| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] |
| 56 | */ |
| 57 | /* ==================================================================== |
| 58 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
| 59 | * |
| 60 | * Redistribution and use in source and binary forms, with or without |
| 61 | * modification, are permitted provided that the following conditions |
| 62 | * are met: |
| 63 | * |
| 64 | * 1. Redistributions of source code must retain the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer. |
| 66 | * |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in |
| 69 | * the documentation and/or other materials provided with the |
| 70 | * distribution. |
| 71 | * |
| 72 | * 3. All advertising materials mentioning features or use of this |
| 73 | * software must display the following acknowledgment: |
| 74 | * "This product includes software developed by the OpenSSL Project |
| 75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 76 | * |
| 77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 78 | * endorse or promote products derived from this software without |
| 79 | * prior written permission. For written permission, please contact |
| 80 | * openssl-core@openssl.org. |
| 81 | * |
| 82 | * 5. Products derived from this software may not be called "OpenSSL" |
| 83 | * nor may "OpenSSL" appear in their names without prior written |
| 84 | * permission of the OpenSSL Project. |
| 85 | * |
| 86 | * 6. Redistributions of any form whatsoever must retain the following |
| 87 | * acknowledgment: |
| 88 | * "This product includes software developed by the OpenSSL Project |
| 89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 90 | * |
| 91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 103 | * ==================================================================== |
| 104 | * |
| 105 | * This product includes cryptographic software written by Eric Young |
| 106 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 107 | * Hudson (tjh@cryptsoft.com). */ |
| 108 | |
| 109 | #include <openssl/bn.h> |
| 110 | |
| 111 | #include <assert.h> |
| 112 | #include <stdio.h> |
| 113 | #include <stdlib.h> |
| 114 | #include <string.h> |
| 115 | |
| 116 | #include <openssl/err.h> |
| 117 | #include <openssl/mem.h> |
| 118 | #include <openssl/thread.h> |
| 119 | #include <openssl/type_check.h> |
| 120 | |
| 121 | #include "internal.h" |
| 122 | #include "../../internal.h" |
| 123 | |
| 124 | |
| 125 | BN_MONT_CTX *BN_MONT_CTX_new(void) { |
| 126 | BN_MONT_CTX *ret = OPENSSL_malloc(sizeof(BN_MONT_CTX)); |
| 127 | |
| 128 | if (ret == NULL) { |
| 129 | return NULL; |
| 130 | } |
| 131 | |
| 132 | OPENSSL_memset(ret, 0, sizeof(BN_MONT_CTX)); |
| 133 | BN_init(&ret->RR); |
| 134 | BN_init(&ret->N); |
| 135 | |
| 136 | return ret; |
| 137 | } |
| 138 | |
| 139 | void BN_MONT_CTX_free(BN_MONT_CTX *mont) { |
| 140 | if (mont == NULL) { |
| 141 | return; |
| 142 | } |
| 143 | |
| 144 | BN_free(&mont->RR); |
| 145 | BN_free(&mont->N); |
| 146 | OPENSSL_free(mont); |
| 147 | } |
| 148 | |
| 149 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from) { |
| 150 | if (to == from) { |
| 151 | return to; |
| 152 | } |
| 153 | |
| 154 | if (!BN_copy(&to->RR, &from->RR) || |
| 155 | !BN_copy(&to->N, &from->N)) { |
| 156 | return NULL; |
| 157 | } |
| 158 | to->n0[0] = from->n0[0]; |
| 159 | to->n0[1] = from->n0[1]; |
| 160 | return to; |
| 161 | } |
| 162 | |
| 163 | static int bn_mont_ctx_set_N_and_n0(BN_MONT_CTX *mont, const BIGNUM *mod) { |
| 164 | if (BN_is_zero(mod)) { |
| 165 | OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); |
| 166 | return 0; |
| 167 | } |
| 168 | if (!BN_is_odd(mod)) { |
| 169 | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| 170 | return 0; |
| 171 | } |
| 172 | if (BN_is_negative(mod)) { |
| 173 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | // Save the modulus. |
| 178 | if (!BN_copy(&mont->N, mod)) { |
| 179 | OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| 180 | return 0; |
| 181 | } |
| 182 | // |mont->N| is always stored minimally. Computing RR efficiently leaks the |
| 183 | // size of the modulus. While the modulus may be private in RSA (one of the |
| 184 | // primes), their sizes are public, so this is fine. |
| 185 | bn_set_minimal_width(&mont->N); |
| 186 | |
| 187 | // Find n0 such that n0 * N == -1 (mod r). |
| 188 | // |
| 189 | // Only certain BN_BITS2<=32 platforms actually make use of n0[1]. For the |
| 190 | // others, we could use a shorter R value and use faster |BN_ULONG|-based |
| 191 | // math instead of |uint64_t|-based math, which would be double-precision. |
| 192 | // However, currently only the assembler files know which is which. |
| 193 | OPENSSL_STATIC_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
| 194 | "BN_MONT_CTX_N0_LIMBS value is invalid" ); |
| 195 | OPENSSL_STATIC_ASSERT( |
| 196 | sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t), |
| 197 | "uint64_t is insufficient precision for n0" ); |
| 198 | uint64_t n0 = bn_mont_n0(&mont->N); |
| 199 | mont->n0[0] = (BN_ULONG)n0; |
| 200 | #if BN_MONT_CTX_N0_LIMBS == 2 |
| 201 | mont->n0[1] = (BN_ULONG)(n0 >> BN_BITS2); |
| 202 | #else |
| 203 | mont->n0[1] = 0; |
| 204 | #endif |
| 205 | return 1; |
| 206 | } |
| 207 | |
| 208 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { |
| 209 | if (!bn_mont_ctx_set_N_and_n0(mont, mod)) { |
| 210 | return 0; |
| 211 | } |
| 212 | |
| 213 | BN_CTX *new_ctx = NULL; |
| 214 | if (ctx == NULL) { |
| 215 | new_ctx = BN_CTX_new(); |
| 216 | if (new_ctx == NULL) { |
| 217 | return 0; |
| 218 | } |
| 219 | ctx = new_ctx; |
| 220 | } |
| 221 | |
| 222 | // Save RR = R**2 (mod N). R is the smallest power of 2**BN_BITS2 such that R |
| 223 | // > mod. Even though the assembly on some 32-bit platforms works with 64-bit |
| 224 | // values, using |BN_BITS2| here, rather than |BN_MONT_CTX_N0_LIMBS * |
| 225 | // BN_BITS2|, is correct because R**2 will still be a multiple of the latter |
| 226 | // as |BN_MONT_CTX_N0_LIMBS| is either one or two. |
| 227 | unsigned lgBigR = mont->N.width * BN_BITS2; |
| 228 | BN_zero(&mont->RR); |
| 229 | int ok = BN_set_bit(&mont->RR, lgBigR * 2) && |
| 230 | BN_mod(&mont->RR, &mont->RR, &mont->N, ctx) && |
| 231 | bn_resize_words(&mont->RR, mont->N.width); |
| 232 | BN_CTX_free(new_ctx); |
| 233 | return ok; |
| 234 | } |
| 235 | |
| 236 | BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, BN_CTX *ctx) { |
| 237 | BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| 238 | if (mont == NULL || |
| 239 | !BN_MONT_CTX_set(mont, mod, ctx)) { |
| 240 | BN_MONT_CTX_free(mont); |
| 241 | return NULL; |
| 242 | } |
| 243 | return mont; |
| 244 | } |
| 245 | |
| 246 | BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, BN_CTX *ctx) { |
| 247 | BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| 248 | if (mont == NULL || |
| 249 | !bn_mont_ctx_set_N_and_n0(mont, mod)) { |
| 250 | goto err; |
| 251 | } |
| 252 | unsigned lgBigR = mont->N.width * BN_BITS2; |
| 253 | if (!bn_mod_exp_base_2_consttime(&mont->RR, lgBigR * 2, &mont->N, ctx) || |
| 254 | !bn_resize_words(&mont->RR, mont->N.width)) { |
| 255 | goto err; |
| 256 | } |
| 257 | return mont; |
| 258 | |
| 259 | err: |
| 260 | BN_MONT_CTX_free(mont); |
| 261 | return NULL; |
| 262 | } |
| 263 | |
| 264 | int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, |
| 265 | const BIGNUM *mod, BN_CTX *bn_ctx) { |
| 266 | CRYPTO_MUTEX_lock_read(lock); |
| 267 | BN_MONT_CTX *ctx = *pmont; |
| 268 | CRYPTO_MUTEX_unlock_read(lock); |
| 269 | |
| 270 | if (ctx) { |
| 271 | return 1; |
| 272 | } |
| 273 | |
| 274 | CRYPTO_MUTEX_lock_write(lock); |
| 275 | if (*pmont == NULL) { |
| 276 | *pmont = BN_MONT_CTX_new_for_modulus(mod, bn_ctx); |
| 277 | } |
| 278 | const int ok = *pmont != NULL; |
| 279 | CRYPTO_MUTEX_unlock_write(lock); |
| 280 | return ok; |
| 281 | } |
| 282 | |
| 283 | int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont, |
| 284 | BN_CTX *ctx) { |
| 285 | return BN_mod_mul_montgomery(ret, a, &mont->RR, mont, ctx); |
| 286 | } |
| 287 | |
| 288 | static int bn_from_montgomery_in_place(BN_ULONG *r, size_t num_r, BN_ULONG *a, |
| 289 | size_t num_a, const BN_MONT_CTX *mont) { |
| 290 | const BN_ULONG *n = mont->N.d; |
| 291 | size_t num_n = mont->N.width; |
| 292 | if (num_r != num_n || num_a != 2 * num_n) { |
| 293 | OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | // Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On |
| 298 | // input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r| |
| 299 | // includes |carry| which is stored separately. |
| 300 | BN_ULONG n0 = mont->n0[0]; |
| 301 | BN_ULONG carry = 0; |
| 302 | for (size_t i = 0; i < num_n; i++) { |
| 303 | BN_ULONG v = bn_mul_add_words(a + i, n, num_n, a[i] * n0); |
| 304 | v += carry + a[i + num_n]; |
| 305 | carry |= (v != a[i + num_n]); |
| 306 | carry &= (v <= a[i + num_n]); |
| 307 | a[i + num_n] = v; |
| 308 | } |
| 309 | |
| 310 | // Shift |num_n| words to divide by R. We have |a| < 2 * |n|. Note that |a| |
| 311 | // includes |carry| which is stored separately. |
| 312 | a += num_n; |
| 313 | |
| 314 | // |a| thus requires at most one additional subtraction |n| to be reduced. |
| 315 | bn_reduce_once(r, a, carry, n, num_n); |
| 316 | return 1; |
| 317 | } |
| 318 | |
| 319 | static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, |
| 320 | const BN_MONT_CTX *mont) { |
| 321 | if (r->neg) { |
| 322 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | const BIGNUM *n = &mont->N; |
| 327 | if (n->width == 0) { |
| 328 | ret->width = 0; |
| 329 | return 1; |
| 330 | } |
| 331 | |
| 332 | int max = 2 * n->width; // carry is stored separately |
| 333 | if (!bn_resize_words(r, max) || |
| 334 | !bn_wexpand(ret, n->width)) { |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | ret->width = n->width; |
| 339 | ret->neg = 0; |
| 340 | return bn_from_montgomery_in_place(ret->d, ret->width, r->d, r->width, mont); |
| 341 | } |
| 342 | |
| 343 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, const BN_MONT_CTX *mont, |
| 344 | BN_CTX *ctx) { |
| 345 | int ret = 0; |
| 346 | BIGNUM *t; |
| 347 | |
| 348 | BN_CTX_start(ctx); |
| 349 | t = BN_CTX_get(ctx); |
| 350 | if (t == NULL || |
| 351 | !BN_copy(t, a)) { |
| 352 | goto err; |
| 353 | } |
| 354 | |
| 355 | ret = BN_from_montgomery_word(r, t, mont); |
| 356 | |
| 357 | err: |
| 358 | BN_CTX_end(ctx); |
| 359 | |
| 360 | return ret; |
| 361 | } |
| 362 | |
| 363 | int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| 364 | // If the high bit of |n| is set, R = 2^(width*BN_BITS2) < 2 * |n|, so we |
| 365 | // compute R - |n| rather than perform Montgomery reduction. |
| 366 | const BIGNUM *n = &mont->N; |
| 367 | if (n->width > 0 && (n->d[n->width - 1] >> (BN_BITS2 - 1)) != 0) { |
| 368 | if (!bn_wexpand(r, n->width)) { |
| 369 | return 0; |
| 370 | } |
| 371 | r->d[0] = 0 - n->d[0]; |
| 372 | for (int i = 1; i < n->width; i++) { |
| 373 | r->d[i] = ~n->d[i]; |
| 374 | } |
| 375 | r->width = n->width; |
| 376 | r->neg = 0; |
| 377 | return 1; |
| 378 | } |
| 379 | |
| 380 | return BN_from_montgomery(r, &mont->RR, mont, ctx); |
| 381 | } |
| 382 | |
| 383 | static int bn_mod_mul_montgomery_fallback(BIGNUM *r, const BIGNUM *a, |
| 384 | const BIGNUM *b, |
| 385 | const BN_MONT_CTX *mont, |
| 386 | BN_CTX *ctx) { |
| 387 | int ret = 0; |
| 388 | |
| 389 | BN_CTX_start(ctx); |
| 390 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 391 | if (tmp == NULL) { |
| 392 | goto err; |
| 393 | } |
| 394 | |
| 395 | if (a == b) { |
| 396 | if (!bn_sqr_consttime(tmp, a, ctx)) { |
| 397 | goto err; |
| 398 | } |
| 399 | } else { |
| 400 | if (!bn_mul_consttime(tmp, a, b, ctx)) { |
| 401 | goto err; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | // reduce from aRR to aR |
| 406 | if (!BN_from_montgomery_word(r, tmp, mont)) { |
| 407 | goto err; |
| 408 | } |
| 409 | |
| 410 | ret = 1; |
| 411 | |
| 412 | err: |
| 413 | BN_CTX_end(ctx); |
| 414 | return ret; |
| 415 | } |
| 416 | |
| 417 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 418 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| 419 | if (a->neg || b->neg) { |
| 420 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | #if defined(OPENSSL_BN_ASM_MONT) |
| 425 | // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86. |
| 426 | int num = mont->N.width; |
| 427 | if (num >= (128 / BN_BITS2) && |
| 428 | a->width == num && |
| 429 | b->width == num) { |
| 430 | if (!bn_wexpand(r, num)) { |
| 431 | return 0; |
| 432 | } |
| 433 | if (!bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { |
| 434 | // The check above ensures this won't happen. |
| 435 | assert(0); |
| 436 | OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| 437 | return 0; |
| 438 | } |
| 439 | r->neg = 0; |
| 440 | r->width = num; |
| 441 | return 1; |
| 442 | } |
| 443 | #endif |
| 444 | |
| 445 | return bn_mod_mul_montgomery_fallback(r, a, b, mont, ctx); |
| 446 | } |
| 447 | |
| 448 | int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont) { |
| 449 | return !BN_is_negative(bn) && |
| 450 | bn_fits_in_words(bn, mont->N.width); |
| 451 | } |
| 452 | |
| 453 | void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 454 | const BN_MONT_CTX *mont) { |
| 455 | bn_mod_mul_montgomery_small(r, a, mont->RR.d, num, mont); |
| 456 | } |
| 457 | |
| 458 | void bn_from_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| 459 | const BN_MONT_CTX *mont) { |
| 460 | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| 461 | abort(); |
| 462 | } |
| 463 | BN_ULONG tmp[BN_SMALL_MAX_WORDS * 2]; |
| 464 | OPENSSL_memcpy(tmp, a, num * sizeof(BN_ULONG)); |
| 465 | OPENSSL_memset(tmp + num, 0, num * sizeof(BN_ULONG)); |
| 466 | if (!bn_from_montgomery_in_place(r, num, tmp, 2 * num, mont)) { |
| 467 | abort(); |
| 468 | } |
| 469 | OPENSSL_cleanse(tmp, 2 * num * sizeof(BN_ULONG)); |
| 470 | } |
| 471 | |
| 472 | void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a, |
| 473 | const BN_ULONG *b, size_t num, |
| 474 | const BN_MONT_CTX *mont) { |
| 475 | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| 476 | abort(); |
| 477 | } |
| 478 | |
| 479 | #if defined(OPENSSL_BN_ASM_MONT) |
| 480 | // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86. |
| 481 | if (num >= (128 / BN_BITS2)) { |
| 482 | if (!bn_mul_mont(r, a, b, mont->N.d, mont->n0, num)) { |
| 483 | abort(); // The check above ensures this won't happen. |
| 484 | } |
| 485 | return; |
| 486 | } |
| 487 | #endif |
| 488 | |
| 489 | // Compute the product. |
| 490 | BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; |
| 491 | if (a == b) { |
| 492 | bn_sqr_small(tmp, 2 * num, a, num); |
| 493 | } else { |
| 494 | bn_mul_small(tmp, 2 * num, a, num, b, num); |
| 495 | } |
| 496 | |
| 497 | // Reduce. |
| 498 | if (!bn_from_montgomery_in_place(r, num, tmp, 2 * num, mont)) { |
| 499 | abort(); |
| 500 | } |
| 501 | OPENSSL_cleanse(tmp, 2 * num * sizeof(BN_ULONG)); |
| 502 | } |
| 503 | |