1 | /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. |
2 | * ==================================================================== |
3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in |
14 | * the documentation and/or other materials provided with the |
15 | * distribution. |
16 | * |
17 | * 3. All advertising materials mentioning features or use of this |
18 | * software must display the following acknowledgment: |
19 | * "This product includes software developed by the OpenSSL Project |
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
21 | * |
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
23 | * endorse or promote products derived from this software without |
24 | * prior written permission. For written permission, please contact |
25 | * openssl-core@openssl.org. |
26 | * |
27 | * 5. Products derived from this software may not be called "OpenSSL" |
28 | * nor may "OpenSSL" appear in their names without prior written |
29 | * permission of the OpenSSL Project. |
30 | * |
31 | * 6. Redistributions of any form whatsoever must retain the following |
32 | * acknowledgment: |
33 | * "This product includes software developed by the OpenSSL Project |
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
35 | * |
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
48 | * ==================================================================== |
49 | * |
50 | * This product includes cryptographic software written by Eric Young |
51 | * (eay@cryptsoft.com). This product includes software written by Tim |
52 | * Hudson (tjh@cryptsoft.com). |
53 | * |
54 | */ |
55 | /* ==================================================================== |
56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
57 | * |
58 | * Portions of the attached software ("Contribution") are developed by |
59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
60 | * |
61 | * The Contribution is licensed pursuant to the OpenSSL open source |
62 | * license provided above. |
63 | * |
64 | * The elliptic curve binary polynomial software is originally written by |
65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
66 | * Laboratories. */ |
67 | |
68 | #include <openssl/ec.h> |
69 | |
70 | #include <openssl/bn.h> |
71 | #include <openssl/err.h> |
72 | #include <openssl/mem.h> |
73 | |
74 | #include "../bn/internal.h" |
75 | #include "../delocate.h" |
76 | #include "internal.h" |
77 | |
78 | |
79 | int ec_GFp_mont_group_init(EC_GROUP *group) { |
80 | int ok; |
81 | |
82 | ok = ec_GFp_simple_group_init(group); |
83 | group->mont = NULL; |
84 | return ok; |
85 | } |
86 | |
87 | void ec_GFp_mont_group_finish(EC_GROUP *group) { |
88 | BN_MONT_CTX_free(group->mont); |
89 | group->mont = NULL; |
90 | ec_GFp_simple_group_finish(group); |
91 | } |
92 | |
93 | int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
94 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
95 | BN_CTX *new_ctx = NULL; |
96 | int ret = 0; |
97 | |
98 | BN_MONT_CTX_free(group->mont); |
99 | group->mont = NULL; |
100 | |
101 | if (ctx == NULL) { |
102 | ctx = new_ctx = BN_CTX_new(); |
103 | if (ctx == NULL) { |
104 | return 0; |
105 | } |
106 | } |
107 | |
108 | group->mont = BN_MONT_CTX_new_for_modulus(p, ctx); |
109 | if (group->mont == NULL) { |
110 | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
111 | goto err; |
112 | } |
113 | |
114 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
115 | |
116 | if (!ret) { |
117 | BN_MONT_CTX_free(group->mont); |
118 | group->mont = NULL; |
119 | } |
120 | |
121 | err: |
122 | BN_CTX_free(new_ctx); |
123 | return ret; |
124 | } |
125 | |
126 | static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group, |
127 | EC_FELEM *out, const EC_FELEM *in) { |
128 | bn_to_montgomery_small(out->words, in->words, group->field.width, |
129 | group->mont); |
130 | } |
131 | |
132 | static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group, |
133 | EC_FELEM *out, |
134 | const EC_FELEM *in) { |
135 | bn_from_montgomery_small(out->words, in->words, group->field.width, |
136 | group->mont); |
137 | } |
138 | |
139 | static void ec_GFp_mont_felem_inv(const EC_GROUP *group, EC_FELEM *out, |
140 | const EC_FELEM *a) { |
141 | bn_mod_inverse_prime_mont_small(out->words, a->words, group->field.width, |
142 | group->mont); |
143 | } |
144 | |
145 | void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r, |
146 | const EC_FELEM *a, const EC_FELEM *b) { |
147 | bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width, |
148 | group->mont); |
149 | } |
150 | |
151 | void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r, |
152 | const EC_FELEM *a) { |
153 | bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width, |
154 | group->mont); |
155 | } |
156 | |
157 | int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, |
158 | const BIGNUM *in) { |
159 | if (group->mont == NULL) { |
160 | OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); |
161 | return 0; |
162 | } |
163 | |
164 | if (!bn_copy_words(out->words, group->field.width, in)) { |
165 | return 0; |
166 | } |
167 | ec_GFp_mont_felem_to_montgomery(group, out, out); |
168 | return 1; |
169 | } |
170 | |
171 | int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, |
172 | const EC_FELEM *in) { |
173 | if (group->mont == NULL) { |
174 | OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED); |
175 | return 0; |
176 | } |
177 | |
178 | EC_FELEM tmp; |
179 | ec_GFp_mont_felem_from_montgomery(group, &tmp, in); |
180 | return bn_set_words(out, tmp.words, group->field.width); |
181 | } |
182 | |
183 | static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, |
184 | const EC_RAW_POINT *point, |
185 | EC_FELEM *x, EC_FELEM *y) { |
186 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
187 | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
188 | return 0; |
189 | } |
190 | |
191 | // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). |
192 | |
193 | EC_FELEM z1, z2; |
194 | ec_GFp_mont_felem_inv(group, &z2, &point->Z); |
195 | ec_GFp_mont_felem_sqr(group, &z1, &z2); |
196 | |
197 | // Instead of using |ec_GFp_mont_felem_from_montgomery| to convert the |x| |
198 | // coordinate and then calling |ec_GFp_mont_felem_from_montgomery| again to |
199 | // convert the |y| coordinate below, convert the common factor |z1| once now, |
200 | // saving one reduction. |
201 | ec_GFp_mont_felem_from_montgomery(group, &z1, &z1); |
202 | |
203 | if (x != NULL) { |
204 | ec_GFp_mont_felem_mul(group, x, &point->X, &z1); |
205 | } |
206 | |
207 | if (y != NULL) { |
208 | ec_GFp_mont_felem_mul(group, &z1, &z1, &z2); |
209 | ec_GFp_mont_felem_mul(group, y, &point->Y, &z1); |
210 | } |
211 | |
212 | return 1; |
213 | } |
214 | |
215 | void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out, |
216 | const EC_RAW_POINT *a, const EC_RAW_POINT *b) { |
217 | if (a == b) { |
218 | ec_GFp_mont_dbl(group, out, a); |
219 | return; |
220 | } |
221 | |
222 | // The method is taken from: |
223 | // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl |
224 | // |
225 | // Coq transcription and correctness proof: |
226 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467> |
227 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544> |
228 | EC_FELEM x_out, y_out, z_out; |
229 | BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); |
230 | BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); |
231 | |
232 | // z1z1 = z1z1 = z1**2 |
233 | EC_FELEM z1z1; |
234 | ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z); |
235 | |
236 | // z2z2 = z2**2 |
237 | EC_FELEM z2z2; |
238 | ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z); |
239 | |
240 | // u1 = x1*z2z2 |
241 | EC_FELEM u1; |
242 | ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2); |
243 | |
244 | // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 |
245 | EC_FELEM two_z1z2; |
246 | ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); |
247 | ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2); |
248 | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); |
249 | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); |
250 | |
251 | // s1 = y1 * z2**3 |
252 | EC_FELEM s1; |
253 | ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2); |
254 | ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y); |
255 | |
256 | // u2 = x2*z1z1 |
257 | EC_FELEM u2; |
258 | ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1); |
259 | |
260 | // h = u2 - u1 |
261 | EC_FELEM h; |
262 | ec_felem_sub(group, &h, &u2, &u1); |
263 | |
264 | BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); |
265 | |
266 | // z_out = two_z1z2 * h |
267 | ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2); |
268 | |
269 | // z1z1z1 = z1 * z1z1 |
270 | EC_FELEM z1z1z1; |
271 | ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1); |
272 | |
273 | // s2 = y2 * z1**3 |
274 | EC_FELEM s2; |
275 | ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1); |
276 | |
277 | // r = (s2 - s1)*2 |
278 | EC_FELEM r; |
279 | ec_felem_sub(group, &r, &s2, &s1); |
280 | ec_felem_add(group, &r, &r, &r); |
281 | |
282 | BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); |
283 | |
284 | // This case will never occur in the constant-time |ec_GFp_mont_mul|. |
285 | BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz; |
286 | if (is_nontrivial_double) { |
287 | ec_GFp_mont_dbl(group, out, a); |
288 | return; |
289 | } |
290 | |
291 | // I = (2h)**2 |
292 | EC_FELEM i; |
293 | ec_felem_add(group, &i, &h, &h); |
294 | ec_GFp_mont_felem_sqr(group, &i, &i); |
295 | |
296 | // J = h * I |
297 | EC_FELEM j; |
298 | ec_GFp_mont_felem_mul(group, &j, &h, &i); |
299 | |
300 | // V = U1 * I |
301 | EC_FELEM v; |
302 | ec_GFp_mont_felem_mul(group, &v, &u1, &i); |
303 | |
304 | // x_out = r**2 - J - 2V |
305 | ec_GFp_mont_felem_sqr(group, &x_out, &r); |
306 | ec_felem_sub(group, &x_out, &x_out, &j); |
307 | ec_felem_sub(group, &x_out, &x_out, &v); |
308 | ec_felem_sub(group, &x_out, &x_out, &v); |
309 | |
310 | // y_out = r(V-x_out) - 2 * s1 * J |
311 | ec_felem_sub(group, &y_out, &v, &x_out); |
312 | ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r); |
313 | EC_FELEM s1j; |
314 | ec_GFp_mont_felem_mul(group, &s1j, &s1, &j); |
315 | ec_felem_sub(group, &y_out, &y_out, &s1j); |
316 | ec_felem_sub(group, &y_out, &y_out, &s1j); |
317 | |
318 | ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); |
319 | ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); |
320 | ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); |
321 | ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); |
322 | ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); |
323 | ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); |
324 | } |
325 | |
326 | void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
327 | const EC_RAW_POINT *a) { |
328 | if (group->a_is_minus3) { |
329 | // The method is taken from: |
330 | // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
331 | // |
332 | // Coq transcription and correctness proof: |
333 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> |
334 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> |
335 | EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; |
336 | // delta = z^2 |
337 | ec_GFp_mont_felem_sqr(group, &delta, &a->Z); |
338 | // gamma = y^2 |
339 | ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); |
340 | // beta = x*gamma |
341 | ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); |
342 | |
343 | // alpha = 3*(x-delta)*(x+delta) |
344 | ec_felem_sub(group, &ftmp, &a->X, &delta); |
345 | ec_felem_add(group, &ftmp2, &a->X, &delta); |
346 | |
347 | ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); |
348 | ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); |
349 | ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2); |
350 | |
351 | // x' = alpha^2 - 8*beta |
352 | ec_GFp_mont_felem_sqr(group, &r->X, &alpha); |
353 | ec_felem_add(group, &fourbeta, &beta, &beta); |
354 | ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); |
355 | ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); |
356 | ec_felem_sub(group, &r->X, &r->X, &tmptmp); |
357 | |
358 | // z' = (y + z)^2 - gamma - delta |
359 | ec_felem_add(group, &delta, &gamma, &delta); |
360 | ec_felem_add(group, &ftmp, &a->Y, &a->Z); |
361 | ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp); |
362 | ec_felem_sub(group, &r->Z, &r->Z, &delta); |
363 | |
364 | // y' = alpha*(4*beta - x') - 8*gamma^2 |
365 | ec_felem_sub(group, &r->Y, &fourbeta, &r->X); |
366 | ec_felem_add(group, &gamma, &gamma, &gamma); |
367 | ec_GFp_mont_felem_sqr(group, &gamma, &gamma); |
368 | ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y); |
369 | ec_felem_add(group, &gamma, &gamma, &gamma); |
370 | ec_felem_sub(group, &r->Y, &r->Y, &gamma); |
371 | } else { |
372 | // The method is taken from: |
373 | // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl |
374 | // |
375 | // Coq transcription and correctness proof: |
376 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102> |
377 | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534> |
378 | EC_FELEM xx, yy, yyyy, zz; |
379 | ec_GFp_mont_felem_sqr(group, &xx, &a->X); |
380 | ec_GFp_mont_felem_sqr(group, &yy, &a->Y); |
381 | ec_GFp_mont_felem_sqr(group, &yyyy, &yy); |
382 | ec_GFp_mont_felem_sqr(group, &zz, &a->Z); |
383 | |
384 | // s = 2*((x_in + yy)^2 - xx - yyyy) |
385 | EC_FELEM s; |
386 | ec_felem_add(group, &s, &a->X, &yy); |
387 | ec_GFp_mont_felem_sqr(group, &s, &s); |
388 | ec_felem_sub(group, &s, &s, &xx); |
389 | ec_felem_sub(group, &s, &s, &yyyy); |
390 | ec_felem_add(group, &s, &s, &s); |
391 | |
392 | // m = 3*xx + a*zz^2 |
393 | EC_FELEM m; |
394 | ec_GFp_mont_felem_sqr(group, &m, &zz); |
395 | ec_GFp_mont_felem_mul(group, &m, &group->a, &m); |
396 | ec_felem_add(group, &m, &m, &xx); |
397 | ec_felem_add(group, &m, &m, &xx); |
398 | ec_felem_add(group, &m, &m, &xx); |
399 | |
400 | // x_out = m^2 - 2*s |
401 | ec_GFp_mont_felem_sqr(group, &r->X, &m); |
402 | ec_felem_sub(group, &r->X, &r->X, &s); |
403 | ec_felem_sub(group, &r->X, &r->X, &s); |
404 | |
405 | // z_out = (y_in + z_in)^2 - yy - zz |
406 | ec_felem_add(group, &r->Z, &a->Y, &a->Z); |
407 | ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z); |
408 | ec_felem_sub(group, &r->Z, &r->Z, &yy); |
409 | ec_felem_sub(group, &r->Z, &r->Z, &zz); |
410 | |
411 | // y_out = m*(s-x_out) - 8*yyyy |
412 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
413 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
414 | ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
415 | ec_felem_sub(group, &r->Y, &s, &r->X); |
416 | ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m); |
417 | ec_felem_sub(group, &r->Y, &r->Y, &yyyy); |
418 | } |
419 | } |
420 | |
421 | static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group, |
422 | const EC_RAW_POINT *p, |
423 | const EC_SCALAR *r) { |
424 | if (!group->field_greater_than_order || |
425 | group->field.width != group->order.width) { |
426 | // Do not bother optimizing this case. p > order in all commonly-used |
427 | // curves. |
428 | return ec_GFp_simple_cmp_x_coordinate(group, p, r); |
429 | } |
430 | |
431 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
432 | return 0; |
433 | } |
434 | |
435 | // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
436 | // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
437 | // not. |
438 | EC_FELEM r_Z2, Z2_mont, X; |
439 | ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z); |
440 | // r < order < p, so this is valid. |
441 | OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG)); |
442 | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
443 | ec_GFp_mont_felem_from_montgomery(group, &X, &p->X); |
444 | |
445 | if (ec_felem_equal(group, &r_Z2, &X)) { |
446 | return 1; |
447 | } |
448 | |
449 | // During signing the x coefficient is reduced modulo the group order. |
450 | // Therefore there is a small possibility, less than 1/2^128, that group_order |
451 | // < p.x < P. in that case we need not only to compare against |r| but also to |
452 | // compare against r+group_order. |
453 | if (bn_less_than_words(r->words, group->field_minus_order.words, |
454 | group->field.width)) { |
455 | // We can ignore the carry because: r + group_order < p < 2^256. |
456 | bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width); |
457 | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); |
458 | if (ec_felem_equal(group, &r_Z2, &X)) { |
459 | return 1; |
460 | } |
461 | } |
462 | |
463 | return 0; |
464 | } |
465 | |
466 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { |
467 | out->group_init = ec_GFp_mont_group_init; |
468 | out->group_finish = ec_GFp_mont_group_finish; |
469 | out->group_set_curve = ec_GFp_mont_group_set_curve; |
470 | out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; |
471 | out->add = ec_GFp_mont_add; |
472 | out->dbl = ec_GFp_mont_dbl; |
473 | out->mul = ec_GFp_mont_mul; |
474 | out->mul_base = ec_GFp_mont_mul_base; |
475 | out->mul_public = ec_GFp_mont_mul_public; |
476 | out->felem_mul = ec_GFp_mont_felem_mul; |
477 | out->felem_sqr = ec_GFp_mont_felem_sqr; |
478 | out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; |
479 | out->felem_to_bignum = ec_GFp_mont_felem_to_bignum; |
480 | out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery; |
481 | out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime; |
482 | out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate; |
483 | } |
484 | |