| 1 | /* |
| 2 | * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Collision/b2Collision.h> |
| 20 | #include <Box2D/Collision/b2Distance.h> |
| 21 | #include <Box2D/Collision/b2TimeOfImpact.h> |
| 22 | #include <Box2D/Collision/Shapes/b2CircleShape.h> |
| 23 | #include <Box2D/Collision/Shapes/b2PolygonShape.h> |
| 24 | #include <Box2D/Common/b2Timer.h> |
| 25 | |
| 26 | #include <stdio.h> |
| 27 | |
| 28 | float32 b2_toiTime, b2_toiMaxTime; |
| 29 | int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters; |
| 30 | int32 b2_toiRootIters, b2_toiMaxRootIters; |
| 31 | |
| 32 | // |
| 33 | struct b2SeparationFunction |
| 34 | { |
| 35 | enum Type |
| 36 | { |
| 37 | e_points, |
| 38 | e_faceA, |
| 39 | e_faceB |
| 40 | }; |
| 41 | |
| 42 | // TODO_ERIN might not need to return the separation |
| 43 | |
| 44 | float32 Initialize(const b2SimplexCache* cache, |
| 45 | const b2DistanceProxy* proxyA, const b2Sweep& sweepA, |
| 46 | const b2DistanceProxy* proxyB, const b2Sweep& sweepB, |
| 47 | float32 t1) |
| 48 | { |
| 49 | m_proxyA = proxyA; |
| 50 | m_proxyB = proxyB; |
| 51 | int32 count = cache->count; |
| 52 | b2Assert(0 < count && count < 3); |
| 53 | |
| 54 | m_sweepA = sweepA; |
| 55 | m_sweepB = sweepB; |
| 56 | |
| 57 | b2Transform xfA, xfB; |
| 58 | m_sweepA.GetTransform(&xfA, t1); |
| 59 | m_sweepB.GetTransform(&xfB, t1); |
| 60 | |
| 61 | if (count == 1) |
| 62 | { |
| 63 | m_type = e_points; |
| 64 | b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]); |
| 65 | b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); |
| 66 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 67 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 68 | m_axis = pointB - pointA; |
| 69 | float32 s = m_axis.Normalize(); |
| 70 | return s; |
| 71 | } |
| 72 | else if (cache->indexA[0] == cache->indexA[1]) |
| 73 | { |
| 74 | // Two points on B and one on A. |
| 75 | m_type = e_faceB; |
| 76 | b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]); |
| 77 | b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]); |
| 78 | |
| 79 | m_axis = b2Cross(localPointB2 - localPointB1, 1.0f); |
| 80 | m_axis.Normalize(); |
| 81 | b2Vec2 normal = b2Mul(xfB.q, m_axis); |
| 82 | |
| 83 | m_localPoint = 0.5f * (localPointB1 + localPointB2); |
| 84 | b2Vec2 pointB = b2Mul(xfB, m_localPoint); |
| 85 | |
| 86 | b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]); |
| 87 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 88 | |
| 89 | float32 s = b2Dot(pointA - pointB, normal); |
| 90 | if (s < 0.0f) |
| 91 | { |
| 92 | m_axis = -m_axis; |
| 93 | s = -s; |
| 94 | } |
| 95 | return s; |
| 96 | } |
| 97 | else |
| 98 | { |
| 99 | // Two points on A and one or two points on B. |
| 100 | m_type = e_faceA; |
| 101 | b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]); |
| 102 | b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]); |
| 103 | |
| 104 | m_axis = b2Cross(localPointA2 - localPointA1, 1.0f); |
| 105 | m_axis.Normalize(); |
| 106 | b2Vec2 normal = b2Mul(xfA.q, m_axis); |
| 107 | |
| 108 | m_localPoint = 0.5f * (localPointA1 + localPointA2); |
| 109 | b2Vec2 pointA = b2Mul(xfA, m_localPoint); |
| 110 | |
| 111 | b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]); |
| 112 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 113 | |
| 114 | float32 s = b2Dot(pointB - pointA, normal); |
| 115 | if (s < 0.0f) |
| 116 | { |
| 117 | m_axis = -m_axis; |
| 118 | s = -s; |
| 119 | } |
| 120 | return s; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | // |
| 125 | float32 FindMinSeparation(int32* indexA, int32* indexB, float32 t) const |
| 126 | { |
| 127 | b2Transform xfA, xfB; |
| 128 | m_sweepA.GetTransform(&xfA, t); |
| 129 | m_sweepB.GetTransform(&xfB, t); |
| 130 | |
| 131 | switch (m_type) |
| 132 | { |
| 133 | case e_points: |
| 134 | { |
| 135 | b2Vec2 axisA = b2MulT(xfA.q, m_axis); |
| 136 | b2Vec2 axisB = b2MulT(xfB.q, -m_axis); |
| 137 | |
| 138 | *indexA = m_proxyA->GetSupport(axisA); |
| 139 | *indexB = m_proxyB->GetSupport(axisB); |
| 140 | |
| 141 | b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); |
| 142 | b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); |
| 143 | |
| 144 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 145 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 146 | |
| 147 | float32 separation = b2Dot(pointB - pointA, m_axis); |
| 148 | return separation; |
| 149 | } |
| 150 | |
| 151 | case e_faceA: |
| 152 | { |
| 153 | b2Vec2 normal = b2Mul(xfA.q, m_axis); |
| 154 | b2Vec2 pointA = b2Mul(xfA, m_localPoint); |
| 155 | |
| 156 | b2Vec2 axisB = b2MulT(xfB.q, -normal); |
| 157 | |
| 158 | *indexA = -1; |
| 159 | *indexB = m_proxyB->GetSupport(axisB); |
| 160 | |
| 161 | b2Vec2 localPointB = m_proxyB->GetVertex(*indexB); |
| 162 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 163 | |
| 164 | float32 separation = b2Dot(pointB - pointA, normal); |
| 165 | return separation; |
| 166 | } |
| 167 | |
| 168 | case e_faceB: |
| 169 | { |
| 170 | b2Vec2 normal = b2Mul(xfB.q, m_axis); |
| 171 | b2Vec2 pointB = b2Mul(xfB, m_localPoint); |
| 172 | |
| 173 | b2Vec2 axisA = b2MulT(xfA.q, -normal); |
| 174 | |
| 175 | *indexB = -1; |
| 176 | *indexA = m_proxyA->GetSupport(axisA); |
| 177 | |
| 178 | b2Vec2 localPointA = m_proxyA->GetVertex(*indexA); |
| 179 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 180 | |
| 181 | float32 separation = b2Dot(pointA - pointB, normal); |
| 182 | return separation; |
| 183 | } |
| 184 | |
| 185 | default: |
| 186 | b2Assert(false); |
| 187 | *indexA = -1; |
| 188 | *indexB = -1; |
| 189 | return 0.0f; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | // |
| 194 | float32 Evaluate(int32 indexA, int32 indexB, float32 t) const |
| 195 | { |
| 196 | b2Transform xfA, xfB; |
| 197 | m_sweepA.GetTransform(&xfA, t); |
| 198 | m_sweepB.GetTransform(&xfB, t); |
| 199 | |
| 200 | switch (m_type) |
| 201 | { |
| 202 | case e_points: |
| 203 | { |
| 204 | b2Vec2 localPointA = m_proxyA->GetVertex(indexA); |
| 205 | b2Vec2 localPointB = m_proxyB->GetVertex(indexB); |
| 206 | |
| 207 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 208 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 209 | float32 separation = b2Dot(pointB - pointA, m_axis); |
| 210 | |
| 211 | return separation; |
| 212 | } |
| 213 | |
| 214 | case e_faceA: |
| 215 | { |
| 216 | b2Vec2 normal = b2Mul(xfA.q, m_axis); |
| 217 | b2Vec2 pointA = b2Mul(xfA, m_localPoint); |
| 218 | |
| 219 | b2Vec2 localPointB = m_proxyB->GetVertex(indexB); |
| 220 | b2Vec2 pointB = b2Mul(xfB, localPointB); |
| 221 | |
| 222 | float32 separation = b2Dot(pointB - pointA, normal); |
| 223 | return separation; |
| 224 | } |
| 225 | |
| 226 | case e_faceB: |
| 227 | { |
| 228 | b2Vec2 normal = b2Mul(xfB.q, m_axis); |
| 229 | b2Vec2 pointB = b2Mul(xfB, m_localPoint); |
| 230 | |
| 231 | b2Vec2 localPointA = m_proxyA->GetVertex(indexA); |
| 232 | b2Vec2 pointA = b2Mul(xfA, localPointA); |
| 233 | |
| 234 | float32 separation = b2Dot(pointA - pointB, normal); |
| 235 | return separation; |
| 236 | } |
| 237 | |
| 238 | default: |
| 239 | b2Assert(false); |
| 240 | return 0.0f; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | const b2DistanceProxy* m_proxyA; |
| 245 | const b2DistanceProxy* m_proxyB; |
| 246 | b2Sweep m_sweepA, m_sweepB; |
| 247 | Type m_type; |
| 248 | b2Vec2 m_localPoint; |
| 249 | b2Vec2 m_axis; |
| 250 | }; |
| 251 | |
| 252 | // CCD via the local separating axis method. This seeks progression |
| 253 | // by computing the largest time at which separation is maintained. |
| 254 | void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input) |
| 255 | { |
| 256 | b2Timer timer; |
| 257 | |
| 258 | ++b2_toiCalls; |
| 259 | |
| 260 | output->state = b2TOIOutput::e_unknown; |
| 261 | output->t = input->tMax; |
| 262 | |
| 263 | const b2DistanceProxy* proxyA = &input->proxyA; |
| 264 | const b2DistanceProxy* proxyB = &input->proxyB; |
| 265 | |
| 266 | b2Sweep sweepA = input->sweepA; |
| 267 | b2Sweep sweepB = input->sweepB; |
| 268 | |
| 269 | // Large rotations can make the root finder fail, so we normalize the |
| 270 | // sweep angles. |
| 271 | sweepA.Normalize(); |
| 272 | sweepB.Normalize(); |
| 273 | |
| 274 | float32 tMax = input->tMax; |
| 275 | |
| 276 | float32 totalRadius = proxyA->m_radius + proxyB->m_radius; |
| 277 | float32 target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop); |
| 278 | float32 tolerance = 0.25f * b2_linearSlop; |
| 279 | b2Assert(target > tolerance); |
| 280 | |
| 281 | float32 t1 = 0.0f; |
| 282 | const int32 k_maxIterations = 20; // TODO_ERIN b2Settings |
| 283 | int32 iter = 0; |
| 284 | |
| 285 | // Prepare input for distance query. |
| 286 | b2SimplexCache cache; |
| 287 | cache.count = 0; |
| 288 | b2DistanceInput distanceInput; |
| 289 | distanceInput.proxyA = input->proxyA; |
| 290 | distanceInput.proxyB = input->proxyB; |
| 291 | distanceInput.useRadii = false; |
| 292 | |
| 293 | // The outer loop progressively attempts to compute new separating axes. |
| 294 | // This loop terminates when an axis is repeated (no progress is made). |
| 295 | for(;;) |
| 296 | { |
| 297 | b2Transform xfA, xfB; |
| 298 | sweepA.GetTransform(&xfA, t1); |
| 299 | sweepB.GetTransform(&xfB, t1); |
| 300 | |
| 301 | // Get the distance between shapes. We can also use the results |
| 302 | // to get a separating axis. |
| 303 | distanceInput.transformA = xfA; |
| 304 | distanceInput.transformB = xfB; |
| 305 | b2DistanceOutput distanceOutput; |
| 306 | b2Distance(&distanceOutput, &cache, &distanceInput); |
| 307 | |
| 308 | // If the shapes are overlapped, we give up on continuous collision. |
| 309 | if (distanceOutput.distance <= 0.0f) |
| 310 | { |
| 311 | // Failure! |
| 312 | output->state = b2TOIOutput::e_overlapped; |
| 313 | output->t = 0.0f; |
| 314 | break; |
| 315 | } |
| 316 | |
| 317 | if (distanceOutput.distance < target + tolerance) |
| 318 | { |
| 319 | // Victory! |
| 320 | output->state = b2TOIOutput::e_touching; |
| 321 | output->t = t1; |
| 322 | break; |
| 323 | } |
| 324 | |
| 325 | // Initialize the separating axis. |
| 326 | b2SeparationFunction fcn; |
| 327 | fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1); |
| 328 | #if 0 |
| 329 | // Dump the curve seen by the root finder |
| 330 | { |
| 331 | const int32 N = 100; |
| 332 | float32 dx = 1.0f / N; |
| 333 | float32 xs[N+1]; |
| 334 | float32 fs[N+1]; |
| 335 | |
| 336 | float32 x = 0.0f; |
| 337 | |
| 338 | for (int32 i = 0; i <= N; ++i) |
| 339 | { |
| 340 | sweepA.GetTransform(&xfA, x); |
| 341 | sweepB.GetTransform(&xfB, x); |
| 342 | float32 f = fcn.Evaluate(xfA, xfB) - target; |
| 343 | |
| 344 | printf("%g %g\n" , x, f); |
| 345 | |
| 346 | xs[i] = x; |
| 347 | fs[i] = f; |
| 348 | |
| 349 | x += dx; |
| 350 | } |
| 351 | } |
| 352 | #endif |
| 353 | |
| 354 | // Compute the TOI on the separating axis. We do this by successively |
| 355 | // resolving the deepest point. This loop is bounded by the number of vertices. |
| 356 | bool done = false; |
| 357 | float32 t2 = tMax; |
| 358 | int32 pushBackIter = 0; |
| 359 | for (;;) |
| 360 | { |
| 361 | // Find the deepest point at t2. Store the witness point indices. |
| 362 | int32 indexA, indexB; |
| 363 | float32 s2 = fcn.FindMinSeparation(&indexA, &indexB, t2); |
| 364 | |
| 365 | // Is the final configuration separated? |
| 366 | if (s2 > target + tolerance) |
| 367 | { |
| 368 | // Victory! |
| 369 | output->state = b2TOIOutput::e_separated; |
| 370 | output->t = tMax; |
| 371 | done = true; |
| 372 | break; |
| 373 | } |
| 374 | |
| 375 | // Has the separation reached tolerance? |
| 376 | if (s2 > target - tolerance) |
| 377 | { |
| 378 | // Advance the sweeps |
| 379 | t1 = t2; |
| 380 | break; |
| 381 | } |
| 382 | |
| 383 | // Compute the initial separation of the witness points. |
| 384 | float32 s1 = fcn.Evaluate(indexA, indexB, t1); |
| 385 | |
| 386 | // Check for initial overlap. This might happen if the root finder |
| 387 | // runs out of iterations. |
| 388 | if (s1 < target - tolerance) |
| 389 | { |
| 390 | output->state = b2TOIOutput::e_failed; |
| 391 | output->t = t1; |
| 392 | done = true; |
| 393 | break; |
| 394 | } |
| 395 | |
| 396 | // Check for touching |
| 397 | if (s1 <= target + tolerance) |
| 398 | { |
| 399 | // Victory! t1 should hold the TOI (could be 0.0). |
| 400 | output->state = b2TOIOutput::e_touching; |
| 401 | output->t = t1; |
| 402 | done = true; |
| 403 | break; |
| 404 | } |
| 405 | |
| 406 | // Compute 1D root of: f(x) - target = 0 |
| 407 | int32 rootIterCount = 0; |
| 408 | float32 a1 = t1, a2 = t2; |
| 409 | for (;;) |
| 410 | { |
| 411 | // Use a mix of the secant rule and bisection. |
| 412 | float32 t; |
| 413 | if (rootIterCount & 1) |
| 414 | { |
| 415 | // Secant rule to improve convergence. |
| 416 | t = a1 + (target - s1) * (a2 - a1) / (s2 - s1); |
| 417 | } |
| 418 | else |
| 419 | { |
| 420 | // Bisection to guarantee progress. |
| 421 | t = 0.5f * (a1 + a2); |
| 422 | } |
| 423 | |
| 424 | ++rootIterCount; |
| 425 | ++b2_toiRootIters; |
| 426 | |
| 427 | float32 s = fcn.Evaluate(indexA, indexB, t); |
| 428 | |
| 429 | if (b2Abs(s - target) < tolerance) |
| 430 | { |
| 431 | // t2 holds a tentative value for t1 |
| 432 | t2 = t; |
| 433 | break; |
| 434 | } |
| 435 | |
| 436 | // Ensure we continue to bracket the root. |
| 437 | if (s > target) |
| 438 | { |
| 439 | a1 = t; |
| 440 | s1 = s; |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | a2 = t; |
| 445 | s2 = s; |
| 446 | } |
| 447 | |
| 448 | if (rootIterCount == 50) |
| 449 | { |
| 450 | break; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount); |
| 455 | |
| 456 | ++pushBackIter; |
| 457 | |
| 458 | if (pushBackIter == b2_maxPolygonVertices) |
| 459 | { |
| 460 | break; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | ++iter; |
| 465 | ++b2_toiIters; |
| 466 | |
| 467 | if (done) |
| 468 | { |
| 469 | break; |
| 470 | } |
| 471 | |
| 472 | if (iter == k_maxIterations) |
| 473 | { |
| 474 | // Root finder got stuck. Semi-victory. |
| 475 | output->state = b2TOIOutput::e_failed; |
| 476 | output->t = t1; |
| 477 | break; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | b2_toiMaxIters = b2Max(b2_toiMaxIters, iter); |
| 482 | |
| 483 | float32 time = timer.GetMilliseconds(); |
| 484 | b2_toiMaxTime = b2Max(b2_toiMaxTime, time); |
| 485 | b2_toiTime += time; |
| 486 | } |
| 487 | |