| 1 | /* |
| 2 | * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Collision/b2Distance.h> |
| 20 | #include <Box2D/Collision/Shapes/b2CircleShape.h> |
| 21 | #include <Box2D/Collision/Shapes/b2EdgeShape.h> |
| 22 | #include <Box2D/Collision/Shapes/b2ChainShape.h> |
| 23 | #include <Box2D/Collision/Shapes/b2PolygonShape.h> |
| 24 | |
| 25 | // GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates. |
| 26 | int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters; |
| 27 | |
| 28 | void b2DistanceProxy::Set(const b2Shape* shape, int32 index) |
| 29 | { |
| 30 | switch (shape->GetType()) |
| 31 | { |
| 32 | case b2Shape::e_circle: |
| 33 | { |
| 34 | const b2CircleShape* circle = static_cast<const b2CircleShape*>(shape); |
| 35 | m_vertices = &circle->m_p; |
| 36 | m_count = 1; |
| 37 | m_radius = circle->m_radius; |
| 38 | } |
| 39 | break; |
| 40 | |
| 41 | case b2Shape::e_polygon: |
| 42 | { |
| 43 | const b2PolygonShape* polygon = static_cast<const b2PolygonShape*>(shape); |
| 44 | m_vertices = polygon->m_vertices; |
| 45 | m_count = polygon->m_count; |
| 46 | m_radius = polygon->m_radius; |
| 47 | } |
| 48 | break; |
| 49 | |
| 50 | case b2Shape::e_chain: |
| 51 | { |
| 52 | const b2ChainShape* chain = static_cast<const b2ChainShape*>(shape); |
| 53 | b2Assert(0 <= index && index < chain->m_count); |
| 54 | |
| 55 | m_buffer[0] = chain->m_vertices[index]; |
| 56 | if (index + 1 < chain->m_count) |
| 57 | { |
| 58 | m_buffer[1] = chain->m_vertices[index + 1]; |
| 59 | } |
| 60 | else |
| 61 | { |
| 62 | m_buffer[1] = chain->m_vertices[0]; |
| 63 | } |
| 64 | |
| 65 | m_vertices = m_buffer; |
| 66 | m_count = 2; |
| 67 | m_radius = chain->m_radius; |
| 68 | } |
| 69 | break; |
| 70 | |
| 71 | case b2Shape::e_edge: |
| 72 | { |
| 73 | const b2EdgeShape* edge = static_cast<const b2EdgeShape*>(shape); |
| 74 | m_vertices = &edge->m_vertex1; |
| 75 | m_count = 2; |
| 76 | m_radius = edge->m_radius; |
| 77 | } |
| 78 | break; |
| 79 | |
| 80 | default: |
| 81 | b2Assert(false); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | |
| 86 | struct b2SimplexVertex |
| 87 | { |
| 88 | b2Vec2 wA; // support point in proxyA |
| 89 | b2Vec2 wB; // support point in proxyB |
| 90 | b2Vec2 w; // wB - wA |
| 91 | float32 a; // barycentric coordinate for closest point |
| 92 | int32 indexA; // wA index |
| 93 | int32 indexB; // wB index |
| 94 | }; |
| 95 | |
| 96 | struct b2Simplex |
| 97 | { |
| 98 | void ReadCache( const b2SimplexCache* cache, |
| 99 | const b2DistanceProxy* proxyA, const b2Transform& transformA, |
| 100 | const b2DistanceProxy* proxyB, const b2Transform& transformB) |
| 101 | { |
| 102 | b2Assert(cache->count <= 3); |
| 103 | |
| 104 | // Copy data from cache. |
| 105 | m_count = cache->count; |
| 106 | b2SimplexVertex* vertices = &m_v1; |
| 107 | for (int32 i = 0; i < m_count; ++i) |
| 108 | { |
| 109 | b2SimplexVertex* v = vertices + i; |
| 110 | v->indexA = cache->indexA[i]; |
| 111 | v->indexB = cache->indexB[i]; |
| 112 | b2Vec2 wALocal = proxyA->GetVertex(v->indexA); |
| 113 | b2Vec2 wBLocal = proxyB->GetVertex(v->indexB); |
| 114 | v->wA = b2Mul(transformA, wALocal); |
| 115 | v->wB = b2Mul(transformB, wBLocal); |
| 116 | v->w = v->wB - v->wA; |
| 117 | v->a = 0.0f; |
| 118 | } |
| 119 | |
| 120 | // Compute the new simplex metric, if it is substantially different than |
| 121 | // old metric then flush the simplex. |
| 122 | if (m_count > 1) |
| 123 | { |
| 124 | float32 metric1 = cache->metric; |
| 125 | float32 metric2 = GetMetric(); |
| 126 | if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon) |
| 127 | { |
| 128 | // Reset the simplex. |
| 129 | m_count = 0; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | // If the cache is empty or invalid ... |
| 134 | if (m_count == 0) |
| 135 | { |
| 136 | b2SimplexVertex* v = vertices + 0; |
| 137 | v->indexA = 0; |
| 138 | v->indexB = 0; |
| 139 | b2Vec2 wALocal = proxyA->GetVertex(0); |
| 140 | b2Vec2 wBLocal = proxyB->GetVertex(0); |
| 141 | v->wA = b2Mul(transformA, wALocal); |
| 142 | v->wB = b2Mul(transformB, wBLocal); |
| 143 | v->w = v->wB - v->wA; |
| 144 | v->a = 1.0f; |
| 145 | m_count = 1; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void WriteCache(b2SimplexCache* cache) const |
| 150 | { |
| 151 | cache->metric = GetMetric(); |
| 152 | cache->count = uint16(m_count); |
| 153 | const b2SimplexVertex* vertices = &m_v1; |
| 154 | for (int32 i = 0; i < m_count; ++i) |
| 155 | { |
| 156 | cache->indexA[i] = uint8(vertices[i].indexA); |
| 157 | cache->indexB[i] = uint8(vertices[i].indexB); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | b2Vec2 GetSearchDirection() const |
| 162 | { |
| 163 | switch (m_count) |
| 164 | { |
| 165 | case 1: |
| 166 | return -m_v1.w; |
| 167 | |
| 168 | case 2: |
| 169 | { |
| 170 | b2Vec2 e12 = m_v2.w - m_v1.w; |
| 171 | float32 sgn = b2Cross(e12, -m_v1.w); |
| 172 | if (sgn > 0.0f) |
| 173 | { |
| 174 | // Origin is left of e12. |
| 175 | return b2Cross(1.0f, e12); |
| 176 | } |
| 177 | else |
| 178 | { |
| 179 | // Origin is right of e12. |
| 180 | return b2Cross(e12, 1.0f); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | default: |
| 185 | b2Assert(false); |
| 186 | return b2Vec2_zero; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | b2Vec2 GetClosestPoint() const |
| 191 | { |
| 192 | switch (m_count) |
| 193 | { |
| 194 | case 0: |
| 195 | b2Assert(false); |
| 196 | return b2Vec2_zero; |
| 197 | |
| 198 | case 1: |
| 199 | return m_v1.w; |
| 200 | |
| 201 | case 2: |
| 202 | return m_v1.a * m_v1.w + m_v2.a * m_v2.w; |
| 203 | |
| 204 | case 3: |
| 205 | return b2Vec2_zero; |
| 206 | |
| 207 | default: |
| 208 | b2Assert(false); |
| 209 | return b2Vec2_zero; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const |
| 214 | { |
| 215 | switch (m_count) |
| 216 | { |
| 217 | case 0: |
| 218 | b2Assert(false); |
| 219 | break; |
| 220 | |
| 221 | case 1: |
| 222 | *pA = m_v1.wA; |
| 223 | *pB = m_v1.wB; |
| 224 | break; |
| 225 | |
| 226 | case 2: |
| 227 | *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA; |
| 228 | *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB; |
| 229 | break; |
| 230 | |
| 231 | case 3: |
| 232 | *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA; |
| 233 | *pB = *pA; |
| 234 | break; |
| 235 | |
| 236 | default: |
| 237 | b2Assert(false); |
| 238 | break; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | float32 GetMetric() const |
| 243 | { |
| 244 | switch (m_count) |
| 245 | { |
| 246 | case 0: |
| 247 | b2Assert(false); |
| 248 | return 0.0f; |
| 249 | |
| 250 | case 1: |
| 251 | return 0.0f; |
| 252 | |
| 253 | case 2: |
| 254 | return b2Distance(m_v1.w, m_v2.w); |
| 255 | |
| 256 | case 3: |
| 257 | return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w); |
| 258 | |
| 259 | default: |
| 260 | b2Assert(false); |
| 261 | return 0.0f; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | void Solve2(); |
| 266 | void Solve3(); |
| 267 | |
| 268 | b2SimplexVertex m_v1, m_v2, m_v3; |
| 269 | int32 m_count; |
| 270 | }; |
| 271 | |
| 272 | |
| 273 | // Solve a line segment using barycentric coordinates. |
| 274 | // |
| 275 | // p = a1 * w1 + a2 * w2 |
| 276 | // a1 + a2 = 1 |
| 277 | // |
| 278 | // The vector from the origin to the closest point on the line is |
| 279 | // perpendicular to the line. |
| 280 | // e12 = w2 - w1 |
| 281 | // dot(p, e) = 0 |
| 282 | // a1 * dot(w1, e) + a2 * dot(w2, e) = 0 |
| 283 | // |
| 284 | // 2-by-2 linear system |
| 285 | // [1 1 ][a1] = [1] |
| 286 | // [w1.e12 w2.e12][a2] = [0] |
| 287 | // |
| 288 | // Define |
| 289 | // d12_1 = dot(w2, e12) |
| 290 | // d12_2 = -dot(w1, e12) |
| 291 | // d12 = d12_1 + d12_2 |
| 292 | // |
| 293 | // Solution |
| 294 | // a1 = d12_1 / d12 |
| 295 | // a2 = d12_2 / d12 |
| 296 | void b2Simplex::Solve2() |
| 297 | { |
| 298 | b2Vec2 w1 = m_v1.w; |
| 299 | b2Vec2 w2 = m_v2.w; |
| 300 | b2Vec2 e12 = w2 - w1; |
| 301 | |
| 302 | // w1 region |
| 303 | float32 d12_2 = -b2Dot(w1, e12); |
| 304 | if (d12_2 <= 0.0f) |
| 305 | { |
| 306 | // a2 <= 0, so we clamp it to 0 |
| 307 | m_v1.a = 1.0f; |
| 308 | m_count = 1; |
| 309 | return; |
| 310 | } |
| 311 | |
| 312 | // w2 region |
| 313 | float32 d12_1 = b2Dot(w2, e12); |
| 314 | if (d12_1 <= 0.0f) |
| 315 | { |
| 316 | // a1 <= 0, so we clamp it to 0 |
| 317 | m_v2.a = 1.0f; |
| 318 | m_count = 1; |
| 319 | m_v1 = m_v2; |
| 320 | return; |
| 321 | } |
| 322 | |
| 323 | // Must be in e12 region. |
| 324 | float32 inv_d12 = 1.0f / (d12_1 + d12_2); |
| 325 | m_v1.a = d12_1 * inv_d12; |
| 326 | m_v2.a = d12_2 * inv_d12; |
| 327 | m_count = 2; |
| 328 | } |
| 329 | |
| 330 | // Possible regions: |
| 331 | // - points[2] |
| 332 | // - edge points[0]-points[2] |
| 333 | // - edge points[1]-points[2] |
| 334 | // - inside the triangle |
| 335 | void b2Simplex::Solve3() |
| 336 | { |
| 337 | b2Vec2 w1 = m_v1.w; |
| 338 | b2Vec2 w2 = m_v2.w; |
| 339 | b2Vec2 w3 = m_v3.w; |
| 340 | |
| 341 | // Edge12 |
| 342 | // [1 1 ][a1] = [1] |
| 343 | // [w1.e12 w2.e12][a2] = [0] |
| 344 | // a3 = 0 |
| 345 | b2Vec2 e12 = w2 - w1; |
| 346 | float32 w1e12 = b2Dot(w1, e12); |
| 347 | float32 w2e12 = b2Dot(w2, e12); |
| 348 | float32 d12_1 = w2e12; |
| 349 | float32 d12_2 = -w1e12; |
| 350 | |
| 351 | // Edge13 |
| 352 | // [1 1 ][a1] = [1] |
| 353 | // [w1.e13 w3.e13][a3] = [0] |
| 354 | // a2 = 0 |
| 355 | b2Vec2 e13 = w3 - w1; |
| 356 | float32 w1e13 = b2Dot(w1, e13); |
| 357 | float32 w3e13 = b2Dot(w3, e13); |
| 358 | float32 d13_1 = w3e13; |
| 359 | float32 d13_2 = -w1e13; |
| 360 | |
| 361 | // Edge23 |
| 362 | // [1 1 ][a2] = [1] |
| 363 | // [w2.e23 w3.e23][a3] = [0] |
| 364 | // a1 = 0 |
| 365 | b2Vec2 e23 = w3 - w2; |
| 366 | float32 w2e23 = b2Dot(w2, e23); |
| 367 | float32 w3e23 = b2Dot(w3, e23); |
| 368 | float32 d23_1 = w3e23; |
| 369 | float32 d23_2 = -w2e23; |
| 370 | |
| 371 | // Triangle123 |
| 372 | float32 n123 = b2Cross(e12, e13); |
| 373 | |
| 374 | float32 d123_1 = n123 * b2Cross(w2, w3); |
| 375 | float32 d123_2 = n123 * b2Cross(w3, w1); |
| 376 | float32 d123_3 = n123 * b2Cross(w1, w2); |
| 377 | |
| 378 | // w1 region |
| 379 | if (d12_2 <= 0.0f && d13_2 <= 0.0f) |
| 380 | { |
| 381 | m_v1.a = 1.0f; |
| 382 | m_count = 1; |
| 383 | return; |
| 384 | } |
| 385 | |
| 386 | // e12 |
| 387 | if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) |
| 388 | { |
| 389 | float32 inv_d12 = 1.0f / (d12_1 + d12_2); |
| 390 | m_v1.a = d12_1 * inv_d12; |
| 391 | m_v2.a = d12_2 * inv_d12; |
| 392 | m_count = 2; |
| 393 | return; |
| 394 | } |
| 395 | |
| 396 | // e13 |
| 397 | if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) |
| 398 | { |
| 399 | float32 inv_d13 = 1.0f / (d13_1 + d13_2); |
| 400 | m_v1.a = d13_1 * inv_d13; |
| 401 | m_v3.a = d13_2 * inv_d13; |
| 402 | m_count = 2; |
| 403 | m_v2 = m_v3; |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | // w2 region |
| 408 | if (d12_1 <= 0.0f && d23_2 <= 0.0f) |
| 409 | { |
| 410 | m_v2.a = 1.0f; |
| 411 | m_count = 1; |
| 412 | m_v1 = m_v2; |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | // w3 region |
| 417 | if (d13_1 <= 0.0f && d23_1 <= 0.0f) |
| 418 | { |
| 419 | m_v3.a = 1.0f; |
| 420 | m_count = 1; |
| 421 | m_v1 = m_v3; |
| 422 | return; |
| 423 | } |
| 424 | |
| 425 | // e23 |
| 426 | if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) |
| 427 | { |
| 428 | float32 inv_d23 = 1.0f / (d23_1 + d23_2); |
| 429 | m_v2.a = d23_1 * inv_d23; |
| 430 | m_v3.a = d23_2 * inv_d23; |
| 431 | m_count = 2; |
| 432 | m_v1 = m_v3; |
| 433 | return; |
| 434 | } |
| 435 | |
| 436 | // Must be in triangle123 |
| 437 | float32 inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); |
| 438 | m_v1.a = d123_1 * inv_d123; |
| 439 | m_v2.a = d123_2 * inv_d123; |
| 440 | m_v3.a = d123_3 * inv_d123; |
| 441 | m_count = 3; |
| 442 | } |
| 443 | |
| 444 | void b2Distance(b2DistanceOutput* output, |
| 445 | b2SimplexCache* cache, |
| 446 | const b2DistanceInput* input) |
| 447 | { |
| 448 | ++b2_gjkCalls; |
| 449 | |
| 450 | const b2DistanceProxy* proxyA = &input->proxyA; |
| 451 | const b2DistanceProxy* proxyB = &input->proxyB; |
| 452 | |
| 453 | b2Transform transformA = input->transformA; |
| 454 | b2Transform transformB = input->transformB; |
| 455 | |
| 456 | // Initialize the simplex. |
| 457 | b2Simplex simplex; |
| 458 | simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); |
| 459 | |
| 460 | // Get simplex vertices as an array. |
| 461 | b2SimplexVertex* vertices = &simplex.m_v1; |
| 462 | const int32 k_maxIters = 20; |
| 463 | |
| 464 | // These store the vertices of the last simplex so that we |
| 465 | // can check for duplicates and prevent cycling. |
| 466 | int32 saveA[3], saveB[3]; |
| 467 | int32 saveCount = 0; |
| 468 | |
| 469 | float32 distanceSqr1 = b2_maxFloat; |
| 470 | float32 distanceSqr2 = distanceSqr1; |
| 471 | |
| 472 | // Main iteration loop. |
| 473 | int32 iter = 0; |
| 474 | while (iter < k_maxIters) |
| 475 | { |
| 476 | // Copy simplex so we can identify duplicates. |
| 477 | saveCount = simplex.m_count; |
| 478 | for (int32 i = 0; i < saveCount; ++i) |
| 479 | { |
| 480 | saveA[i] = vertices[i].indexA; |
| 481 | saveB[i] = vertices[i].indexB; |
| 482 | } |
| 483 | |
| 484 | switch (simplex.m_count) |
| 485 | { |
| 486 | case 1: |
| 487 | break; |
| 488 | |
| 489 | case 2: |
| 490 | simplex.Solve2(); |
| 491 | break; |
| 492 | |
| 493 | case 3: |
| 494 | simplex.Solve3(); |
| 495 | break; |
| 496 | |
| 497 | default: |
| 498 | b2Assert(false); |
| 499 | } |
| 500 | |
| 501 | // If we have 3 points, then the origin is in the corresponding triangle. |
| 502 | if (simplex.m_count == 3) |
| 503 | { |
| 504 | break; |
| 505 | } |
| 506 | |
| 507 | // Compute closest point. |
| 508 | b2Vec2 p = simplex.GetClosestPoint(); |
| 509 | distanceSqr2 = p.LengthSquared(); |
| 510 | |
| 511 | // Ensure progress |
| 512 | if (distanceSqr2 >= distanceSqr1) |
| 513 | { |
| 514 | //break; |
| 515 | } |
| 516 | distanceSqr1 = distanceSqr2; |
| 517 | |
| 518 | // Get search direction. |
| 519 | b2Vec2 d = simplex.GetSearchDirection(); |
| 520 | |
| 521 | // Ensure the search direction is numerically fit. |
| 522 | if (d.LengthSquared() < b2_epsilon * b2_epsilon) |
| 523 | { |
| 524 | // The origin is probably contained by a line segment |
| 525 | // or triangle. Thus the shapes are overlapped. |
| 526 | |
| 527 | // We can't return zero here even though there may be overlap. |
| 528 | // In case the simplex is a point, segment, or triangle it is difficult |
| 529 | // to determine if the origin is contained in the CSO or very close to it. |
| 530 | break; |
| 531 | } |
| 532 | |
| 533 | // Compute a tentative new simplex vertex using support points. |
| 534 | b2SimplexVertex* vertex = vertices + simplex.m_count; |
| 535 | vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d)); |
| 536 | vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA)); |
| 537 | b2Vec2 wBLocal; |
| 538 | vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d)); |
| 539 | vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB)); |
| 540 | vertex->w = vertex->wB - vertex->wA; |
| 541 | |
| 542 | // Iteration count is equated to the number of support point calls. |
| 543 | ++iter; |
| 544 | ++b2_gjkIters; |
| 545 | |
| 546 | // Check for duplicate support points. This is the main termination criteria. |
| 547 | bool duplicate = false; |
| 548 | for (int32 i = 0; i < saveCount; ++i) |
| 549 | { |
| 550 | if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i]) |
| 551 | { |
| 552 | duplicate = true; |
| 553 | break; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | // If we found a duplicate support point we must exit to avoid cycling. |
| 558 | if (duplicate) |
| 559 | { |
| 560 | break; |
| 561 | } |
| 562 | |
| 563 | // New vertex is ok and needed. |
| 564 | ++simplex.m_count; |
| 565 | } |
| 566 | |
| 567 | b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter); |
| 568 | |
| 569 | // Prepare output. |
| 570 | simplex.GetWitnessPoints(&output->pointA, &output->pointB); |
| 571 | output->distance = b2Distance(output->pointA, output->pointB); |
| 572 | output->iterations = iter; |
| 573 | |
| 574 | // Cache the simplex. |
| 575 | simplex.WriteCache(cache); |
| 576 | |
| 577 | // Apply radii if requested. |
| 578 | if (input->useRadii) |
| 579 | { |
| 580 | float32 rA = proxyA->m_radius; |
| 581 | float32 rB = proxyB->m_radius; |
| 582 | |
| 583 | if (output->distance > rA + rB && output->distance > b2_epsilon) |
| 584 | { |
| 585 | // Shapes are still no overlapped. |
| 586 | // Move the witness points to the outer surface. |
| 587 | output->distance -= rA + rB; |
| 588 | b2Vec2 normal = output->pointB - output->pointA; |
| 589 | normal.Normalize(); |
| 590 | output->pointA += rA * normal; |
| 591 | output->pointB -= rB * normal; |
| 592 | } |
| 593 | else |
| 594 | { |
| 595 | // Shapes are overlapped when radii are considered. |
| 596 | // Move the witness points to the middle. |
| 597 | b2Vec2 p = 0.5f * (output->pointA + output->pointB); |
| 598 | output->pointA = p; |
| 599 | output->pointB = p; |
| 600 | output->distance = 0.0f; |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | |