1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
9 | |
10 | #include "include/pathops/SkPathOps.h" |
11 | #include "src/gpu/GrCaps.h" |
12 | #include "src/gpu/GrProxyProvider.h" |
13 | #include "src/gpu/GrRenderTargetContext.h" |
14 | #include "src/gpu/ccpr/GrCCClipProcessor.h" |
15 | #include "src/gpu/ccpr/GrCCDrawPathsOp.h" |
16 | #include "src/gpu/ccpr/GrCCPathCache.h" |
17 | |
18 | using PathInstance = GrCCPathProcessor::Instance; |
19 | |
20 | bool GrCoverageCountingPathRenderer::IsSupported(const GrCaps& caps, CoverageType* coverageType) { |
21 | const GrShaderCaps& shaderCaps = *caps.shaderCaps(); |
22 | GrBackendFormat defaultA8Format = caps.getDefaultBackendFormat(GrColorType::kAlpha_8, |
23 | GrRenderable::kYes); |
24 | if (caps.driverDisableCCPR() || !shaderCaps.integerSupport() || |
25 | !caps.drawInstancedSupport() || !shaderCaps.floatIs32Bits() || |
26 | !defaultA8Format.isValid() || // This checks both texturable and renderable |
27 | !caps.halfFloatVertexAttributeSupport()) { |
28 | return false; |
29 | } |
30 | |
31 | GrBackendFormat defaultAHalfFormat = caps.getDefaultBackendFormat(GrColorType::kAlpha_F16, |
32 | GrRenderable::kYes); |
33 | if (caps.allowCoverageCounting() && |
34 | defaultAHalfFormat.isValid()) { // This checks both texturable and renderable |
35 | if (coverageType) { |
36 | *coverageType = CoverageType::kFP16_CoverageCount; |
37 | } |
38 | return true; |
39 | } |
40 | |
41 | if (!caps.driverDisableMSAACCPR() && |
42 | caps.internalMultisampleCount(defaultA8Format) > 1 && |
43 | caps.sampleLocationsSupport() && |
44 | shaderCaps.sampleMaskSupport()) { |
45 | if (coverageType) { |
46 | *coverageType = CoverageType::kA8_Multisample; |
47 | } |
48 | return true; |
49 | } |
50 | |
51 | return false; |
52 | } |
53 | |
54 | sk_sp<GrCoverageCountingPathRenderer> GrCoverageCountingPathRenderer::CreateIfSupported( |
55 | const GrCaps& caps, AllowCaching allowCaching, uint32_t contextUniqueID) { |
56 | CoverageType coverageType; |
57 | if (IsSupported(caps, &coverageType)) { |
58 | return sk_sp<GrCoverageCountingPathRenderer>(new GrCoverageCountingPathRenderer( |
59 | coverageType, allowCaching, contextUniqueID)); |
60 | } |
61 | return nullptr; |
62 | } |
63 | |
64 | GrCoverageCountingPathRenderer::GrCoverageCountingPathRenderer( |
65 | CoverageType coverageType, AllowCaching allowCaching, uint32_t contextUniqueID) |
66 | : fCoverageType(coverageType) { |
67 | if (AllowCaching::kYes == allowCaching) { |
68 | fPathCache = std::make_unique<GrCCPathCache>(contextUniqueID); |
69 | } |
70 | } |
71 | |
72 | GrCCPerOpsTaskPaths* GrCoverageCountingPathRenderer::lookupPendingPaths(uint32_t opsTaskID) { |
73 | auto it = fPendingPaths.find(opsTaskID); |
74 | if (fPendingPaths.end() == it) { |
75 | sk_sp<GrCCPerOpsTaskPaths> paths = sk_make_sp<GrCCPerOpsTaskPaths>(); |
76 | it = fPendingPaths.insert(std::make_pair(opsTaskID, std::move(paths))).first; |
77 | } |
78 | return it->second.get(); |
79 | } |
80 | |
81 | GrPathRenderer::CanDrawPath GrCoverageCountingPathRenderer::onCanDrawPath( |
82 | const CanDrawPathArgs& args) const { |
83 | const GrStyledShape& shape = *args.fShape; |
84 | // We use "kCoverage", or analytic AA, no mater what the coverage type of our atlas: Even if the |
85 | // atlas is multisampled, that resolves into analytic coverage before we draw the path to the |
86 | // main canvas. |
87 | if (GrAAType::kCoverage != args.fAAType || shape.style().hasPathEffect() || |
88 | args.fViewMatrix->hasPerspective() || shape.inverseFilled()) { |
89 | return CanDrawPath::kNo; |
90 | } |
91 | |
92 | SkPath path; |
93 | shape.asPath(&path); |
94 | |
95 | const SkStrokeRec& stroke = shape.style().strokeRec(); |
96 | switch (stroke.getStyle()) { |
97 | case SkStrokeRec::kFill_Style: { |
98 | SkRect devBounds; |
99 | args.fViewMatrix->mapRect(&devBounds, path.getBounds()); |
100 | |
101 | SkIRect clippedIBounds; |
102 | devBounds.roundOut(&clippedIBounds); |
103 | if (!clippedIBounds.intersect(*args.fClipConservativeBounds)) { |
104 | // The path is completely clipped away. Our code will eventually notice this before |
105 | // doing any real work. |
106 | return CanDrawPath::kYes; |
107 | } |
108 | |
109 | int64_t numPixels = sk_64_mul(clippedIBounds.height(), clippedIBounds.width()); |
110 | if (path.countVerbs() > 1000 && path.countPoints() > numPixels) { |
111 | // This is a complicated path that has more vertices than pixels! Let's let the SW |
112 | // renderer have this one: It will probably be faster and a bitmap will require less |
113 | // total memory on the GPU than CCPR instance buffers would for the raw path data. |
114 | return CanDrawPath::kNo; |
115 | } |
116 | |
117 | if (numPixels > 256 * 256) { |
118 | // Large paths can blow up the atlas fast. And they are not ideal for a two-pass |
119 | // rendering algorithm. Give the simpler direct renderers a chance before we commit |
120 | // to drawing it. |
121 | return CanDrawPath::kAsBackup; |
122 | } |
123 | |
124 | if (args.fShape->hasUnstyledKey() && path.countVerbs() > 50) { |
125 | // Complex paths do better cached in an SDF, if the renderer will accept them. |
126 | return CanDrawPath::kAsBackup; |
127 | } |
128 | |
129 | return CanDrawPath::kYes; |
130 | } |
131 | |
132 | case SkStrokeRec::kStroke_Style: |
133 | if (!args.fViewMatrix->isSimilarity()) { |
134 | // The stroker currently only supports rigid-body transfoms for the stroke lines |
135 | // themselves. This limitation doesn't affect hairlines since their stroke lines are |
136 | // defined relative to device space. |
137 | return CanDrawPath::kNo; |
138 | } |
139 | [[fallthrough]]; |
140 | case SkStrokeRec::kHairline_Style: { |
141 | if (CoverageType::kFP16_CoverageCount != fCoverageType) { |
142 | // Stroking is not yet supported in MSAA atlas mode. |
143 | return CanDrawPath::kNo; |
144 | } |
145 | float inflationRadius; |
146 | GetStrokeDevWidth(*args.fViewMatrix, stroke, &inflationRadius); |
147 | if (!(inflationRadius <= kMaxBoundsInflationFromStroke)) { |
148 | // Let extremely wide strokes be converted to fill paths and drawn by the CCPR |
149 | // filler instead. (Cast the logic negatively in order to also catch r=NaN.) |
150 | return CanDrawPath::kNo; |
151 | } |
152 | SkASSERT(!SkScalarIsNaN(inflationRadius)); |
153 | if (SkPathPriv::ConicWeightCnt(path)) { |
154 | // The stroker does not support conics yet. |
155 | return CanDrawPath::kNo; |
156 | } |
157 | return CanDrawPath::kYes; |
158 | } |
159 | |
160 | case SkStrokeRec::kStrokeAndFill_Style: |
161 | return CanDrawPath::kNo; |
162 | } |
163 | |
164 | SK_ABORT("Invalid stroke style." ); |
165 | } |
166 | |
167 | bool GrCoverageCountingPathRenderer::onDrawPath(const DrawPathArgs& args) { |
168 | SkASSERT(!fFlushing); |
169 | |
170 | auto op = GrCCDrawPathsOp::Make(args.fContext, *args.fClipConservativeBounds, *args.fViewMatrix, |
171 | *args.fShape, std::move(args.fPaint)); |
172 | this->recordOp(std::move(op), args); |
173 | return true; |
174 | } |
175 | |
176 | void GrCoverageCountingPathRenderer::recordOp(std::unique_ptr<GrCCDrawPathsOp> op, |
177 | const DrawPathArgs& args) { |
178 | if (op) { |
179 | auto addToOwningPerOpsTaskPaths = [this](GrOp* op, uint32_t opsTaskID) { |
180 | op->cast<GrCCDrawPathsOp>()->addToOwningPerOpsTaskPaths( |
181 | sk_ref_sp(this->lookupPendingPaths(opsTaskID))); |
182 | }; |
183 | args.fRenderTargetContext->addDrawOp(args.fClip, std::move(op), |
184 | addToOwningPerOpsTaskPaths); |
185 | } |
186 | } |
187 | |
188 | std::unique_ptr<GrFragmentProcessor> GrCoverageCountingPathRenderer::makeClipProcessor( |
189 | std::unique_ptr<GrFragmentProcessor> inputFP, uint32_t opsTaskID, |
190 | const SkPath& deviceSpacePath, const SkIRect& accessRect, const GrCaps& caps) { |
191 | SkASSERT(!fFlushing); |
192 | |
193 | uint32_t key = deviceSpacePath.getGenerationID(); |
194 | if (CoverageType::kA8_Multisample == fCoverageType) { |
195 | // We only need to consider fill rule in MSAA mode. In coverage count mode Even/Odd and |
196 | // Nonzero both reference the same coverage count mask. |
197 | key = (key << 1) | (uint32_t)GrFillRuleForSkPath(deviceSpacePath); |
198 | } |
199 | GrCCClipPath& clipPath = |
200 | this->lookupPendingPaths(opsTaskID)->fClipPaths[key]; |
201 | if (!clipPath.isInitialized()) { |
202 | // This ClipPath was just created during lookup. Initialize it. |
203 | const SkRect& pathDevBounds = deviceSpacePath.getBounds(); |
204 | if (std::max(pathDevBounds.height(), pathDevBounds.width()) > kPathCropThreshold) { |
205 | // The path is too large. Crop it or analytic AA can run out of fp32 precision. |
206 | SkPath croppedPath; |
207 | int maxRTSize = caps.maxRenderTargetSize(); |
208 | CropPath(deviceSpacePath, SkIRect::MakeWH(maxRTSize, maxRTSize), &croppedPath); |
209 | clipPath.init(croppedPath, accessRect, fCoverageType, caps); |
210 | } else { |
211 | clipPath.init(deviceSpacePath, accessRect, fCoverageType, caps); |
212 | } |
213 | } else { |
214 | clipPath.addAccess(accessRect); |
215 | } |
216 | |
217 | auto isCoverageCount = GrCCClipProcessor::IsCoverageCount( |
218 | CoverageType::kFP16_CoverageCount == fCoverageType); |
219 | auto mustCheckBounds = GrCCClipProcessor::MustCheckBounds( |
220 | !clipPath.pathDevIBounds().contains(accessRect)); |
221 | return std::make_unique<GrCCClipProcessor>( |
222 | std::move(inputFP), caps, &clipPath, isCoverageCount, mustCheckBounds); |
223 | } |
224 | |
225 | void GrCoverageCountingPathRenderer::preFlush( |
226 | GrOnFlushResourceProvider* onFlushRP, const uint32_t* opsTaskIDs, int numOpsTaskIDs) { |
227 | using DoCopiesToA8Coverage = GrCCDrawPathsOp::DoCopiesToA8Coverage; |
228 | SkASSERT(!fFlushing); |
229 | SkASSERT(fFlushingPaths.empty()); |
230 | SkDEBUGCODE(fFlushing = true); |
231 | |
232 | if (fPathCache) { |
233 | fPathCache->doPreFlushProcessing(); |
234 | } |
235 | |
236 | if (fPendingPaths.empty()) { |
237 | return; // Nothing to draw. |
238 | } |
239 | |
240 | GrCCPerFlushResourceSpecs specs; |
241 | int maxPreferredRTSize = onFlushRP->caps()->maxPreferredRenderTargetSize(); |
242 | specs.fCopyAtlasSpecs.fMaxPreferredTextureSize = std::min(2048, maxPreferredRTSize); |
243 | SkASSERT(0 == specs.fCopyAtlasSpecs.fMinTextureSize); |
244 | specs.fRenderedAtlasSpecs.fMaxPreferredTextureSize = maxPreferredRTSize; |
245 | specs.fRenderedAtlasSpecs.fMinTextureSize = std::min(512, maxPreferredRTSize); |
246 | |
247 | // Move the per-opsTask paths that are about to be flushed from fPendingPaths to fFlushingPaths, |
248 | // and count them up so we can preallocate buffers. |
249 | fFlushingPaths.reserve(numOpsTaskIDs); |
250 | for (int i = 0; i < numOpsTaskIDs; ++i) { |
251 | auto iter = fPendingPaths.find(opsTaskIDs[i]); |
252 | if (fPendingPaths.end() == iter) { |
253 | continue; // No paths on this opsTask. |
254 | } |
255 | |
256 | fFlushingPaths.push_back(std::move(iter->second)); |
257 | fPendingPaths.erase(iter); |
258 | |
259 | for (GrCCDrawPathsOp* op : fFlushingPaths.back()->fDrawOps) { |
260 | op->accountForOwnPaths(fPathCache.get(), onFlushRP, &specs); |
261 | } |
262 | for (const auto& clipsIter : fFlushingPaths.back()->fClipPaths) { |
263 | clipsIter.second.accountForOwnPath(&specs); |
264 | } |
265 | } |
266 | |
267 | if (specs.isEmpty()) { |
268 | return; // Nothing to draw. |
269 | } |
270 | |
271 | // Determine if there are enough reusable paths from last flush for it to be worth our time to |
272 | // copy them to cached atlas(es). |
273 | int numCopies = specs.fNumCopiedPaths[GrCCPerFlushResourceSpecs::kFillIdx] + |
274 | specs.fNumCopiedPaths[GrCCPerFlushResourceSpecs::kStrokeIdx]; |
275 | auto doCopies = DoCopiesToA8Coverage(numCopies > 100 || |
276 | specs.fCopyAtlasSpecs.fApproxNumPixels > 256 * 256); |
277 | if (numCopies && DoCopiesToA8Coverage::kNo == doCopies) { |
278 | specs.cancelCopies(); |
279 | } |
280 | |
281 | auto resources = sk_make_sp<GrCCPerFlushResources>(onFlushRP, fCoverageType, specs); |
282 | if (!resources->isMapped()) { |
283 | return; // Some allocation failed. |
284 | } |
285 | |
286 | // Layout the atlas(es) and parse paths. |
287 | for (const auto& flushingPaths : fFlushingPaths) { |
288 | for (GrCCDrawPathsOp* op : flushingPaths->fDrawOps) { |
289 | op->setupResources(fPathCache.get(), onFlushRP, resources.get(), doCopies); |
290 | } |
291 | for (auto& clipsIter : flushingPaths->fClipPaths) { |
292 | clipsIter.second.renderPathInAtlas(resources.get(), onFlushRP); |
293 | } |
294 | } |
295 | |
296 | if (fPathCache) { |
297 | // Purge invalidated textures from previous atlases *before* calling finalize(). That way, |
298 | // the underlying textures objects can be freed up and reused for the next atlases. |
299 | fPathCache->purgeInvalidatedAtlasTextures(onFlushRP); |
300 | } |
301 | |
302 | // Allocate resources and then render the atlas(es). |
303 | if (!resources->finalize(onFlushRP)) { |
304 | return; |
305 | } |
306 | |
307 | // Commit flushing paths to the resources once they are successfully completed. |
308 | for (auto& flushingPaths : fFlushingPaths) { |
309 | SkASSERT(!flushingPaths->fFlushResources); |
310 | flushingPaths->fFlushResources = resources; |
311 | } |
312 | } |
313 | |
314 | void GrCoverageCountingPathRenderer::postFlush(GrDeferredUploadToken, const uint32_t* opsTaskIDs, |
315 | int numOpsTaskIDs) { |
316 | SkASSERT(fFlushing); |
317 | |
318 | if (!fFlushingPaths.empty()) { |
319 | // In DDL mode these aren't guaranteed to be deleted so we must clear out the perFlush |
320 | // resources manually. |
321 | for (auto& flushingPaths : fFlushingPaths) { |
322 | flushingPaths->fFlushResources = nullptr; |
323 | } |
324 | |
325 | // We wait to erase these until after flush, once Ops and FPs are done accessing their data. |
326 | fFlushingPaths.reset(); |
327 | } |
328 | |
329 | SkDEBUGCODE(fFlushing = false); |
330 | } |
331 | |
332 | void GrCoverageCountingPathRenderer::purgeCacheEntriesOlderThan( |
333 | GrProxyProvider* proxyProvider, const GrStdSteadyClock::time_point& purgeTime) { |
334 | if (fPathCache) { |
335 | fPathCache->purgeEntriesOlderThan(proxyProvider, purgeTime); |
336 | } |
337 | } |
338 | |
339 | void GrCoverageCountingPathRenderer::CropPath(const SkPath& path, const SkIRect& cropbox, |
340 | SkPath* out) { |
341 | SkPath cropboxPath; |
342 | cropboxPath.addRect(SkRect::Make(cropbox)); |
343 | if (!Op(cropboxPath, path, kIntersect_SkPathOp, out)) { |
344 | // This can fail if the PathOps encounter NaN or infinities. |
345 | out->reset(); |
346 | } |
347 | out->setIsVolatile(true); |
348 | } |
349 | |
350 | float GrCoverageCountingPathRenderer::GetStrokeDevWidth(const SkMatrix& m, |
351 | const SkStrokeRec& stroke, |
352 | float* inflationRadius) { |
353 | float strokeDevWidth; |
354 | if (stroke.isHairlineStyle()) { |
355 | strokeDevWidth = 1; |
356 | } else { |
357 | SkASSERT(SkStrokeRec::kStroke_Style == stroke.getStyle()); |
358 | SkASSERT(m.isSimilarity()); // Otherwise matrixScaleFactor = m.getMaxScale(). |
359 | float matrixScaleFactor = SkVector::Length(m.getScaleX(), m.getSkewY()); |
360 | strokeDevWidth = stroke.getWidth() * matrixScaleFactor; |
361 | } |
362 | if (inflationRadius) { |
363 | // Inflate for a minimum stroke width of 1. In some cases when the stroke is less than 1px |
364 | // wide, we may inflate it to 1px and instead reduce the opacity. |
365 | *inflationRadius = SkStrokeRec::GetInflationRadius( |
366 | stroke.getJoin(), stroke.getMiter(), stroke.getCap(), std::max(strokeDevWidth, 1.f)); |
367 | } |
368 | return strokeDevWidth; |
369 | } |
370 | |