| 1 | /* |
| 2 | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #include <Box2D/Dynamics/Contacts/b2ContactSolver.h> |
| 20 | |
| 21 | #include <Box2D/Dynamics/Contacts/b2Contact.h> |
| 22 | #include <Box2D/Dynamics/b2Body.h> |
| 23 | #include <Box2D/Dynamics/b2Fixture.h> |
| 24 | #include <Box2D/Dynamics/b2World.h> |
| 25 | #include <Box2D/Common/b2StackAllocator.h> |
| 26 | |
| 27 | #define B2_DEBUG_SOLVER 0 |
| 28 | |
| 29 | bool g_blockSolve = true; |
| 30 | |
| 31 | struct b2ContactPositionConstraint |
| 32 | { |
| 33 | b2Vec2 localPoints[b2_maxManifoldPoints]; |
| 34 | b2Vec2 localNormal; |
| 35 | b2Vec2 localPoint; |
| 36 | int32 indexA; |
| 37 | int32 indexB; |
| 38 | float32 invMassA, invMassB; |
| 39 | b2Vec2 localCenterA, localCenterB; |
| 40 | float32 invIA, invIB; |
| 41 | b2Manifold::Type type; |
| 42 | float32 radiusA, radiusB; |
| 43 | int32 pointCount; |
| 44 | }; |
| 45 | |
| 46 | b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) |
| 47 | { |
| 48 | m_step = def->step; |
| 49 | m_allocator = def->allocator; |
| 50 | m_count = def->count; |
| 51 | m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); |
| 52 | m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); |
| 53 | m_positions = def->positions; |
| 54 | m_velocities = def->velocities; |
| 55 | m_contacts = def->contacts; |
| 56 | |
| 57 | // Initialize position independent portions of the constraints. |
| 58 | for (int32 i = 0; i < m_count; ++i) |
| 59 | { |
| 60 | b2Contact* contact = m_contacts[i]; |
| 61 | |
| 62 | b2Fixture* fixtureA = contact->m_fixtureA; |
| 63 | b2Fixture* fixtureB = contact->m_fixtureB; |
| 64 | b2Shape* shapeA = fixtureA->GetShape(); |
| 65 | b2Shape* shapeB = fixtureB->GetShape(); |
| 66 | float32 radiusA = shapeA->m_radius; |
| 67 | float32 radiusB = shapeB->m_radius; |
| 68 | b2Body* bodyA = fixtureA->GetBody(); |
| 69 | b2Body* bodyB = fixtureB->GetBody(); |
| 70 | b2Manifold* manifold = contact->GetManifold(); |
| 71 | |
| 72 | int32 pointCount = manifold->pointCount; |
| 73 | b2Assert(pointCount > 0); |
| 74 | |
| 75 | b2ContactVelocityConstraint* vc = m_velocityConstraints + i; |
| 76 | vc->friction = contact->m_friction; |
| 77 | vc->restitution = contact->m_restitution; |
| 78 | vc->tangentSpeed = contact->m_tangentSpeed; |
| 79 | vc->indexA = bodyA->m_islandIndex; |
| 80 | vc->indexB = bodyB->m_islandIndex; |
| 81 | vc->invMassA = bodyA->m_invMass; |
| 82 | vc->invMassB = bodyB->m_invMass; |
| 83 | vc->invIA = bodyA->m_invI; |
| 84 | vc->invIB = bodyB->m_invI; |
| 85 | vc->contactIndex = i; |
| 86 | vc->pointCount = pointCount; |
| 87 | vc->K.SetZero(); |
| 88 | vc->normalMass.SetZero(); |
| 89 | |
| 90 | b2ContactPositionConstraint* pc = m_positionConstraints + i; |
| 91 | pc->indexA = bodyA->m_islandIndex; |
| 92 | pc->indexB = bodyB->m_islandIndex; |
| 93 | pc->invMassA = bodyA->m_invMass; |
| 94 | pc->invMassB = bodyB->m_invMass; |
| 95 | pc->localCenterA = bodyA->m_sweep.localCenter; |
| 96 | pc->localCenterB = bodyB->m_sweep.localCenter; |
| 97 | pc->invIA = bodyA->m_invI; |
| 98 | pc->invIB = bodyB->m_invI; |
| 99 | pc->localNormal = manifold->localNormal; |
| 100 | pc->localPoint = manifold->localPoint; |
| 101 | pc->pointCount = pointCount; |
| 102 | pc->radiusA = radiusA; |
| 103 | pc->radiusB = radiusB; |
| 104 | pc->type = manifold->type; |
| 105 | |
| 106 | for (int32 j = 0; j < pointCount; ++j) |
| 107 | { |
| 108 | b2ManifoldPoint* cp = manifold->points + j; |
| 109 | b2VelocityConstraintPoint* vcp = vc->points + j; |
| 110 | |
| 111 | if (m_step.warmStarting) |
| 112 | { |
| 113 | vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; |
| 114 | vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; |
| 115 | } |
| 116 | else |
| 117 | { |
| 118 | vcp->normalImpulse = 0.0f; |
| 119 | vcp->tangentImpulse = 0.0f; |
| 120 | } |
| 121 | |
| 122 | vcp->rA.SetZero(); |
| 123 | vcp->rB.SetZero(); |
| 124 | vcp->normalMass = 0.0f; |
| 125 | vcp->tangentMass = 0.0f; |
| 126 | vcp->velocityBias = 0.0f; |
| 127 | |
| 128 | pc->localPoints[j] = cp->localPoint; |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | b2ContactSolver::~b2ContactSolver() |
| 134 | { |
| 135 | m_allocator->Free(m_velocityConstraints); |
| 136 | m_allocator->Free(m_positionConstraints); |
| 137 | } |
| 138 | |
| 139 | // Initialize position dependent portions of the velocity constraints. |
| 140 | void b2ContactSolver::InitializeVelocityConstraints() |
| 141 | { |
| 142 | for (int32 i = 0; i < m_count; ++i) |
| 143 | { |
| 144 | b2ContactVelocityConstraint* vc = m_velocityConstraints + i; |
| 145 | b2ContactPositionConstraint* pc = m_positionConstraints + i; |
| 146 | |
| 147 | float32 radiusA = pc->radiusA; |
| 148 | float32 radiusB = pc->radiusB; |
| 149 | b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); |
| 150 | |
| 151 | int32 indexA = vc->indexA; |
| 152 | int32 indexB = vc->indexB; |
| 153 | |
| 154 | float32 mA = vc->invMassA; |
| 155 | float32 mB = vc->invMassB; |
| 156 | float32 iA = vc->invIA; |
| 157 | float32 iB = vc->invIB; |
| 158 | b2Vec2 localCenterA = pc->localCenterA; |
| 159 | b2Vec2 localCenterB = pc->localCenterB; |
| 160 | |
| 161 | b2Vec2 cA = m_positions[indexA].c; |
| 162 | float32 aA = m_positions[indexA].a; |
| 163 | b2Vec2 vA = m_velocities[indexA].v; |
| 164 | float32 wA = m_velocities[indexA].w; |
| 165 | |
| 166 | b2Vec2 cB = m_positions[indexB].c; |
| 167 | float32 aB = m_positions[indexB].a; |
| 168 | b2Vec2 vB = m_velocities[indexB].v; |
| 169 | float32 wB = m_velocities[indexB].w; |
| 170 | |
| 171 | b2Assert(manifold->pointCount > 0); |
| 172 | |
| 173 | b2Transform xfA, xfB; |
| 174 | xfA.q.Set(aA); |
| 175 | xfB.q.Set(aB); |
| 176 | xfA.p = cA - b2Mul(xfA.q, localCenterA); |
| 177 | xfB.p = cB - b2Mul(xfB.q, localCenterB); |
| 178 | |
| 179 | b2WorldManifold worldManifold; |
| 180 | worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); |
| 181 | |
| 182 | vc->normal = worldManifold.normal; |
| 183 | |
| 184 | int32 pointCount = vc->pointCount; |
| 185 | for (int32 j = 0; j < pointCount; ++j) |
| 186 | { |
| 187 | b2VelocityConstraintPoint* vcp = vc->points + j; |
| 188 | |
| 189 | vcp->rA = worldManifold.points[j] - cA; |
| 190 | vcp->rB = worldManifold.points[j] - cB; |
| 191 | |
| 192 | float32 rnA = b2Cross(vcp->rA, vc->normal); |
| 193 | float32 rnB = b2Cross(vcp->rB, vc->normal); |
| 194 | |
| 195 | float32 kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; |
| 196 | |
| 197 | vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; |
| 198 | |
| 199 | b2Vec2 tangent = b2Cross(vc->normal, 1.0f); |
| 200 | |
| 201 | float32 rtA = b2Cross(vcp->rA, tangent); |
| 202 | float32 rtB = b2Cross(vcp->rB, tangent); |
| 203 | |
| 204 | float32 kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; |
| 205 | |
| 206 | vcp->tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; |
| 207 | |
| 208 | // Setup a velocity bias for restitution. |
| 209 | vcp->velocityBias = 0.0f; |
| 210 | float32 vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); |
| 211 | if (vRel < -b2_velocityThreshold) |
| 212 | { |
| 213 | vcp->velocityBias = -vc->restitution * vRel; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | // If we have two points, then prepare the block solver. |
| 218 | if (vc->pointCount == 2 && g_blockSolve) |
| 219 | { |
| 220 | b2VelocityConstraintPoint* vcp1 = vc->points + 0; |
| 221 | b2VelocityConstraintPoint* vcp2 = vc->points + 1; |
| 222 | |
| 223 | float32 rn1A = b2Cross(vcp1->rA, vc->normal); |
| 224 | float32 rn1B = b2Cross(vcp1->rB, vc->normal); |
| 225 | float32 rn2A = b2Cross(vcp2->rA, vc->normal); |
| 226 | float32 rn2B = b2Cross(vcp2->rB, vc->normal); |
| 227 | |
| 228 | float32 k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; |
| 229 | float32 k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; |
| 230 | float32 k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; |
| 231 | |
| 232 | // Ensure a reasonable condition number. |
| 233 | const float32 k_maxConditionNumber = 1000.0f; |
| 234 | if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) |
| 235 | { |
| 236 | // K is safe to invert. |
| 237 | vc->K.ex.Set(k11, k12); |
| 238 | vc->K.ey.Set(k12, k22); |
| 239 | vc->normalMass = vc->K.GetInverse(); |
| 240 | } |
| 241 | else |
| 242 | { |
| 243 | // The constraints are redundant, just use one. |
| 244 | // TODO_ERIN use deepest? |
| 245 | vc->pointCount = 1; |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void b2ContactSolver::WarmStart() |
| 252 | { |
| 253 | // Warm start. |
| 254 | for (int32 i = 0; i < m_count; ++i) |
| 255 | { |
| 256 | b2ContactVelocityConstraint* vc = m_velocityConstraints + i; |
| 257 | |
| 258 | int32 indexA = vc->indexA; |
| 259 | int32 indexB = vc->indexB; |
| 260 | float32 mA = vc->invMassA; |
| 261 | float32 iA = vc->invIA; |
| 262 | float32 mB = vc->invMassB; |
| 263 | float32 iB = vc->invIB; |
| 264 | int32 pointCount = vc->pointCount; |
| 265 | |
| 266 | b2Vec2 vA = m_velocities[indexA].v; |
| 267 | float32 wA = m_velocities[indexA].w; |
| 268 | b2Vec2 vB = m_velocities[indexB].v; |
| 269 | float32 wB = m_velocities[indexB].w; |
| 270 | |
| 271 | b2Vec2 normal = vc->normal; |
| 272 | b2Vec2 tangent = b2Cross(normal, 1.0f); |
| 273 | |
| 274 | for (int32 j = 0; j < pointCount; ++j) |
| 275 | { |
| 276 | b2VelocityConstraintPoint* vcp = vc->points + j; |
| 277 | b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; |
| 278 | wA -= iA * b2Cross(vcp->rA, P); |
| 279 | vA -= mA * P; |
| 280 | wB += iB * b2Cross(vcp->rB, P); |
| 281 | vB += mB * P; |
| 282 | } |
| 283 | |
| 284 | m_velocities[indexA].v = vA; |
| 285 | m_velocities[indexA].w = wA; |
| 286 | m_velocities[indexB].v = vB; |
| 287 | m_velocities[indexB].w = wB; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | void b2ContactSolver::SolveVelocityConstraints() |
| 292 | { |
| 293 | for (int32 i = 0; i < m_count; ++i) |
| 294 | { |
| 295 | b2ContactVelocityConstraint* vc = m_velocityConstraints + i; |
| 296 | |
| 297 | int32 indexA = vc->indexA; |
| 298 | int32 indexB = vc->indexB; |
| 299 | float32 mA = vc->invMassA; |
| 300 | float32 iA = vc->invIA; |
| 301 | float32 mB = vc->invMassB; |
| 302 | float32 iB = vc->invIB; |
| 303 | int32 pointCount = vc->pointCount; |
| 304 | |
| 305 | b2Vec2 vA = m_velocities[indexA].v; |
| 306 | float32 wA = m_velocities[indexA].w; |
| 307 | b2Vec2 vB = m_velocities[indexB].v; |
| 308 | float32 wB = m_velocities[indexB].w; |
| 309 | |
| 310 | b2Vec2 normal = vc->normal; |
| 311 | b2Vec2 tangent = b2Cross(normal, 1.0f); |
| 312 | float32 friction = vc->friction; |
| 313 | |
| 314 | b2Assert(pointCount == 1 || pointCount == 2); |
| 315 | |
| 316 | // Solve tangent constraints first because non-penetration is more important |
| 317 | // than friction. |
| 318 | for (int32 j = 0; j < pointCount; ++j) |
| 319 | { |
| 320 | b2VelocityConstraintPoint* vcp = vc->points + j; |
| 321 | |
| 322 | // Relative velocity at contact |
| 323 | b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); |
| 324 | |
| 325 | // Compute tangent force |
| 326 | float32 vt = b2Dot(dv, tangent) - vc->tangentSpeed; |
| 327 | float32 lambda = vcp->tangentMass * (-vt); |
| 328 | |
| 329 | // b2Clamp the accumulated force |
| 330 | float32 maxFriction = friction * vcp->normalImpulse; |
| 331 | float32 newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); |
| 332 | lambda = newImpulse - vcp->tangentImpulse; |
| 333 | vcp->tangentImpulse = newImpulse; |
| 334 | |
| 335 | // Apply contact impulse |
| 336 | b2Vec2 P = lambda * tangent; |
| 337 | |
| 338 | vA -= mA * P; |
| 339 | wA -= iA * b2Cross(vcp->rA, P); |
| 340 | |
| 341 | vB += mB * P; |
| 342 | wB += iB * b2Cross(vcp->rB, P); |
| 343 | } |
| 344 | |
| 345 | // Solve normal constraints |
| 346 | if (pointCount == 1 || g_blockSolve == false) |
| 347 | { |
| 348 | for (int32 i = 0; i < pointCount; ++i) |
| 349 | { |
| 350 | b2VelocityConstraintPoint* vcp = vc->points + i; |
| 351 | |
| 352 | // Relative velocity at contact |
| 353 | b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); |
| 354 | |
| 355 | // Compute normal impulse |
| 356 | float32 vn = b2Dot(dv, normal); |
| 357 | float32 lambda = -vcp->normalMass * (vn - vcp->velocityBias); |
| 358 | |
| 359 | // b2Clamp the accumulated impulse |
| 360 | float32 newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); |
| 361 | lambda = newImpulse - vcp->normalImpulse; |
| 362 | vcp->normalImpulse = newImpulse; |
| 363 | |
| 364 | // Apply contact impulse |
| 365 | b2Vec2 P = lambda * normal; |
| 366 | vA -= mA * P; |
| 367 | wA -= iA * b2Cross(vcp->rA, P); |
| 368 | |
| 369 | vB += mB * P; |
| 370 | wB += iB * b2Cross(vcp->rB, P); |
| 371 | } |
| 372 | } |
| 373 | else |
| 374 | { |
| 375 | // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). |
| 376 | // Build the mini LCP for this contact patch |
| 377 | // |
| 378 | // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 |
| 379 | // |
| 380 | // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) |
| 381 | // b = vn0 - velocityBias |
| 382 | // |
| 383 | // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i |
| 384 | // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases |
| 385 | // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid |
| 386 | // solution that satisfies the problem is chosen. |
| 387 | // |
| 388 | // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires |
| 389 | // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). |
| 390 | // |
| 391 | // Substitute: |
| 392 | // |
| 393 | // x = a + d |
| 394 | // |
| 395 | // a := old total impulse |
| 396 | // x := new total impulse |
| 397 | // d := incremental impulse |
| 398 | // |
| 399 | // For the current iteration we extend the formula for the incremental impulse |
| 400 | // to compute the new total impulse: |
| 401 | // |
| 402 | // vn = A * d + b |
| 403 | // = A * (x - a) + b |
| 404 | // = A * x + b - A * a |
| 405 | // = A * x + b' |
| 406 | // b' = b - A * a; |
| 407 | |
| 408 | b2VelocityConstraintPoint* cp1 = vc->points + 0; |
| 409 | b2VelocityConstraintPoint* cp2 = vc->points + 1; |
| 410 | |
| 411 | b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); |
| 412 | b2Assert(a.x >= 0.0f && a.y >= 0.0f); |
| 413 | |
| 414 | // Relative velocity at contact |
| 415 | b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); |
| 416 | b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); |
| 417 | |
| 418 | // Compute normal velocity |
| 419 | float32 vn1 = b2Dot(dv1, normal); |
| 420 | float32 vn2 = b2Dot(dv2, normal); |
| 421 | |
| 422 | b2Vec2 b; |
| 423 | b.x = vn1 - cp1->velocityBias; |
| 424 | b.y = vn2 - cp2->velocityBias; |
| 425 | |
| 426 | // Compute b' |
| 427 | b -= b2Mul(vc->K, a); |
| 428 | |
| 429 | const float32 k_errorTol = 1e-3f; |
| 430 | B2_NOT_USED(k_errorTol); |
| 431 | |
| 432 | for (;;) |
| 433 | { |
| 434 | // |
| 435 | // Case 1: vn = 0 |
| 436 | // |
| 437 | // 0 = A * x + b' |
| 438 | // |
| 439 | // Solve for x: |
| 440 | // |
| 441 | // x = - inv(A) * b' |
| 442 | // |
| 443 | b2Vec2 x = - b2Mul(vc->normalMass, b); |
| 444 | |
| 445 | if (x.x >= 0.0f && x.y >= 0.0f) |
| 446 | { |
| 447 | // Get the incremental impulse |
| 448 | b2Vec2 d = x - a; |
| 449 | |
| 450 | // Apply incremental impulse |
| 451 | b2Vec2 P1 = d.x * normal; |
| 452 | b2Vec2 P2 = d.y * normal; |
| 453 | vA -= mA * (P1 + P2); |
| 454 | wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); |
| 455 | |
| 456 | vB += mB * (P1 + P2); |
| 457 | wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); |
| 458 | |
| 459 | // Accumulate |
| 460 | cp1->normalImpulse = x.x; |
| 461 | cp2->normalImpulse = x.y; |
| 462 | |
| 463 | #if B2_DEBUG_SOLVER == 1 |
| 464 | // Postconditions |
| 465 | dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); |
| 466 | dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); |
| 467 | |
| 468 | // Compute normal velocity |
| 469 | vn1 = b2Dot(dv1, normal); |
| 470 | vn2 = b2Dot(dv2, normal); |
| 471 | |
| 472 | b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); |
| 473 | b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); |
| 474 | #endif |
| 475 | break; |
| 476 | } |
| 477 | |
| 478 | // |
| 479 | // Case 2: vn1 = 0 and x2 = 0 |
| 480 | // |
| 481 | // 0 = a11 * x1 + a12 * 0 + b1' |
| 482 | // vn2 = a21 * x1 + a22 * 0 + b2' |
| 483 | // |
| 484 | x.x = - cp1->normalMass * b.x; |
| 485 | x.y = 0.0f; |
| 486 | vn1 = 0.0f; |
| 487 | vn2 = vc->K.ex.y * x.x + b.y; |
| 488 | |
| 489 | if (x.x >= 0.0f && vn2 >= 0.0f) |
| 490 | { |
| 491 | // Get the incremental impulse |
| 492 | b2Vec2 d = x - a; |
| 493 | |
| 494 | // Apply incremental impulse |
| 495 | b2Vec2 P1 = d.x * normal; |
| 496 | b2Vec2 P2 = d.y * normal; |
| 497 | vA -= mA * (P1 + P2); |
| 498 | wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); |
| 499 | |
| 500 | vB += mB * (P1 + P2); |
| 501 | wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); |
| 502 | |
| 503 | // Accumulate |
| 504 | cp1->normalImpulse = x.x; |
| 505 | cp2->normalImpulse = x.y; |
| 506 | |
| 507 | #if B2_DEBUG_SOLVER == 1 |
| 508 | // Postconditions |
| 509 | dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); |
| 510 | |
| 511 | // Compute normal velocity |
| 512 | vn1 = b2Dot(dv1, normal); |
| 513 | |
| 514 | b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); |
| 515 | #endif |
| 516 | break; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | // |
| 521 | // Case 3: vn2 = 0 and x1 = 0 |
| 522 | // |
| 523 | // vn1 = a11 * 0 + a12 * x2 + b1' |
| 524 | // 0 = a21 * 0 + a22 * x2 + b2' |
| 525 | // |
| 526 | x.x = 0.0f; |
| 527 | x.y = - cp2->normalMass * b.y; |
| 528 | vn1 = vc->K.ey.x * x.y + b.x; |
| 529 | vn2 = 0.0f; |
| 530 | |
| 531 | if (x.y >= 0.0f && vn1 >= 0.0f) |
| 532 | { |
| 533 | // Resubstitute for the incremental impulse |
| 534 | b2Vec2 d = x - a; |
| 535 | |
| 536 | // Apply incremental impulse |
| 537 | b2Vec2 P1 = d.x * normal; |
| 538 | b2Vec2 P2 = d.y * normal; |
| 539 | vA -= mA * (P1 + P2); |
| 540 | wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); |
| 541 | |
| 542 | vB += mB * (P1 + P2); |
| 543 | wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); |
| 544 | |
| 545 | // Accumulate |
| 546 | cp1->normalImpulse = x.x; |
| 547 | cp2->normalImpulse = x.y; |
| 548 | |
| 549 | #if B2_DEBUG_SOLVER == 1 |
| 550 | // Postconditions |
| 551 | dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); |
| 552 | |
| 553 | // Compute normal velocity |
| 554 | vn2 = b2Dot(dv2, normal); |
| 555 | |
| 556 | b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); |
| 557 | #endif |
| 558 | break; |
| 559 | } |
| 560 | |
| 561 | // |
| 562 | // Case 4: x1 = 0 and x2 = 0 |
| 563 | // |
| 564 | // vn1 = b1 |
| 565 | // vn2 = b2; |
| 566 | x.x = 0.0f; |
| 567 | x.y = 0.0f; |
| 568 | vn1 = b.x; |
| 569 | vn2 = b.y; |
| 570 | |
| 571 | if (vn1 >= 0.0f && vn2 >= 0.0f ) |
| 572 | { |
| 573 | // Resubstitute for the incremental impulse |
| 574 | b2Vec2 d = x - a; |
| 575 | |
| 576 | // Apply incremental impulse |
| 577 | b2Vec2 P1 = d.x * normal; |
| 578 | b2Vec2 P2 = d.y * normal; |
| 579 | vA -= mA * (P1 + P2); |
| 580 | wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); |
| 581 | |
| 582 | vB += mB * (P1 + P2); |
| 583 | wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); |
| 584 | |
| 585 | // Accumulate |
| 586 | cp1->normalImpulse = x.x; |
| 587 | cp2->normalImpulse = x.y; |
| 588 | |
| 589 | break; |
| 590 | } |
| 591 | |
| 592 | // No solution, give up. This is hit sometimes, but it doesn't seem to matter. |
| 593 | break; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | m_velocities[indexA].v = vA; |
| 598 | m_velocities[indexA].w = wA; |
| 599 | m_velocities[indexB].v = vB; |
| 600 | m_velocities[indexB].w = wB; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | void b2ContactSolver::StoreImpulses() |
| 605 | { |
| 606 | for (int32 i = 0; i < m_count; ++i) |
| 607 | { |
| 608 | b2ContactVelocityConstraint* vc = m_velocityConstraints + i; |
| 609 | b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); |
| 610 | |
| 611 | for (int32 j = 0; j < vc->pointCount; ++j) |
| 612 | { |
| 613 | manifold->points[j].normalImpulse = vc->points[j].normalImpulse; |
| 614 | manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | struct b2PositionSolverManifold |
| 620 | { |
| 621 | void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) |
| 622 | { |
| 623 | b2Assert(pc->pointCount > 0); |
| 624 | |
| 625 | switch (pc->type) |
| 626 | { |
| 627 | case b2Manifold::e_circles: |
| 628 | { |
| 629 | b2Vec2 pointA = b2Mul(xfA, pc->localPoint); |
| 630 | b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); |
| 631 | normal = pointB - pointA; |
| 632 | normal.Normalize(); |
| 633 | point = 0.5f * (pointA + pointB); |
| 634 | separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; |
| 635 | } |
| 636 | break; |
| 637 | |
| 638 | case b2Manifold::e_faceA: |
| 639 | { |
| 640 | normal = b2Mul(xfA.q, pc->localNormal); |
| 641 | b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); |
| 642 | |
| 643 | b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); |
| 644 | separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; |
| 645 | point = clipPoint; |
| 646 | } |
| 647 | break; |
| 648 | |
| 649 | case b2Manifold::e_faceB: |
| 650 | { |
| 651 | normal = b2Mul(xfB.q, pc->localNormal); |
| 652 | b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); |
| 653 | |
| 654 | b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); |
| 655 | separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; |
| 656 | point = clipPoint; |
| 657 | |
| 658 | // Ensure normal points from A to B |
| 659 | normal = -normal; |
| 660 | } |
| 661 | break; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | b2Vec2 normal; |
| 666 | b2Vec2 point; |
| 667 | float32 separation; |
| 668 | }; |
| 669 | |
| 670 | // Sequential solver. |
| 671 | bool b2ContactSolver::SolvePositionConstraints() |
| 672 | { |
| 673 | float32 minSeparation = 0.0f; |
| 674 | |
| 675 | for (int32 i = 0; i < m_count; ++i) |
| 676 | { |
| 677 | b2ContactPositionConstraint* pc = m_positionConstraints + i; |
| 678 | |
| 679 | int32 indexA = pc->indexA; |
| 680 | int32 indexB = pc->indexB; |
| 681 | b2Vec2 localCenterA = pc->localCenterA; |
| 682 | float32 mA = pc->invMassA; |
| 683 | float32 iA = pc->invIA; |
| 684 | b2Vec2 localCenterB = pc->localCenterB; |
| 685 | float32 mB = pc->invMassB; |
| 686 | float32 iB = pc->invIB; |
| 687 | int32 pointCount = pc->pointCount; |
| 688 | |
| 689 | b2Vec2 cA = m_positions[indexA].c; |
| 690 | float32 aA = m_positions[indexA].a; |
| 691 | |
| 692 | b2Vec2 cB = m_positions[indexB].c; |
| 693 | float32 aB = m_positions[indexB].a; |
| 694 | |
| 695 | // Solve normal constraints |
| 696 | for (int32 j = 0; j < pointCount; ++j) |
| 697 | { |
| 698 | b2Transform xfA, xfB; |
| 699 | xfA.q.Set(aA); |
| 700 | xfB.q.Set(aB); |
| 701 | xfA.p = cA - b2Mul(xfA.q, localCenterA); |
| 702 | xfB.p = cB - b2Mul(xfB.q, localCenterB); |
| 703 | |
| 704 | b2PositionSolverManifold psm; |
| 705 | psm.Initialize(pc, xfA, xfB, j); |
| 706 | b2Vec2 normal = psm.normal; |
| 707 | |
| 708 | b2Vec2 point = psm.point; |
| 709 | float32 separation = psm.separation; |
| 710 | |
| 711 | b2Vec2 rA = point - cA; |
| 712 | b2Vec2 rB = point - cB; |
| 713 | |
| 714 | // Track max constraint error. |
| 715 | minSeparation = b2Min(minSeparation, separation); |
| 716 | |
| 717 | // Prevent large corrections and allow slop. |
| 718 | float32 C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); |
| 719 | |
| 720 | // Compute the effective mass. |
| 721 | float32 rnA = b2Cross(rA, normal); |
| 722 | float32 rnB = b2Cross(rB, normal); |
| 723 | float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; |
| 724 | |
| 725 | // Compute normal impulse |
| 726 | float32 impulse = K > 0.0f ? - C / K : 0.0f; |
| 727 | |
| 728 | b2Vec2 P = impulse * normal; |
| 729 | |
| 730 | cA -= mA * P; |
| 731 | aA -= iA * b2Cross(rA, P); |
| 732 | |
| 733 | cB += mB * P; |
| 734 | aB += iB * b2Cross(rB, P); |
| 735 | } |
| 736 | |
| 737 | m_positions[indexA].c = cA; |
| 738 | m_positions[indexA].a = aA; |
| 739 | |
| 740 | m_positions[indexB].c = cB; |
| 741 | m_positions[indexB].a = aB; |
| 742 | } |
| 743 | |
| 744 | // We can't expect minSpeparation >= -b2_linearSlop because we don't |
| 745 | // push the separation above -b2_linearSlop. |
| 746 | return minSeparation >= -3.0f * b2_linearSlop; |
| 747 | } |
| 748 | |
| 749 | // Sequential position solver for position constraints. |
| 750 | bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) |
| 751 | { |
| 752 | float32 minSeparation = 0.0f; |
| 753 | |
| 754 | for (int32 i = 0; i < m_count; ++i) |
| 755 | { |
| 756 | b2ContactPositionConstraint* pc = m_positionConstraints + i; |
| 757 | |
| 758 | int32 indexA = pc->indexA; |
| 759 | int32 indexB = pc->indexB; |
| 760 | b2Vec2 localCenterA = pc->localCenterA; |
| 761 | b2Vec2 localCenterB = pc->localCenterB; |
| 762 | int32 pointCount = pc->pointCount; |
| 763 | |
| 764 | float32 mA = 0.0f; |
| 765 | float32 iA = 0.0f; |
| 766 | if (indexA == toiIndexA || indexA == toiIndexB) |
| 767 | { |
| 768 | mA = pc->invMassA; |
| 769 | iA = pc->invIA; |
| 770 | } |
| 771 | |
| 772 | float32 mB = 0.0f; |
| 773 | float32 iB = 0.; |
| 774 | if (indexB == toiIndexA || indexB == toiIndexB) |
| 775 | { |
| 776 | mB = pc->invMassB; |
| 777 | iB = pc->invIB; |
| 778 | } |
| 779 | |
| 780 | b2Vec2 cA = m_positions[indexA].c; |
| 781 | float32 aA = m_positions[indexA].a; |
| 782 | |
| 783 | b2Vec2 cB = m_positions[indexB].c; |
| 784 | float32 aB = m_positions[indexB].a; |
| 785 | |
| 786 | // Solve normal constraints |
| 787 | for (int32 j = 0; j < pointCount; ++j) |
| 788 | { |
| 789 | b2Transform xfA, xfB; |
| 790 | xfA.q.Set(aA); |
| 791 | xfB.q.Set(aB); |
| 792 | xfA.p = cA - b2Mul(xfA.q, localCenterA); |
| 793 | xfB.p = cB - b2Mul(xfB.q, localCenterB); |
| 794 | |
| 795 | b2PositionSolverManifold psm; |
| 796 | psm.Initialize(pc, xfA, xfB, j); |
| 797 | b2Vec2 normal = psm.normal; |
| 798 | |
| 799 | b2Vec2 point = psm.point; |
| 800 | float32 separation = psm.separation; |
| 801 | |
| 802 | b2Vec2 rA = point - cA; |
| 803 | b2Vec2 rB = point - cB; |
| 804 | |
| 805 | // Track max constraint error. |
| 806 | minSeparation = b2Min(minSeparation, separation); |
| 807 | |
| 808 | // Prevent large corrections and allow slop. |
| 809 | float32 C = b2Clamp(b2_toiBaugarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); |
| 810 | |
| 811 | // Compute the effective mass. |
| 812 | float32 rnA = b2Cross(rA, normal); |
| 813 | float32 rnB = b2Cross(rB, normal); |
| 814 | float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; |
| 815 | |
| 816 | // Compute normal impulse |
| 817 | float32 impulse = K > 0.0f ? - C / K : 0.0f; |
| 818 | |
| 819 | b2Vec2 P = impulse * normal; |
| 820 | |
| 821 | cA -= mA * P; |
| 822 | aA -= iA * b2Cross(rA, P); |
| 823 | |
| 824 | cB += mB * P; |
| 825 | aB += iB * b2Cross(rB, P); |
| 826 | } |
| 827 | |
| 828 | m_positions[indexA].c = cA; |
| 829 | m_positions[indexA].a = aA; |
| 830 | |
| 831 | m_positions[indexB].c = cB; |
| 832 | m_positions[indexB].a = aB; |
| 833 | } |
| 834 | |
| 835 | // We can't expect minSpeparation >= -b2_linearSlop because we don't |
| 836 | // push the separation above -b2_linearSlop. |
| 837 | return minSeparation >= -1.5f * b2_linearSlop; |
| 838 | } |
| 839 | |