGARG("MEMORYBARRIER" )); |
| 7153 | break; |
| 7154 | |
| 7155 | // These do not represent values. |
| 7156 | case GT_NO_OP: |
| 7157 | case GT_JMP: // Control flow |
| 7158 | case GT_LABEL: // Control flow |
| 7159 | #if !FEATURE_EH_FUNCLETS |
| 7160 | case GT_END_LFIN: // Control flow |
| 7161 | #endif |
| 7162 | case GT_ARGPLACE: |
| 7163 | // This node is a standin for an argument whose value will be computed later. (Perhaps it's |
| 7164 | // a register argument, and we don't want to preclude use of the register in arg evaluation yet.) |
| 7165 | // We give this a "fake" value number now; if the call in which it occurs cares about the |
| 7166 | // value (e.g., it's a helper call whose result is a function of argument values) we'll reset |
| 7167 | // this later, when the later args have been assigned VNs. |
| 7168 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 7169 | break; |
| 7170 | |
| 7171 | case GT_PHI_ARG: |
| 7172 | // This one is special because we should never process it in this method: it should |
| 7173 | // always be taken care of, when needed, during pre-processing of a blocks phi definitions. |
| 7174 | assert(false); |
| 7175 | break; |
| 7176 | |
| 7177 | default: |
| 7178 | unreached(); |
| 7179 | } |
| 7180 | } |
| 7181 | else if (GenTree::OperIsSimple(oper)) |
| 7182 | { |
| 7183 | #ifdef DEBUG |
| 7184 | // Sometimes we query the memory ssa map in an assertion, and need a dummy location for the ignored result. |
| 7185 | unsigned memorySsaNum; |
| 7186 | #endif |
| 7187 | |
| 7188 | if ((oper == GT_ASG) && !varTypeIsStruct(tree)) |
| 7189 | { |
| 7190 | GenTree* lhs = tree->gtOp.gtOp1; |
| 7191 | GenTree* rhs = tree->gtOp.gtOp2; |
| 7192 | |
| 7193 | ValueNumPair rhsVNPair = rhs->gtVNPair; |
| 7194 | |
| 7195 | // Is the type being stored different from the type computed by the rhs? |
| 7196 | if (rhs->TypeGet() != lhs->TypeGet()) |
| 7197 | { |
| 7198 | // This means that there is an implicit cast on the rhs value |
| 7199 | // |
| 7200 | // We will add a cast function to reflect the possible narrowing of the rhs value |
| 7201 | // |
| 7202 | var_types castToType = lhs->TypeGet(); |
| 7203 | var_types castFromType = rhs->TypeGet(); |
| 7204 | bool isUnsigned = varTypeIsUnsigned(castFromType); |
| 7205 | |
| 7206 | rhsVNPair = vnStore->VNPairForCast(rhsVNPair, castToType, castFromType, isUnsigned); |
| 7207 | } |
| 7208 | |
| 7209 | if (tree->TypeGet() != TYP_VOID) |
| 7210 | { |
| 7211 | // Assignment operators, as expressions, return the value of the RHS. |
| 7212 | tree->gtVNPair = rhsVNPair; |
| 7213 | } |
| 7214 | |
| 7215 | // Now that we've labeled the assignment as a whole, we don't care about exceptions. |
| 7216 | rhsVNPair = vnStore->VNPNormalPair(rhsVNPair); |
| 7217 | |
| 7218 | // Record the exeception set for this 'tree' in vnExcSet. |
| 7219 | // First we'll record the exeception set for the rhs and |
| 7220 | // later we will union in the exeception set for the lhs |
| 7221 | // |
| 7222 | ValueNum vnExcSet; |
| 7223 | |
| 7224 | // Unpack, Norm,Exc for 'rhsVNPair' |
| 7225 | ValueNum vnRhsLibNorm; |
| 7226 | vnStore->VNUnpackExc(rhsVNPair.GetLiberal(), &vnRhsLibNorm, &vnExcSet); |
| 7227 | |
| 7228 | // Now that we've saved the rhs exeception set, we we will use the normal values. |
| 7229 | rhsVNPair = ValueNumPair(vnRhsLibNorm, vnStore->VNNormalValue(rhsVNPair.GetConservative())); |
| 7230 | |
| 7231 | // If the types of the rhs and lhs are different then we |
| 7232 | // may want to change the ValueNumber assigned to the lhs. |
| 7233 | // |
| 7234 | if (rhs->TypeGet() != lhs->TypeGet()) |
| 7235 | { |
| 7236 | if (rhs->TypeGet() == TYP_REF) |
| 7237 | { |
| 7238 | // If we have an unsafe IL assignment of a TYP_REF to a non-ref (typically a TYP_BYREF) |
| 7239 | // then don't propagate this ValueNumber to the lhs, instead create a new unique VN |
| 7240 | // |
| 7241 | rhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, lhs->TypeGet())); |
| 7242 | } |
| 7243 | } |
| 7244 | |
| 7245 | // We have to handle the case where the LHS is a comma. In that case, we don't evaluate the comma, |
| 7246 | // so we give it VNForVoid, and we're really interested in the effective value. |
| 7247 | GenTree* lhsCommaIter = lhs; |
| 7248 | while (lhsCommaIter->OperGet() == GT_COMMA) |
| 7249 | { |
| 7250 | lhsCommaIter->gtVNPair.SetBoth(vnStore->VNForVoid()); |
| 7251 | lhsCommaIter = lhsCommaIter->gtOp.gtOp2; |
| 7252 | } |
| 7253 | lhs = lhs->gtEffectiveVal(); |
| 7254 | |
| 7255 | // Now, record the new VN for an assignment (performing the indicated "state update"). |
| 7256 | // It's safe to use gtEffectiveVal here, because the non-last elements of a comma list on the |
| 7257 | // LHS will come before the assignment in evaluation order. |
| 7258 | switch (lhs->OperGet()) |
| 7259 | { |
| 7260 | case GT_LCL_VAR: |
| 7261 | { |
| 7262 | GenTreeLclVarCommon* lcl = lhs->AsLclVarCommon(); |
| 7263 | unsigned lclDefSsaNum = GetSsaNumForLocalVarDef(lcl); |
| 7264 | |
| 7265 | // Should not have been recorded as updating the GC heap. |
| 7266 | assert(!GetMemorySsaMap(GcHeap)->Lookup(tree, &memorySsaNum)); |
| 7267 | |
| 7268 | if (lclDefSsaNum != SsaConfig::RESERVED_SSA_NUM) |
| 7269 | { |
| 7270 | // Should not have been recorded as updating ByrefExposed mem. |
| 7271 | assert(!GetMemorySsaMap(ByrefExposed)->Lookup(tree, &memorySsaNum)); |
| 7272 | |
| 7273 | assert(rhsVNPair.GetLiberal() != ValueNumStore::NoVN); |
| 7274 | |
| 7275 | lhs->gtVNPair = rhsVNPair; |
| 7276 | lvaTable[lcl->gtLclNum].GetPerSsaData(lclDefSsaNum)->m_vnPair = rhsVNPair; |
| 7277 | |
| 7278 | #ifdef DEBUG |
| 7279 | if (verbose) |
| 7280 | { |
| 7281 | printf("N%03u " , lhs->gtSeqNum); |
| 7282 | Compiler::printTreeID(lhs); |
| 7283 | printf(" " ); |
| 7284 | gtDispNodeName(lhs); |
| 7285 | gtDispLeaf(lhs, nullptr); |
| 7286 | printf(" => " ); |
| 7287 | vnpPrint(lhs->gtVNPair, 1); |
| 7288 | printf("\n" ); |
| 7289 | } |
| 7290 | #endif // DEBUG |
| 7291 | } |
| 7292 | else if (lvaVarAddrExposed(lcl->gtLclNum)) |
| 7293 | { |
| 7294 | // We could use MapStore here and MapSelect on reads of address-exposed locals |
| 7295 | // (using the local nums as selectors) to get e.g. propagation of values |
| 7296 | // through address-taken locals in regions of code with no calls or byref |
| 7297 | // writes. |
| 7298 | // For now, just use a new opaque VN. |
| 7299 | ValueNum heapVN = vnStore->VNForExpr(compCurBB); |
| 7300 | recordAddressExposedLocalStore(tree, heapVN DEBUGARG("local assign" )); |
| 7301 | } |
| 7302 | #ifdef DEBUG |
| 7303 | else |
| 7304 | { |
| 7305 | if (verbose) |
| 7306 | { |
| 7307 | JITDUMP("Tree " ); |
| 7308 | Compiler::printTreeID(tree); |
| 7309 | printf(" assigns to non-address-taken local var V%02u; excluded from SSA, so value not " |
| 7310 | "tracked.\n" , |
| 7311 | lcl->GetLclNum()); |
| 7312 | } |
| 7313 | } |
| 7314 | #endif // DEBUG |
| 7315 | } |
| 7316 | break; |
| 7317 | case GT_LCL_FLD: |
| 7318 | { |
| 7319 | GenTreeLclFld* lclFld = lhs->AsLclFld(); |
| 7320 | unsigned lclDefSsaNum = GetSsaNumForLocalVarDef(lclFld); |
| 7321 | |
| 7322 | // Should not have been recorded as updating the GC heap. |
| 7323 | assert(!GetMemorySsaMap(GcHeap)->Lookup(tree, &memorySsaNum)); |
| 7324 | |
| 7325 | if (lclDefSsaNum != SsaConfig::RESERVED_SSA_NUM) |
| 7326 | { |
| 7327 | ValueNumPair newLhsVNPair; |
| 7328 | // Is this a full definition? |
| 7329 | if ((lclFld->gtFlags & GTF_VAR_USEASG) == 0) |
| 7330 | { |
| 7331 | assert(!lclFld->IsPartialLclFld(this)); |
| 7332 | assert(rhsVNPair.GetLiberal() != ValueNumStore::NoVN); |
| 7333 | newLhsVNPair = rhsVNPair; |
| 7334 | } |
| 7335 | else |
| 7336 | { |
| 7337 | // We should never have a null field sequence here. |
| 7338 | assert(lclFld->gtFieldSeq != nullptr); |
| 7339 | if (lclFld->gtFieldSeq == FieldSeqStore::NotAField()) |
| 7340 | { |
| 7341 | // We don't know what field this represents. Assign a new VN to the whole variable |
| 7342 | // (since we may be writing to an unknown portion of it.) |
| 7343 | newLhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, lvaGetActualType(lclFld->gtLclNum))); |
| 7344 | } |
| 7345 | else |
| 7346 | { |
| 7347 | // We do know the field sequence. |
| 7348 | // The "lclFld" node will be labeled with the SSA number of its "use" identity |
| 7349 | // (we looked in a side table above for its "def" identity). Look up that value. |
| 7350 | ValueNumPair oldLhsVNPair = |
| 7351 | lvaTable[lclFld->GetLclNum()].GetPerSsaData(lclFld->GetSsaNum())->m_vnPair; |
| 7352 | newLhsVNPair = vnStore->VNPairApplySelectorsAssign(oldLhsVNPair, lclFld->gtFieldSeq, |
| 7353 | rhsVNPair, // Pre-value. |
| 7354 | lclFld->TypeGet(), compCurBB); |
| 7355 | } |
| 7356 | } |
| 7357 | lvaTable[lclFld->GetLclNum()].GetPerSsaData(lclDefSsaNum)->m_vnPair = newLhsVNPair; |
| 7358 | lhs->gtVNPair = newLhsVNPair; |
| 7359 | #ifdef DEBUG |
| 7360 | if (verbose) |
| 7361 | { |
| 7362 | if (lhs->gtVNPair.GetLiberal() != ValueNumStore::NoVN) |
| 7363 | { |
| 7364 | printf("N%03u " , lhs->gtSeqNum); |
| 7365 | Compiler::printTreeID(lhs); |
| 7366 | printf(" " ); |
| 7367 | gtDispNodeName(lhs); |
| 7368 | gtDispLeaf(lhs, nullptr); |
| 7369 | printf(" => " ); |
| 7370 | vnpPrint(lhs->gtVNPair, 1); |
| 7371 | printf("\n" ); |
| 7372 | } |
| 7373 | } |
| 7374 | #endif // DEBUG |
| 7375 | } |
| 7376 | else if (lvaVarAddrExposed(lclFld->gtLclNum)) |
| 7377 | { |
| 7378 | // This side-effects ByrefExposed. Just use a new opaque VN. |
| 7379 | // As with GT_LCL_VAR, we could probably use MapStore here and MapSelect at corresponding |
| 7380 | // loads, but to do so would have to identify the subset of address-exposed locals |
| 7381 | // whose fields can be disambiguated. |
| 7382 | ValueNum heapVN = vnStore->VNForExpr(compCurBB); |
| 7383 | recordAddressExposedLocalStore(tree, heapVN DEBUGARG("local field assign" )); |
| 7384 | } |
| 7385 | } |
| 7386 | break; |
| 7387 | |
| 7388 | case GT_PHI_ARG: |
| 7389 | noway_assert(!"Phi arg cannot be LHS." ); |
| 7390 | break; |
| 7391 | |
| 7392 | case GT_BLK: |
| 7393 | case GT_OBJ: |
| 7394 | noway_assert(!"GT_BLK/GT_OBJ can not be LHS when !varTypeIsStruct(tree) is true!" ); |
| 7395 | break; |
| 7396 | |
| 7397 | case GT_IND: |
| 7398 | { |
| 7399 | bool isVolatile = (lhs->gtFlags & GTF_IND_VOLATILE) != 0; |
| 7400 | |
| 7401 | if (isVolatile) |
| 7402 | { |
| 7403 | // For Volatile store indirection, first mutate GcHeap/ByrefExposed |
| 7404 | fgMutateGcHeap(lhs DEBUGARG("GTF_IND_VOLATILE - store" )); |
| 7405 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, lhs->TypeGet())); |
| 7406 | } |
| 7407 | |
| 7408 | GenTree* arg = lhs->gtOp.gtOp1; |
| 7409 | |
| 7410 | // Indicates whether the argument of the IND is the address of a local. |
| 7411 | bool wasLocal = false; |
| 7412 | |
| 7413 | lhs->gtVNPair = rhsVNPair; |
| 7414 | |
| 7415 | VNFuncApp funcApp; |
| 7416 | ValueNum argVN = arg->gtVNPair.GetLiberal(); |
| 7417 | |
| 7418 | bool argIsVNFunc = vnStore->GetVNFunc(vnStore->VNNormalValue(argVN), &funcApp); |
| 7419 | |
| 7420 | // Is this an assignment to a (field of, perhaps) a local? |
| 7421 | // If it is a PtrToLoc, lib and cons VNs will be the same. |
| 7422 | if (argIsVNFunc) |
| 7423 | { |
| 7424 | if (funcApp.m_func == VNF_PtrToLoc) |
| 7425 | { |
| 7426 | assert(arg->gtVNPair.BothEqual()); // If it's a PtrToLoc, lib/cons shouldn't differ. |
| 7427 | assert(vnStore->IsVNConstant(funcApp.m_args[0])); |
| 7428 | unsigned lclNum = vnStore->ConstantValue<unsigned>(funcApp.m_args[0]); |
| 7429 | |
| 7430 | wasLocal = true; |
| 7431 | |
| 7432 | if (lvaInSsa(lclNum)) |
| 7433 | { |
| 7434 | FieldSeqNode* fieldSeq = vnStore->FieldSeqVNToFieldSeq(funcApp.m_args[1]); |
| 7435 | |
| 7436 | // Either "arg" is the address of (part of) a local itself, or else we have |
| 7437 | // a "rogue" PtrToLoc, one that should have made the local in question |
| 7438 | // address-exposed. Assert on that. |
| 7439 | GenTreeLclVarCommon* lclVarTree = nullptr; |
| 7440 | bool isEntire = false; |
| 7441 | unsigned lclDefSsaNum = SsaConfig::RESERVED_SSA_NUM; |
| 7442 | ValueNumPair newLhsVNPair; |
| 7443 | |
| 7444 | if (arg->DefinesLocalAddr(this, genTypeSize(lhs->TypeGet()), &lclVarTree, &isEntire)) |
| 7445 | { |
| 7446 | // The local #'s should agree. |
| 7447 | assert(lclNum == lclVarTree->GetLclNum()); |
| 7448 | |
| 7449 | if (fieldSeq == FieldSeqStore::NotAField()) |
| 7450 | { |
| 7451 | // We don't know where we're storing, so give the local a new, unique VN. |
| 7452 | // Do this by considering it an "entire" assignment, with an unknown RHS. |
| 7453 | isEntire = true; |
| 7454 | rhsVNPair.SetBoth(vnStore->VNForExpr(compCurBB, lclVarTree->TypeGet())); |
| 7455 | } |
| 7456 | |
| 7457 | if (isEntire) |
| 7458 | { |
| 7459 | newLhsVNPair = rhsVNPair; |
| 7460 | lclDefSsaNum = lclVarTree->GetSsaNum(); |
| 7461 | } |
| 7462 | else |
| 7463 | { |
| 7464 | // Don't use the lclVarTree's VN: if it's a local field, it will |
| 7465 | // already be dereferenced by it's field sequence. |
| 7466 | ValueNumPair oldLhsVNPair = lvaTable[lclVarTree->GetLclNum()] |
| 7467 | .GetPerSsaData(lclVarTree->GetSsaNum()) |
| 7468 | ->m_vnPair; |
| 7469 | lclDefSsaNum = GetSsaNumForLocalVarDef(lclVarTree); |
| 7470 | newLhsVNPair = |
| 7471 | vnStore->VNPairApplySelectorsAssign(oldLhsVNPair, fieldSeq, rhsVNPair, |
| 7472 | lhs->TypeGet(), compCurBB); |
| 7473 | } |
| 7474 | lvaTable[lclNum].GetPerSsaData(lclDefSsaNum)->m_vnPair = newLhsVNPair; |
| 7475 | } |
| 7476 | else |
| 7477 | { |
| 7478 | unreached(); // "Rogue" PtrToLoc, as discussed above. |
| 7479 | } |
| 7480 | #ifdef DEBUG |
| 7481 | if (verbose) |
| 7482 | { |
| 7483 | printf("Tree " ); |
| 7484 | Compiler::printTreeID(tree); |
| 7485 | printf(" assigned VN to local var V%02u/%d: VN " , lclNum, lclDefSsaNum); |
| 7486 | vnpPrint(newLhsVNPair, 1); |
| 7487 | printf("\n" ); |
| 7488 | } |
| 7489 | #endif // DEBUG |
| 7490 | } |
| 7491 | else if (lvaVarAddrExposed(lclNum)) |
| 7492 | { |
| 7493 | // Need to record the effect on ByrefExposed. |
| 7494 | // We could use MapStore here and MapSelect on reads of address-exposed locals |
| 7495 | // (using the local nums as selectors) to get e.g. propagation of values |
| 7496 | // through address-taken locals in regions of code with no calls or byref |
| 7497 | // writes. |
| 7498 | // For now, just use a new opaque VN. |
| 7499 | ValueNum heapVN = vnStore->VNForExpr(compCurBB); |
| 7500 | recordAddressExposedLocalStore(tree, heapVN DEBUGARG("PtrToLoc indir" )); |
| 7501 | } |
| 7502 | } |
| 7503 | } |
| 7504 | |
| 7505 | // Was the argument of the GT_IND the address of a local, handled above? |
| 7506 | if (!wasLocal) |
| 7507 | { |
| 7508 | GenTree* obj = nullptr; |
| 7509 | GenTree* staticOffset = nullptr; |
| 7510 | FieldSeqNode* fldSeq = nullptr; |
| 7511 | |
| 7512 | // Is the LHS an array index expression? |
| 7513 | if (argIsVNFunc && funcApp.m_func == VNF_PtrToArrElem) |
| 7514 | { |
| 7515 | CORINFO_CLASS_HANDLE elemTypeEq = |
| 7516 | CORINFO_CLASS_HANDLE(vnStore->ConstantValue<ssize_t>(funcApp.m_args[0])); |
| 7517 | ValueNum arrVN = funcApp.m_args[1]; |
| 7518 | ValueNum inxVN = funcApp.m_args[2]; |
| 7519 | FieldSeqNode* fldSeq = vnStore->FieldSeqVNToFieldSeq(funcApp.m_args[3]); |
| 7520 | |
| 7521 | if (arg->gtOper != GT_LCL_VAR) |
| 7522 | { |
| 7523 | // Does the child of the GT_IND 'arg' have an associated zero-offset field sequence? |
| 7524 | FieldSeqNode* addrFieldSeq = nullptr; |
| 7525 | if (GetZeroOffsetFieldMap()->Lookup(arg, &addrFieldSeq)) |
| 7526 | { |
| 7527 | fldSeq = GetFieldSeqStore()->Append(addrFieldSeq, fldSeq); |
| 7528 | } |
| 7529 | } |
| 7530 | |
| 7531 | #ifdef DEBUG |
| 7532 | if (verbose) |
| 7533 | { |
| 7534 | printf("Tree " ); |
| 7535 | Compiler::printTreeID(tree); |
| 7536 | printf(" assigns to an array element:\n" ); |
| 7537 | } |
| 7538 | #endif // DEBUG |
| 7539 | |
| 7540 | ValueNum heapVN = fgValueNumberArrIndexAssign(elemTypeEq, arrVN, inxVN, fldSeq, |
| 7541 | rhsVNPair.GetLiberal(), lhs->TypeGet()); |
| 7542 | recordGcHeapStore(tree, heapVN DEBUGARG("ArrIndexAssign (case 1)" )); |
| 7543 | } |
| 7544 | // It may be that we haven't parsed it yet. Try. |
| 7545 | else if (lhs->gtFlags & GTF_IND_ARR_INDEX) |
| 7546 | { |
| 7547 | ArrayInfo arrInfo; |
| 7548 | bool b = GetArrayInfoMap()->Lookup(lhs, &arrInfo); |
| 7549 | assert(b); |
| 7550 | ValueNum arrVN = ValueNumStore::NoVN; |
| 7551 | ValueNum inxVN = ValueNumStore::NoVN; |
| 7552 | FieldSeqNode* fldSeq = nullptr; |
| 7553 | |
| 7554 | // Try to parse it. |
| 7555 | GenTree* arr = nullptr; |
| 7556 | arg->ParseArrayAddress(this, &arrInfo, &arr, &inxVN, &fldSeq); |
| 7557 | if (arr == nullptr) |
| 7558 | { |
| 7559 | fgMutateGcHeap(tree DEBUGARG("assignment to unparseable array expression" )); |
| 7560 | return; |
| 7561 | } |
| 7562 | // Otherwise, parsing succeeded. |
| 7563 | |
| 7564 | // Need to form H[arrType][arr][ind][fldSeq] = rhsVNPair.GetLiberal() |
| 7565 | |
| 7566 | // Get the element type equivalence class representative. |
| 7567 | CORINFO_CLASS_HANDLE elemTypeEq = |
| 7568 | EncodeElemType(arrInfo.m_elemType, arrInfo.m_elemStructType); |
| 7569 | arrVN = arr->gtVNPair.GetLiberal(); |
| 7570 | |
| 7571 | FieldSeqNode* zeroOffsetFldSeq = nullptr; |
| 7572 | if (GetZeroOffsetFieldMap()->Lookup(arg, &zeroOffsetFldSeq)) |
| 7573 | { |
| 7574 | fldSeq = GetFieldSeqStore()->Append(fldSeq, zeroOffsetFldSeq); |
| 7575 | } |
| 7576 | |
| 7577 | ValueNum heapVN = fgValueNumberArrIndexAssign(elemTypeEq, arrVN, inxVN, fldSeq, |
| 7578 | rhsVNPair.GetLiberal(), lhs->TypeGet()); |
| 7579 | recordGcHeapStore(tree, heapVN DEBUGARG("ArrIndexAssign (case 2)" )); |
| 7580 | } |
| 7581 | else if (arg->IsFieldAddr(this, &obj, &staticOffset, &fldSeq)) |
| 7582 | { |
| 7583 | if (fldSeq == FieldSeqStore::NotAField()) |
| 7584 | { |
| 7585 | fgMutateGcHeap(tree DEBUGARG("NotAField" )); |
| 7586 | } |
| 7587 | else |
| 7588 | { |
| 7589 | assert(fldSeq != nullptr); |
| 7590 | #ifdef DEBUG |
| 7591 | CORINFO_CLASS_HANDLE fldCls = info.compCompHnd->getFieldClass(fldSeq->m_fieldHnd); |
| 7592 | if (obj != nullptr) |
| 7593 | { |
| 7594 | // Make sure that the class containing it is not a value class (as we are expecting |
| 7595 | // an instance field) |
| 7596 | assert((info.compCompHnd->getClassAttribs(fldCls) & CORINFO_FLG_VALUECLASS) == 0); |
| 7597 | assert(staticOffset == nullptr); |
| 7598 | } |
| 7599 | #endif // DEBUG |
| 7600 | |
| 7601 | // Get the first (instance or static) field from field seq. GcHeap[field] will yield |
| 7602 | // the "field map". |
| 7603 | if (fldSeq->IsFirstElemFieldSeq()) |
| 7604 | { |
| 7605 | fldSeq = fldSeq->m_next; |
| 7606 | assert(fldSeq != nullptr); |
| 7607 | } |
| 7608 | |
| 7609 | // Get a field sequence for just the first field in the sequence |
| 7610 | // |
| 7611 | FieldSeqNode* firstFieldOnly = GetFieldSeqStore()->CreateSingleton(fldSeq->m_fieldHnd); |
| 7612 | |
| 7613 | // The final field in the sequence will need to match the 'indType' |
| 7614 | var_types indType = lhs->TypeGet(); |
| 7615 | ValueNum fldMapVN = |
| 7616 | vnStore->VNApplySelectors(VNK_Liberal, fgCurMemoryVN[GcHeap], firstFieldOnly); |
| 7617 | |
| 7618 | // The type of the field is "struct" if there are more fields in the sequence, |
| 7619 | // otherwise it is the type returned from VNApplySelectors above. |
| 7620 | var_types firstFieldType = vnStore->TypeOfVN(fldMapVN); |
| 7621 | |
| 7622 | // The value number from the rhs of the assignment |
| 7623 | ValueNum storeVal = rhsVNPair.GetLiberal(); |
| 7624 | ValueNum newFldMapVN = ValueNumStore::NoVN; |
| 7625 | |
| 7626 | // when (obj != nullptr) we have an instance field, otherwise a static field |
| 7627 | // when (staticOffset != nullptr) it represents a offset into a static or the call to |
| 7628 | // Shared Static Base |
| 7629 | if ((obj != nullptr) || (staticOffset != nullptr)) |
| 7630 | { |
| 7631 | ValueNum valAtAddr = fldMapVN; |
| 7632 | ValueNum normVal = ValueNumStore::NoVN; |
| 7633 | |
| 7634 | if (obj != nullptr) |
| 7635 | { |
| 7636 | // Unpack, Norm,Exc for 'obj' |
| 7637 | ValueNum vnObjExcSet; |
| 7638 | vnStore->VNUnpackExc(obj->gtVNPair.GetLiberal(), &normVal, &vnObjExcSet); |
| 7639 | vnExcSet = vnStore->VNExcSetUnion(vnExcSet, vnObjExcSet); |
| 7640 | |
| 7641 | // construct the ValueNumber for 'fldMap at obj' |
| 7642 | valAtAddr = |
| 7643 | vnStore->VNForMapSelect(VNK_Liberal, firstFieldType, fldMapVN, normVal); |
| 7644 | } |
| 7645 | else // (staticOffset != nullptr) |
| 7646 | { |
| 7647 | // construct the ValueNumber for 'fldMap at staticOffset' |
| 7648 | normVal = vnStore->VNLiberalNormalValue(staticOffset->gtVNPair); |
| 7649 | valAtAddr = |
| 7650 | vnStore->VNForMapSelect(VNK_Liberal, firstFieldType, fldMapVN, normVal); |
| 7651 | } |
| 7652 | // Now get rid of any remaining struct field dereferences. (if they exist) |
| 7653 | if (fldSeq->m_next) |
| 7654 | { |
| 7655 | storeVal = |
| 7656 | vnStore->VNApplySelectorsAssign(VNK_Liberal, valAtAddr, fldSeq->m_next, |
| 7657 | storeVal, indType, compCurBB); |
| 7658 | } |
| 7659 | |
| 7660 | // From which we can construct the new ValueNumber for 'fldMap at normVal' |
| 7661 | newFldMapVN = vnStore->VNForMapStore(vnStore->TypeOfVN(fldMapVN), fldMapVN, normVal, |
| 7662 | storeVal); |
| 7663 | } |
| 7664 | else |
| 7665 | { |
| 7666 | // plain static field |
| 7667 | |
| 7668 | // Now get rid of any remaining struct field dereferences. (if they exist) |
| 7669 | if (fldSeq->m_next) |
| 7670 | { |
| 7671 | storeVal = |
| 7672 | vnStore->VNApplySelectorsAssign(VNK_Liberal, fldMapVN, fldSeq->m_next, |
| 7673 | storeVal, indType, compCurBB); |
| 7674 | } |
| 7675 | |
| 7676 | newFldMapVN = vnStore->VNApplySelectorsAssign(VNK_Liberal, fgCurMemoryVN[GcHeap], |
| 7677 | fldSeq, storeVal, indType, compCurBB); |
| 7678 | } |
| 7679 | |
| 7680 | // It is not strictly necessary to set the lhs value number, |
| 7681 | // but the dumps read better with it set to the 'storeVal' that we just computed |
| 7682 | lhs->gtVNPair.SetBoth(storeVal); |
| 7683 | |
| 7684 | // Update the field map for firstField in GcHeap to this new value. |
| 7685 | ValueNum heapVN = |
| 7686 | vnStore->VNApplySelectorsAssign(VNK_Liberal, fgCurMemoryVN[GcHeap], firstFieldOnly, |
| 7687 | newFldMapVN, indType, compCurBB); |
| 7688 | |
| 7689 | recordGcHeapStore(tree, heapVN DEBUGARG("StoreField" )); |
| 7690 | } |
| 7691 | } |
| 7692 | else |
| 7693 | { |
| 7694 | GenTreeLclVarCommon* lclVarTree = nullptr; |
| 7695 | bool isLocal = tree->DefinesLocal(this, &lclVarTree); |
| 7696 | |
| 7697 | if (isLocal && lvaVarAddrExposed(lclVarTree->gtLclNum)) |
| 7698 | { |
| 7699 | // Store to address-exposed local; need to record the effect on ByrefExposed. |
| 7700 | // We could use MapStore here and MapSelect on reads of address-exposed locals |
| 7701 | // (using the local nums as selectors) to get e.g. propagation of values |
| 7702 | // through address-taken locals in regions of code with no calls or byref |
| 7703 | // writes. |
| 7704 | // For now, just use a new opaque VN. |
| 7705 | ValueNum memoryVN = vnStore->VNForExpr(compCurBB); |
| 7706 | recordAddressExposedLocalStore(tree, memoryVN DEBUGARG("PtrToLoc indir" )); |
| 7707 | } |
| 7708 | else if (!isLocal) |
| 7709 | { |
| 7710 | // If it doesn't define a local, then it might update GcHeap/ByrefExposed. |
| 7711 | // For the new ByrefExposed VN, we could use an operator here like |
| 7712 | // VNF_ByrefExposedStore that carries the VNs of the pointer and RHS, then |
| 7713 | // at byref loads if the current ByrefExposed VN happens to be |
| 7714 | // VNF_ByrefExposedStore with the same pointer VN, we could propagate the |
| 7715 | // VN from the RHS to the VN for the load. This would e.g. allow tracking |
| 7716 | // values through assignments to out params. For now, just model this |
| 7717 | // as an opaque GcHeap/ByrefExposed mutation. |
| 7718 | fgMutateGcHeap(tree DEBUGARG("assign-of-IND" )); |
| 7719 | } |
| 7720 | } |
| 7721 | } |
| 7722 | |
| 7723 | // We don't actually evaluate an IND on the LHS, so give it the Void value. |
| 7724 | tree->gtVNPair.SetBoth(vnStore->VNForVoid()); |
| 7725 | } |
| 7726 | break; |
| 7727 | |
| 7728 | case GT_CLS_VAR: |
| 7729 | { |
| 7730 | bool isVolatile = (lhs->gtFlags & GTF_FLD_VOLATILE) != 0; |
| 7731 | |
| 7732 | if (isVolatile) |
| 7733 | { |
| 7734 | // For Volatile store indirection, first mutate GcHeap/ByrefExposed |
| 7735 | fgMutateGcHeap(lhs DEBUGARG("GTF_CLS_VAR - store" )); // always change fgCurMemoryVN |
| 7736 | } |
| 7737 | |
| 7738 | // We model statics as indices into GcHeap (which is a subset of ByrefExposed). |
| 7739 | FieldSeqNode* fldSeqForStaticVar = GetFieldSeqStore()->CreateSingleton(lhs->gtClsVar.gtClsVarHnd); |
| 7740 | assert(fldSeqForStaticVar != FieldSeqStore::NotAField()); |
| 7741 | |
| 7742 | ValueNum storeVal = rhsVNPair.GetLiberal(); // The value number from the rhs of the assignment |
| 7743 | storeVal = vnStore->VNApplySelectorsAssign(VNK_Liberal, fgCurMemoryVN[GcHeap], fldSeqForStaticVar, |
| 7744 | storeVal, lhs->TypeGet(), compCurBB); |
| 7745 | |
| 7746 | // It is not strictly necessary to set the lhs value number, |
| 7747 | // but the dumps read better with it set to the 'storeVal' that we just computed |
| 7748 | lhs->gtVNPair.SetBoth(storeVal); |
| 7749 | |
| 7750 | // bbMemoryDef must include GcHeap for any block that mutates the GC heap |
| 7751 | assert((compCurBB->bbMemoryDef & memoryKindSet(GcHeap)) != 0); |
| 7752 | |
| 7753 | // Update the field map for the fgCurMemoryVN and SSA for the tree |
| 7754 | recordGcHeapStore(tree, storeVal DEBUGARG("Static Field store" )); |
| 7755 | } |
| 7756 | break; |
| 7757 | |
| 7758 | default: |
| 7759 | assert(!"Unknown node for lhs of assignment!" ); |
| 7760 | |
| 7761 | // For Unknown stores, mutate GcHeap/ByrefExposed |
| 7762 | fgMutateGcHeap(lhs DEBUGARG("Unkwown Assignment - store" )); // always change fgCurMemoryVN |
| 7763 | break; |
| 7764 | } |
| 7765 | } |
| 7766 | // Other kinds of assignment: initblk and copyblk. |
| 7767 | else if (oper == GT_ASG && varTypeIsStruct(tree)) |
| 7768 | { |
| 7769 | fgValueNumberBlockAssignment(tree); |
| 7770 | } |
| 7771 | else if (oper == GT_ADDR) |
| 7772 | { |
| 7773 | // We have special representations for byrefs to lvalues. |
| 7774 | GenTree* arg = tree->gtOp.gtOp1; |
| 7775 | if (arg->OperIsLocal()) |
| 7776 | { |
| 7777 | FieldSeqNode* fieldSeq = nullptr; |
| 7778 | ValueNum newVN = ValueNumStore::NoVN; |
| 7779 | if (!lvaInSsa(arg->gtLclVarCommon.GetLclNum())) |
| 7780 | { |
| 7781 | newVN = vnStore->VNForExpr(compCurBB, TYP_BYREF); |
| 7782 | } |
| 7783 | else if (arg->OperGet() == GT_LCL_FLD) |
| 7784 | { |
| 7785 | fieldSeq = arg->AsLclFld()->gtFieldSeq; |
| 7786 | if (fieldSeq == nullptr) |
| 7787 | { |
| 7788 | // Local field with unknown field seq -- not a precise pointer. |
| 7789 | newVN = vnStore->VNForExpr(compCurBB, TYP_BYREF); |
| 7790 | } |
| 7791 | } |
| 7792 | if (newVN == ValueNumStore::NoVN) |
| 7793 | { |
| 7794 | assert(arg->gtLclVarCommon.GetSsaNum() != ValueNumStore::NoVN); |
| 7795 | newVN = vnStore->VNForFunc(TYP_BYREF, VNF_PtrToLoc, |
| 7796 | vnStore->VNForIntCon(arg->gtLclVarCommon.GetLclNum()), |
| 7797 | vnStore->VNForFieldSeq(fieldSeq)); |
| 7798 | } |
| 7799 | tree->gtVNPair.SetBoth(newVN); |
| 7800 | } |
| 7801 | else if ((arg->gtOper == GT_IND) || arg->OperIsBlk()) |
| 7802 | { |
| 7803 | // Usually the ADDR and IND just cancel out... |
| 7804 | // except when this GT_ADDR has a valid zero-offset field sequence |
| 7805 | // |
| 7806 | FieldSeqNode* zeroOffsetFieldSeq = nullptr; |
| 7807 | if (GetZeroOffsetFieldMap()->Lookup(tree, &zeroOffsetFieldSeq) && |
| 7808 | (zeroOffsetFieldSeq != FieldSeqStore::NotAField())) |
| 7809 | { |
| 7810 | ValueNum addrExtended = vnStore->ExtendPtrVN(arg->gtOp.gtOp1, zeroOffsetFieldSeq); |
| 7811 | if (addrExtended != ValueNumStore::NoVN) |
| 7812 | { |
| 7813 | tree->gtVNPair.SetBoth(addrExtended); // We don't care about lib/cons differences for addresses. |
| 7814 | } |
| 7815 | else |
| 7816 | { |
| 7817 | // ExtendPtrVN returned a failure result |
| 7818 | // So give this address a new unique value |
| 7819 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, TYP_BYREF)); |
| 7820 | } |
| 7821 | } |
| 7822 | else |
| 7823 | { |
| 7824 | // They just cancel, so fetch the ValueNumber from the op1 of the GT_IND node. |
| 7825 | // |
| 7826 | GenTree* addr = arg->AsIndir()->Addr(); |
| 7827 | tree->gtVNPair = addr->gtVNPair; |
| 7828 | |
| 7829 | // For the CSE phase mark the address as GTF_DONT_CSE |
| 7830 | // because it will end up with the same value number as tree (the GT_ADDR). |
| 7831 | addr->gtFlags |= GTF_DONT_CSE; |
| 7832 | } |
| 7833 | } |
| 7834 | else |
| 7835 | { |
| 7836 | // May be more cases to do here! But we'll punt for now. |
| 7837 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, TYP_BYREF)); |
| 7838 | } |
| 7839 | } |
| 7840 | else if ((oper == GT_IND) || GenTree::OperIsBlk(oper)) |
| 7841 | { |
| 7842 | // So far, we handle cases in which the address is a ptr-to-local, or if it's |
| 7843 | // a pointer to an object field or array element. Other cases become uses of |
| 7844 | // the current ByrefExposed value and the pointer value, so that at least we |
| 7845 | // can recognize redundant loads with no stores between them. |
| 7846 | GenTree* addr = tree->AsIndir()->Addr(); |
| 7847 | GenTreeLclVarCommon* lclVarTree = nullptr; |
| 7848 | FieldSeqNode* fldSeq1 = nullptr; |
| 7849 | FieldSeqNode* fldSeq2 = nullptr; |
| 7850 | GenTree* obj = nullptr; |
| 7851 | GenTree* staticOffset = nullptr; |
| 7852 | bool isVolatile = (tree->gtFlags & GTF_IND_VOLATILE) != 0; |
| 7853 | |
| 7854 | // See if the addr has any exceptional part. |
| 7855 | ValueNumPair addrNvnp; |
| 7856 | ValueNumPair addrXvnp; |
| 7857 | vnStore->VNPUnpackExc(addr->gtVNPair, &addrNvnp, &addrXvnp); |
| 7858 | |
| 7859 | // Is the dereference immutable? If so, model it as referencing the read-only heap. |
| 7860 | if (tree->gtFlags & GTF_IND_INVARIANT) |
| 7861 | { |
| 7862 | assert(!isVolatile); // We don't expect both volatile and invariant |
| 7863 | tree->gtVNPair = |
| 7864 | ValueNumPair(vnStore->VNForMapSelect(VNK_Liberal, TYP_REF, ValueNumStore::VNForROH(), |
| 7865 | addrNvnp.GetLiberal()), |
| 7866 | vnStore->VNForMapSelect(VNK_Conservative, TYP_REF, ValueNumStore::VNForROH(), |
| 7867 | addrNvnp.GetConservative())); |
| 7868 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 7869 | } |
| 7870 | else if (isVolatile) |
| 7871 | { |
| 7872 | // For Volatile indirection, mutate GcHeap/ByrefExposed |
| 7873 | fgMutateGcHeap(tree DEBUGARG("GTF_IND_VOLATILE - read" )); |
| 7874 | |
| 7875 | // The value read by the GT_IND can immediately change |
| 7876 | ValueNum newUniq = vnStore->VNForExpr(compCurBB, tree->TypeGet()); |
| 7877 | tree->gtVNPair = vnStore->VNPWithExc(ValueNumPair(newUniq, newUniq), addrXvnp); |
| 7878 | } |
| 7879 | // We always want to evaluate the LHS when the GT_IND node is marked with GTF_IND_ARR_INDEX |
| 7880 | // as this will relabel the GT_IND child correctly using the VNF_PtrToArrElem |
| 7881 | else if ((tree->gtFlags & GTF_IND_ARR_INDEX) != 0) |
| 7882 | { |
| 7883 | ArrayInfo arrInfo; |
| 7884 | bool b = GetArrayInfoMap()->Lookup(tree, &arrInfo); |
| 7885 | assert(b); |
| 7886 | |
| 7887 | ValueNum inxVN = ValueNumStore::NoVN; |
| 7888 | FieldSeqNode* fldSeq = nullptr; |
| 7889 | |
| 7890 | // GenTree* addr = tree->gtOp.gtOp1; |
| 7891 | ValueNum addrVN = addrNvnp.GetLiberal(); |
| 7892 | |
| 7893 | // Try to parse it. |
| 7894 | GenTree* arr = nullptr; |
| 7895 | addr->ParseArrayAddress(this, &arrInfo, &arr, &inxVN, &fldSeq); |
| 7896 | if (arr == nullptr) |
| 7897 | { |
| 7898 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 7899 | return; |
| 7900 | } |
| 7901 | assert(fldSeq != FieldSeqStore::NotAField()); |
| 7902 | |
| 7903 | // Otherwise... |
| 7904 | // Need to form H[arrType][arr][ind][fldSeq] |
| 7905 | // Get the array element type equivalence class rep. |
| 7906 | CORINFO_CLASS_HANDLE elemTypeEq = EncodeElemType(arrInfo.m_elemType, arrInfo.m_elemStructType); |
| 7907 | ValueNum elemTypeEqVN = vnStore->VNForHandle(ssize_t(elemTypeEq), GTF_ICON_CLASS_HDL); |
| 7908 | JITDUMP(" VNForHandle(arrElemType: %s) is " FMT_VN "\n" , |
| 7909 | (arrInfo.m_elemType == TYP_STRUCT) ? eeGetClassName(arrInfo.m_elemStructType) |
| 7910 | : varTypeName(arrInfo.m_elemType), |
| 7911 | elemTypeEqVN) |
| 7912 | |
| 7913 | // We take the "VNNormalValue"s here, because if either has exceptional outcomes, they will be captured |
| 7914 | // as part of the value of the composite "addr" operation... |
| 7915 | ValueNum arrVN = vnStore->VNLiberalNormalValue(arr->gtVNPair); |
| 7916 | inxVN = vnStore->VNNormalValue(inxVN); |
| 7917 | |
| 7918 | // Additionally, relabel the address with a PtrToArrElem value number. |
| 7919 | ValueNum fldSeqVN = vnStore->VNForFieldSeq(fldSeq); |
| 7920 | ValueNum elemAddr = |
| 7921 | vnStore->VNForFunc(TYP_BYREF, VNF_PtrToArrElem, elemTypeEqVN, arrVN, inxVN, fldSeqVN); |
| 7922 | |
| 7923 | // The aggregate "addr" VN should have had all the exceptions bubble up... |
| 7924 | elemAddr = vnStore->VNWithExc(elemAddr, addrXvnp.GetLiberal()); |
| 7925 | addr->gtVNPair.SetBoth(elemAddr); |
| 7926 | #ifdef DEBUG |
| 7927 | if (verbose) |
| 7928 | { |
| 7929 | printf(" Relabeled IND_ARR_INDEX address node " ); |
| 7930 | Compiler::printTreeID(addr); |
| 7931 | printf(" with l:" FMT_VN ": " , elemAddr); |
| 7932 | vnStore->vnDump(this, elemAddr); |
| 7933 | printf("\n" ); |
| 7934 | if (vnStore->VNNormalValue(elemAddr) != elemAddr) |
| 7935 | { |
| 7936 | printf(" [" FMT_VN " is: " , vnStore->VNNormalValue(elemAddr)); |
| 7937 | vnStore->vnDump(this, vnStore->VNNormalValue(elemAddr)); |
| 7938 | printf("]\n" ); |
| 7939 | } |
| 7940 | } |
| 7941 | #endif // DEBUG |
| 7942 | |
| 7943 | // We now need to retrieve the value number for the array element value |
| 7944 | // and give this value number to the GT_IND node 'tree' |
| 7945 | // We do this whenever we have an rvalue, but we don't do it for a |
| 7946 | // normal LHS assignment into an array element. |
| 7947 | // |
| 7948 | if ((tree->gtFlags & GTF_IND_ASG_LHS) == 0) |
| 7949 | { |
| 7950 | fgValueNumberArrIndexVal(tree, elemTypeEq, arrVN, inxVN, addrXvnp.GetLiberal(), fldSeq); |
| 7951 | } |
| 7952 | } |
| 7953 | // In general we skip GT_IND nodes on that are the LHS of an assignment. (We labeled these earlier.) |
| 7954 | // We will "evaluate" this as part of the assignment. |
| 7955 | else if ((tree->gtFlags & GTF_IND_ASG_LHS) == 0) |
| 7956 | { |
| 7957 | FieldSeqNode* localFldSeq = nullptr; |
| 7958 | VNFuncApp funcApp; |
| 7959 | |
| 7960 | // Is it a local or a heap address? |
| 7961 | if (addr->IsLocalAddrExpr(this, &lclVarTree, &localFldSeq) && lvaInSsa(lclVarTree->GetLclNum())) |
| 7962 | { |
| 7963 | unsigned lclNum = lclVarTree->GetLclNum(); |
| 7964 | unsigned ssaNum = lclVarTree->GetSsaNum(); |
| 7965 | LclVarDsc* varDsc = &lvaTable[lclNum]; |
| 7966 | |
| 7967 | if ((localFldSeq == FieldSeqStore::NotAField()) || (localFldSeq == nullptr)) |
| 7968 | { |
| 7969 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 7970 | } |
| 7971 | else |
| 7972 | { |
| 7973 | var_types indType = tree->TypeGet(); |
| 7974 | ValueNumPair lclVNPair = varDsc->GetPerSsaData(ssaNum)->m_vnPair; |
| 7975 | tree->gtVNPair = vnStore->VNPairApplySelectors(lclVNPair, localFldSeq, indType); |
| 7976 | ; |
| 7977 | } |
| 7978 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 7979 | } |
| 7980 | else if (vnStore->GetVNFunc(addrNvnp.GetLiberal(), &funcApp) && funcApp.m_func == VNF_PtrToStatic) |
| 7981 | { |
| 7982 | var_types indType = tree->TypeGet(); |
| 7983 | ValueNum fieldSeqVN = funcApp.m_args[0]; |
| 7984 | |
| 7985 | FieldSeqNode* fldSeqForStaticVar = vnStore->FieldSeqVNToFieldSeq(fieldSeqVN); |
| 7986 | |
| 7987 | if (fldSeqForStaticVar != FieldSeqStore::NotAField()) |
| 7988 | { |
| 7989 | ValueNum selectedStaticVar; |
| 7990 | // We model statics as indices into the GcHeap (which is a subset of ByrefExposed). |
| 7991 | size_t structSize = 0; |
| 7992 | selectedStaticVar = vnStore->VNApplySelectors(VNK_Liberal, fgCurMemoryVN[GcHeap], |
| 7993 | fldSeqForStaticVar, &structSize); |
| 7994 | selectedStaticVar = vnStore->VNApplySelectorsTypeCheck(selectedStaticVar, indType, structSize); |
| 7995 | |
| 7996 | tree->gtVNPair.SetLiberal(selectedStaticVar); |
| 7997 | tree->gtVNPair.SetConservative(vnStore->VNForExpr(compCurBB, indType)); |
| 7998 | } |
| 7999 | else |
| 8000 | { |
| 8001 | JITDUMP(" *** Missing field sequence info for VNF_PtrToStatic value GT_IND\n" ); |
| 8002 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, indType)); // a new unique value number |
| 8003 | } |
| 8004 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 8005 | } |
| 8006 | else if (vnStore->GetVNFunc(addrNvnp.GetLiberal(), &funcApp) && (funcApp.m_func == VNF_PtrToArrElem)) |
| 8007 | { |
| 8008 | fgValueNumberArrIndexVal(tree, &funcApp, addrXvnp.GetLiberal()); |
| 8009 | } |
| 8010 | else if (addr->IsFieldAddr(this, &obj, &staticOffset, &fldSeq2)) |
| 8011 | { |
| 8012 | if (fldSeq2 == FieldSeqStore::NotAField()) |
| 8013 | { |
| 8014 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8015 | } |
| 8016 | else if (fldSeq2 != nullptr) |
| 8017 | { |
| 8018 | // Get the first (instance or static) field from field seq. GcHeap[field] will yield the "field |
| 8019 | // map". |
| 8020 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8021 | |
| 8022 | #ifdef DEBUG |
| 8023 | CORINFO_CLASS_HANDLE fldCls = info.compCompHnd->getFieldClass(fldSeq2->m_fieldHnd); |
| 8024 | if (obj != nullptr) |
| 8025 | { |
| 8026 | // Make sure that the class containing it is not a value class (as we are expecting an |
| 8027 | // instance field) |
| 8028 | assert((info.compCompHnd->getClassAttribs(fldCls) & CORINFO_FLG_VALUECLASS) == 0); |
| 8029 | assert(staticOffset == nullptr); |
| 8030 | } |
| 8031 | #endif // DEBUG |
| 8032 | |
| 8033 | // Get a field sequence for just the first field in the sequence |
| 8034 | // |
| 8035 | FieldSeqNode* firstFieldOnly = GetFieldSeqStore()->CreateSingleton(fldSeq2->m_fieldHnd); |
| 8036 | size_t structSize = 0; |
| 8037 | ValueNum fldMapVN = |
| 8038 | vnStore->VNApplySelectors(VNK_Liberal, fgCurMemoryVN[GcHeap], firstFieldOnly, &structSize); |
| 8039 | |
| 8040 | // The final field in the sequence will need to match the 'indType' |
| 8041 | var_types indType = tree->TypeGet(); |
| 8042 | |
| 8043 | // The type of the field is "struct" if there are more fields in the sequence, |
| 8044 | // otherwise it is the type returned from VNApplySelectors above. |
| 8045 | var_types firstFieldType = vnStore->TypeOfVN(fldMapVN); |
| 8046 | |
| 8047 | ValueNum valAtAddr = fldMapVN; |
| 8048 | if (obj != nullptr) |
| 8049 | { |
| 8050 | // construct the ValueNumber for 'fldMap at obj' |
| 8051 | ValueNum objNormVal = vnStore->VNLiberalNormalValue(obj->gtVNPair); |
| 8052 | valAtAddr = vnStore->VNForMapSelect(VNK_Liberal, firstFieldType, fldMapVN, objNormVal); |
| 8053 | } |
| 8054 | else if (staticOffset != nullptr) |
| 8055 | { |
| 8056 | // construct the ValueNumber for 'fldMap at staticOffset' |
| 8057 | ValueNum offsetNormVal = vnStore->VNLiberalNormalValue(staticOffset->gtVNPair); |
| 8058 | valAtAddr = vnStore->VNForMapSelect(VNK_Liberal, firstFieldType, fldMapVN, offsetNormVal); |
| 8059 | } |
| 8060 | |
| 8061 | // Now get rid of any remaining struct field dereferences. |
| 8062 | if (fldSeq2->m_next) |
| 8063 | { |
| 8064 | valAtAddr = vnStore->VNApplySelectors(VNK_Liberal, valAtAddr, fldSeq2->m_next, &structSize); |
| 8065 | } |
| 8066 | valAtAddr = vnStore->VNApplySelectorsTypeCheck(valAtAddr, indType, structSize); |
| 8067 | |
| 8068 | tree->gtVNPair.SetLiberal(valAtAddr); |
| 8069 | |
| 8070 | // The conservative value is a new, unique VN. |
| 8071 | tree->gtVNPair.SetConservative(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8072 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 8073 | } |
| 8074 | else |
| 8075 | { |
| 8076 | // Occasionally we do an explicit null test on a REF, so we just dereference it with no |
| 8077 | // field sequence. The result is probably unused. |
| 8078 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8079 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 8080 | } |
| 8081 | } |
| 8082 | else // We don't know where the address points, so it is an ByrefExposed load. |
| 8083 | { |
| 8084 | ValueNum addrVN = addr->gtVNPair.GetLiberal(); |
| 8085 | ValueNum loadVN = fgValueNumberByrefExposedLoad(typ, addrVN); |
| 8086 | tree->gtVNPair.SetLiberal(loadVN); |
| 8087 | tree->gtVNPair.SetConservative(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8088 | tree->gtVNPair = vnStore->VNPWithExc(tree->gtVNPair, addrXvnp); |
| 8089 | } |
| 8090 | } |
| 8091 | } |
| 8092 | else if (tree->OperGet() == GT_CAST) |
| 8093 | { |
| 8094 | fgValueNumberCastTree(tree); |
| 8095 | } |
| 8096 | else if (tree->OperGet() == GT_INTRINSIC) |
| 8097 | { |
| 8098 | fgValueNumberIntrinsic(tree); |
| 8099 | } |
| 8100 | else // Look up the VNFunc for the node |
| 8101 | { |
| 8102 | VNFunc vnf = GetVNFuncForNode(tree); |
| 8103 | |
| 8104 | if (ValueNumStore::VNFuncIsLegal(vnf)) |
| 8105 | { |
| 8106 | if (GenTree::OperIsUnary(oper)) |
| 8107 | { |
| 8108 | if (tree->gtOp.gtOp1 != nullptr) |
| 8109 | { |
| 8110 | if (tree->OperGet() == GT_NOP) |
| 8111 | { |
| 8112 | // Pass through arg vn. |
| 8113 | tree->gtVNPair = tree->gtOp.gtOp1->gtVNPair; |
| 8114 | } |
| 8115 | else |
| 8116 | { |
| 8117 | ValueNumPair op1VNP; |
| 8118 | ValueNumPair op1VNPx; |
| 8119 | vnStore->VNPUnpackExc(tree->gtOp.gtOp1->gtVNPair, &op1VNP, &op1VNPx); |
| 8120 | |
| 8121 | // If we are fetching the array length for an array ref that came from global memory |
| 8122 | // then for CSE safety we must use the conservative value number for both |
| 8123 | // |
| 8124 | if ((tree->OperGet() == GT_ARR_LENGTH) && ((tree->gtOp.gtOp1->gtFlags & GTF_GLOB_REF) != 0)) |
| 8125 | { |
| 8126 | // use the conservative value number for both when computing the VN for the ARR_LENGTH |
| 8127 | op1VNP.SetBoth(op1VNP.GetConservative()); |
| 8128 | } |
| 8129 | |
| 8130 | tree->gtVNPair = |
| 8131 | vnStore->VNPWithExc(vnStore->VNPairForFunc(tree->TypeGet(), vnf, op1VNP), op1VNPx); |
| 8132 | } |
| 8133 | } |
| 8134 | else // Is actually nullary. |
| 8135 | { |
| 8136 | // Mostly we'll leave these without a value number, assuming we'll detect these as VN failures |
| 8137 | // if they actually need to have values. With the exception of NOPs, which can sometimes have |
| 8138 | // meaning. |
| 8139 | if (tree->OperGet() == GT_NOP) |
| 8140 | { |
| 8141 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8142 | } |
| 8143 | } |
| 8144 | } |
| 8145 | else // we have a binary oper |
| 8146 | { |
| 8147 | assert(oper != GT_ASG); // We handled assignments earlier. |
| 8148 | assert(GenTree::OperIsBinary(oper)); |
| 8149 | // Standard binary operator. |
| 8150 | ValueNumPair op2VNPair; |
| 8151 | if (tree->gtOp.gtOp2 == nullptr) |
| 8152 | { |
| 8153 | // Handle any GT_LIST nodes as they can have a nullptr for op2. |
| 8154 | op2VNPair.SetBoth(ValueNumStore::VNForNull()); |
| 8155 | } |
| 8156 | else |
| 8157 | { |
| 8158 | op2VNPair = tree->gtOp.gtOp2->gtVNPair; |
| 8159 | } |
| 8160 | |
| 8161 | // Handle a few special cases: if we add a field offset constant to a PtrToXXX, we will get back a |
| 8162 | // new |
| 8163 | // PtrToXXX. |
| 8164 | |
| 8165 | ValueNumPair op1vnp; |
| 8166 | ValueNumPair op1Xvnp; |
| 8167 | vnStore->VNPUnpackExc(tree->gtOp.gtOp1->gtVNPair, &op1vnp, &op1Xvnp); |
| 8168 | |
| 8169 | ValueNumPair op2vnp; |
| 8170 | ValueNumPair op2Xvnp; |
| 8171 | vnStore->VNPUnpackExc(op2VNPair, &op2vnp, &op2Xvnp); |
| 8172 | ValueNumPair excSet = vnStore->VNPExcSetUnion(op1Xvnp, op2Xvnp); |
| 8173 | |
| 8174 | ValueNum newVN = ValueNumStore::NoVN; |
| 8175 | |
| 8176 | // Check for the addition of a field offset constant |
| 8177 | // |
| 8178 | if ((oper == GT_ADD) && (!tree->gtOverflowEx())) |
| 8179 | { |
| 8180 | newVN = vnStore->ExtendPtrVN(tree->gtOp.gtOp1, tree->gtOp.gtOp2); |
| 8181 | } |
| 8182 | |
| 8183 | if (newVN != ValueNumStore::NoVN) |
| 8184 | { |
| 8185 | // We don't care about differences between liberal and conservative for pointer values. |
| 8186 | newVN = vnStore->VNWithExc(newVN, excSet.GetLiberal()); |
| 8187 | tree->gtVNPair.SetBoth(newVN); |
| 8188 | } |
| 8189 | else |
| 8190 | { |
| 8191 | VNFunc vnf = GetVNFuncForNode(tree); |
| 8192 | ValueNumPair normalPair = vnStore->VNPairForFunc(tree->TypeGet(), vnf, op1vnp, op2vnp); |
| 8193 | tree->gtVNPair = vnStore->VNPWithExc(normalPair, excSet); |
| 8194 | // For overflow checking operations the VNF_OverflowExc will be added below |
| 8195 | // by fgValueNumberAddExceptionSet |
| 8196 | } |
| 8197 | } |
| 8198 | } |
| 8199 | else // ValueNumStore::VNFuncIsLegal returns false |
| 8200 | { |
| 8201 | // Some of the genTreeOps that aren't legal VNFuncs so they get special handling. |
| 8202 | switch (oper) |
| 8203 | { |
| 8204 | case GT_COMMA: |
| 8205 | { |
| 8206 | ValueNumPair op1vnp; |
| 8207 | ValueNumPair op1Xvnp; |
| 8208 | vnStore->VNPUnpackExc(tree->gtOp.gtOp1->gtVNPair, &op1vnp, &op1Xvnp); |
| 8209 | ValueNumPair op2vnp; |
| 8210 | ValueNumPair op2Xvnp = ValueNumStore::VNPForEmptyExcSet(); |
| 8211 | GenTree* op2 = tree->gtGetOp2(); |
| 8212 | |
| 8213 | if (op2->OperIsIndir() && ((op2->gtFlags & GTF_IND_ASG_LHS) != 0)) |
| 8214 | { |
| 8215 | // If op2 represents the lhs of an assignment then we give a VNForVoid for the lhs |
| 8216 | op2vnp = ValueNumPair(ValueNumStore::VNForVoid(), ValueNumStore::VNForVoid()); |
| 8217 | } |
| 8218 | else if ((op2->OperGet() == GT_CLS_VAR) && (op2->gtFlags & GTF_CLS_VAR_ASG_LHS)) |
| 8219 | { |
| 8220 | // If op2 represents the lhs of an assignment then we give a VNForVoid for the lhs |
| 8221 | op2vnp = ValueNumPair(ValueNumStore::VNForVoid(), ValueNumStore::VNForVoid()); |
| 8222 | } |
| 8223 | else |
| 8224 | { |
| 8225 | vnStore->VNPUnpackExc(op2->gtVNPair, &op2vnp, &op2Xvnp); |
| 8226 | } |
| 8227 | tree->gtVNPair = vnStore->VNPWithExc(op2vnp, vnStore->VNPExcSetUnion(op1Xvnp, op2Xvnp)); |
| 8228 | } |
| 8229 | break; |
| 8230 | |
| 8231 | case GT_NULLCHECK: |
| 8232 | { |
| 8233 | // An Explicit null check, produces no value |
| 8234 | // But we do persist any execeptions produced by op1 |
| 8235 | // |
| 8236 | tree->gtVNPair = vnStore->VNPWithExc(vnStore->VNPForVoid(), |
| 8237 | vnStore->VNPExceptionSet(tree->gtOp.gtOp1->gtVNPair)); |
| 8238 | // The exception set with VNF_NullPtrExc will be added below |
| 8239 | // by fgValueNumberAddExceptionSet |
| 8240 | } |
| 8241 | break; |
| 8242 | |
| 8243 | case GT_LOCKADD: // Binop |
| 8244 | noway_assert("LOCKADD should not appear before lowering" ); |
| 8245 | break; |
| 8246 | |
| 8247 | case GT_XADD: // Binop |
| 8248 | case GT_XCHG: // Binop |
| 8249 | { |
| 8250 | // For XADD and XCHG other intrinsics add an arbitrary side effect on GcHeap/ByrefExposed. |
| 8251 | fgMutateGcHeap(tree DEBUGARG("Interlocked intrinsic" )); |
| 8252 | |
| 8253 | assert(tree->OperIsImplicitIndir()); // special node with an implicit indirections |
| 8254 | |
| 8255 | GenTree* addr = tree->gtOp.gtOp1; // op1 |
| 8256 | GenTree* data = tree->gtOp.gtOp2; // op2 |
| 8257 | |
| 8258 | ValueNumPair vnpExcSet = ValueNumStore::VNPForEmptyExcSet(); |
| 8259 | |
| 8260 | vnpExcSet = vnStore->VNPUnionExcSet(data->gtVNPair, vnpExcSet); |
| 8261 | vnpExcSet = vnStore->VNPUnionExcSet(addr->gtVNPair, vnpExcSet); |
| 8262 | |
| 8263 | // The normal value is a new unique VN. |
| 8264 | ValueNumPair normalPair; |
| 8265 | normalPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8266 | |
| 8267 | // Attach the combined exception set |
| 8268 | tree->gtVNPair = vnStore->VNPWithExc(normalPair, vnpExcSet); |
| 8269 | |
| 8270 | // add the null check exception for 'addr' to the tree's value number |
| 8271 | fgValueNumberAddExceptionSetForIndirection(tree, addr); |
| 8272 | break; |
| 8273 | } |
| 8274 | |
| 8275 | case GT_JTRUE: |
| 8276 | case GT_LIST: |
| 8277 | // These nodes never need to have a ValueNumber |
| 8278 | tree->gtVNPair.SetBoth(ValueNumStore::NoVN); |
| 8279 | break; |
| 8280 | |
| 8281 | case GT_BOX: |
| 8282 | // BOX doesn't do anything at this point, the actual object allocation |
| 8283 | // and initialization happens separately (and not numbering BOX correctly |
| 8284 | // prevents seeing allocation related assertions through it) |
| 8285 | tree->gtVNPair = tree->gtGetOp1()->gtVNPair; |
| 8286 | break; |
| 8287 | |
| 8288 | default: |
| 8289 | // The default action is to give the node a new, unique VN. |
| 8290 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8291 | break; |
| 8292 | } |
| 8293 | } |
| 8294 | } |
| 8295 | |
| 8296 | // next we add any exception sets for the current tree node |
| 8297 | fgValueNumberAddExceptionSet(tree); |
| 8298 | } |
| 8299 | else |
| 8300 | { |
| 8301 | assert(GenTree::OperIsSpecial(oper)); |
| 8302 | |
| 8303 | // TBD: We must handle these individually. For now: |
| 8304 | switch (oper) |
| 8305 | { |
| 8306 | case GT_CALL: |
| 8307 | fgValueNumberCall(tree->AsCall()); |
| 8308 | break; |
| 8309 | |
| 8310 | case GT_ARR_BOUNDS_CHECK: |
| 8311 | #ifdef FEATURE_SIMD |
| 8312 | case GT_SIMD_CHK: |
| 8313 | #endif // FEATURE_SIMD |
| 8314 | #ifdef FEATURE_HW_INTRINSICS |
| 8315 | case GT_HW_INTRINSIC_CHK: |
| 8316 | #endif // FEATURE_HW_INTRINSICS |
| 8317 | { |
| 8318 | ValueNumPair vnpIndex = tree->AsBoundsChk()->gtIndex->gtVNPair; |
| 8319 | ValueNumPair vnpArrLen = tree->AsBoundsChk()->gtArrLen->gtVNPair; |
| 8320 | |
| 8321 | // Construct the exception set for bounds check |
| 8322 | ValueNumPair vnpExcSet = vnStore->VNPExcSetSingleton( |
| 8323 | vnStore->VNPairForFunc(TYP_REF, VNF_IndexOutOfRangeExc, vnStore->VNPNormalPair(vnpIndex), |
| 8324 | vnStore->VNPNormalPair(vnpArrLen))); |
| 8325 | |
| 8326 | // And collect the exceptions from Index and ArrLen |
| 8327 | vnpExcSet = vnStore->VNPUnionExcSet(vnpIndex, vnpExcSet); |
| 8328 | vnpExcSet = vnStore->VNPUnionExcSet(vnpArrLen, vnpExcSet); |
| 8329 | |
| 8330 | // A bounds check node has no value, but may throw exceptions. |
| 8331 | tree->gtVNPair = vnStore->VNPWithExc(vnStore->VNPForVoid(), vnpExcSet); |
| 8332 | |
| 8333 | // Record non-constant value numbers that are used as the length argument to bounds checks, so that |
| 8334 | // assertion prop will know that comparisons against them are worth analyzing. |
| 8335 | ValueNum lengthVN = tree->AsBoundsChk()->gtArrLen->gtVNPair.GetConservative(); |
| 8336 | if ((lengthVN != ValueNumStore::NoVN) && !vnStore->IsVNConstant(lengthVN)) |
| 8337 | { |
| 8338 | vnStore->SetVNIsCheckedBound(lengthVN); |
| 8339 | } |
| 8340 | } |
| 8341 | break; |
| 8342 | |
| 8343 | case GT_CMPXCHG: // Specialop |
| 8344 | { |
| 8345 | // For CMPXCHG and other intrinsics add an arbitrary side effect on GcHeap/ByrefExposed. |
| 8346 | fgMutateGcHeap(tree DEBUGARG("Interlocked intrinsic" )); |
| 8347 | |
| 8348 | GenTreeCmpXchg* const cmpXchg = tree->AsCmpXchg(); |
| 8349 | |
| 8350 | assert(tree->OperIsImplicitIndir()); // special node with an implicit indirections |
| 8351 | |
| 8352 | GenTree* location = cmpXchg->gtOpLocation; // arg1 |
| 8353 | GenTree* value = cmpXchg->gtOpValue; // arg2 |
| 8354 | GenTree* comparand = cmpXchg->gtOpComparand; // arg3 |
| 8355 | |
| 8356 | ValueNumPair vnpExcSet = ValueNumStore::VNPForEmptyExcSet(); |
| 8357 | |
| 8358 | // Collect the exception sets from our operands |
| 8359 | vnpExcSet = vnStore->VNPUnionExcSet(location->gtVNPair, vnpExcSet); |
| 8360 | vnpExcSet = vnStore->VNPUnionExcSet(value->gtVNPair, vnpExcSet); |
| 8361 | vnpExcSet = vnStore->VNPUnionExcSet(comparand->gtVNPair, vnpExcSet); |
| 8362 | |
| 8363 | // The normal value is a new unique VN. |
| 8364 | ValueNumPair normalPair; |
| 8365 | normalPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8366 | |
| 8367 | // Attach the combined exception set |
| 8368 | tree->gtVNPair = vnStore->VNPWithExc(normalPair, vnpExcSet); |
| 8369 | |
| 8370 | // add the null check exception for 'location' to the tree's value number |
| 8371 | fgValueNumberAddExceptionSetForIndirection(tree, location); |
| 8372 | // add the null check exception for 'comparand' to the tree's value number |
| 8373 | fgValueNumberAddExceptionSetForIndirection(tree, comparand); |
| 8374 | break; |
| 8375 | } |
| 8376 | |
| 8377 | default: |
| 8378 | tree->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, tree->TypeGet())); |
| 8379 | } |
| 8380 | } |
| 8381 | #ifdef DEBUG |
| 8382 | if (verbose) |
| 8383 | { |
| 8384 | if (tree->gtVNPair.GetLiberal() != ValueNumStore::NoVN) |
| 8385 | { |
| 8386 | printf("N%03u " , tree->gtSeqNum); |
| 8387 | printTreeID(tree); |
| 8388 | printf(" " ); |
| 8389 | gtDispNodeName(tree); |
| 8390 | if (tree->OperIsLeaf() || tree->OperIsLocalStore()) // local stores used to be leaves |
| 8391 | { |
| 8392 | gtDispLeaf(tree, nullptr); |
| 8393 | } |
| 8394 | printf(" => " ); |
| 8395 | vnpPrint(tree->gtVNPair, 1); |
| 8396 | printf("\n" ); |
| 8397 | } |
| 8398 | } |
| 8399 | #endif // DEBUG |
| 8400 | } |
| 8401 | |
| 8402 | void Compiler::fgValueNumberIntrinsic(GenTree* tree) |
| 8403 | { |
| 8404 | assert(tree->OperGet() == GT_INTRINSIC); |
| 8405 | GenTreeIntrinsic* intrinsic = tree->AsIntrinsic(); |
| 8406 | ValueNumPair arg0VNP, arg1VNP; |
| 8407 | ValueNumPair arg0VNPx = ValueNumStore::VNPForEmptyExcSet(); |
| 8408 | ValueNumPair arg1VNPx = ValueNumStore::VNPForEmptyExcSet(); |
| 8409 | |
| 8410 | vnStore->VNPUnpackExc(intrinsic->gtOp.gtOp1->gtVNPair, &arg0VNP, &arg0VNPx); |
| 8411 | |
| 8412 | if (intrinsic->gtOp.gtOp2 != nullptr) |
| 8413 | { |
| 8414 | vnStore->VNPUnpackExc(intrinsic->gtOp.gtOp2->gtVNPair, &arg1VNP, &arg1VNPx); |
| 8415 | } |
| 8416 | |
| 8417 | if (IsMathIntrinsic(intrinsic->gtIntrinsicId)) |
| 8418 | { |
| 8419 | // GT_INTRINSIC is a currently a subtype of binary operators. But most of |
| 8420 | // the math intrinsics are actually unary operations. |
| 8421 | |
| 8422 | if (intrinsic->gtOp.gtOp2 == nullptr) |
| 8423 | { |
| 8424 | intrinsic->gtVNPair = |
| 8425 | vnStore->VNPWithExc(vnStore->EvalMathFuncUnary(tree->TypeGet(), intrinsic->gtIntrinsicId, arg0VNP), |
| 8426 | arg0VNPx); |
| 8427 | } |
| 8428 | else |
| 8429 | { |
| 8430 | ValueNumPair newVNP = |
| 8431 | vnStore->EvalMathFuncBinary(tree->TypeGet(), intrinsic->gtIntrinsicId, arg0VNP, arg1VNP); |
| 8432 | ValueNumPair excSet = vnStore->VNPExcSetUnion(arg0VNPx, arg1VNPx); |
| 8433 | intrinsic->gtVNPair = vnStore->VNPWithExc(newVNP, excSet); |
| 8434 | } |
| 8435 | } |
| 8436 | else |
| 8437 | { |
| 8438 | switch (intrinsic->gtIntrinsicId) |
| 8439 | { |
| 8440 | case CORINFO_INTRINSIC_Object_GetType: |
| 8441 | intrinsic->gtVNPair = |
| 8442 | vnStore->VNPWithExc(vnStore->VNPairForFunc(intrinsic->TypeGet(), VNF_ObjGetType, arg0VNP), |
| 8443 | arg0VNPx); |
| 8444 | break; |
| 8445 | |
| 8446 | default: |
| 8447 | unreached(); |
| 8448 | } |
| 8449 | } |
| 8450 | } |
| 8451 | |
| 8452 | void Compiler::fgValueNumberCastTree(GenTree* tree) |
| 8453 | { |
| 8454 | assert(tree->OperGet() == GT_CAST); |
| 8455 | |
| 8456 | ValueNumPair srcVNPair = tree->gtOp.gtOp1->gtVNPair; |
| 8457 | var_types castToType = tree->CastToType(); |
| 8458 | var_types castFromType = tree->CastFromType(); |
| 8459 | bool srcIsUnsigned = ((tree->gtFlags & GTF_UNSIGNED) != 0); |
| 8460 | bool hasOverflowCheck = tree->gtOverflowEx(); |
| 8461 | |
| 8462 | assert(genActualType(castToType) == genActualType(tree->TypeGet())); // Insure that the resultType is correct |
| 8463 | |
| 8464 | tree->gtVNPair = vnStore->VNPairForCast(srcVNPair, castToType, castFromType, srcIsUnsigned, hasOverflowCheck); |
| 8465 | } |
| 8466 | |
| 8467 | // Compute the normal ValueNumber for a cast operation with no exceptions |
| 8468 | ValueNum ValueNumStore::VNForCast(ValueNum srcVN, |
| 8469 | var_types castToType, |
| 8470 | var_types castFromType, |
| 8471 | bool srcIsUnsigned /* = false */) |
| 8472 | { |
| 8473 | // The resulting type after performingthe cast is always widened to a supported IL stack size |
| 8474 | var_types resultType = genActualType(castToType); |
| 8475 | |
| 8476 | // When we're considering actual value returned by a non-checking cast whether or not the source is |
| 8477 | // unsigned does *not* matter for non-widening casts. That is, if we cast an int or a uint to short, |
| 8478 | // we just extract the first two bytes from the source bit pattern, not worrying about the interpretation. |
| 8479 | // The same is true in casting between signed/unsigned types of the same width. Only when we're doing |
| 8480 | // a widening cast do we care about whether the source was unsigned,so we know whether to sign or zero extend it. |
| 8481 | // |
| 8482 | bool srcIsUnsignedNorm = srcIsUnsigned; |
| 8483 | if (genTypeSize(castToType) <= genTypeSize(castFromType)) |
| 8484 | { |
| 8485 | srcIsUnsignedNorm = false; |
| 8486 | } |
| 8487 | |
| 8488 | ValueNum castTypeVN = VNForCastOper(castToType, srcIsUnsigned); |
| 8489 | ValueNum resultVN = VNForFunc(resultType, VNF_Cast, srcVN, castTypeVN); |
| 8490 | |
| 8491 | #ifdef DEBUG |
| 8492 | if (m_pComp->verbose) |
| 8493 | { |
| 8494 | printf(" VNForCast(" FMT_VN ", " FMT_VN ") returns " , srcVN, castTypeVN); |
| 8495 | m_pComp->vnPrint(resultVN, 1); |
| 8496 | printf("\n" ); |
| 8497 | } |
| 8498 | #endif |
| 8499 | |
| 8500 | return resultVN; |
| 8501 | } |
| 8502 | |
| 8503 | // Compute the ValueNumberPair for a cast operation |
| 8504 | ValueNumPair ValueNumStore::VNPairForCast(ValueNumPair srcVNPair, |
| 8505 | var_types castToType, |
| 8506 | var_types castFromType, |
| 8507 | bool srcIsUnsigned, /* = false */ |
| 8508 | bool hasOverflowCheck) /* = false */ |
| 8509 | { |
| 8510 | // The resulting type after performingthe cast is always widened to a supported IL stack size |
| 8511 | var_types resultType = genActualType(castToType); |
| 8512 | |
| 8513 | ValueNumPair castArgVNP; |
| 8514 | ValueNumPair castArgxVNP; |
| 8515 | VNPUnpackExc(srcVNPair, &castArgVNP, &castArgxVNP); |
| 8516 | |
| 8517 | // When we're considering actual value returned by a non-checking cast, (hasOverflowCheck is false) |
| 8518 | // whether or not the source is unsigned does *not* matter for non-widening casts. |
| 8519 | // That is, if we cast an int or a uint to short, we just extract the first two bytes from the source |
| 8520 | // bit pattern, not worrying about the interpretation. The same is true in casting between signed/unsigned |
| 8521 | // types of the same width. Only when we're doing a widening cast do we care about whether the source |
| 8522 | // was unsigned, so we know whether to sign or zero extend it. |
| 8523 | // |
| 8524 | // Important: Casts to floating point cannot be optimized in this fashion. (bug 946768) |
| 8525 | // |
| 8526 | bool srcIsUnsignedNorm = srcIsUnsigned; |
| 8527 | if (!hasOverflowCheck && !varTypeIsFloating(castToType) && (genTypeSize(castToType) <= genTypeSize(castFromType))) |
| 8528 | { |
| 8529 | srcIsUnsignedNorm = false; |
| 8530 | } |
| 8531 | |
| 8532 | VNFunc vnFunc = hasOverflowCheck ? VNF_CastOvf : VNF_Cast; |
| 8533 | ValueNum castTypeVN = VNForCastOper(castToType, srcIsUnsignedNorm); |
| 8534 | ValueNumPair castTypeVNPair(castTypeVN, castTypeVN); |
| 8535 | ValueNumPair castNormRes = VNPairForFunc(resultType, vnFunc, castArgVNP, castTypeVNPair); |
| 8536 | |
| 8537 | ValueNumPair resultVNP = VNPWithExc(castNormRes, castArgxVNP); |
| 8538 | |
| 8539 | // If we have a check for overflow, add the exception information. |
| 8540 | if (hasOverflowCheck) |
| 8541 | { |
| 8542 | ValueNumPair ovfChk = VNPairForFunc(TYP_REF, VNF_ConvOverflowExc, castArgVNP, castTypeVNPair); |
| 8543 | ValueNumPair excSet = VNPExcSetSingleton(ovfChk); |
| 8544 | excSet = VNPExcSetUnion(excSet, castArgxVNP); |
| 8545 | resultVNP = VNPWithExc(castNormRes, excSet); |
| 8546 | } |
| 8547 | |
| 8548 | return resultVNP; |
| 8549 | } |
| 8550 | |
| 8551 | void Compiler::fgValueNumberHelperCallFunc(GenTreeCall* call, VNFunc vnf, ValueNumPair vnpExc) |
| 8552 | { |
| 8553 | unsigned nArgs = ValueNumStore::VNFuncArity(vnf); |
| 8554 | assert(vnf != VNF_Boundary); |
| 8555 | GenTreeArgList* args = call->gtCallArgs; |
| 8556 | bool generateUniqueVN = false; |
| 8557 | bool useEntryPointAddrAsArg0 = false; |
| 8558 | |
| 8559 | switch (vnf) |
| 8560 | { |
| 8561 | case VNF_JitNew: |
| 8562 | { |
| 8563 | generateUniqueVN = true; |
| 8564 | vnpExc = ValueNumStore::VNPForEmptyExcSet(); |
| 8565 | } |
| 8566 | break; |
| 8567 | |
| 8568 | case VNF_JitNewArr: |
| 8569 | { |
| 8570 | generateUniqueVN = true; |
| 8571 | ValueNumPair vnp1 = vnStore->VNPNormalPair(args->Rest()->Current()->gtVNPair); |
| 8572 | |
| 8573 | // The New Array helper may throw an overflow exception |
| 8574 | vnpExc = vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_NewArrOverflowExc, vnp1)); |
| 8575 | } |
| 8576 | break; |
| 8577 | |
| 8578 | case VNF_Box: |
| 8579 | case VNF_BoxNullable: |
| 8580 | { |
| 8581 | // Generate unique VN so, VNForFunc generates a uniq value number for box nullable. |
| 8582 | // Alternatively instead of using vnpUniq below in VNPairForFunc(...), |
| 8583 | // we could use the value number of what the byref arg0 points to. |
| 8584 | // |
| 8585 | // But retrieving the value number of what the byref arg0 points to is quite a bit more work |
| 8586 | // and doing so only very rarely allows for an additional optimization. |
| 8587 | generateUniqueVN = true; |
| 8588 | } |
| 8589 | break; |
| 8590 | |
| 8591 | case VNF_JitReadyToRunNew: |
| 8592 | { |
| 8593 | generateUniqueVN = true; |
| 8594 | vnpExc = ValueNumStore::VNPForEmptyExcSet(); |
| 8595 | useEntryPointAddrAsArg0 = true; |
| 8596 | } |
| 8597 | break; |
| 8598 | |
| 8599 | case VNF_JitReadyToRunNewArr: |
| 8600 | { |
| 8601 | generateUniqueVN = true; |
| 8602 | ValueNumPair vnp1 = vnStore->VNPNormalPair(args->Current()->gtVNPair); |
| 8603 | |
| 8604 | // The New Array helper may throw an overflow exception |
| 8605 | vnpExc = vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_NewArrOverflowExc, vnp1)); |
| 8606 | useEntryPointAddrAsArg0 = true; |
| 8607 | } |
| 8608 | break; |
| 8609 | |
| 8610 | case VNF_ReadyToRunStaticBase: |
| 8611 | case VNF_ReadyToRunGenericStaticBase: |
| 8612 | case VNF_ReadyToRunIsInstanceOf: |
| 8613 | case VNF_ReadyToRunCastClass: |
| 8614 | { |
| 8615 | useEntryPointAddrAsArg0 = true; |
| 8616 | } |
| 8617 | break; |
| 8618 | |
| 8619 | default: |
| 8620 | { |
| 8621 | assert(s_helperCallProperties.IsPure(eeGetHelperNum(call->gtCallMethHnd))); |
| 8622 | } |
| 8623 | break; |
| 8624 | } |
| 8625 | |
| 8626 | if (generateUniqueVN) |
| 8627 | { |
| 8628 | nArgs--; |
| 8629 | } |
| 8630 | |
| 8631 | ValueNumPair vnpUniq; |
| 8632 | if (generateUniqueVN) |
| 8633 | { |
| 8634 | // Generate unique VN so, VNForFunc generates a unique value number. |
| 8635 | vnpUniq.SetBoth(vnStore->VNForExpr(compCurBB, call->TypeGet())); |
| 8636 | } |
| 8637 | |
| 8638 | #if defined(FEATURE_READYTORUN_COMPILER) && defined(_TARGET_ARMARCH_) |
| 8639 | if (call->IsR2RRelativeIndir()) |
| 8640 | { |
| 8641 | #ifdef DEBUG |
| 8642 | assert(args->Current()->OperGet() == GT_ARGPLACE); |
| 8643 | |
| 8644 | // Find the corresponding late arg. |
| 8645 | GenTree* indirectCellAddress = call->fgArgInfo->GetArgNode(0); |
| 8646 | assert(indirectCellAddress->IsCnsIntOrI() && indirectCellAddress->gtRegNum == REG_R2R_INDIRECT_PARAM); |
| 8647 | #endif // DEBUG |
| 8648 | |
| 8649 | // For ARM indirectCellAddress is consumed by the call itself, so it should have added as an implicit argument |
| 8650 | // in morph. So we do not need to use EntryPointAddrAsArg0, because arg0 is already an entry point addr. |
| 8651 | useEntryPointAddrAsArg0 = false; |
| 8652 | } |
| 8653 | #endif // FEATURE_READYTORUN_COMPILER && _TARGET_ARMARCH_ |
| 8654 | |
| 8655 | if (nArgs == 0) |
| 8656 | { |
| 8657 | if (generateUniqueVN) |
| 8658 | { |
| 8659 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnpUniq); |
| 8660 | } |
| 8661 | else |
| 8662 | { |
| 8663 | call->gtVNPair.SetBoth(vnStore->VNForFunc(call->TypeGet(), vnf)); |
| 8664 | } |
| 8665 | } |
| 8666 | else |
| 8667 | { |
| 8668 | auto getCurrentArg = [call, &args, useEntryPointAddrAsArg0](int currentIndex) { |
| 8669 | GenTree* arg = args->Current(); |
| 8670 | if ((arg->gtFlags & GTF_LATE_ARG) != 0) |
| 8671 | { |
| 8672 | // This arg is a setup node that moves the arg into position. |
| 8673 | // Value-numbering will have visited the separate late arg that |
| 8674 | // holds the actual value, and propagated/computed the value number |
| 8675 | // for this arg there. |
| 8676 | if (useEntryPointAddrAsArg0) |
| 8677 | { |
| 8678 | // The args in the fgArgInfo don't include the entry point, so |
| 8679 | // index into them using one less than the requested index. |
| 8680 | --currentIndex; |
| 8681 | } |
| 8682 | return call->fgArgInfo->GetArgNode(currentIndex); |
| 8683 | } |
| 8684 | return arg; |
| 8685 | }; |
| 8686 | // Has at least one argument. |
| 8687 | ValueNumPair vnp0; |
| 8688 | ValueNumPair vnp0x = ValueNumStore::VNPForEmptyExcSet(); |
| 8689 | #ifdef FEATURE_READYTORUN_COMPILER |
| 8690 | if (useEntryPointAddrAsArg0) |
| 8691 | { |
| 8692 | ssize_t addrValue = (ssize_t)call->gtEntryPoint.addr; |
| 8693 | ValueNum callAddrVN = vnStore->VNForHandle(addrValue, GTF_ICON_FTN_ADDR); |
| 8694 | vnp0 = ValueNumPair(callAddrVN, callAddrVN); |
| 8695 | } |
| 8696 | else |
| 8697 | #endif // FEATURE_READYTORUN_COMPILER |
| 8698 | { |
| 8699 | assert(!useEntryPointAddrAsArg0); |
| 8700 | ValueNumPair vnp0wx = getCurrentArg(0)->gtVNPair; |
| 8701 | vnStore->VNPUnpackExc(vnp0wx, &vnp0, &vnp0x); |
| 8702 | |
| 8703 | // Also include in the argument exception sets |
| 8704 | vnpExc = vnStore->VNPExcSetUnion(vnpExc, vnp0x); |
| 8705 | |
| 8706 | args = args->Rest(); |
| 8707 | } |
| 8708 | if (nArgs == 1) |
| 8709 | { |
| 8710 | if (generateUniqueVN) |
| 8711 | { |
| 8712 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0, vnpUniq); |
| 8713 | } |
| 8714 | else |
| 8715 | { |
| 8716 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0); |
| 8717 | } |
| 8718 | } |
| 8719 | else |
| 8720 | { |
| 8721 | // Has at least two arguments. |
| 8722 | ValueNumPair vnp1wx = getCurrentArg(1)->gtVNPair; |
| 8723 | ValueNumPair vnp1; |
| 8724 | ValueNumPair vnp1x; |
| 8725 | vnStore->VNPUnpackExc(vnp1wx, &vnp1, &vnp1x); |
| 8726 | vnpExc = vnStore->VNPExcSetUnion(vnpExc, vnp1x); |
| 8727 | |
| 8728 | args = args->Rest(); |
| 8729 | if (nArgs == 2) |
| 8730 | { |
| 8731 | if (generateUniqueVN) |
| 8732 | { |
| 8733 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0, vnp1, vnpUniq); |
| 8734 | } |
| 8735 | else |
| 8736 | { |
| 8737 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0, vnp1); |
| 8738 | } |
| 8739 | } |
| 8740 | else |
| 8741 | { |
| 8742 | ValueNumPair vnp2wx = getCurrentArg(2)->gtVNPair; |
| 8743 | ValueNumPair vnp2; |
| 8744 | ValueNumPair vnp2x; |
| 8745 | vnStore->VNPUnpackExc(vnp2wx, &vnp2, &vnp2x); |
| 8746 | vnpExc = vnStore->VNPExcSetUnion(vnpExc, vnp2x); |
| 8747 | |
| 8748 | args = args->Rest(); |
| 8749 | assert(nArgs == 3); // Our current maximum. |
| 8750 | assert(args == nullptr); |
| 8751 | if (generateUniqueVN) |
| 8752 | { |
| 8753 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0, vnp1, vnp2, vnpUniq); |
| 8754 | } |
| 8755 | else |
| 8756 | { |
| 8757 | call->gtVNPair = vnStore->VNPairForFunc(call->TypeGet(), vnf, vnp0, vnp1, vnp2); |
| 8758 | } |
| 8759 | } |
| 8760 | } |
| 8761 | // Add the accumulated exceptions. |
| 8762 | call->gtVNPair = vnStore->VNPWithExc(call->gtVNPair, vnpExc); |
| 8763 | } |
| 8764 | assert(args == nullptr || generateUniqueVN); // All arguments should be processed or we generate unique VN and do |
| 8765 | // not care. |
| 8766 | } |
| 8767 | |
| 8768 | void Compiler::fgValueNumberCall(GenTreeCall* call) |
| 8769 | { |
| 8770 | // First: do value numbering of any argument placeholder nodes in the argument list |
| 8771 | // (by transferring from the VN of the late arg that they are standing in for...) |
| 8772 | unsigned i = 0; |
| 8773 | GenTreeArgList* args = call->gtCallArgs; |
| 8774 | bool updatedArgPlace = false; |
| 8775 | while (args != nullptr) |
| 8776 | { |
| 8777 | GenTree* arg = args->Current(); |
| 8778 | if (arg->OperGet() == GT_ARGPLACE) |
| 8779 | { |
| 8780 | // Find the corresponding late arg. |
| 8781 | GenTree* lateArg = call->fgArgInfo->GetArgNode(i); |
| 8782 | assert(lateArg->gtVNPair.BothDefined()); |
| 8783 | arg->gtVNPair = lateArg->gtVNPair; |
| 8784 | updatedArgPlace = true; |
| 8785 | #ifdef DEBUG |
| 8786 | if (verbose) |
| 8787 | { |
| 8788 | printf("VN of ARGPLACE tree " ); |
| 8789 | Compiler::printTreeID(arg); |
| 8790 | printf(" updated to " ); |
| 8791 | vnpPrint(arg->gtVNPair, 1); |
| 8792 | printf("\n" ); |
| 8793 | } |
| 8794 | #endif |
| 8795 | } |
| 8796 | i++; |
| 8797 | args = args->Rest(); |
| 8798 | } |
| 8799 | if (updatedArgPlace) |
| 8800 | { |
| 8801 | // Now we have to update the VN's of the argument list nodes, since that will be used in determining |
| 8802 | // loop-invariance. |
| 8803 | fgUpdateArgListVNs(call->gtCallArgs); |
| 8804 | } |
| 8805 | |
| 8806 | if (call->gtCallType == CT_HELPER) |
| 8807 | { |
| 8808 | bool modHeap = fgValueNumberHelperCall(call); |
| 8809 | |
| 8810 | if (modHeap) |
| 8811 | { |
| 8812 | // For now, arbitrary side effect on GcHeap/ByrefExposed. |
| 8813 | fgMutateGcHeap(call DEBUGARG("HELPER - modifies heap" )); |
| 8814 | } |
| 8815 | } |
| 8816 | else |
| 8817 | { |
| 8818 | if (call->TypeGet() == TYP_VOID) |
| 8819 | { |
| 8820 | call->gtVNPair.SetBoth(ValueNumStore::VNForVoid()); |
| 8821 | } |
| 8822 | else |
| 8823 | { |
| 8824 | call->gtVNPair.SetBoth(vnStore->VNForExpr(compCurBB, call->TypeGet())); |
| 8825 | } |
| 8826 | |
| 8827 | // For now, arbitrary side effect on GcHeap/ByrefExposed. |
| 8828 | fgMutateGcHeap(call DEBUGARG("CALL" )); |
| 8829 | } |
| 8830 | } |
| 8831 | |
| 8832 | void Compiler::fgUpdateArgListVNs(GenTreeArgList* args) |
| 8833 | { |
| 8834 | if (args == nullptr) |
| 8835 | { |
| 8836 | return; |
| 8837 | } |
| 8838 | // Otherwise... |
| 8839 | fgUpdateArgListVNs(args->Rest()); |
| 8840 | fgValueNumberTree(args); |
| 8841 | } |
| 8842 | |
| 8843 | VNFunc Compiler::fgValueNumberJitHelperMethodVNFunc(CorInfoHelpFunc helpFunc) |
| 8844 | { |
| 8845 | assert(s_helperCallProperties.IsPure(helpFunc) || s_helperCallProperties.IsAllocator(helpFunc)); |
| 8846 | |
| 8847 | VNFunc vnf = VNF_Boundary; // An illegal value... |
| 8848 | switch (helpFunc) |
| 8849 | { |
| 8850 | // These translate to other function symbols: |
| 8851 | case CORINFO_HELP_DIV: |
| 8852 | vnf = VNFunc(GT_DIV); |
| 8853 | break; |
| 8854 | case CORINFO_HELP_MOD: |
| 8855 | vnf = VNFunc(GT_MOD); |
| 8856 | break; |
| 8857 | case CORINFO_HELP_UDIV: |
| 8858 | vnf = VNFunc(GT_UDIV); |
| 8859 | break; |
| 8860 | case CORINFO_HELP_UMOD: |
| 8861 | vnf = VNFunc(GT_UMOD); |
| 8862 | break; |
| 8863 | case CORINFO_HELP_LLSH: |
| 8864 | vnf = VNFunc(GT_LSH); |
| 8865 | break; |
| 8866 | case CORINFO_HELP_LRSH: |
| 8867 | vnf = VNFunc(GT_RSH); |
| 8868 | break; |
| 8869 | case CORINFO_HELP_LRSZ: |
| 8870 | vnf = VNFunc(GT_RSZ); |
| 8871 | break; |
| 8872 | case CORINFO_HELP_LMUL: |
| 8873 | case CORINFO_HELP_LMUL_OVF: |
| 8874 | vnf = VNFunc(GT_MUL); |
| 8875 | break; |
| 8876 | case CORINFO_HELP_ULMUL_OVF: |
| 8877 | vnf = VNFunc(GT_MUL); |
| 8878 | break; // Is this the right thing? |
| 8879 | case CORINFO_HELP_LDIV: |
| 8880 | vnf = VNFunc(GT_DIV); |
| 8881 | break; |
| 8882 | case CORINFO_HELP_LMOD: |
| 8883 | vnf = VNFunc(GT_MOD); |
| 8884 | break; |
| 8885 | case CORINFO_HELP_ULDIV: |
| 8886 | vnf = VNFunc(GT_UDIV); |
| 8887 | break; |
| 8888 | case CORINFO_HELP_ULMOD: |
| 8889 | vnf = VNFunc(GT_UMOD); |
| 8890 | break; |
| 8891 | |
| 8892 | case CORINFO_HELP_LNG2DBL: |
| 8893 | vnf = VNF_Lng2Dbl; |
| 8894 | break; |
| 8895 | case CORINFO_HELP_ULNG2DBL: |
| 8896 | vnf = VNF_ULng2Dbl; |
| 8897 | break; |
| 8898 | case CORINFO_HELP_DBL2INT: |
| 8899 | vnf = VNF_Dbl2Int; |
| 8900 | break; |
| 8901 | case CORINFO_HELP_DBL2INT_OVF: |
| 8902 | vnf = VNF_Dbl2Int; |
| 8903 | break; |
| 8904 | case CORINFO_HELP_DBL2LNG: |
| 8905 | vnf = VNF_Dbl2Lng; |
| 8906 | break; |
| 8907 | case CORINFO_HELP_DBL2LNG_OVF: |
| 8908 | vnf = VNF_Dbl2Lng; |
| 8909 | break; |
| 8910 | case CORINFO_HELP_DBL2UINT: |
| 8911 | vnf = VNF_Dbl2UInt; |
| 8912 | break; |
| 8913 | case CORINFO_HELP_DBL2UINT_OVF: |
| 8914 | vnf = VNF_Dbl2UInt; |
| 8915 | break; |
| 8916 | case CORINFO_HELP_DBL2ULNG: |
| 8917 | vnf = VNF_Dbl2ULng; |
| 8918 | break; |
| 8919 | case CORINFO_HELP_DBL2ULNG_OVF: |
| 8920 | vnf = VNF_Dbl2ULng; |
| 8921 | break; |
| 8922 | case CORINFO_HELP_FLTREM: |
| 8923 | vnf = VNFunc(GT_MOD); |
| 8924 | break; |
| 8925 | case CORINFO_HELP_DBLREM: |
| 8926 | vnf = VNFunc(GT_MOD); |
| 8927 | break; |
| 8928 | case CORINFO_HELP_FLTROUND: |
| 8929 | vnf = VNF_FltRound; |
| 8930 | break; // Is this the right thing? |
| 8931 | case CORINFO_HELP_DBLROUND: |
| 8932 | vnf = VNF_DblRound; |
| 8933 | break; // Is this the right thing? |
| 8934 | |
| 8935 | // These allocation operations probably require some augmentation -- perhaps allocSiteId, |
| 8936 | // something about array length... |
| 8937 | case CORINFO_HELP_NEW_CROSSCONTEXT: |
| 8938 | case CORINFO_HELP_NEWFAST: |
| 8939 | case CORINFO_HELP_NEWSFAST: |
| 8940 | case CORINFO_HELP_NEWSFAST_FINALIZE: |
| 8941 | case CORINFO_HELP_NEWSFAST_ALIGN8: |
| 8942 | case CORINFO_HELP_NEWSFAST_ALIGN8_VC: |
| 8943 | case CORINFO_HELP_NEWSFAST_ALIGN8_FINALIZE: |
| 8944 | vnf = VNF_JitNew; |
| 8945 | break; |
| 8946 | |
| 8947 | case CORINFO_HELP_READYTORUN_NEW: |
| 8948 | vnf = VNF_JitReadyToRunNew; |
| 8949 | break; |
| 8950 | |
| 8951 | case CORINFO_HELP_NEWARR_1_DIRECT: |
| 8952 | case CORINFO_HELP_NEWARR_1_OBJ: |
| 8953 | case CORINFO_HELP_NEWARR_1_VC: |
| 8954 | case CORINFO_HELP_NEWARR_1_ALIGN8: |
| 8955 | vnf = VNF_JitNewArr; |
| 8956 | break; |
| 8957 | |
| 8958 | case CORINFO_HELP_NEWARR_1_R2R_DIRECT: |
| 8959 | case CORINFO_HELP_READYTORUN_NEWARR_1: |
| 8960 | vnf = VNF_JitReadyToRunNewArr; |
| 8961 | break; |
| 8962 | |
| 8963 | case CORINFO_HELP_GETGENERICS_GCSTATIC_BASE: |
| 8964 | vnf = VNF_GetgenericsGcstaticBase; |
| 8965 | break; |
| 8966 | case CORINFO_HELP_GETGENERICS_NONGCSTATIC_BASE: |
| 8967 | vnf = VNF_GetgenericsNongcstaticBase; |
| 8968 | break; |
| 8969 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE: |
| 8970 | vnf = VNF_GetsharedGcstaticBase; |
| 8971 | break; |
| 8972 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE: |
| 8973 | vnf = VNF_GetsharedNongcstaticBase; |
| 8974 | break; |
| 8975 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_NOCTOR: |
| 8976 | vnf = VNF_GetsharedGcstaticBaseNoctor; |
| 8977 | break; |
| 8978 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE_NOCTOR: |
| 8979 | vnf = VNF_GetsharedNongcstaticBaseNoctor; |
| 8980 | break; |
| 8981 | case CORINFO_HELP_READYTORUN_STATIC_BASE: |
| 8982 | vnf = VNF_ReadyToRunStaticBase; |
| 8983 | break; |
| 8984 | case CORINFO_HELP_READYTORUN_GENERIC_STATIC_BASE: |
| 8985 | vnf = VNF_ReadyToRunGenericStaticBase; |
| 8986 | break; |
| 8987 | case CORINFO_HELP_GETSHARED_GCSTATIC_BASE_DYNAMICCLASS: |
| 8988 | vnf = VNF_GetsharedGcstaticBaseDynamicclass; |
| 8989 | break; |
| 8990 | case CORINFO_HELP_GETSHARED_NONGCSTATIC_BASE_DYNAMICCLASS: |
| 8991 | vnf = VNF_GetsharedNongcstaticBaseDynamicclass; |
| 8992 | break; |
| 8993 | case CORINFO_HELP_CLASSINIT_SHARED_DYNAMICCLASS: |
| 8994 | vnf = VNF_ClassinitSharedDynamicclass; |
| 8995 | break; |
| 8996 | case CORINFO_HELP_GETGENERICS_GCTHREADSTATIC_BASE: |
| 8997 | vnf = VNF_GetgenericsGcthreadstaticBase; |
| 8998 | break; |
| 8999 | case CORINFO_HELP_GETGENERICS_NONGCTHREADSTATIC_BASE: |
| 9000 | vnf = VNF_GetgenericsNongcthreadstaticBase; |
| 9001 | break; |
| 9002 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE: |
| 9003 | vnf = VNF_GetsharedGcthreadstaticBase; |
| 9004 | break; |
| 9005 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE: |
| 9006 | vnf = VNF_GetsharedNongcthreadstaticBase; |
| 9007 | break; |
| 9008 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_NOCTOR: |
| 9009 | vnf = VNF_GetsharedGcthreadstaticBaseNoctor; |
| 9010 | break; |
| 9011 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE_NOCTOR: |
| 9012 | vnf = VNF_GetsharedNongcthreadstaticBaseNoctor; |
| 9013 | break; |
| 9014 | case CORINFO_HELP_GETSHARED_GCTHREADSTATIC_BASE_DYNAMICCLASS: |
| 9015 | vnf = VNF_GetsharedGcthreadstaticBaseDynamicclass; |
| 9016 | break; |
| 9017 | case CORINFO_HELP_GETSHARED_NONGCTHREADSTATIC_BASE_DYNAMICCLASS: |
| 9018 | vnf = VNF_GetsharedNongcthreadstaticBaseDynamicclass; |
| 9019 | break; |
| 9020 | case CORINFO_HELP_GETSTATICFIELDADDR_CONTEXT: |
| 9021 | vnf = VNF_GetStaticAddrContext; |
| 9022 | break; |
| 9023 | case CORINFO_HELP_GETSTATICFIELDADDR_TLS: |
| 9024 | vnf = VNF_GetStaticAddrTLS; |
| 9025 | break; |
| 9026 | |
| 9027 | case CORINFO_HELP_RUNTIMEHANDLE_METHOD: |
| 9028 | case CORINFO_HELP_RUNTIMEHANDLE_METHOD_LOG: |
| 9029 | vnf = VNF_RuntimeHandleMethod; |
| 9030 | break; |
| 9031 | |
| 9032 | case CORINFO_HELP_RUNTIMEHANDLE_CLASS: |
| 9033 | case CORINFO_HELP_RUNTIMEHANDLE_CLASS_LOG: |
| 9034 | vnf = VNF_RuntimeHandleClass; |
| 9035 | break; |
| 9036 | |
| 9037 | case CORINFO_HELP_STRCNS: |
| 9038 | vnf = VNF_StrCns; |
| 9039 | break; |
| 9040 | |
| 9041 | case CORINFO_HELP_CHKCASTCLASS: |
| 9042 | case CORINFO_HELP_CHKCASTCLASS_SPECIAL: |
| 9043 | case CORINFO_HELP_CHKCASTARRAY: |
| 9044 | case CORINFO_HELP_CHKCASTINTERFACE: |
| 9045 | case CORINFO_HELP_CHKCASTANY: |
| 9046 | vnf = VNF_CastClass; |
| 9047 | break; |
| 9048 | |
| 9049 | case CORINFO_HELP_READYTORUN_CHKCAST: |
| 9050 | vnf = VNF_ReadyToRunCastClass; |
| 9051 | break; |
| 9052 | |
| 9053 | case CORINFO_HELP_ISINSTANCEOFCLASS: |
| 9054 | case CORINFO_HELP_ISINSTANCEOFINTERFACE: |
| 9055 | case CORINFO_HELP_ISINSTANCEOFARRAY: |
| 9056 | case CORINFO_HELP_ISINSTANCEOFANY: |
| 9057 | vnf = VNF_IsInstanceOf; |
| 9058 | break; |
| 9059 | |
| 9060 | case CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPE: |
| 9061 | vnf = VNF_TypeHandleToRuntimeType; |
| 9062 | break; |
| 9063 | |
| 9064 | case CORINFO_HELP_TYPEHANDLE_TO_RUNTIMETYPEHANDLE: |
| 9065 | vnf = VNF_TypeHandleToRuntimeTypeHandle; |
| 9066 | break; |
| 9067 | |
| 9068 | case CORINFO_HELP_ARE_TYPES_EQUIVALENT: |
| 9069 | vnf = VNF_AreTypesEquivalent; |
| 9070 | break; |
| 9071 | |
| 9072 | case CORINFO_HELP_READYTORUN_ISINSTANCEOF: |
| 9073 | vnf = VNF_ReadyToRunIsInstanceOf; |
| 9074 | break; |
| 9075 | |
| 9076 | case CORINFO_HELP_LDELEMA_REF: |
| 9077 | vnf = VNF_LdElemA; |
| 9078 | break; |
| 9079 | |
| 9080 | case CORINFO_HELP_UNBOX: |
| 9081 | vnf = VNF_Unbox; |
| 9082 | break; |
| 9083 | |
| 9084 | // A constant within any method. |
| 9085 | case CORINFO_HELP_GETCURRENTMANAGEDTHREADID: |
| 9086 | vnf = VNF_ManagedThreadId; |
| 9087 | break; |
| 9088 | |
| 9089 | case CORINFO_HELP_GETREFANY: |
| 9090 | // TODO-CQ: This should really be interpreted as just a struct field reference, in terms of values. |
| 9091 | vnf = VNF_GetRefanyVal; |
| 9092 | break; |
| 9093 | |
| 9094 | case CORINFO_HELP_GETCLASSFROMMETHODPARAM: |
| 9095 | vnf = VNF_GetClassFromMethodParam; |
| 9096 | break; |
| 9097 | |
| 9098 | case CORINFO_HELP_GETSYNCFROMCLASSHANDLE: |
| 9099 | vnf = VNF_GetSyncFromClassHandle; |
| 9100 | break; |
| 9101 | |
| 9102 | case CORINFO_HELP_LOOP_CLONE_CHOICE_ADDR: |
| 9103 | vnf = VNF_LoopCloneChoiceAddr; |
| 9104 | break; |
| 9105 | |
| 9106 | case CORINFO_HELP_BOX: |
| 9107 | vnf = VNF_Box; |
| 9108 | break; |
| 9109 | |
| 9110 | case CORINFO_HELP_BOX_NULLABLE: |
| 9111 | vnf = VNF_BoxNullable; |
| 9112 | break; |
| 9113 | |
| 9114 | default: |
| 9115 | unreached(); |
| 9116 | } |
| 9117 | |
| 9118 | assert(vnf != VNF_Boundary); |
| 9119 | return vnf; |
| 9120 | } |
| 9121 | |
| 9122 | bool Compiler::fgValueNumberHelperCall(GenTreeCall* call) |
| 9123 | { |
| 9124 | CorInfoHelpFunc helpFunc = eeGetHelperNum(call->gtCallMethHnd); |
| 9125 | bool pure = s_helperCallProperties.IsPure(helpFunc); |
| 9126 | bool isAlloc = s_helperCallProperties.IsAllocator(helpFunc); |
| 9127 | bool modHeap = s_helperCallProperties.MutatesHeap(helpFunc); |
| 9128 | bool mayRunCctor = s_helperCallProperties.MayRunCctor(helpFunc); |
| 9129 | bool noThrow = s_helperCallProperties.NoThrow(helpFunc); |
| 9130 | |
| 9131 | ValueNumPair vnpExc = ValueNumStore::VNPForEmptyExcSet(); |
| 9132 | |
| 9133 | // If the JIT helper can throw an exception make sure that we fill in |
| 9134 | // vnpExc with a Value Number that represents the exception(s) that can be thrown. |
| 9135 | if (!noThrow) |
| 9136 | { |
| 9137 | // If the helper is known to only throw only one particular exception |
| 9138 | // we can set vnpExc to that exception, otherwise we conservatively |
| 9139 | // model the JIT helper as possibly throwing multiple different exceptions |
| 9140 | // |
| 9141 | switch (helpFunc) |
| 9142 | { |
| 9143 | case CORINFO_HELP_OVERFLOW: |
| 9144 | // This helper always throws the VNF_OverflowExc exception |
| 9145 | vnpExc = vnStore->VNPExcSetSingleton( |
| 9146 | vnStore->VNPairForFunc(TYP_REF, VNF_OverflowExc, vnStore->VNPForVoid())); |
| 9147 | break; |
| 9148 | |
| 9149 | default: |
| 9150 | // Setup vnpExc with the information that multiple different exceptions |
| 9151 | // could be generated by this helper |
| 9152 | vnpExc = vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_HelperMultipleExc)); |
| 9153 | } |
| 9154 | } |
| 9155 | |
| 9156 | ValueNumPair vnpNorm; |
| 9157 | |
| 9158 | if (call->TypeGet() == TYP_VOID) |
| 9159 | { |
| 9160 | vnpNorm = ValueNumStore::VNPForVoid(); |
| 9161 | } |
| 9162 | else |
| 9163 | { |
| 9164 | // TODO-CQ: this is a list of helpers we're going to treat as non-pure, |
| 9165 | // because they raise complications. Eventually, we need to handle those complications... |
| 9166 | bool needsFurtherWork = false; |
| 9167 | switch (helpFunc) |
| 9168 | { |
| 9169 | case CORINFO_HELP_NEW_MDARR: |
| 9170 | // This is a varargs helper. We need to represent the array shape in the VN world somehow. |
| 9171 | needsFurtherWork = true; |
| 9172 | break; |
| 9173 | default: |
| 9174 | break; |
| 9175 | } |
| 9176 | |
| 9177 | if (!needsFurtherWork && (pure || isAlloc)) |
| 9178 | { |
| 9179 | VNFunc vnf = fgValueNumberJitHelperMethodVNFunc(helpFunc); |
| 9180 | |
| 9181 | if (mayRunCctor) |
| 9182 | { |
| 9183 | if ((call->gtFlags & GTF_CALL_HOISTABLE) == 0) |
| 9184 | { |
| 9185 | modHeap = true; |
| 9186 | } |
| 9187 | } |
| 9188 | |
| 9189 | fgValueNumberHelperCallFunc(call, vnf, vnpExc); |
| 9190 | return modHeap; |
| 9191 | } |
| 9192 | else |
| 9193 | { |
| 9194 | vnpNorm.SetBoth(vnStore->VNForExpr(compCurBB, call->TypeGet())); |
| 9195 | } |
| 9196 | } |
| 9197 | |
| 9198 | call->gtVNPair = vnStore->VNPWithExc(vnpNorm, vnpExc); |
| 9199 | return modHeap; |
| 9200 | } |
| 9201 | |
| 9202 | //-------------------------------------------------------------------------------- |
| 9203 | // fgValueNumberAddExceptionSetForIndirection |
| 9204 | // - Adds the exception sets for the current tree node |
| 9205 | // which is performing a memory indirection operation |
| 9206 | // |
| 9207 | // Arguments: |
| 9208 | // tree - The current GenTree node, |
| 9209 | // It must be some kind of an indirection node |
| 9210 | // or have an implicit indirection |
| 9211 | // baseAddr - The address that we are indirecting |
| 9212 | // |
| 9213 | // Return Value: |
| 9214 | // - The tree's gtVNPair is updated to include the VNF_nullPtrExc |
| 9215 | // exception set. We calculate a base address to use as the |
| 9216 | // argument to the VNF_nullPtrExc function. |
| 9217 | // |
| 9218 | // Notes: - The calculation of the base address removes any constant |
| 9219 | // offsets, so that obj.x and obj.y will both have obj as |
| 9220 | // their base address. |
| 9221 | // For arrays the base address currently includes the |
| 9222 | // index calculations. |
| 9223 | // |
| 9224 | void Compiler::fgValueNumberAddExceptionSetForIndirection(GenTree* tree, GenTree* baseAddr) |
| 9225 | { |
| 9226 | // We should have tree that a unary indirection or a tree node with an implicit indirection |
| 9227 | assert(tree->OperIsUnary() || tree->OperIsImplicitIndir()); |
| 9228 | |
| 9229 | // We evaluate the baseAddr ValueNumber further in order |
| 9230 | // to obtain a better value to use for the null check exeception. |
| 9231 | // |
| 9232 | ValueNumPair baseVNP = baseAddr->gtVNPair; |
| 9233 | ValueNum baseLVN = baseVNP.GetLiberal(); |
| 9234 | ValueNum baseCVN = baseVNP.GetConservative(); |
| 9235 | ssize_t offsetL = 0; |
| 9236 | ssize_t offsetC = 0; |
| 9237 | VNFuncApp funcAttr; |
| 9238 | |
| 9239 | while (vnStore->GetVNFunc(baseLVN, &funcAttr) && (funcAttr.m_func == (VNFunc)GT_ADD) && |
| 9240 | (vnStore->TypeOfVN(baseLVN) == TYP_BYREF)) |
| 9241 | { |
| 9242 | if (fgIsBigOffset(offsetL)) |
| 9243 | { |
| 9244 | // Failure: Exit this loop if we have a "big" offset |
| 9245 | |
| 9246 | // reset baseLVN back to the full address expression |
| 9247 | baseLVN = baseVNP.GetLiberal(); |
| 9248 | break; |
| 9249 | } |
| 9250 | |
| 9251 | // The arguments in value numbering functions are sorted in increasing order |
| 9252 | // Thus either arg could be the constant. |
| 9253 | if (vnStore->IsVNConstant(funcAttr.m_args[0]) && varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[0]))) |
| 9254 | { |
| 9255 | offsetL += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[0]); |
| 9256 | baseLVN = funcAttr.m_args[1]; |
| 9257 | } |
| 9258 | else if (vnStore->IsVNConstant(funcAttr.m_args[1]) && varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[1]))) |
| 9259 | { |
| 9260 | offsetL += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[1]); |
| 9261 | baseLVN = funcAttr.m_args[0]; |
| 9262 | } |
| 9263 | else // neither argument is a constant |
| 9264 | { |
| 9265 | break; |
| 9266 | } |
| 9267 | } |
| 9268 | |
| 9269 | while (vnStore->GetVNFunc(baseCVN, &funcAttr) && (funcAttr.m_func == (VNFunc)GT_ADD) && |
| 9270 | (vnStore->TypeOfVN(baseCVN) == TYP_BYREF)) |
| 9271 | { |
| 9272 | if (fgIsBigOffset(offsetC)) |
| 9273 | { |
| 9274 | // Failure: Exit this loop if we have a "big" offset |
| 9275 | |
| 9276 | // reset baseCVN back to the full address expression |
| 9277 | baseCVN = baseVNP.GetConservative(); |
| 9278 | break; |
| 9279 | } |
| 9280 | |
| 9281 | // The arguments in value numbering functions are sorted in increasing order |
| 9282 | // Thus either arg could be the constant. |
| 9283 | if (vnStore->IsVNConstant(funcAttr.m_args[0]) && varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[0]))) |
| 9284 | { |
| 9285 | offsetL += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[0]); |
| 9286 | baseCVN = funcAttr.m_args[1]; |
| 9287 | } |
| 9288 | else if (vnStore->IsVNConstant(funcAttr.m_args[1]) && varTypeIsIntegral(vnStore->TypeOfVN(funcAttr.m_args[1]))) |
| 9289 | { |
| 9290 | offsetC += vnStore->CoercedConstantValue<ssize_t>(funcAttr.m_args[1]); |
| 9291 | baseCVN = funcAttr.m_args[0]; |
| 9292 | } |
| 9293 | else // neither argument is a constant |
| 9294 | { |
| 9295 | break; |
| 9296 | } |
| 9297 | } |
| 9298 | |
| 9299 | // Create baseVNP, from the values we just computed, |
| 9300 | baseVNP = ValueNumPair(baseLVN, baseCVN); |
| 9301 | |
| 9302 | // Unpack, Norm,Exc for the tree's op1 VN |
| 9303 | ValueNumPair vnpBaseNorm; |
| 9304 | ValueNumPair vnpBaseExc; |
| 9305 | vnStore->VNPUnpackExc(baseVNP, &vnpBaseNorm, &vnpBaseExc); |
| 9306 | |
| 9307 | // The Norm VN for op1 is used to create the NullPtrExc |
| 9308 | ValueNumPair excChkSet = vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_NullPtrExc, vnpBaseNorm)); |
| 9309 | |
| 9310 | // Combine the excChkSet with exception set of op1 |
| 9311 | ValueNumPair excSetBoth = vnStore->VNPExcSetUnion(excChkSet, vnpBaseExc); |
| 9312 | |
| 9313 | // Retrieve the Normal VN for tree, note that it may be NoVN, so we handle that case |
| 9314 | ValueNumPair vnpNorm = vnStore->VNPNormalPair(tree->gtVNPair); |
| 9315 | |
| 9316 | // For as GT_IND on the lhs of an assignment we will get a NoVN value |
| 9317 | if (vnpNorm.GetLiberal() == ValueNumStore::NoVN) |
| 9318 | { |
| 9319 | // Use the special Void VN value instead. |
| 9320 | vnpNorm = vnStore->VNPForVoid(); |
| 9321 | } |
| 9322 | tree->gtVNPair = vnStore->VNPWithExc(vnpNorm, excSetBoth); |
| 9323 | } |
| 9324 | |
| 9325 | //-------------------------------------------------------------------------------- |
| 9326 | // fgValueNumberAddExceptionSetForDivison |
| 9327 | // - Adds the exception sets for the current tree node |
| 9328 | // which is performing an integer division operation |
| 9329 | // |
| 9330 | // Arguments: |
| 9331 | // tree - The current GenTree node, |
| 9332 | // It must be a node that performs an integer division |
| 9333 | // |
| 9334 | // Return Value: |
| 9335 | // - The tree's gtVNPair is updated to include |
| 9336 | // VNF_DivideByZeroExc and VNF_ArithmeticExc, |
| 9337 | // We will omit one or both of them when the operation |
| 9338 | // has constants arguments that preclude the exception. |
| 9339 | // |
| 9340 | void Compiler::fgValueNumberAddExceptionSetForDivision(GenTree* tree) |
| 9341 | { |
| 9342 | genTreeOps oper = tree->OperGet(); |
| 9343 | |
| 9344 | // A Divide By Zero exception may be possible. |
| 9345 | // The divisor is held in tree->gtOp.gtOp2 |
| 9346 | // |
| 9347 | bool isUnsignedOper = (oper == GT_UDIV) || (oper == GT_UMOD); |
| 9348 | bool needDivideByZeroExcLib = true; |
| 9349 | bool needDivideByZeroExcCon = true; |
| 9350 | bool needArithmeticExcLib = !isUnsignedOper; // Overflow isn't possible for unsigned divide |
| 9351 | bool needArithmeticExcCon = !isUnsignedOper; |
| 9352 | |
| 9353 | // Determine if we have a 32-bit or 64-bit divide operation |
| 9354 | var_types typ = genActualType(tree->TypeGet()); |
| 9355 | assert((typ == TYP_INT) || (typ == TYP_LONG)); |
| 9356 | |
| 9357 | // Retrieve the Norm VN for op2 to use it for the DivideByZeroExc |
| 9358 | ValueNumPair vnpOp2Norm = vnStore->VNPNormalPair(tree->gtOp.gtOp2->gtVNPair); |
| 9359 | ValueNum vnOp2NormLib = vnpOp2Norm.GetLiberal(); |
| 9360 | ValueNum vnOp2NormCon = vnpOp2Norm.GetConservative(); |
| 9361 | |
| 9362 | if (typ == TYP_INT) |
| 9363 | { |
| 9364 | if (vnStore->IsVNConstant(vnOp2NormLib)) |
| 9365 | { |
| 9366 | INT32 kVal = vnStore->ConstantValue<INT32>(vnOp2NormLib); |
| 9367 | if (kVal != 0) |
| 9368 | { |
| 9369 | needDivideByZeroExcLib = false; |
| 9370 | } |
| 9371 | if (!isUnsignedOper && (kVal != -1)) |
| 9372 | { |
| 9373 | needArithmeticExcLib = false; |
| 9374 | } |
| 9375 | } |
| 9376 | if (vnStore->IsVNConstant(vnOp2NormCon)) |
| 9377 | { |
| 9378 | INT32 kVal = vnStore->ConstantValue<INT32>(vnOp2NormCon); |
| 9379 | if (kVal != 0) |
| 9380 | { |
| 9381 | needDivideByZeroExcCon = false; |
| 9382 | } |
| 9383 | if (!isUnsignedOper && (kVal != -1)) |
| 9384 | { |
| 9385 | needArithmeticExcCon = false; |
| 9386 | } |
| 9387 | } |
| 9388 | } |
| 9389 | else // (typ == TYP_LONG) |
| 9390 | { |
| 9391 | if (vnStore->IsVNConstant(vnOp2NormLib)) |
| 9392 | { |
| 9393 | INT64 kVal = vnStore->ConstantValue<INT64>(vnOp2NormLib); |
| 9394 | if (kVal != 0) |
| 9395 | { |
| 9396 | needDivideByZeroExcLib = false; |
| 9397 | } |
| 9398 | if (!isUnsignedOper && (kVal != -1)) |
| 9399 | { |
| 9400 | needArithmeticExcLib = false; |
| 9401 | } |
| 9402 | } |
| 9403 | if (vnStore->IsVNConstant(vnOp2NormCon)) |
| 9404 | { |
| 9405 | INT64 kVal = vnStore->ConstantValue<INT64>(vnOp2NormCon); |
| 9406 | if (kVal != 0) |
| 9407 | { |
| 9408 | needDivideByZeroExcCon = false; |
| 9409 | } |
| 9410 | if (!isUnsignedOper && (kVal != -1)) |
| 9411 | { |
| 9412 | needArithmeticExcCon = false; |
| 9413 | } |
| 9414 | } |
| 9415 | } |
| 9416 | |
| 9417 | // Retrieve the Norm VN for op1 to use it for the ArithmeticExc |
| 9418 | ValueNumPair vnpOp1Norm = vnStore->VNPNormalPair(tree->gtOp.gtOp1->gtVNPair); |
| 9419 | ValueNum vnOp1NormLib = vnpOp1Norm.GetLiberal(); |
| 9420 | ValueNum vnOp1NormCon = vnpOp1Norm.GetConservative(); |
| 9421 | |
| 9422 | if (needArithmeticExcLib || needArithmeticExcCon) |
| 9423 | { |
| 9424 | if (typ == TYP_INT) |
| 9425 | { |
| 9426 | if (vnStore->IsVNConstant(vnOp1NormLib)) |
| 9427 | { |
| 9428 | INT32 kVal = vnStore->ConstantValue<INT32>(vnOp1NormLib); |
| 9429 | |
| 9430 | if (!isUnsignedOper && (kVal != INT32_MIN)) |
| 9431 | { |
| 9432 | needArithmeticExcLib = false; |
| 9433 | } |
| 9434 | } |
| 9435 | if (vnStore->IsVNConstant(vnOp1NormCon)) |
| 9436 | { |
| 9437 | INT32 kVal = vnStore->ConstantValue<INT32>(vnOp1NormCon); |
| 9438 | |
| 9439 | if (!isUnsignedOper && (kVal != INT32_MIN)) |
| 9440 | { |
| 9441 | needArithmeticExcCon = false; |
| 9442 | } |
| 9443 | } |
| 9444 | } |
| 9445 | else // (typ == TYP_LONG) |
| 9446 | { |
| 9447 | if (vnStore->IsVNConstant(vnOp1NormLib)) |
| 9448 | { |
| 9449 | INT64 kVal = vnStore->ConstantValue<INT64>(vnOp1NormLib); |
| 9450 | |
| 9451 | if (!isUnsignedOper && (kVal != INT64_MIN)) |
| 9452 | { |
| 9453 | needArithmeticExcLib = false; |
| 9454 | } |
| 9455 | } |
| 9456 | if (vnStore->IsVNConstant(vnOp1NormCon)) |
| 9457 | { |
| 9458 | INT64 kVal = vnStore->ConstantValue<INT64>(vnOp1NormCon); |
| 9459 | |
| 9460 | if (!isUnsignedOper && (kVal != INT64_MIN)) |
| 9461 | { |
| 9462 | needArithmeticExcCon = false; |
| 9463 | } |
| 9464 | } |
| 9465 | } |
| 9466 | } |
| 9467 | |
| 9468 | // Unpack, Norm,Exc for the tree's VN |
| 9469 | ValueNumPair vnpTreeNorm; |
| 9470 | ValueNumPair vnpTreeExc; |
| 9471 | ValueNumPair vnpDivZeroExc = ValueNumStore::VNPForEmptyExcSet(); |
| 9472 | ValueNumPair vnpArithmExc = ValueNumStore::VNPForEmptyExcSet(); |
| 9473 | |
| 9474 | vnStore->VNPUnpackExc(tree->gtVNPair, &vnpTreeNorm, &vnpTreeExc); |
| 9475 | |
| 9476 | if (needDivideByZeroExcLib) |
| 9477 | { |
| 9478 | vnpDivZeroExc.SetLiberal( |
| 9479 | vnStore->VNExcSetSingleton(vnStore->VNForFunc(TYP_REF, VNF_DivideByZeroExc, vnOp2NormLib))); |
| 9480 | } |
| 9481 | if (needDivideByZeroExcCon) |
| 9482 | { |
| 9483 | vnpDivZeroExc.SetConservative( |
| 9484 | vnStore->VNExcSetSingleton(vnStore->VNForFunc(TYP_REF, VNF_DivideByZeroExc, vnOp2NormCon))); |
| 9485 | } |
| 9486 | if (needArithmeticExcLib) |
| 9487 | { |
| 9488 | vnpArithmExc.SetLiberal( |
| 9489 | vnStore->VNExcSetSingleton(vnStore->VNForFunc(TYP_REF, VNF_ArithmeticExc, vnOp1NormLib, vnOp2NormLib))); |
| 9490 | } |
| 9491 | if (needArithmeticExcCon) |
| 9492 | { |
| 9493 | vnpArithmExc.SetConservative( |
| 9494 | vnStore->VNExcSetSingleton(vnStore->VNForFunc(TYP_REF, VNF_ArithmeticExc, vnOp1NormLib, vnOp2NormCon))); |
| 9495 | } |
| 9496 | |
| 9497 | // Combine vnpDivZeroExc with the exception set of tree |
| 9498 | ValueNumPair newExcSet = vnStore->VNPExcSetUnion(vnpTreeExc, vnpDivZeroExc); |
| 9499 | // Combine vnpArithmExc with the newExcSet |
| 9500 | newExcSet = vnStore->VNPExcSetUnion(newExcSet, vnpArithmExc); |
| 9501 | |
| 9502 | // Updated VN for tree, it now includes DivideByZeroExc and/or ArithmeticExc |
| 9503 | tree->gtVNPair = vnStore->VNPWithExc(vnpTreeNorm, newExcSet); |
| 9504 | } |
| 9505 | |
| 9506 | //-------------------------------------------------------------------------------- |
| 9507 | // fgValueNumberAddExceptionSetForOverflow |
| 9508 | // - Adds the exception set for the current tree node |
| 9509 | // which is performing an overflow checking math operation |
| 9510 | // |
| 9511 | // Arguments: |
| 9512 | // tree - The current GenTree node, |
| 9513 | // It must be a node that performs an overflow |
| 9514 | // checking math operation |
| 9515 | // |
| 9516 | // Return Value: |
| 9517 | // - The tree's gtVNPair is updated to include the VNF_OverflowExc |
| 9518 | // exception set. |
| 9519 | // |
| 9520 | void Compiler::fgValueNumberAddExceptionSetForOverflow(GenTree* tree) |
| 9521 | { |
| 9522 | assert(tree->gtOverflowEx()); |
| 9523 | |
| 9524 | // We should only be dealing with an Overflow checking ALU operation. |
| 9525 | VNFunc vnf = GetVNFuncForNode(tree); |
| 9526 | assert((vnf >= VNF_ADD_OVF) && (vnf <= VNF_MUL_UN_OVF)); |
| 9527 | |
| 9528 | // Unpack, Norm,Exc for the tree's VN |
| 9529 | // |
| 9530 | ValueNumPair vnpTreeNorm; |
| 9531 | ValueNumPair vnpTreeExc; |
| 9532 | |
| 9533 | vnStore->VNPUnpackExc(tree->gtVNPair, &vnpTreeNorm, &vnpTreeExc); |
| 9534 | |
| 9535 | #ifdef DEBUG |
| 9536 | // The normal value number function should be the same overflow checking ALU operation as 'vnf' |
| 9537 | VNFuncApp treeNormFuncApp; |
| 9538 | assert(vnStore->GetVNFunc(vnpTreeNorm.GetLiberal(), &treeNormFuncApp) && (treeNormFuncApp.m_func == vnf)); |
| 9539 | #endif // DEBUG |
| 9540 | |
| 9541 | // Overflow-checking operations add an overflow exception |
| 9542 | // The normal result is used as the input argument for the OverflowExc |
| 9543 | ValueNumPair overflowExcSet = |
| 9544 | vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_OverflowExc, vnpTreeNorm)); |
| 9545 | |
| 9546 | // Combine the new Overflow exception with the original exception set of tree |
| 9547 | ValueNumPair newExcSet = vnStore->VNPExcSetUnion(vnpTreeExc, overflowExcSet); |
| 9548 | |
| 9549 | // Updated VN for tree, it now includes Overflow exception |
| 9550 | tree->gtVNPair = vnStore->VNPWithExc(vnpTreeNorm, newExcSet); |
| 9551 | } |
| 9552 | |
| 9553 | //-------------------------------------------------------------------------------- |
| 9554 | // fgValueNumberAddExceptionSetForCkFinite |
| 9555 | // - Adds the exception set for the current tree node |
| 9556 | // which is a CkFinite operation |
| 9557 | // |
| 9558 | // Arguments: |
| 9559 | // tree - The current GenTree node, |
| 9560 | // It must be a CkFinite node |
| 9561 | // |
| 9562 | // Return Value: |
| 9563 | // - The tree's gtVNPair is updated to include the VNF_ArithmeticExc |
| 9564 | // exception set. |
| 9565 | // |
| 9566 | void Compiler::fgValueNumberAddExceptionSetForCkFinite(GenTree* tree) |
| 9567 | { |
| 9568 | // We should only be dealing with an check finite operation. |
| 9569 | assert(tree->OperGet() == GT_CKFINITE); |
| 9570 | |
| 9571 | // Unpack, Norm,Exc for the tree's VN |
| 9572 | // |
| 9573 | ValueNumPair vnpTreeNorm; |
| 9574 | ValueNumPair vnpTreeExc; |
| 9575 | ValueNumPair newExcSet; |
| 9576 | |
| 9577 | vnStore->VNPUnpackExc(tree->gtVNPair, &vnpTreeNorm, &vnpTreeExc); |
| 9578 | |
| 9579 | // ckfinite adds an Arithmetic exception |
| 9580 | // The normal result is used as the input argument for the ArithmeticExc |
| 9581 | ValueNumPair arithmeticExcSet = |
| 9582 | vnStore->VNPExcSetSingleton(vnStore->VNPairForFunc(TYP_REF, VNF_ArithmeticExc, vnpTreeNorm)); |
| 9583 | |
| 9584 | // Combine the new Arithmetic exception with the original exception set of tree |
| 9585 | newExcSet = vnStore->VNPExcSetUnion(vnpTreeExc, arithmeticExcSet); |
| 9586 | |
| 9587 | // Updated VN for tree, it now includes Arithmetic exception |
| 9588 | tree->gtVNPair = vnStore->VNPWithExc(vnpTreeNorm, newExcSet); |
| 9589 | } |
| 9590 | |
| 9591 | //-------------------------------------------------------------------------------- |
| 9592 | // fgValueNumberAddExceptionSet |
| 9593 | // - Adds any exception sets needed for the current tree node |
| 9594 | // |
| 9595 | // Arguments: |
| 9596 | // tree - The current GenTree node, |
| 9597 | // |
| 9598 | // Return Value: |
| 9599 | // - The tree's gtVNPair is updated to include the exception sets. |
| 9600 | // |
| 9601 | // Notes: - This method relies upon OperMayTHrow to determine if we need |
| 9602 | // to add an exception set. If OPerMayThrow returns false no |
| 9603 | // exception set will be added. |
| 9604 | // |
| 9605 | void Compiler::fgValueNumberAddExceptionSet(GenTree* tree) |
| 9606 | { |
| 9607 | if (tree->OperMayThrow(this)) |
| 9608 | { |
| 9609 | switch (tree->OperGet()) |
| 9610 | { |
| 9611 | case GT_CAST: // A cast with an overflow check |
| 9612 | break; // Already handled by VNPairForCast() |
| 9613 | |
| 9614 | case GT_ADD: // An Overflow checking ALU operation |
| 9615 | case GT_SUB: |
| 9616 | case GT_MUL: |
| 9617 | fgValueNumberAddExceptionSetForOverflow(tree); |
| 9618 | break; |
| 9619 | |
| 9620 | case GT_LCLHEAP: |
| 9621 | // It is not necessary to model the StackOverflow exception for GT_LCLHEAP |
| 9622 | break; |
| 9623 | |
| 9624 | case GT_INTRINSIC: |
| 9625 | // ToDo: model the exceptions for Intrinsics |
| 9626 | break; |
| 9627 | |
| 9628 | case GT_IND: // Implicit null check. |
| 9629 | if ((tree->gtFlags & GTF_IND_ASG_LHS) != 0) |
| 9630 | { |
| 9631 | // Don't add exception set on LHS of assignment |
| 9632 | break; |
| 9633 | } |
| 9634 | __fallthrough; |
| 9635 | |
| 9636 | case GT_BLK: |
| 9637 | case GT_OBJ: |
| 9638 | case GT_DYN_BLK: |
| 9639 | case GT_NULLCHECK: |
| 9640 | fgValueNumberAddExceptionSetForIndirection(tree, tree->AsIndir()->Addr()); |
| 9641 | break; |
| 9642 | |
| 9643 | case GT_ARR_LENGTH: |
| 9644 | fgValueNumberAddExceptionSetForIndirection(tree, tree->AsArrLen()->ArrRef()); |
| 9645 | break; |
| 9646 | |
| 9647 | case GT_ARR_ELEM: |
| 9648 | fgValueNumberAddExceptionSetForIndirection(tree, tree->gtArrElem.gtArrObj); |
| 9649 | break; |
| 9650 | |
| 9651 | case GT_ARR_INDEX: |
| 9652 | fgValueNumberAddExceptionSetForIndirection(tree, tree->gtArrIndex.ArrObj()); |
| 9653 | break; |
| 9654 | |
| 9655 | case GT_ARR_OFFSET: |
| 9656 | fgValueNumberAddExceptionSetForIndirection(tree, tree->gtArrOffs.gtArrObj); |
| 9657 | break; |
| 9658 | |
| 9659 | case GT_DIV: |
| 9660 | case GT_UDIV: |
| 9661 | case GT_MOD: |
| 9662 | case GT_UMOD: |
| 9663 | fgValueNumberAddExceptionSetForDivision(tree); |
| 9664 | break; |
| 9665 | |
| 9666 | case GT_CKFINITE: |
| 9667 | fgValueNumberAddExceptionSetForCkFinite(tree); |
| 9668 | break; |
| 9669 | |
| 9670 | default: |
| 9671 | assert(!"Handle this oper in fgValueNumberAddExceptionSet" ); |
| 9672 | break; |
| 9673 | } |
| 9674 | } |
| 9675 | } |
| 9676 | |
| 9677 | #ifdef DEBUG |
| 9678 | // This method asserts that SSA name constraints specified are satisfied. |
| 9679 | // Until we figure out otherwise, all VN's are assumed to be liberal. |
| 9680 | // TODO-Cleanup: new JitTestLabels for lib vs cons vs both VN classes? |
| 9681 | void Compiler::JitTestCheckVN() |
| 9682 | { |
| 9683 | typedef JitHashTable<ssize_t, JitSmallPrimitiveKeyFuncs<ssize_t>, ValueNum> LabelToVNMap; |
| 9684 | typedef JitHashTable<ValueNum, JitSmallPrimitiveKeyFuncs<ValueNum>, ssize_t> VNToLabelMap; |
| 9685 | |
| 9686 | // If we have no test data, early out. |
| 9687 | if (m_nodeTestData == nullptr) |
| 9688 | { |
| 9689 | return; |
| 9690 | } |
| 9691 | |
| 9692 | NodeToTestDataMap* testData = GetNodeTestData(); |
| 9693 | |
| 9694 | // First we have to know which nodes in the tree are reachable. |
| 9695 | typedef JitHashTable<GenTree*, JitPtrKeyFuncs<GenTree>, int> NodeToIntMap; |
| 9696 | NodeToIntMap* reachable = FindReachableNodesInNodeTestData(); |
| 9697 | |
| 9698 | LabelToVNMap* labelToVN = new (getAllocatorDebugOnly()) LabelToVNMap(getAllocatorDebugOnly()); |
| 9699 | VNToLabelMap* vnToLabel = new (getAllocatorDebugOnly()) VNToLabelMap(getAllocatorDebugOnly()); |
| 9700 | |
| 9701 | if (verbose) |
| 9702 | { |
| 9703 | printf("\nJit Testing: Value numbering.\n" ); |
| 9704 | } |
| 9705 | for (NodeToTestDataMap::KeyIterator ki = testData->Begin(); !ki.Equal(testData->End()); ++ki) |
| 9706 | { |
| 9707 | TestLabelAndNum tlAndN; |
| 9708 | GenTree* node = ki.Get(); |
| 9709 | ValueNum nodeVN = node->GetVN(VNK_Liberal); |
| 9710 | |
| 9711 | bool b = testData->Lookup(node, &tlAndN); |
| 9712 | assert(b); |
| 9713 | if (tlAndN.m_tl == TL_VN || tlAndN.m_tl == TL_VNNorm) |
| 9714 | { |
| 9715 | int dummy; |
| 9716 | if (!reachable->Lookup(node, &dummy)) |
| 9717 | { |
| 9718 | printf("Node " ); |
| 9719 | Compiler::printTreeID(node); |
| 9720 | printf(" had a test constraint declared, but has become unreachable at the time the constraint is " |
| 9721 | "tested.\n" |
| 9722 | "(This is probably as a result of some optimization -- \n" |
| 9723 | "you may need to modify the test case to defeat this opt.)\n" ); |
| 9724 | assert(false); |
| 9725 | } |
| 9726 | |
| 9727 | if (verbose) |
| 9728 | { |
| 9729 | printf(" Node " ); |
| 9730 | Compiler::printTreeID(node); |
| 9731 | printf(" -- VN class %d.\n" , tlAndN.m_num); |
| 9732 | } |
| 9733 | |
| 9734 | if (tlAndN.m_tl == TL_VNNorm) |
| 9735 | { |
| 9736 | nodeVN = vnStore->VNNormalValue(nodeVN); |
| 9737 | } |
| 9738 | |
| 9739 | ValueNum vn; |
| 9740 | if (labelToVN->Lookup(tlAndN.m_num, &vn)) |
| 9741 | { |
| 9742 | if (verbose) |
| 9743 | { |
| 9744 | printf(" Already in hash tables.\n" ); |
| 9745 | } |
| 9746 | // The mapping(s) must be one-to-one: if the label has a mapping, then the ssaNm must, as well. |
| 9747 | ssize_t num2; |
| 9748 | bool b = vnToLabel->Lookup(vn, &num2); |
| 9749 | // And the mappings must be the same. |
| 9750 | if (tlAndN.m_num != num2) |
| 9751 | { |
| 9752 | printf("Node: " ); |
| 9753 | Compiler::printTreeID(node); |
| 9754 | printf(", with value number " FMT_VN ", was declared in VN class %d,\n" , nodeVN, tlAndN.m_num); |
| 9755 | printf("but this value number " FMT_VN |
| 9756 | " has already been associated with a different SSA name class: %d.\n" , |
| 9757 | vn, num2); |
| 9758 | assert(false); |
| 9759 | } |
| 9760 | // And the current node must be of the specified SSA family. |
| 9761 | if (nodeVN != vn) |
| 9762 | { |
| 9763 | printf("Node: " ); |
| 9764 | Compiler::printTreeID(node); |
| 9765 | printf(", " FMT_VN " was declared in SSA name class %d,\n" , nodeVN, tlAndN.m_num); |
| 9766 | printf("but that name class was previously bound to a different value number: " FMT_VN ".\n" , vn); |
| 9767 | assert(false); |
| 9768 | } |
| 9769 | } |
| 9770 | else |
| 9771 | { |
| 9772 | ssize_t num; |
| 9773 | // The mapping(s) must be one-to-one: if the label has no mapping, then the ssaNm may not, either. |
| 9774 | if (vnToLabel->Lookup(nodeVN, &num)) |
| 9775 | { |
| 9776 | printf("Node: " ); |
| 9777 | Compiler::printTreeID(node); |
| 9778 | printf(", " FMT_VN " was declared in value number class %d,\n" , nodeVN, tlAndN.m_num); |
| 9779 | printf( |
| 9780 | "but this value number has already been associated with a different value number class: %d.\n" , |
| 9781 | num); |
| 9782 | assert(false); |
| 9783 | } |
| 9784 | // Add to both mappings. |
| 9785 | labelToVN->Set(tlAndN.m_num, nodeVN); |
| 9786 | vnToLabel->Set(nodeVN, tlAndN.m_num); |
| 9787 | if (verbose) |
| 9788 | { |
| 9789 | printf(" added to hash tables.\n" ); |
| 9790 | } |
| 9791 | } |
| 9792 | } |
| 9793 | } |
| 9794 | } |
| 9795 | |
| 9796 | void Compiler::vnpPrint(ValueNumPair vnp, unsigned level) |
| 9797 | { |
| 9798 | if (vnp.BothEqual()) |
| 9799 | { |
| 9800 | vnPrint(vnp.GetLiberal(), level); |
| 9801 | } |
| 9802 | else |
| 9803 | { |
| 9804 | printf("<l:" ); |
| 9805 | vnPrint(vnp.GetLiberal(), level); |
| 9806 | printf(", c:" ); |
| 9807 | vnPrint(vnp.GetConservative(), level); |
| 9808 | printf(">" ); |
| 9809 | } |
| 9810 | } |
| 9811 | |
| 9812 | void Compiler::vnPrint(ValueNum vn, unsigned level) |
| 9813 | { |
| 9814 | |
| 9815 | if (ValueNumStore::isReservedVN(vn)) |
| 9816 | { |
| 9817 | printf(ValueNumStore::reservedName(vn)); |
| 9818 | } |
| 9819 | else |
| 9820 | { |
| 9821 | printf(FMT_VN, vn); |
| 9822 | if (level > 0) |
| 9823 | { |
| 9824 | vnStore->vnDump(this, vn); |
| 9825 | } |
| 9826 | } |
| 9827 | } |
| 9828 | |
| 9829 | #endif // DEBUG |
| 9830 | |
| 9831 | // Methods of ValueNumPair. |
| 9832 | ValueNumPair::ValueNumPair() : m_liberal(ValueNumStore::NoVN), m_conservative(ValueNumStore::NoVN) |
| 9833 | { |
| 9834 | } |
| 9835 | |
| 9836 | bool ValueNumPair::BothDefined() const |
| 9837 | { |
| 9838 | return (m_liberal != ValueNumStore::NoVN) && (m_conservative != ValueNumStore::NoVN); |
| 9839 | } |
| 9840 | |