| 1 | /* Originally written by Bodo Moeller for the OpenSSL project. |
| 2 | * ==================================================================== |
| 3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * |
| 17 | * 3. All advertising materials mentioning features or use of this |
| 18 | * software must display the following acknowledgment: |
| 19 | * "This product includes software developed by the OpenSSL Project |
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 21 | * |
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 23 | * endorse or promote products derived from this software without |
| 24 | * prior written permission. For written permission, please contact |
| 25 | * openssl-core@openssl.org. |
| 26 | * |
| 27 | * 5. Products derived from this software may not be called "OpenSSL" |
| 28 | * nor may "OpenSSL" appear in their names without prior written |
| 29 | * permission of the OpenSSL Project. |
| 30 | * |
| 31 | * 6. Redistributions of any form whatsoever must retain the following |
| 32 | * acknowledgment: |
| 33 | * "This product includes software developed by the OpenSSL Project |
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 35 | * |
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 48 | * ==================================================================== |
| 49 | * |
| 50 | * This product includes cryptographic software written by Eric Young |
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 52 | * Hudson (tjh@cryptsoft.com). |
| 53 | * |
| 54 | */ |
| 55 | /* ==================================================================== |
| 56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 57 | * |
| 58 | * Portions of the attached software ("Contribution") are developed by |
| 59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 60 | * |
| 61 | * The Contribution is licensed pursuant to the OpenSSL open source |
| 62 | * license provided above. |
| 63 | * |
| 64 | * The elliptic curve binary polynomial software is originally written by |
| 65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| 66 | * Laboratories. */ |
| 67 | |
| 68 | #include <openssl/ec.h> |
| 69 | |
| 70 | #include <assert.h> |
| 71 | #include <string.h> |
| 72 | |
| 73 | #include <openssl/bn.h> |
| 74 | #include <openssl/err.h> |
| 75 | #include <openssl/thread.h> |
| 76 | |
| 77 | #include "internal.h" |
| 78 | #include "../bn/internal.h" |
| 79 | #include "../../internal.h" |
| 80 | |
| 81 | |
| 82 | // This file implements the wNAF-based interleaving multi-exponentiation method |
| 83 | // at: |
| 84 | // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
| 85 | // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
| 86 | |
| 87 | void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, |
| 88 | const EC_SCALAR *scalar, size_t bits, int w) { |
| 89 | // 'int8_t' can represent integers with absolute values less than 2^7. |
| 90 | assert(0 < w && w <= 7); |
| 91 | assert(bits != 0); |
| 92 | int bit = 1 << w; // 2^w, at most 128 |
| 93 | int next_bit = bit << 1; // 2^(w+1), at most 256 |
| 94 | int mask = next_bit - 1; // at most 255 |
| 95 | |
| 96 | int window_val = scalar->words[0] & mask; |
| 97 | for (size_t j = 0; j < bits + 1; j++) { |
| 98 | assert(0 <= window_val && window_val <= next_bit); |
| 99 | int digit = 0; |
| 100 | if (window_val & 1) { |
| 101 | assert(0 < window_val && window_val < next_bit); |
| 102 | if (window_val & bit) { |
| 103 | digit = window_val - next_bit; |
| 104 | // We know -next_bit < digit < 0 and window_val - digit = next_bit. |
| 105 | |
| 106 | // modified wNAF |
| 107 | if (j + w + 1 >= bits) { |
| 108 | // special case for generating modified wNAFs: |
| 109 | // no new bits will be added into window_val, |
| 110 | // so using a positive digit here will decrease |
| 111 | // the total length of the representation |
| 112 | |
| 113 | digit = window_val & (mask >> 1); |
| 114 | // We know 0 < digit < bit and window_val - digit = bit. |
| 115 | } |
| 116 | } else { |
| 117 | digit = window_val; |
| 118 | // We know 0 < digit < bit and window_val - digit = 0. |
| 119 | } |
| 120 | |
| 121 | window_val -= digit; |
| 122 | |
| 123 | // Now window_val is 0 or 2^(w+1) in standard wNAF generation. |
| 124 | // For modified window NAFs, it may also be 2^w. |
| 125 | // |
| 126 | // See the comments above for the derivation of each of these bounds. |
| 127 | assert(window_val == 0 || window_val == next_bit || window_val == bit); |
| 128 | assert(-bit < digit && digit < bit); |
| 129 | |
| 130 | // window_val was odd, so digit is also odd. |
| 131 | assert(digit & 1); |
| 132 | } |
| 133 | |
| 134 | out[j] = digit; |
| 135 | |
| 136 | // Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if |
| 137 | // we shift and add at most one copy of |bit|, this will continue to hold |
| 138 | // afterwards. |
| 139 | window_val >>= 1; |
| 140 | window_val += |
| 141 | bit * bn_is_bit_set_words(scalar->words, group->order.width, j + w + 1); |
| 142 | assert(window_val <= next_bit); |
| 143 | } |
| 144 | |
| 145 | // bits + 1 entries should be sufficient to consume all bits. |
| 146 | assert(window_val == 0); |
| 147 | } |
| 148 | |
| 149 | // compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|. |
| 150 | static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out, |
| 151 | const EC_RAW_POINT *p, size_t len) { |
| 152 | ec_GFp_simple_point_copy(&out[0], p); |
| 153 | EC_RAW_POINT two_p; |
| 154 | ec_GFp_mont_dbl(group, &two_p, p); |
| 155 | for (size_t i = 1; i < len; i++) { |
| 156 | ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out, |
| 161 | const EC_RAW_POINT *precomp, int digit) { |
| 162 | if (digit < 0) { |
| 163 | digit = -digit; |
| 164 | ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); |
| 165 | ec_GFp_simple_invert(group, out); |
| 166 | } else { |
| 167 | ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | // EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|. |
| 172 | #define EC_WNAF_WINDOW_BITS 4 |
| 173 | |
| 174 | // EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|. |
| 175 | #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1)) |
| 176 | |
| 177 | void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, |
| 178 | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, |
| 179 | const EC_SCALAR *p_scalar) { |
| 180 | size_t bits = BN_num_bits(&group->order); |
| 181 | size_t wNAF_len = bits + 1; |
| 182 | |
| 183 | int8_t g_wNAF[EC_MAX_BYTES * 8 + 1]; |
| 184 | EC_RAW_POINT g_precomp[EC_WNAF_TABLE_SIZE]; |
| 185 | assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF)); |
| 186 | const EC_RAW_POINT *g = &group->generator->raw; |
| 187 | ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS); |
| 188 | compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE); |
| 189 | |
| 190 | int8_t p_wNAF[EC_MAX_BYTES * 8 + 1]; |
| 191 | EC_RAW_POINT p_precomp[EC_WNAF_TABLE_SIZE]; |
| 192 | assert(wNAF_len <= OPENSSL_ARRAY_SIZE(p_wNAF)); |
| 193 | ec_compute_wNAF(group, p_wNAF, p_scalar, bits, EC_WNAF_WINDOW_BITS); |
| 194 | compute_precomp(group, p_precomp, p, EC_WNAF_TABLE_SIZE); |
| 195 | |
| 196 | EC_RAW_POINT tmp; |
| 197 | int r_is_at_infinity = 1; |
| 198 | for (size_t k = wNAF_len - 1; k < wNAF_len; k--) { |
| 199 | if (!r_is_at_infinity) { |
| 200 | ec_GFp_mont_dbl(group, r, r); |
| 201 | } |
| 202 | |
| 203 | if (g_wNAF[k] != 0) { |
| 204 | lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]); |
| 205 | if (r_is_at_infinity) { |
| 206 | ec_GFp_simple_point_copy(r, &tmp); |
| 207 | r_is_at_infinity = 0; |
| 208 | } else { |
| 209 | ec_GFp_mont_add(group, r, r, &tmp); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | if (p_wNAF[k] != 0) { |
| 214 | lookup_precomp(group, &tmp, p_precomp, p_wNAF[k]); |
| 215 | if (r_is_at_infinity) { |
| 216 | ec_GFp_simple_point_copy(r, &tmp); |
| 217 | r_is_at_infinity = 0; |
| 218 | } else { |
| 219 | ec_GFp_mont_add(group, r, r, &tmp); |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | if (r_is_at_infinity) { |
| 225 | ec_GFp_simple_point_set_to_infinity(group, r); |
| 226 | } |
| 227 | } |
| 228 | |