| 1 | /**************************************************************************/ |
| 2 | /* godot_body_pair_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "godot_body_pair_3d.h" |
| 32 | |
| 33 | #include "godot_collision_solver_3d.h" |
| 34 | #include "godot_space_3d.h" |
| 35 | |
| 36 | #include "core/os/os.h" |
| 37 | |
| 38 | #define MIN_VELOCITY 0.0001 |
| 39 | #define MAX_BIAS_ROTATION (Math_PI / 8) |
| 40 | |
| 41 | void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { |
| 42 | GodotBodyPair3D *pair = static_cast<GodotBodyPair3D *>(p_userdata); |
| 43 | pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); |
| 44 | } |
| 45 | |
| 46 | void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { |
| 47 | Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A); |
| 48 | Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B); |
| 49 | |
| 50 | int new_index = contact_count; |
| 51 | |
| 52 | ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); |
| 53 | |
| 54 | Contact contact; |
| 55 | contact.index_A = p_index_A; |
| 56 | contact.index_B = p_index_B; |
| 57 | contact.local_A = local_A; |
| 58 | contact.local_B = local_B; |
| 59 | contact.normal = (p_point_A - p_point_B).normalized(); |
| 60 | contact.used = true; |
| 61 | |
| 62 | // Attempt to determine if the contact will be reused. |
| 63 | real_t contact_recycle_radius = space->get_contact_recycle_radius(); |
| 64 | |
| 65 | for (int i = 0; i < contact_count; i++) { |
| 66 | Contact &c = contacts[i]; |
| 67 | if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && |
| 68 | c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { |
| 69 | contact.acc_normal_impulse = c.acc_normal_impulse; |
| 70 | contact.acc_bias_impulse = c.acc_bias_impulse; |
| 71 | contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; |
| 72 | contact.acc_tangent_impulse = c.acc_tangent_impulse; |
| 73 | c = contact; |
| 74 | return; |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | // Figure out if the contact amount must be reduced to fit the new contact. |
| 79 | if (new_index == MAX_CONTACTS) { |
| 80 | // Remove the contact with the minimum depth. |
| 81 | |
| 82 | const Basis &basis_A = A->get_transform().basis; |
| 83 | const Basis &basis_B = B->get_transform().basis; |
| 84 | |
| 85 | int least_deep = -1; |
| 86 | real_t min_depth; |
| 87 | |
| 88 | // Start with depth for new contact. |
| 89 | { |
| 90 | Vector3 global_A = basis_A.xform(contact.local_A); |
| 91 | Vector3 global_B = basis_B.xform(contact.local_B) + offset_B; |
| 92 | |
| 93 | Vector3 axis = global_A - global_B; |
| 94 | min_depth = axis.dot(contact.normal); |
| 95 | } |
| 96 | |
| 97 | for (int i = 0; i < contact_count; i++) { |
| 98 | const Contact &c = contacts[i]; |
| 99 | Vector3 global_A = basis_A.xform(c.local_A); |
| 100 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
| 101 | |
| 102 | Vector3 axis = global_A - global_B; |
| 103 | real_t depth = axis.dot(c.normal); |
| 104 | |
| 105 | if (depth < min_depth) { |
| 106 | min_depth = depth; |
| 107 | least_deep = i; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | if (least_deep > -1) { |
| 112 | // Replace the least deep contact by the new one. |
| 113 | contacts[least_deep] = contact; |
| 114 | } |
| 115 | |
| 116 | return; |
| 117 | } |
| 118 | |
| 119 | contacts[new_index] = contact; |
| 120 | contact_count++; |
| 121 | } |
| 122 | |
| 123 | void GodotBodyPair3D::validate_contacts() { |
| 124 | // Make sure to erase contacts that are no longer valid. |
| 125 | real_t max_separation = space->get_contact_max_separation(); |
| 126 | real_t max_separation2 = max_separation * max_separation; |
| 127 | |
| 128 | const Basis &basis_A = A->get_transform().basis; |
| 129 | const Basis &basis_B = B->get_transform().basis; |
| 130 | |
| 131 | for (int i = 0; i < contact_count; i++) { |
| 132 | Contact &c = contacts[i]; |
| 133 | |
| 134 | bool erase = false; |
| 135 | if (!c.used) { |
| 136 | // Was left behind in previous frame. |
| 137 | erase = true; |
| 138 | } else { |
| 139 | c.used = false; |
| 140 | |
| 141 | Vector3 global_A = basis_A.xform(c.local_A); |
| 142 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
| 143 | Vector3 axis = global_A - global_B; |
| 144 | real_t depth = axis.dot(c.normal); |
| 145 | |
| 146 | if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { |
| 147 | erase = true; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | if (erase) { |
| 152 | // Contact no longer needed, remove. |
| 153 | if ((i + 1) < contact_count) { |
| 154 | // Swap with the last one. |
| 155 | SWAP(contacts[i], contacts[contact_count - 1]); |
| 156 | } |
| 157 | |
| 158 | i--; |
| 159 | contact_count--; |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | // _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap) |
| 165 | // Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce! |
| 166 | // Process: only proceed if body A's motion is high relative to its size. |
| 167 | // cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does. |
| 168 | // adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it. |
| 169 | bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) { |
| 170 | GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A); |
| 171 | |
| 172 | Vector3 motion = p_A->get_linear_velocity() * p_step; |
| 173 | real_t mlen = motion.length(); |
| 174 | if (mlen < CMP_EPSILON) { |
| 175 | return false; |
| 176 | } |
| 177 | |
| 178 | Vector3 mnormal = motion / mlen; |
| 179 | |
| 180 | real_t min = 0.0, max = 0.0; |
| 181 | shape_A_ptr->project_range(mnormal, p_xform_A, min, max); |
| 182 | |
| 183 | // Did it move enough in this direction to even attempt raycast? |
| 184 | // Let's say it should move more than 1/3 the size of the object in that axis. |
| 185 | bool fast_object = mlen > (max - min) * 0.3; |
| 186 | if (!fast_object) { |
| 187 | return false; // moving slow enough that there's no chance of tunneling. |
| 188 | } |
| 189 | |
| 190 | // A is moving fast enough that tunneling might occur. See if it's really about to collide. |
| 191 | |
| 192 | // Roughly predict body B's position in the next frame (ignoring collisions). |
| 193 | Transform3D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step); |
| 194 | |
| 195 | // Support points are the farthest forward points on A in the direction of the motion vector. |
| 196 | // i.e. the candidate points of which one should hit B first if any collision does occur. |
| 197 | static const int max_supports = 16; |
| 198 | Vector3 supports_A[max_supports]; |
| 199 | int support_count_A; |
| 200 | GodotShape3D::FeatureType support_type_A; |
| 201 | // Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates. |
| 202 | shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A); |
| 203 | |
| 204 | // Cast a segment from each support point of A in the motion direction. |
| 205 | int segment_support_idx = -1; |
| 206 | float segment_hit_length = FLT_MAX; |
| 207 | Vector3 segment_hit_local; |
| 208 | for (int i = 0; i < support_count_A; i++) { |
| 209 | supports_A[i] = p_xform_A.xform(supports_A[i]); |
| 210 | |
| 211 | Vector3 from = supports_A[i]; |
| 212 | Vector3 to = from + motion; |
| 213 | |
| 214 | Transform3D from_inv = predicted_xform_B.affine_inverse(); |
| 215 | |
| 216 | // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. |
| 217 | // At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. |
| 218 | // But it still works out. |
| 219 | Vector3 local_from = from_inv.xform(from - motion * 0.1); |
| 220 | Vector3 local_to = from_inv.xform(to); |
| 221 | |
| 222 | Vector3 rpos, rnorm; |
| 223 | int fi = -1; |
| 224 | if (p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm, fi, true)) { |
| 225 | float hit_length = local_from.distance_to(rpos); |
| 226 | if (hit_length < segment_hit_length) { |
| 227 | segment_support_idx = i; |
| 228 | segment_hit_length = hit_length; |
| 229 | segment_hit_local = rpos; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | if (segment_support_idx == -1) { |
| 235 | // There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not |
| 236 | // actually collide yet on next frame. We'll probably check again next frame once they're closer. |
| 237 | return false; |
| 238 | } |
| 239 | |
| 240 | Vector3 hitpos = predicted_xform_B.xform(segment_hit_local); |
| 241 | |
| 242 | real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]); |
| 243 | // Adding 1% of body length to the distance between collision and support point |
| 244 | // should cause body A's support point to arrive just within B's collider next frame. |
| 245 | newlen += (max - min) * 0.01; |
| 246 | // FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape. |
| 247 | |
| 248 | p_A->set_linear_velocity((mnormal * newlen) / p_step); |
| 249 | |
| 250 | return true; |
| 251 | } |
| 252 | |
| 253 | real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) { |
| 254 | return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); |
| 255 | } |
| 256 | |
| 257 | real_t combine_friction(GodotBody3D *A, GodotBody3D *B) { |
| 258 | return ABS(MIN(A->get_friction(), B->get_friction())); |
| 259 | } |
| 260 | |
| 261 | bool GodotBodyPair3D::setup(real_t p_step) { |
| 262 | check_ccd = false; |
| 263 | |
| 264 | if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { |
| 265 | collided = false; |
| 266 | return false; |
| 267 | } |
| 268 | |
| 269 | collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B); |
| 270 | collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A); |
| 271 | |
| 272 | report_contacts_only = false; |
| 273 | if (!collide_A && !collide_B) { |
| 274 | if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { |
| 275 | report_contacts_only = true; |
| 276 | } else { |
| 277 | collided = false; |
| 278 | return false; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); |
| 283 | |
| 284 | validate_contacts(); |
| 285 | |
| 286 | const Vector3 &offset_A = A->get_transform().get_origin(); |
| 287 | Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); |
| 288 | Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); |
| 289 | |
| 290 | Transform3D xform_Bu = B->get_transform(); |
| 291 | xform_Bu.origin -= offset_A; |
| 292 | Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
| 293 | |
| 294 | GodotShape3D *shape_A_ptr = A->get_shape(shape_A); |
| 295 | GodotShape3D *shape_B_ptr = B->get_shape(shape_B); |
| 296 | |
| 297 | collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); |
| 298 | |
| 299 | if (!collided) { |
| 300 | if (A->is_continuous_collision_detection_enabled() && collide_A) { |
| 301 | check_ccd = true; |
| 302 | return true; |
| 303 | } |
| 304 | |
| 305 | if (B->is_continuous_collision_detection_enabled() && collide_B) { |
| 306 | check_ccd = true; |
| 307 | return true; |
| 308 | } |
| 309 | |
| 310 | return false; |
| 311 | } |
| 312 | |
| 313 | return true; |
| 314 | } |
| 315 | |
| 316 | bool GodotBodyPair3D::pre_solve(real_t p_step) { |
| 317 | if (!collided) { |
| 318 | if (check_ccd) { |
| 319 | const Vector3 &offset_A = A->get_transform().get_origin(); |
| 320 | Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); |
| 321 | Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); |
| 322 | |
| 323 | Transform3D xform_Bu = B->get_transform(); |
| 324 | xform_Bu.origin -= offset_A; |
| 325 | Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
| 326 | |
| 327 | if (A->is_continuous_collision_detection_enabled() && collide_A) { |
| 328 | _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); |
| 329 | } |
| 330 | |
| 331 | if (B->is_continuous_collision_detection_enabled() && collide_B) { |
| 332 | _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | return false; |
| 337 | } |
| 338 | |
| 339 | real_t max_penetration = space->get_contact_max_allowed_penetration(); |
| 340 | |
| 341 | real_t bias = 0.8; |
| 342 | |
| 343 | GodotShape3D *shape_A_ptr = A->get_shape(shape_A); |
| 344 | GodotShape3D *shape_B_ptr = B->get_shape(shape_B); |
| 345 | |
| 346 | if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { |
| 347 | if (shape_A_ptr->get_custom_bias() == 0) { |
| 348 | bias = shape_B_ptr->get_custom_bias(); |
| 349 | } else if (shape_B_ptr->get_custom_bias() == 0) { |
| 350 | bias = shape_A_ptr->get_custom_bias(); |
| 351 | } else { |
| 352 | bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | real_t inv_dt = 1.0 / p_step; |
| 357 | |
| 358 | bool do_process = false; |
| 359 | |
| 360 | const Vector3 &offset_A = A->get_transform().get_origin(); |
| 361 | |
| 362 | const Basis &basis_A = A->get_transform().basis; |
| 363 | const Basis &basis_B = B->get_transform().basis; |
| 364 | |
| 365 | Basis zero_basis; |
| 366 | zero_basis.set_zero(); |
| 367 | |
| 368 | const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; |
| 369 | const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; |
| 370 | |
| 371 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
| 372 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
| 373 | |
| 374 | for (int i = 0; i < contact_count; i++) { |
| 375 | Contact &c = contacts[i]; |
| 376 | c.active = false; |
| 377 | |
| 378 | Vector3 global_A = basis_A.xform(c.local_A); |
| 379 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
| 380 | |
| 381 | Vector3 axis = global_A - global_B; |
| 382 | real_t depth = axis.dot(c.normal); |
| 383 | |
| 384 | if (depth <= 0.0) { |
| 385 | continue; |
| 386 | } |
| 387 | |
| 388 | #ifdef DEBUG_ENABLED |
| 389 | if (space->is_debugging_contacts()) { |
| 390 | space->add_debug_contact(global_A + offset_A); |
| 391 | space->add_debug_contact(global_B + offset_A); |
| 392 | } |
| 393 | #endif |
| 394 | |
| 395 | c.rA = global_A - A->get_center_of_mass(); |
| 396 | c.rB = global_B - B->get_center_of_mass() - offset_B; |
| 397 | |
| 398 | // Precompute normal mass, tangent mass, and bias. |
| 399 | Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal)); |
| 400 | Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal)); |
| 401 | real_t kNormal = inv_mass_A + inv_mass_B; |
| 402 | kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB)); |
| 403 | c.mass_normal = 1.0f / kNormal; |
| 404 | |
| 405 | c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); |
| 406 | c.depth = depth; |
| 407 | |
| 408 | Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; |
| 409 | |
| 410 | c.acc_impulse -= j_vec; |
| 411 | |
| 412 | // contact query reporting... |
| 413 | |
| 414 | if (A->can_report_contacts() || B->can_report_contacts()) { |
| 415 | Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity(); |
| 416 | Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity(); |
| 417 | |
| 418 | if (A->can_report_contacts()) { |
| 419 | A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse); |
| 420 | } |
| 421 | |
| 422 | if (B->can_report_contacts()) { |
| 423 | B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, -c.acc_impulse); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | if (report_contacts_only) { |
| 428 | collided = false; |
| 429 | continue; |
| 430 | } |
| 431 | |
| 432 | c.active = true; |
| 433 | do_process = true; |
| 434 | |
| 435 | if (collide_A) { |
| 436 | A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass()); |
| 437 | } |
| 438 | if (collide_B) { |
| 439 | B->apply_impulse(j_vec, c.rB + B->get_center_of_mass()); |
| 440 | } |
| 441 | |
| 442 | c.bounce = combine_bounce(A, B); |
| 443 | if (c.bounce) { |
| 444 | Vector3 crA = A->get_prev_angular_velocity().cross(c.rA); |
| 445 | Vector3 crB = B->get_prev_angular_velocity().cross(c.rB); |
| 446 | Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA; |
| 447 | c.bounce = c.bounce * dv.dot(c.normal); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | return do_process; |
| 452 | } |
| 453 | |
| 454 | void GodotBodyPair3D::solve(real_t p_step) { |
| 455 | if (!collided) { |
| 456 | return; |
| 457 | } |
| 458 | |
| 459 | const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; |
| 460 | |
| 461 | Basis zero_basis; |
| 462 | zero_basis.set_zero(); |
| 463 | |
| 464 | const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; |
| 465 | const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; |
| 466 | |
| 467 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
| 468 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
| 469 | |
| 470 | for (int i = 0; i < contact_count; i++) { |
| 471 | Contact &c = contacts[i]; |
| 472 | if (!c.active) { |
| 473 | continue; |
| 474 | } |
| 475 | |
| 476 | c.active = false; //try to deactivate, will activate itself if still needed |
| 477 | |
| 478 | //bias impulse |
| 479 | |
| 480 | Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA); |
| 481 | Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB); |
| 482 | Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
| 483 | |
| 484 | real_t vbn = dbv.dot(c.normal); |
| 485 | |
| 486 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
| 487 | real_t jbn = (-vbn + c.bias) * c.mass_normal; |
| 488 | real_t jbnOld = c.acc_bias_impulse; |
| 489 | c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); |
| 490 | |
| 491 | Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); |
| 492 | |
| 493 | if (collide_A) { |
| 494 | A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av); |
| 495 | } |
| 496 | if (collide_B) { |
| 497 | B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av); |
| 498 | } |
| 499 | |
| 500 | crbA = A->get_biased_angular_velocity().cross(c.rA); |
| 501 | crbB = B->get_biased_angular_velocity().cross(c.rB); |
| 502 | dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
| 503 | |
| 504 | vbn = dbv.dot(c.normal); |
| 505 | |
| 506 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
| 507 | real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B); |
| 508 | real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; |
| 509 | c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); |
| 510 | |
| 511 | Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); |
| 512 | |
| 513 | if (collide_A) { |
| 514 | A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f); |
| 515 | } |
| 516 | if (collide_B) { |
| 517 | B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f); |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | c.active = true; |
| 522 | } |
| 523 | |
| 524 | Vector3 crA = A->get_angular_velocity().cross(c.rA); |
| 525 | Vector3 crB = B->get_angular_velocity().cross(c.rB); |
| 526 | Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; |
| 527 | |
| 528 | //normal impulse |
| 529 | real_t vn = dv.dot(c.normal); |
| 530 | |
| 531 | if (Math::abs(vn) > MIN_VELOCITY) { |
| 532 | real_t jn = -(c.bounce + vn) * c.mass_normal; |
| 533 | real_t jnOld = c.acc_normal_impulse; |
| 534 | c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); |
| 535 | |
| 536 | Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); |
| 537 | |
| 538 | if (collide_A) { |
| 539 | A->apply_impulse(-j, c.rA + A->get_center_of_mass()); |
| 540 | } |
| 541 | if (collide_B) { |
| 542 | B->apply_impulse(j, c.rB + B->get_center_of_mass()); |
| 543 | } |
| 544 | c.acc_impulse -= j; |
| 545 | |
| 546 | c.active = true; |
| 547 | } |
| 548 | |
| 549 | //friction impulse |
| 550 | |
| 551 | real_t friction = combine_friction(A, B); |
| 552 | |
| 553 | Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA); |
| 554 | Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB); |
| 555 | |
| 556 | Vector3 dtv = lvB - lvA; |
| 557 | real_t tn = c.normal.dot(dtv); |
| 558 | |
| 559 | // tangential velocity |
| 560 | Vector3 tv = dtv - c.normal * tn; |
| 561 | real_t tvl = tv.length(); |
| 562 | |
| 563 | if (tvl > MIN_VELOCITY) { |
| 564 | tv /= tvl; |
| 565 | |
| 566 | Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv)); |
| 567 | Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv)); |
| 568 | |
| 569 | real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB))); |
| 570 | |
| 571 | Vector3 jt = t * tv; |
| 572 | |
| 573 | Vector3 jtOld = c.acc_tangent_impulse; |
| 574 | c.acc_tangent_impulse += jt; |
| 575 | |
| 576 | real_t fi_len = c.acc_tangent_impulse.length(); |
| 577 | real_t jtMax = c.acc_normal_impulse * friction; |
| 578 | |
| 579 | if (fi_len > CMP_EPSILON && fi_len > jtMax) { |
| 580 | c.acc_tangent_impulse *= jtMax / fi_len; |
| 581 | } |
| 582 | |
| 583 | jt = c.acc_tangent_impulse - jtOld; |
| 584 | |
| 585 | if (collide_A) { |
| 586 | A->apply_impulse(-jt, c.rA + A->get_center_of_mass()); |
| 587 | } |
| 588 | if (collide_B) { |
| 589 | B->apply_impulse(jt, c.rB + B->get_center_of_mass()); |
| 590 | } |
| 591 | c.acc_impulse -= jt; |
| 592 | |
| 593 | c.active = true; |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) : |
| 599 | GodotBodyContact3D(_arr, 2) { |
| 600 | A = p_A; |
| 601 | B = p_B; |
| 602 | shape_A = p_shape_A; |
| 603 | shape_B = p_shape_B; |
| 604 | space = A->get_space(); |
| 605 | A->add_constraint(this, 0); |
| 606 | B->add_constraint(this, 1); |
| 607 | } |
| 608 | |
| 609 | GodotBodyPair3D::~GodotBodyPair3D() { |
| 610 | A->remove_constraint(this); |
| 611 | B->remove_constraint(this); |
| 612 | } |
| 613 | |
| 614 | void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { |
| 615 | GodotBodySoftBodyPair3D *pair = static_cast<GodotBodySoftBodyPair3D *>(p_userdata); |
| 616 | pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); |
| 617 | } |
| 618 | |
| 619 | void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { |
| 620 | Vector3 local_A = body->get_inv_transform().xform(p_point_A); |
| 621 | Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B); |
| 622 | |
| 623 | Contact contact; |
| 624 | contact.index_A = p_index_A; |
| 625 | contact.index_B = p_index_B; |
| 626 | contact.local_A = local_A; |
| 627 | contact.local_B = local_B; |
| 628 | contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal); |
| 629 | contact.used = true; |
| 630 | |
| 631 | // Attempt to determine if the contact will be reused. |
| 632 | real_t contact_recycle_radius = space->get_contact_recycle_radius(); |
| 633 | |
| 634 | uint32_t contact_count = contacts.size(); |
| 635 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
| 636 | Contact &c = contacts[contact_index]; |
| 637 | if (c.index_B == p_index_B) { |
| 638 | if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && |
| 639 | c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { |
| 640 | contact.acc_normal_impulse = c.acc_normal_impulse; |
| 641 | contact.acc_bias_impulse = c.acc_bias_impulse; |
| 642 | contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; |
| 643 | contact.acc_tangent_impulse = c.acc_tangent_impulse; |
| 644 | } |
| 645 | c = contact; |
| 646 | return; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | contacts.push_back(contact); |
| 651 | } |
| 652 | |
| 653 | void GodotBodySoftBodyPair3D::validate_contacts() { |
| 654 | // Make sure to erase contacts that are no longer valid. |
| 655 | real_t max_separation = space->get_contact_max_separation(); |
| 656 | real_t max_separation2 = max_separation * max_separation; |
| 657 | |
| 658 | const Transform3D &transform_A = body->get_transform(); |
| 659 | |
| 660 | uint32_t contact_count = contacts.size(); |
| 661 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
| 662 | Contact &c = contacts[contact_index]; |
| 663 | |
| 664 | bool erase = false; |
| 665 | if (!c.used) { |
| 666 | // Was left behind in previous frame. |
| 667 | erase = true; |
| 668 | } else { |
| 669 | c.used = false; |
| 670 | |
| 671 | Vector3 global_A = transform_A.xform(c.local_A); |
| 672 | Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; |
| 673 | Vector3 axis = global_A - global_B; |
| 674 | real_t depth = axis.dot(c.normal); |
| 675 | |
| 676 | if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { |
| 677 | erase = true; |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | if (erase) { |
| 682 | // Contact no longer needed, remove. |
| 683 | if ((contact_index + 1) < contact_count) { |
| 684 | // Swap with the last one. |
| 685 | SWAP(c, contacts[contact_count - 1]); |
| 686 | } |
| 687 | |
| 688 | contact_index--; |
| 689 | contact_count--; |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | contacts.resize(contact_count); |
| 694 | } |
| 695 | |
| 696 | bool GodotBodySoftBodyPair3D::setup(real_t p_step) { |
| 697 | if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) { |
| 698 | collided = false; |
| 699 | return false; |
| 700 | } |
| 701 | |
| 702 | body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body); |
| 703 | soft_body_collides = soft_body->collides_with(body); |
| 704 | |
| 705 | if (!body_collides && !soft_body_collides) { |
| 706 | if (body->get_max_contacts_reported() > 0) { |
| 707 | report_contacts_only = true; |
| 708 | } else { |
| 709 | collided = false; |
| 710 | return false; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | const Transform3D &xform_Au = body->get_transform(); |
| 715 | Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape); |
| 716 | |
| 717 | Transform3D xform_Bu = soft_body->get_transform(); |
| 718 | Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0); |
| 719 | |
| 720 | validate_contacts(); |
| 721 | |
| 722 | GodotShape3D *shape_A_ptr = body->get_shape(body_shape); |
| 723 | GodotShape3D *shape_B_ptr = soft_body->get_shape(0); |
| 724 | |
| 725 | collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); |
| 726 | |
| 727 | return collided; |
| 728 | } |
| 729 | |
| 730 | bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) { |
| 731 | if (!collided) { |
| 732 | return false; |
| 733 | } |
| 734 | |
| 735 | real_t max_penetration = space->get_contact_max_allowed_penetration(); |
| 736 | |
| 737 | real_t bias = space->get_contact_bias(); |
| 738 | |
| 739 | GodotShape3D *shape_A_ptr = body->get_shape(body_shape); |
| 740 | |
| 741 | if (shape_A_ptr->get_custom_bias()) { |
| 742 | bias = shape_A_ptr->get_custom_bias(); |
| 743 | } |
| 744 | |
| 745 | real_t inv_dt = 1.0 / p_step; |
| 746 | |
| 747 | bool do_process = false; |
| 748 | |
| 749 | const Transform3D &transform_A = body->get_transform(); |
| 750 | |
| 751 | Basis zero_basis; |
| 752 | zero_basis.set_zero(); |
| 753 | |
| 754 | const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; |
| 755 | |
| 756 | real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; |
| 757 | |
| 758 | uint32_t contact_count = contacts.size(); |
| 759 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
| 760 | Contact &c = contacts[contact_index]; |
| 761 | c.active = false; |
| 762 | |
| 763 | real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; |
| 764 | if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) { |
| 765 | continue; |
| 766 | } |
| 767 | |
| 768 | Vector3 global_A = transform_A.xform(c.local_A); |
| 769 | Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; |
| 770 | Vector3 axis = global_A - global_B; |
| 771 | real_t depth = axis.dot(c.normal); |
| 772 | |
| 773 | if (depth <= 0.0) { |
| 774 | continue; |
| 775 | } |
| 776 | |
| 777 | #ifdef DEBUG_ENABLED |
| 778 | if (space->is_debugging_contacts()) { |
| 779 | space->add_debug_contact(global_A); |
| 780 | space->add_debug_contact(global_B); |
| 781 | } |
| 782 | #endif |
| 783 | |
| 784 | c.rA = global_A - transform_A.origin - body->get_center_of_mass(); |
| 785 | c.rB = global_B; |
| 786 | |
| 787 | // Precompute normal mass, tangent mass, and bias. |
| 788 | Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal)); |
| 789 | real_t kNormal = body_inv_mass + node_inv_mass; |
| 790 | kNormal += c.normal.dot(inertia_A.cross(c.rA)); |
| 791 | c.mass_normal = 1.0f / kNormal; |
| 792 | |
| 793 | c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); |
| 794 | c.depth = depth; |
| 795 | |
| 796 | Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; |
| 797 | if (body_collides) { |
| 798 | body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass()); |
| 799 | } |
| 800 | if (soft_body_collides) { |
| 801 | soft_body->apply_node_impulse(c.index_B, j_vec); |
| 802 | } |
| 803 | c.acc_impulse -= j_vec; |
| 804 | |
| 805 | if (body->can_report_contacts()) { |
| 806 | Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity(); |
| 807 | Vector3 crB = soft_body->get_node_velocity(c.index_B); |
| 808 | body->add_contact(global_A, -c.normal, depth, body_shape, crA, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crB, c.acc_impulse); |
| 809 | } |
| 810 | if (report_contacts_only) { |
| 811 | collided = false; |
| 812 | continue; |
| 813 | } |
| 814 | |
| 815 | c.active = true; |
| 816 | do_process = true; |
| 817 | |
| 818 | if (body_collides) { |
| 819 | body->set_active(true); |
| 820 | } |
| 821 | |
| 822 | c.bounce = body->get_bounce(); |
| 823 | |
| 824 | if (c.bounce) { |
| 825 | Vector3 crA = body->get_angular_velocity().cross(c.rA); |
| 826 | Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; |
| 827 | |
| 828 | // Normal impulse. |
| 829 | c.bounce = c.bounce * dv.dot(c.normal); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | return do_process; |
| 834 | } |
| 835 | |
| 836 | void GodotBodySoftBodyPair3D::solve(real_t p_step) { |
| 837 | if (!collided) { |
| 838 | return; |
| 839 | } |
| 840 | |
| 841 | const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; |
| 842 | |
| 843 | Basis zero_basis; |
| 844 | zero_basis.set_zero(); |
| 845 | |
| 846 | const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; |
| 847 | |
| 848 | real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; |
| 849 | |
| 850 | uint32_t contact_count = contacts.size(); |
| 851 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
| 852 | Contact &c = contacts[contact_index]; |
| 853 | if (!c.active) { |
| 854 | continue; |
| 855 | } |
| 856 | |
| 857 | c.active = false; |
| 858 | |
| 859 | real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; |
| 860 | |
| 861 | // Bias impulse. |
| 862 | Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA); |
| 863 | Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; |
| 864 | |
| 865 | real_t vbn = dbv.dot(c.normal); |
| 866 | |
| 867 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
| 868 | real_t jbn = (-vbn + c.bias) * c.mass_normal; |
| 869 | real_t jbnOld = c.acc_bias_impulse; |
| 870 | c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); |
| 871 | |
| 872 | Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); |
| 873 | |
| 874 | if (body_collides) { |
| 875 | body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av); |
| 876 | } |
| 877 | if (soft_body_collides) { |
| 878 | soft_body->apply_node_bias_impulse(c.index_B, jb); |
| 879 | } |
| 880 | |
| 881 | crbA = body->get_biased_angular_velocity().cross(c.rA); |
| 882 | dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; |
| 883 | |
| 884 | vbn = dbv.dot(c.normal); |
| 885 | |
| 886 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
| 887 | real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass); |
| 888 | real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; |
| 889 | c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); |
| 890 | |
| 891 | Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); |
| 892 | |
| 893 | if (body_collides) { |
| 894 | body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f); |
| 895 | } |
| 896 | if (soft_body_collides) { |
| 897 | soft_body->apply_node_bias_impulse(c.index_B, jb_com); |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | c.active = true; |
| 902 | } |
| 903 | |
| 904 | Vector3 crA = body->get_angular_velocity().cross(c.rA); |
| 905 | Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; |
| 906 | |
| 907 | // Normal impulse. |
| 908 | real_t vn = dv.dot(c.normal); |
| 909 | |
| 910 | if (Math::abs(vn) > MIN_VELOCITY) { |
| 911 | real_t jn = -(c.bounce + vn) * c.mass_normal; |
| 912 | real_t jnOld = c.acc_normal_impulse; |
| 913 | c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); |
| 914 | |
| 915 | Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); |
| 916 | |
| 917 | if (body_collides) { |
| 918 | body->apply_impulse(-j, c.rA + body->get_center_of_mass()); |
| 919 | } |
| 920 | if (soft_body_collides) { |
| 921 | soft_body->apply_node_impulse(c.index_B, j); |
| 922 | } |
| 923 | c.acc_impulse -= j; |
| 924 | |
| 925 | c.active = true; |
| 926 | } |
| 927 | |
| 928 | // Friction impulse. |
| 929 | real_t friction = body->get_friction(); |
| 930 | |
| 931 | Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA); |
| 932 | Vector3 lvB = soft_body->get_node_velocity(c.index_B); |
| 933 | Vector3 dtv = lvB - lvA; |
| 934 | |
| 935 | real_t tn = c.normal.dot(dtv); |
| 936 | |
| 937 | // Tangential velocity. |
| 938 | Vector3 tv = dtv - c.normal * tn; |
| 939 | real_t tvl = tv.length(); |
| 940 | |
| 941 | if (tvl > MIN_VELOCITY) { |
| 942 | tv /= tvl; |
| 943 | |
| 944 | Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv)); |
| 945 | |
| 946 | real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA))); |
| 947 | |
| 948 | Vector3 jt = t * tv; |
| 949 | |
| 950 | Vector3 jtOld = c.acc_tangent_impulse; |
| 951 | c.acc_tangent_impulse += jt; |
| 952 | |
| 953 | real_t fi_len = c.acc_tangent_impulse.length(); |
| 954 | real_t jtMax = c.acc_normal_impulse * friction; |
| 955 | |
| 956 | if (fi_len > CMP_EPSILON && fi_len > jtMax) { |
| 957 | c.acc_tangent_impulse *= jtMax / fi_len; |
| 958 | } |
| 959 | |
| 960 | jt = c.acc_tangent_impulse - jtOld; |
| 961 | |
| 962 | if (body_collides) { |
| 963 | body->apply_impulse(-jt, c.rA + body->get_center_of_mass()); |
| 964 | } |
| 965 | if (soft_body_collides) { |
| 966 | soft_body->apply_node_impulse(c.index_B, jt); |
| 967 | } |
| 968 | c.acc_impulse -= jt; |
| 969 | |
| 970 | c.active = true; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) : |
| 976 | GodotBodyContact3D(&body, 1) { |
| 977 | body = p_A; |
| 978 | soft_body = p_B; |
| 979 | body_shape = p_shape_A; |
| 980 | space = p_A->get_space(); |
| 981 | body->add_constraint(this, 0); |
| 982 | soft_body->add_constraint(this); |
| 983 | } |
| 984 | |
| 985 | GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() { |
| 986 | body->remove_constraint(this); |
| 987 | soft_body->remove_constraint(this); |
| 988 | } |
| 989 | |