1 | /**************************************************************************/ |
2 | /* geometry_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "geometry_3d.h" |
32 | |
33 | #include "thirdparty/misc/polypartition.h" |
34 | |
35 | void Geometry3D::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) { |
36 | // Based on David Eberly's Computation of Distance Between Line Segments algorithm. |
37 | |
38 | Vector3 p = p_p1 - p_p0; |
39 | Vector3 q = p_q1 - p_q0; |
40 | Vector3 r = p_p0 - p_q0; |
41 | |
42 | real_t a = p.dot(p); |
43 | real_t b = p.dot(q); |
44 | real_t c = q.dot(q); |
45 | real_t d = p.dot(r); |
46 | real_t e = q.dot(r); |
47 | |
48 | real_t s = 0.0f; |
49 | real_t t = 0.0f; |
50 | |
51 | real_t det = a * c - b * b; |
52 | if (det > CMP_EPSILON) { |
53 | // Non-parallel segments |
54 | real_t bte = b * e; |
55 | real_t ctd = c * d; |
56 | |
57 | if (bte <= ctd) { |
58 | // s <= 0.0f |
59 | if (e <= 0.0f) { |
60 | // t <= 0.0f |
61 | s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f)); |
62 | t = 0.0f; |
63 | } else if (e < c) { |
64 | // 0.0f < t < 1 |
65 | s = 0.0f; |
66 | t = e / c; |
67 | } else { |
68 | // t >= 1 |
69 | s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f)); |
70 | t = 1; |
71 | } |
72 | } else { |
73 | // s > 0.0f |
74 | s = bte - ctd; |
75 | if (s >= det) { |
76 | // s >= 1 |
77 | if (b + e <= 0.0f) { |
78 | // t <= 0.0f |
79 | s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1)); |
80 | t = 0.0f; |
81 | } else if (b + e < c) { |
82 | // 0.0f < t < 1 |
83 | s = 1; |
84 | t = (b + e) / c; |
85 | } else { |
86 | // t >= 1 |
87 | s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1)); |
88 | t = 1; |
89 | } |
90 | } else { |
91 | // 0.0f < s < 1 |
92 | real_t ate = a * e; |
93 | real_t btd = b * d; |
94 | |
95 | if (ate <= btd) { |
96 | // t <= 0.0f |
97 | s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a)); |
98 | t = 0.0f; |
99 | } else { |
100 | // t > 0.0f |
101 | t = ate - btd; |
102 | if (t >= det) { |
103 | // t >= 1 |
104 | s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a)); |
105 | t = 1; |
106 | } else { |
107 | // 0.0f < t < 1 |
108 | s /= det; |
109 | t /= det; |
110 | } |
111 | } |
112 | } |
113 | } |
114 | } else { |
115 | // Parallel segments |
116 | if (e <= 0.0f) { |
117 | s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a)); |
118 | t = 0.0f; |
119 | } else if (e >= c) { |
120 | s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a)); |
121 | t = 1; |
122 | } else { |
123 | s = 0.0f; |
124 | t = e / c; |
125 | } |
126 | } |
127 | |
128 | r_ps = (1 - s) * p_p0 + s * p_p1; |
129 | r_qt = (1 - t) * p_q0 + t * p_q1; |
130 | } |
131 | |
132 | real_t Geometry3D::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) { |
133 | Vector3 ps; |
134 | Vector3 qt; |
135 | get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt); |
136 | Vector3 st = qt - ps; |
137 | return st.length(); |
138 | } |
139 | |
140 | void Geometry3D::MeshData::optimize_vertices() { |
141 | HashMap<int, int> vtx_remap; |
142 | |
143 | for (MeshData::Face &face : faces) { |
144 | for (int &index : face.indices) { |
145 | if (!vtx_remap.has(index)) { |
146 | int ni = vtx_remap.size(); |
147 | vtx_remap[index] = ni; |
148 | } |
149 | index = vtx_remap[index]; |
150 | } |
151 | } |
152 | |
153 | for (MeshData::Edge &edge : edges) { |
154 | int a = edge.vertex_a; |
155 | int b = edge.vertex_b; |
156 | |
157 | if (!vtx_remap.has(a)) { |
158 | int ni = vtx_remap.size(); |
159 | vtx_remap[a] = ni; |
160 | } |
161 | if (!vtx_remap.has(b)) { |
162 | int ni = vtx_remap.size(); |
163 | vtx_remap[b] = ni; |
164 | } |
165 | |
166 | edge.vertex_a = vtx_remap[a]; |
167 | edge.vertex_b = vtx_remap[b]; |
168 | } |
169 | |
170 | LocalVector<Vector3> new_vertices; |
171 | new_vertices.resize(vtx_remap.size()); |
172 | |
173 | for (uint32_t i = 0; i < vertices.size(); i++) { |
174 | if (vtx_remap.has(i)) { |
175 | new_vertices[vtx_remap[i]] = vertices[i]; |
176 | } |
177 | } |
178 | vertices = new_vertices; |
179 | } |
180 | |
181 | struct _FaceClassify { |
182 | struct _Link { |
183 | int face = -1; |
184 | int edge = -1; |
185 | void clear() { |
186 | face = -1; |
187 | edge = -1; |
188 | } |
189 | _Link() {} |
190 | }; |
191 | bool valid = false; |
192 | int group = -1; |
193 | _Link links[3]; |
194 | Face3 face; |
195 | _FaceClassify() {} |
196 | }; |
197 | |
198 | /*** GEOMETRY WRAPPER ***/ |
199 | |
200 | enum _CellFlags { |
201 | _CELL_SOLID = 1, |
202 | _CELL_EXTERIOR = 2, |
203 | _CELL_STEP_MASK = 0x1C, |
204 | _CELL_STEP_NONE = 0 << 2, |
205 | _CELL_STEP_Y_POS = 1 << 2, |
206 | _CELL_STEP_Y_NEG = 2 << 2, |
207 | _CELL_STEP_X_POS = 3 << 2, |
208 | _CELL_STEP_X_NEG = 4 << 2, |
209 | _CELL_STEP_Z_POS = 5 << 2, |
210 | _CELL_STEP_Z_NEG = 6 << 2, |
211 | _CELL_STEP_DONE = 7 << 2, |
212 | _CELL_PREV_MASK = 0xE0, |
213 | _CELL_PREV_NONE = 0 << 5, |
214 | _CELL_PREV_Y_POS = 1 << 5, |
215 | _CELL_PREV_Y_NEG = 2 << 5, |
216 | _CELL_PREV_X_POS = 3 << 5, |
217 | _CELL_PREV_X_NEG = 4 << 5, |
218 | _CELL_PREV_Z_POS = 5 << 5, |
219 | _CELL_PREV_Z_NEG = 6 << 5, |
220 | _CELL_PREV_FIRST = 7 << 5, |
221 | }; |
222 | |
223 | static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) { |
224 | AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z)); |
225 | aabb.position = aabb.position * voxelsize; |
226 | aabb.size = aabb.size * voxelsize; |
227 | |
228 | if (!p_face.intersects_aabb(aabb)) { |
229 | return; |
230 | } |
231 | |
232 | if (len_x == 1 && len_y == 1 && len_z == 1) { |
233 | p_cell_status[x][y][z] = _CELL_SOLID; |
234 | return; |
235 | } |
236 | |
237 | int div_x = len_x > 1 ? 2 : 1; |
238 | int div_y = len_y > 1 ? 2 : 1; |
239 | int div_z = len_z > 1 ? 2 : 1; |
240 | |
241 | #define SPLIT_DIV(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \ |
242 | if (m_div == 1) { \ |
243 | m_new_v = m_v; \ |
244 | m_new_len_v = 1; \ |
245 | } else if (m_i == 0) { \ |
246 | m_new_v = m_v; \ |
247 | m_new_len_v = m_len_v / 2; \ |
248 | } else { \ |
249 | m_new_v = m_v + m_len_v / 2; \ |
250 | m_new_len_v = m_len_v - m_len_v / 2; \ |
251 | } |
252 | |
253 | int new_x; |
254 | int new_len_x; |
255 | int new_y; |
256 | int new_len_y; |
257 | int new_z; |
258 | int new_len_z; |
259 | |
260 | for (int i = 0; i < div_x; i++) { |
261 | SPLIT_DIV(i, div_x, x, len_x, new_x, new_len_x); |
262 | |
263 | for (int j = 0; j < div_y; j++) { |
264 | SPLIT_DIV(j, div_y, y, len_y, new_y, new_len_y); |
265 | |
266 | for (int k = 0; k < div_z; k++) { |
267 | SPLIT_DIV(k, div_z, z, len_z, new_z, new_len_z); |
268 | |
269 | _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face); |
270 | } |
271 | } |
272 | } |
273 | |
274 | #undef SPLIT_DIV |
275 | } |
276 | |
277 | static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) { |
278 | if (p_cell_status[x][y][z] & 3) { |
279 | return; // Nothing to do, already used and/or visited. |
280 | } |
281 | |
282 | p_cell_status[x][y][z] = _CELL_PREV_FIRST; |
283 | |
284 | while (true) { |
285 | uint8_t &c = p_cell_status[x][y][z]; |
286 | |
287 | if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) { |
288 | // Haven't been in here, mark as outside. |
289 | p_cell_status[x][y][z] |= _CELL_EXTERIOR; |
290 | } |
291 | |
292 | if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) { |
293 | // If not done, increase step. |
294 | c += 1 << 2; |
295 | } |
296 | |
297 | if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) { |
298 | // Go back. |
299 | switch (c & _CELL_PREV_MASK) { |
300 | case _CELL_PREV_FIRST: { |
301 | return; |
302 | } break; |
303 | case _CELL_PREV_Y_POS: { |
304 | y++; |
305 | ERR_FAIL_COND(y >= len_y); |
306 | } break; |
307 | case _CELL_PREV_Y_NEG: { |
308 | y--; |
309 | ERR_FAIL_COND(y < 0); |
310 | } break; |
311 | case _CELL_PREV_X_POS: { |
312 | x++; |
313 | ERR_FAIL_COND(x >= len_x); |
314 | } break; |
315 | case _CELL_PREV_X_NEG: { |
316 | x--; |
317 | ERR_FAIL_COND(x < 0); |
318 | } break; |
319 | case _CELL_PREV_Z_POS: { |
320 | z++; |
321 | ERR_FAIL_COND(z >= len_z); |
322 | } break; |
323 | case _CELL_PREV_Z_NEG: { |
324 | z--; |
325 | ERR_FAIL_COND(z < 0); |
326 | } break; |
327 | default: { |
328 | ERR_FAIL(); |
329 | } |
330 | } |
331 | continue; |
332 | } |
333 | |
334 | int next_x = x, next_y = y, next_z = z; |
335 | uint8_t prev = 0; |
336 | |
337 | switch (c & _CELL_STEP_MASK) { |
338 | case _CELL_STEP_Y_POS: { |
339 | next_y++; |
340 | prev = _CELL_PREV_Y_NEG; |
341 | } break; |
342 | case _CELL_STEP_Y_NEG: { |
343 | next_y--; |
344 | prev = _CELL_PREV_Y_POS; |
345 | } break; |
346 | case _CELL_STEP_X_POS: { |
347 | next_x++; |
348 | prev = _CELL_PREV_X_NEG; |
349 | } break; |
350 | case _CELL_STEP_X_NEG: { |
351 | next_x--; |
352 | prev = _CELL_PREV_X_POS; |
353 | } break; |
354 | case _CELL_STEP_Z_POS: { |
355 | next_z++; |
356 | prev = _CELL_PREV_Z_NEG; |
357 | } break; |
358 | case _CELL_STEP_Z_NEG: { |
359 | next_z--; |
360 | prev = _CELL_PREV_Z_POS; |
361 | } break; |
362 | default: |
363 | ERR_FAIL(); |
364 | } |
365 | |
366 | if (next_x < 0 || next_x >= len_x) { |
367 | continue; |
368 | } |
369 | if (next_y < 0 || next_y >= len_y) { |
370 | continue; |
371 | } |
372 | if (next_z < 0 || next_z >= len_z) { |
373 | continue; |
374 | } |
375 | |
376 | if (p_cell_status[next_x][next_y][next_z] & 3) { |
377 | continue; |
378 | } |
379 | |
380 | x = next_x; |
381 | y = next_y; |
382 | z = next_z; |
383 | p_cell_status[x][y][z] |= prev; |
384 | } |
385 | } |
386 | |
387 | static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) { |
388 | ERR_FAIL_INDEX(x, len_x); |
389 | ERR_FAIL_INDEX(y, len_y); |
390 | ERR_FAIL_INDEX(z, len_z); |
391 | |
392 | if (p_cell_status[x][y][z] & _CELL_EXTERIOR) { |
393 | return; |
394 | } |
395 | |
396 | #define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1) |
397 | |
398 | static const uint8_t indices[6][4] = { |
399 | { 7, 6, 4, 5 }, |
400 | { 7, 3, 2, 6 }, |
401 | { 7, 5, 1, 3 }, |
402 | { 0, 2, 3, 1 }, |
403 | { 0, 1, 5, 4 }, |
404 | { 0, 4, 6, 2 }, |
405 | |
406 | }; |
407 | |
408 | for (int i = 0; i < 6; i++) { |
409 | Vector3 face_points[4]; |
410 | int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); |
411 | int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); |
412 | int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); |
413 | |
414 | bool plot = false; |
415 | |
416 | if (disp_x < 0 || disp_x >= len_x) { |
417 | plot = true; |
418 | } |
419 | if (disp_y < 0 || disp_y >= len_y) { |
420 | plot = true; |
421 | } |
422 | if (disp_z < 0 || disp_z >= len_z) { |
423 | plot = true; |
424 | } |
425 | |
426 | if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) { |
427 | plot = true; |
428 | } |
429 | |
430 | if (!plot) { |
431 | continue; |
432 | } |
433 | |
434 | for (int j = 0; j < 4; j++) { |
435 | face_points[j] = vert(indices[i][j]) + Vector3(x, y, z); |
436 | } |
437 | |
438 | p_faces.push_back( |
439 | Face3( |
440 | face_points[0], |
441 | face_points[1], |
442 | face_points[2])); |
443 | |
444 | p_faces.push_back( |
445 | Face3( |
446 | face_points[2], |
447 | face_points[3], |
448 | face_points[0])); |
449 | } |
450 | } |
451 | |
452 | Vector<Face3> Geometry3D::wrap_geometry(Vector<Face3> p_array, real_t *p_error) { |
453 | int face_count = p_array.size(); |
454 | const Face3 *faces = p_array.ptr(); |
455 | constexpr double min_size = 1.0; |
456 | constexpr int max_length = 20; |
457 | |
458 | AABB global_aabb; |
459 | |
460 | for (int i = 0; i < face_count; i++) { |
461 | if (i == 0) { |
462 | global_aabb = faces[i].get_aabb(); |
463 | } else { |
464 | global_aabb.merge_with(faces[i].get_aabb()); |
465 | } |
466 | } |
467 | |
468 | global_aabb.grow_by(0.01f); // Avoid numerical error. |
469 | |
470 | // Determine amount of cells in grid axis. |
471 | int div_x, div_y, div_z; |
472 | |
473 | if (global_aabb.size.x / min_size < max_length) { |
474 | div_x = (int)(global_aabb.size.x / min_size) + 1; |
475 | } else { |
476 | div_x = max_length; |
477 | } |
478 | |
479 | if (global_aabb.size.y / min_size < max_length) { |
480 | div_y = (int)(global_aabb.size.y / min_size) + 1; |
481 | } else { |
482 | div_y = max_length; |
483 | } |
484 | |
485 | if (global_aabb.size.z / min_size < max_length) { |
486 | div_z = (int)(global_aabb.size.z / min_size) + 1; |
487 | } else { |
488 | div_z = max_length; |
489 | } |
490 | |
491 | Vector3 voxelsize = global_aabb.size; |
492 | voxelsize.x /= div_x; |
493 | voxelsize.y /= div_y; |
494 | voxelsize.z /= div_z; |
495 | |
496 | // Create and initialize cells to zero. |
497 | |
498 | uint8_t ***cell_status = memnew_arr(uint8_t **, div_x); |
499 | for (int i = 0; i < div_x; i++) { |
500 | cell_status[i] = memnew_arr(uint8_t *, div_y); |
501 | |
502 | for (int j = 0; j < div_y; j++) { |
503 | cell_status[i][j] = memnew_arr(uint8_t, div_z); |
504 | |
505 | for (int k = 0; k < div_z; k++) { |
506 | cell_status[i][j][k] = 0; |
507 | } |
508 | } |
509 | } |
510 | |
511 | // Plot faces into cells. |
512 | |
513 | for (int i = 0; i < face_count; i++) { |
514 | Face3 f = faces[i]; |
515 | for (int j = 0; j < 3; j++) { |
516 | f.vertex[j] -= global_aabb.position; |
517 | } |
518 | _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f); |
519 | } |
520 | |
521 | // Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking. |
522 | |
523 | for (int i = 0; i < div_x; i++) { |
524 | for (int j = 0; j < div_y; j++) { |
525 | _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z); |
526 | _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z); |
527 | } |
528 | } |
529 | |
530 | for (int i = 0; i < div_z; i++) { |
531 | for (int j = 0; j < div_y; j++) { |
532 | _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z); |
533 | _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z); |
534 | } |
535 | } |
536 | |
537 | for (int i = 0; i < div_x; i++) { |
538 | for (int j = 0; j < div_z; j++) { |
539 | _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z); |
540 | _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z); |
541 | } |
542 | } |
543 | |
544 | // Build faces for the inside-outside cell divisors. |
545 | |
546 | Vector<Face3> wrapped_faces; |
547 | |
548 | for (int i = 0; i < div_x; i++) { |
549 | for (int j = 0; j < div_y; j++) { |
550 | for (int k = 0; k < div_z; k++) { |
551 | _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces); |
552 | } |
553 | } |
554 | } |
555 | |
556 | // Transform face vertices to global coords. |
557 | |
558 | int wrapped_faces_count = wrapped_faces.size(); |
559 | Face3 *wrapped_faces_ptr = wrapped_faces.ptrw(); |
560 | |
561 | for (int i = 0; i < wrapped_faces_count; i++) { |
562 | for (int j = 0; j < 3; j++) { |
563 | Vector3 &v = wrapped_faces_ptr[i].vertex[j]; |
564 | v = v * voxelsize; |
565 | v += global_aabb.position; |
566 | } |
567 | } |
568 | |
569 | // clean up grid |
570 | |
571 | for (int i = 0; i < div_x; i++) { |
572 | for (int j = 0; j < div_y; j++) { |
573 | memdelete_arr(cell_status[i][j]); |
574 | } |
575 | |
576 | memdelete_arr(cell_status[i]); |
577 | } |
578 | |
579 | memdelete_arr(cell_status); |
580 | if (p_error) { |
581 | *p_error = voxelsize.length(); |
582 | } |
583 | |
584 | return wrapped_faces; |
585 | } |
586 | |
587 | Geometry3D::MeshData Geometry3D::build_convex_mesh(const Vector<Plane> &p_planes) { |
588 | MeshData mesh; |
589 | |
590 | #define SUBPLANE_SIZE 1024.0 |
591 | |
592 | real_t subplane_size = 1024.0; // Should compute this from the actual plane. |
593 | for (int i = 0; i < p_planes.size(); i++) { |
594 | Plane p = p_planes[i]; |
595 | |
596 | Vector3 ref = Vector3(0.0, 1.0, 0.0); |
597 | |
598 | if (ABS(p.normal.dot(ref)) > 0.95f) { |
599 | ref = Vector3(0.0, 0.0, 1.0); // Change axis. |
600 | } |
601 | |
602 | Vector3 right = p.normal.cross(ref).normalized(); |
603 | Vector3 up = p.normal.cross(right).normalized(); |
604 | |
605 | Vector3 center = p.get_center(); |
606 | |
607 | // make a quad clockwise |
608 | LocalVector<Vector3> vertices = { |
609 | center - up * subplane_size + right * subplane_size, |
610 | center - up * subplane_size - right * subplane_size, |
611 | center + up * subplane_size - right * subplane_size, |
612 | center + up * subplane_size + right * subplane_size |
613 | }; |
614 | |
615 | for (int j = 0; j < p_planes.size(); j++) { |
616 | if (j == i) { |
617 | continue; |
618 | } |
619 | |
620 | LocalVector<Vector3> new_vertices; |
621 | Plane clip = p_planes[j]; |
622 | |
623 | if (clip.normal.dot(p.normal) > 0.95f) { |
624 | continue; |
625 | } |
626 | |
627 | if (vertices.size() < 3) { |
628 | break; |
629 | } |
630 | |
631 | for (uint32_t k = 0; k < vertices.size(); k++) { |
632 | int k_n = (k + 1) % vertices.size(); |
633 | |
634 | Vector3 edge0_A = vertices[k]; |
635 | Vector3 edge1_A = vertices[k_n]; |
636 | |
637 | real_t dist0 = clip.distance_to(edge0_A); |
638 | real_t dist1 = clip.distance_to(edge1_A); |
639 | |
640 | if (dist0 <= 0) { // Behind plane. |
641 | |
642 | new_vertices.push_back(vertices[k]); |
643 | } |
644 | |
645 | // Check for different sides and non coplanar. |
646 | if ((dist0 * dist1) < 0) { |
647 | // Calculate intersection. |
648 | Vector3 rel = edge1_A - edge0_A; |
649 | |
650 | real_t den = clip.normal.dot(rel); |
651 | if (Math::is_zero_approx(den)) { |
652 | continue; // Point too short. |
653 | } |
654 | |
655 | real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den; |
656 | Vector3 inters = edge0_A + rel * dist; |
657 | new_vertices.push_back(inters); |
658 | } |
659 | } |
660 | |
661 | vertices = new_vertices; |
662 | } |
663 | |
664 | if (vertices.size() < 3) { |
665 | continue; |
666 | } |
667 | |
668 | // Result is a clockwise face. |
669 | |
670 | MeshData::Face face; |
671 | |
672 | // Add face indices. |
673 | for (const Vector3 &vertex : vertices) { |
674 | int idx = -1; |
675 | for (uint32_t k = 0; k < mesh.vertices.size(); k++) { |
676 | if (mesh.vertices[k].distance_to(vertex) < 0.001f) { |
677 | idx = k; |
678 | break; |
679 | } |
680 | } |
681 | |
682 | if (idx == -1) { |
683 | idx = mesh.vertices.size(); |
684 | mesh.vertices.push_back(vertex); |
685 | } |
686 | |
687 | face.indices.push_back(idx); |
688 | } |
689 | face.plane = p; |
690 | mesh.faces.push_back(face); |
691 | |
692 | // Add edge. |
693 | |
694 | for (uint32_t j = 0; j < face.indices.size(); j++) { |
695 | int a = face.indices[j]; |
696 | int b = face.indices[(j + 1) % face.indices.size()]; |
697 | |
698 | bool found = false; |
699 | int found_idx = -1; |
700 | for (uint32_t k = 0; k < mesh.edges.size(); k++) { |
701 | if (mesh.edges[k].vertex_a == a && mesh.edges[k].vertex_b == b) { |
702 | found = true; |
703 | found_idx = k; |
704 | break; |
705 | } |
706 | if (mesh.edges[k].vertex_b == a && mesh.edges[k].vertex_a == b) { |
707 | found = true; |
708 | found_idx = k; |
709 | break; |
710 | } |
711 | } |
712 | |
713 | if (found) { |
714 | mesh.edges[found_idx].face_b = j; |
715 | continue; |
716 | } |
717 | MeshData::Edge edge; |
718 | edge.vertex_a = a; |
719 | edge.vertex_b = b; |
720 | edge.face_a = j; |
721 | edge.face_b = -1; |
722 | mesh.edges.push_back(edge); |
723 | } |
724 | } |
725 | |
726 | return mesh; |
727 | } |
728 | |
729 | Vector<Plane> Geometry3D::build_box_planes(const Vector3 &p_extents) { |
730 | Vector<Plane> planes = { |
731 | Plane(Vector3(1, 0, 0), p_extents.x), |
732 | Plane(Vector3(-1, 0, 0), p_extents.x), |
733 | Plane(Vector3(0, 1, 0), p_extents.y), |
734 | Plane(Vector3(0, -1, 0), p_extents.y), |
735 | Plane(Vector3(0, 0, 1), p_extents.z), |
736 | Plane(Vector3(0, 0, -1), p_extents.z) |
737 | }; |
738 | |
739 | return planes; |
740 | } |
741 | |
742 | Vector<Plane> Geometry3D::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) { |
743 | ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>()); |
744 | |
745 | Vector<Plane> planes; |
746 | |
747 | const double sides_step = Math_TAU / p_sides; |
748 | for (int i = 0; i < p_sides; i++) { |
749 | Vector3 normal; |
750 | normal[(p_axis + 1) % 3] = Math::cos(i * sides_step); |
751 | normal[(p_axis + 2) % 3] = Math::sin(i * sides_step); |
752 | |
753 | planes.push_back(Plane(normal, p_radius)); |
754 | } |
755 | |
756 | Vector3 axis; |
757 | axis[p_axis] = 1.0; |
758 | |
759 | planes.push_back(Plane(axis, p_height * 0.5f)); |
760 | planes.push_back(Plane(-axis, p_height * 0.5f)); |
761 | |
762 | return planes; |
763 | } |
764 | |
765 | Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) { |
766 | ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>()); |
767 | |
768 | Vector<Plane> planes; |
769 | |
770 | Vector3 axis; |
771 | axis[p_axis] = 1.0; |
772 | |
773 | Vector3 axis_neg; |
774 | axis_neg[(p_axis + 1) % 3] = 1.0; |
775 | axis_neg[(p_axis + 2) % 3] = 1.0; |
776 | axis_neg[p_axis] = -1.0; |
777 | |
778 | const double lon_step = Math_TAU / p_lons; |
779 | for (int i = 0; i < p_lons; i++) { |
780 | Vector3 normal; |
781 | normal[(p_axis + 1) % 3] = Math::cos(i * lon_step); |
782 | normal[(p_axis + 2) % 3] = Math::sin(i * lon_step); |
783 | |
784 | planes.push_back(Plane(normal, p_radius)); |
785 | |
786 | for (int j = 1; j <= p_lats; j++) { |
787 | Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); |
788 | planes.push_back(Plane(plane_normal, p_radius)); |
789 | planes.push_back(Plane(plane_normal * axis_neg, p_radius)); |
790 | } |
791 | } |
792 | |
793 | return planes; |
794 | } |
795 | |
796 | Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) { |
797 | ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>()); |
798 | |
799 | Vector<Plane> planes; |
800 | |
801 | Vector3 axis; |
802 | axis[p_axis] = 1.0; |
803 | |
804 | Vector3 axis_neg; |
805 | axis_neg[(p_axis + 1) % 3] = 1.0; |
806 | axis_neg[(p_axis + 2) % 3] = 1.0; |
807 | axis_neg[p_axis] = -1.0; |
808 | |
809 | const double sides_step = Math_TAU / p_sides; |
810 | for (int i = 0; i < p_sides; i++) { |
811 | Vector3 normal; |
812 | normal[(p_axis + 1) % 3] = Math::cos(i * sides_step); |
813 | normal[(p_axis + 2) % 3] = Math::sin(i * sides_step); |
814 | |
815 | planes.push_back(Plane(normal, p_radius)); |
816 | |
817 | for (int j = 1; j <= p_lats; j++) { |
818 | Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); |
819 | Vector3 position = axis * p_height * 0.5f + plane_normal * p_radius; |
820 | planes.push_back(Plane(plane_normal, position)); |
821 | planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg)); |
822 | } |
823 | } |
824 | |
825 | return planes; |
826 | } |
827 | |
828 | Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) { |
829 | Vector<Vector3> points; |
830 | |
831 | // Iterate through every unique combination of any three planes. |
832 | for (int i = p_plane_count - 1; i >= 0; i--) { |
833 | for (int j = i - 1; j >= 0; j--) { |
834 | for (int k = j - 1; k >= 0; k--) { |
835 | // Find the point where these planes all cross over (if they |
836 | // do at all). |
837 | Vector3 convex_shape_point; |
838 | if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) { |
839 | // See if any *other* plane excludes this point because it's |
840 | // on the wrong side. |
841 | bool excluded = false; |
842 | for (int n = 0; n < p_plane_count; n++) { |
843 | if (n != i && n != j && n != k) { |
844 | real_t dp = p_planes[n].normal.dot(convex_shape_point); |
845 | if (dp - p_planes[n].d > (real_t)CMP_EPSILON) { |
846 | excluded = true; |
847 | break; |
848 | } |
849 | } |
850 | } |
851 | |
852 | // Only add the point if it passed all tests. |
853 | if (!excluded) { |
854 | points.push_back(convex_shape_point); |
855 | } |
856 | } |
857 | } |
858 | } |
859 | } |
860 | |
861 | return points; |
862 | } |
863 | |
864 | #define square(m_s) ((m_s) * (m_s)) |
865 | #define INF 1e20 |
866 | |
867 | /* dt of 1d function using squared distance */ |
868 | static void edt(float *f, int stride, int n) { |
869 | float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1)); |
870 | int *v = reinterpret_cast<int *>(&(d[n])); |
871 | float *z = reinterpret_cast<float *>(&v[n]); |
872 | |
873 | int k = 0; |
874 | v[0] = 0; |
875 | z[0] = -INF; |
876 | z[1] = +INF; |
877 | for (int q = 1; q <= n - 1; q++) { |
878 | float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); |
879 | while (s <= z[k]) { |
880 | k--; |
881 | s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); |
882 | } |
883 | k++; |
884 | v[k] = q; |
885 | |
886 | z[k] = s; |
887 | z[k + 1] = +INF; |
888 | } |
889 | |
890 | k = 0; |
891 | for (int q = 0; q <= n - 1; q++) { |
892 | while (z[k + 1] < q) { |
893 | k++; |
894 | } |
895 | d[q] = square(q - v[k]) + f[v[k] * stride]; |
896 | } |
897 | |
898 | for (int i = 0; i < n; i++) { |
899 | f[i * stride] = d[i]; |
900 | } |
901 | } |
902 | |
903 | #undef square |
904 | |
905 | Vector<uint32_t> Geometry3D::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) { |
906 | uint32_t float_count = p_size.x * p_size.y * p_size.z; |
907 | |
908 | ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>()); |
909 | |
910 | float *work_memory = memnew_arr(float, float_count); |
911 | for (uint32_t i = 0; i < float_count; i++) { |
912 | work_memory[i] = INF; |
913 | } |
914 | |
915 | uint32_t y_mult = p_size.x; |
916 | uint32_t z_mult = y_mult * p_size.y; |
917 | |
918 | //plot solid cells |
919 | { |
920 | const bool *voxr = p_voxels.ptr(); |
921 | for (uint32_t i = 0; i < float_count; i++) { |
922 | bool plot = voxr[i]; |
923 | if (p_negative) { |
924 | plot = !plot; |
925 | } |
926 | if (plot) { |
927 | work_memory[i] = 0; |
928 | } |
929 | } |
930 | } |
931 | |
932 | //process in each direction |
933 | |
934 | //xy->z |
935 | |
936 | for (int i = 0; i < p_size.x; i++) { |
937 | for (int j = 0; j < p_size.y; j++) { |
938 | edt(&work_memory[i + j * y_mult], z_mult, p_size.z); |
939 | } |
940 | } |
941 | |
942 | //xz->y |
943 | |
944 | for (int i = 0; i < p_size.x; i++) { |
945 | for (int j = 0; j < p_size.z; j++) { |
946 | edt(&work_memory[i + j * z_mult], y_mult, p_size.y); |
947 | } |
948 | } |
949 | |
950 | //yz->x |
951 | for (int i = 0; i < p_size.y; i++) { |
952 | for (int j = 0; j < p_size.z; j++) { |
953 | edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x); |
954 | } |
955 | } |
956 | |
957 | Vector<uint32_t> ret; |
958 | ret.resize(float_count); |
959 | { |
960 | uint32_t *w = ret.ptrw(); |
961 | for (uint32_t i = 0; i < float_count; i++) { |
962 | w[i] = uint32_t(Math::sqrt(work_memory[i])); |
963 | } |
964 | } |
965 | |
966 | memdelete_arr(work_memory); |
967 | |
968 | return ret; |
969 | } |
970 | |
971 | Vector<int8_t> Geometry3D::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) { |
972 | ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>()); |
973 | Vector<int8_t> sdf8; |
974 | int s = p_positive.size(); |
975 | sdf8.resize(s); |
976 | |
977 | const uint32_t *rpos = p_positive.ptr(); |
978 | const uint32_t *rneg = p_negative.ptr(); |
979 | int8_t *wsdf = sdf8.ptrw(); |
980 | for (int i = 0; i < s; i++) { |
981 | int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]); |
982 | wsdf[i] = CLAMP(diff, -128, 127); |
983 | } |
984 | return sdf8; |
985 | } |
986 | |