| 1 | /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. |
| 2 | * ==================================================================== |
| 3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * |
| 17 | * 3. All advertising materials mentioning features or use of this |
| 18 | * software must display the following acknowledgment: |
| 19 | * "This product includes software developed by the OpenSSL Project |
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 21 | * |
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 23 | * endorse or promote products derived from this software without |
| 24 | * prior written permission. For written permission, please contact |
| 25 | * openssl-core@openssl.org. |
| 26 | * |
| 27 | * 5. Products derived from this software may not be called "OpenSSL" |
| 28 | * nor may "OpenSSL" appear in their names without prior written |
| 29 | * permission of the OpenSSL Project. |
| 30 | * |
| 31 | * 6. Redistributions of any form whatsoever must retain the following |
| 32 | * acknowledgment: |
| 33 | * "This product includes software developed by the OpenSSL Project |
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 35 | * |
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 48 | * ==================================================================== |
| 49 | * |
| 50 | * This product includes cryptographic software written by Eric Young |
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 52 | * Hudson (tjh@cryptsoft.com). |
| 53 | * |
| 54 | */ |
| 55 | /* ==================================================================== |
| 56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 57 | * |
| 58 | * Portions of the attached software ("Contribution") are developed by |
| 59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 60 | * |
| 61 | * The Contribution is licensed pursuant to the OpenSSL open source |
| 62 | * license provided above. |
| 63 | * |
| 64 | * The elliptic curve binary polynomial software is originally written by |
| 65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| 66 | * Laboratories. */ |
| 67 | |
| 68 | #include <openssl/ec.h> |
| 69 | |
| 70 | #include <openssl/bn.h> |
| 71 | #include <openssl/err.h> |
| 72 | #include <openssl/mem.h> |
| 73 | |
| 74 | #include "../bn/internal.h" |
| 75 | #include "../delocate.h" |
| 76 | #include "internal.h" |
| 77 | |
| 78 | |
| 79 | int ec_GFp_mont_group_init(EC_GROUP *group) { |
| 80 | int ok; |
| 81 | |
| 82 | ok = ec_GFp_simple_group_init(group); |
| 83 | group->mont = NULL; |
| 84 | return ok; |
| 85 | } |
| 86 | |
| 87 | void ec_GFp_mont_group_finish(EC_GROUP *group) { |
| 88 | BN_MONT_CTX_free(group->mont); |
| 89 | group->mont = NULL; |
| 90 | ec_GFp_simple_group_finish(group); |
| 91 | } |
| 92 | |
| 93 | int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| 94 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| 95 | BN_CTX *new_ctx = NULL; |
| 96 | int ret = 0; |
| 97 | |
| 98 | BN_MONT_CTX_free(group->mont); |
| 99 | group->mont = NULL; |
| 100 | |
| 101 | if (ctx == NULL) { |
| 102 | ctx = new_ctx = BN_CTX_new(); |
| 103 | if (ctx == NULL) { |
| 104 | return 0; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | group->mont = BN_MONT_CTX_new_for_modulus(p, ctx); |
| 109 | if (group->mont == NULL) { |
| 110 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
| 111 | goto err; |
| 112 | } |
| 113 | |
| 114 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| 115 | |
| 116 | if (!ret) { |
| 117 | BN_MONT_CTX_free(group->mont); |
| 118 | group->mont = NULL; |
| 119 | } |
| 120 | |
| 121 | err: |
| 122 | BN_CTX_free(new_ctx); |
| 123 | return ret; |
| 124 | } |
| 125 | |
| 126 | static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group, |
| 127 | EC_FELEM *out, const EC_FELEM *in) { |
| 128 | bn_to_montgomery_small(out->words, in->words, group->field.width, |
| 129 | group->mont); |
| 130 | } |
| 131 | |
| 132 | static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group, |
| 133 | EC_FELEM *out, |
| 134 | const EC_FELEM *in) { |
| 135 | bn_from_montgomery_small(out->words, in->words, group->field.width, |
| 136 | group->mont); |
| 137 | } |
| 138 | |
| 139 | static void ec_GFp_mont_felem_inv(const EC_GROUP *group, EC_FELEM *out, |
| 140 | const EC_FELEM *a) { |
| 141 | bn_mod_inverse_prime_mont_small(out->words, a->words, group->field.width, |
| 142 | group->mont); |
| 143 | } |
| 144 | |
| 145 | void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r, |
| 146 | const EC_FELEM *a, const EC_FELEM *b) { |
| 147 | bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width, |
| 148 | group->mont); |
| 149 | } |
| 150 | |
| 151 | void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r, |
| 152 | const EC_FELEM *a) { |
| 153 | bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width, |
| 154 | group->mont); |
| 155 | } |
| 156 | |
| 157 | int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, |
| 158 | const BIGNUM *in) { |
| 159 | if (group->mont == NULL) { |
| 160 | OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | if (!bn_copy_words(out->words, group->field.width, in)) { |
| 165 | return 0; |
| 166 | } |
| 167 | ec_GFp_mont_felem_to_montgomery(group, out, out); |
| 168 | return 1; |
| 169 | } |
| 170 | |
| 171 | int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, |
| 172 | const EC_FELEM *in) { |
| 173 | if (group->mont == NULL) { |
| 174 | OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | EC_FELEM tmp; |
| 179 | ec_GFp_mont_felem_from_montgomery(group, &tmp, in); |
| 180 | return bn_set_words(out, tmp.words, group->field.width); |
| 181 | } |
| 182 | |
| 183 | static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, |
| 184 | const EC_RAW_POINT *point, |
| 185 | EC_FELEM *x, EC_FELEM *y) { |
| 186 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
| 187 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). |
| 192 | |
| 193 | EC_FELEM z1, z2; |
| 194 | ec_GFp_mont_felem_inv(group, &z2, &point->Z); |
| 195 | ec_GFp_mont_felem_sqr(group, &z1, &z2); |
| 196 | |
| 197 | // Instead of using |ec_GFp_mont_felem_from_montgomery| to convert the |x| |
| 198 | // coordinate and then calling |ec_GFp_mont_felem_from_montgomery| again to |
| 199 | // convert the |y| coordinate below, convert the common factor |z1| once now, |
| 200 | // saving one reduction. |
| 201 | ec_GFp_mont_felem_from_montgomery(group, &z1, &z1); |
| 202 | |
| 203 | if (x != NULL) { |
| 204 | ec_GFp_mont_felem_mul(group, x, &point->X, &z1); |
| 205 | } |
| 206 | |
| 207 | if (y != NULL) { |
| 208 | ec_GFp_mont_felem_mul(group, &z1, &z1, &z2); |
| 209 | ec_GFp_mont_felem_mul(group, y, &point->Y, &z1); |
| 210 | } |
| 211 | |
| 212 | return 1; |
| 213 | } |
| 214 | |
| 215 | void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out, |
| 216 | const EC_RAW_POINT *a, const EC_RAW_POINT *b) { |
| 217 | if (a == b) { |
| 218 | ec_GFp_mont_dbl(group, out, a); |
| 219 | return; |
| 220 | } |
| 221 | |
| 222 | // The method is taken from: |
| 223 | // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl |
| 224 | // |
| 225 | // Coq transcription and correctness proof: |
| 226 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467> |
| 227 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544> |
| 228 | EC_FELEM x_out, y_out, z_out; |
| 229 | BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); |
| 230 | BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); |
| 231 | |
| 232 | // z1z1 = z1z1 = z1**2 |
| 233 | EC_FELEM z1z1; |
| 234 | ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z); |
| 235 | |
| 236 | // z2z2 = z2**2 |
| 237 | EC_FELEM z2z2; |
| 238 | ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z); |
| 239 | |
| 240 | // u1 = x1*z2z2 |
| 241 | EC_FELEM u1; |
| 242 | ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2); |
| 243 | |
| 244 | // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 |
| 245 | EC_FELEM two_z1z2; |
| 246 | ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); |
| 247 | ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2); |
| 248 | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); |
| 249 | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); |
| 250 | |
| 251 | // s1 = y1 * z2**3 |
| 252 | EC_FELEM s1; |
| 253 | ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2); |
| 254 | ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y); |
| 255 | |
| 256 | // u2 = x2*z1z1 |
| 257 | EC_FELEM u2; |
| 258 | ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1); |
| 259 | |
| 260 | // h = u2 - u1 |
| 261 | EC_FELEM h; |
| 262 | ec_felem_sub(group, &h, &u2, &u1); |
| 263 | |
| 264 | BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); |
| 265 | |
| 266 | // z_out = two_z1z2 * h |
| 267 | ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2); |
| 268 | |
| 269 | // z1z1z1 = z1 * z1z1 |
| 270 | EC_FELEM z1z1z1; |
| 271 | ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1); |
| 272 | |
| 273 | // s2 = y2 * z1**3 |
| 274 | EC_FELEM s2; |
| 275 | ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1); |
| 276 | |
| 277 | // r = (s2 - s1)*2 |
| 278 | EC_FELEM r; |
| 279 | ec_felem_sub(group, &r, &s2, &s1); |
| 280 | ec_felem_add(group, &r, &r, &r); |
| 281 | |
| 282 | BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); |
| 283 | |
| 284 | // This case will never occur in the constant-time |ec_GFp_mont_mul|. |
| 285 | BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz; |
| 286 | if (is_nontrivial_double) { |
| 287 | ec_GFp_mont_dbl(group, out, a); |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | // I = (2h)**2 |
| 292 | EC_FELEM i; |
| 293 | ec_felem_add(group, &i, &h, &h); |
| 294 | ec_GFp_mont_felem_sqr(group, &i, &i); |
| 295 | |
| 296 | // J = h * I |
| 297 | EC_FELEM j; |
| 298 | ec_GFp_mont_felem_mul(group, &j, &h, &i); |
| 299 | |
| 300 | // V = U1 * I |
| 301 | EC_FELEM v; |
| 302 | ec_GFp_mont_felem_mul(group, &v, &u1, &i); |
| 303 | |
| 304 | // x_out = r**2 - J - 2V |
| 305 | ec_GFp_mont_felem_sqr(group, &x_out, &r); |
| 306 | ec_felem_sub(group, &x_out, &x_out, &j); |
| 307 | ec_felem_sub(group, &x_out, &x_out, &v); |
| 308 | ec_felem_sub(group, &x_out, &x_out, &v); |
| 309 | |
| 310 | // y_out = r(V-x_out) - 2 * s1 * J |
| 311 | ec_felem_sub(group, &y_out, &v, &x_out); |
| 312 | ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r); |
| 313 | EC_FELEM s1j; |
| 314 | ec_GFp_mont_felem_mul(group, &s1j, &s1, &j); |
| 315 | ec_felem_sub(group, &y_out, &y_out, &s1j); |
| 316 | ec_felem_sub(group, &y_out, &y_out, &s1j); |
| 317 | |
| 318 | ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); |
| 319 | ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); |
| 320 | ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); |
| 321 | ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); |
| 322 | ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); |
| 323 | ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); |
| 324 | } |
| 325 | |
| 326 | void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
| 327 | const EC_RAW_POINT *a) { |
| 328 | if (group->a_is_minus3) { |
| 329 | // The method is taken from: |
| 330 | // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| 331 | // |
| 332 | // Coq transcription and correctness proof: |
| 333 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> |
| 334 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> |
| 335 | EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; |
| 336 | // delta = z^2 |
| 337 | ec_GFp_mont_felem_sqr(group, &delta, &a->Z); |
| 338 | // gamma = y^2 |
| 339 | ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); |
| 340 | // beta = x*gamma |
| 341 | ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); |
| 342 | |
| 343 | // alpha = 3*(x-delta)*(x+delta) |
| 344 | ec_felem_sub(group, &ftmp, &a->X, &delta); |
| 345 | ec_felem_add(group, &ftmp2, &a->X, &delta); |
| 346 | |
| 347 | ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); |
| 348 | ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); |
| 349 | ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2); |
| 350 | |
| 351 | // x' = alpha^2 - 8*beta |
| 352 | ec_GFp_mont_felem_sqr(group, &r->X, &alpha); |
| 353 | ec_felem_add(group, &fourbeta, &beta, &beta); |
| 354 | ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); |
| 355 | ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); |
| 356 | ec_felem_sub(group, &r->X, &r->X, &tmptmp); |
| 357 | |
| 358 | // z' = (y + z)^2 - gamma - delta |
| 359 | ec_felem_add(group, &delta, &gamma, &delta); |
| 360 | ec_felem_add(group, &ftmp, &a->Y, &a->Z); |
| 361 | ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp); |
| 362 | ec_felem_sub(group, &r->Z, &r->Z, &delta); |
| 363 | |
| 364 | // y' = alpha*(4*beta - x') - 8*gamma^2 |
| 365 | ec_felem_sub(group, &r->Y, &fourbeta, &r->X); |
| 366 | ec_felem_add(group, &gamma, &gamma, &gamma); |
| 367 | ec_GFp_mont_felem_sqr(group, &gamma, &gamma); |
| 368 | ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y); |
| 369 | ec_felem_add(group, &gamma, &gamma, &gamma); |
| 370 | ec_felem_sub(group, &r->Y, &r->Y, &gamma); |
| 371 | } else { |
| 372 | // The method is taken from: |
| 373 | // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl |
| 374 | // |
| 375 | // Coq transcription and correctness proof: |
| 376 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102> |
| 377 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534> |
| 378 | EC_FELEM xx, yy, yyyy, zz; |
| 379 | ec_GFp_mont_felem_sqr(group, &xx, &a->X); |
| 380 | ec_GFp_mont_felem_sqr(group, &yy, &a->Y); |
| 381 | ec_GFp_mont_felem_sqr(group, &yyyy, &yy); |
| 382 | ec_GFp_mont_felem_sqr(group, &zz, &a->Z); |
| 383 | |
| 384 | // s = 2*((x_in + yy)^2 - xx - yyyy) |
| 385 | EC_FELEM s; |
| 386 | ec_felem_add(group, &s, &a->X, &yy); |
| 387 | ec_GFp_mont_felem_sqr(group, &s, &s); |
| 388 | ec_felem_sub(group, &s, &s, &xx); |
| 389 | ec_felem_sub(group, &s, &s, &yyyy); |
| 390 | ec_felem_add(group, &s, &s, &s); |
| 391 | |
| 392 | // m = 3*xx + a*zz^2 |
| 393 | EC_FELEM m; |
| 394 | ec_GFp_mont_felem_sqr(group, &m, &zz); |
| 395 | ec_GFp_mont_felem_mul(group, &m, &group->a, &m); |
| 396 | ec_felem_add(group, &m, &m, &xx); |
| 397 | ec_felem_add(group, &m, &m, &xx); |
| 398 | ec_felem_add(group, &m, &m, &xx); |
| 399 | |
| 400 | // x_out = m^2 - 2*s |
| 401 | ec_GFp_mont_felem_sqr(group, &r->X, &m); |
| 402 | ec_felem_sub(group, &r->X, &r->X, &s); |
| 403 | ec_felem_sub(group, &r->X, &r->X, &s); |
| 404 | |
| 405 | // z_out = (y_in + z_in)^2 - yy - zz |
| 406 | ec_felem_add(group, &r->Z, &a->Y, &a->Z); |
| 407 | ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z); |
| 408 | ec_felem_sub(group, &r->Z, &r->Z, &yy); |
| 409 | ec_felem_sub(group, &r->Z, &r->Z, &zz); |
| 410 | |
| 411 | // y_out = m*(s-x_out) - 8*yyyy |
| 412 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| 413 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| 414 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| 415 | ec_felem_sub(group, &r->Y, &s, &r->X); |
| 416 | ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m); |
| 417 | ec_felem_sub(group, &r->Y, &r->Y, &yyyy); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group, |
| 422 | const EC_RAW_POINT *p, |
| 423 | const EC_SCALAR *r) { |
| 424 | if (!group->field_greater_than_order || |
| 425 | group->field.width != group->order.width) { |
| 426 | // Do not bother optimizing this case. p > order in all commonly-used |
| 427 | // curves. |
| 428 | return ec_GFp_simple_cmp_x_coordinate(group, p, r); |
| 429 | } |
| 430 | |
| 431 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
| 436 | // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
| 437 | // not. |
| 438 | EC_FELEM r_Z2, Z2_mont, X; |
| 439 | ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z); |
| 440 | // r < order < p, so this is valid. |
| 441 | OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG)); |
| 442 | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
| 443 | ec_GFp_mont_felem_from_montgomery(group, &X, &p->X); |
| 444 | |
| 445 | if (ec_felem_equal(group, &r_Z2, &X)) { |
| 446 | return 1; |
| 447 | } |
| 448 | |
| 449 | // During signing the x coefficient is reduced modulo the group order. |
| 450 | // Therefore there is a small possibility, less than 1/2^128, that group_order |
| 451 | // < p.x < P. in that case we need not only to compare against |r| but also to |
| 452 | // compare against r+group_order. |
| 453 | if (bn_less_than_words(r->words, group->field_minus_order.words, |
| 454 | group->field.width)) { |
| 455 | // We can ignore the carry because: r + group_order < p < 2^256. |
| 456 | bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width); |
| 457 | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
| 458 | if (ec_felem_equal(group, &r_Z2, &X)) { |
| 459 | return 1; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { |
| 467 | out->group_init = ec_GFp_mont_group_init; |
| 468 | out->group_finish = ec_GFp_mont_group_finish; |
| 469 | out->group_set_curve = ec_GFp_mont_group_set_curve; |
| 470 | out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; |
| 471 | out->add = ec_GFp_mont_add; |
| 472 | out->dbl = ec_GFp_mont_dbl; |
| 473 | out->mul = ec_GFp_mont_mul; |
| 474 | out->mul_base = ec_GFp_mont_mul_base; |
| 475 | out->mul_public = ec_GFp_mont_mul_public; |
| 476 | out->felem_mul = ec_GFp_mont_felem_mul; |
| 477 | out->felem_sqr = ec_GFp_mont_felem_sqr; |
| 478 | out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; |
| 479 | out->felem_to_bignum = ec_GFp_mont_felem_to_bignum; |
| 480 | out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery; |
| 481 | out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime; |
| 482 | out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate; |
| 483 | } |
| 484 | |