1 | /* |
2 | * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | // no precompiled headers |
26 | #include "jvm.h" |
27 | #include "classfile/classLoader.hpp" |
28 | #include "classfile/systemDictionary.hpp" |
29 | #include "classfile/vmSymbols.hpp" |
30 | #include "code/icBuffer.hpp" |
31 | #include "code/vtableStubs.hpp" |
32 | #include "compiler/compileBroker.hpp" |
33 | #include "compiler/disassembler.hpp" |
34 | #include "interpreter/interpreter.hpp" |
35 | #include "logging/log.hpp" |
36 | #include "logging/logStream.hpp" |
37 | #include "memory/allocation.inline.hpp" |
38 | #include "memory/filemap.hpp" |
39 | #include "oops/oop.inline.hpp" |
40 | #include "os_linux.inline.hpp" |
41 | #include "os_posix.inline.hpp" |
42 | #include "os_share_linux.hpp" |
43 | #include "osContainer_linux.hpp" |
44 | #include "prims/jniFastGetField.hpp" |
45 | #include "prims/jvm_misc.hpp" |
46 | #include "runtime/arguments.hpp" |
47 | #include "runtime/atomic.hpp" |
48 | #include "runtime/extendedPC.hpp" |
49 | #include "runtime/globals.hpp" |
50 | #include "runtime/interfaceSupport.inline.hpp" |
51 | #include "runtime/init.hpp" |
52 | #include "runtime/java.hpp" |
53 | #include "runtime/javaCalls.hpp" |
54 | #include "runtime/mutexLocker.hpp" |
55 | #include "runtime/objectMonitor.hpp" |
56 | #include "runtime/orderAccess.hpp" |
57 | #include "runtime/osThread.hpp" |
58 | #include "runtime/perfMemory.hpp" |
59 | #include "runtime/sharedRuntime.hpp" |
60 | #include "runtime/statSampler.hpp" |
61 | #include "runtime/stubRoutines.hpp" |
62 | #include "runtime/thread.inline.hpp" |
63 | #include "runtime/threadCritical.hpp" |
64 | #include "runtime/threadSMR.hpp" |
65 | #include "runtime/timer.hpp" |
66 | #include "runtime/vm_version.hpp" |
67 | #include "semaphore_posix.hpp" |
68 | #include "services/attachListener.hpp" |
69 | #include "services/memTracker.hpp" |
70 | #include "services/runtimeService.hpp" |
71 | #include "utilities/align.hpp" |
72 | #include "utilities/decoder.hpp" |
73 | #include "utilities/defaultStream.hpp" |
74 | #include "utilities/events.hpp" |
75 | #include "utilities/elfFile.hpp" |
76 | #include "utilities/growableArray.hpp" |
77 | #include "utilities/macros.hpp" |
78 | #include "utilities/vmError.hpp" |
79 | |
80 | // put OS-includes here |
81 | # include <sys/types.h> |
82 | # include <sys/mman.h> |
83 | # include <sys/stat.h> |
84 | # include <sys/select.h> |
85 | # include <pthread.h> |
86 | # include <signal.h> |
87 | # include <errno.h> |
88 | # include <dlfcn.h> |
89 | # include <stdio.h> |
90 | # include <unistd.h> |
91 | # include <sys/resource.h> |
92 | # include <pthread.h> |
93 | # include <sys/stat.h> |
94 | # include <sys/time.h> |
95 | # include <sys/times.h> |
96 | # include <sys/utsname.h> |
97 | # include <sys/socket.h> |
98 | # include <sys/wait.h> |
99 | # include <pwd.h> |
100 | # include <poll.h> |
101 | # include <fcntl.h> |
102 | # include <string.h> |
103 | # include <syscall.h> |
104 | # include <sys/sysinfo.h> |
105 | # include <gnu/libc-version.h> |
106 | # include <sys/ipc.h> |
107 | # include <sys/shm.h> |
108 | # include <link.h> |
109 | # include <stdint.h> |
110 | # include <inttypes.h> |
111 | # include <sys/ioctl.h> |
112 | |
113 | #ifndef _GNU_SOURCE |
114 | #define _GNU_SOURCE |
115 | #include <sched.h> |
116 | #undef _GNU_SOURCE |
117 | #else |
118 | #include <sched.h> |
119 | #endif |
120 | |
121 | // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling |
122 | // getrusage() is prepared to handle the associated failure. |
123 | #ifndef RUSAGE_THREAD |
124 | #define RUSAGE_THREAD (1) /* only the calling thread */ |
125 | #endif |
126 | |
127 | #define MAX_PATH (2 * K) |
128 | |
129 | #define MAX_SECS 100000000 |
130 | |
131 | // for timer info max values which include all bits |
132 | #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) |
133 | |
134 | enum CoredumpFilterBit { |
135 | FILE_BACKED_PVT_BIT = 1 << 2, |
136 | FILE_BACKED_SHARED_BIT = 1 << 3, |
137 | LARGEPAGES_BIT = 1 << 6, |
138 | DAX_SHARED_BIT = 1 << 8 |
139 | }; |
140 | |
141 | //////////////////////////////////////////////////////////////////////////////// |
142 | // global variables |
143 | julong os::Linux::_physical_memory = 0; |
144 | |
145 | address os::Linux::_initial_thread_stack_bottom = NULL; |
146 | uintptr_t os::Linux::_initial_thread_stack_size = 0; |
147 | |
148 | int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL; |
149 | int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL; |
150 | Mutex* os::Linux::_createThread_lock = NULL; |
151 | pthread_t os::Linux::_main_thread; |
152 | int os::Linux::_page_size = -1; |
153 | bool os::Linux::_supports_fast_thread_cpu_time = false; |
154 | uint32_t os::Linux::_os_version = 0; |
155 | const char * os::Linux::_glibc_version = NULL; |
156 | const char * os::Linux::_libpthread_version = NULL; |
157 | |
158 | static jlong initial_time_count=0; |
159 | |
160 | static int clock_tics_per_sec = 100; |
161 | |
162 | // If the VM might have been created on the primordial thread, we need to resolve the |
163 | // primordial thread stack bounds and check if the current thread might be the |
164 | // primordial thread in places. If we know that the primordial thread is never used, |
165 | // such as when the VM was created by one of the standard java launchers, we can |
166 | // avoid this |
167 | static bool suppress_primordial_thread_resolution = false; |
168 | |
169 | // For diagnostics to print a message once. see run_periodic_checks |
170 | static sigset_t check_signal_done; |
171 | static bool check_signals = true; |
172 | |
173 | // Signal number used to suspend/resume a thread |
174 | |
175 | // do not use any signal number less than SIGSEGV, see 4355769 |
176 | static int SR_signum = SIGUSR2; |
177 | sigset_t SR_sigset; |
178 | |
179 | // utility functions |
180 | |
181 | static int SR_initialize(); |
182 | |
183 | julong os::available_memory() { |
184 | return Linux::available_memory(); |
185 | } |
186 | |
187 | julong os::Linux::available_memory() { |
188 | // values in struct sysinfo are "unsigned long" |
189 | struct sysinfo si; |
190 | julong avail_mem; |
191 | |
192 | if (OSContainer::is_containerized()) { |
193 | jlong mem_limit, mem_usage; |
194 | if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) { |
195 | log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value" , |
196 | mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited" , mem_limit); |
197 | } |
198 | if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) { |
199 | log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value" , mem_usage); |
200 | } |
201 | if (mem_limit > 0 && mem_usage > 0 ) { |
202 | avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0; |
203 | log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem); |
204 | return avail_mem; |
205 | } |
206 | } |
207 | |
208 | sysinfo(&si); |
209 | avail_mem = (julong)si.freeram * si.mem_unit; |
210 | log_trace(os)("available memory: " JULONG_FORMAT, avail_mem); |
211 | return avail_mem; |
212 | } |
213 | |
214 | julong os::physical_memory() { |
215 | jlong phys_mem = 0; |
216 | if (OSContainer::is_containerized()) { |
217 | jlong mem_limit; |
218 | if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) { |
219 | log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit); |
220 | return mem_limit; |
221 | } |
222 | log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value" , |
223 | mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited" , mem_limit); |
224 | } |
225 | |
226 | phys_mem = Linux::physical_memory(); |
227 | log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem); |
228 | return phys_mem; |
229 | } |
230 | |
231 | static uint64_t initial_total_ticks = 0; |
232 | static uint64_t initial_steal_ticks = 0; |
233 | static bool has_initial_tick_info = false; |
234 | |
235 | static void next_line(FILE *f) { |
236 | int c; |
237 | do { |
238 | c = fgetc(f); |
239 | } while (c != '\n' && c != EOF); |
240 | } |
241 | |
242 | bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) { |
243 | FILE* fh; |
244 | uint64_t userTicks, niceTicks, systemTicks, idleTicks; |
245 | // since at least kernel 2.6 : iowait: time waiting for I/O to complete |
246 | // irq: time servicing interrupts; softirq: time servicing softirqs |
247 | uint64_t iowTicks = 0, irqTicks = 0, sirqTicks= 0; |
248 | // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment |
249 | uint64_t stealTicks = 0; |
250 | // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the |
251 | // control of the Linux kernel |
252 | uint64_t guestNiceTicks = 0; |
253 | int logical_cpu = -1; |
254 | const int required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5; |
255 | int n; |
256 | |
257 | memset(pticks, 0, sizeof(CPUPerfTicks)); |
258 | |
259 | if ((fh = fopen("/proc/stat" , "r" )) == NULL) { |
260 | return false; |
261 | } |
262 | |
263 | if (which_logical_cpu == -1) { |
264 | n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
265 | UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
266 | UINT64_FORMAT " " UINT64_FORMAT " " , |
267 | &userTicks, &niceTicks, &systemTicks, &idleTicks, |
268 | &iowTicks, &irqTicks, &sirqTicks, |
269 | &stealTicks, &guestNiceTicks); |
270 | } else { |
271 | // Move to next line |
272 | next_line(fh); |
273 | |
274 | // find the line for requested cpu faster to just iterate linefeeds? |
275 | for (int i = 0; i < which_logical_cpu; i++) { |
276 | next_line(fh); |
277 | } |
278 | |
279 | n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
280 | UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
281 | UINT64_FORMAT " " UINT64_FORMAT " " , |
282 | &logical_cpu, &userTicks, &niceTicks, |
283 | &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks, |
284 | &stealTicks, &guestNiceTicks); |
285 | } |
286 | |
287 | fclose(fh); |
288 | if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) { |
289 | return false; |
290 | } |
291 | pticks->used = userTicks + niceTicks; |
292 | pticks->usedKernel = systemTicks + irqTicks + sirqTicks; |
293 | pticks->total = userTicks + niceTicks + systemTicks + idleTicks + |
294 | iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks; |
295 | |
296 | if (n > required_tickinfo_count + 3) { |
297 | pticks->steal = stealTicks; |
298 | pticks->has_steal_ticks = true; |
299 | } else { |
300 | pticks->steal = 0; |
301 | pticks->has_steal_ticks = false; |
302 | } |
303 | |
304 | return true; |
305 | } |
306 | |
307 | // Return true if user is running as root. |
308 | |
309 | bool os::have_special_privileges() { |
310 | static bool init = false; |
311 | static bool privileges = false; |
312 | if (!init) { |
313 | privileges = (getuid() != geteuid()) || (getgid() != getegid()); |
314 | init = true; |
315 | } |
316 | return privileges; |
317 | } |
318 | |
319 | |
320 | #ifndef SYS_gettid |
321 | // i386: 224, ia64: 1105, amd64: 186, sparc 143 |
322 | #ifdef __ia64__ |
323 | #define SYS_gettid 1105 |
324 | #else |
325 | #ifdef __i386__ |
326 | #define SYS_gettid 224 |
327 | #else |
328 | #ifdef __amd64__ |
329 | #define SYS_gettid 186 |
330 | #else |
331 | #ifdef __sparc__ |
332 | #define SYS_gettid 143 |
333 | #else |
334 | #error define gettid for the arch |
335 | #endif |
336 | #endif |
337 | #endif |
338 | #endif |
339 | #endif |
340 | |
341 | |
342 | // pid_t gettid() |
343 | // |
344 | // Returns the kernel thread id of the currently running thread. Kernel |
345 | // thread id is used to access /proc. |
346 | pid_t os::Linux::gettid() { |
347 | int rslt = syscall(SYS_gettid); |
348 | assert(rslt != -1, "must be." ); // old linuxthreads implementation? |
349 | return (pid_t)rslt; |
350 | } |
351 | |
352 | // Most versions of linux have a bug where the number of processors are |
353 | // determined by looking at the /proc file system. In a chroot environment, |
354 | // the system call returns 1. |
355 | static bool unsafe_chroot_detected = false; |
356 | static const char *unstable_chroot_error = "/proc file system not found.\n" |
357 | "Java may be unstable running multithreaded in a chroot " |
358 | "environment on Linux when /proc filesystem is not mounted." ; |
359 | |
360 | void os::Linux::initialize_system_info() { |
361 | set_processor_count(sysconf(_SC_NPROCESSORS_CONF)); |
362 | if (processor_count() == 1) { |
363 | pid_t pid = os::Linux::gettid(); |
364 | char fname[32]; |
365 | jio_snprintf(fname, sizeof(fname), "/proc/%d" , pid); |
366 | FILE *fp = fopen(fname, "r" ); |
367 | if (fp == NULL) { |
368 | unsafe_chroot_detected = true; |
369 | } else { |
370 | fclose(fp); |
371 | } |
372 | } |
373 | _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE); |
374 | assert(processor_count() > 0, "linux error" ); |
375 | } |
376 | |
377 | void os::init_system_properties_values() { |
378 | // The next steps are taken in the product version: |
379 | // |
380 | // Obtain the JAVA_HOME value from the location of libjvm.so. |
381 | // This library should be located at: |
382 | // <JAVA_HOME>/lib/{client|server}/libjvm.so. |
383 | // |
384 | // If "/jre/lib/" appears at the right place in the path, then we |
385 | // assume libjvm.so is installed in a JDK and we use this path. |
386 | // |
387 | // Otherwise exit with message: "Could not create the Java virtual machine." |
388 | // |
389 | // The following extra steps are taken in the debugging version: |
390 | // |
391 | // If "/jre/lib/" does NOT appear at the right place in the path |
392 | // instead of exit check for $JAVA_HOME environment variable. |
393 | // |
394 | // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>, |
395 | // then we append a fake suffix "hotspot/libjvm.so" to this path so |
396 | // it looks like libjvm.so is installed there |
397 | // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so. |
398 | // |
399 | // Otherwise exit. |
400 | // |
401 | // Important note: if the location of libjvm.so changes this |
402 | // code needs to be changed accordingly. |
403 | |
404 | // See ld(1): |
405 | // The linker uses the following search paths to locate required |
406 | // shared libraries: |
407 | // 1: ... |
408 | // ... |
409 | // 7: The default directories, normally /lib and /usr/lib. |
410 | #ifndef OVERRIDE_LIBPATH |
411 | #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390) |
412 | #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib" |
413 | #else |
414 | #define DEFAULT_LIBPATH "/lib:/usr/lib" |
415 | #endif |
416 | #else |
417 | #define DEFAULT_LIBPATH OVERRIDE_LIBPATH |
418 | #endif |
419 | |
420 | // Base path of extensions installed on the system. |
421 | #define SYS_EXT_DIR "/usr/java/packages" |
422 | #define EXTENSIONS_DIR "/lib/ext" |
423 | |
424 | // Buffer that fits several sprintfs. |
425 | // Note that the space for the colon and the trailing null are provided |
426 | // by the nulls included by the sizeof operator. |
427 | const size_t bufsize = |
428 | MAX2((size_t)MAXPATHLEN, // For dll_dir & friends. |
429 | (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir |
430 | char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal); |
431 | |
432 | // sysclasspath, java_home, dll_dir |
433 | { |
434 | char *pslash; |
435 | os::jvm_path(buf, bufsize); |
436 | |
437 | // Found the full path to libjvm.so. |
438 | // Now cut the path to <java_home>/jre if we can. |
439 | pslash = strrchr(buf, '/'); |
440 | if (pslash != NULL) { |
441 | *pslash = '\0'; // Get rid of /libjvm.so. |
442 | } |
443 | pslash = strrchr(buf, '/'); |
444 | if (pslash != NULL) { |
445 | *pslash = '\0'; // Get rid of /{client|server|hotspot}. |
446 | } |
447 | Arguments::set_dll_dir(buf); |
448 | |
449 | if (pslash != NULL) { |
450 | pslash = strrchr(buf, '/'); |
451 | if (pslash != NULL) { |
452 | *pslash = '\0'; // Get rid of /lib. |
453 | } |
454 | } |
455 | Arguments::set_java_home(buf); |
456 | if (!set_boot_path('/', ':')) { |
457 | vm_exit_during_initialization("Failed setting boot class path." , NULL); |
458 | } |
459 | } |
460 | |
461 | // Where to look for native libraries. |
462 | // |
463 | // Note: Due to a legacy implementation, most of the library path |
464 | // is set in the launcher. This was to accomodate linking restrictions |
465 | // on legacy Linux implementations (which are no longer supported). |
466 | // Eventually, all the library path setting will be done here. |
467 | // |
468 | // However, to prevent the proliferation of improperly built native |
469 | // libraries, the new path component /usr/java/packages is added here. |
470 | // Eventually, all the library path setting will be done here. |
471 | { |
472 | // Get the user setting of LD_LIBRARY_PATH, and prepended it. It |
473 | // should always exist (until the legacy problem cited above is |
474 | // addressed). |
475 | const char *v = ::getenv("LD_LIBRARY_PATH" ); |
476 | const char *v_colon = ":" ; |
477 | if (v == NULL) { v = "" ; v_colon = "" ; } |
478 | // That's +1 for the colon and +1 for the trailing '\0'. |
479 | char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, |
480 | strlen(v) + 1 + |
481 | sizeof(SYS_EXT_DIR) + sizeof("/lib/" ) + sizeof(DEFAULT_LIBPATH) + 1, |
482 | mtInternal); |
483 | sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon); |
484 | Arguments::set_library_path(ld_library_path); |
485 | FREE_C_HEAP_ARRAY(char, ld_library_path); |
486 | } |
487 | |
488 | // Extensions directories. |
489 | sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home()); |
490 | Arguments::set_ext_dirs(buf); |
491 | |
492 | FREE_C_HEAP_ARRAY(char, buf); |
493 | |
494 | #undef DEFAULT_LIBPATH |
495 | #undef SYS_EXT_DIR |
496 | #undef EXTENSIONS_DIR |
497 | } |
498 | |
499 | //////////////////////////////////////////////////////////////////////////////// |
500 | // breakpoint support |
501 | |
502 | void os::breakpoint() { |
503 | BREAKPOINT; |
504 | } |
505 | |
506 | extern "C" void breakpoint() { |
507 | // use debugger to set breakpoint here |
508 | } |
509 | |
510 | //////////////////////////////////////////////////////////////////////////////// |
511 | // signal support |
512 | |
513 | debug_only(static bool signal_sets_initialized = false); |
514 | static sigset_t unblocked_sigs, vm_sigs; |
515 | |
516 | void os::Linux::signal_sets_init() { |
517 | // Should also have an assertion stating we are still single-threaded. |
518 | assert(!signal_sets_initialized, "Already initialized" ); |
519 | // Fill in signals that are necessarily unblocked for all threads in |
520 | // the VM. Currently, we unblock the following signals: |
521 | // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden |
522 | // by -Xrs (=ReduceSignalUsage)); |
523 | // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all |
524 | // other threads. The "ReduceSignalUsage" boolean tells us not to alter |
525 | // the dispositions or masks wrt these signals. |
526 | // Programs embedding the VM that want to use the above signals for their |
527 | // own purposes must, at this time, use the "-Xrs" option to prevent |
528 | // interference with shutdown hooks and BREAK_SIGNAL thread dumping. |
529 | // (See bug 4345157, and other related bugs). |
530 | // In reality, though, unblocking these signals is really a nop, since |
531 | // these signals are not blocked by default. |
532 | sigemptyset(&unblocked_sigs); |
533 | sigaddset(&unblocked_sigs, SIGILL); |
534 | sigaddset(&unblocked_sigs, SIGSEGV); |
535 | sigaddset(&unblocked_sigs, SIGBUS); |
536 | sigaddset(&unblocked_sigs, SIGFPE); |
537 | #if defined(PPC64) |
538 | sigaddset(&unblocked_sigs, SIGTRAP); |
539 | #endif |
540 | sigaddset(&unblocked_sigs, SR_signum); |
541 | |
542 | if (!ReduceSignalUsage) { |
543 | if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) { |
544 | sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL); |
545 | } |
546 | if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) { |
547 | sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL); |
548 | } |
549 | if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) { |
550 | sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL); |
551 | } |
552 | } |
553 | // Fill in signals that are blocked by all but the VM thread. |
554 | sigemptyset(&vm_sigs); |
555 | if (!ReduceSignalUsage) { |
556 | sigaddset(&vm_sigs, BREAK_SIGNAL); |
557 | } |
558 | debug_only(signal_sets_initialized = true); |
559 | |
560 | } |
561 | |
562 | // These are signals that are unblocked while a thread is running Java. |
563 | // (For some reason, they get blocked by default.) |
564 | sigset_t* os::Linux::unblocked_signals() { |
565 | assert(signal_sets_initialized, "Not initialized" ); |
566 | return &unblocked_sigs; |
567 | } |
568 | |
569 | // These are the signals that are blocked while a (non-VM) thread is |
570 | // running Java. Only the VM thread handles these signals. |
571 | sigset_t* os::Linux::vm_signals() { |
572 | assert(signal_sets_initialized, "Not initialized" ); |
573 | return &vm_sigs; |
574 | } |
575 | |
576 | void os::Linux::hotspot_sigmask(Thread* thread) { |
577 | |
578 | //Save caller's signal mask before setting VM signal mask |
579 | sigset_t caller_sigmask; |
580 | pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask); |
581 | |
582 | OSThread* osthread = thread->osthread(); |
583 | osthread->set_caller_sigmask(caller_sigmask); |
584 | |
585 | pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL); |
586 | |
587 | if (!ReduceSignalUsage) { |
588 | if (thread->is_VM_thread()) { |
589 | // Only the VM thread handles BREAK_SIGNAL ... |
590 | pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL); |
591 | } else { |
592 | // ... all other threads block BREAK_SIGNAL |
593 | pthread_sigmask(SIG_BLOCK, vm_signals(), NULL); |
594 | } |
595 | } |
596 | } |
597 | |
598 | ////////////////////////////////////////////////////////////////////////////// |
599 | // detecting pthread library |
600 | |
601 | void os::Linux::libpthread_init() { |
602 | // Save glibc and pthread version strings. |
603 | #if !defined(_CS_GNU_LIBC_VERSION) || \ |
604 | !defined(_CS_GNU_LIBPTHREAD_VERSION) |
605 | #error "glibc too old (< 2.3.2)" |
606 | #endif |
607 | |
608 | size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0); |
609 | assert(n > 0, "cannot retrieve glibc version" ); |
610 | char *str = (char *)malloc(n, mtInternal); |
611 | confstr(_CS_GNU_LIBC_VERSION, str, n); |
612 | os::Linux::set_glibc_version(str); |
613 | |
614 | n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0); |
615 | assert(n > 0, "cannot retrieve pthread version" ); |
616 | str = (char *)malloc(n, mtInternal); |
617 | confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n); |
618 | os::Linux::set_libpthread_version(str); |
619 | } |
620 | |
621 | ///////////////////////////////////////////////////////////////////////////// |
622 | // thread stack expansion |
623 | |
624 | // os::Linux::manually_expand_stack() takes care of expanding the thread |
625 | // stack. Note that this is normally not needed: pthread stacks allocate |
626 | // thread stack using mmap() without MAP_NORESERVE, so the stack is already |
627 | // committed. Therefore it is not necessary to expand the stack manually. |
628 | // |
629 | // Manually expanding the stack was historically needed on LinuxThreads |
630 | // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays |
631 | // it is kept to deal with very rare corner cases: |
632 | // |
633 | // For one, user may run the VM on an own implementation of threads |
634 | // whose stacks are - like the old LinuxThreads - implemented using |
635 | // mmap(MAP_GROWSDOWN). |
636 | // |
637 | // Also, this coding may be needed if the VM is running on the primordial |
638 | // thread. Normally we avoid running on the primordial thread; however, |
639 | // user may still invoke the VM on the primordial thread. |
640 | // |
641 | // The following historical comment describes the details about running |
642 | // on a thread stack allocated with mmap(MAP_GROWSDOWN): |
643 | |
644 | |
645 | // Force Linux kernel to expand current thread stack. If "bottom" is close |
646 | // to the stack guard, caller should block all signals. |
647 | // |
648 | // MAP_GROWSDOWN: |
649 | // A special mmap() flag that is used to implement thread stacks. It tells |
650 | // kernel that the memory region should extend downwards when needed. This |
651 | // allows early versions of LinuxThreads to only mmap the first few pages |
652 | // when creating a new thread. Linux kernel will automatically expand thread |
653 | // stack as needed (on page faults). |
654 | // |
655 | // However, because the memory region of a MAP_GROWSDOWN stack can grow on |
656 | // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN |
657 | // region, it's hard to tell if the fault is due to a legitimate stack |
658 | // access or because of reading/writing non-exist memory (e.g. buffer |
659 | // overrun). As a rule, if the fault happens below current stack pointer, |
660 | // Linux kernel does not expand stack, instead a SIGSEGV is sent to the |
661 | // application (see Linux kernel fault.c). |
662 | // |
663 | // This Linux feature can cause SIGSEGV when VM bangs thread stack for |
664 | // stack overflow detection. |
665 | // |
666 | // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do |
667 | // not use MAP_GROWSDOWN. |
668 | // |
669 | // To get around the problem and allow stack banging on Linux, we need to |
670 | // manually expand thread stack after receiving the SIGSEGV. |
671 | // |
672 | // There are two ways to expand thread stack to address "bottom", we used |
673 | // both of them in JVM before 1.5: |
674 | // 1. adjust stack pointer first so that it is below "bottom", and then |
675 | // touch "bottom" |
676 | // 2. mmap() the page in question |
677 | // |
678 | // Now alternate signal stack is gone, it's harder to use 2. For instance, |
679 | // if current sp is already near the lower end of page 101, and we need to |
680 | // call mmap() to map page 100, it is possible that part of the mmap() frame |
681 | // will be placed in page 100. When page 100 is mapped, it is zero-filled. |
682 | // That will destroy the mmap() frame and cause VM to crash. |
683 | // |
684 | // The following code works by adjusting sp first, then accessing the "bottom" |
685 | // page to force a page fault. Linux kernel will then automatically expand the |
686 | // stack mapping. |
687 | // |
688 | // _expand_stack_to() assumes its frame size is less than page size, which |
689 | // should always be true if the function is not inlined. |
690 | |
691 | static void NOINLINE _expand_stack_to(address bottom) { |
692 | address sp; |
693 | size_t size; |
694 | volatile char *p; |
695 | |
696 | // Adjust bottom to point to the largest address within the same page, it |
697 | // gives us a one-page buffer if alloca() allocates slightly more memory. |
698 | bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size()); |
699 | bottom += os::Linux::page_size() - 1; |
700 | |
701 | // sp might be slightly above current stack pointer; if that's the case, we |
702 | // will alloca() a little more space than necessary, which is OK. Don't use |
703 | // os::current_stack_pointer(), as its result can be slightly below current |
704 | // stack pointer, causing us to not alloca enough to reach "bottom". |
705 | sp = (address)&sp; |
706 | |
707 | if (sp > bottom) { |
708 | size = sp - bottom; |
709 | p = (volatile char *)alloca(size); |
710 | assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?" ); |
711 | p[0] = '\0'; |
712 | } |
713 | } |
714 | |
715 | void os::Linux::expand_stack_to(address bottom) { |
716 | _expand_stack_to(bottom); |
717 | } |
718 | |
719 | bool os::Linux::manually_expand_stack(JavaThread * t, address addr) { |
720 | assert(t!=NULL, "just checking" ); |
721 | assert(t->osthread()->expanding_stack(), "expand should be set" ); |
722 | assert(t->stack_base() != NULL, "stack_base was not initialized" ); |
723 | |
724 | if (addr < t->stack_base() && addr >= t->stack_reserved_zone_base()) { |
725 | sigset_t mask_all, old_sigset; |
726 | sigfillset(&mask_all); |
727 | pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset); |
728 | _expand_stack_to(addr); |
729 | pthread_sigmask(SIG_SETMASK, &old_sigset, NULL); |
730 | return true; |
731 | } |
732 | return false; |
733 | } |
734 | |
735 | ////////////////////////////////////////////////////////////////////////////// |
736 | // create new thread |
737 | |
738 | // Thread start routine for all newly created threads |
739 | static void *thread_native_entry(Thread *thread) { |
740 | |
741 | thread->record_stack_base_and_size(); |
742 | |
743 | // Try to randomize the cache line index of hot stack frames. |
744 | // This helps when threads of the same stack traces evict each other's |
745 | // cache lines. The threads can be either from the same JVM instance, or |
746 | // from different JVM instances. The benefit is especially true for |
747 | // processors with hyperthreading technology. |
748 | static int counter = 0; |
749 | int pid = os::current_process_id(); |
750 | alloca(((pid ^ counter++) & 7) * 128); |
751 | |
752 | thread->initialize_thread_current(); |
753 | |
754 | OSThread* osthread = thread->osthread(); |
755 | Monitor* sync = osthread->startThread_lock(); |
756 | |
757 | osthread->set_thread_id(os::current_thread_id()); |
758 | |
759 | log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
760 | os::current_thread_id(), (uintx) pthread_self()); |
761 | |
762 | if (UseNUMA) { |
763 | int lgrp_id = os::numa_get_group_id(); |
764 | if (lgrp_id != -1) { |
765 | thread->set_lgrp_id(lgrp_id); |
766 | } |
767 | } |
768 | // initialize signal mask for this thread |
769 | os::Linux::hotspot_sigmask(thread); |
770 | |
771 | // initialize floating point control register |
772 | os::Linux::init_thread_fpu_state(); |
773 | |
774 | // handshaking with parent thread |
775 | { |
776 | MutexLocker ml(sync, Mutex::_no_safepoint_check_flag); |
777 | |
778 | // notify parent thread |
779 | osthread->set_state(INITIALIZED); |
780 | sync->notify_all(); |
781 | |
782 | // wait until os::start_thread() |
783 | while (osthread->get_state() == INITIALIZED) { |
784 | sync->wait_without_safepoint_check(); |
785 | } |
786 | } |
787 | |
788 | assert(osthread->pthread_id() != 0, "pthread_id was not set as expected" ); |
789 | |
790 | // call one more level start routine |
791 | thread->call_run(); |
792 | |
793 | // Note: at this point the thread object may already have deleted itself. |
794 | // Prevent dereferencing it from here on out. |
795 | thread = NULL; |
796 | |
797 | log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
798 | os::current_thread_id(), (uintx) pthread_self()); |
799 | |
800 | return 0; |
801 | } |
802 | |
803 | bool os::create_thread(Thread* thread, ThreadType thr_type, |
804 | size_t req_stack_size) { |
805 | assert(thread->osthread() == NULL, "caller responsible" ); |
806 | |
807 | // Allocate the OSThread object |
808 | OSThread* osthread = new OSThread(NULL, NULL); |
809 | if (osthread == NULL) { |
810 | return false; |
811 | } |
812 | |
813 | // set the correct thread state |
814 | osthread->set_thread_type(thr_type); |
815 | |
816 | // Initial state is ALLOCATED but not INITIALIZED |
817 | osthread->set_state(ALLOCATED); |
818 | |
819 | thread->set_osthread(osthread); |
820 | |
821 | // init thread attributes |
822 | pthread_attr_t attr; |
823 | pthread_attr_init(&attr); |
824 | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
825 | |
826 | // Calculate stack size if it's not specified by caller. |
827 | size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size); |
828 | // In the Linux NPTL pthread implementation the guard size mechanism |
829 | // is not implemented properly. The posix standard requires adding |
830 | // the size of the guard pages to the stack size, instead Linux |
831 | // takes the space out of 'stacksize'. Thus we adapt the requested |
832 | // stack_size by the size of the guard pages to mimick proper |
833 | // behaviour. However, be careful not to end up with a size |
834 | // of zero due to overflow. Don't add the guard page in that case. |
835 | size_t guard_size = os::Linux::default_guard_size(thr_type); |
836 | if (stack_size <= SIZE_MAX - guard_size) { |
837 | stack_size += guard_size; |
838 | } |
839 | assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned" ); |
840 | |
841 | int status = pthread_attr_setstacksize(&attr, stack_size); |
842 | assert_status(status == 0, status, "pthread_attr_setstacksize" ); |
843 | |
844 | // Configure glibc guard page. |
845 | pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type)); |
846 | |
847 | ThreadState state; |
848 | |
849 | { |
850 | pthread_t tid; |
851 | int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread); |
852 | |
853 | char buf[64]; |
854 | if (ret == 0) { |
855 | log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). " , |
856 | (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr)); |
857 | } else { |
858 | log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s." , |
859 | os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr)); |
860 | // Log some OS information which might explain why creating the thread failed. |
861 | log_info(os, thread)("Number of threads approx. running in the VM: %d" , Threads::number_of_threads()); |
862 | LogStream st(Log(os, thread)::info()); |
863 | os::Posix::print_rlimit_info(&st); |
864 | os::print_memory_info(&st); |
865 | os::Linux::print_proc_sys_info(&st); |
866 | os::Linux::print_container_info(&st); |
867 | } |
868 | |
869 | pthread_attr_destroy(&attr); |
870 | |
871 | if (ret != 0) { |
872 | // Need to clean up stuff we've allocated so far |
873 | thread->set_osthread(NULL); |
874 | delete osthread; |
875 | return false; |
876 | } |
877 | |
878 | // Store pthread info into the OSThread |
879 | osthread->set_pthread_id(tid); |
880 | |
881 | // Wait until child thread is either initialized or aborted |
882 | { |
883 | Monitor* sync_with_child = osthread->startThread_lock(); |
884 | MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag); |
885 | while ((state = osthread->get_state()) == ALLOCATED) { |
886 | sync_with_child->wait_without_safepoint_check(); |
887 | } |
888 | } |
889 | } |
890 | |
891 | // Aborted due to thread limit being reached |
892 | if (state == ZOMBIE) { |
893 | thread->set_osthread(NULL); |
894 | delete osthread; |
895 | return false; |
896 | } |
897 | |
898 | // The thread is returned suspended (in state INITIALIZED), |
899 | // and is started higher up in the call chain |
900 | assert(state == INITIALIZED, "race condition" ); |
901 | return true; |
902 | } |
903 | |
904 | ///////////////////////////////////////////////////////////////////////////// |
905 | // attach existing thread |
906 | |
907 | // bootstrap the main thread |
908 | bool os::create_main_thread(JavaThread* thread) { |
909 | assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread" ); |
910 | return create_attached_thread(thread); |
911 | } |
912 | |
913 | bool os::create_attached_thread(JavaThread* thread) { |
914 | #ifdef ASSERT |
915 | thread->verify_not_published(); |
916 | #endif |
917 | |
918 | // Allocate the OSThread object |
919 | OSThread* osthread = new OSThread(NULL, NULL); |
920 | |
921 | if (osthread == NULL) { |
922 | return false; |
923 | } |
924 | |
925 | // Store pthread info into the OSThread |
926 | osthread->set_thread_id(os::Linux::gettid()); |
927 | osthread->set_pthread_id(::pthread_self()); |
928 | |
929 | // initialize floating point control register |
930 | os::Linux::init_thread_fpu_state(); |
931 | |
932 | // Initial thread state is RUNNABLE |
933 | osthread->set_state(RUNNABLE); |
934 | |
935 | thread->set_osthread(osthread); |
936 | |
937 | if (UseNUMA) { |
938 | int lgrp_id = os::numa_get_group_id(); |
939 | if (lgrp_id != -1) { |
940 | thread->set_lgrp_id(lgrp_id); |
941 | } |
942 | } |
943 | |
944 | if (os::is_primordial_thread()) { |
945 | // If current thread is primordial thread, its stack is mapped on demand, |
946 | // see notes about MAP_GROWSDOWN. Here we try to force kernel to map |
947 | // the entire stack region to avoid SEGV in stack banging. |
948 | // It is also useful to get around the heap-stack-gap problem on SuSE |
949 | // kernel (see 4821821 for details). We first expand stack to the top |
950 | // of yellow zone, then enable stack yellow zone (order is significant, |
951 | // enabling yellow zone first will crash JVM on SuSE Linux), so there |
952 | // is no gap between the last two virtual memory regions. |
953 | |
954 | JavaThread *jt = (JavaThread *)thread; |
955 | address addr = jt->stack_reserved_zone_base(); |
956 | assert(addr != NULL, "initialization problem?" ); |
957 | assert(jt->stack_available(addr) > 0, "stack guard should not be enabled" ); |
958 | |
959 | osthread->set_expanding_stack(); |
960 | os::Linux::manually_expand_stack(jt, addr); |
961 | osthread->clear_expanding_stack(); |
962 | } |
963 | |
964 | // initialize signal mask for this thread |
965 | // and save the caller's signal mask |
966 | os::Linux::hotspot_sigmask(thread); |
967 | |
968 | log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
969 | os::current_thread_id(), (uintx) pthread_self()); |
970 | |
971 | return true; |
972 | } |
973 | |
974 | void os::pd_start_thread(Thread* thread) { |
975 | OSThread * osthread = thread->osthread(); |
976 | assert(osthread->get_state() != INITIALIZED, "just checking" ); |
977 | Monitor* sync_with_child = osthread->startThread_lock(); |
978 | MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag); |
979 | sync_with_child->notify(); |
980 | } |
981 | |
982 | // Free Linux resources related to the OSThread |
983 | void os::free_thread(OSThread* osthread) { |
984 | assert(osthread != NULL, "osthread not set" ); |
985 | |
986 | // We are told to free resources of the argument thread, |
987 | // but we can only really operate on the current thread. |
988 | assert(Thread::current()->osthread() == osthread, |
989 | "os::free_thread but not current thread" ); |
990 | |
991 | #ifdef ASSERT |
992 | sigset_t current; |
993 | sigemptyset(¤t); |
994 | pthread_sigmask(SIG_SETMASK, NULL, ¤t); |
995 | assert(!sigismember(¤t, SR_signum), "SR signal should not be blocked!" ); |
996 | #endif |
997 | |
998 | // Restore caller's signal mask |
999 | sigset_t sigmask = osthread->caller_sigmask(); |
1000 | pthread_sigmask(SIG_SETMASK, &sigmask, NULL); |
1001 | |
1002 | delete osthread; |
1003 | } |
1004 | |
1005 | ////////////////////////////////////////////////////////////////////////////// |
1006 | // primordial thread |
1007 | |
1008 | // Check if current thread is the primordial thread, similar to Solaris thr_main. |
1009 | bool os::is_primordial_thread(void) { |
1010 | if (suppress_primordial_thread_resolution) { |
1011 | return false; |
1012 | } |
1013 | char dummy; |
1014 | // If called before init complete, thread stack bottom will be null. |
1015 | // Can be called if fatal error occurs before initialization. |
1016 | if (os::Linux::initial_thread_stack_bottom() == NULL) return false; |
1017 | assert(os::Linux::initial_thread_stack_bottom() != NULL && |
1018 | os::Linux::initial_thread_stack_size() != 0, |
1019 | "os::init did not locate primordial thread's stack region" ); |
1020 | if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() && |
1021 | (address)&dummy < os::Linux::initial_thread_stack_bottom() + |
1022 | os::Linux::initial_thread_stack_size()) { |
1023 | return true; |
1024 | } else { |
1025 | return false; |
1026 | } |
1027 | } |
1028 | |
1029 | // Find the virtual memory area that contains addr |
1030 | static bool find_vma(address addr, address* vma_low, address* vma_high) { |
1031 | FILE *fp = fopen("/proc/self/maps" , "r" ); |
1032 | if (fp) { |
1033 | address low, high; |
1034 | while (!feof(fp)) { |
1035 | if (fscanf(fp, "%p-%p" , &low, &high) == 2) { |
1036 | if (low <= addr && addr < high) { |
1037 | if (vma_low) *vma_low = low; |
1038 | if (vma_high) *vma_high = high; |
1039 | fclose(fp); |
1040 | return true; |
1041 | } |
1042 | } |
1043 | for (;;) { |
1044 | int ch = fgetc(fp); |
1045 | if (ch == EOF || ch == (int)'\n') break; |
1046 | } |
1047 | } |
1048 | fclose(fp); |
1049 | } |
1050 | return false; |
1051 | } |
1052 | |
1053 | // Locate primordial thread stack. This special handling of primordial thread stack |
1054 | // is needed because pthread_getattr_np() on most (all?) Linux distros returns |
1055 | // bogus value for the primordial process thread. While the launcher has created |
1056 | // the VM in a new thread since JDK 6, we still have to allow for the use of the |
1057 | // JNI invocation API from a primordial thread. |
1058 | void os::Linux::capture_initial_stack(size_t max_size) { |
1059 | |
1060 | // max_size is either 0 (which means accept OS default for thread stacks) or |
1061 | // a user-specified value known to be at least the minimum needed. If we |
1062 | // are actually on the primordial thread we can make it appear that we have a |
1063 | // smaller max_size stack by inserting the guard pages at that location. But we |
1064 | // cannot do anything to emulate a larger stack than what has been provided by |
1065 | // the OS or threading library. In fact if we try to use a stack greater than |
1066 | // what is set by rlimit then we will crash the hosting process. |
1067 | |
1068 | // Maximum stack size is the easy part, get it from RLIMIT_STACK. |
1069 | // If this is "unlimited" then it will be a huge value. |
1070 | struct rlimit rlim; |
1071 | getrlimit(RLIMIT_STACK, &rlim); |
1072 | size_t stack_size = rlim.rlim_cur; |
1073 | |
1074 | // 6308388: a bug in ld.so will relocate its own .data section to the |
1075 | // lower end of primordial stack; reduce ulimit -s value a little bit |
1076 | // so we won't install guard page on ld.so's data section. |
1077 | // But ensure we don't underflow the stack size - allow 1 page spare |
1078 | if (stack_size >= (size_t)(3 * page_size())) { |
1079 | stack_size -= 2 * page_size(); |
1080 | } |
1081 | |
1082 | // Try to figure out where the stack base (top) is. This is harder. |
1083 | // |
1084 | // When an application is started, glibc saves the initial stack pointer in |
1085 | // a global variable "__libc_stack_end", which is then used by system |
1086 | // libraries. __libc_stack_end should be pretty close to stack top. The |
1087 | // variable is available since the very early days. However, because it is |
1088 | // a private interface, it could disappear in the future. |
1089 | // |
1090 | // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar |
1091 | // to __libc_stack_end, it is very close to stack top, but isn't the real |
1092 | // stack top. Note that /proc may not exist if VM is running as a chroot |
1093 | // program, so reading /proc/<pid>/stat could fail. Also the contents of |
1094 | // /proc/<pid>/stat could change in the future (though unlikely). |
1095 | // |
1096 | // We try __libc_stack_end first. If that doesn't work, look for |
1097 | // /proc/<pid>/stat. If neither of them works, we use current stack pointer |
1098 | // as a hint, which should work well in most cases. |
1099 | |
1100 | uintptr_t stack_start; |
1101 | |
1102 | // try __libc_stack_end first |
1103 | uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end" ); |
1104 | if (p && *p) { |
1105 | stack_start = *p; |
1106 | } else { |
1107 | // see if we can get the start_stack field from /proc/self/stat |
1108 | FILE *fp; |
1109 | int pid; |
1110 | char state; |
1111 | int ppid; |
1112 | int pgrp; |
1113 | int session; |
1114 | int nr; |
1115 | int tpgrp; |
1116 | unsigned long flags; |
1117 | unsigned long minflt; |
1118 | unsigned long cminflt; |
1119 | unsigned long majflt; |
1120 | unsigned long cmajflt; |
1121 | unsigned long utime; |
1122 | unsigned long stime; |
1123 | long cutime; |
1124 | long cstime; |
1125 | long prio; |
1126 | long nice; |
1127 | long junk; |
1128 | long it_real; |
1129 | uintptr_t start; |
1130 | uintptr_t vsize; |
1131 | intptr_t ; |
1132 | uintptr_t ; |
1133 | uintptr_t scodes; |
1134 | uintptr_t ecode; |
1135 | int i; |
1136 | |
1137 | // Figure what the primordial thread stack base is. Code is inspired |
1138 | // by email from Hans Boehm. /proc/self/stat begins with current pid, |
1139 | // followed by command name surrounded by parentheses, state, etc. |
1140 | char stat[2048]; |
1141 | int statlen; |
1142 | |
1143 | fp = fopen("/proc/self/stat" , "r" ); |
1144 | if (fp) { |
1145 | statlen = fread(stat, 1, 2047, fp); |
1146 | stat[statlen] = '\0'; |
1147 | fclose(fp); |
1148 | |
1149 | // Skip pid and the command string. Note that we could be dealing with |
1150 | // weird command names, e.g. user could decide to rename java launcher |
1151 | // to "java 1.4.2 :)", then the stat file would look like |
1152 | // 1234 (java 1.4.2 :)) R ... ... |
1153 | // We don't really need to know the command string, just find the last |
1154 | // occurrence of ")" and then start parsing from there. See bug 4726580. |
1155 | char * s = strrchr(stat, ')'); |
1156 | |
1157 | i = 0; |
1158 | if (s) { |
1159 | // Skip blank chars |
1160 | do { s++; } while (s && isspace(*s)); |
1161 | |
1162 | #define _UFM UINTX_FORMAT |
1163 | #define _DFM INTX_FORMAT |
1164 | |
1165 | // 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 |
1166 | // 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 |
1167 | i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM, |
1168 | &state, // 3 %c |
1169 | &ppid, // 4 %d |
1170 | &pgrp, // 5 %d |
1171 | &session, // 6 %d |
1172 | &nr, // 7 %d |
1173 | &tpgrp, // 8 %d |
1174 | &flags, // 9 %lu |
1175 | &minflt, // 10 %lu |
1176 | &cminflt, // 11 %lu |
1177 | &majflt, // 12 %lu |
1178 | &cmajflt, // 13 %lu |
1179 | &utime, // 14 %lu |
1180 | &stime, // 15 %lu |
1181 | &cutime, // 16 %ld |
1182 | &cstime, // 17 %ld |
1183 | &prio, // 18 %ld |
1184 | &nice, // 19 %ld |
1185 | &junk, // 20 %ld |
1186 | &it_real, // 21 %ld |
1187 | &start, // 22 UINTX_FORMAT |
1188 | &vsize, // 23 UINTX_FORMAT |
1189 | &rss, // 24 INTX_FORMAT |
1190 | &rsslim, // 25 UINTX_FORMAT |
1191 | &scodes, // 26 UINTX_FORMAT |
1192 | &ecode, // 27 UINTX_FORMAT |
1193 | &stack_start); // 28 UINTX_FORMAT |
1194 | } |
1195 | |
1196 | #undef _UFM |
1197 | #undef _DFM |
1198 | |
1199 | if (i != 28 - 2) { |
1200 | assert(false, "Bad conversion from /proc/self/stat" ); |
1201 | // product mode - assume we are the primordial thread, good luck in the |
1202 | // embedded case. |
1203 | warning("Can't detect primordial thread stack location - bad conversion" ); |
1204 | stack_start = (uintptr_t) &rlim; |
1205 | } |
1206 | } else { |
1207 | // For some reason we can't open /proc/self/stat (for example, running on |
1208 | // FreeBSD with a Linux emulator, or inside chroot), this should work for |
1209 | // most cases, so don't abort: |
1210 | warning("Can't detect primordial thread stack location - no /proc/self/stat" ); |
1211 | stack_start = (uintptr_t) &rlim; |
1212 | } |
1213 | } |
1214 | |
1215 | // Now we have a pointer (stack_start) very close to the stack top, the |
1216 | // next thing to do is to figure out the exact location of stack top. We |
1217 | // can find out the virtual memory area that contains stack_start by |
1218 | // reading /proc/self/maps, it should be the last vma in /proc/self/maps, |
1219 | // and its upper limit is the real stack top. (again, this would fail if |
1220 | // running inside chroot, because /proc may not exist.) |
1221 | |
1222 | uintptr_t stack_top; |
1223 | address low, high; |
1224 | if (find_vma((address)stack_start, &low, &high)) { |
1225 | // success, "high" is the true stack top. (ignore "low", because initial |
1226 | // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.) |
1227 | stack_top = (uintptr_t)high; |
1228 | } else { |
1229 | // failed, likely because /proc/self/maps does not exist |
1230 | warning("Can't detect primordial thread stack location - find_vma failed" ); |
1231 | // best effort: stack_start is normally within a few pages below the real |
1232 | // stack top, use it as stack top, and reduce stack size so we won't put |
1233 | // guard page outside stack. |
1234 | stack_top = stack_start; |
1235 | stack_size -= 16 * page_size(); |
1236 | } |
1237 | |
1238 | // stack_top could be partially down the page so align it |
1239 | stack_top = align_up(stack_top, page_size()); |
1240 | |
1241 | // Allowed stack value is minimum of max_size and what we derived from rlimit |
1242 | if (max_size > 0) { |
1243 | _initial_thread_stack_size = MIN2(max_size, stack_size); |
1244 | } else { |
1245 | // Accept the rlimit max, but if stack is unlimited then it will be huge, so |
1246 | // clamp it at 8MB as we do on Solaris |
1247 | _initial_thread_stack_size = MIN2(stack_size, 8*M); |
1248 | } |
1249 | _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size()); |
1250 | _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size; |
1251 | |
1252 | assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!" ); |
1253 | |
1254 | if (log_is_enabled(Info, os, thread)) { |
1255 | // See if we seem to be on primordial process thread |
1256 | bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) && |
1257 | uintptr_t(&rlim) < stack_top; |
1258 | |
1259 | log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: " |
1260 | SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT, |
1261 | primordial ? "primordial" : "user" , max_size / K, _initial_thread_stack_size / K, |
1262 | stack_top, intptr_t(_initial_thread_stack_bottom)); |
1263 | } |
1264 | } |
1265 | |
1266 | //////////////////////////////////////////////////////////////////////////////// |
1267 | // time support |
1268 | |
1269 | #ifndef SUPPORTS_CLOCK_MONOTONIC |
1270 | #error "Build platform doesn't support clock_gettime and related functionality" |
1271 | #endif |
1272 | |
1273 | // Time since start-up in seconds to a fine granularity. |
1274 | // Used by VMSelfDestructTimer and the MemProfiler. |
1275 | double os::elapsedTime() { |
1276 | |
1277 | return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution |
1278 | } |
1279 | |
1280 | jlong os::elapsed_counter() { |
1281 | return javaTimeNanos() - initial_time_count; |
1282 | } |
1283 | |
1284 | jlong os::elapsed_frequency() { |
1285 | return NANOSECS_PER_SEC; // nanosecond resolution |
1286 | } |
1287 | |
1288 | bool os::supports_vtime() { return true; } |
1289 | bool os::enable_vtime() { return false; } |
1290 | bool os::vtime_enabled() { return false; } |
1291 | |
1292 | double os::elapsedVTime() { |
1293 | struct rusage usage; |
1294 | int retval = getrusage(RUSAGE_THREAD, &usage); |
1295 | if (retval == 0) { |
1296 | return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000); |
1297 | } else { |
1298 | // better than nothing, but not much |
1299 | return elapsedTime(); |
1300 | } |
1301 | } |
1302 | |
1303 | jlong os::javaTimeMillis() { |
1304 | timeval time; |
1305 | int status = gettimeofday(&time, NULL); |
1306 | assert(status != -1, "linux error" ); |
1307 | return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000); |
1308 | } |
1309 | |
1310 | void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) { |
1311 | timeval time; |
1312 | int status = gettimeofday(&time, NULL); |
1313 | assert(status != -1, "linux error" ); |
1314 | seconds = jlong(time.tv_sec); |
1315 | nanos = jlong(time.tv_usec) * 1000; |
1316 | } |
1317 | |
1318 | void os::Linux::fast_thread_clock_init() { |
1319 | if (!UseLinuxPosixThreadCPUClocks) { |
1320 | return; |
1321 | } |
1322 | clockid_t clockid; |
1323 | struct timespec tp; |
1324 | int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) = |
1325 | (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid" ); |
1326 | |
1327 | // Switch to using fast clocks for thread cpu time if |
1328 | // the clock_getres() returns 0 error code. |
1329 | // Note, that some kernels may support the current thread |
1330 | // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks |
1331 | // returned by the pthread_getcpuclockid(). |
1332 | // If the fast Posix clocks are supported then the clock_getres() |
1333 | // must return at least tp.tv_sec == 0 which means a resolution |
1334 | // better than 1 sec. This is extra check for reliability. |
1335 | |
1336 | if (pthread_getcpuclockid_func && |
1337 | pthread_getcpuclockid_func(_main_thread, &clockid) == 0 && |
1338 | os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) { |
1339 | _supports_fast_thread_cpu_time = true; |
1340 | _pthread_getcpuclockid = pthread_getcpuclockid_func; |
1341 | } |
1342 | } |
1343 | |
1344 | jlong os::javaTimeNanos() { |
1345 | if (os::supports_monotonic_clock()) { |
1346 | struct timespec tp; |
1347 | int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp); |
1348 | assert(status == 0, "gettime error" ); |
1349 | jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec); |
1350 | return result; |
1351 | } else { |
1352 | timeval time; |
1353 | int status = gettimeofday(&time, NULL); |
1354 | assert(status != -1, "linux error" ); |
1355 | jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec); |
1356 | return 1000 * usecs; |
1357 | } |
1358 | } |
1359 | |
1360 | void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { |
1361 | if (os::supports_monotonic_clock()) { |
1362 | info_ptr->max_value = ALL_64_BITS; |
1363 | |
1364 | // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past |
1365 | info_ptr->may_skip_backward = false; // not subject to resetting or drifting |
1366 | info_ptr->may_skip_forward = false; // not subject to resetting or drifting |
1367 | } else { |
1368 | // gettimeofday - based on time in seconds since the Epoch thus does not wrap |
1369 | info_ptr->max_value = ALL_64_BITS; |
1370 | |
1371 | // gettimeofday is a real time clock so it skips |
1372 | info_ptr->may_skip_backward = true; |
1373 | info_ptr->may_skip_forward = true; |
1374 | } |
1375 | |
1376 | info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time |
1377 | } |
1378 | |
1379 | // Return the real, user, and system times in seconds from an |
1380 | // arbitrary fixed point in the past. |
1381 | bool os::getTimesSecs(double* process_real_time, |
1382 | double* process_user_time, |
1383 | double* process_system_time) { |
1384 | struct tms ticks; |
1385 | clock_t real_ticks = times(&ticks); |
1386 | |
1387 | if (real_ticks == (clock_t) (-1)) { |
1388 | return false; |
1389 | } else { |
1390 | double ticks_per_second = (double) clock_tics_per_sec; |
1391 | *process_user_time = ((double) ticks.tms_utime) / ticks_per_second; |
1392 | *process_system_time = ((double) ticks.tms_stime) / ticks_per_second; |
1393 | *process_real_time = ((double) real_ticks) / ticks_per_second; |
1394 | |
1395 | return true; |
1396 | } |
1397 | } |
1398 | |
1399 | |
1400 | char * os::local_time_string(char *buf, size_t buflen) { |
1401 | struct tm t; |
1402 | time_t long_time; |
1403 | time(&long_time); |
1404 | localtime_r(&long_time, &t); |
1405 | jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d" , |
1406 | t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, |
1407 | t.tm_hour, t.tm_min, t.tm_sec); |
1408 | return buf; |
1409 | } |
1410 | |
1411 | struct tm* os::localtime_pd(const time_t* clock, struct tm* res) { |
1412 | return localtime_r(clock, res); |
1413 | } |
1414 | |
1415 | //////////////////////////////////////////////////////////////////////////////// |
1416 | // runtime exit support |
1417 | |
1418 | // Note: os::shutdown() might be called very early during initialization, or |
1419 | // called from signal handler. Before adding something to os::shutdown(), make |
1420 | // sure it is async-safe and can handle partially initialized VM. |
1421 | void os::shutdown() { |
1422 | |
1423 | // allow PerfMemory to attempt cleanup of any persistent resources |
1424 | perfMemory_exit(); |
1425 | |
1426 | // needs to remove object in file system |
1427 | AttachListener::abort(); |
1428 | |
1429 | // flush buffered output, finish log files |
1430 | ostream_abort(); |
1431 | |
1432 | // Check for abort hook |
1433 | abort_hook_t abort_hook = Arguments::abort_hook(); |
1434 | if (abort_hook != NULL) { |
1435 | abort_hook(); |
1436 | } |
1437 | |
1438 | } |
1439 | |
1440 | // Note: os::abort() might be called very early during initialization, or |
1441 | // called from signal handler. Before adding something to os::abort(), make |
1442 | // sure it is async-safe and can handle partially initialized VM. |
1443 | void os::abort(bool dump_core, void* siginfo, const void* context) { |
1444 | os::shutdown(); |
1445 | if (dump_core) { |
1446 | if (DumpPrivateMappingsInCore) { |
1447 | ClassLoader::close_jrt_image(); |
1448 | } |
1449 | #ifndef PRODUCT |
1450 | fdStream out(defaultStream::output_fd()); |
1451 | out.print_raw("Current thread is " ); |
1452 | char buf[16]; |
1453 | jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id()); |
1454 | out.print_raw_cr(buf); |
1455 | out.print_raw_cr("Dumping core ..." ); |
1456 | #endif |
1457 | ::abort(); // dump core |
1458 | } |
1459 | |
1460 | ::exit(1); |
1461 | } |
1462 | |
1463 | // Die immediately, no exit hook, no abort hook, no cleanup. |
1464 | // Dump a core file, if possible, for debugging. |
1465 | void os::die() { |
1466 | if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) { |
1467 | // For TimeoutInErrorHandlingTest.java, we just kill the VM |
1468 | // and don't take the time to generate a core file. |
1469 | os::signal_raise(SIGKILL); |
1470 | } else { |
1471 | ::abort(); |
1472 | } |
1473 | } |
1474 | |
1475 | // thread_id is kernel thread id (similar to Solaris LWP id) |
1476 | intx os::current_thread_id() { return os::Linux::gettid(); } |
1477 | int os::current_process_id() { |
1478 | return ::getpid(); |
1479 | } |
1480 | |
1481 | // DLL functions |
1482 | |
1483 | const char* os::dll_file_extension() { return ".so" ; } |
1484 | |
1485 | // This must be hard coded because it's the system's temporary |
1486 | // directory not the java application's temp directory, ala java.io.tmpdir. |
1487 | const char* os::get_temp_directory() { return "/tmp" ; } |
1488 | |
1489 | static bool file_exists(const char* filename) { |
1490 | struct stat statbuf; |
1491 | if (filename == NULL || strlen(filename) == 0) { |
1492 | return false; |
1493 | } |
1494 | return os::stat(filename, &statbuf) == 0; |
1495 | } |
1496 | |
1497 | // check if addr is inside libjvm.so |
1498 | bool os::address_is_in_vm(address addr) { |
1499 | static address libjvm_base_addr; |
1500 | Dl_info dlinfo; |
1501 | |
1502 | if (libjvm_base_addr == NULL) { |
1503 | if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) { |
1504 | libjvm_base_addr = (address)dlinfo.dli_fbase; |
1505 | } |
1506 | assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm" ); |
1507 | } |
1508 | |
1509 | if (dladdr((void *)addr, &dlinfo) != 0) { |
1510 | if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true; |
1511 | } |
1512 | |
1513 | return false; |
1514 | } |
1515 | |
1516 | bool os::dll_address_to_function_name(address addr, char *buf, |
1517 | int buflen, int *offset, |
1518 | bool demangle) { |
1519 | // buf is not optional, but offset is optional |
1520 | assert(buf != NULL, "sanity check" ); |
1521 | |
1522 | Dl_info dlinfo; |
1523 | |
1524 | if (dladdr((void*)addr, &dlinfo) != 0) { |
1525 | // see if we have a matching symbol |
1526 | if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) { |
1527 | if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) { |
1528 | jio_snprintf(buf, buflen, "%s" , dlinfo.dli_sname); |
1529 | } |
1530 | if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr; |
1531 | return true; |
1532 | } |
1533 | // no matching symbol so try for just file info |
1534 | if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) { |
1535 | if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase), |
1536 | buf, buflen, offset, dlinfo.dli_fname, demangle)) { |
1537 | return true; |
1538 | } |
1539 | } |
1540 | } |
1541 | |
1542 | buf[0] = '\0'; |
1543 | if (offset != NULL) *offset = -1; |
1544 | return false; |
1545 | } |
1546 | |
1547 | struct _address_to_library_name { |
1548 | address addr; // input : memory address |
1549 | size_t buflen; // size of fname |
1550 | char* fname; // output: library name |
1551 | address base; // library base addr |
1552 | }; |
1553 | |
1554 | static int address_to_library_name_callback(struct dl_phdr_info *info, |
1555 | size_t size, void *data) { |
1556 | int i; |
1557 | bool found = false; |
1558 | address libbase = NULL; |
1559 | struct _address_to_library_name * d = (struct _address_to_library_name *)data; |
1560 | |
1561 | // iterate through all loadable segments |
1562 | for (i = 0; i < info->dlpi_phnum; i++) { |
1563 | address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); |
1564 | if (info->dlpi_phdr[i].p_type == PT_LOAD) { |
1565 | // base address of a library is the lowest address of its loaded |
1566 | // segments. |
1567 | if (libbase == NULL || libbase > segbase) { |
1568 | libbase = segbase; |
1569 | } |
1570 | // see if 'addr' is within current segment |
1571 | if (segbase <= d->addr && |
1572 | d->addr < segbase + info->dlpi_phdr[i].p_memsz) { |
1573 | found = true; |
1574 | } |
1575 | } |
1576 | } |
1577 | |
1578 | // dlpi_name is NULL or empty if the ELF file is executable, return 0 |
1579 | // so dll_address_to_library_name() can fall through to use dladdr() which |
1580 | // can figure out executable name from argv[0]. |
1581 | if (found && info->dlpi_name && info->dlpi_name[0]) { |
1582 | d->base = libbase; |
1583 | if (d->fname) { |
1584 | jio_snprintf(d->fname, d->buflen, "%s" , info->dlpi_name); |
1585 | } |
1586 | return 1; |
1587 | } |
1588 | return 0; |
1589 | } |
1590 | |
1591 | bool os::dll_address_to_library_name(address addr, char* buf, |
1592 | int buflen, int* offset) { |
1593 | // buf is not optional, but offset is optional |
1594 | assert(buf != NULL, "sanity check" ); |
1595 | |
1596 | Dl_info dlinfo; |
1597 | struct _address_to_library_name data; |
1598 | |
1599 | // There is a bug in old glibc dladdr() implementation that it could resolve |
1600 | // to wrong library name if the .so file has a base address != NULL. Here |
1601 | // we iterate through the program headers of all loaded libraries to find |
1602 | // out which library 'addr' really belongs to. This workaround can be |
1603 | // removed once the minimum requirement for glibc is moved to 2.3.x. |
1604 | data.addr = addr; |
1605 | data.fname = buf; |
1606 | data.buflen = buflen; |
1607 | data.base = NULL; |
1608 | int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data); |
1609 | |
1610 | if (rslt) { |
1611 | // buf already contains library name |
1612 | if (offset) *offset = addr - data.base; |
1613 | return true; |
1614 | } |
1615 | if (dladdr((void*)addr, &dlinfo) != 0) { |
1616 | if (dlinfo.dli_fname != NULL) { |
1617 | jio_snprintf(buf, buflen, "%s" , dlinfo.dli_fname); |
1618 | } |
1619 | if (dlinfo.dli_fbase != NULL && offset != NULL) { |
1620 | *offset = addr - (address)dlinfo.dli_fbase; |
1621 | } |
1622 | return true; |
1623 | } |
1624 | |
1625 | buf[0] = '\0'; |
1626 | if (offset) *offset = -1; |
1627 | return false; |
1628 | } |
1629 | |
1630 | // Loads .dll/.so and |
1631 | // in case of error it checks if .dll/.so was built for the |
1632 | // same architecture as Hotspot is running on |
1633 | |
1634 | |
1635 | // Remember the stack's state. The Linux dynamic linker will change |
1636 | // the stack to 'executable' at most once, so we must safepoint only once. |
1637 | bool os::Linux::_stack_is_executable = false; |
1638 | |
1639 | // VM operation that loads a library. This is necessary if stack protection |
1640 | // of the Java stacks can be lost during loading the library. If we |
1641 | // do not stop the Java threads, they can stack overflow before the stacks |
1642 | // are protected again. |
1643 | class VM_LinuxDllLoad: public VM_Operation { |
1644 | private: |
1645 | const char *_filename; |
1646 | char *_ebuf; |
1647 | int _ebuflen; |
1648 | void *_lib; |
1649 | public: |
1650 | VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) : |
1651 | _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {} |
1652 | VMOp_Type type() const { return VMOp_LinuxDllLoad; } |
1653 | void doit() { |
1654 | _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen); |
1655 | os::Linux::_stack_is_executable = true; |
1656 | } |
1657 | void* loaded_library() { return _lib; } |
1658 | }; |
1659 | |
1660 | void * os::dll_load(const char *filename, char *ebuf, int ebuflen) { |
1661 | void * result = NULL; |
1662 | bool load_attempted = false; |
1663 | |
1664 | // Check whether the library to load might change execution rights |
1665 | // of the stack. If they are changed, the protection of the stack |
1666 | // guard pages will be lost. We need a safepoint to fix this. |
1667 | // |
1668 | // See Linux man page execstack(8) for more info. |
1669 | if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) { |
1670 | if (!ElfFile::specifies_noexecstack(filename)) { |
1671 | if (!is_init_completed()) { |
1672 | os::Linux::_stack_is_executable = true; |
1673 | // This is OK - No Java threads have been created yet, and hence no |
1674 | // stack guard pages to fix. |
1675 | // |
1676 | // Dynamic loader will make all stacks executable after |
1677 | // this function returns, and will not do that again. |
1678 | assert(Threads::number_of_threads() == 0, "no Java threads should exist yet." ); |
1679 | } else { |
1680 | warning("You have loaded library %s which might have disabled stack guard. " |
1681 | "The VM will try to fix the stack guard now.\n" |
1682 | "It's highly recommended that you fix the library with " |
1683 | "'execstack -c <libfile>', or link it with '-z noexecstack'." , |
1684 | filename); |
1685 | |
1686 | assert(Thread::current()->is_Java_thread(), "must be Java thread" ); |
1687 | JavaThread *jt = JavaThread::current(); |
1688 | if (jt->thread_state() != _thread_in_native) { |
1689 | // This happens when a compiler thread tries to load a hsdis-<arch>.so file |
1690 | // that requires ExecStack. Cannot enter safe point. Let's give up. |
1691 | warning("Unable to fix stack guard. Giving up." ); |
1692 | } else { |
1693 | if (!LoadExecStackDllInVMThread) { |
1694 | // This is for the case where the DLL has an static |
1695 | // constructor function that executes JNI code. We cannot |
1696 | // load such DLLs in the VMThread. |
1697 | result = os::Linux::dlopen_helper(filename, ebuf, ebuflen); |
1698 | } |
1699 | |
1700 | ThreadInVMfromNative tiv(jt); |
1701 | debug_only(VMNativeEntryWrapper vew;) |
1702 | |
1703 | VM_LinuxDllLoad op(filename, ebuf, ebuflen); |
1704 | VMThread::execute(&op); |
1705 | if (LoadExecStackDllInVMThread) { |
1706 | result = op.loaded_library(); |
1707 | } |
1708 | load_attempted = true; |
1709 | } |
1710 | } |
1711 | } |
1712 | } |
1713 | |
1714 | if (!load_attempted) { |
1715 | result = os::Linux::dlopen_helper(filename, ebuf, ebuflen); |
1716 | } |
1717 | |
1718 | if (result != NULL) { |
1719 | // Successful loading |
1720 | return result; |
1721 | } |
1722 | |
1723 | Elf32_Ehdr elf_head; |
1724 | int diag_msg_max_length=ebuflen-strlen(ebuf); |
1725 | char* diag_msg_buf=ebuf+strlen(ebuf); |
1726 | |
1727 | if (diag_msg_max_length==0) { |
1728 | // No more space in ebuf for additional diagnostics message |
1729 | return NULL; |
1730 | } |
1731 | |
1732 | |
1733 | int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK); |
1734 | |
1735 | if (file_descriptor < 0) { |
1736 | // Can't open library, report dlerror() message |
1737 | return NULL; |
1738 | } |
1739 | |
1740 | bool failed_to_read_elf_head= |
1741 | (sizeof(elf_head)!= |
1742 | (::read(file_descriptor, &elf_head,sizeof(elf_head)))); |
1743 | |
1744 | ::close(file_descriptor); |
1745 | if (failed_to_read_elf_head) { |
1746 | // file i/o error - report dlerror() msg |
1747 | return NULL; |
1748 | } |
1749 | |
1750 | typedef struct { |
1751 | Elf32_Half code; // Actual value as defined in elf.h |
1752 | Elf32_Half compat_class; // Compatibility of archs at VM's sense |
1753 | unsigned char elf_class; // 32 or 64 bit |
1754 | unsigned char endianess; // MSB or LSB |
1755 | char* name; // String representation |
1756 | } arch_t; |
1757 | |
1758 | #ifndef EM_486 |
1759 | #define EM_486 6 /* Intel 80486 */ |
1760 | #endif |
1761 | #ifndef EM_AARCH64 |
1762 | #define EM_AARCH64 183 /* ARM AARCH64 */ |
1763 | #endif |
1764 | |
1765 | static const arch_t arch_array[]={ |
1766 | {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32" }, |
1767 | {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32" }, |
1768 | {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64" }, |
1769 | {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64" }, |
1770 | {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32" }, |
1771 | {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32" }, |
1772 | {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64" }, |
1773 | {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32" }, |
1774 | #if defined(VM_LITTLE_ENDIAN) |
1775 | {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE" }, |
1776 | {EM_SH, EM_SH, ELFCLASS32, ELFDATA2LSB, (char*)"SuperH" }, |
1777 | #else |
1778 | {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64" }, |
1779 | {EM_SH, EM_SH, ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE" }, |
1780 | #endif |
1781 | {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM" }, |
1782 | {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390" }, |
1783 | {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha" }, |
1784 | {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel" }, |
1785 | {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS" }, |
1786 | {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC" }, |
1787 | {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k" }, |
1788 | {EM_AARCH64, EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64" }, |
1789 | }; |
1790 | |
1791 | #if (defined IA32) |
1792 | static Elf32_Half running_arch_code=EM_386; |
1793 | #elif (defined AMD64) || (defined X32) |
1794 | static Elf32_Half running_arch_code=EM_X86_64; |
1795 | #elif (defined IA64) |
1796 | static Elf32_Half running_arch_code=EM_IA_64; |
1797 | #elif (defined __sparc) && (defined _LP64) |
1798 | static Elf32_Half running_arch_code=EM_SPARCV9; |
1799 | #elif (defined __sparc) && (!defined _LP64) |
1800 | static Elf32_Half running_arch_code=EM_SPARC; |
1801 | #elif (defined __powerpc64__) |
1802 | static Elf32_Half running_arch_code=EM_PPC64; |
1803 | #elif (defined __powerpc__) |
1804 | static Elf32_Half running_arch_code=EM_PPC; |
1805 | #elif (defined AARCH64) |
1806 | static Elf32_Half running_arch_code=EM_AARCH64; |
1807 | #elif (defined ARM) |
1808 | static Elf32_Half running_arch_code=EM_ARM; |
1809 | #elif (defined S390) |
1810 | static Elf32_Half running_arch_code=EM_S390; |
1811 | #elif (defined ALPHA) |
1812 | static Elf32_Half running_arch_code=EM_ALPHA; |
1813 | #elif (defined MIPSEL) |
1814 | static Elf32_Half running_arch_code=EM_MIPS_RS3_LE; |
1815 | #elif (defined PARISC) |
1816 | static Elf32_Half running_arch_code=EM_PARISC; |
1817 | #elif (defined MIPS) |
1818 | static Elf32_Half running_arch_code=EM_MIPS; |
1819 | #elif (defined M68K) |
1820 | static Elf32_Half running_arch_code=EM_68K; |
1821 | #elif (defined SH) |
1822 | static Elf32_Half running_arch_code=EM_SH; |
1823 | #else |
1824 | #error Method os::dll_load requires that one of following is defined:\ |
1825 | AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc |
1826 | #endif |
1827 | |
1828 | // Identify compatability class for VM's architecture and library's architecture |
1829 | // Obtain string descriptions for architectures |
1830 | |
1831 | arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL}; |
1832 | int running_arch_index=-1; |
1833 | |
1834 | for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) { |
1835 | if (running_arch_code == arch_array[i].code) { |
1836 | running_arch_index = i; |
1837 | } |
1838 | if (lib_arch.code == arch_array[i].code) { |
1839 | lib_arch.compat_class = arch_array[i].compat_class; |
1840 | lib_arch.name = arch_array[i].name; |
1841 | } |
1842 | } |
1843 | |
1844 | assert(running_arch_index != -1, |
1845 | "Didn't find running architecture code (running_arch_code) in arch_array" ); |
1846 | if (running_arch_index == -1) { |
1847 | // Even though running architecture detection failed |
1848 | // we may still continue with reporting dlerror() message |
1849 | return NULL; |
1850 | } |
1851 | |
1852 | if (lib_arch.endianess != arch_array[running_arch_index].endianess) { |
1853 | ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)" ); |
1854 | return NULL; |
1855 | } |
1856 | |
1857 | #ifndef S390 |
1858 | if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) { |
1859 | ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)" ); |
1860 | return NULL; |
1861 | } |
1862 | #endif // !S390 |
1863 | |
1864 | if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) { |
1865 | if (lib_arch.name!=NULL) { |
1866 | ::snprintf(diag_msg_buf, diag_msg_max_length-1, |
1867 | " (Possible cause: can't load %s-bit .so on a %s-bit platform)" , |
1868 | lib_arch.name, arch_array[running_arch_index].name); |
1869 | } else { |
1870 | ::snprintf(diag_msg_buf, diag_msg_max_length-1, |
1871 | " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)" , |
1872 | lib_arch.code, |
1873 | arch_array[running_arch_index].name); |
1874 | } |
1875 | } |
1876 | |
1877 | return NULL; |
1878 | } |
1879 | |
1880 | void * os::Linux::dlopen_helper(const char *filename, char *ebuf, |
1881 | int ebuflen) { |
1882 | void * result = ::dlopen(filename, RTLD_LAZY); |
1883 | if (result == NULL) { |
1884 | const char* error_report = ::dlerror(); |
1885 | if (error_report == NULL) { |
1886 | error_report = "dlerror returned no error description" ; |
1887 | } |
1888 | if (ebuf != NULL && ebuflen > 0) { |
1889 | ::strncpy(ebuf, error_report, ebuflen-1); |
1890 | ebuf[ebuflen-1]='\0'; |
1891 | } |
1892 | Events::log(NULL, "Loading shared library %s failed, %s" , filename, error_report); |
1893 | } else { |
1894 | Events::log(NULL, "Loaded shared library %s" , filename); |
1895 | } |
1896 | return result; |
1897 | } |
1898 | |
1899 | void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, |
1900 | int ebuflen) { |
1901 | void * result = NULL; |
1902 | if (LoadExecStackDllInVMThread) { |
1903 | result = dlopen_helper(filename, ebuf, ebuflen); |
1904 | } |
1905 | |
1906 | // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a |
1907 | // library that requires an executable stack, or which does not have this |
1908 | // stack attribute set, dlopen changes the stack attribute to executable. The |
1909 | // read protection of the guard pages gets lost. |
1910 | // |
1911 | // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad |
1912 | // may have been queued at the same time. |
1913 | |
1914 | if (!_stack_is_executable) { |
1915 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
1916 | if (!jt->stack_guard_zone_unused() && // Stack not yet fully initialized |
1917 | jt->stack_guards_enabled()) { // No pending stack overflow exceptions |
1918 | if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) { |
1919 | warning("Attempt to reguard stack yellow zone failed." ); |
1920 | } |
1921 | } |
1922 | } |
1923 | } |
1924 | |
1925 | return result; |
1926 | } |
1927 | |
1928 | void* os::dll_lookup(void* handle, const char* name) { |
1929 | void* res = dlsym(handle, name); |
1930 | return res; |
1931 | } |
1932 | |
1933 | void* os::get_default_process_handle() { |
1934 | return (void*)::dlopen(NULL, RTLD_LAZY); |
1935 | } |
1936 | |
1937 | static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) { |
1938 | int fd = ::open(filename, O_RDONLY); |
1939 | if (fd == -1) { |
1940 | return false; |
1941 | } |
1942 | |
1943 | if (hdr != NULL) { |
1944 | st->print_cr("%s" , hdr); |
1945 | } |
1946 | |
1947 | char buf[33]; |
1948 | int bytes; |
1949 | buf[32] = '\0'; |
1950 | while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) { |
1951 | st->print_raw(buf, bytes); |
1952 | } |
1953 | |
1954 | ::close(fd); |
1955 | |
1956 | return true; |
1957 | } |
1958 | |
1959 | void os::print_dll_info(outputStream *st) { |
1960 | st->print_cr("Dynamic libraries:" ); |
1961 | |
1962 | char fname[32]; |
1963 | pid_t pid = os::Linux::gettid(); |
1964 | |
1965 | jio_snprintf(fname, sizeof(fname), "/proc/%d/maps" , pid); |
1966 | |
1967 | if (!_print_ascii_file(fname, st)) { |
1968 | st->print("Can not get library information for pid = %d\n" , pid); |
1969 | } |
1970 | } |
1971 | |
1972 | int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) { |
1973 | FILE *procmapsFile = NULL; |
1974 | |
1975 | // Open the procfs maps file for the current process |
1976 | if ((procmapsFile = fopen("/proc/self/maps" , "r" )) != NULL) { |
1977 | // Allocate PATH_MAX for file name plus a reasonable size for other fields. |
1978 | char line[PATH_MAX + 100]; |
1979 | |
1980 | // Read line by line from 'file' |
1981 | while (fgets(line, sizeof(line), procmapsFile) != NULL) { |
1982 | u8 base, top, offset, inode; |
1983 | char permissions[5]; |
1984 | char device[6]; |
1985 | char name[PATH_MAX + 1]; |
1986 | |
1987 | // Parse fields from line |
1988 | sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s" , |
1989 | &base, &top, permissions, &offset, device, &inode, name); |
1990 | |
1991 | // Filter by device id '00:00' so that we only get file system mapped files. |
1992 | if (strcmp(device, "00:00" ) != 0) { |
1993 | |
1994 | // Call callback with the fields of interest |
1995 | if(callback(name, (address)base, (address)top, param)) { |
1996 | // Oops abort, callback aborted |
1997 | fclose(procmapsFile); |
1998 | return 1; |
1999 | } |
2000 | } |
2001 | } |
2002 | fclose(procmapsFile); |
2003 | } |
2004 | return 0; |
2005 | } |
2006 | |
2007 | void os::print_os_info_brief(outputStream* st) { |
2008 | os::Linux::print_distro_info(st); |
2009 | |
2010 | os::Posix::print_uname_info(st); |
2011 | |
2012 | os::Linux::print_libversion_info(st); |
2013 | |
2014 | } |
2015 | |
2016 | void os::print_os_info(outputStream* st) { |
2017 | st->print("OS:" ); |
2018 | |
2019 | os::Linux::print_distro_info(st); |
2020 | |
2021 | os::Posix::print_uname_info(st); |
2022 | |
2023 | // Print warning if unsafe chroot environment detected |
2024 | if (unsafe_chroot_detected) { |
2025 | st->print("WARNING!! " ); |
2026 | st->print_cr("%s" , unstable_chroot_error); |
2027 | } |
2028 | |
2029 | os::Linux::print_libversion_info(st); |
2030 | |
2031 | os::Posix::print_rlimit_info(st); |
2032 | |
2033 | os::Posix::print_load_average(st); |
2034 | |
2035 | os::Linux::print_full_memory_info(st); |
2036 | |
2037 | os::Linux::print_proc_sys_info(st); |
2038 | |
2039 | os::Linux::print_ld_preload_file(st); |
2040 | |
2041 | os::Linux::print_container_info(st); |
2042 | |
2043 | VM_Version::print_platform_virtualization_info(st); |
2044 | |
2045 | os::Linux::print_steal_info(st); |
2046 | } |
2047 | |
2048 | // Try to identify popular distros. |
2049 | // Most Linux distributions have a /etc/XXX-release file, which contains |
2050 | // the OS version string. Newer Linux distributions have a /etc/lsb-release |
2051 | // file that also contains the OS version string. Some have more than one |
2052 | // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and |
2053 | // /etc/redhat-release.), so the order is important. |
2054 | // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have |
2055 | // their own specific XXX-release file as well as a redhat-release file. |
2056 | // Because of this the XXX-release file needs to be searched for before the |
2057 | // redhat-release file. |
2058 | // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the |
2059 | // search for redhat-release / SuSE-release needs to be before lsb-release. |
2060 | // Since the lsb-release file is the new standard it needs to be searched |
2061 | // before the older style release files. |
2062 | // Searching system-release (Red Hat) and os-release (other Linuxes) are a |
2063 | // next to last resort. The os-release file is a new standard that contains |
2064 | // distribution information and the system-release file seems to be an old |
2065 | // standard that has been replaced by the lsb-release and os-release files. |
2066 | // Searching for the debian_version file is the last resort. It contains |
2067 | // an informative string like "6.0.6" or "wheezy/sid". Because of this |
2068 | // "Debian " is printed before the contents of the debian_version file. |
2069 | |
2070 | const char* distro_files[] = { |
2071 | "/etc/oracle-release" , |
2072 | "/etc/mandriva-release" , |
2073 | "/etc/mandrake-release" , |
2074 | "/etc/sun-release" , |
2075 | "/etc/redhat-release" , |
2076 | "/etc/SuSE-release" , |
2077 | "/etc/lsb-release" , |
2078 | "/etc/turbolinux-release" , |
2079 | "/etc/gentoo-release" , |
2080 | "/etc/ltib-release" , |
2081 | "/etc/angstrom-version" , |
2082 | "/etc/system-release" , |
2083 | "/etc/os-release" , |
2084 | NULL }; |
2085 | |
2086 | void os::Linux::print_distro_info(outputStream* st) { |
2087 | for (int i = 0;; i++) { |
2088 | const char* file = distro_files[i]; |
2089 | if (file == NULL) { |
2090 | break; // done |
2091 | } |
2092 | // If file prints, we found it. |
2093 | if (_print_ascii_file(file, st)) { |
2094 | return; |
2095 | } |
2096 | } |
2097 | |
2098 | if (file_exists("/etc/debian_version" )) { |
2099 | st->print("Debian " ); |
2100 | _print_ascii_file("/etc/debian_version" , st); |
2101 | } else { |
2102 | st->print("Linux" ); |
2103 | } |
2104 | st->cr(); |
2105 | } |
2106 | |
2107 | static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) { |
2108 | char buf[256]; |
2109 | while (fgets(buf, sizeof(buf), fp)) { |
2110 | // Edit out extra stuff in expected format |
2111 | if (strstr(buf, "DISTRIB_DESCRIPTION=" ) != NULL || strstr(buf, "PRETTY_NAME=" ) != NULL) { |
2112 | char* ptr = strstr(buf, "\"" ); // the name is in quotes |
2113 | if (ptr != NULL) { |
2114 | ptr++; // go beyond first quote |
2115 | char* nl = strchr(ptr, '\"'); |
2116 | if (nl != NULL) *nl = '\0'; |
2117 | strncpy(distro, ptr, length); |
2118 | } else { |
2119 | ptr = strstr(buf, "=" ); |
2120 | ptr++; // go beyond equals then |
2121 | char* nl = strchr(ptr, '\n'); |
2122 | if (nl != NULL) *nl = '\0'; |
2123 | strncpy(distro, ptr, length); |
2124 | } |
2125 | return; |
2126 | } else if (get_first_line) { |
2127 | char* nl = strchr(buf, '\n'); |
2128 | if (nl != NULL) *nl = '\0'; |
2129 | strncpy(distro, buf, length); |
2130 | return; |
2131 | } |
2132 | } |
2133 | // print last line and close |
2134 | char* nl = strchr(buf, '\n'); |
2135 | if (nl != NULL) *nl = '\0'; |
2136 | strncpy(distro, buf, length); |
2137 | } |
2138 | |
2139 | static void parse_os_info(char* distro, size_t length, const char* file) { |
2140 | FILE* fp = fopen(file, "r" ); |
2141 | if (fp != NULL) { |
2142 | // if suse format, print out first line |
2143 | bool get_first_line = (strcmp(file, "/etc/SuSE-release" ) == 0); |
2144 | parse_os_info_helper(fp, distro, length, get_first_line); |
2145 | fclose(fp); |
2146 | } |
2147 | } |
2148 | |
2149 | void os::get_summary_os_info(char* buf, size_t buflen) { |
2150 | for (int i = 0;; i++) { |
2151 | const char* file = distro_files[i]; |
2152 | if (file == NULL) { |
2153 | break; // ran out of distro_files |
2154 | } |
2155 | if (file_exists(file)) { |
2156 | parse_os_info(buf, buflen, file); |
2157 | return; |
2158 | } |
2159 | } |
2160 | // special case for debian |
2161 | if (file_exists("/etc/debian_version" )) { |
2162 | strncpy(buf, "Debian " , buflen); |
2163 | if (buflen > 7) { |
2164 | parse_os_info(&buf[7], buflen-7, "/etc/debian_version" ); |
2165 | } |
2166 | } else { |
2167 | strncpy(buf, "Linux" , buflen); |
2168 | } |
2169 | } |
2170 | |
2171 | void os::Linux::print_libversion_info(outputStream* st) { |
2172 | // libc, pthread |
2173 | st->print("libc:" ); |
2174 | st->print("%s " , os::Linux::glibc_version()); |
2175 | st->print("%s " , os::Linux::libpthread_version()); |
2176 | st->cr(); |
2177 | } |
2178 | |
2179 | void os::Linux::print_proc_sys_info(outputStream* st) { |
2180 | st->cr(); |
2181 | st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):" ); |
2182 | _print_ascii_file("/proc/sys/kernel/threads-max" , st); |
2183 | st->cr(); |
2184 | st->cr(); |
2185 | |
2186 | st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):" ); |
2187 | _print_ascii_file("/proc/sys/vm/max_map_count" , st); |
2188 | st->cr(); |
2189 | st->cr(); |
2190 | |
2191 | st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):" ); |
2192 | _print_ascii_file("/proc/sys/kernel/pid_max" , st); |
2193 | st->cr(); |
2194 | st->cr(); |
2195 | } |
2196 | |
2197 | void os::Linux::print_full_memory_info(outputStream* st) { |
2198 | st->print("\n/proc/meminfo:\n" ); |
2199 | _print_ascii_file("/proc/meminfo" , st); |
2200 | st->cr(); |
2201 | } |
2202 | |
2203 | void os::Linux::print_ld_preload_file(outputStream* st) { |
2204 | _print_ascii_file("/etc/ld.so.preload" , st, "\n/etc/ld.so.preload:" ); |
2205 | st->cr(); |
2206 | } |
2207 | |
2208 | void os::Linux::print_container_info(outputStream* st) { |
2209 | if (!OSContainer::is_containerized()) { |
2210 | return; |
2211 | } |
2212 | |
2213 | st->print("container (cgroup) information:\n" ); |
2214 | |
2215 | const char *p_ct = OSContainer::container_type(); |
2216 | st->print("container_type: %s\n" , p_ct != NULL ? p_ct : "not supported" ); |
2217 | |
2218 | char *p = OSContainer::cpu_cpuset_cpus(); |
2219 | st->print("cpu_cpuset_cpus: %s\n" , p != NULL ? p : "not supported" ); |
2220 | free(p); |
2221 | |
2222 | p = OSContainer::cpu_cpuset_memory_nodes(); |
2223 | st->print("cpu_memory_nodes: %s\n" , p != NULL ? p : "not supported" ); |
2224 | free(p); |
2225 | |
2226 | int i = OSContainer::active_processor_count(); |
2227 | st->print("active_processor_count: " ); |
2228 | if (i > 0) { |
2229 | st->print("%d\n" , i); |
2230 | } else { |
2231 | st->print("not supported\n" ); |
2232 | } |
2233 | |
2234 | i = OSContainer::cpu_quota(); |
2235 | st->print("cpu_quota: " ); |
2236 | if (i > 0) { |
2237 | st->print("%d\n" , i); |
2238 | } else { |
2239 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no quota" ); |
2240 | } |
2241 | |
2242 | i = OSContainer::cpu_period(); |
2243 | st->print("cpu_period: " ); |
2244 | if (i > 0) { |
2245 | st->print("%d\n" , i); |
2246 | } else { |
2247 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no period" ); |
2248 | } |
2249 | |
2250 | i = OSContainer::cpu_shares(); |
2251 | st->print("cpu_shares: " ); |
2252 | if (i > 0) { |
2253 | st->print("%d\n" , i); |
2254 | } else { |
2255 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no shares" ); |
2256 | } |
2257 | |
2258 | jlong j = OSContainer::memory_limit_in_bytes(); |
2259 | st->print("memory_limit_in_bytes: " ); |
2260 | if (j > 0) { |
2261 | st->print(JLONG_FORMAT "\n" , j); |
2262 | } else { |
2263 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
2264 | } |
2265 | |
2266 | j = OSContainer::memory_and_swap_limit_in_bytes(); |
2267 | st->print("memory_and_swap_limit_in_bytes: " ); |
2268 | if (j > 0) { |
2269 | st->print(JLONG_FORMAT "\n" , j); |
2270 | } else { |
2271 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
2272 | } |
2273 | |
2274 | j = OSContainer::memory_soft_limit_in_bytes(); |
2275 | st->print("memory_soft_limit_in_bytes: " ); |
2276 | if (j > 0) { |
2277 | st->print(JLONG_FORMAT "\n" , j); |
2278 | } else { |
2279 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
2280 | } |
2281 | |
2282 | j = OSContainer::OSContainer::memory_usage_in_bytes(); |
2283 | st->print("memory_usage_in_bytes: " ); |
2284 | if (j > 0) { |
2285 | st->print(JLONG_FORMAT "\n" , j); |
2286 | } else { |
2287 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
2288 | } |
2289 | |
2290 | j = OSContainer::OSContainer::memory_max_usage_in_bytes(); |
2291 | st->print("memory_max_usage_in_bytes: " ); |
2292 | if (j > 0) { |
2293 | st->print(JLONG_FORMAT "\n" , j); |
2294 | } else { |
2295 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
2296 | } |
2297 | st->cr(); |
2298 | } |
2299 | |
2300 | void os::Linux::print_steal_info(outputStream* st) { |
2301 | if (has_initial_tick_info) { |
2302 | CPUPerfTicks pticks; |
2303 | bool res = os::Linux::get_tick_information(&pticks, -1); |
2304 | |
2305 | if (res && pticks.has_steal_ticks) { |
2306 | uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks; |
2307 | uint64_t total_ticks_difference = pticks.total - initial_total_ticks; |
2308 | double steal_ticks_perc = 0.0; |
2309 | if (total_ticks_difference != 0) { |
2310 | steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference; |
2311 | } |
2312 | st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference); |
2313 | st->print_cr("Steal ticks percentage since vm start:%7.3f" , steal_ticks_perc); |
2314 | } |
2315 | } |
2316 | } |
2317 | |
2318 | void os::print_memory_info(outputStream* st) { |
2319 | |
2320 | st->print("Memory:" ); |
2321 | st->print(" %dk page" , os::vm_page_size()>>10); |
2322 | |
2323 | // values in struct sysinfo are "unsigned long" |
2324 | struct sysinfo si; |
2325 | sysinfo(&si); |
2326 | |
2327 | st->print(", physical " UINT64_FORMAT "k" , |
2328 | os::physical_memory() >> 10); |
2329 | st->print("(" UINT64_FORMAT "k free)" , |
2330 | os::available_memory() >> 10); |
2331 | st->print(", swap " UINT64_FORMAT "k" , |
2332 | ((jlong)si.totalswap * si.mem_unit) >> 10); |
2333 | st->print("(" UINT64_FORMAT "k free)" , |
2334 | ((jlong)si.freeswap * si.mem_unit) >> 10); |
2335 | st->cr(); |
2336 | } |
2337 | |
2338 | // Print the first "model name" line and the first "flags" line |
2339 | // that we find and nothing more. We assume "model name" comes |
2340 | // before "flags" so if we find a second "model name", then the |
2341 | // "flags" field is considered missing. |
2342 | static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) { |
2343 | #if defined(IA32) || defined(AMD64) |
2344 | // Other platforms have less repetitive cpuinfo files |
2345 | FILE *fp = fopen("/proc/cpuinfo" , "r" ); |
2346 | if (fp) { |
2347 | while (!feof(fp)) { |
2348 | if (fgets(buf, buflen, fp)) { |
2349 | // Assume model name comes before flags |
2350 | bool model_name_printed = false; |
2351 | if (strstr(buf, "model name" ) != NULL) { |
2352 | if (!model_name_printed) { |
2353 | st->print_raw("CPU Model and flags from /proc/cpuinfo:\n" ); |
2354 | st->print_raw(buf); |
2355 | model_name_printed = true; |
2356 | } else { |
2357 | // model name printed but not flags? Odd, just return |
2358 | fclose(fp); |
2359 | return true; |
2360 | } |
2361 | } |
2362 | // print the flags line too |
2363 | if (strstr(buf, "flags" ) != NULL) { |
2364 | st->print_raw(buf); |
2365 | fclose(fp); |
2366 | return true; |
2367 | } |
2368 | } |
2369 | } |
2370 | fclose(fp); |
2371 | } |
2372 | #endif // x86 platforms |
2373 | return false; |
2374 | } |
2375 | |
2376 | void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) { |
2377 | // Only print the model name if the platform provides this as a summary |
2378 | if (!print_model_name_and_flags(st, buf, buflen)) { |
2379 | st->print("\n/proc/cpuinfo:\n" ); |
2380 | if (!_print_ascii_file("/proc/cpuinfo" , st)) { |
2381 | st->print_cr(" <Not Available>" ); |
2382 | } |
2383 | } |
2384 | } |
2385 | |
2386 | #if defined(AMD64) || defined(IA32) || defined(X32) |
2387 | const char* search_string = "model name" ; |
2388 | #elif defined(M68K) |
2389 | const char* search_string = "CPU" ; |
2390 | #elif defined(PPC64) |
2391 | const char* search_string = "cpu" ; |
2392 | #elif defined(S390) |
2393 | const char* search_string = "machine =" ; |
2394 | #elif defined(SPARC) |
2395 | const char* search_string = "cpu" ; |
2396 | #else |
2397 | const char* search_string = "Processor" ; |
2398 | #endif |
2399 | |
2400 | // Parses the cpuinfo file for string representing the model name. |
2401 | void os::get_summary_cpu_info(char* cpuinfo, size_t length) { |
2402 | FILE* fp = fopen("/proc/cpuinfo" , "r" ); |
2403 | if (fp != NULL) { |
2404 | while (!feof(fp)) { |
2405 | char buf[256]; |
2406 | if (fgets(buf, sizeof(buf), fp)) { |
2407 | char* start = strstr(buf, search_string); |
2408 | if (start != NULL) { |
2409 | char *ptr = start + strlen(search_string); |
2410 | char *end = buf + strlen(buf); |
2411 | while (ptr != end) { |
2412 | // skip whitespace and colon for the rest of the name. |
2413 | if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') { |
2414 | break; |
2415 | } |
2416 | ptr++; |
2417 | } |
2418 | if (ptr != end) { |
2419 | // reasonable string, get rid of newline and keep the rest |
2420 | char* nl = strchr(buf, '\n'); |
2421 | if (nl != NULL) *nl = '\0'; |
2422 | strncpy(cpuinfo, ptr, length); |
2423 | fclose(fp); |
2424 | return; |
2425 | } |
2426 | } |
2427 | } |
2428 | } |
2429 | fclose(fp); |
2430 | } |
2431 | // cpuinfo not found or parsing failed, just print generic string. The entire |
2432 | // /proc/cpuinfo file will be printed later in the file (or enough of it for x86) |
2433 | #if defined(AARCH64) |
2434 | strncpy(cpuinfo, "AArch64" , length); |
2435 | #elif defined(AMD64) |
2436 | strncpy(cpuinfo, "x86_64" , length); |
2437 | #elif defined(ARM) // Order wrt. AARCH64 is relevant! |
2438 | strncpy(cpuinfo, "ARM" , length); |
2439 | #elif defined(IA32) |
2440 | strncpy(cpuinfo, "x86_32" , length); |
2441 | #elif defined(IA64) |
2442 | strncpy(cpuinfo, "IA64" , length); |
2443 | #elif defined(PPC) |
2444 | strncpy(cpuinfo, "PPC64" , length); |
2445 | #elif defined(S390) |
2446 | strncpy(cpuinfo, "S390" , length); |
2447 | #elif defined(SPARC) |
2448 | strncpy(cpuinfo, "sparcv9" , length); |
2449 | #elif defined(ZERO_LIBARCH) |
2450 | strncpy(cpuinfo, ZERO_LIBARCH, length); |
2451 | #else |
2452 | strncpy(cpuinfo, "unknown" , length); |
2453 | #endif |
2454 | } |
2455 | |
2456 | static void print_signal_handler(outputStream* st, int sig, |
2457 | char* buf, size_t buflen); |
2458 | |
2459 | void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) { |
2460 | st->print_cr("Signal Handlers:" ); |
2461 | print_signal_handler(st, SIGSEGV, buf, buflen); |
2462 | print_signal_handler(st, SIGBUS , buf, buflen); |
2463 | print_signal_handler(st, SIGFPE , buf, buflen); |
2464 | print_signal_handler(st, SIGPIPE, buf, buflen); |
2465 | print_signal_handler(st, SIGXFSZ, buf, buflen); |
2466 | print_signal_handler(st, SIGILL , buf, buflen); |
2467 | print_signal_handler(st, SR_signum, buf, buflen); |
2468 | print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen); |
2469 | print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen); |
2470 | print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen); |
2471 | print_signal_handler(st, BREAK_SIGNAL, buf, buflen); |
2472 | #if defined(PPC64) |
2473 | print_signal_handler(st, SIGTRAP, buf, buflen); |
2474 | #endif |
2475 | } |
2476 | |
2477 | static char saved_jvm_path[MAXPATHLEN] = {0}; |
2478 | |
2479 | // Find the full path to the current module, libjvm.so |
2480 | void os::jvm_path(char *buf, jint buflen) { |
2481 | // Error checking. |
2482 | if (buflen < MAXPATHLEN) { |
2483 | assert(false, "must use a large-enough buffer" ); |
2484 | buf[0] = '\0'; |
2485 | return; |
2486 | } |
2487 | // Lazy resolve the path to current module. |
2488 | if (saved_jvm_path[0] != 0) { |
2489 | strcpy(buf, saved_jvm_path); |
2490 | return; |
2491 | } |
2492 | |
2493 | char dli_fname[MAXPATHLEN]; |
2494 | bool ret = dll_address_to_library_name( |
2495 | CAST_FROM_FN_PTR(address, os::jvm_path), |
2496 | dli_fname, sizeof(dli_fname), NULL); |
2497 | assert(ret, "cannot locate libjvm" ); |
2498 | char *rp = NULL; |
2499 | if (ret && dli_fname[0] != '\0') { |
2500 | rp = os::Posix::realpath(dli_fname, buf, buflen); |
2501 | } |
2502 | if (rp == NULL) { |
2503 | return; |
2504 | } |
2505 | |
2506 | if (Arguments::sun_java_launcher_is_altjvm()) { |
2507 | // Support for the java launcher's '-XXaltjvm=<path>' option. Typical |
2508 | // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so". |
2509 | // If "/jre/lib/" appears at the right place in the string, then |
2510 | // assume we are installed in a JDK and we're done. Otherwise, check |
2511 | // for a JAVA_HOME environment variable and fix up the path so it |
2512 | // looks like libjvm.so is installed there (append a fake suffix |
2513 | // hotspot/libjvm.so). |
2514 | const char *p = buf + strlen(buf) - 1; |
2515 | for (int count = 0; p > buf && count < 5; ++count) { |
2516 | for (--p; p > buf && *p != '/'; --p) |
2517 | /* empty */ ; |
2518 | } |
2519 | |
2520 | if (strncmp(p, "/jre/lib/" , 9) != 0) { |
2521 | // Look for JAVA_HOME in the environment. |
2522 | char* java_home_var = ::getenv("JAVA_HOME" ); |
2523 | if (java_home_var != NULL && java_home_var[0] != 0) { |
2524 | char* jrelib_p; |
2525 | int len; |
2526 | |
2527 | // Check the current module name "libjvm.so". |
2528 | p = strrchr(buf, '/'); |
2529 | if (p == NULL) { |
2530 | return; |
2531 | } |
2532 | assert(strstr(p, "/libjvm" ) == p, "invalid library name" ); |
2533 | |
2534 | rp = os::Posix::realpath(java_home_var, buf, buflen); |
2535 | if (rp == NULL) { |
2536 | return; |
2537 | } |
2538 | |
2539 | // determine if this is a legacy image or modules image |
2540 | // modules image doesn't have "jre" subdirectory |
2541 | len = strlen(buf); |
2542 | assert(len < buflen, "Ran out of buffer room" ); |
2543 | jrelib_p = buf + len; |
2544 | snprintf(jrelib_p, buflen-len, "/jre/lib" ); |
2545 | if (0 != access(buf, F_OK)) { |
2546 | snprintf(jrelib_p, buflen-len, "/lib" ); |
2547 | } |
2548 | |
2549 | if (0 == access(buf, F_OK)) { |
2550 | // Use current module name "libjvm.so" |
2551 | len = strlen(buf); |
2552 | snprintf(buf + len, buflen-len, "/hotspot/libjvm.so" ); |
2553 | } else { |
2554 | // Go back to path of .so |
2555 | rp = os::Posix::realpath(dli_fname, buf, buflen); |
2556 | if (rp == NULL) { |
2557 | return; |
2558 | } |
2559 | } |
2560 | } |
2561 | } |
2562 | } |
2563 | |
2564 | strncpy(saved_jvm_path, buf, MAXPATHLEN); |
2565 | saved_jvm_path[MAXPATHLEN - 1] = '\0'; |
2566 | } |
2567 | |
2568 | void os::print_jni_name_prefix_on(outputStream* st, int args_size) { |
2569 | // no prefix required, not even "_" |
2570 | } |
2571 | |
2572 | void os::print_jni_name_suffix_on(outputStream* st, int args_size) { |
2573 | // no suffix required |
2574 | } |
2575 | |
2576 | //////////////////////////////////////////////////////////////////////////////// |
2577 | // sun.misc.Signal support |
2578 | |
2579 | static volatile jint sigint_count = 0; |
2580 | |
2581 | static void UserHandler(int sig, void *siginfo, void *context) { |
2582 | // 4511530 - sem_post is serialized and handled by the manager thread. When |
2583 | // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We |
2584 | // don't want to flood the manager thread with sem_post requests. |
2585 | if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) { |
2586 | return; |
2587 | } |
2588 | |
2589 | // Ctrl-C is pressed during error reporting, likely because the error |
2590 | // handler fails to abort. Let VM die immediately. |
2591 | if (sig == SIGINT && VMError::is_error_reported()) { |
2592 | os::die(); |
2593 | } |
2594 | |
2595 | os::signal_notify(sig); |
2596 | } |
2597 | |
2598 | void* os::user_handler() { |
2599 | return CAST_FROM_FN_PTR(void*, UserHandler); |
2600 | } |
2601 | |
2602 | extern "C" { |
2603 | typedef void (*sa_handler_t)(int); |
2604 | typedef void (*sa_sigaction_t)(int, siginfo_t *, void *); |
2605 | } |
2606 | |
2607 | void* os::signal(int signal_number, void* handler) { |
2608 | struct sigaction sigAct, oldSigAct; |
2609 | |
2610 | sigfillset(&(sigAct.sa_mask)); |
2611 | sigAct.sa_flags = SA_RESTART|SA_SIGINFO; |
2612 | sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler); |
2613 | |
2614 | if (sigaction(signal_number, &sigAct, &oldSigAct)) { |
2615 | // -1 means registration failed |
2616 | return (void *)-1; |
2617 | } |
2618 | |
2619 | return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler); |
2620 | } |
2621 | |
2622 | void os::signal_raise(int signal_number) { |
2623 | ::raise(signal_number); |
2624 | } |
2625 | |
2626 | // The following code is moved from os.cpp for making this |
2627 | // code platform specific, which it is by its very nature. |
2628 | |
2629 | // Will be modified when max signal is changed to be dynamic |
2630 | int os::sigexitnum_pd() { |
2631 | return NSIG; |
2632 | } |
2633 | |
2634 | // a counter for each possible signal value |
2635 | static volatile jint pending_signals[NSIG+1] = { 0 }; |
2636 | |
2637 | // Linux(POSIX) specific hand shaking semaphore. |
2638 | static Semaphore* sig_sem = NULL; |
2639 | static PosixSemaphore sr_semaphore; |
2640 | |
2641 | static void jdk_misc_signal_init() { |
2642 | // Initialize signal structures |
2643 | ::memset((void*)pending_signals, 0, sizeof(pending_signals)); |
2644 | |
2645 | // Initialize signal semaphore |
2646 | sig_sem = new Semaphore(); |
2647 | } |
2648 | |
2649 | void os::signal_notify(int sig) { |
2650 | if (sig_sem != NULL) { |
2651 | Atomic::inc(&pending_signals[sig]); |
2652 | sig_sem->signal(); |
2653 | } else { |
2654 | // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init |
2655 | // initialization isn't called. |
2656 | assert(ReduceSignalUsage, "signal semaphore should be created" ); |
2657 | } |
2658 | } |
2659 | |
2660 | static int check_pending_signals() { |
2661 | Atomic::store(0, &sigint_count); |
2662 | for (;;) { |
2663 | for (int i = 0; i < NSIG + 1; i++) { |
2664 | jint n = pending_signals[i]; |
2665 | if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) { |
2666 | return i; |
2667 | } |
2668 | } |
2669 | JavaThread *thread = JavaThread::current(); |
2670 | ThreadBlockInVM tbivm(thread); |
2671 | |
2672 | bool threadIsSuspended; |
2673 | do { |
2674 | thread->set_suspend_equivalent(); |
2675 | // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() |
2676 | sig_sem->wait(); |
2677 | |
2678 | // were we externally suspended while we were waiting? |
2679 | threadIsSuspended = thread->handle_special_suspend_equivalent_condition(); |
2680 | if (threadIsSuspended) { |
2681 | // The semaphore has been incremented, but while we were waiting |
2682 | // another thread suspended us. We don't want to continue running |
2683 | // while suspended because that would surprise the thread that |
2684 | // suspended us. |
2685 | sig_sem->signal(); |
2686 | |
2687 | thread->java_suspend_self(); |
2688 | } |
2689 | } while (threadIsSuspended); |
2690 | } |
2691 | } |
2692 | |
2693 | int os::signal_wait() { |
2694 | return check_pending_signals(); |
2695 | } |
2696 | |
2697 | //////////////////////////////////////////////////////////////////////////////// |
2698 | // Virtual Memory |
2699 | |
2700 | int os::vm_page_size() { |
2701 | // Seems redundant as all get out |
2702 | assert(os::Linux::page_size() != -1, "must call os::init" ); |
2703 | return os::Linux::page_size(); |
2704 | } |
2705 | |
2706 | // Solaris allocates memory by pages. |
2707 | int os::vm_allocation_granularity() { |
2708 | assert(os::Linux::page_size() != -1, "must call os::init" ); |
2709 | return os::Linux::page_size(); |
2710 | } |
2711 | |
2712 | // Rationale behind this function: |
2713 | // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable |
2714 | // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get |
2715 | // samples for JITted code. Here we create private executable mapping over the code cache |
2716 | // and then we can use standard (well, almost, as mapping can change) way to provide |
2717 | // info for the reporting script by storing timestamp and location of symbol |
2718 | void linux_wrap_code(char* base, size_t size) { |
2719 | static volatile jint cnt = 0; |
2720 | |
2721 | if (!UseOprofile) { |
2722 | return; |
2723 | } |
2724 | |
2725 | char buf[PATH_MAX+1]; |
2726 | int num = Atomic::add(1, &cnt); |
2727 | |
2728 | snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d" , |
2729 | os::get_temp_directory(), os::current_process_id(), num); |
2730 | unlink(buf); |
2731 | |
2732 | int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU); |
2733 | |
2734 | if (fd != -1) { |
2735 | off_t rv = ::lseek(fd, size-2, SEEK_SET); |
2736 | if (rv != (off_t)-1) { |
2737 | if (::write(fd, "" , 1) == 1) { |
2738 | mmap(base, size, |
2739 | PROT_READ|PROT_WRITE|PROT_EXEC, |
2740 | MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0); |
2741 | } |
2742 | } |
2743 | ::close(fd); |
2744 | unlink(buf); |
2745 | } |
2746 | } |
2747 | |
2748 | static bool recoverable_mmap_error(int err) { |
2749 | // See if the error is one we can let the caller handle. This |
2750 | // list of errno values comes from JBS-6843484. I can't find a |
2751 | // Linux man page that documents this specific set of errno |
2752 | // values so while this list currently matches Solaris, it may |
2753 | // change as we gain experience with this failure mode. |
2754 | switch (err) { |
2755 | case EBADF: |
2756 | case EINVAL: |
2757 | case ENOTSUP: |
2758 | // let the caller deal with these errors |
2759 | return true; |
2760 | |
2761 | default: |
2762 | // Any remaining errors on this OS can cause our reserved mapping |
2763 | // to be lost. That can cause confusion where different data |
2764 | // structures think they have the same memory mapped. The worst |
2765 | // scenario is if both the VM and a library think they have the |
2766 | // same memory mapped. |
2767 | return false; |
2768 | } |
2769 | } |
2770 | |
2771 | static void warn_fail_commit_memory(char* addr, size_t size, bool exec, |
2772 | int err) { |
2773 | warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT |
2774 | ", %d) failed; error='%s' (errno=%d)" , p2i(addr), size, exec, |
2775 | os::strerror(err), err); |
2776 | } |
2777 | |
2778 | static void warn_fail_commit_memory(char* addr, size_t size, |
2779 | size_t alignment_hint, bool exec, |
2780 | int err) { |
2781 | warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT |
2782 | ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)" , p2i(addr), size, |
2783 | alignment_hint, exec, os::strerror(err), err); |
2784 | } |
2785 | |
2786 | // NOTE: Linux kernel does not really reserve the pages for us. |
2787 | // All it does is to check if there are enough free pages |
2788 | // left at the time of mmap(). This could be a potential |
2789 | // problem. |
2790 | int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) { |
2791 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
2792 | uintptr_t res = (uintptr_t) ::mmap(addr, size, prot, |
2793 | MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0); |
2794 | if (res != (uintptr_t) MAP_FAILED) { |
2795 | if (UseNUMAInterleaving) { |
2796 | numa_make_global(addr, size); |
2797 | } |
2798 | return 0; |
2799 | } |
2800 | |
2801 | int err = errno; // save errno from mmap() call above |
2802 | |
2803 | if (!recoverable_mmap_error(err)) { |
2804 | warn_fail_commit_memory(addr, size, exec, err); |
2805 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory." ); |
2806 | } |
2807 | |
2808 | return err; |
2809 | } |
2810 | |
2811 | bool os::pd_commit_memory(char* addr, size_t size, bool exec) { |
2812 | return os::Linux::commit_memory_impl(addr, size, exec) == 0; |
2813 | } |
2814 | |
2815 | void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec, |
2816 | const char* mesg) { |
2817 | assert(mesg != NULL, "mesg must be specified" ); |
2818 | int err = os::Linux::commit_memory_impl(addr, size, exec); |
2819 | if (err != 0) { |
2820 | // the caller wants all commit errors to exit with the specified mesg: |
2821 | warn_fail_commit_memory(addr, size, exec, err); |
2822 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s" , mesg); |
2823 | } |
2824 | } |
2825 | |
2826 | // Define MAP_HUGETLB here so we can build HotSpot on old systems. |
2827 | #ifndef MAP_HUGETLB |
2828 | #define MAP_HUGETLB 0x40000 |
2829 | #endif |
2830 | |
2831 | // Define MADV_HUGEPAGE here so we can build HotSpot on old systems. |
2832 | #ifndef MADV_HUGEPAGE |
2833 | #define MADV_HUGEPAGE 14 |
2834 | #endif |
2835 | |
2836 | int os::Linux::commit_memory_impl(char* addr, size_t size, |
2837 | size_t alignment_hint, bool exec) { |
2838 | int err = os::Linux::commit_memory_impl(addr, size, exec); |
2839 | if (err == 0) { |
2840 | realign_memory(addr, size, alignment_hint); |
2841 | } |
2842 | return err; |
2843 | } |
2844 | |
2845 | bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, |
2846 | bool exec) { |
2847 | return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0; |
2848 | } |
2849 | |
2850 | void os::pd_commit_memory_or_exit(char* addr, size_t size, |
2851 | size_t alignment_hint, bool exec, |
2852 | const char* mesg) { |
2853 | assert(mesg != NULL, "mesg must be specified" ); |
2854 | int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec); |
2855 | if (err != 0) { |
2856 | // the caller wants all commit errors to exit with the specified mesg: |
2857 | warn_fail_commit_memory(addr, size, alignment_hint, exec, err); |
2858 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s" , mesg); |
2859 | } |
2860 | } |
2861 | |
2862 | void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { |
2863 | if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) { |
2864 | // We don't check the return value: madvise(MADV_HUGEPAGE) may not |
2865 | // be supported or the memory may already be backed by huge pages. |
2866 | ::madvise(addr, bytes, MADV_HUGEPAGE); |
2867 | } |
2868 | } |
2869 | |
2870 | void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { |
2871 | // This method works by doing an mmap over an existing mmaping and effectively discarding |
2872 | // the existing pages. However it won't work for SHM-based large pages that cannot be |
2873 | // uncommitted at all. We don't do anything in this case to avoid creating a segment with |
2874 | // small pages on top of the SHM segment. This method always works for small pages, so we |
2875 | // allow that in any case. |
2876 | if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) { |
2877 | commit_memory(addr, bytes, alignment_hint, !ExecMem); |
2878 | } |
2879 | } |
2880 | |
2881 | void os::numa_make_global(char *addr, size_t bytes) { |
2882 | Linux::numa_interleave_memory(addr, bytes); |
2883 | } |
2884 | |
2885 | // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the |
2886 | // bind policy to MPOL_PREFERRED for the current thread. |
2887 | #define USE_MPOL_PREFERRED 0 |
2888 | |
2889 | void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { |
2890 | // To make NUMA and large pages more robust when both enabled, we need to ease |
2891 | // the requirements on where the memory should be allocated. MPOL_BIND is the |
2892 | // default policy and it will force memory to be allocated on the specified |
2893 | // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on |
2894 | // the specified node, but will not force it. Using this policy will prevent |
2895 | // getting SIGBUS when trying to allocate large pages on NUMA nodes with no |
2896 | // free large pages. |
2897 | Linux::numa_set_bind_policy(USE_MPOL_PREFERRED); |
2898 | Linux::numa_tonode_memory(addr, bytes, lgrp_hint); |
2899 | } |
2900 | |
2901 | bool os::numa_topology_changed() { return false; } |
2902 | |
2903 | size_t os::numa_get_groups_num() { |
2904 | // Return just the number of nodes in which it's possible to allocate memory |
2905 | // (in numa terminology, configured nodes). |
2906 | return Linux::numa_num_configured_nodes(); |
2907 | } |
2908 | |
2909 | int os::numa_get_group_id() { |
2910 | int cpu_id = Linux::sched_getcpu(); |
2911 | if (cpu_id != -1) { |
2912 | int lgrp_id = Linux::get_node_by_cpu(cpu_id); |
2913 | if (lgrp_id != -1) { |
2914 | return lgrp_id; |
2915 | } |
2916 | } |
2917 | return 0; |
2918 | } |
2919 | |
2920 | int os::Linux::get_existing_num_nodes() { |
2921 | int node; |
2922 | int highest_node_number = Linux::numa_max_node(); |
2923 | int num_nodes = 0; |
2924 | |
2925 | // Get the total number of nodes in the system including nodes without memory. |
2926 | for (node = 0; node <= highest_node_number; node++) { |
2927 | if (is_node_in_existing_nodes(node)) { |
2928 | num_nodes++; |
2929 | } |
2930 | } |
2931 | return num_nodes; |
2932 | } |
2933 | |
2934 | size_t os::numa_get_leaf_groups(int *ids, size_t size) { |
2935 | int highest_node_number = Linux::numa_max_node(); |
2936 | size_t i = 0; |
2937 | |
2938 | // Map all node ids in which it is possible to allocate memory. Also nodes are |
2939 | // not always consecutively available, i.e. available from 0 to the highest |
2940 | // node number. If the nodes have been bound explicitly using numactl membind, |
2941 | // then allocate memory from those nodes only. |
2942 | for (int node = 0; node <= highest_node_number; node++) { |
2943 | if (Linux::is_node_in_bound_nodes((unsigned int)node)) { |
2944 | ids[i++] = node; |
2945 | } |
2946 | } |
2947 | return i; |
2948 | } |
2949 | |
2950 | bool os::get_page_info(char *start, page_info* info) { |
2951 | return false; |
2952 | } |
2953 | |
2954 | char *os::scan_pages(char *start, char* end, page_info* page_expected, |
2955 | page_info* page_found) { |
2956 | return end; |
2957 | } |
2958 | |
2959 | |
2960 | int os::Linux::sched_getcpu_syscall(void) { |
2961 | unsigned int cpu = 0; |
2962 | int retval = -1; |
2963 | |
2964 | #if defined(IA32) |
2965 | #ifndef SYS_getcpu |
2966 | #define SYS_getcpu 318 |
2967 | #endif |
2968 | retval = syscall(SYS_getcpu, &cpu, NULL, NULL); |
2969 | #elif defined(AMD64) |
2970 | // Unfortunately we have to bring all these macros here from vsyscall.h |
2971 | // to be able to compile on old linuxes. |
2972 | #define __NR_vgetcpu 2 |
2973 | #define VSYSCALL_START (-10UL << 20) |
2974 | #define VSYSCALL_SIZE 1024 |
2975 | #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr)) |
2976 | typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache); |
2977 | vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu); |
2978 | retval = vgetcpu(&cpu, NULL, NULL); |
2979 | #endif |
2980 | |
2981 | return (retval == -1) ? retval : cpu; |
2982 | } |
2983 | |
2984 | void os::Linux::sched_getcpu_init() { |
2985 | // sched_getcpu() should be in libc. |
2986 | set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, |
2987 | dlsym(RTLD_DEFAULT, "sched_getcpu" ))); |
2988 | |
2989 | // If it's not, try a direct syscall. |
2990 | if (sched_getcpu() == -1) { |
2991 | set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, |
2992 | (void*)&sched_getcpu_syscall)); |
2993 | } |
2994 | |
2995 | if (sched_getcpu() == -1) { |
2996 | vm_exit_during_initialization("getcpu(2) system call not supported by kernel" ); |
2997 | } |
2998 | } |
2999 | |
3000 | // Something to do with the numa-aware allocator needs these symbols |
3001 | extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { } |
3002 | extern "C" JNIEXPORT void numa_error(char *where) { } |
3003 | |
3004 | // Handle request to load libnuma symbol version 1.1 (API v1). If it fails |
3005 | // load symbol from base version instead. |
3006 | void* os::Linux::libnuma_dlsym(void* handle, const char *name) { |
3007 | void *f = dlvsym(handle, name, "libnuma_1.1" ); |
3008 | if (f == NULL) { |
3009 | f = dlsym(handle, name); |
3010 | } |
3011 | return f; |
3012 | } |
3013 | |
3014 | // Handle request to load libnuma symbol version 1.2 (API v2) only. |
3015 | // Return NULL if the symbol is not defined in this particular version. |
3016 | void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) { |
3017 | return dlvsym(handle, name, "libnuma_1.2" ); |
3018 | } |
3019 | |
3020 | bool os::Linux::libnuma_init() { |
3021 | if (sched_getcpu() != -1) { // Requires sched_getcpu() support |
3022 | void *handle = dlopen("libnuma.so.1" , RTLD_LAZY); |
3023 | if (handle != NULL) { |
3024 | set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t, |
3025 | libnuma_dlsym(handle, "numa_node_to_cpus" ))); |
3026 | set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t, |
3027 | libnuma_dlsym(handle, "numa_max_node" ))); |
3028 | set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t, |
3029 | libnuma_dlsym(handle, "numa_num_configured_nodes" ))); |
3030 | set_numa_available(CAST_TO_FN_PTR(numa_available_func_t, |
3031 | libnuma_dlsym(handle, "numa_available" ))); |
3032 | set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t, |
3033 | libnuma_dlsym(handle, "numa_tonode_memory" ))); |
3034 | set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t, |
3035 | libnuma_dlsym(handle, "numa_interleave_memory" ))); |
3036 | set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t, |
3037 | libnuma_v2_dlsym(handle, "numa_interleave_memory" ))); |
3038 | set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t, |
3039 | libnuma_dlsym(handle, "numa_set_bind_policy" ))); |
3040 | set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t, |
3041 | libnuma_dlsym(handle, "numa_bitmask_isbitset" ))); |
3042 | set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t, |
3043 | libnuma_dlsym(handle, "numa_distance" ))); |
3044 | set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t, |
3045 | libnuma_v2_dlsym(handle, "numa_get_membind" ))); |
3046 | set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t, |
3047 | libnuma_v2_dlsym(handle, "numa_get_interleave_mask" ))); |
3048 | |
3049 | if (numa_available() != -1) { |
3050 | set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes" )); |
3051 | set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr" )); |
3052 | set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr" )); |
3053 | set_numa_interleave_bitmask(_numa_get_interleave_mask()); |
3054 | set_numa_membind_bitmask(_numa_get_membind()); |
3055 | // Create an index -> node mapping, since nodes are not always consecutive |
3056 | _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true); |
3057 | rebuild_nindex_to_node_map(); |
3058 | // Create a cpu -> node mapping |
3059 | _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true); |
3060 | rebuild_cpu_to_node_map(); |
3061 | return true; |
3062 | } |
3063 | } |
3064 | } |
3065 | return false; |
3066 | } |
3067 | |
3068 | size_t os::Linux::default_guard_size(os::ThreadType thr_type) { |
3069 | // Creating guard page is very expensive. Java thread has HotSpot |
3070 | // guard pages, only enable glibc guard page for non-Java threads. |
3071 | // (Remember: compiler thread is a Java thread, too!) |
3072 | return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size()); |
3073 | } |
3074 | |
3075 | void os::Linux::rebuild_nindex_to_node_map() { |
3076 | int highest_node_number = Linux::numa_max_node(); |
3077 | |
3078 | nindex_to_node()->clear(); |
3079 | for (int node = 0; node <= highest_node_number; node++) { |
3080 | if (Linux::is_node_in_existing_nodes(node)) { |
3081 | nindex_to_node()->append(node); |
3082 | } |
3083 | } |
3084 | } |
3085 | |
3086 | // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id. |
3087 | // The table is later used in get_node_by_cpu(). |
3088 | void os::Linux::rebuild_cpu_to_node_map() { |
3089 | const size_t NCPUS = 32768; // Since the buffer size computation is very obscure |
3090 | // in libnuma (possible values are starting from 16, |
3091 | // and continuing up with every other power of 2, but less |
3092 | // than the maximum number of CPUs supported by kernel), and |
3093 | // is a subject to change (in libnuma version 2 the requirements |
3094 | // are more reasonable) we'll just hardcode the number they use |
3095 | // in the library. |
3096 | const size_t BitsPerCLong = sizeof(long) * CHAR_BIT; |
3097 | |
3098 | size_t cpu_num = processor_count(); |
3099 | size_t cpu_map_size = NCPUS / BitsPerCLong; |
3100 | size_t cpu_map_valid_size = |
3101 | MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size); |
3102 | |
3103 | cpu_to_node()->clear(); |
3104 | cpu_to_node()->at_grow(cpu_num - 1); |
3105 | |
3106 | size_t node_num = get_existing_num_nodes(); |
3107 | |
3108 | int distance = 0; |
3109 | int closest_distance = INT_MAX; |
3110 | int closest_node = 0; |
3111 | unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal); |
3112 | for (size_t i = 0; i < node_num; i++) { |
3113 | // Check if node is configured (not a memory-less node). If it is not, find |
3114 | // the closest configured node. Check also if node is bound, i.e. it's allowed |
3115 | // to allocate memory from the node. If it's not allowed, map cpus in that node |
3116 | // to the closest node from which memory allocation is allowed. |
3117 | if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) || |
3118 | !is_node_in_bound_nodes(nindex_to_node()->at(i))) { |
3119 | closest_distance = INT_MAX; |
3120 | // Check distance from all remaining nodes in the system. Ignore distance |
3121 | // from itself, from another non-configured node, and from another non-bound |
3122 | // node. |
3123 | for (size_t m = 0; m < node_num; m++) { |
3124 | if (m != i && |
3125 | is_node_in_configured_nodes(nindex_to_node()->at(m)) && |
3126 | is_node_in_bound_nodes(nindex_to_node()->at(m))) { |
3127 | distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m)); |
3128 | // If a closest node is found, update. There is always at least one |
3129 | // configured and bound node in the system so there is always at least |
3130 | // one node close. |
3131 | if (distance != 0 && distance < closest_distance) { |
3132 | closest_distance = distance; |
3133 | closest_node = nindex_to_node()->at(m); |
3134 | } |
3135 | } |
3136 | } |
3137 | } else { |
3138 | // Current node is already a configured node. |
3139 | closest_node = nindex_to_node()->at(i); |
3140 | } |
3141 | |
3142 | // Get cpus from the original node and map them to the closest node. If node |
3143 | // is a configured node (not a memory-less node), then original node and |
3144 | // closest node are the same. |
3145 | if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) { |
3146 | for (size_t j = 0; j < cpu_map_valid_size; j++) { |
3147 | if (cpu_map[j] != 0) { |
3148 | for (size_t k = 0; k < BitsPerCLong; k++) { |
3149 | if (cpu_map[j] & (1UL << k)) { |
3150 | cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node); |
3151 | } |
3152 | } |
3153 | } |
3154 | } |
3155 | } |
3156 | } |
3157 | FREE_C_HEAP_ARRAY(unsigned long, cpu_map); |
3158 | } |
3159 | |
3160 | int os::Linux::get_node_by_cpu(int cpu_id) { |
3161 | if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) { |
3162 | return cpu_to_node()->at(cpu_id); |
3163 | } |
3164 | return -1; |
3165 | } |
3166 | |
3167 | GrowableArray<int>* os::Linux::_cpu_to_node; |
3168 | GrowableArray<int>* os::Linux::_nindex_to_node; |
3169 | os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu; |
3170 | os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus; |
3171 | os::Linux::numa_max_node_func_t os::Linux::_numa_max_node; |
3172 | os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes; |
3173 | os::Linux::numa_available_func_t os::Linux::_numa_available; |
3174 | os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory; |
3175 | os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory; |
3176 | os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2; |
3177 | os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy; |
3178 | os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset; |
3179 | os::Linux::numa_distance_func_t os::Linux::_numa_distance; |
3180 | os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind; |
3181 | os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask; |
3182 | os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy; |
3183 | unsigned long* os::Linux::_numa_all_nodes; |
3184 | struct bitmask* os::Linux::_numa_all_nodes_ptr; |
3185 | struct bitmask* os::Linux::_numa_nodes_ptr; |
3186 | struct bitmask* os::Linux::_numa_interleave_bitmask; |
3187 | struct bitmask* os::Linux::_numa_membind_bitmask; |
3188 | |
3189 | bool os::pd_uncommit_memory(char* addr, size_t size) { |
3190 | uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE, |
3191 | MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0); |
3192 | return res != (uintptr_t) MAP_FAILED; |
3193 | } |
3194 | |
3195 | static address get_stack_commited_bottom(address bottom, size_t size) { |
3196 | address nbot = bottom; |
3197 | address ntop = bottom + size; |
3198 | |
3199 | size_t page_sz = os::vm_page_size(); |
3200 | unsigned pages = size / page_sz; |
3201 | |
3202 | unsigned char vec[1]; |
3203 | unsigned imin = 1, imax = pages + 1, imid; |
3204 | int mincore_return_value = 0; |
3205 | |
3206 | assert(imin <= imax, "Unexpected page size" ); |
3207 | |
3208 | while (imin < imax) { |
3209 | imid = (imax + imin) / 2; |
3210 | nbot = ntop - (imid * page_sz); |
3211 | |
3212 | // Use a trick with mincore to check whether the page is mapped or not. |
3213 | // mincore sets vec to 1 if page resides in memory and to 0 if page |
3214 | // is swapped output but if page we are asking for is unmapped |
3215 | // it returns -1,ENOMEM |
3216 | mincore_return_value = mincore(nbot, page_sz, vec); |
3217 | |
3218 | if (mincore_return_value == -1) { |
3219 | // Page is not mapped go up |
3220 | // to find first mapped page |
3221 | if (errno != EAGAIN) { |
3222 | assert(errno == ENOMEM, "Unexpected mincore errno" ); |
3223 | imax = imid; |
3224 | } |
3225 | } else { |
3226 | // Page is mapped go down |
3227 | // to find first not mapped page |
3228 | imin = imid + 1; |
3229 | } |
3230 | } |
3231 | |
3232 | nbot = nbot + page_sz; |
3233 | |
3234 | // Adjust stack bottom one page up if last checked page is not mapped |
3235 | if (mincore_return_value == -1) { |
3236 | nbot = nbot + page_sz; |
3237 | } |
3238 | |
3239 | return nbot; |
3240 | } |
3241 | |
3242 | bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) { |
3243 | int mincore_return_value; |
3244 | const size_t stripe = 1024; // query this many pages each time |
3245 | unsigned char vec[stripe + 1]; |
3246 | // set a guard |
3247 | vec[stripe] = 'X'; |
3248 | |
3249 | const size_t page_sz = os::vm_page_size(); |
3250 | size_t pages = size / page_sz; |
3251 | |
3252 | assert(is_aligned(start, page_sz), "Start address must be page aligned" ); |
3253 | assert(is_aligned(size, page_sz), "Size must be page aligned" ); |
3254 | |
3255 | committed_start = NULL; |
3256 | |
3257 | int loops = (pages + stripe - 1) / stripe; |
3258 | int committed_pages = 0; |
3259 | address loop_base = start; |
3260 | bool found_range = false; |
3261 | |
3262 | for (int index = 0; index < loops && !found_range; index ++) { |
3263 | assert(pages > 0, "Nothing to do" ); |
3264 | int pages_to_query = (pages >= stripe) ? stripe : pages; |
3265 | pages -= pages_to_query; |
3266 | |
3267 | // Get stable read |
3268 | while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN); |
3269 | |
3270 | // During shutdown, some memory goes away without properly notifying NMT, |
3271 | // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object. |
3272 | // Bailout and return as not committed for now. |
3273 | if (mincore_return_value == -1 && errno == ENOMEM) { |
3274 | return false; |
3275 | } |
3276 | |
3277 | assert(vec[stripe] == 'X', "overflow guard" ); |
3278 | assert(mincore_return_value == 0, "Range must be valid" ); |
3279 | // Process this stripe |
3280 | for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) { |
3281 | if ((vec[vecIdx] & 0x01) == 0) { // not committed |
3282 | // End of current contiguous region |
3283 | if (committed_start != NULL) { |
3284 | found_range = true; |
3285 | break; |
3286 | } |
3287 | } else { // committed |
3288 | // Start of region |
3289 | if (committed_start == NULL) { |
3290 | committed_start = loop_base + page_sz * vecIdx; |
3291 | } |
3292 | committed_pages ++; |
3293 | } |
3294 | } |
3295 | |
3296 | loop_base += pages_to_query * page_sz; |
3297 | } |
3298 | |
3299 | if (committed_start != NULL) { |
3300 | assert(committed_pages > 0, "Must have committed region" ); |
3301 | assert(committed_pages <= int(size / page_sz), "Can not commit more than it has" ); |
3302 | assert(committed_start >= start && committed_start < start + size, "Out of range" ); |
3303 | committed_size = page_sz * committed_pages; |
3304 | return true; |
3305 | } else { |
3306 | assert(committed_pages == 0, "Should not have committed region" ); |
3307 | return false; |
3308 | } |
3309 | } |
3310 | |
3311 | |
3312 | // Linux uses a growable mapping for the stack, and if the mapping for |
3313 | // the stack guard pages is not removed when we detach a thread the |
3314 | // stack cannot grow beyond the pages where the stack guard was |
3315 | // mapped. If at some point later in the process the stack expands to |
3316 | // that point, the Linux kernel cannot expand the stack any further |
3317 | // because the guard pages are in the way, and a segfault occurs. |
3318 | // |
3319 | // However, it's essential not to split the stack region by unmapping |
3320 | // a region (leaving a hole) that's already part of the stack mapping, |
3321 | // so if the stack mapping has already grown beyond the guard pages at |
3322 | // the time we create them, we have to truncate the stack mapping. |
3323 | // So, we need to know the extent of the stack mapping when |
3324 | // create_stack_guard_pages() is called. |
3325 | |
3326 | // We only need this for stacks that are growable: at the time of |
3327 | // writing thread stacks don't use growable mappings (i.e. those |
3328 | // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this |
3329 | // only applies to the main thread. |
3330 | |
3331 | // If the (growable) stack mapping already extends beyond the point |
3332 | // where we're going to put our guard pages, truncate the mapping at |
3333 | // that point by munmap()ping it. This ensures that when we later |
3334 | // munmap() the guard pages we don't leave a hole in the stack |
3335 | // mapping. This only affects the main/primordial thread |
3336 | |
3337 | bool os::pd_create_stack_guard_pages(char* addr, size_t size) { |
3338 | if (os::is_primordial_thread()) { |
3339 | // As we manually grow stack up to bottom inside create_attached_thread(), |
3340 | // it's likely that os::Linux::initial_thread_stack_bottom is mapped and |
3341 | // we don't need to do anything special. |
3342 | // Check it first, before calling heavy function. |
3343 | uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom(); |
3344 | unsigned char vec[1]; |
3345 | |
3346 | if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) { |
3347 | // Fallback to slow path on all errors, including EAGAIN |
3348 | stack_extent = (uintptr_t) get_stack_commited_bottom( |
3349 | os::Linux::initial_thread_stack_bottom(), |
3350 | (size_t)addr - stack_extent); |
3351 | } |
3352 | |
3353 | if (stack_extent < (uintptr_t)addr) { |
3354 | ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent)); |
3355 | } |
3356 | } |
3357 | |
3358 | return os::commit_memory(addr, size, !ExecMem); |
3359 | } |
3360 | |
3361 | // If this is a growable mapping, remove the guard pages entirely by |
3362 | // munmap()ping them. If not, just call uncommit_memory(). This only |
3363 | // affects the main/primordial thread, but guard against future OS changes. |
3364 | // It's safe to always unmap guard pages for primordial thread because we |
3365 | // always place it right after end of the mapped region. |
3366 | |
3367 | bool os::remove_stack_guard_pages(char* addr, size_t size) { |
3368 | uintptr_t stack_extent, stack_base; |
3369 | |
3370 | if (os::is_primordial_thread()) { |
3371 | return ::munmap(addr, size) == 0; |
3372 | } |
3373 | |
3374 | return os::uncommit_memory(addr, size); |
3375 | } |
3376 | |
3377 | // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory |
3378 | // at 'requested_addr'. If there are existing memory mappings at the same |
3379 | // location, however, they will be overwritten. If 'fixed' is false, |
3380 | // 'requested_addr' is only treated as a hint, the return value may or |
3381 | // may not start from the requested address. Unlike Linux mmap(), this |
3382 | // function returns NULL to indicate failure. |
3383 | static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) { |
3384 | char * addr; |
3385 | int flags; |
3386 | |
3387 | flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS; |
3388 | if (fixed) { |
3389 | assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address" ); |
3390 | flags |= MAP_FIXED; |
3391 | } |
3392 | |
3393 | // Map reserved/uncommitted pages PROT_NONE so we fail early if we |
3394 | // touch an uncommitted page. Otherwise, the read/write might |
3395 | // succeed if we have enough swap space to back the physical page. |
3396 | addr = (char*)::mmap(requested_addr, bytes, PROT_NONE, |
3397 | flags, -1, 0); |
3398 | |
3399 | return addr == MAP_FAILED ? NULL : addr; |
3400 | } |
3401 | |
3402 | // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address |
3403 | // (req_addr != NULL) or with a given alignment. |
3404 | // - bytes shall be a multiple of alignment. |
3405 | // - req_addr can be NULL. If not NULL, it must be a multiple of alignment. |
3406 | // - alignment sets the alignment at which memory shall be allocated. |
3407 | // It must be a multiple of allocation granularity. |
3408 | // Returns address of memory or NULL. If req_addr was not NULL, will only return |
3409 | // req_addr or NULL. |
3410 | static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) { |
3411 | |
3412 | size_t = bytes; |
3413 | if (req_addr == NULL && alignment > 0) { |
3414 | extra_size += alignment; |
3415 | } |
3416 | |
3417 | char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE, |
3418 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
3419 | -1, 0); |
3420 | if (start == MAP_FAILED) { |
3421 | start = NULL; |
3422 | } else { |
3423 | if (req_addr != NULL) { |
3424 | if (start != req_addr) { |
3425 | ::munmap(start, extra_size); |
3426 | start = NULL; |
3427 | } |
3428 | } else { |
3429 | char* const start_aligned = align_up(start, alignment); |
3430 | char* const end_aligned = start_aligned + bytes; |
3431 | char* const end = start + extra_size; |
3432 | if (start_aligned > start) { |
3433 | ::munmap(start, start_aligned - start); |
3434 | } |
3435 | if (end_aligned < end) { |
3436 | ::munmap(end_aligned, end - end_aligned); |
3437 | } |
3438 | start = start_aligned; |
3439 | } |
3440 | } |
3441 | return start; |
3442 | } |
3443 | |
3444 | static int anon_munmap(char * addr, size_t size) { |
3445 | return ::munmap(addr, size) == 0; |
3446 | } |
3447 | |
3448 | char* os::pd_reserve_memory(size_t bytes, char* requested_addr, |
3449 | size_t alignment_hint) { |
3450 | return anon_mmap(requested_addr, bytes, (requested_addr != NULL)); |
3451 | } |
3452 | |
3453 | bool os::pd_release_memory(char* addr, size_t size) { |
3454 | return anon_munmap(addr, size); |
3455 | } |
3456 | |
3457 | static bool linux_mprotect(char* addr, size_t size, int prot) { |
3458 | // Linux wants the mprotect address argument to be page aligned. |
3459 | char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size()); |
3460 | |
3461 | // According to SUSv3, mprotect() should only be used with mappings |
3462 | // established by mmap(), and mmap() always maps whole pages. Unaligned |
3463 | // 'addr' likely indicates problem in the VM (e.g. trying to change |
3464 | // protection of malloc'ed or statically allocated memory). Check the |
3465 | // caller if you hit this assert. |
3466 | assert(addr == bottom, "sanity check" ); |
3467 | |
3468 | size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size()); |
3469 | Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x" , p2i(bottom), p2i(bottom+size), prot); |
3470 | return ::mprotect(bottom, size, prot) == 0; |
3471 | } |
3472 | |
3473 | // Set protections specified |
3474 | bool os::protect_memory(char* addr, size_t bytes, ProtType prot, |
3475 | bool is_committed) { |
3476 | unsigned int p = 0; |
3477 | switch (prot) { |
3478 | case MEM_PROT_NONE: p = PROT_NONE; break; |
3479 | case MEM_PROT_READ: p = PROT_READ; break; |
3480 | case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break; |
3481 | case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break; |
3482 | default: |
3483 | ShouldNotReachHere(); |
3484 | } |
3485 | // is_committed is unused. |
3486 | return linux_mprotect(addr, bytes, p); |
3487 | } |
3488 | |
3489 | bool os::guard_memory(char* addr, size_t size) { |
3490 | return linux_mprotect(addr, size, PROT_NONE); |
3491 | } |
3492 | |
3493 | bool os::unguard_memory(char* addr, size_t size) { |
3494 | return linux_mprotect(addr, size, PROT_READ|PROT_WRITE); |
3495 | } |
3496 | |
3497 | bool os::Linux::transparent_huge_pages_sanity_check(bool warn, |
3498 | size_t page_size) { |
3499 | bool result = false; |
3500 | void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE, |
3501 | MAP_ANONYMOUS|MAP_PRIVATE, |
3502 | -1, 0); |
3503 | if (p != MAP_FAILED) { |
3504 | void *aligned_p = align_up(p, page_size); |
3505 | |
3506 | result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0; |
3507 | |
3508 | munmap(p, page_size * 2); |
3509 | } |
3510 | |
3511 | if (warn && !result) { |
3512 | warning("TransparentHugePages is not supported by the operating system." ); |
3513 | } |
3514 | |
3515 | return result; |
3516 | } |
3517 | |
3518 | bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) { |
3519 | bool result = false; |
3520 | void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE, |
3521 | MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB, |
3522 | -1, 0); |
3523 | |
3524 | if (p != MAP_FAILED) { |
3525 | // We don't know if this really is a huge page or not. |
3526 | FILE *fp = fopen("/proc/self/maps" , "r" ); |
3527 | if (fp) { |
3528 | while (!feof(fp)) { |
3529 | char chars[257]; |
3530 | long x = 0; |
3531 | if (fgets(chars, sizeof(chars), fp)) { |
3532 | if (sscanf(chars, "%lx-%*x" , &x) == 1 |
3533 | && x == (long)p) { |
3534 | if (strstr (chars, "hugepage" )) { |
3535 | result = true; |
3536 | break; |
3537 | } |
3538 | } |
3539 | } |
3540 | } |
3541 | fclose(fp); |
3542 | } |
3543 | munmap(p, page_size); |
3544 | } |
3545 | |
3546 | if (warn && !result) { |
3547 | warning("HugeTLBFS is not supported by the operating system." ); |
3548 | } |
3549 | |
3550 | return result; |
3551 | } |
3552 | |
3553 | // From the coredump_filter documentation: |
3554 | // |
3555 | // - (bit 0) anonymous private memory |
3556 | // - (bit 1) anonymous shared memory |
3557 | // - (bit 2) file-backed private memory |
3558 | // - (bit 3) file-backed shared memory |
3559 | // - (bit 4) ELF header pages in file-backed private memory areas (it is |
3560 | // effective only if the bit 2 is cleared) |
3561 | // - (bit 5) hugetlb private memory |
3562 | // - (bit 6) hugetlb shared memory |
3563 | // - (bit 7) dax private memory |
3564 | // - (bit 8) dax shared memory |
3565 | // |
3566 | static void set_coredump_filter(CoredumpFilterBit bit) { |
3567 | FILE *f; |
3568 | long cdm; |
3569 | |
3570 | if ((f = fopen("/proc/self/coredump_filter" , "r+" )) == NULL) { |
3571 | return; |
3572 | } |
3573 | |
3574 | if (fscanf(f, "%lx" , &cdm) != 1) { |
3575 | fclose(f); |
3576 | return; |
3577 | } |
3578 | |
3579 | long saved_cdm = cdm; |
3580 | rewind(f); |
3581 | cdm |= bit; |
3582 | |
3583 | if (cdm != saved_cdm) { |
3584 | fprintf(f, "%#lx" , cdm); |
3585 | } |
3586 | |
3587 | fclose(f); |
3588 | } |
3589 | |
3590 | // Large page support |
3591 | |
3592 | static size_t _large_page_size = 0; |
3593 | |
3594 | size_t os::Linux::find_large_page_size() { |
3595 | size_t large_page_size = 0; |
3596 | |
3597 | // large_page_size on Linux is used to round up heap size. x86 uses either |
3598 | // 2M or 4M page, depending on whether PAE (Physical Address Extensions) |
3599 | // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use |
3600 | // page as large as 256M. |
3601 | // |
3602 | // Here we try to figure out page size by parsing /proc/meminfo and looking |
3603 | // for a line with the following format: |
3604 | // Hugepagesize: 2048 kB |
3605 | // |
3606 | // If we can't determine the value (e.g. /proc is not mounted, or the text |
3607 | // format has been changed), we'll use the largest page size supported by |
3608 | // the processor. |
3609 | |
3610 | #ifndef ZERO |
3611 | large_page_size = |
3612 | AARCH64_ONLY(2 * M) |
3613 | AMD64_ONLY(2 * M) |
3614 | ARM32_ONLY(2 * M) |
3615 | IA32_ONLY(4 * M) |
3616 | IA64_ONLY(256 * M) |
3617 | PPC_ONLY(4 * M) |
3618 | S390_ONLY(1 * M) |
3619 | SPARC_ONLY(4 * M); |
3620 | #endif // ZERO |
3621 | |
3622 | FILE *fp = fopen("/proc/meminfo" , "r" ); |
3623 | if (fp) { |
3624 | while (!feof(fp)) { |
3625 | int x = 0; |
3626 | char buf[16]; |
3627 | if (fscanf(fp, "Hugepagesize: %d" , &x) == 1) { |
3628 | if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n" ) == 0) { |
3629 | large_page_size = x * K; |
3630 | break; |
3631 | } |
3632 | } else { |
3633 | // skip to next line |
3634 | for (;;) { |
3635 | int ch = fgetc(fp); |
3636 | if (ch == EOF || ch == (int)'\n') break; |
3637 | } |
3638 | } |
3639 | } |
3640 | fclose(fp); |
3641 | } |
3642 | |
3643 | if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) { |
3644 | warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is " |
3645 | SIZE_FORMAT "%s." , byte_size_in_proper_unit(large_page_size), |
3646 | proper_unit_for_byte_size(large_page_size)); |
3647 | } |
3648 | |
3649 | return large_page_size; |
3650 | } |
3651 | |
3652 | size_t os::Linux::setup_large_page_size() { |
3653 | _large_page_size = Linux::find_large_page_size(); |
3654 | const size_t default_page_size = (size_t)Linux::page_size(); |
3655 | if (_large_page_size > default_page_size) { |
3656 | _page_sizes[0] = _large_page_size; |
3657 | _page_sizes[1] = default_page_size; |
3658 | _page_sizes[2] = 0; |
3659 | } |
3660 | |
3661 | return _large_page_size; |
3662 | } |
3663 | |
3664 | bool os::Linux::setup_large_page_type(size_t page_size) { |
3665 | if (FLAG_IS_DEFAULT(UseHugeTLBFS) && |
3666 | FLAG_IS_DEFAULT(UseSHM) && |
3667 | FLAG_IS_DEFAULT(UseTransparentHugePages)) { |
3668 | |
3669 | // The type of large pages has not been specified by the user. |
3670 | |
3671 | // Try UseHugeTLBFS and then UseSHM. |
3672 | UseHugeTLBFS = UseSHM = true; |
3673 | |
3674 | // Don't try UseTransparentHugePages since there are known |
3675 | // performance issues with it turned on. This might change in the future. |
3676 | UseTransparentHugePages = false; |
3677 | } |
3678 | |
3679 | if (UseTransparentHugePages) { |
3680 | bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages); |
3681 | if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) { |
3682 | UseHugeTLBFS = false; |
3683 | UseSHM = false; |
3684 | return true; |
3685 | } |
3686 | UseTransparentHugePages = false; |
3687 | } |
3688 | |
3689 | if (UseHugeTLBFS) { |
3690 | bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS); |
3691 | if (hugetlbfs_sanity_check(warn_on_failure, page_size)) { |
3692 | UseSHM = false; |
3693 | return true; |
3694 | } |
3695 | UseHugeTLBFS = false; |
3696 | } |
3697 | |
3698 | return UseSHM; |
3699 | } |
3700 | |
3701 | void os::large_page_init() { |
3702 | if (!UseLargePages && |
3703 | !UseTransparentHugePages && |
3704 | !UseHugeTLBFS && |
3705 | !UseSHM) { |
3706 | // Not using large pages. |
3707 | return; |
3708 | } |
3709 | |
3710 | if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) { |
3711 | // The user explicitly turned off large pages. |
3712 | // Ignore the rest of the large pages flags. |
3713 | UseTransparentHugePages = false; |
3714 | UseHugeTLBFS = false; |
3715 | UseSHM = false; |
3716 | return; |
3717 | } |
3718 | |
3719 | size_t large_page_size = Linux::setup_large_page_size(); |
3720 | UseLargePages = Linux::setup_large_page_type(large_page_size); |
3721 | |
3722 | set_coredump_filter(LARGEPAGES_BIT); |
3723 | } |
3724 | |
3725 | #ifndef SHM_HUGETLB |
3726 | #define SHM_HUGETLB 04000 |
3727 | #endif |
3728 | |
3729 | #define shm_warning_format(format, ...) \ |
3730 | do { \ |
3731 | if (UseLargePages && \ |
3732 | (!FLAG_IS_DEFAULT(UseLargePages) || \ |
3733 | !FLAG_IS_DEFAULT(UseSHM) || \ |
3734 | !FLAG_IS_DEFAULT(LargePageSizeInBytes))) { \ |
3735 | warning(format, __VA_ARGS__); \ |
3736 | } \ |
3737 | } while (0) |
3738 | |
3739 | #define shm_warning(str) shm_warning_format("%s", str) |
3740 | |
3741 | #define shm_warning_with_errno(str) \ |
3742 | do { \ |
3743 | int err = errno; \ |
3744 | shm_warning_format(str " (error = %d)", err); \ |
3745 | } while (0) |
3746 | |
3747 | static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) { |
3748 | assert(is_aligned(bytes, alignment), "Must be divisible by the alignment" ); |
3749 | |
3750 | if (!is_aligned(alignment, SHMLBA)) { |
3751 | assert(false, "Code below assumes that alignment is at least SHMLBA aligned" ); |
3752 | return NULL; |
3753 | } |
3754 | |
3755 | // To ensure that we get 'alignment' aligned memory from shmat, |
3756 | // we pre-reserve aligned virtual memory and then attach to that. |
3757 | |
3758 | char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL); |
3759 | if (pre_reserved_addr == NULL) { |
3760 | // Couldn't pre-reserve aligned memory. |
3761 | shm_warning("Failed to pre-reserve aligned memory for shmat." ); |
3762 | return NULL; |
3763 | } |
3764 | |
3765 | // SHM_REMAP is needed to allow shmat to map over an existing mapping. |
3766 | char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP); |
3767 | |
3768 | if ((intptr_t)addr == -1) { |
3769 | int err = errno; |
3770 | shm_warning_with_errno("Failed to attach shared memory." ); |
3771 | |
3772 | assert(err != EACCES, "Unexpected error" ); |
3773 | assert(err != EIDRM, "Unexpected error" ); |
3774 | assert(err != EINVAL, "Unexpected error" ); |
3775 | |
3776 | // Since we don't know if the kernel unmapped the pre-reserved memory area |
3777 | // we can't unmap it, since that would potentially unmap memory that was |
3778 | // mapped from other threads. |
3779 | return NULL; |
3780 | } |
3781 | |
3782 | return addr; |
3783 | } |
3784 | |
3785 | static char* shmat_at_address(int shmid, char* req_addr) { |
3786 | if (!is_aligned(req_addr, SHMLBA)) { |
3787 | assert(false, "Requested address needs to be SHMLBA aligned" ); |
3788 | return NULL; |
3789 | } |
3790 | |
3791 | char* addr = (char*)shmat(shmid, req_addr, 0); |
3792 | |
3793 | if ((intptr_t)addr == -1) { |
3794 | shm_warning_with_errno("Failed to attach shared memory." ); |
3795 | return NULL; |
3796 | } |
3797 | |
3798 | return addr; |
3799 | } |
3800 | |
3801 | static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) { |
3802 | // If a req_addr has been provided, we assume that the caller has already aligned the address. |
3803 | if (req_addr != NULL) { |
3804 | assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size" ); |
3805 | assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment" ); |
3806 | return shmat_at_address(shmid, req_addr); |
3807 | } |
3808 | |
3809 | // Since shmid has been setup with SHM_HUGETLB, shmat will automatically |
3810 | // return large page size aligned memory addresses when req_addr == NULL. |
3811 | // However, if the alignment is larger than the large page size, we have |
3812 | // to manually ensure that the memory returned is 'alignment' aligned. |
3813 | if (alignment > os::large_page_size()) { |
3814 | assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size" ); |
3815 | return shmat_with_alignment(shmid, bytes, alignment); |
3816 | } else { |
3817 | return shmat_at_address(shmid, NULL); |
3818 | } |
3819 | } |
3820 | |
3821 | char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, |
3822 | char* req_addr, bool exec) { |
3823 | // "exec" is passed in but not used. Creating the shared image for |
3824 | // the code cache doesn't have an SHM_X executable permission to check. |
3825 | assert(UseLargePages && UseSHM, "only for SHM large pages" ); |
3826 | assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address" ); |
3827 | assert(is_aligned(req_addr, alignment), "Unaligned address" ); |
3828 | |
3829 | if (!is_aligned(bytes, os::large_page_size())) { |
3830 | return NULL; // Fallback to small pages. |
3831 | } |
3832 | |
3833 | // Create a large shared memory region to attach to based on size. |
3834 | // Currently, size is the total size of the heap. |
3835 | int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W); |
3836 | if (shmid == -1) { |
3837 | // Possible reasons for shmget failure: |
3838 | // 1. shmmax is too small for Java heap. |
3839 | // > check shmmax value: cat /proc/sys/kernel/shmmax |
3840 | // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax |
3841 | // 2. not enough large page memory. |
3842 | // > check available large pages: cat /proc/meminfo |
3843 | // > increase amount of large pages: |
3844 | // echo new_value > /proc/sys/vm/nr_hugepages |
3845 | // Note 1: different Linux may use different name for this property, |
3846 | // e.g. on Redhat AS-3 it is "hugetlb_pool". |
3847 | // Note 2: it's possible there's enough physical memory available but |
3848 | // they are so fragmented after a long run that they can't |
3849 | // coalesce into large pages. Try to reserve large pages when |
3850 | // the system is still "fresh". |
3851 | shm_warning_with_errno("Failed to reserve shared memory." ); |
3852 | return NULL; |
3853 | } |
3854 | |
3855 | // Attach to the region. |
3856 | char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr); |
3857 | |
3858 | // Remove shmid. If shmat() is successful, the actual shared memory segment |
3859 | // will be deleted when it's detached by shmdt() or when the process |
3860 | // terminates. If shmat() is not successful this will remove the shared |
3861 | // segment immediately. |
3862 | shmctl(shmid, IPC_RMID, NULL); |
3863 | |
3864 | return addr; |
3865 | } |
3866 | |
3867 | static void warn_on_large_pages_failure(char* req_addr, size_t bytes, |
3868 | int error) { |
3869 | assert(error == ENOMEM, "Only expect to fail if no memory is available" ); |
3870 | |
3871 | bool warn_on_failure = UseLargePages && |
3872 | (!FLAG_IS_DEFAULT(UseLargePages) || |
3873 | !FLAG_IS_DEFAULT(UseHugeTLBFS) || |
3874 | !FLAG_IS_DEFAULT(LargePageSizeInBytes)); |
3875 | |
3876 | if (warn_on_failure) { |
3877 | char msg[128]; |
3878 | jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: " |
3879 | PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d)." , req_addr, bytes, error); |
3880 | warning("%s" , msg); |
3881 | } |
3882 | } |
3883 | |
3884 | char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, |
3885 | char* req_addr, |
3886 | bool exec) { |
3887 | assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages" ); |
3888 | assert(is_aligned(bytes, os::large_page_size()), "Unaligned size" ); |
3889 | assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address" ); |
3890 | |
3891 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
3892 | char* addr = (char*)::mmap(req_addr, bytes, prot, |
3893 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB, |
3894 | -1, 0); |
3895 | |
3896 | if (addr == MAP_FAILED) { |
3897 | warn_on_large_pages_failure(req_addr, bytes, errno); |
3898 | return NULL; |
3899 | } |
3900 | |
3901 | assert(is_aligned(addr, os::large_page_size()), "Must be" ); |
3902 | |
3903 | return addr; |
3904 | } |
3905 | |
3906 | // Reserve memory using mmap(MAP_HUGETLB). |
3907 | // - bytes shall be a multiple of alignment. |
3908 | // - req_addr can be NULL. If not NULL, it must be a multiple of alignment. |
3909 | // - alignment sets the alignment at which memory shall be allocated. |
3910 | // It must be a multiple of allocation granularity. |
3911 | // Returns address of memory or NULL. If req_addr was not NULL, will only return |
3912 | // req_addr or NULL. |
3913 | char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, |
3914 | size_t alignment, |
3915 | char* req_addr, |
3916 | bool exec) { |
3917 | size_t large_page_size = os::large_page_size(); |
3918 | assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes" ); |
3919 | |
3920 | assert(is_aligned(req_addr, alignment), "Must be" ); |
3921 | assert(is_aligned(bytes, alignment), "Must be" ); |
3922 | |
3923 | // First reserve - but not commit - the address range in small pages. |
3924 | char* const start = anon_mmap_aligned(bytes, alignment, req_addr); |
3925 | |
3926 | if (start == NULL) { |
3927 | return NULL; |
3928 | } |
3929 | |
3930 | assert(is_aligned(start, alignment), "Must be" ); |
3931 | |
3932 | char* end = start + bytes; |
3933 | |
3934 | // Find the regions of the allocated chunk that can be promoted to large pages. |
3935 | char* lp_start = align_up(start, large_page_size); |
3936 | char* lp_end = align_down(end, large_page_size); |
3937 | |
3938 | size_t lp_bytes = lp_end - lp_start; |
3939 | |
3940 | assert(is_aligned(lp_bytes, large_page_size), "Must be" ); |
3941 | |
3942 | if (lp_bytes == 0) { |
3943 | // The mapped region doesn't even span the start and the end of a large page. |
3944 | // Fall back to allocate a non-special area. |
3945 | ::munmap(start, end - start); |
3946 | return NULL; |
3947 | } |
3948 | |
3949 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
3950 | |
3951 | void* result; |
3952 | |
3953 | // Commit small-paged leading area. |
3954 | if (start != lp_start) { |
3955 | result = ::mmap(start, lp_start - start, prot, |
3956 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, |
3957 | -1, 0); |
3958 | if (result == MAP_FAILED) { |
3959 | ::munmap(lp_start, end - lp_start); |
3960 | return NULL; |
3961 | } |
3962 | } |
3963 | |
3964 | // Commit large-paged area. |
3965 | result = ::mmap(lp_start, lp_bytes, prot, |
3966 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB, |
3967 | -1, 0); |
3968 | if (result == MAP_FAILED) { |
3969 | warn_on_large_pages_failure(lp_start, lp_bytes, errno); |
3970 | // If the mmap above fails, the large pages region will be unmapped and we |
3971 | // have regions before and after with small pages. Release these regions. |
3972 | // |
3973 | // | mapped | unmapped | mapped | |
3974 | // ^ ^ ^ ^ |
3975 | // start lp_start lp_end end |
3976 | // |
3977 | ::munmap(start, lp_start - start); |
3978 | ::munmap(lp_end, end - lp_end); |
3979 | return NULL; |
3980 | } |
3981 | |
3982 | // Commit small-paged trailing area. |
3983 | if (lp_end != end) { |
3984 | result = ::mmap(lp_end, end - lp_end, prot, |
3985 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, |
3986 | -1, 0); |
3987 | if (result == MAP_FAILED) { |
3988 | ::munmap(start, lp_end - start); |
3989 | return NULL; |
3990 | } |
3991 | } |
3992 | |
3993 | return start; |
3994 | } |
3995 | |
3996 | char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, |
3997 | size_t alignment, |
3998 | char* req_addr, |
3999 | bool exec) { |
4000 | assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages" ); |
4001 | assert(is_aligned(req_addr, alignment), "Must be" ); |
4002 | assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be" ); |
4003 | assert(is_power_of_2(os::large_page_size()), "Must be" ); |
4004 | assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes" ); |
4005 | |
4006 | if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) { |
4007 | return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec); |
4008 | } else { |
4009 | return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec); |
4010 | } |
4011 | } |
4012 | |
4013 | char* os::reserve_memory_special(size_t bytes, size_t alignment, |
4014 | char* req_addr, bool exec) { |
4015 | assert(UseLargePages, "only for large pages" ); |
4016 | |
4017 | char* addr; |
4018 | if (UseSHM) { |
4019 | addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec); |
4020 | } else { |
4021 | assert(UseHugeTLBFS, "must be" ); |
4022 | addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec); |
4023 | } |
4024 | |
4025 | if (addr != NULL) { |
4026 | if (UseNUMAInterleaving) { |
4027 | numa_make_global(addr, bytes); |
4028 | } |
4029 | |
4030 | // The memory is committed |
4031 | MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC); |
4032 | } |
4033 | |
4034 | return addr; |
4035 | } |
4036 | |
4037 | bool os::Linux::release_memory_special_shm(char* base, size_t bytes) { |
4038 | // detaching the SHM segment will also delete it, see reserve_memory_special_shm() |
4039 | return shmdt(base) == 0; |
4040 | } |
4041 | |
4042 | bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) { |
4043 | return pd_release_memory(base, bytes); |
4044 | } |
4045 | |
4046 | bool os::release_memory_special(char* base, size_t bytes) { |
4047 | bool res; |
4048 | if (MemTracker::tracking_level() > NMT_minimal) { |
4049 | Tracker tkr(Tracker::release); |
4050 | res = os::Linux::release_memory_special_impl(base, bytes); |
4051 | if (res) { |
4052 | tkr.record((address)base, bytes); |
4053 | } |
4054 | |
4055 | } else { |
4056 | res = os::Linux::release_memory_special_impl(base, bytes); |
4057 | } |
4058 | return res; |
4059 | } |
4060 | |
4061 | bool os::Linux::release_memory_special_impl(char* base, size_t bytes) { |
4062 | assert(UseLargePages, "only for large pages" ); |
4063 | bool res; |
4064 | |
4065 | if (UseSHM) { |
4066 | res = os::Linux::release_memory_special_shm(base, bytes); |
4067 | } else { |
4068 | assert(UseHugeTLBFS, "must be" ); |
4069 | res = os::Linux::release_memory_special_huge_tlbfs(base, bytes); |
4070 | } |
4071 | return res; |
4072 | } |
4073 | |
4074 | size_t os::large_page_size() { |
4075 | return _large_page_size; |
4076 | } |
4077 | |
4078 | // With SysV SHM the entire memory region must be allocated as shared |
4079 | // memory. |
4080 | // HugeTLBFS allows application to commit large page memory on demand. |
4081 | // However, when committing memory with HugeTLBFS fails, the region |
4082 | // that was supposed to be committed will lose the old reservation |
4083 | // and allow other threads to steal that memory region. Because of this |
4084 | // behavior we can't commit HugeTLBFS memory. |
4085 | bool os::can_commit_large_page_memory() { |
4086 | return UseTransparentHugePages; |
4087 | } |
4088 | |
4089 | bool os::can_execute_large_page_memory() { |
4090 | return UseTransparentHugePages || UseHugeTLBFS; |
4091 | } |
4092 | |
4093 | char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) { |
4094 | assert(file_desc >= 0, "file_desc is not valid" ); |
4095 | char* result = pd_attempt_reserve_memory_at(bytes, requested_addr); |
4096 | if (result != NULL) { |
4097 | if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) { |
4098 | vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory" )); |
4099 | } |
4100 | } |
4101 | return result; |
4102 | } |
4103 | |
4104 | // Reserve memory at an arbitrary address, only if that area is |
4105 | // available (and not reserved for something else). |
4106 | |
4107 | char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) { |
4108 | // Assert only that the size is a multiple of the page size, since |
4109 | // that's all that mmap requires, and since that's all we really know |
4110 | // about at this low abstraction level. If we need higher alignment, |
4111 | // we can either pass an alignment to this method or verify alignment |
4112 | // in one of the methods further up the call chain. See bug 5044738. |
4113 | assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block" ); |
4114 | |
4115 | // Repeatedly allocate blocks until the block is allocated at the |
4116 | // right spot. |
4117 | |
4118 | // Linux mmap allows caller to pass an address as hint; give it a try first, |
4119 | // if kernel honors the hint then we can return immediately. |
4120 | char * addr = anon_mmap(requested_addr, bytes, false); |
4121 | if (addr == requested_addr) { |
4122 | return requested_addr; |
4123 | } |
4124 | |
4125 | if (addr != NULL) { |
4126 | // mmap() is successful but it fails to reserve at the requested address |
4127 | anon_munmap(addr, bytes); |
4128 | } |
4129 | |
4130 | return NULL; |
4131 | } |
4132 | |
4133 | // Sleep forever; naked call to OS-specific sleep; use with CAUTION |
4134 | void os::infinite_sleep() { |
4135 | while (true) { // sleep forever ... |
4136 | ::sleep(100); // ... 100 seconds at a time |
4137 | } |
4138 | } |
4139 | |
4140 | // Used to convert frequent JVM_Yield() to nops |
4141 | bool os::dont_yield() { |
4142 | return DontYieldALot; |
4143 | } |
4144 | |
4145 | // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will |
4146 | // actually give up the CPU. Since skip buddy (v2.6.28): |
4147 | // |
4148 | // * Sets the yielding task as skip buddy for current CPU's run queue. |
4149 | // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task). |
4150 | // * Clears skip buddies for this run queue (yielding task no longer a skip buddy). |
4151 | // |
4152 | // An alternative is calling os::naked_short_nanosleep with a small number to avoid |
4153 | // getting re-scheduled immediately. |
4154 | // |
4155 | void os::naked_yield() { |
4156 | sched_yield(); |
4157 | } |
4158 | |
4159 | //////////////////////////////////////////////////////////////////////////////// |
4160 | // thread priority support |
4161 | |
4162 | // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER |
4163 | // only supports dynamic priority, static priority must be zero. For real-time |
4164 | // applications, Linux supports SCHED_RR which allows static priority (1-99). |
4165 | // However, for large multi-threaded applications, SCHED_RR is not only slower |
4166 | // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out |
4167 | // of 5 runs - Sep 2005). |
4168 | // |
4169 | // The following code actually changes the niceness of kernel-thread/LWP. It |
4170 | // has an assumption that setpriority() only modifies one kernel-thread/LWP, |
4171 | // not the entire user process, and user level threads are 1:1 mapped to kernel |
4172 | // threads. It has always been the case, but could change in the future. For |
4173 | // this reason, the code should not be used as default (ThreadPriorityPolicy=0). |
4174 | // It is only used when ThreadPriorityPolicy=1 and may require system level permission |
4175 | // (e.g., root privilege or CAP_SYS_NICE capability). |
4176 | |
4177 | int os::java_to_os_priority[CriticalPriority + 1] = { |
4178 | 19, // 0 Entry should never be used |
4179 | |
4180 | 4, // 1 MinPriority |
4181 | 3, // 2 |
4182 | 2, // 3 |
4183 | |
4184 | 1, // 4 |
4185 | 0, // 5 NormPriority |
4186 | -1, // 6 |
4187 | |
4188 | -2, // 7 |
4189 | -3, // 8 |
4190 | -4, // 9 NearMaxPriority |
4191 | |
4192 | -5, // 10 MaxPriority |
4193 | |
4194 | -5 // 11 CriticalPriority |
4195 | }; |
4196 | |
4197 | static int prio_init() { |
4198 | if (ThreadPriorityPolicy == 1) { |
4199 | if (geteuid() != 0) { |
4200 | if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) { |
4201 | warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \ |
4202 | "e.g., being the root user. If the necessary permission is not " \ |
4203 | "possessed, changes to priority will be silently ignored." ); |
4204 | } |
4205 | } |
4206 | } |
4207 | if (UseCriticalJavaThreadPriority) { |
4208 | os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority]; |
4209 | } |
4210 | return 0; |
4211 | } |
4212 | |
4213 | OSReturn os::set_native_priority(Thread* thread, int newpri) { |
4214 | if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK; |
4215 | |
4216 | int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri); |
4217 | return (ret == 0) ? OS_OK : OS_ERR; |
4218 | } |
4219 | |
4220 | OSReturn os::get_native_priority(const Thread* const thread, |
4221 | int *priority_ptr) { |
4222 | if (!UseThreadPriorities || ThreadPriorityPolicy == 0) { |
4223 | *priority_ptr = java_to_os_priority[NormPriority]; |
4224 | return OS_OK; |
4225 | } |
4226 | |
4227 | errno = 0; |
4228 | *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id()); |
4229 | return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR); |
4230 | } |
4231 | |
4232 | //////////////////////////////////////////////////////////////////////////////// |
4233 | // suspend/resume support |
4234 | |
4235 | // The low-level signal-based suspend/resume support is a remnant from the |
4236 | // old VM-suspension that used to be for java-suspension, safepoints etc, |
4237 | // within hotspot. Currently used by JFR's OSThreadSampler |
4238 | // |
4239 | // The remaining code is greatly simplified from the more general suspension |
4240 | // code that used to be used. |
4241 | // |
4242 | // The protocol is quite simple: |
4243 | // - suspend: |
4244 | // - sends a signal to the target thread |
4245 | // - polls the suspend state of the osthread using a yield loop |
4246 | // - target thread signal handler (SR_handler) sets suspend state |
4247 | // and blocks in sigsuspend until continued |
4248 | // - resume: |
4249 | // - sets target osthread state to continue |
4250 | // - sends signal to end the sigsuspend loop in the SR_handler |
4251 | // |
4252 | // Note that the SR_lock plays no role in this suspend/resume protocol, |
4253 | // but is checked for NULL in SR_handler as a thread termination indicator. |
4254 | // The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs. |
4255 | // |
4256 | // Note that resume_clear_context() and suspend_save_context() are needed |
4257 | // by SR_handler(), so that fetch_frame_from_ucontext() works, |
4258 | // which in part is used by: |
4259 | // - Forte Analyzer: AsyncGetCallTrace() |
4260 | // - StackBanging: get_frame_at_stack_banging_point() |
4261 | |
4262 | static void resume_clear_context(OSThread *osthread) { |
4263 | osthread->set_ucontext(NULL); |
4264 | osthread->set_siginfo(NULL); |
4265 | } |
4266 | |
4267 | static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, |
4268 | ucontext_t* context) { |
4269 | osthread->set_ucontext(context); |
4270 | osthread->set_siginfo(siginfo); |
4271 | } |
4272 | |
4273 | // Handler function invoked when a thread's execution is suspended or |
4274 | // resumed. We have to be careful that only async-safe functions are |
4275 | // called here (Note: most pthread functions are not async safe and |
4276 | // should be avoided.) |
4277 | // |
4278 | // Note: sigwait() is a more natural fit than sigsuspend() from an |
4279 | // interface point of view, but sigwait() prevents the signal hander |
4280 | // from being run. libpthread would get very confused by not having |
4281 | // its signal handlers run and prevents sigwait()'s use with the |
4282 | // mutex granting granting signal. |
4283 | // |
4284 | // Currently only ever called on the VMThread and JavaThreads (PC sampling) |
4285 | // |
4286 | static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) { |
4287 | // Save and restore errno to avoid confusing native code with EINTR |
4288 | // after sigsuspend. |
4289 | int old_errno = errno; |
4290 | |
4291 | Thread* thread = Thread::current_or_null_safe(); |
4292 | assert(thread != NULL, "Missing current thread in SR_handler" ); |
4293 | |
4294 | // On some systems we have seen signal delivery get "stuck" until the signal |
4295 | // mask is changed as part of thread termination. Check that the current thread |
4296 | // has not already terminated (via SR_lock()) - else the following assertion |
4297 | // will fail because the thread is no longer a JavaThread as the ~JavaThread |
4298 | // destructor has completed. |
4299 | |
4300 | if (thread->SR_lock() == NULL) { |
4301 | return; |
4302 | } |
4303 | |
4304 | assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread" ); |
4305 | |
4306 | OSThread* osthread = thread->osthread(); |
4307 | |
4308 | os::SuspendResume::State current = osthread->sr.state(); |
4309 | if (current == os::SuspendResume::SR_SUSPEND_REQUEST) { |
4310 | suspend_save_context(osthread, siginfo, context); |
4311 | |
4312 | // attempt to switch the state, we assume we had a SUSPEND_REQUEST |
4313 | os::SuspendResume::State state = osthread->sr.suspended(); |
4314 | if (state == os::SuspendResume::SR_SUSPENDED) { |
4315 | sigset_t suspend_set; // signals for sigsuspend() |
4316 | sigemptyset(&suspend_set); |
4317 | // get current set of blocked signals and unblock resume signal |
4318 | pthread_sigmask(SIG_BLOCK, NULL, &suspend_set); |
4319 | sigdelset(&suspend_set, SR_signum); |
4320 | |
4321 | sr_semaphore.signal(); |
4322 | // wait here until we are resumed |
4323 | while (1) { |
4324 | sigsuspend(&suspend_set); |
4325 | |
4326 | os::SuspendResume::State result = osthread->sr.running(); |
4327 | if (result == os::SuspendResume::SR_RUNNING) { |
4328 | sr_semaphore.signal(); |
4329 | break; |
4330 | } |
4331 | } |
4332 | |
4333 | } else if (state == os::SuspendResume::SR_RUNNING) { |
4334 | // request was cancelled, continue |
4335 | } else { |
4336 | ShouldNotReachHere(); |
4337 | } |
4338 | |
4339 | resume_clear_context(osthread); |
4340 | } else if (current == os::SuspendResume::SR_RUNNING) { |
4341 | // request was cancelled, continue |
4342 | } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) { |
4343 | // ignore |
4344 | } else { |
4345 | // ignore |
4346 | } |
4347 | |
4348 | errno = old_errno; |
4349 | } |
4350 | |
4351 | static int SR_initialize() { |
4352 | struct sigaction act; |
4353 | char *s; |
4354 | |
4355 | // Get signal number to use for suspend/resume |
4356 | if ((s = ::getenv("_JAVA_SR_SIGNUM" )) != 0) { |
4357 | int sig = ::strtol(s, 0, 10); |
4358 | if (sig > MAX2(SIGSEGV, SIGBUS) && // See 4355769. |
4359 | sig < NSIG) { // Must be legal signal and fit into sigflags[]. |
4360 | SR_signum = sig; |
4361 | } else { |
4362 | warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead." , |
4363 | sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum); |
4364 | } |
4365 | } |
4366 | |
4367 | assert(SR_signum > SIGSEGV && SR_signum > SIGBUS, |
4368 | "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769" ); |
4369 | |
4370 | sigemptyset(&SR_sigset); |
4371 | sigaddset(&SR_sigset, SR_signum); |
4372 | |
4373 | // Set up signal handler for suspend/resume |
4374 | act.sa_flags = SA_RESTART|SA_SIGINFO; |
4375 | act.sa_handler = (void (*)(int)) SR_handler; |
4376 | |
4377 | // SR_signum is blocked by default. |
4378 | // 4528190 - We also need to block pthread restart signal (32 on all |
4379 | // supported Linux platforms). Note that LinuxThreads need to block |
4380 | // this signal for all threads to work properly. So we don't have |
4381 | // to use hard-coded signal number when setting up the mask. |
4382 | pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask); |
4383 | |
4384 | if (sigaction(SR_signum, &act, 0) == -1) { |
4385 | return -1; |
4386 | } |
4387 | |
4388 | // Save signal flag |
4389 | os::Linux::set_our_sigflags(SR_signum, act.sa_flags); |
4390 | return 0; |
4391 | } |
4392 | |
4393 | static int sr_notify(OSThread* osthread) { |
4394 | int status = pthread_kill(osthread->pthread_id(), SR_signum); |
4395 | assert_status(status == 0, status, "pthread_kill" ); |
4396 | return status; |
4397 | } |
4398 | |
4399 | // "Randomly" selected value for how long we want to spin |
4400 | // before bailing out on suspending a thread, also how often |
4401 | // we send a signal to a thread we want to resume |
4402 | static const int RANDOMLY_LARGE_INTEGER = 1000000; |
4403 | static const int RANDOMLY_LARGE_INTEGER2 = 100; |
4404 | |
4405 | // returns true on success and false on error - really an error is fatal |
4406 | // but this seems the normal response to library errors |
4407 | static bool do_suspend(OSThread* osthread) { |
4408 | assert(osthread->sr.is_running(), "thread should be running" ); |
4409 | assert(!sr_semaphore.trywait(), "semaphore has invalid state" ); |
4410 | |
4411 | // mark as suspended and send signal |
4412 | if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) { |
4413 | // failed to switch, state wasn't running? |
4414 | ShouldNotReachHere(); |
4415 | return false; |
4416 | } |
4417 | |
4418 | if (sr_notify(osthread) != 0) { |
4419 | ShouldNotReachHere(); |
4420 | } |
4421 | |
4422 | // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED |
4423 | while (true) { |
4424 | if (sr_semaphore.timedwait(2)) { |
4425 | break; |
4426 | } else { |
4427 | // timeout |
4428 | os::SuspendResume::State cancelled = osthread->sr.cancel_suspend(); |
4429 | if (cancelled == os::SuspendResume::SR_RUNNING) { |
4430 | return false; |
4431 | } else if (cancelled == os::SuspendResume::SR_SUSPENDED) { |
4432 | // make sure that we consume the signal on the semaphore as well |
4433 | sr_semaphore.wait(); |
4434 | break; |
4435 | } else { |
4436 | ShouldNotReachHere(); |
4437 | return false; |
4438 | } |
4439 | } |
4440 | } |
4441 | |
4442 | guarantee(osthread->sr.is_suspended(), "Must be suspended" ); |
4443 | return true; |
4444 | } |
4445 | |
4446 | static void do_resume(OSThread* osthread) { |
4447 | assert(osthread->sr.is_suspended(), "thread should be suspended" ); |
4448 | assert(!sr_semaphore.trywait(), "invalid semaphore state" ); |
4449 | |
4450 | if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) { |
4451 | // failed to switch to WAKEUP_REQUEST |
4452 | ShouldNotReachHere(); |
4453 | return; |
4454 | } |
4455 | |
4456 | while (true) { |
4457 | if (sr_notify(osthread) == 0) { |
4458 | if (sr_semaphore.timedwait(2)) { |
4459 | if (osthread->sr.is_running()) { |
4460 | return; |
4461 | } |
4462 | } |
4463 | } else { |
4464 | ShouldNotReachHere(); |
4465 | } |
4466 | } |
4467 | |
4468 | guarantee(osthread->sr.is_running(), "Must be running!" ); |
4469 | } |
4470 | |
4471 | /////////////////////////////////////////////////////////////////////////////////// |
4472 | // signal handling (except suspend/resume) |
4473 | |
4474 | // This routine may be used by user applications as a "hook" to catch signals. |
4475 | // The user-defined signal handler must pass unrecognized signals to this |
4476 | // routine, and if it returns true (non-zero), then the signal handler must |
4477 | // return immediately. If the flag "abort_if_unrecognized" is true, then this |
4478 | // routine will never retun false (zero), but instead will execute a VM panic |
4479 | // routine kill the process. |
4480 | // |
4481 | // If this routine returns false, it is OK to call it again. This allows |
4482 | // the user-defined signal handler to perform checks either before or after |
4483 | // the VM performs its own checks. Naturally, the user code would be making |
4484 | // a serious error if it tried to handle an exception (such as a null check |
4485 | // or breakpoint) that the VM was generating for its own correct operation. |
4486 | // |
4487 | // This routine may recognize any of the following kinds of signals: |
4488 | // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1. |
4489 | // It should be consulted by handlers for any of those signals. |
4490 | // |
4491 | // The caller of this routine must pass in the three arguments supplied |
4492 | // to the function referred to in the "sa_sigaction" (not the "sa_handler") |
4493 | // field of the structure passed to sigaction(). This routine assumes that |
4494 | // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART. |
4495 | // |
4496 | // Note that the VM will print warnings if it detects conflicting signal |
4497 | // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers". |
4498 | // |
4499 | extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo, |
4500 | siginfo_t* siginfo, |
4501 | void* ucontext, |
4502 | int abort_if_unrecognized); |
4503 | |
4504 | static void signalHandler(int sig, siginfo_t* info, void* uc) { |
4505 | assert(info != NULL && uc != NULL, "it must be old kernel" ); |
4506 | int orig_errno = errno; // Preserve errno value over signal handler. |
4507 | JVM_handle_linux_signal(sig, info, uc, true); |
4508 | errno = orig_errno; |
4509 | } |
4510 | |
4511 | |
4512 | // This boolean allows users to forward their own non-matching signals |
4513 | // to JVM_handle_linux_signal, harmlessly. |
4514 | bool os::Linux::signal_handlers_are_installed = false; |
4515 | |
4516 | // For signal-chaining |
4517 | bool os::Linux::libjsig_is_loaded = false; |
4518 | typedef struct sigaction *(*get_signal_t)(int); |
4519 | get_signal_t os::Linux::get_signal_action = NULL; |
4520 | |
4521 | struct sigaction* os::Linux::get_chained_signal_action(int sig) { |
4522 | struct sigaction *actp = NULL; |
4523 | |
4524 | if (libjsig_is_loaded) { |
4525 | // Retrieve the old signal handler from libjsig |
4526 | actp = (*get_signal_action)(sig); |
4527 | } |
4528 | if (actp == NULL) { |
4529 | // Retrieve the preinstalled signal handler from jvm |
4530 | actp = os::Posix::get_preinstalled_handler(sig); |
4531 | } |
4532 | |
4533 | return actp; |
4534 | } |
4535 | |
4536 | static bool call_chained_handler(struct sigaction *actp, int sig, |
4537 | siginfo_t *siginfo, void *context) { |
4538 | // Call the old signal handler |
4539 | if (actp->sa_handler == SIG_DFL) { |
4540 | // It's more reasonable to let jvm treat it as an unexpected exception |
4541 | // instead of taking the default action. |
4542 | return false; |
4543 | } else if (actp->sa_handler != SIG_IGN) { |
4544 | if ((actp->sa_flags & SA_NODEFER) == 0) { |
4545 | // automaticlly block the signal |
4546 | sigaddset(&(actp->sa_mask), sig); |
4547 | } |
4548 | |
4549 | sa_handler_t hand = NULL; |
4550 | sa_sigaction_t sa = NULL; |
4551 | bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0; |
4552 | // retrieve the chained handler |
4553 | if (siginfo_flag_set) { |
4554 | sa = actp->sa_sigaction; |
4555 | } else { |
4556 | hand = actp->sa_handler; |
4557 | } |
4558 | |
4559 | if ((actp->sa_flags & SA_RESETHAND) != 0) { |
4560 | actp->sa_handler = SIG_DFL; |
4561 | } |
4562 | |
4563 | // try to honor the signal mask |
4564 | sigset_t oset; |
4565 | sigemptyset(&oset); |
4566 | pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset); |
4567 | |
4568 | // call into the chained handler |
4569 | if (siginfo_flag_set) { |
4570 | (*sa)(sig, siginfo, context); |
4571 | } else { |
4572 | (*hand)(sig); |
4573 | } |
4574 | |
4575 | // restore the signal mask |
4576 | pthread_sigmask(SIG_SETMASK, &oset, NULL); |
4577 | } |
4578 | // Tell jvm's signal handler the signal is taken care of. |
4579 | return true; |
4580 | } |
4581 | |
4582 | bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) { |
4583 | bool chained = false; |
4584 | // signal-chaining |
4585 | if (UseSignalChaining) { |
4586 | struct sigaction *actp = get_chained_signal_action(sig); |
4587 | if (actp != NULL) { |
4588 | chained = call_chained_handler(actp, sig, siginfo, context); |
4589 | } |
4590 | } |
4591 | return chained; |
4592 | } |
4593 | |
4594 | // for diagnostic |
4595 | int sigflags[NSIG]; |
4596 | |
4597 | int os::Linux::get_our_sigflags(int sig) { |
4598 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
4599 | return sigflags[sig]; |
4600 | } |
4601 | |
4602 | void os::Linux::set_our_sigflags(int sig, int flags) { |
4603 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
4604 | if (sig > 0 && sig < NSIG) { |
4605 | sigflags[sig] = flags; |
4606 | } |
4607 | } |
4608 | |
4609 | void os::Linux::set_signal_handler(int sig, bool set_installed) { |
4610 | // Check for overwrite. |
4611 | struct sigaction oldAct; |
4612 | sigaction(sig, (struct sigaction*)NULL, &oldAct); |
4613 | |
4614 | void* oldhand = oldAct.sa_sigaction |
4615 | ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) |
4616 | : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); |
4617 | if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) && |
4618 | oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) && |
4619 | oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) { |
4620 | if (AllowUserSignalHandlers || !set_installed) { |
4621 | // Do not overwrite; user takes responsibility to forward to us. |
4622 | return; |
4623 | } else if (UseSignalChaining) { |
4624 | // save the old handler in jvm |
4625 | os::Posix::save_preinstalled_handler(sig, oldAct); |
4626 | // libjsig also interposes the sigaction() call below and saves the |
4627 | // old sigaction on it own. |
4628 | } else { |
4629 | fatal("Encountered unexpected pre-existing sigaction handler " |
4630 | "%#lx for signal %d." , (long)oldhand, sig); |
4631 | } |
4632 | } |
4633 | |
4634 | struct sigaction sigAct; |
4635 | sigfillset(&(sigAct.sa_mask)); |
4636 | sigAct.sa_handler = SIG_DFL; |
4637 | if (!set_installed) { |
4638 | sigAct.sa_flags = SA_SIGINFO|SA_RESTART; |
4639 | } else { |
4640 | sigAct.sa_sigaction = signalHandler; |
4641 | sigAct.sa_flags = SA_SIGINFO|SA_RESTART; |
4642 | } |
4643 | // Save flags, which are set by ours |
4644 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
4645 | sigflags[sig] = sigAct.sa_flags; |
4646 | |
4647 | int ret = sigaction(sig, &sigAct, &oldAct); |
4648 | assert(ret == 0, "check" ); |
4649 | |
4650 | void* oldhand2 = oldAct.sa_sigaction |
4651 | ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) |
4652 | : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); |
4653 | assert(oldhand2 == oldhand, "no concurrent signal handler installation" ); |
4654 | } |
4655 | |
4656 | // install signal handlers for signals that HotSpot needs to |
4657 | // handle in order to support Java-level exception handling. |
4658 | |
4659 | void os::Linux::install_signal_handlers() { |
4660 | if (!signal_handlers_are_installed) { |
4661 | signal_handlers_are_installed = true; |
4662 | |
4663 | // signal-chaining |
4664 | typedef void (*signal_setting_t)(); |
4665 | signal_setting_t begin_signal_setting = NULL; |
4666 | signal_setting_t end_signal_setting = NULL; |
4667 | begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t, |
4668 | dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting" )); |
4669 | if (begin_signal_setting != NULL) { |
4670 | end_signal_setting = CAST_TO_FN_PTR(signal_setting_t, |
4671 | dlsym(RTLD_DEFAULT, "JVM_end_signal_setting" )); |
4672 | get_signal_action = CAST_TO_FN_PTR(get_signal_t, |
4673 | dlsym(RTLD_DEFAULT, "JVM_get_signal_action" )); |
4674 | libjsig_is_loaded = true; |
4675 | assert(UseSignalChaining, "should enable signal-chaining" ); |
4676 | } |
4677 | if (libjsig_is_loaded) { |
4678 | // Tell libjsig jvm is setting signal handlers |
4679 | (*begin_signal_setting)(); |
4680 | } |
4681 | |
4682 | set_signal_handler(SIGSEGV, true); |
4683 | set_signal_handler(SIGPIPE, true); |
4684 | set_signal_handler(SIGBUS, true); |
4685 | set_signal_handler(SIGILL, true); |
4686 | set_signal_handler(SIGFPE, true); |
4687 | #if defined(PPC64) |
4688 | set_signal_handler(SIGTRAP, true); |
4689 | #endif |
4690 | set_signal_handler(SIGXFSZ, true); |
4691 | |
4692 | if (libjsig_is_loaded) { |
4693 | // Tell libjsig jvm finishes setting signal handlers |
4694 | (*end_signal_setting)(); |
4695 | } |
4696 | |
4697 | // We don't activate signal checker if libjsig is in place, we trust ourselves |
4698 | // and if UserSignalHandler is installed all bets are off. |
4699 | // Log that signal checking is off only if -verbose:jni is specified. |
4700 | if (CheckJNICalls) { |
4701 | if (libjsig_is_loaded) { |
4702 | if (PrintJNIResolving) { |
4703 | tty->print_cr("Info: libjsig is activated, all active signal checking is disabled" ); |
4704 | } |
4705 | check_signals = false; |
4706 | } |
4707 | if (AllowUserSignalHandlers) { |
4708 | if (PrintJNIResolving) { |
4709 | tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled" ); |
4710 | } |
4711 | check_signals = false; |
4712 | } |
4713 | } |
4714 | } |
4715 | } |
4716 | |
4717 | // This is the fastest way to get thread cpu time on Linux. |
4718 | // Returns cpu time (user+sys) for any thread, not only for current. |
4719 | // POSIX compliant clocks are implemented in the kernels 2.6.16+. |
4720 | // It might work on 2.6.10+ with a special kernel/glibc patch. |
4721 | // For reference, please, see IEEE Std 1003.1-2004: |
4722 | // http://www.unix.org/single_unix_specification |
4723 | |
4724 | jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) { |
4725 | struct timespec tp; |
4726 | int rc = os::Posix::clock_gettime(clockid, &tp); |
4727 | assert(rc == 0, "clock_gettime is expected to return 0 code" ); |
4728 | |
4729 | return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec; |
4730 | } |
4731 | |
4732 | void os::Linux::initialize_os_info() { |
4733 | assert(_os_version == 0, "OS info already initialized" ); |
4734 | |
4735 | struct utsname _uname; |
4736 | |
4737 | uint32_t major; |
4738 | uint32_t minor; |
4739 | uint32_t fix; |
4740 | |
4741 | int rc; |
4742 | |
4743 | // Kernel version is unknown if |
4744 | // verification below fails. |
4745 | _os_version = 0x01000000; |
4746 | |
4747 | rc = uname(&_uname); |
4748 | if (rc != -1) { |
4749 | |
4750 | rc = sscanf(_uname.release,"%d.%d.%d" , &major, &minor, &fix); |
4751 | if (rc == 3) { |
4752 | |
4753 | if (major < 256 && minor < 256 && fix < 256) { |
4754 | // Kernel version format is as expected, |
4755 | // set it overriding unknown state. |
4756 | _os_version = (major << 16) | |
4757 | (minor << 8 ) | |
4758 | (fix << 0 ) ; |
4759 | } |
4760 | } |
4761 | } |
4762 | } |
4763 | |
4764 | uint32_t os::Linux::os_version() { |
4765 | assert(_os_version != 0, "not initialized" ); |
4766 | return _os_version & 0x00FFFFFF; |
4767 | } |
4768 | |
4769 | bool os::Linux::os_version_is_known() { |
4770 | assert(_os_version != 0, "not initialized" ); |
4771 | return _os_version & 0x01000000 ? false : true; |
4772 | } |
4773 | |
4774 | ///// |
4775 | // glibc on Linux platform uses non-documented flag |
4776 | // to indicate, that some special sort of signal |
4777 | // trampoline is used. |
4778 | // We will never set this flag, and we should |
4779 | // ignore this flag in our diagnostic |
4780 | #ifdef SIGNIFICANT_SIGNAL_MASK |
4781 | #undef SIGNIFICANT_SIGNAL_MASK |
4782 | #endif |
4783 | #define SIGNIFICANT_SIGNAL_MASK (~0x04000000) |
4784 | |
4785 | static const char* get_signal_handler_name(address handler, |
4786 | char* buf, int buflen) { |
4787 | int offset = 0; |
4788 | bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset); |
4789 | if (found) { |
4790 | // skip directory names |
4791 | const char *p1, *p2; |
4792 | p1 = buf; |
4793 | size_t len = strlen(os::file_separator()); |
4794 | while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len; |
4795 | jio_snprintf(buf, buflen, "%s+0x%x" , p1, offset); |
4796 | } else { |
4797 | jio_snprintf(buf, buflen, PTR_FORMAT, handler); |
4798 | } |
4799 | return buf; |
4800 | } |
4801 | |
4802 | static void print_signal_handler(outputStream* st, int sig, |
4803 | char* buf, size_t buflen) { |
4804 | struct sigaction sa; |
4805 | |
4806 | sigaction(sig, NULL, &sa); |
4807 | |
4808 | // See comment for SIGNIFICANT_SIGNAL_MASK define |
4809 | sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK; |
4810 | |
4811 | st->print("%s: " , os::exception_name(sig, buf, buflen)); |
4812 | |
4813 | address handler = (sa.sa_flags & SA_SIGINFO) |
4814 | ? CAST_FROM_FN_PTR(address, sa.sa_sigaction) |
4815 | : CAST_FROM_FN_PTR(address, sa.sa_handler); |
4816 | |
4817 | if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) { |
4818 | st->print("SIG_DFL" ); |
4819 | } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) { |
4820 | st->print("SIG_IGN" ); |
4821 | } else { |
4822 | st->print("[%s]" , get_signal_handler_name(handler, buf, buflen)); |
4823 | } |
4824 | |
4825 | st->print(", sa_mask[0]=" ); |
4826 | os::Posix::print_signal_set_short(st, &sa.sa_mask); |
4827 | |
4828 | address rh = VMError::get_resetted_sighandler(sig); |
4829 | // May be, handler was resetted by VMError? |
4830 | if (rh != NULL) { |
4831 | handler = rh; |
4832 | sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK; |
4833 | } |
4834 | |
4835 | st->print(", sa_flags=" ); |
4836 | os::Posix::print_sa_flags(st, sa.sa_flags); |
4837 | |
4838 | // Check: is it our handler? |
4839 | if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) || |
4840 | handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) { |
4841 | // It is our signal handler |
4842 | // check for flags, reset system-used one! |
4843 | if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) { |
4844 | st->print( |
4845 | ", flags was changed from " PTR32_FORMAT ", consider using jsig library" , |
4846 | os::Linux::get_our_sigflags(sig)); |
4847 | } |
4848 | } |
4849 | st->cr(); |
4850 | } |
4851 | |
4852 | |
4853 | #define DO_SIGNAL_CHECK(sig) \ |
4854 | do { \ |
4855 | if (!sigismember(&check_signal_done, sig)) { \ |
4856 | os::Linux::check_signal_handler(sig); \ |
4857 | } \ |
4858 | } while (0) |
4859 | |
4860 | // This method is a periodic task to check for misbehaving JNI applications |
4861 | // under CheckJNI, we can add any periodic checks here |
4862 | |
4863 | void os::run_periodic_checks() { |
4864 | if (check_signals == false) return; |
4865 | |
4866 | // SEGV and BUS if overridden could potentially prevent |
4867 | // generation of hs*.log in the event of a crash, debugging |
4868 | // such a case can be very challenging, so we absolutely |
4869 | // check the following for a good measure: |
4870 | DO_SIGNAL_CHECK(SIGSEGV); |
4871 | DO_SIGNAL_CHECK(SIGILL); |
4872 | DO_SIGNAL_CHECK(SIGFPE); |
4873 | DO_SIGNAL_CHECK(SIGBUS); |
4874 | DO_SIGNAL_CHECK(SIGPIPE); |
4875 | DO_SIGNAL_CHECK(SIGXFSZ); |
4876 | #if defined(PPC64) |
4877 | DO_SIGNAL_CHECK(SIGTRAP); |
4878 | #endif |
4879 | |
4880 | // ReduceSignalUsage allows the user to override these handlers |
4881 | // see comments at the very top and jvm_md.h |
4882 | if (!ReduceSignalUsage) { |
4883 | DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL); |
4884 | DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL); |
4885 | DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL); |
4886 | DO_SIGNAL_CHECK(BREAK_SIGNAL); |
4887 | } |
4888 | |
4889 | DO_SIGNAL_CHECK(SR_signum); |
4890 | } |
4891 | |
4892 | typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *); |
4893 | |
4894 | static os_sigaction_t os_sigaction = NULL; |
4895 | |
4896 | void os::Linux::check_signal_handler(int sig) { |
4897 | char buf[O_BUFLEN]; |
4898 | address jvmHandler = NULL; |
4899 | |
4900 | |
4901 | struct sigaction act; |
4902 | if (os_sigaction == NULL) { |
4903 | // only trust the default sigaction, in case it has been interposed |
4904 | os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction" ); |
4905 | if (os_sigaction == NULL) return; |
4906 | } |
4907 | |
4908 | os_sigaction(sig, (struct sigaction*)NULL, &act); |
4909 | |
4910 | |
4911 | act.sa_flags &= SIGNIFICANT_SIGNAL_MASK; |
4912 | |
4913 | address thisHandler = (act.sa_flags & SA_SIGINFO) |
4914 | ? CAST_FROM_FN_PTR(address, act.sa_sigaction) |
4915 | : CAST_FROM_FN_PTR(address, act.sa_handler); |
4916 | |
4917 | |
4918 | switch (sig) { |
4919 | case SIGSEGV: |
4920 | case SIGBUS: |
4921 | case SIGFPE: |
4922 | case SIGPIPE: |
4923 | case SIGILL: |
4924 | case SIGXFSZ: |
4925 | jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler); |
4926 | break; |
4927 | |
4928 | case SHUTDOWN1_SIGNAL: |
4929 | case SHUTDOWN2_SIGNAL: |
4930 | case SHUTDOWN3_SIGNAL: |
4931 | case BREAK_SIGNAL: |
4932 | jvmHandler = (address)user_handler(); |
4933 | break; |
4934 | |
4935 | default: |
4936 | if (sig == SR_signum) { |
4937 | jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler); |
4938 | } else { |
4939 | return; |
4940 | } |
4941 | break; |
4942 | } |
4943 | |
4944 | if (thisHandler != jvmHandler) { |
4945 | tty->print("Warning: %s handler " , exception_name(sig, buf, O_BUFLEN)); |
4946 | tty->print("expected:%s" , get_signal_handler_name(jvmHandler, buf, O_BUFLEN)); |
4947 | tty->print_cr(" found:%s" , get_signal_handler_name(thisHandler, buf, O_BUFLEN)); |
4948 | // No need to check this sig any longer |
4949 | sigaddset(&check_signal_done, sig); |
4950 | // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN |
4951 | if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) { |
4952 | tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell" , |
4953 | exception_name(sig, buf, O_BUFLEN)); |
4954 | } |
4955 | } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) { |
4956 | tty->print("Warning: %s handler flags " , exception_name(sig, buf, O_BUFLEN)); |
4957 | tty->print("expected:" ); |
4958 | os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig)); |
4959 | tty->cr(); |
4960 | tty->print(" found:" ); |
4961 | os::Posix::print_sa_flags(tty, act.sa_flags); |
4962 | tty->cr(); |
4963 | // No need to check this sig any longer |
4964 | sigaddset(&check_signal_done, sig); |
4965 | } |
4966 | |
4967 | // Dump all the signal |
4968 | if (sigismember(&check_signal_done, sig)) { |
4969 | print_signal_handlers(tty, buf, O_BUFLEN); |
4970 | } |
4971 | } |
4972 | |
4973 | extern void report_error(char* file_name, int line_no, char* title, |
4974 | char* format, ...); |
4975 | |
4976 | // this is called _before_ most of the global arguments have been parsed |
4977 | void os::init(void) { |
4978 | char dummy; // used to get a guess on initial stack address |
4979 | |
4980 | clock_tics_per_sec = sysconf(_SC_CLK_TCK); |
4981 | |
4982 | init_random(1234567); |
4983 | |
4984 | Linux::set_page_size(sysconf(_SC_PAGESIZE)); |
4985 | if (Linux::page_size() == -1) { |
4986 | fatal("os_linux.cpp: os::init: sysconf failed (%s)" , |
4987 | os::strerror(errno)); |
4988 | } |
4989 | init_page_sizes((size_t) Linux::page_size()); |
4990 | |
4991 | Linux::initialize_system_info(); |
4992 | |
4993 | Linux::initialize_os_info(); |
4994 | |
4995 | os::Linux::CPUPerfTicks pticks; |
4996 | bool res = os::Linux::get_tick_information(&pticks, -1); |
4997 | |
4998 | if (res && pticks.has_steal_ticks) { |
4999 | has_initial_tick_info = true; |
5000 | initial_total_ticks = pticks.total; |
5001 | initial_steal_ticks = pticks.steal; |
5002 | } |
5003 | |
5004 | // _main_thread points to the thread that created/loaded the JVM. |
5005 | Linux::_main_thread = pthread_self(); |
5006 | |
5007 | // retrieve entry point for pthread_setname_np |
5008 | Linux::_pthread_setname_np = |
5009 | (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np" ); |
5010 | |
5011 | os::Posix::init(); |
5012 | |
5013 | initial_time_count = javaTimeNanos(); |
5014 | |
5015 | // Always warn if no monotonic clock available |
5016 | if (!os::Posix::supports_monotonic_clock()) { |
5017 | warning("No monotonic clock was available - timed services may " \ |
5018 | "be adversely affected if the time-of-day clock changes" ); |
5019 | } |
5020 | } |
5021 | |
5022 | // To install functions for atexit system call |
5023 | extern "C" { |
5024 | static void perfMemory_exit_helper() { |
5025 | perfMemory_exit(); |
5026 | } |
5027 | } |
5028 | |
5029 | void os::pd_init_container_support() { |
5030 | OSContainer::init(); |
5031 | } |
5032 | |
5033 | void os::Linux::numa_init() { |
5034 | |
5035 | // Java can be invoked as |
5036 | // 1. Without numactl and heap will be allocated/configured on all nodes as |
5037 | // per the system policy. |
5038 | // 2. With numactl --interleave: |
5039 | // Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same |
5040 | // API for membind case bitmask is reset. |
5041 | // Interleave is only hint and Kernel can fallback to other nodes if |
5042 | // no memory is available on the target nodes. |
5043 | // 3. With numactl --membind: |
5044 | // Use numa_get_membind(v2) API to get nodes bitmask. The same API for |
5045 | // interleave case returns bitmask of all nodes. |
5046 | // numa_all_nodes_ptr holds bitmask of all nodes. |
5047 | // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct |
5048 | // bitmask when externally configured to run on all or fewer nodes. |
5049 | |
5050 | if (!Linux::libnuma_init()) { |
5051 | UseNUMA = false; |
5052 | } else { |
5053 | if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) { |
5054 | // If there's only one node (they start from 0) or if the process |
5055 | // is bound explicitly to a single node using membind, disable NUMA. |
5056 | UseNUMA = false; |
5057 | } else { |
5058 | |
5059 | LogTarget(Info,os) log; |
5060 | LogStream ls(log); |
5061 | |
5062 | Linux::set_configured_numa_policy(Linux::identify_numa_policy()); |
5063 | |
5064 | struct bitmask* bmp = Linux::_numa_membind_bitmask; |
5065 | const char* numa_mode = "membind" ; |
5066 | |
5067 | if (Linux::is_running_in_interleave_mode()) { |
5068 | bmp = Linux::_numa_interleave_bitmask; |
5069 | numa_mode = "interleave" ; |
5070 | } |
5071 | |
5072 | ls.print("UseNUMA is enabled and invoked in '%s' mode." |
5073 | " Heap will be configured using NUMA memory nodes:" , numa_mode); |
5074 | |
5075 | for (int node = 0; node <= Linux::numa_max_node(); node++) { |
5076 | if (Linux::_numa_bitmask_isbitset(bmp, node)) { |
5077 | ls.print(" %d" , node); |
5078 | } |
5079 | } |
5080 | } |
5081 | } |
5082 | |
5083 | if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) { |
5084 | // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way |
5085 | // we can make the adaptive lgrp chunk resizing work. If the user specified both |
5086 | // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn |
5087 | // and disable adaptive resizing. |
5088 | if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) { |
5089 | warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, " |
5090 | "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)" ); |
5091 | UseAdaptiveSizePolicy = false; |
5092 | UseAdaptiveNUMAChunkSizing = false; |
5093 | } |
5094 | } |
5095 | |
5096 | if (!UseNUMA && ForceNUMA) { |
5097 | UseNUMA = true; |
5098 | } |
5099 | } |
5100 | |
5101 | // this is called _after_ the global arguments have been parsed |
5102 | jint os::init_2(void) { |
5103 | |
5104 | // This could be set after os::Posix::init() but all platforms |
5105 | // have to set it the same so we have to mirror Solaris. |
5106 | DEBUG_ONLY(os::set_mutex_init_done();) |
5107 | |
5108 | os::Posix::init_2(); |
5109 | |
5110 | Linux::fast_thread_clock_init(); |
5111 | |
5112 | // initialize suspend/resume support - must do this before signal_sets_init() |
5113 | if (SR_initialize() != 0) { |
5114 | perror("SR_initialize failed" ); |
5115 | return JNI_ERR; |
5116 | } |
5117 | |
5118 | Linux::signal_sets_init(); |
5119 | Linux::install_signal_handlers(); |
5120 | // Initialize data for jdk.internal.misc.Signal |
5121 | if (!ReduceSignalUsage) { |
5122 | jdk_misc_signal_init(); |
5123 | } |
5124 | |
5125 | // Check and sets minimum stack sizes against command line options |
5126 | if (Posix::set_minimum_stack_sizes() == JNI_ERR) { |
5127 | return JNI_ERR; |
5128 | } |
5129 | |
5130 | #if defined(IA32) |
5131 | // Need to ensure we've determined the process's initial stack to |
5132 | // perform the workaround |
5133 | Linux::capture_initial_stack(JavaThread::stack_size_at_create()); |
5134 | workaround_expand_exec_shield_cs_limit(); |
5135 | #else |
5136 | suppress_primordial_thread_resolution = Arguments::created_by_java_launcher(); |
5137 | if (!suppress_primordial_thread_resolution) { |
5138 | Linux::capture_initial_stack(JavaThread::stack_size_at_create()); |
5139 | } |
5140 | #endif |
5141 | |
5142 | Linux::libpthread_init(); |
5143 | Linux::sched_getcpu_init(); |
5144 | log_info(os)("HotSpot is running with %s, %s" , |
5145 | Linux::glibc_version(), Linux::libpthread_version()); |
5146 | |
5147 | if (UseNUMA) { |
5148 | Linux::numa_init(); |
5149 | } |
5150 | |
5151 | if (MaxFDLimit) { |
5152 | // set the number of file descriptors to max. print out error |
5153 | // if getrlimit/setrlimit fails but continue regardless. |
5154 | struct rlimit nbr_files; |
5155 | int status = getrlimit(RLIMIT_NOFILE, &nbr_files); |
5156 | if (status != 0) { |
5157 | log_info(os)("os::init_2 getrlimit failed: %s" , os::strerror(errno)); |
5158 | } else { |
5159 | nbr_files.rlim_cur = nbr_files.rlim_max; |
5160 | status = setrlimit(RLIMIT_NOFILE, &nbr_files); |
5161 | if (status != 0) { |
5162 | log_info(os)("os::init_2 setrlimit failed: %s" , os::strerror(errno)); |
5163 | } |
5164 | } |
5165 | } |
5166 | |
5167 | // Initialize lock used to serialize thread creation (see os::create_thread) |
5168 | Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock" , false)); |
5169 | |
5170 | // at-exit methods are called in the reverse order of their registration. |
5171 | // atexit functions are called on return from main or as a result of a |
5172 | // call to exit(3C). There can be only 32 of these functions registered |
5173 | // and atexit() does not set errno. |
5174 | |
5175 | if (PerfAllowAtExitRegistration) { |
5176 | // only register atexit functions if PerfAllowAtExitRegistration is set. |
5177 | // atexit functions can be delayed until process exit time, which |
5178 | // can be problematic for embedded VM situations. Embedded VMs should |
5179 | // call DestroyJavaVM() to assure that VM resources are released. |
5180 | |
5181 | // note: perfMemory_exit_helper atexit function may be removed in |
5182 | // the future if the appropriate cleanup code can be added to the |
5183 | // VM_Exit VMOperation's doit method. |
5184 | if (atexit(perfMemory_exit_helper) != 0) { |
5185 | warning("os::init_2 atexit(perfMemory_exit_helper) failed" ); |
5186 | } |
5187 | } |
5188 | |
5189 | // initialize thread priority policy |
5190 | prio_init(); |
5191 | |
5192 | if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) { |
5193 | set_coredump_filter(DAX_SHARED_BIT); |
5194 | } |
5195 | |
5196 | if (DumpPrivateMappingsInCore) { |
5197 | set_coredump_filter(FILE_BACKED_PVT_BIT); |
5198 | } |
5199 | |
5200 | if (DumpSharedMappingsInCore) { |
5201 | set_coredump_filter(FILE_BACKED_SHARED_BIT); |
5202 | } |
5203 | |
5204 | return JNI_OK; |
5205 | } |
5206 | |
5207 | // Mark the polling page as unreadable |
5208 | void os::make_polling_page_unreadable(void) { |
5209 | if (!guard_memory((char*)_polling_page, Linux::page_size())) { |
5210 | fatal("Could not disable polling page" ); |
5211 | } |
5212 | } |
5213 | |
5214 | // Mark the polling page as readable |
5215 | void os::make_polling_page_readable(void) { |
5216 | if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) { |
5217 | fatal("Could not enable polling page" ); |
5218 | } |
5219 | } |
5220 | |
5221 | // older glibc versions don't have this macro (which expands to |
5222 | // an optimized bit-counting function) so we have to roll our own |
5223 | #ifndef CPU_COUNT |
5224 | |
5225 | static int _cpu_count(const cpu_set_t* cpus) { |
5226 | int count = 0; |
5227 | // only look up to the number of configured processors |
5228 | for (int i = 0; i < os::processor_count(); i++) { |
5229 | if (CPU_ISSET(i, cpus)) { |
5230 | count++; |
5231 | } |
5232 | } |
5233 | return count; |
5234 | } |
5235 | |
5236 | #define CPU_COUNT(cpus) _cpu_count(cpus) |
5237 | |
5238 | #endif // CPU_COUNT |
5239 | |
5240 | // Get the current number of available processors for this process. |
5241 | // This value can change at any time during a process's lifetime. |
5242 | // sched_getaffinity gives an accurate answer as it accounts for cpusets. |
5243 | // If it appears there may be more than 1024 processors then we do a |
5244 | // dynamic check - see 6515172 for details. |
5245 | // If anything goes wrong we fallback to returning the number of online |
5246 | // processors - which can be greater than the number available to the process. |
5247 | int os::Linux::active_processor_count() { |
5248 | cpu_set_t cpus; // can represent at most 1024 (CPU_SETSIZE) processors |
5249 | cpu_set_t* cpus_p = &cpus; |
5250 | int cpus_size = sizeof(cpu_set_t); |
5251 | |
5252 | int configured_cpus = os::processor_count(); // upper bound on available cpus |
5253 | int cpu_count = 0; |
5254 | |
5255 | // old build platforms may not support dynamic cpu sets |
5256 | #ifdef CPU_ALLOC |
5257 | |
5258 | // To enable easy testing of the dynamic path on different platforms we |
5259 | // introduce a diagnostic flag: UseCpuAllocPath |
5260 | if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) { |
5261 | // kernel may use a mask bigger than cpu_set_t |
5262 | log_trace(os)("active_processor_count: using dynamic path %s" |
5263 | "- configured processors: %d" , |
5264 | UseCpuAllocPath ? "(forced) " : "" , |
5265 | configured_cpus); |
5266 | cpus_p = CPU_ALLOC(configured_cpus); |
5267 | if (cpus_p != NULL) { |
5268 | cpus_size = CPU_ALLOC_SIZE(configured_cpus); |
5269 | // zero it just to be safe |
5270 | CPU_ZERO_S(cpus_size, cpus_p); |
5271 | } |
5272 | else { |
5273 | // failed to allocate so fallback to online cpus |
5274 | int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN); |
5275 | log_trace(os)("active_processor_count: " |
5276 | "CPU_ALLOC failed (%s) - using " |
5277 | "online processor count: %d" , |
5278 | os::strerror(errno), online_cpus); |
5279 | return online_cpus; |
5280 | } |
5281 | } |
5282 | else { |
5283 | log_trace(os)("active_processor_count: using static path - configured processors: %d" , |
5284 | configured_cpus); |
5285 | } |
5286 | #else // CPU_ALLOC |
5287 | // these stubs won't be executed |
5288 | #define CPU_COUNT_S(size, cpus) -1 |
5289 | #define CPU_FREE(cpus) |
5290 | |
5291 | log_trace(os)("active_processor_count: only static path available - configured processors: %d" , |
5292 | configured_cpus); |
5293 | #endif // CPU_ALLOC |
5294 | |
5295 | // pid 0 means the current thread - which we have to assume represents the process |
5296 | if (sched_getaffinity(0, cpus_size, cpus_p) == 0) { |
5297 | if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used |
5298 | cpu_count = CPU_COUNT_S(cpus_size, cpus_p); |
5299 | } |
5300 | else { |
5301 | cpu_count = CPU_COUNT(cpus_p); |
5302 | } |
5303 | log_trace(os)("active_processor_count: sched_getaffinity processor count: %d" , cpu_count); |
5304 | } |
5305 | else { |
5306 | cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN); |
5307 | warning("sched_getaffinity failed (%s)- using online processor count (%d) " |
5308 | "which may exceed available processors" , os::strerror(errno), cpu_count); |
5309 | } |
5310 | |
5311 | if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used |
5312 | CPU_FREE(cpus_p); |
5313 | } |
5314 | |
5315 | assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check" ); |
5316 | return cpu_count; |
5317 | } |
5318 | |
5319 | // Determine the active processor count from one of |
5320 | // three different sources: |
5321 | // |
5322 | // 1. User option -XX:ActiveProcessorCount |
5323 | // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN) |
5324 | // 3. extracted from cgroup cpu subsystem (shares and quotas) |
5325 | // |
5326 | // Option 1, if specified, will always override. |
5327 | // If the cgroup subsystem is active and configured, we |
5328 | // will return the min of the cgroup and option 2 results. |
5329 | // This is required since tools, such as numactl, that |
5330 | // alter cpu affinity do not update cgroup subsystem |
5331 | // cpuset configuration files. |
5332 | int os::active_processor_count() { |
5333 | // User has overridden the number of active processors |
5334 | if (ActiveProcessorCount > 0) { |
5335 | log_trace(os)("active_processor_count: " |
5336 | "active processor count set by user : %d" , |
5337 | ActiveProcessorCount); |
5338 | return ActiveProcessorCount; |
5339 | } |
5340 | |
5341 | int active_cpus; |
5342 | if (OSContainer::is_containerized()) { |
5343 | active_cpus = OSContainer::active_processor_count(); |
5344 | log_trace(os)("active_processor_count: determined by OSContainer: %d" , |
5345 | active_cpus); |
5346 | } else { |
5347 | active_cpus = os::Linux::active_processor_count(); |
5348 | } |
5349 | |
5350 | return active_cpus; |
5351 | } |
5352 | |
5353 | uint os::processor_id() { |
5354 | const int id = Linux::sched_getcpu(); |
5355 | assert(id >= 0 && id < _processor_count, "Invalid processor id" ); |
5356 | return (uint)id; |
5357 | } |
5358 | |
5359 | void os::set_native_thread_name(const char *name) { |
5360 | if (Linux::_pthread_setname_np) { |
5361 | char buf [16]; // according to glibc manpage, 16 chars incl. '/0' |
5362 | snprintf(buf, sizeof(buf), "%s" , name); |
5363 | buf[sizeof(buf) - 1] = '\0'; |
5364 | const int rc = Linux::_pthread_setname_np(pthread_self(), buf); |
5365 | // ERANGE should not happen; all other errors should just be ignored. |
5366 | assert(rc != ERANGE, "pthread_setname_np failed" ); |
5367 | } |
5368 | } |
5369 | |
5370 | bool os::distribute_processes(uint length, uint* distribution) { |
5371 | // Not yet implemented. |
5372 | return false; |
5373 | } |
5374 | |
5375 | bool os::bind_to_processor(uint processor_id) { |
5376 | // Not yet implemented. |
5377 | return false; |
5378 | } |
5379 | |
5380 | /// |
5381 | |
5382 | void os::SuspendedThreadTask::internal_do_task() { |
5383 | if (do_suspend(_thread->osthread())) { |
5384 | SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext()); |
5385 | do_task(context); |
5386 | do_resume(_thread->osthread()); |
5387 | } |
5388 | } |
5389 | |
5390 | //////////////////////////////////////////////////////////////////////////////// |
5391 | // debug support |
5392 | |
5393 | bool os::find(address addr, outputStream* st) { |
5394 | Dl_info dlinfo; |
5395 | memset(&dlinfo, 0, sizeof(dlinfo)); |
5396 | if (dladdr(addr, &dlinfo) != 0) { |
5397 | st->print(PTR_FORMAT ": " , p2i(addr)); |
5398 | if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) { |
5399 | st->print("%s+" PTR_FORMAT, dlinfo.dli_sname, |
5400 | p2i(addr) - p2i(dlinfo.dli_saddr)); |
5401 | } else if (dlinfo.dli_fbase != NULL) { |
5402 | st->print("<offset " PTR_FORMAT ">" , p2i(addr) - p2i(dlinfo.dli_fbase)); |
5403 | } else { |
5404 | st->print("<absolute address>" ); |
5405 | } |
5406 | if (dlinfo.dli_fname != NULL) { |
5407 | st->print(" in %s" , dlinfo.dli_fname); |
5408 | } |
5409 | if (dlinfo.dli_fbase != NULL) { |
5410 | st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase)); |
5411 | } |
5412 | st->cr(); |
5413 | |
5414 | if (Verbose) { |
5415 | // decode some bytes around the PC |
5416 | address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size()); |
5417 | address end = clamp_address_in_page(addr+40, addr, os::vm_page_size()); |
5418 | address lowest = (address) dlinfo.dli_sname; |
5419 | if (!lowest) lowest = (address) dlinfo.dli_fbase; |
5420 | if (begin < lowest) begin = lowest; |
5421 | Dl_info dlinfo2; |
5422 | if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr |
5423 | && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) { |
5424 | end = (address) dlinfo2.dli_saddr; |
5425 | } |
5426 | Disassembler::decode(begin, end, st); |
5427 | } |
5428 | return true; |
5429 | } |
5430 | return false; |
5431 | } |
5432 | |
5433 | //////////////////////////////////////////////////////////////////////////////// |
5434 | // misc |
5435 | |
5436 | // This does not do anything on Linux. This is basically a hook for being |
5437 | // able to use structured exception handling (thread-local exception filters) |
5438 | // on, e.g., Win32. |
5439 | void |
5440 | os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method, |
5441 | JavaCallArguments* args, Thread* thread) { |
5442 | f(value, method, args, thread); |
5443 | } |
5444 | |
5445 | void os::print_statistics() { |
5446 | } |
5447 | |
5448 | bool os::message_box(const char* title, const char* message) { |
5449 | int i; |
5450 | fdStream err(defaultStream::error_fd()); |
5451 | for (i = 0; i < 78; i++) err.print_raw("=" ); |
5452 | err.cr(); |
5453 | err.print_raw_cr(title); |
5454 | for (i = 0; i < 78; i++) err.print_raw("-" ); |
5455 | err.cr(); |
5456 | err.print_raw_cr(message); |
5457 | for (i = 0; i < 78; i++) err.print_raw("=" ); |
5458 | err.cr(); |
5459 | |
5460 | char buf[16]; |
5461 | // Prevent process from exiting upon "read error" without consuming all CPU |
5462 | while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); } |
5463 | |
5464 | return buf[0] == 'y' || buf[0] == 'Y'; |
5465 | } |
5466 | |
5467 | // Is a (classpath) directory empty? |
5468 | bool os::dir_is_empty(const char* path) { |
5469 | DIR *dir = NULL; |
5470 | struct dirent *ptr; |
5471 | |
5472 | dir = opendir(path); |
5473 | if (dir == NULL) return true; |
5474 | |
5475 | // Scan the directory |
5476 | bool result = true; |
5477 | while (result && (ptr = readdir(dir)) != NULL) { |
5478 | if (strcmp(ptr->d_name, "." ) != 0 && strcmp(ptr->d_name, ".." ) != 0) { |
5479 | result = false; |
5480 | } |
5481 | } |
5482 | closedir(dir); |
5483 | return result; |
5484 | } |
5485 | |
5486 | // This code originates from JDK's sysOpen and open64_w |
5487 | // from src/solaris/hpi/src/system_md.c |
5488 | |
5489 | int os::open(const char *path, int oflag, int mode) { |
5490 | if (strlen(path) > MAX_PATH - 1) { |
5491 | errno = ENAMETOOLONG; |
5492 | return -1; |
5493 | } |
5494 | |
5495 | // All file descriptors that are opened in the Java process and not |
5496 | // specifically destined for a subprocess should have the close-on-exec |
5497 | // flag set. If we don't set it, then careless 3rd party native code |
5498 | // might fork and exec without closing all appropriate file descriptors |
5499 | // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in |
5500 | // turn might: |
5501 | // |
5502 | // - cause end-of-file to fail to be detected on some file |
5503 | // descriptors, resulting in mysterious hangs, or |
5504 | // |
5505 | // - might cause an fopen in the subprocess to fail on a system |
5506 | // suffering from bug 1085341. |
5507 | // |
5508 | // (Yes, the default setting of the close-on-exec flag is a Unix |
5509 | // design flaw) |
5510 | // |
5511 | // See: |
5512 | // 1085341: 32-bit stdio routines should support file descriptors >255 |
5513 | // 4843136: (process) pipe file descriptor from Runtime.exec not being closed |
5514 | // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9 |
5515 | // |
5516 | // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open(). |
5517 | // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor |
5518 | // because it saves a system call and removes a small window where the flag |
5519 | // is unset. On ancient Linux kernels the O_CLOEXEC flag will be ignored |
5520 | // and we fall back to using FD_CLOEXEC (see below). |
5521 | #ifdef O_CLOEXEC |
5522 | oflag |= O_CLOEXEC; |
5523 | #endif |
5524 | |
5525 | int fd = ::open64(path, oflag, mode); |
5526 | if (fd == -1) return -1; |
5527 | |
5528 | //If the open succeeded, the file might still be a directory |
5529 | { |
5530 | struct stat64 buf64; |
5531 | int ret = ::fstat64(fd, &buf64); |
5532 | int st_mode = buf64.st_mode; |
5533 | |
5534 | if (ret != -1) { |
5535 | if ((st_mode & S_IFMT) == S_IFDIR) { |
5536 | errno = EISDIR; |
5537 | ::close(fd); |
5538 | return -1; |
5539 | } |
5540 | } else { |
5541 | ::close(fd); |
5542 | return -1; |
5543 | } |
5544 | } |
5545 | |
5546 | #ifdef FD_CLOEXEC |
5547 | // Validate that the use of the O_CLOEXEC flag on open above worked. |
5548 | // With recent kernels, we will perform this check exactly once. |
5549 | static sig_atomic_t O_CLOEXEC_is_known_to_work = 0; |
5550 | if (!O_CLOEXEC_is_known_to_work) { |
5551 | int flags = ::fcntl(fd, F_GETFD); |
5552 | if (flags != -1) { |
5553 | if ((flags & FD_CLOEXEC) != 0) |
5554 | O_CLOEXEC_is_known_to_work = 1; |
5555 | else |
5556 | ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC); |
5557 | } |
5558 | } |
5559 | #endif |
5560 | |
5561 | return fd; |
5562 | } |
5563 | |
5564 | |
5565 | // create binary file, rewriting existing file if required |
5566 | int os::create_binary_file(const char* path, bool rewrite_existing) { |
5567 | int oflags = O_WRONLY | O_CREAT; |
5568 | if (!rewrite_existing) { |
5569 | oflags |= O_EXCL; |
5570 | } |
5571 | return ::open64(path, oflags, S_IREAD | S_IWRITE); |
5572 | } |
5573 | |
5574 | // return current position of file pointer |
5575 | jlong os::current_file_offset(int fd) { |
5576 | return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR); |
5577 | } |
5578 | |
5579 | // move file pointer to the specified offset |
5580 | jlong os::seek_to_file_offset(int fd, jlong offset) { |
5581 | return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET); |
5582 | } |
5583 | |
5584 | // This code originates from JDK's sysAvailable |
5585 | // from src/solaris/hpi/src/native_threads/src/sys_api_td.c |
5586 | |
5587 | int os::available(int fd, jlong *bytes) { |
5588 | jlong cur, end; |
5589 | int mode; |
5590 | struct stat64 buf64; |
5591 | |
5592 | if (::fstat64(fd, &buf64) >= 0) { |
5593 | mode = buf64.st_mode; |
5594 | if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) { |
5595 | int n; |
5596 | if (::ioctl(fd, FIONREAD, &n) >= 0) { |
5597 | *bytes = n; |
5598 | return 1; |
5599 | } |
5600 | } |
5601 | } |
5602 | if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) { |
5603 | return 0; |
5604 | } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) { |
5605 | return 0; |
5606 | } else if (::lseek64(fd, cur, SEEK_SET) == -1) { |
5607 | return 0; |
5608 | } |
5609 | *bytes = end - cur; |
5610 | return 1; |
5611 | } |
5612 | |
5613 | // Map a block of memory. |
5614 | char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset, |
5615 | char *addr, size_t bytes, bool read_only, |
5616 | bool allow_exec) { |
5617 | int prot; |
5618 | int flags = MAP_PRIVATE; |
5619 | |
5620 | if (read_only) { |
5621 | prot = PROT_READ; |
5622 | } else { |
5623 | prot = PROT_READ | PROT_WRITE; |
5624 | } |
5625 | |
5626 | if (allow_exec) { |
5627 | prot |= PROT_EXEC; |
5628 | } |
5629 | |
5630 | if (addr != NULL) { |
5631 | flags |= MAP_FIXED; |
5632 | } |
5633 | |
5634 | char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags, |
5635 | fd, file_offset); |
5636 | if (mapped_address == MAP_FAILED) { |
5637 | return NULL; |
5638 | } |
5639 | return mapped_address; |
5640 | } |
5641 | |
5642 | |
5643 | // Remap a block of memory. |
5644 | char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset, |
5645 | char *addr, size_t bytes, bool read_only, |
5646 | bool allow_exec) { |
5647 | // same as map_memory() on this OS |
5648 | return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only, |
5649 | allow_exec); |
5650 | } |
5651 | |
5652 | |
5653 | // Unmap a block of memory. |
5654 | bool os::pd_unmap_memory(char* addr, size_t bytes) { |
5655 | return munmap(addr, bytes) == 0; |
5656 | } |
5657 | |
5658 | static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time); |
5659 | |
5660 | static jlong fast_cpu_time(Thread *thread) { |
5661 | clockid_t clockid; |
5662 | int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(), |
5663 | &clockid); |
5664 | if (rc == 0) { |
5665 | return os::Linux::fast_thread_cpu_time(clockid); |
5666 | } else { |
5667 | // It's possible to encounter a terminated native thread that failed |
5668 | // to detach itself from the VM - which should result in ESRCH. |
5669 | assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed" ); |
5670 | return -1; |
5671 | } |
5672 | } |
5673 | |
5674 | // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool) |
5675 | // are used by JVM M&M and JVMTI to get user+sys or user CPU time |
5676 | // of a thread. |
5677 | // |
5678 | // current_thread_cpu_time() and thread_cpu_time(Thread*) returns |
5679 | // the fast estimate available on the platform. |
5680 | |
5681 | jlong os::current_thread_cpu_time() { |
5682 | if (os::Linux::supports_fast_thread_cpu_time()) { |
5683 | return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID); |
5684 | } else { |
5685 | // return user + sys since the cost is the same |
5686 | return slow_thread_cpu_time(Thread::current(), true /* user + sys */); |
5687 | } |
5688 | } |
5689 | |
5690 | jlong os::thread_cpu_time(Thread* thread) { |
5691 | // consistent with what current_thread_cpu_time() returns |
5692 | if (os::Linux::supports_fast_thread_cpu_time()) { |
5693 | return fast_cpu_time(thread); |
5694 | } else { |
5695 | return slow_thread_cpu_time(thread, true /* user + sys */); |
5696 | } |
5697 | } |
5698 | |
5699 | jlong os::current_thread_cpu_time(bool user_sys_cpu_time) { |
5700 | if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) { |
5701 | return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID); |
5702 | } else { |
5703 | return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time); |
5704 | } |
5705 | } |
5706 | |
5707 | jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) { |
5708 | if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) { |
5709 | return fast_cpu_time(thread); |
5710 | } else { |
5711 | return slow_thread_cpu_time(thread, user_sys_cpu_time); |
5712 | } |
5713 | } |
5714 | |
5715 | // -1 on error. |
5716 | static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) { |
5717 | pid_t tid = thread->osthread()->thread_id(); |
5718 | char *s; |
5719 | char stat[2048]; |
5720 | int statlen; |
5721 | char proc_name[64]; |
5722 | int count; |
5723 | long sys_time, user_time; |
5724 | char cdummy; |
5725 | int idummy; |
5726 | long ldummy; |
5727 | FILE *fp; |
5728 | |
5729 | snprintf(proc_name, 64, "/proc/self/task/%d/stat" , tid); |
5730 | fp = fopen(proc_name, "r" ); |
5731 | if (fp == NULL) return -1; |
5732 | statlen = fread(stat, 1, 2047, fp); |
5733 | stat[statlen] = '\0'; |
5734 | fclose(fp); |
5735 | |
5736 | // Skip pid and the command string. Note that we could be dealing with |
5737 | // weird command names, e.g. user could decide to rename java launcher |
5738 | // to "java 1.4.2 :)", then the stat file would look like |
5739 | // 1234 (java 1.4.2 :)) R ... ... |
5740 | // We don't really need to know the command string, just find the last |
5741 | // occurrence of ")" and then start parsing from there. See bug 4726580. |
5742 | s = strrchr(stat, ')'); |
5743 | if (s == NULL) return -1; |
5744 | |
5745 | // Skip blank chars |
5746 | do { s++; } while (s && isspace(*s)); |
5747 | |
5748 | count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu" , |
5749 | &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy, |
5750 | &ldummy, &ldummy, &ldummy, &ldummy, &ldummy, |
5751 | &user_time, &sys_time); |
5752 | if (count != 13) return -1; |
5753 | if (user_sys_cpu_time) { |
5754 | return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec); |
5755 | } else { |
5756 | return (jlong)user_time * (1000000000 / clock_tics_per_sec); |
5757 | } |
5758 | } |
5759 | |
5760 | void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { |
5761 | info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits |
5762 | info_ptr->may_skip_backward = false; // elapsed time not wall time |
5763 | info_ptr->may_skip_forward = false; // elapsed time not wall time |
5764 | info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned |
5765 | } |
5766 | |
5767 | void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { |
5768 | info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits |
5769 | info_ptr->may_skip_backward = false; // elapsed time not wall time |
5770 | info_ptr->may_skip_forward = false; // elapsed time not wall time |
5771 | info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned |
5772 | } |
5773 | |
5774 | bool os::is_thread_cpu_time_supported() { |
5775 | return true; |
5776 | } |
5777 | |
5778 | // System loadavg support. Returns -1 if load average cannot be obtained. |
5779 | // Linux doesn't yet have a (official) notion of processor sets, |
5780 | // so just return the system wide load average. |
5781 | int os::loadavg(double loadavg[], int nelem) { |
5782 | return ::getloadavg(loadavg, nelem); |
5783 | } |
5784 | |
5785 | void os::pause() { |
5786 | char filename[MAX_PATH]; |
5787 | if (PauseAtStartupFile && PauseAtStartupFile[0]) { |
5788 | jio_snprintf(filename, MAX_PATH, "%s" , PauseAtStartupFile); |
5789 | } else { |
5790 | jio_snprintf(filename, MAX_PATH, "./vm.paused.%d" , current_process_id()); |
5791 | } |
5792 | |
5793 | int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666); |
5794 | if (fd != -1) { |
5795 | struct stat buf; |
5796 | ::close(fd); |
5797 | while (::stat(filename, &buf) == 0) { |
5798 | (void)::poll(NULL, 0, 100); |
5799 | } |
5800 | } else { |
5801 | jio_fprintf(stderr, |
5802 | "Could not open pause file '%s', continuing immediately.\n" , filename); |
5803 | } |
5804 | } |
5805 | |
5806 | extern char** environ; |
5807 | |
5808 | // Run the specified command in a separate process. Return its exit value, |
5809 | // or -1 on failure (e.g. can't fork a new process). |
5810 | // Unlike system(), this function can be called from signal handler. It |
5811 | // doesn't block SIGINT et al. |
5812 | int os::fork_and_exec(char* cmd, bool use_vfork_if_available) { |
5813 | const char * argv[4] = {"sh" , "-c" , cmd, NULL}; |
5814 | |
5815 | pid_t pid ; |
5816 | |
5817 | if (use_vfork_if_available) { |
5818 | pid = vfork(); |
5819 | } else { |
5820 | pid = fork(); |
5821 | } |
5822 | |
5823 | if (pid < 0) { |
5824 | // fork failed |
5825 | return -1; |
5826 | |
5827 | } else if (pid == 0) { |
5828 | // child process |
5829 | |
5830 | execve("/bin/sh" , (char* const*)argv, environ); |
5831 | |
5832 | // execve failed |
5833 | _exit(-1); |
5834 | |
5835 | } else { |
5836 | // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't |
5837 | // care about the actual exit code, for now. |
5838 | |
5839 | int status; |
5840 | |
5841 | // Wait for the child process to exit. This returns immediately if |
5842 | // the child has already exited. */ |
5843 | while (waitpid(pid, &status, 0) < 0) { |
5844 | switch (errno) { |
5845 | case ECHILD: return 0; |
5846 | case EINTR: break; |
5847 | default: return -1; |
5848 | } |
5849 | } |
5850 | |
5851 | if (WIFEXITED(status)) { |
5852 | // The child exited normally; get its exit code. |
5853 | return WEXITSTATUS(status); |
5854 | } else if (WIFSIGNALED(status)) { |
5855 | // The child exited because of a signal |
5856 | // The best value to return is 0x80 + signal number, |
5857 | // because that is what all Unix shells do, and because |
5858 | // it allows callers to distinguish between process exit and |
5859 | // process death by signal. |
5860 | return 0x80 + WTERMSIG(status); |
5861 | } else { |
5862 | // Unknown exit code; pass it through |
5863 | return status; |
5864 | } |
5865 | } |
5866 | } |
5867 | |
5868 | // Get the default path to the core file |
5869 | // Returns the length of the string |
5870 | int os::get_core_path(char* buffer, size_t bufferSize) { |
5871 | /* |
5872 | * Max length of /proc/sys/kernel/core_pattern is 128 characters. |
5873 | * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt |
5874 | */ |
5875 | const int core_pattern_len = 129; |
5876 | char core_pattern[core_pattern_len] = {0}; |
5877 | |
5878 | int core_pattern_file = ::open("/proc/sys/kernel/core_pattern" , O_RDONLY); |
5879 | if (core_pattern_file == -1) { |
5880 | return -1; |
5881 | } |
5882 | |
5883 | ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len); |
5884 | ::close(core_pattern_file); |
5885 | if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') { |
5886 | return -1; |
5887 | } |
5888 | if (core_pattern[ret-1] == '\n') { |
5889 | core_pattern[ret-1] = '\0'; |
5890 | } else { |
5891 | core_pattern[ret] = '\0'; |
5892 | } |
5893 | |
5894 | // Replace the %p in the core pattern with the process id. NOTE: we do this |
5895 | // only if the pattern doesn't start with "|", and we support only one %p in |
5896 | // the pattern. |
5897 | char *pid_pos = strstr(core_pattern, "%p" ); |
5898 | const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "" ; // skip over the "%p" |
5899 | int written; |
5900 | |
5901 | if (core_pattern[0] == '/') { |
5902 | if (pid_pos != NULL) { |
5903 | *pid_pos = '\0'; |
5904 | written = jio_snprintf(buffer, bufferSize, "%s%d%s" , core_pattern, |
5905 | current_process_id(), tail); |
5906 | } else { |
5907 | written = jio_snprintf(buffer, bufferSize, "%s" , core_pattern); |
5908 | } |
5909 | } else { |
5910 | char cwd[PATH_MAX]; |
5911 | |
5912 | const char* p = get_current_directory(cwd, PATH_MAX); |
5913 | if (p == NULL) { |
5914 | return -1; |
5915 | } |
5916 | |
5917 | if (core_pattern[0] == '|') { |
5918 | written = jio_snprintf(buffer, bufferSize, |
5919 | "\"%s\" (or dumping to %s/core.%d)" , |
5920 | &core_pattern[1], p, current_process_id()); |
5921 | } else if (pid_pos != NULL) { |
5922 | *pid_pos = '\0'; |
5923 | written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s" , p, core_pattern, |
5924 | current_process_id(), tail); |
5925 | } else { |
5926 | written = jio_snprintf(buffer, bufferSize, "%s/%s" , p, core_pattern); |
5927 | } |
5928 | } |
5929 | |
5930 | if (written < 0) { |
5931 | return -1; |
5932 | } |
5933 | |
5934 | if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) { |
5935 | int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid" , O_RDONLY); |
5936 | |
5937 | if (core_uses_pid_file != -1) { |
5938 | char core_uses_pid = 0; |
5939 | ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1); |
5940 | ::close(core_uses_pid_file); |
5941 | |
5942 | if (core_uses_pid == '1') { |
5943 | jio_snprintf(buffer + written, bufferSize - written, |
5944 | ".%d" , current_process_id()); |
5945 | } |
5946 | } |
5947 | } |
5948 | |
5949 | return strlen(buffer); |
5950 | } |
5951 | |
5952 | bool os::start_debugging(char *buf, int buflen) { |
5953 | int len = (int)strlen(buf); |
5954 | char *p = &buf[len]; |
5955 | |
5956 | jio_snprintf(p, buflen-len, |
5957 | "\n\n" |
5958 | "Do you want to debug the problem?\n\n" |
5959 | "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n" |
5960 | "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n" |
5961 | "Otherwise, press RETURN to abort..." , |
5962 | os::current_process_id(), os::current_process_id(), |
5963 | os::current_thread_id(), os::current_thread_id()); |
5964 | |
5965 | bool yes = os::message_box("Unexpected Error" , buf); |
5966 | |
5967 | if (yes) { |
5968 | // yes, user asked VM to launch debugger |
5969 | jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d" , |
5970 | os::current_process_id(), os::current_process_id()); |
5971 | |
5972 | os::fork_and_exec(buf); |
5973 | yes = false; |
5974 | } |
5975 | return yes; |
5976 | } |
5977 | |
5978 | |
5979 | // Java/Compiler thread: |
5980 | // |
5981 | // Low memory addresses |
5982 | // P0 +------------------------+ |
5983 | // | |\ Java thread created by VM does not have glibc |
5984 | // | glibc guard page | - guard page, attached Java thread usually has |
5985 | // | |/ 1 glibc guard page. |
5986 | // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() |
5987 | // | |\ |
5988 | // | HotSpot Guard Pages | - red, yellow and reserved pages |
5989 | // | |/ |
5990 | // +------------------------+ JavaThread::stack_reserved_zone_base() |
5991 | // | |\ |
5992 | // | Normal Stack | - |
5993 | // | |/ |
5994 | // P2 +------------------------+ Thread::stack_base() |
5995 | // |
5996 | // Non-Java thread: |
5997 | // |
5998 | // Low memory addresses |
5999 | // P0 +------------------------+ |
6000 | // | |\ |
6001 | // | glibc guard page | - usually 1 page |
6002 | // | |/ |
6003 | // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() |
6004 | // | |\ |
6005 | // | Normal Stack | - |
6006 | // | |/ |
6007 | // P2 +------------------------+ Thread::stack_base() |
6008 | // |
6009 | // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size |
6010 | // returned from pthread_attr_getstack(). |
6011 | // ** Due to NPTL implementation error, linux takes the glibc guard page out |
6012 | // of the stack size given in pthread_attr. We work around this for |
6013 | // threads created by the VM. (We adapt bottom to be P1 and size accordingly.) |
6014 | // |
6015 | #ifndef ZERO |
6016 | static void current_stack_region(address * bottom, size_t * size) { |
6017 | if (os::is_primordial_thread()) { |
6018 | // primordial thread needs special handling because pthread_getattr_np() |
6019 | // may return bogus value. |
6020 | *bottom = os::Linux::initial_thread_stack_bottom(); |
6021 | *size = os::Linux::initial_thread_stack_size(); |
6022 | } else { |
6023 | pthread_attr_t attr; |
6024 | |
6025 | int rslt = pthread_getattr_np(pthread_self(), &attr); |
6026 | |
6027 | // JVM needs to know exact stack location, abort if it fails |
6028 | if (rslt != 0) { |
6029 | if (rslt == ENOMEM) { |
6030 | vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np" ); |
6031 | } else { |
6032 | fatal("pthread_getattr_np failed with error = %d" , rslt); |
6033 | } |
6034 | } |
6035 | |
6036 | if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) { |
6037 | fatal("Cannot locate current stack attributes!" ); |
6038 | } |
6039 | |
6040 | // Work around NPTL stack guard error. |
6041 | size_t guard_size = 0; |
6042 | rslt = pthread_attr_getguardsize(&attr, &guard_size); |
6043 | if (rslt != 0) { |
6044 | fatal("pthread_attr_getguardsize failed with error = %d" , rslt); |
6045 | } |
6046 | *bottom += guard_size; |
6047 | *size -= guard_size; |
6048 | |
6049 | pthread_attr_destroy(&attr); |
6050 | |
6051 | } |
6052 | assert(os::current_stack_pointer() >= *bottom && |
6053 | os::current_stack_pointer() < *bottom + *size, "just checking" ); |
6054 | } |
6055 | |
6056 | address os::current_stack_base() { |
6057 | address bottom; |
6058 | size_t size; |
6059 | current_stack_region(&bottom, &size); |
6060 | return (bottom + size); |
6061 | } |
6062 | |
6063 | size_t os::current_stack_size() { |
6064 | // This stack size includes the usable stack and HotSpot guard pages |
6065 | // (for the threads that have Hotspot guard pages). |
6066 | address bottom; |
6067 | size_t size; |
6068 | current_stack_region(&bottom, &size); |
6069 | return size; |
6070 | } |
6071 | #endif |
6072 | |
6073 | static inline struct timespec get_mtime(const char* filename) { |
6074 | struct stat st; |
6075 | int ret = os::stat(filename, &st); |
6076 | assert(ret == 0, "failed to stat() file '%s': %s" , filename, os::strerror(errno)); |
6077 | return st.st_mtim; |
6078 | } |
6079 | |
6080 | int os::compare_file_modified_times(const char* file1, const char* file2) { |
6081 | struct timespec filetime1 = get_mtime(file1); |
6082 | struct timespec filetime2 = get_mtime(file2); |
6083 | int diff = filetime1.tv_sec - filetime2.tv_sec; |
6084 | if (diff == 0) { |
6085 | return filetime1.tv_nsec - filetime2.tv_nsec; |
6086 | } |
6087 | return diff; |
6088 | } |
6089 | |
6090 | /////////////// Unit tests /////////////// |
6091 | |
6092 | #ifndef PRODUCT |
6093 | |
6094 | class TestReserveMemorySpecial : AllStatic { |
6095 | public: |
6096 | static void small_page_write(void* addr, size_t size) { |
6097 | size_t page_size = os::vm_page_size(); |
6098 | |
6099 | char* end = (char*)addr + size; |
6100 | for (char* p = (char*)addr; p < end; p += page_size) { |
6101 | *p = 1; |
6102 | } |
6103 | } |
6104 | |
6105 | static void test_reserve_memory_special_huge_tlbfs_only(size_t size) { |
6106 | if (!UseHugeTLBFS) { |
6107 | return; |
6108 | } |
6109 | |
6110 | char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false); |
6111 | |
6112 | if (addr != NULL) { |
6113 | small_page_write(addr, size); |
6114 | |
6115 | os::Linux::release_memory_special_huge_tlbfs(addr, size); |
6116 | } |
6117 | } |
6118 | |
6119 | static void test_reserve_memory_special_huge_tlbfs_only() { |
6120 | if (!UseHugeTLBFS) { |
6121 | return; |
6122 | } |
6123 | |
6124 | size_t lp = os::large_page_size(); |
6125 | |
6126 | for (size_t size = lp; size <= lp * 10; size += lp) { |
6127 | test_reserve_memory_special_huge_tlbfs_only(size); |
6128 | } |
6129 | } |
6130 | |
6131 | static void test_reserve_memory_special_huge_tlbfs_mixed() { |
6132 | size_t lp = os::large_page_size(); |
6133 | size_t ag = os::vm_allocation_granularity(); |
6134 | |
6135 | // sizes to test |
6136 | const size_t sizes[] = { |
6137 | lp, lp + ag, lp + lp / 2, lp * 2, |
6138 | lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, |
6139 | lp * 10, lp * 10 + lp / 2 |
6140 | }; |
6141 | const int num_sizes = sizeof(sizes) / sizeof(size_t); |
6142 | |
6143 | // For each size/alignment combination, we test three scenarios: |
6144 | // 1) with req_addr == NULL |
6145 | // 2) with a non-null req_addr at which we expect to successfully allocate |
6146 | // 3) with a non-null req_addr which contains a pre-existing mapping, at which we |
6147 | // expect the allocation to either fail or to ignore req_addr |
6148 | |
6149 | // Pre-allocate two areas; they shall be as large as the largest allocation |
6150 | // and aligned to the largest alignment we will be testing. |
6151 | const size_t mapping_size = sizes[num_sizes - 1] * 2; |
6152 | char* const mapping1 = (char*) ::mmap(NULL, mapping_size, |
6153 | PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
6154 | -1, 0); |
6155 | assert(mapping1 != MAP_FAILED, "should work" ); |
6156 | |
6157 | char* const mapping2 = (char*) ::mmap(NULL, mapping_size, |
6158 | PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
6159 | -1, 0); |
6160 | assert(mapping2 != MAP_FAILED, "should work" ); |
6161 | |
6162 | // Unmap the first mapping, but leave the second mapping intact: the first |
6163 | // mapping will serve as a value for a "good" req_addr (case 2). The second |
6164 | // mapping, still intact, as "bad" req_addr (case 3). |
6165 | ::munmap(mapping1, mapping_size); |
6166 | |
6167 | // Case 1 |
6168 | for (int i = 0; i < num_sizes; i++) { |
6169 | const size_t size = sizes[i]; |
6170 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
6171 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false); |
6172 | if (p != NULL) { |
6173 | assert(is_aligned(p, alignment), "must be" ); |
6174 | small_page_write(p, size); |
6175 | os::Linux::release_memory_special_huge_tlbfs(p, size); |
6176 | } |
6177 | } |
6178 | } |
6179 | |
6180 | // Case 2 |
6181 | for (int i = 0; i < num_sizes; i++) { |
6182 | const size_t size = sizes[i]; |
6183 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
6184 | char* const req_addr = align_up(mapping1, alignment); |
6185 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false); |
6186 | if (p != NULL) { |
6187 | assert(p == req_addr, "must be" ); |
6188 | small_page_write(p, size); |
6189 | os::Linux::release_memory_special_huge_tlbfs(p, size); |
6190 | } |
6191 | } |
6192 | } |
6193 | |
6194 | // Case 3 |
6195 | for (int i = 0; i < num_sizes; i++) { |
6196 | const size_t size = sizes[i]; |
6197 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
6198 | char* const req_addr = align_up(mapping2, alignment); |
6199 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false); |
6200 | // as the area around req_addr contains already existing mappings, the API should always |
6201 | // return NULL (as per contract, it cannot return another address) |
6202 | assert(p == NULL, "must be" ); |
6203 | } |
6204 | } |
6205 | |
6206 | ::munmap(mapping2, mapping_size); |
6207 | |
6208 | } |
6209 | |
6210 | static void test_reserve_memory_special_huge_tlbfs() { |
6211 | if (!UseHugeTLBFS) { |
6212 | return; |
6213 | } |
6214 | |
6215 | test_reserve_memory_special_huge_tlbfs_only(); |
6216 | test_reserve_memory_special_huge_tlbfs_mixed(); |
6217 | } |
6218 | |
6219 | static void test_reserve_memory_special_shm(size_t size, size_t alignment) { |
6220 | if (!UseSHM) { |
6221 | return; |
6222 | } |
6223 | |
6224 | char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false); |
6225 | |
6226 | if (addr != NULL) { |
6227 | assert(is_aligned(addr, alignment), "Check" ); |
6228 | assert(is_aligned(addr, os::large_page_size()), "Check" ); |
6229 | |
6230 | small_page_write(addr, size); |
6231 | |
6232 | os::Linux::release_memory_special_shm(addr, size); |
6233 | } |
6234 | } |
6235 | |
6236 | static void test_reserve_memory_special_shm() { |
6237 | size_t lp = os::large_page_size(); |
6238 | size_t ag = os::vm_allocation_granularity(); |
6239 | |
6240 | for (size_t size = ag; size < lp * 3; size += ag) { |
6241 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
6242 | test_reserve_memory_special_shm(size, alignment); |
6243 | } |
6244 | } |
6245 | } |
6246 | |
6247 | static void test() { |
6248 | test_reserve_memory_special_huge_tlbfs(); |
6249 | test_reserve_memory_special_shm(); |
6250 | } |
6251 | }; |
6252 | |
6253 | void TestReserveMemorySpecial_test() { |
6254 | TestReserveMemorySpecial::test(); |
6255 | } |
6256 | |
6257 | #endif |
6258 | |