| 1 | /**************************************************************************/ |
| 2 | /* face3.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "face3.h" |
| 32 | |
| 33 | #include "core/math/geometry_3d.h" |
| 34 | |
| 35 | int Face3::split_by_plane(const Plane &p_plane, Face3 p_res[3], bool p_is_point_over[3]) const { |
| 36 | ERR_FAIL_COND_V(is_degenerate(), 0); |
| 37 | |
| 38 | Vector3 above[4]; |
| 39 | int above_count = 0; |
| 40 | |
| 41 | Vector3 below[4]; |
| 42 | int below_count = 0; |
| 43 | |
| 44 | for (int i = 0; i < 3; i++) { |
| 45 | if (p_plane.has_point(vertex[i], (real_t)CMP_EPSILON)) { // point is in plane |
| 46 | |
| 47 | ERR_FAIL_COND_V(above_count >= 4, 0); |
| 48 | above[above_count++] = vertex[i]; |
| 49 | ERR_FAIL_COND_V(below_count >= 4, 0); |
| 50 | below[below_count++] = vertex[i]; |
| 51 | |
| 52 | } else { |
| 53 | if (p_plane.is_point_over(vertex[i])) { |
| 54 | //Point is over |
| 55 | ERR_FAIL_COND_V(above_count >= 4, 0); |
| 56 | above[above_count++] = vertex[i]; |
| 57 | |
| 58 | } else { |
| 59 | //Point is under |
| 60 | ERR_FAIL_COND_V(below_count >= 4, 0); |
| 61 | below[below_count++] = vertex[i]; |
| 62 | } |
| 63 | |
| 64 | /* Check for Intersection between this and the next vertex*/ |
| 65 | |
| 66 | Vector3 inters; |
| 67 | if (!p_plane.intersects_segment(vertex[i], vertex[(i + 1) % 3], &inters)) { |
| 68 | continue; |
| 69 | } |
| 70 | |
| 71 | /* Intersection goes to both */ |
| 72 | ERR_FAIL_COND_V(above_count >= 4, 0); |
| 73 | above[above_count++] = inters; |
| 74 | ERR_FAIL_COND_V(below_count >= 4, 0); |
| 75 | below[below_count++] = inters; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | int polygons_created = 0; |
| 80 | |
| 81 | ERR_FAIL_COND_V(above_count >= 4 && below_count >= 4, 0); //bug in the algo |
| 82 | |
| 83 | if (above_count >= 3) { |
| 84 | p_res[polygons_created] = Face3(above[0], above[1], above[2]); |
| 85 | p_is_point_over[polygons_created] = true; |
| 86 | polygons_created++; |
| 87 | |
| 88 | if (above_count == 4) { |
| 89 | p_res[polygons_created] = Face3(above[2], above[3], above[0]); |
| 90 | p_is_point_over[polygons_created] = true; |
| 91 | polygons_created++; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | if (below_count >= 3) { |
| 96 | p_res[polygons_created] = Face3(below[0], below[1], below[2]); |
| 97 | p_is_point_over[polygons_created] = false; |
| 98 | polygons_created++; |
| 99 | |
| 100 | if (below_count == 4) { |
| 101 | p_res[polygons_created] = Face3(below[2], below[3], below[0]); |
| 102 | p_is_point_over[polygons_created] = false; |
| 103 | polygons_created++; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | return polygons_created; |
| 108 | } |
| 109 | |
| 110 | bool Face3::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
| 111 | return Geometry3D::ray_intersects_triangle(p_from, p_dir, vertex[0], vertex[1], vertex[2], p_intersection); |
| 112 | } |
| 113 | |
| 114 | bool Face3::intersects_segment(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { |
| 115 | return Geometry3D::segment_intersects_triangle(p_from, p_dir, vertex[0], vertex[1], vertex[2], p_intersection); |
| 116 | } |
| 117 | |
| 118 | bool Face3::is_degenerate() const { |
| 119 | Vector3 normal = vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]); |
| 120 | return (normal.length_squared() < (real_t)CMP_EPSILON2); |
| 121 | } |
| 122 | |
| 123 | Vector3 Face3::get_random_point_inside() const { |
| 124 | real_t a = Math::random(0.0, 1.0); |
| 125 | real_t b = Math::random(0.0, 1.0); |
| 126 | if (a > b) { |
| 127 | SWAP(a, b); |
| 128 | } |
| 129 | |
| 130 | return vertex[0] * a + vertex[1] * (b - a) + vertex[2] * (1.0f - b); |
| 131 | } |
| 132 | |
| 133 | Plane Face3::get_plane(ClockDirection p_dir) const { |
| 134 | return Plane(vertex[0], vertex[1], vertex[2], p_dir); |
| 135 | } |
| 136 | |
| 137 | real_t Face3::get_area() const { |
| 138 | return vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]).length() * 0.5f; |
| 139 | } |
| 140 | |
| 141 | bool Face3::intersects_aabb(const AABB &p_aabb) const { |
| 142 | /** TEST PLANE **/ |
| 143 | if (!p_aabb.intersects_plane(get_plane())) { |
| 144 | return false; |
| 145 | } |
| 146 | |
| 147 | #define TEST_AXIS(m_ax) \ |
| 148 | /** TEST FACE AXIS */ \ |
| 149 | { \ |
| 150 | real_t aabb_min = p_aabb.position.m_ax; \ |
| 151 | real_t aabb_max = p_aabb.position.m_ax + p_aabb.size.m_ax; \ |
| 152 | real_t tri_min = vertex[0].m_ax; \ |
| 153 | real_t tri_max = vertex[0].m_ax; \ |
| 154 | for (int i = 1; i < 3; i++) { \ |
| 155 | if (vertex[i].m_ax > tri_max) \ |
| 156 | tri_max = vertex[i].m_ax; \ |
| 157 | if (vertex[i].m_ax < tri_min) \ |
| 158 | tri_min = vertex[i].m_ax; \ |
| 159 | } \ |
| 160 | \ |
| 161 | if (tri_max < aabb_min || aabb_max < tri_min) \ |
| 162 | return false; \ |
| 163 | } |
| 164 | |
| 165 | TEST_AXIS(x); |
| 166 | TEST_AXIS(y); |
| 167 | TEST_AXIS(z); |
| 168 | |
| 169 | /** TEST ALL EDGES **/ |
| 170 | |
| 171 | const Vector3 edge_norms[3] = { |
| 172 | vertex[0] - vertex[1], |
| 173 | vertex[1] - vertex[2], |
| 174 | vertex[2] - vertex[0], |
| 175 | }; |
| 176 | |
| 177 | for (int i = 0; i < 12; i++) { |
| 178 | Vector3 from, to; |
| 179 | p_aabb.get_edge(i, from, to); |
| 180 | Vector3 e1 = from - to; |
| 181 | for (int j = 0; j < 3; j++) { |
| 182 | Vector3 e2 = edge_norms[j]; |
| 183 | |
| 184 | Vector3 axis = vec3_cross(e1, e2); |
| 185 | |
| 186 | if (axis.length_squared() < 0.0001f) { |
| 187 | continue; // coplanar |
| 188 | } |
| 189 | axis.normalize(); |
| 190 | |
| 191 | real_t minA, maxA, minB, maxB; |
| 192 | p_aabb.project_range_in_plane(Plane(axis), minA, maxA); |
| 193 | project_range(axis, Transform3D(), minB, maxB); |
| 194 | |
| 195 | if (maxA < minB || maxB < minA) { |
| 196 | return false; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | return true; |
| 201 | } |
| 202 | |
| 203 | Face3::operator String() const { |
| 204 | return String() + vertex[0] + ", " + vertex[1] + ", " + vertex[2]; |
| 205 | } |
| 206 | |
| 207 | void Face3::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 208 | for (int i = 0; i < 3; i++) { |
| 209 | Vector3 v = p_transform.xform(vertex[i]); |
| 210 | real_t d = p_normal.dot(v); |
| 211 | |
| 212 | if (i == 0 || d > r_max) { |
| 213 | r_max = d; |
| 214 | } |
| 215 | |
| 216 | if (i == 0 || d < r_min) { |
| 217 | r_min = d; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | void Face3::get_support(const Vector3 &p_normal, const Transform3D &p_transform, Vector3 *p_vertices, int *p_count, int p_max) const { |
| 223 | constexpr double face_support_threshold = 0.98; |
| 224 | constexpr double edge_support_threshold = 0.05; |
| 225 | |
| 226 | if (p_max <= 0) { |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | Vector3 n = p_transform.basis.xform_inv(p_normal); |
| 231 | |
| 232 | /** TEST FACE AS SUPPORT **/ |
| 233 | if (get_plane().normal.dot(n) > face_support_threshold) { |
| 234 | *p_count = MIN(3, p_max); |
| 235 | |
| 236 | for (int i = 0; i < *p_count; i++) { |
| 237 | p_vertices[i] = p_transform.xform(vertex[i]); |
| 238 | } |
| 239 | |
| 240 | return; |
| 241 | } |
| 242 | |
| 243 | /** FIND SUPPORT VERTEX **/ |
| 244 | |
| 245 | int vert_support_idx = -1; |
| 246 | real_t support_max = 0; |
| 247 | |
| 248 | for (int i = 0; i < 3; i++) { |
| 249 | real_t d = n.dot(vertex[i]); |
| 250 | |
| 251 | if (i == 0 || d > support_max) { |
| 252 | support_max = d; |
| 253 | vert_support_idx = i; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /** TEST EDGES AS SUPPORT **/ |
| 258 | |
| 259 | for (int i = 0; i < 3; i++) { |
| 260 | if (i != vert_support_idx && i + 1 != vert_support_idx) { |
| 261 | continue; |
| 262 | } |
| 263 | |
| 264 | // check if edge is valid as a support |
| 265 | real_t dot = (vertex[i] - vertex[(i + 1) % 3]).normalized().dot(n); |
| 266 | dot = ABS(dot); |
| 267 | if (dot < edge_support_threshold) { |
| 268 | *p_count = MIN(2, p_max); |
| 269 | |
| 270 | for (int j = 0; j < *p_count; j++) { |
| 271 | p_vertices[j] = p_transform.xform(vertex[(j + i) % 3]); |
| 272 | } |
| 273 | |
| 274 | return; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | *p_count = 1; |
| 279 | p_vertices[0] = p_transform.xform(vertex[vert_support_idx]); |
| 280 | } |
| 281 | |
| 282 | Vector3 Face3::get_closest_point_to(const Vector3 &p_point) const { |
| 283 | Vector3 edge0 = vertex[1] - vertex[0]; |
| 284 | Vector3 edge1 = vertex[2] - vertex[0]; |
| 285 | Vector3 v0 = vertex[0] - p_point; |
| 286 | |
| 287 | real_t a = edge0.dot(edge0); |
| 288 | real_t b = edge0.dot(edge1); |
| 289 | real_t c = edge1.dot(edge1); |
| 290 | real_t d = edge0.dot(v0); |
| 291 | real_t e = edge1.dot(v0); |
| 292 | |
| 293 | real_t det = a * c - b * b; |
| 294 | real_t s = b * e - c * d; |
| 295 | real_t t = b * d - a * e; |
| 296 | |
| 297 | if (s + t < det) { |
| 298 | if (s < 0.f) { |
| 299 | if (t < 0.f) { |
| 300 | if (d < 0.f) { |
| 301 | s = CLAMP(-d / a, 0.f, 1.f); |
| 302 | t = 0.f; |
| 303 | } else { |
| 304 | s = 0.f; |
| 305 | t = CLAMP(-e / c, 0.f, 1.f); |
| 306 | } |
| 307 | } else { |
| 308 | s = 0.f; |
| 309 | t = CLAMP(-e / c, 0.f, 1.f); |
| 310 | } |
| 311 | } else if (t < 0.f) { |
| 312 | s = CLAMP(-d / a, 0.f, 1.f); |
| 313 | t = 0.f; |
| 314 | } else { |
| 315 | real_t invDet = 1.f / det; |
| 316 | s *= invDet; |
| 317 | t *= invDet; |
| 318 | } |
| 319 | } else { |
| 320 | if (s < 0.f) { |
| 321 | real_t tmp0 = b + d; |
| 322 | real_t tmp1 = c + e; |
| 323 | if (tmp1 > tmp0) { |
| 324 | real_t numer = tmp1 - tmp0; |
| 325 | real_t denom = a - 2 * b + c; |
| 326 | s = CLAMP(numer / denom, 0.f, 1.f); |
| 327 | t = 1 - s; |
| 328 | } else { |
| 329 | t = CLAMP(-e / c, 0.f, 1.f); |
| 330 | s = 0.f; |
| 331 | } |
| 332 | } else if (t < 0.f) { |
| 333 | if (a + d > b + e) { |
| 334 | real_t numer = c + e - b - d; |
| 335 | real_t denom = a - 2 * b + c; |
| 336 | s = CLAMP(numer / denom, 0.f, 1.f); |
| 337 | t = 1 - s; |
| 338 | } else { |
| 339 | s = CLAMP(-d / a, 0.f, 1.f); |
| 340 | t = 0.f; |
| 341 | } |
| 342 | } else { |
| 343 | real_t numer = c + e - b - d; |
| 344 | real_t denom = a - 2 * b + c; |
| 345 | s = CLAMP(numer / denom, 0.f, 1.f); |
| 346 | t = 1.f - s; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | return vertex[0] + s * edge0 + t * edge1; |
| 351 | } |
| 352 | |