1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] |
56 | */ |
57 | /* ==================================================================== |
58 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
59 | * |
60 | * Redistribution and use in source and binary forms, with or without |
61 | * modification, are permitted provided that the following conditions |
62 | * are met: |
63 | * |
64 | * 1. Redistributions of source code must retain the above copyright |
65 | * notice, this list of conditions and the following disclaimer. |
66 | * |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in |
69 | * the documentation and/or other materials provided with the |
70 | * distribution. |
71 | * |
72 | * 3. All advertising materials mentioning features or use of this |
73 | * software must display the following acknowledgment: |
74 | * "This product includes software developed by the OpenSSL Project |
75 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
76 | * |
77 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
78 | * endorse or promote products derived from this software without |
79 | * prior written permission. For written permission, please contact |
80 | * openssl-core@openssl.org. |
81 | * |
82 | * 5. Products derived from this software may not be called "OpenSSL" |
83 | * nor may "OpenSSL" appear in their names without prior written |
84 | * permission of the OpenSSL Project. |
85 | * |
86 | * 6. Redistributions of any form whatsoever must retain the following |
87 | * acknowledgment: |
88 | * "This product includes software developed by the OpenSSL Project |
89 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
90 | * |
91 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
92 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
93 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
95 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
96 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
97 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
98 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
99 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
100 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
101 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
102 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
103 | * ==================================================================== |
104 | * |
105 | * This product includes cryptographic software written by Eric Young |
106 | * (eay@cryptsoft.com). This product includes software written by Tim |
107 | * Hudson (tjh@cryptsoft.com). */ |
108 | |
109 | #include <openssl/bn.h> |
110 | |
111 | #include <openssl/err.h> |
112 | |
113 | #include "internal.h" |
114 | |
115 | |
116 | int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
117 | const BIGNUM *n, BN_CTX *ctx) { |
118 | *out_no_inverse = 0; |
119 | |
120 | if (!BN_is_odd(n)) { |
121 | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
122 | return 0; |
123 | } |
124 | |
125 | if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { |
126 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
127 | return 0; |
128 | } |
129 | |
130 | BIGNUM *A, *B, *X, *Y; |
131 | int ret = 0; |
132 | int sign; |
133 | |
134 | BN_CTX_start(ctx); |
135 | A = BN_CTX_get(ctx); |
136 | B = BN_CTX_get(ctx); |
137 | X = BN_CTX_get(ctx); |
138 | Y = BN_CTX_get(ctx); |
139 | if (Y == NULL) { |
140 | goto err; |
141 | } |
142 | |
143 | BIGNUM *R = out; |
144 | |
145 | BN_zero(Y); |
146 | if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { |
147 | goto err; |
148 | } |
149 | A->neg = 0; |
150 | sign = -1; |
151 | // From B = a mod |n|, A = |n| it follows that |
152 | // |
153 | // 0 <= B < A, |
154 | // -sign*X*a == B (mod |n|), |
155 | // sign*Y*a == A (mod |n|). |
156 | |
157 | // Binary inversion algorithm; requires odd modulus. This is faster than the |
158 | // general algorithm if the modulus is sufficiently small (about 400 .. 500 |
159 | // bits on 32-bit systems, but much more on 64-bit systems) |
160 | int shift; |
161 | |
162 | while (!BN_is_zero(B)) { |
163 | // 0 < B < |n|, |
164 | // 0 < A <= |n|, |
165 | // (1) -sign*X*a == B (mod |n|), |
166 | // (2) sign*Y*a == A (mod |n|) |
167 | |
168 | // Now divide B by the maximum possible power of two in the integers, |
169 | // and divide X by the same value mod |n|. |
170 | // When we're done, (1) still holds. |
171 | shift = 0; |
172 | while (!BN_is_bit_set(B, shift)) { |
173 | // note that 0 < B |
174 | shift++; |
175 | |
176 | if (BN_is_odd(X)) { |
177 | if (!BN_uadd(X, X, n)) { |
178 | goto err; |
179 | } |
180 | } |
181 | // now X is even, so we can easily divide it by two |
182 | if (!BN_rshift1(X, X)) { |
183 | goto err; |
184 | } |
185 | } |
186 | if (shift > 0) { |
187 | if (!BN_rshift(B, B, shift)) { |
188 | goto err; |
189 | } |
190 | } |
191 | |
192 | // Same for A and Y. Afterwards, (2) still holds. |
193 | shift = 0; |
194 | while (!BN_is_bit_set(A, shift)) { |
195 | // note that 0 < A |
196 | shift++; |
197 | |
198 | if (BN_is_odd(Y)) { |
199 | if (!BN_uadd(Y, Y, n)) { |
200 | goto err; |
201 | } |
202 | } |
203 | // now Y is even |
204 | if (!BN_rshift1(Y, Y)) { |
205 | goto err; |
206 | } |
207 | } |
208 | if (shift > 0) { |
209 | if (!BN_rshift(A, A, shift)) { |
210 | goto err; |
211 | } |
212 | } |
213 | |
214 | // We still have (1) and (2). |
215 | // Both A and B are odd. |
216 | // The following computations ensure that |
217 | // |
218 | // 0 <= B < |n|, |
219 | // 0 < A < |n|, |
220 | // (1) -sign*X*a == B (mod |n|), |
221 | // (2) sign*Y*a == A (mod |n|), |
222 | // |
223 | // and that either A or B is even in the next iteration. |
224 | if (BN_ucmp(B, A) >= 0) { |
225 | // -sign*(X + Y)*a == B - A (mod |n|) |
226 | if (!BN_uadd(X, X, Y)) { |
227 | goto err; |
228 | } |
229 | // NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
230 | // actually makes the algorithm slower |
231 | if (!BN_usub(B, B, A)) { |
232 | goto err; |
233 | } |
234 | } else { |
235 | // sign*(X + Y)*a == A - B (mod |n|) |
236 | if (!BN_uadd(Y, Y, X)) { |
237 | goto err; |
238 | } |
239 | // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
240 | if (!BN_usub(A, A, B)) { |
241 | goto err; |
242 | } |
243 | } |
244 | } |
245 | |
246 | if (!BN_is_one(A)) { |
247 | *out_no_inverse = 1; |
248 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
249 | goto err; |
250 | } |
251 | |
252 | // The while loop (Euclid's algorithm) ends when |
253 | // A == gcd(a,n); |
254 | // we have |
255 | // sign*Y*a == A (mod |n|), |
256 | // where Y is non-negative. |
257 | |
258 | if (sign < 0) { |
259 | if (!BN_sub(Y, n, Y)) { |
260 | goto err; |
261 | } |
262 | } |
263 | // Now Y*a == A (mod |n|). |
264 | |
265 | // Y*a == 1 (mod |n|) |
266 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
267 | if (!BN_copy(R, Y)) { |
268 | goto err; |
269 | } |
270 | } else { |
271 | if (!BN_nnmod(R, Y, n, ctx)) { |
272 | goto err; |
273 | } |
274 | } |
275 | |
276 | ret = 1; |
277 | |
278 | err: |
279 | BN_CTX_end(ctx); |
280 | return ret; |
281 | } |
282 | |
283 | BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, |
284 | BN_CTX *ctx) { |
285 | BIGNUM *new_out = NULL; |
286 | if (out == NULL) { |
287 | new_out = BN_new(); |
288 | if (new_out == NULL) { |
289 | OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
290 | return NULL; |
291 | } |
292 | out = new_out; |
293 | } |
294 | |
295 | int ok = 0; |
296 | BIGNUM *a_reduced = NULL; |
297 | if (a->neg || BN_ucmp(a, n) >= 0) { |
298 | a_reduced = BN_dup(a); |
299 | if (a_reduced == NULL) { |
300 | goto err; |
301 | } |
302 | if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) { |
303 | goto err; |
304 | } |
305 | a = a_reduced; |
306 | } |
307 | |
308 | int no_inverse; |
309 | if (!BN_is_odd(n)) { |
310 | if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) { |
311 | goto err; |
312 | } |
313 | } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { |
314 | goto err; |
315 | } |
316 | |
317 | ok = 1; |
318 | |
319 | err: |
320 | if (!ok) { |
321 | BN_free(new_out); |
322 | out = NULL; |
323 | } |
324 | BN_free(a_reduced); |
325 | return out; |
326 | } |
327 | |
328 | int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
329 | const BN_MONT_CTX *mont, BN_CTX *ctx) { |
330 | *out_no_inverse = 0; |
331 | |
332 | if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) { |
333 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
334 | return 0; |
335 | } |
336 | |
337 | int ret = 0; |
338 | BIGNUM blinding_factor; |
339 | BN_init(&blinding_factor); |
340 | |
341 | if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) || |
342 | !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) || |
343 | !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || |
344 | !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) { |
345 | OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); |
346 | goto err; |
347 | } |
348 | |
349 | ret = 1; |
350 | |
351 | err: |
352 | BN_free(&blinding_factor); |
353 | return ret; |
354 | } |
355 | |
356 | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
357 | BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
358 | BN_CTX_start(ctx); |
359 | BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
360 | int ok = p_minus_2 != NULL && |
361 | BN_copy(p_minus_2, p) && |
362 | BN_sub_word(p_minus_2, 2) && |
363 | BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); |
364 | BN_CTX_end(ctx); |
365 | return ok; |
366 | } |
367 | |
368 | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
369 | BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
370 | BN_CTX_start(ctx); |
371 | BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
372 | int ok = p_minus_2 != NULL && |
373 | BN_copy(p_minus_2, p) && |
374 | BN_sub_word(p_minus_2, 2) && |
375 | BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); |
376 | BN_CTX_end(ctx); |
377 | return ok; |
378 | } |
379 | |