1 | /**************************************************************************/ |
2 | /* face3.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "face3.h" |
32 | |
33 | #include "core/math/geometry_3d.h" |
34 | |
35 | int Face3::split_by_plane(const Plane &p_plane, Face3 p_res[3], bool p_is_point_over[3]) const { |
36 | ERR_FAIL_COND_V(is_degenerate(), 0); |
37 | |
38 | Vector3 above[4]; |
39 | int above_count = 0; |
40 | |
41 | Vector3 below[4]; |
42 | int below_count = 0; |
43 | |
44 | for (int i = 0; i < 3; i++) { |
45 | if (p_plane.has_point(vertex[i], (real_t)CMP_EPSILON)) { // point is in plane |
46 | |
47 | ERR_FAIL_COND_V(above_count >= 4, 0); |
48 | above[above_count++] = vertex[i]; |
49 | ERR_FAIL_COND_V(below_count >= 4, 0); |
50 | below[below_count++] = vertex[i]; |
51 | |
52 | } else { |
53 | if (p_plane.is_point_over(vertex[i])) { |
54 | //Point is over |
55 | ERR_FAIL_COND_V(above_count >= 4, 0); |
56 | above[above_count++] = vertex[i]; |
57 | |
58 | } else { |
59 | //Point is under |
60 | ERR_FAIL_COND_V(below_count >= 4, 0); |
61 | below[below_count++] = vertex[i]; |
62 | } |
63 | |
64 | /* Check for Intersection between this and the next vertex*/ |
65 | |
66 | Vector3 inters; |
67 | if (!p_plane.intersects_segment(vertex[i], vertex[(i + 1) % 3], &inters)) { |
68 | continue; |
69 | } |
70 | |
71 | /* Intersection goes to both */ |
72 | ERR_FAIL_COND_V(above_count >= 4, 0); |
73 | above[above_count++] = inters; |
74 | ERR_FAIL_COND_V(below_count >= 4, 0); |
75 | below[below_count++] = inters; |
76 | } |
77 | } |
78 | |
79 | int polygons_created = 0; |
80 | |
81 | ERR_FAIL_COND_V(above_count >= 4 && below_count >= 4, 0); //bug in the algo |
82 | |
83 | if (above_count >= 3) { |
84 | p_res[polygons_created] = Face3(above[0], above[1], above[2]); |
85 | p_is_point_over[polygons_created] = true; |
86 | polygons_created++; |
87 | |
88 | if (above_count == 4) { |
89 | p_res[polygons_created] = Face3(above[2], above[3], above[0]); |
90 | p_is_point_over[polygons_created] = true; |
91 | polygons_created++; |
92 | } |
93 | } |
94 | |
95 | if (below_count >= 3) { |
96 | p_res[polygons_created] = Face3(below[0], below[1], below[2]); |
97 | p_is_point_over[polygons_created] = false; |
98 | polygons_created++; |
99 | |
100 | if (below_count == 4) { |
101 | p_res[polygons_created] = Face3(below[2], below[3], below[0]); |
102 | p_is_point_over[polygons_created] = false; |
103 | polygons_created++; |
104 | } |
105 | } |
106 | |
107 | return polygons_created; |
108 | } |
109 | |
110 | bool Face3::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
111 | return Geometry3D::ray_intersects_triangle(p_from, p_dir, vertex[0], vertex[1], vertex[2], p_intersection); |
112 | } |
113 | |
114 | bool Face3::intersects_segment(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
115 | return Geometry3D::segment_intersects_triangle(p_from, p_dir, vertex[0], vertex[1], vertex[2], p_intersection); |
116 | } |
117 | |
118 | bool Face3::is_degenerate() const { |
119 | Vector3 normal = vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]); |
120 | return (normal.length_squared() < (real_t)CMP_EPSILON2); |
121 | } |
122 | |
123 | Vector3 Face3::get_random_point_inside() const { |
124 | real_t a = Math::random(0.0, 1.0); |
125 | real_t b = Math::random(0.0, 1.0); |
126 | if (a > b) { |
127 | SWAP(a, b); |
128 | } |
129 | |
130 | return vertex[0] * a + vertex[1] * (b - a) + vertex[2] * (1.0f - b); |
131 | } |
132 | |
133 | Plane Face3::get_plane(ClockDirection p_dir) const { |
134 | return Plane(vertex[0], vertex[1], vertex[2], p_dir); |
135 | } |
136 | |
137 | real_t Face3::get_area() const { |
138 | return vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]).length() * 0.5f; |
139 | } |
140 | |
141 | bool Face3::intersects_aabb(const AABB &p_aabb) const { |
142 | /** TEST PLANE **/ |
143 | if (!p_aabb.intersects_plane(get_plane())) { |
144 | return false; |
145 | } |
146 | |
147 | #define TEST_AXIS(m_ax) \ |
148 | /** TEST FACE AXIS */ \ |
149 | { \ |
150 | real_t aabb_min = p_aabb.position.m_ax; \ |
151 | real_t aabb_max = p_aabb.position.m_ax + p_aabb.size.m_ax; \ |
152 | real_t tri_min = vertex[0].m_ax; \ |
153 | real_t tri_max = vertex[0].m_ax; \ |
154 | for (int i = 1; i < 3; i++) { \ |
155 | if (vertex[i].m_ax > tri_max) \ |
156 | tri_max = vertex[i].m_ax; \ |
157 | if (vertex[i].m_ax < tri_min) \ |
158 | tri_min = vertex[i].m_ax; \ |
159 | } \ |
160 | \ |
161 | if (tri_max < aabb_min || aabb_max < tri_min) \ |
162 | return false; \ |
163 | } |
164 | |
165 | TEST_AXIS(x); |
166 | TEST_AXIS(y); |
167 | TEST_AXIS(z); |
168 | |
169 | /** TEST ALL EDGES **/ |
170 | |
171 | const Vector3 edge_norms[3] = { |
172 | vertex[0] - vertex[1], |
173 | vertex[1] - vertex[2], |
174 | vertex[2] - vertex[0], |
175 | }; |
176 | |
177 | for (int i = 0; i < 12; i++) { |
178 | Vector3 from, to; |
179 | p_aabb.get_edge(i, from, to); |
180 | Vector3 e1 = from - to; |
181 | for (int j = 0; j < 3; j++) { |
182 | Vector3 e2 = edge_norms[j]; |
183 | |
184 | Vector3 axis = vec3_cross(e1, e2); |
185 | |
186 | if (axis.length_squared() < 0.0001f) { |
187 | continue; // coplanar |
188 | } |
189 | axis.normalize(); |
190 | |
191 | real_t minA, maxA, minB, maxB; |
192 | p_aabb.project_range_in_plane(Plane(axis), minA, maxA); |
193 | project_range(axis, Transform3D(), minB, maxB); |
194 | |
195 | if (maxA < minB || maxB < minA) { |
196 | return false; |
197 | } |
198 | } |
199 | } |
200 | return true; |
201 | } |
202 | |
203 | Face3::operator String() const { |
204 | return String() + vertex[0] + ", " + vertex[1] + ", " + vertex[2]; |
205 | } |
206 | |
207 | void Face3::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
208 | for (int i = 0; i < 3; i++) { |
209 | Vector3 v = p_transform.xform(vertex[i]); |
210 | real_t d = p_normal.dot(v); |
211 | |
212 | if (i == 0 || d > r_max) { |
213 | r_max = d; |
214 | } |
215 | |
216 | if (i == 0 || d < r_min) { |
217 | r_min = d; |
218 | } |
219 | } |
220 | } |
221 | |
222 | void Face3::get_support(const Vector3 &p_normal, const Transform3D &p_transform, Vector3 *p_vertices, int *p_count, int p_max) const { |
223 | constexpr double face_support_threshold = 0.98; |
224 | constexpr double edge_support_threshold = 0.05; |
225 | |
226 | if (p_max <= 0) { |
227 | return; |
228 | } |
229 | |
230 | Vector3 n = p_transform.basis.xform_inv(p_normal); |
231 | |
232 | /** TEST FACE AS SUPPORT **/ |
233 | if (get_plane().normal.dot(n) > face_support_threshold) { |
234 | *p_count = MIN(3, p_max); |
235 | |
236 | for (int i = 0; i < *p_count; i++) { |
237 | p_vertices[i] = p_transform.xform(vertex[i]); |
238 | } |
239 | |
240 | return; |
241 | } |
242 | |
243 | /** FIND SUPPORT VERTEX **/ |
244 | |
245 | int vert_support_idx = -1; |
246 | real_t support_max = 0; |
247 | |
248 | for (int i = 0; i < 3; i++) { |
249 | real_t d = n.dot(vertex[i]); |
250 | |
251 | if (i == 0 || d > support_max) { |
252 | support_max = d; |
253 | vert_support_idx = i; |
254 | } |
255 | } |
256 | |
257 | /** TEST EDGES AS SUPPORT **/ |
258 | |
259 | for (int i = 0; i < 3; i++) { |
260 | if (i != vert_support_idx && i + 1 != vert_support_idx) { |
261 | continue; |
262 | } |
263 | |
264 | // check if edge is valid as a support |
265 | real_t dot = (vertex[i] - vertex[(i + 1) % 3]).normalized().dot(n); |
266 | dot = ABS(dot); |
267 | if (dot < edge_support_threshold) { |
268 | *p_count = MIN(2, p_max); |
269 | |
270 | for (int j = 0; j < *p_count; j++) { |
271 | p_vertices[j] = p_transform.xform(vertex[(j + i) % 3]); |
272 | } |
273 | |
274 | return; |
275 | } |
276 | } |
277 | |
278 | *p_count = 1; |
279 | p_vertices[0] = p_transform.xform(vertex[vert_support_idx]); |
280 | } |
281 | |
282 | Vector3 Face3::get_closest_point_to(const Vector3 &p_point) const { |
283 | Vector3 edge0 = vertex[1] - vertex[0]; |
284 | Vector3 edge1 = vertex[2] - vertex[0]; |
285 | Vector3 v0 = vertex[0] - p_point; |
286 | |
287 | real_t a = edge0.dot(edge0); |
288 | real_t b = edge0.dot(edge1); |
289 | real_t c = edge1.dot(edge1); |
290 | real_t d = edge0.dot(v0); |
291 | real_t e = edge1.dot(v0); |
292 | |
293 | real_t det = a * c - b * b; |
294 | real_t s = b * e - c * d; |
295 | real_t t = b * d - a * e; |
296 | |
297 | if (s + t < det) { |
298 | if (s < 0.f) { |
299 | if (t < 0.f) { |
300 | if (d < 0.f) { |
301 | s = CLAMP(-d / a, 0.f, 1.f); |
302 | t = 0.f; |
303 | } else { |
304 | s = 0.f; |
305 | t = CLAMP(-e / c, 0.f, 1.f); |
306 | } |
307 | } else { |
308 | s = 0.f; |
309 | t = CLAMP(-e / c, 0.f, 1.f); |
310 | } |
311 | } else if (t < 0.f) { |
312 | s = CLAMP(-d / a, 0.f, 1.f); |
313 | t = 0.f; |
314 | } else { |
315 | real_t invDet = 1.f / det; |
316 | s *= invDet; |
317 | t *= invDet; |
318 | } |
319 | } else { |
320 | if (s < 0.f) { |
321 | real_t tmp0 = b + d; |
322 | real_t tmp1 = c + e; |
323 | if (tmp1 > tmp0) { |
324 | real_t numer = tmp1 - tmp0; |
325 | real_t denom = a - 2 * b + c; |
326 | s = CLAMP(numer / denom, 0.f, 1.f); |
327 | t = 1 - s; |
328 | } else { |
329 | t = CLAMP(-e / c, 0.f, 1.f); |
330 | s = 0.f; |
331 | } |
332 | } else if (t < 0.f) { |
333 | if (a + d > b + e) { |
334 | real_t numer = c + e - b - d; |
335 | real_t denom = a - 2 * b + c; |
336 | s = CLAMP(numer / denom, 0.f, 1.f); |
337 | t = 1 - s; |
338 | } else { |
339 | s = CLAMP(-d / a, 0.f, 1.f); |
340 | t = 0.f; |
341 | } |
342 | } else { |
343 | real_t numer = c + e - b - d; |
344 | real_t denom = a - 2 * b + c; |
345 | s = CLAMP(numer / denom, 0.f, 1.f); |
346 | t = 1.f - s; |
347 | } |
348 | } |
349 | |
350 | return vertex[0] + s * edge0 + t * edge1; |
351 | } |
352 | |