1 | /**************************************************************************/ |
2 | /* godot_body_pair_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_body_pair_3d.h" |
32 | |
33 | #include "godot_collision_solver_3d.h" |
34 | #include "godot_space_3d.h" |
35 | |
36 | #include "core/os/os.h" |
37 | |
38 | #define MIN_VELOCITY 0.0001 |
39 | #define MAX_BIAS_ROTATION (Math_PI / 8) |
40 | |
41 | void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { |
42 | GodotBodyPair3D *pair = static_cast<GodotBodyPair3D *>(p_userdata); |
43 | pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); |
44 | } |
45 | |
46 | void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { |
47 | Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A); |
48 | Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B); |
49 | |
50 | int new_index = contact_count; |
51 | |
52 | ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); |
53 | |
54 | Contact contact; |
55 | contact.index_A = p_index_A; |
56 | contact.index_B = p_index_B; |
57 | contact.local_A = local_A; |
58 | contact.local_B = local_B; |
59 | contact.normal = (p_point_A - p_point_B).normalized(); |
60 | contact.used = true; |
61 | |
62 | // Attempt to determine if the contact will be reused. |
63 | real_t contact_recycle_radius = space->get_contact_recycle_radius(); |
64 | |
65 | for (int i = 0; i < contact_count; i++) { |
66 | Contact &c = contacts[i]; |
67 | if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && |
68 | c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { |
69 | contact.acc_normal_impulse = c.acc_normal_impulse; |
70 | contact.acc_bias_impulse = c.acc_bias_impulse; |
71 | contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; |
72 | contact.acc_tangent_impulse = c.acc_tangent_impulse; |
73 | c = contact; |
74 | return; |
75 | } |
76 | } |
77 | |
78 | // Figure out if the contact amount must be reduced to fit the new contact. |
79 | if (new_index == MAX_CONTACTS) { |
80 | // Remove the contact with the minimum depth. |
81 | |
82 | const Basis &basis_A = A->get_transform().basis; |
83 | const Basis &basis_B = B->get_transform().basis; |
84 | |
85 | int least_deep = -1; |
86 | real_t min_depth; |
87 | |
88 | // Start with depth for new contact. |
89 | { |
90 | Vector3 global_A = basis_A.xform(contact.local_A); |
91 | Vector3 global_B = basis_B.xform(contact.local_B) + offset_B; |
92 | |
93 | Vector3 axis = global_A - global_B; |
94 | min_depth = axis.dot(contact.normal); |
95 | } |
96 | |
97 | for (int i = 0; i < contact_count; i++) { |
98 | const Contact &c = contacts[i]; |
99 | Vector3 global_A = basis_A.xform(c.local_A); |
100 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
101 | |
102 | Vector3 axis = global_A - global_B; |
103 | real_t depth = axis.dot(c.normal); |
104 | |
105 | if (depth < min_depth) { |
106 | min_depth = depth; |
107 | least_deep = i; |
108 | } |
109 | } |
110 | |
111 | if (least_deep > -1) { |
112 | // Replace the least deep contact by the new one. |
113 | contacts[least_deep] = contact; |
114 | } |
115 | |
116 | return; |
117 | } |
118 | |
119 | contacts[new_index] = contact; |
120 | contact_count++; |
121 | } |
122 | |
123 | void GodotBodyPair3D::validate_contacts() { |
124 | // Make sure to erase contacts that are no longer valid. |
125 | real_t max_separation = space->get_contact_max_separation(); |
126 | real_t max_separation2 = max_separation * max_separation; |
127 | |
128 | const Basis &basis_A = A->get_transform().basis; |
129 | const Basis &basis_B = B->get_transform().basis; |
130 | |
131 | for (int i = 0; i < contact_count; i++) { |
132 | Contact &c = contacts[i]; |
133 | |
134 | bool erase = false; |
135 | if (!c.used) { |
136 | // Was left behind in previous frame. |
137 | erase = true; |
138 | } else { |
139 | c.used = false; |
140 | |
141 | Vector3 global_A = basis_A.xform(c.local_A); |
142 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
143 | Vector3 axis = global_A - global_B; |
144 | real_t depth = axis.dot(c.normal); |
145 | |
146 | if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { |
147 | erase = true; |
148 | } |
149 | } |
150 | |
151 | if (erase) { |
152 | // Contact no longer needed, remove. |
153 | if ((i + 1) < contact_count) { |
154 | // Swap with the last one. |
155 | SWAP(contacts[i], contacts[contact_count - 1]); |
156 | } |
157 | |
158 | i--; |
159 | contact_count--; |
160 | } |
161 | } |
162 | } |
163 | |
164 | // _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap) |
165 | // Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce! |
166 | // Process: only proceed if body A's motion is high relative to its size. |
167 | // cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does. |
168 | // adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it. |
169 | bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) { |
170 | GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A); |
171 | |
172 | Vector3 motion = p_A->get_linear_velocity() * p_step; |
173 | real_t mlen = motion.length(); |
174 | if (mlen < CMP_EPSILON) { |
175 | return false; |
176 | } |
177 | |
178 | Vector3 mnormal = motion / mlen; |
179 | |
180 | real_t min = 0.0, max = 0.0; |
181 | shape_A_ptr->project_range(mnormal, p_xform_A, min, max); |
182 | |
183 | // Did it move enough in this direction to even attempt raycast? |
184 | // Let's say it should move more than 1/3 the size of the object in that axis. |
185 | bool fast_object = mlen > (max - min) * 0.3; |
186 | if (!fast_object) { |
187 | return false; // moving slow enough that there's no chance of tunneling. |
188 | } |
189 | |
190 | // A is moving fast enough that tunneling might occur. See if it's really about to collide. |
191 | |
192 | // Roughly predict body B's position in the next frame (ignoring collisions). |
193 | Transform3D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step); |
194 | |
195 | // Support points are the farthest forward points on A in the direction of the motion vector. |
196 | // i.e. the candidate points of which one should hit B first if any collision does occur. |
197 | static const int max_supports = 16; |
198 | Vector3 supports_A[max_supports]; |
199 | int support_count_A; |
200 | GodotShape3D::FeatureType support_type_A; |
201 | // Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates. |
202 | shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A); |
203 | |
204 | // Cast a segment from each support point of A in the motion direction. |
205 | int segment_support_idx = -1; |
206 | float segment_hit_length = FLT_MAX; |
207 | Vector3 segment_hit_local; |
208 | for (int i = 0; i < support_count_A; i++) { |
209 | supports_A[i] = p_xform_A.xform(supports_A[i]); |
210 | |
211 | Vector3 from = supports_A[i]; |
212 | Vector3 to = from + motion; |
213 | |
214 | Transform3D from_inv = predicted_xform_B.affine_inverse(); |
215 | |
216 | // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. |
217 | // At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. |
218 | // But it still works out. |
219 | Vector3 local_from = from_inv.xform(from - motion * 0.1); |
220 | Vector3 local_to = from_inv.xform(to); |
221 | |
222 | Vector3 rpos, rnorm; |
223 | int fi = -1; |
224 | if (p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm, fi, true)) { |
225 | float hit_length = local_from.distance_to(rpos); |
226 | if (hit_length < segment_hit_length) { |
227 | segment_support_idx = i; |
228 | segment_hit_length = hit_length; |
229 | segment_hit_local = rpos; |
230 | } |
231 | } |
232 | } |
233 | |
234 | if (segment_support_idx == -1) { |
235 | // There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not |
236 | // actually collide yet on next frame. We'll probably check again next frame once they're closer. |
237 | return false; |
238 | } |
239 | |
240 | Vector3 hitpos = predicted_xform_B.xform(segment_hit_local); |
241 | |
242 | real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]); |
243 | // Adding 1% of body length to the distance between collision and support point |
244 | // should cause body A's support point to arrive just within B's collider next frame. |
245 | newlen += (max - min) * 0.01; |
246 | // FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape. |
247 | |
248 | p_A->set_linear_velocity((mnormal * newlen) / p_step); |
249 | |
250 | return true; |
251 | } |
252 | |
253 | real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) { |
254 | return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); |
255 | } |
256 | |
257 | real_t combine_friction(GodotBody3D *A, GodotBody3D *B) { |
258 | return ABS(MIN(A->get_friction(), B->get_friction())); |
259 | } |
260 | |
261 | bool GodotBodyPair3D::setup(real_t p_step) { |
262 | check_ccd = false; |
263 | |
264 | if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { |
265 | collided = false; |
266 | return false; |
267 | } |
268 | |
269 | collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B); |
270 | collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A); |
271 | |
272 | report_contacts_only = false; |
273 | if (!collide_A && !collide_B) { |
274 | if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { |
275 | report_contacts_only = true; |
276 | } else { |
277 | collided = false; |
278 | return false; |
279 | } |
280 | } |
281 | |
282 | offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); |
283 | |
284 | validate_contacts(); |
285 | |
286 | const Vector3 &offset_A = A->get_transform().get_origin(); |
287 | Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); |
288 | Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); |
289 | |
290 | Transform3D xform_Bu = B->get_transform(); |
291 | xform_Bu.origin -= offset_A; |
292 | Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
293 | |
294 | GodotShape3D *shape_A_ptr = A->get_shape(shape_A); |
295 | GodotShape3D *shape_B_ptr = B->get_shape(shape_B); |
296 | |
297 | collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); |
298 | |
299 | if (!collided) { |
300 | if (A->is_continuous_collision_detection_enabled() && collide_A) { |
301 | check_ccd = true; |
302 | return true; |
303 | } |
304 | |
305 | if (B->is_continuous_collision_detection_enabled() && collide_B) { |
306 | check_ccd = true; |
307 | return true; |
308 | } |
309 | |
310 | return false; |
311 | } |
312 | |
313 | return true; |
314 | } |
315 | |
316 | bool GodotBodyPair3D::pre_solve(real_t p_step) { |
317 | if (!collided) { |
318 | if (check_ccd) { |
319 | const Vector3 &offset_A = A->get_transform().get_origin(); |
320 | Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); |
321 | Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); |
322 | |
323 | Transform3D xform_Bu = B->get_transform(); |
324 | xform_Bu.origin -= offset_A; |
325 | Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); |
326 | |
327 | if (A->is_continuous_collision_detection_enabled() && collide_A) { |
328 | _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); |
329 | } |
330 | |
331 | if (B->is_continuous_collision_detection_enabled() && collide_B) { |
332 | _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); |
333 | } |
334 | } |
335 | |
336 | return false; |
337 | } |
338 | |
339 | real_t max_penetration = space->get_contact_max_allowed_penetration(); |
340 | |
341 | real_t bias = 0.8; |
342 | |
343 | GodotShape3D *shape_A_ptr = A->get_shape(shape_A); |
344 | GodotShape3D *shape_B_ptr = B->get_shape(shape_B); |
345 | |
346 | if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { |
347 | if (shape_A_ptr->get_custom_bias() == 0) { |
348 | bias = shape_B_ptr->get_custom_bias(); |
349 | } else if (shape_B_ptr->get_custom_bias() == 0) { |
350 | bias = shape_A_ptr->get_custom_bias(); |
351 | } else { |
352 | bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; |
353 | } |
354 | } |
355 | |
356 | real_t inv_dt = 1.0 / p_step; |
357 | |
358 | bool do_process = false; |
359 | |
360 | const Vector3 &offset_A = A->get_transform().get_origin(); |
361 | |
362 | const Basis &basis_A = A->get_transform().basis; |
363 | const Basis &basis_B = B->get_transform().basis; |
364 | |
365 | Basis zero_basis; |
366 | zero_basis.set_zero(); |
367 | |
368 | const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; |
369 | const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; |
370 | |
371 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
372 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
373 | |
374 | for (int i = 0; i < contact_count; i++) { |
375 | Contact &c = contacts[i]; |
376 | c.active = false; |
377 | |
378 | Vector3 global_A = basis_A.xform(c.local_A); |
379 | Vector3 global_B = basis_B.xform(c.local_B) + offset_B; |
380 | |
381 | Vector3 axis = global_A - global_B; |
382 | real_t depth = axis.dot(c.normal); |
383 | |
384 | if (depth <= 0.0) { |
385 | continue; |
386 | } |
387 | |
388 | #ifdef DEBUG_ENABLED |
389 | if (space->is_debugging_contacts()) { |
390 | space->add_debug_contact(global_A + offset_A); |
391 | space->add_debug_contact(global_B + offset_A); |
392 | } |
393 | #endif |
394 | |
395 | c.rA = global_A - A->get_center_of_mass(); |
396 | c.rB = global_B - B->get_center_of_mass() - offset_B; |
397 | |
398 | // Precompute normal mass, tangent mass, and bias. |
399 | Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal)); |
400 | Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal)); |
401 | real_t kNormal = inv_mass_A + inv_mass_B; |
402 | kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB)); |
403 | c.mass_normal = 1.0f / kNormal; |
404 | |
405 | c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); |
406 | c.depth = depth; |
407 | |
408 | Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; |
409 | |
410 | c.acc_impulse -= j_vec; |
411 | |
412 | // contact query reporting... |
413 | |
414 | if (A->can_report_contacts() || B->can_report_contacts()) { |
415 | Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity(); |
416 | Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity(); |
417 | |
418 | if (A->can_report_contacts()) { |
419 | A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse); |
420 | } |
421 | |
422 | if (B->can_report_contacts()) { |
423 | B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, -c.acc_impulse); |
424 | } |
425 | } |
426 | |
427 | if (report_contacts_only) { |
428 | collided = false; |
429 | continue; |
430 | } |
431 | |
432 | c.active = true; |
433 | do_process = true; |
434 | |
435 | if (collide_A) { |
436 | A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass()); |
437 | } |
438 | if (collide_B) { |
439 | B->apply_impulse(j_vec, c.rB + B->get_center_of_mass()); |
440 | } |
441 | |
442 | c.bounce = combine_bounce(A, B); |
443 | if (c.bounce) { |
444 | Vector3 crA = A->get_prev_angular_velocity().cross(c.rA); |
445 | Vector3 crB = B->get_prev_angular_velocity().cross(c.rB); |
446 | Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA; |
447 | c.bounce = c.bounce * dv.dot(c.normal); |
448 | } |
449 | } |
450 | |
451 | return do_process; |
452 | } |
453 | |
454 | void GodotBodyPair3D::solve(real_t p_step) { |
455 | if (!collided) { |
456 | return; |
457 | } |
458 | |
459 | const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; |
460 | |
461 | Basis zero_basis; |
462 | zero_basis.set_zero(); |
463 | |
464 | const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; |
465 | const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; |
466 | |
467 | real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; |
468 | real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; |
469 | |
470 | for (int i = 0; i < contact_count; i++) { |
471 | Contact &c = contacts[i]; |
472 | if (!c.active) { |
473 | continue; |
474 | } |
475 | |
476 | c.active = false; //try to deactivate, will activate itself if still needed |
477 | |
478 | //bias impulse |
479 | |
480 | Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA); |
481 | Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB); |
482 | Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
483 | |
484 | real_t vbn = dbv.dot(c.normal); |
485 | |
486 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
487 | real_t jbn = (-vbn + c.bias) * c.mass_normal; |
488 | real_t jbnOld = c.acc_bias_impulse; |
489 | c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); |
490 | |
491 | Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); |
492 | |
493 | if (collide_A) { |
494 | A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av); |
495 | } |
496 | if (collide_B) { |
497 | B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av); |
498 | } |
499 | |
500 | crbA = A->get_biased_angular_velocity().cross(c.rA); |
501 | crbB = B->get_biased_angular_velocity().cross(c.rB); |
502 | dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; |
503 | |
504 | vbn = dbv.dot(c.normal); |
505 | |
506 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
507 | real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B); |
508 | real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; |
509 | c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); |
510 | |
511 | Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); |
512 | |
513 | if (collide_A) { |
514 | A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f); |
515 | } |
516 | if (collide_B) { |
517 | B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f); |
518 | } |
519 | } |
520 | |
521 | c.active = true; |
522 | } |
523 | |
524 | Vector3 crA = A->get_angular_velocity().cross(c.rA); |
525 | Vector3 crB = B->get_angular_velocity().cross(c.rB); |
526 | Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; |
527 | |
528 | //normal impulse |
529 | real_t vn = dv.dot(c.normal); |
530 | |
531 | if (Math::abs(vn) > MIN_VELOCITY) { |
532 | real_t jn = -(c.bounce + vn) * c.mass_normal; |
533 | real_t jnOld = c.acc_normal_impulse; |
534 | c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); |
535 | |
536 | Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); |
537 | |
538 | if (collide_A) { |
539 | A->apply_impulse(-j, c.rA + A->get_center_of_mass()); |
540 | } |
541 | if (collide_B) { |
542 | B->apply_impulse(j, c.rB + B->get_center_of_mass()); |
543 | } |
544 | c.acc_impulse -= j; |
545 | |
546 | c.active = true; |
547 | } |
548 | |
549 | //friction impulse |
550 | |
551 | real_t friction = combine_friction(A, B); |
552 | |
553 | Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA); |
554 | Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB); |
555 | |
556 | Vector3 dtv = lvB - lvA; |
557 | real_t tn = c.normal.dot(dtv); |
558 | |
559 | // tangential velocity |
560 | Vector3 tv = dtv - c.normal * tn; |
561 | real_t tvl = tv.length(); |
562 | |
563 | if (tvl > MIN_VELOCITY) { |
564 | tv /= tvl; |
565 | |
566 | Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv)); |
567 | Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv)); |
568 | |
569 | real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB))); |
570 | |
571 | Vector3 jt = t * tv; |
572 | |
573 | Vector3 jtOld = c.acc_tangent_impulse; |
574 | c.acc_tangent_impulse += jt; |
575 | |
576 | real_t fi_len = c.acc_tangent_impulse.length(); |
577 | real_t jtMax = c.acc_normal_impulse * friction; |
578 | |
579 | if (fi_len > CMP_EPSILON && fi_len > jtMax) { |
580 | c.acc_tangent_impulse *= jtMax / fi_len; |
581 | } |
582 | |
583 | jt = c.acc_tangent_impulse - jtOld; |
584 | |
585 | if (collide_A) { |
586 | A->apply_impulse(-jt, c.rA + A->get_center_of_mass()); |
587 | } |
588 | if (collide_B) { |
589 | B->apply_impulse(jt, c.rB + B->get_center_of_mass()); |
590 | } |
591 | c.acc_impulse -= jt; |
592 | |
593 | c.active = true; |
594 | } |
595 | } |
596 | } |
597 | |
598 | GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) : |
599 | GodotBodyContact3D(_arr, 2) { |
600 | A = p_A; |
601 | B = p_B; |
602 | shape_A = p_shape_A; |
603 | shape_B = p_shape_B; |
604 | space = A->get_space(); |
605 | A->add_constraint(this, 0); |
606 | B->add_constraint(this, 1); |
607 | } |
608 | |
609 | GodotBodyPair3D::~GodotBodyPair3D() { |
610 | A->remove_constraint(this); |
611 | B->remove_constraint(this); |
612 | } |
613 | |
614 | void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { |
615 | GodotBodySoftBodyPair3D *pair = static_cast<GodotBodySoftBodyPair3D *>(p_userdata); |
616 | pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); |
617 | } |
618 | |
619 | void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { |
620 | Vector3 local_A = body->get_inv_transform().xform(p_point_A); |
621 | Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B); |
622 | |
623 | Contact contact; |
624 | contact.index_A = p_index_A; |
625 | contact.index_B = p_index_B; |
626 | contact.local_A = local_A; |
627 | contact.local_B = local_B; |
628 | contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal); |
629 | contact.used = true; |
630 | |
631 | // Attempt to determine if the contact will be reused. |
632 | real_t contact_recycle_radius = space->get_contact_recycle_radius(); |
633 | |
634 | uint32_t contact_count = contacts.size(); |
635 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
636 | Contact &c = contacts[contact_index]; |
637 | if (c.index_B == p_index_B) { |
638 | if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && |
639 | c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { |
640 | contact.acc_normal_impulse = c.acc_normal_impulse; |
641 | contact.acc_bias_impulse = c.acc_bias_impulse; |
642 | contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; |
643 | contact.acc_tangent_impulse = c.acc_tangent_impulse; |
644 | } |
645 | c = contact; |
646 | return; |
647 | } |
648 | } |
649 | |
650 | contacts.push_back(contact); |
651 | } |
652 | |
653 | void GodotBodySoftBodyPair3D::validate_contacts() { |
654 | // Make sure to erase contacts that are no longer valid. |
655 | real_t max_separation = space->get_contact_max_separation(); |
656 | real_t max_separation2 = max_separation * max_separation; |
657 | |
658 | const Transform3D &transform_A = body->get_transform(); |
659 | |
660 | uint32_t contact_count = contacts.size(); |
661 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
662 | Contact &c = contacts[contact_index]; |
663 | |
664 | bool erase = false; |
665 | if (!c.used) { |
666 | // Was left behind in previous frame. |
667 | erase = true; |
668 | } else { |
669 | c.used = false; |
670 | |
671 | Vector3 global_A = transform_A.xform(c.local_A); |
672 | Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; |
673 | Vector3 axis = global_A - global_B; |
674 | real_t depth = axis.dot(c.normal); |
675 | |
676 | if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { |
677 | erase = true; |
678 | } |
679 | } |
680 | |
681 | if (erase) { |
682 | // Contact no longer needed, remove. |
683 | if ((contact_index + 1) < contact_count) { |
684 | // Swap with the last one. |
685 | SWAP(c, contacts[contact_count - 1]); |
686 | } |
687 | |
688 | contact_index--; |
689 | contact_count--; |
690 | } |
691 | } |
692 | |
693 | contacts.resize(contact_count); |
694 | } |
695 | |
696 | bool GodotBodySoftBodyPair3D::setup(real_t p_step) { |
697 | if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) { |
698 | collided = false; |
699 | return false; |
700 | } |
701 | |
702 | body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body); |
703 | soft_body_collides = soft_body->collides_with(body); |
704 | |
705 | if (!body_collides && !soft_body_collides) { |
706 | if (body->get_max_contacts_reported() > 0) { |
707 | report_contacts_only = true; |
708 | } else { |
709 | collided = false; |
710 | return false; |
711 | } |
712 | } |
713 | |
714 | const Transform3D &xform_Au = body->get_transform(); |
715 | Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape); |
716 | |
717 | Transform3D xform_Bu = soft_body->get_transform(); |
718 | Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0); |
719 | |
720 | validate_contacts(); |
721 | |
722 | GodotShape3D *shape_A_ptr = body->get_shape(body_shape); |
723 | GodotShape3D *shape_B_ptr = soft_body->get_shape(0); |
724 | |
725 | collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); |
726 | |
727 | return collided; |
728 | } |
729 | |
730 | bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) { |
731 | if (!collided) { |
732 | return false; |
733 | } |
734 | |
735 | real_t max_penetration = space->get_contact_max_allowed_penetration(); |
736 | |
737 | real_t bias = space->get_contact_bias(); |
738 | |
739 | GodotShape3D *shape_A_ptr = body->get_shape(body_shape); |
740 | |
741 | if (shape_A_ptr->get_custom_bias()) { |
742 | bias = shape_A_ptr->get_custom_bias(); |
743 | } |
744 | |
745 | real_t inv_dt = 1.0 / p_step; |
746 | |
747 | bool do_process = false; |
748 | |
749 | const Transform3D &transform_A = body->get_transform(); |
750 | |
751 | Basis zero_basis; |
752 | zero_basis.set_zero(); |
753 | |
754 | const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; |
755 | |
756 | real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; |
757 | |
758 | uint32_t contact_count = contacts.size(); |
759 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
760 | Contact &c = contacts[contact_index]; |
761 | c.active = false; |
762 | |
763 | real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; |
764 | if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) { |
765 | continue; |
766 | } |
767 | |
768 | Vector3 global_A = transform_A.xform(c.local_A); |
769 | Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; |
770 | Vector3 axis = global_A - global_B; |
771 | real_t depth = axis.dot(c.normal); |
772 | |
773 | if (depth <= 0.0) { |
774 | continue; |
775 | } |
776 | |
777 | #ifdef DEBUG_ENABLED |
778 | if (space->is_debugging_contacts()) { |
779 | space->add_debug_contact(global_A); |
780 | space->add_debug_contact(global_B); |
781 | } |
782 | #endif |
783 | |
784 | c.rA = global_A - transform_A.origin - body->get_center_of_mass(); |
785 | c.rB = global_B; |
786 | |
787 | // Precompute normal mass, tangent mass, and bias. |
788 | Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal)); |
789 | real_t kNormal = body_inv_mass + node_inv_mass; |
790 | kNormal += c.normal.dot(inertia_A.cross(c.rA)); |
791 | c.mass_normal = 1.0f / kNormal; |
792 | |
793 | c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); |
794 | c.depth = depth; |
795 | |
796 | Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; |
797 | if (body_collides) { |
798 | body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass()); |
799 | } |
800 | if (soft_body_collides) { |
801 | soft_body->apply_node_impulse(c.index_B, j_vec); |
802 | } |
803 | c.acc_impulse -= j_vec; |
804 | |
805 | if (body->can_report_contacts()) { |
806 | Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity(); |
807 | Vector3 crB = soft_body->get_node_velocity(c.index_B); |
808 | body->add_contact(global_A, -c.normal, depth, body_shape, crA, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crB, c.acc_impulse); |
809 | } |
810 | if (report_contacts_only) { |
811 | collided = false; |
812 | continue; |
813 | } |
814 | |
815 | c.active = true; |
816 | do_process = true; |
817 | |
818 | if (body_collides) { |
819 | body->set_active(true); |
820 | } |
821 | |
822 | c.bounce = body->get_bounce(); |
823 | |
824 | if (c.bounce) { |
825 | Vector3 crA = body->get_angular_velocity().cross(c.rA); |
826 | Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; |
827 | |
828 | // Normal impulse. |
829 | c.bounce = c.bounce * dv.dot(c.normal); |
830 | } |
831 | } |
832 | |
833 | return do_process; |
834 | } |
835 | |
836 | void GodotBodySoftBodyPair3D::solve(real_t p_step) { |
837 | if (!collided) { |
838 | return; |
839 | } |
840 | |
841 | const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; |
842 | |
843 | Basis zero_basis; |
844 | zero_basis.set_zero(); |
845 | |
846 | const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; |
847 | |
848 | real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; |
849 | |
850 | uint32_t contact_count = contacts.size(); |
851 | for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { |
852 | Contact &c = contacts[contact_index]; |
853 | if (!c.active) { |
854 | continue; |
855 | } |
856 | |
857 | c.active = false; |
858 | |
859 | real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; |
860 | |
861 | // Bias impulse. |
862 | Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA); |
863 | Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; |
864 | |
865 | real_t vbn = dbv.dot(c.normal); |
866 | |
867 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
868 | real_t jbn = (-vbn + c.bias) * c.mass_normal; |
869 | real_t jbnOld = c.acc_bias_impulse; |
870 | c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); |
871 | |
872 | Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); |
873 | |
874 | if (body_collides) { |
875 | body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av); |
876 | } |
877 | if (soft_body_collides) { |
878 | soft_body->apply_node_bias_impulse(c.index_B, jb); |
879 | } |
880 | |
881 | crbA = body->get_biased_angular_velocity().cross(c.rA); |
882 | dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; |
883 | |
884 | vbn = dbv.dot(c.normal); |
885 | |
886 | if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { |
887 | real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass); |
888 | real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; |
889 | c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); |
890 | |
891 | Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); |
892 | |
893 | if (body_collides) { |
894 | body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f); |
895 | } |
896 | if (soft_body_collides) { |
897 | soft_body->apply_node_bias_impulse(c.index_B, jb_com); |
898 | } |
899 | } |
900 | |
901 | c.active = true; |
902 | } |
903 | |
904 | Vector3 crA = body->get_angular_velocity().cross(c.rA); |
905 | Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; |
906 | |
907 | // Normal impulse. |
908 | real_t vn = dv.dot(c.normal); |
909 | |
910 | if (Math::abs(vn) > MIN_VELOCITY) { |
911 | real_t jn = -(c.bounce + vn) * c.mass_normal; |
912 | real_t jnOld = c.acc_normal_impulse; |
913 | c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); |
914 | |
915 | Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); |
916 | |
917 | if (body_collides) { |
918 | body->apply_impulse(-j, c.rA + body->get_center_of_mass()); |
919 | } |
920 | if (soft_body_collides) { |
921 | soft_body->apply_node_impulse(c.index_B, j); |
922 | } |
923 | c.acc_impulse -= j; |
924 | |
925 | c.active = true; |
926 | } |
927 | |
928 | // Friction impulse. |
929 | real_t friction = body->get_friction(); |
930 | |
931 | Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA); |
932 | Vector3 lvB = soft_body->get_node_velocity(c.index_B); |
933 | Vector3 dtv = lvB - lvA; |
934 | |
935 | real_t tn = c.normal.dot(dtv); |
936 | |
937 | // Tangential velocity. |
938 | Vector3 tv = dtv - c.normal * tn; |
939 | real_t tvl = tv.length(); |
940 | |
941 | if (tvl > MIN_VELOCITY) { |
942 | tv /= tvl; |
943 | |
944 | Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv)); |
945 | |
946 | real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA))); |
947 | |
948 | Vector3 jt = t * tv; |
949 | |
950 | Vector3 jtOld = c.acc_tangent_impulse; |
951 | c.acc_tangent_impulse += jt; |
952 | |
953 | real_t fi_len = c.acc_tangent_impulse.length(); |
954 | real_t jtMax = c.acc_normal_impulse * friction; |
955 | |
956 | if (fi_len > CMP_EPSILON && fi_len > jtMax) { |
957 | c.acc_tangent_impulse *= jtMax / fi_len; |
958 | } |
959 | |
960 | jt = c.acc_tangent_impulse - jtOld; |
961 | |
962 | if (body_collides) { |
963 | body->apply_impulse(-jt, c.rA + body->get_center_of_mass()); |
964 | } |
965 | if (soft_body_collides) { |
966 | soft_body->apply_node_impulse(c.index_B, jt); |
967 | } |
968 | c.acc_impulse -= jt; |
969 | |
970 | c.active = true; |
971 | } |
972 | } |
973 | } |
974 | |
975 | GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) : |
976 | GodotBodyContact3D(&body, 1) { |
977 | body = p_A; |
978 | soft_body = p_B; |
979 | body_shape = p_shape_A; |
980 | space = p_A->get_space(); |
981 | body->add_constraint(this, 0); |
982 | soft_body->add_constraint(this); |
983 | } |
984 | |
985 | GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() { |
986 | body->remove_constraint(this); |
987 | soft_body->remove_constraint(this); |
988 | } |
989 | |