| 1 | /* |
| 2 | * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | // no precompiled headers |
| 26 | #include "jvm.h" |
| 27 | #include "classfile/classLoader.hpp" |
| 28 | #include "classfile/systemDictionary.hpp" |
| 29 | #include "classfile/vmSymbols.hpp" |
| 30 | #include "code/icBuffer.hpp" |
| 31 | #include "code/vtableStubs.hpp" |
| 32 | #include "compiler/compileBroker.hpp" |
| 33 | #include "compiler/disassembler.hpp" |
| 34 | #include "interpreter/interpreter.hpp" |
| 35 | #include "logging/log.hpp" |
| 36 | #include "logging/logStream.hpp" |
| 37 | #include "memory/allocation.inline.hpp" |
| 38 | #include "memory/filemap.hpp" |
| 39 | #include "oops/oop.inline.hpp" |
| 40 | #include "os_linux.inline.hpp" |
| 41 | #include "os_posix.inline.hpp" |
| 42 | #include "os_share_linux.hpp" |
| 43 | #include "osContainer_linux.hpp" |
| 44 | #include "prims/jniFastGetField.hpp" |
| 45 | #include "prims/jvm_misc.hpp" |
| 46 | #include "runtime/arguments.hpp" |
| 47 | #include "runtime/atomic.hpp" |
| 48 | #include "runtime/extendedPC.hpp" |
| 49 | #include "runtime/globals.hpp" |
| 50 | #include "runtime/interfaceSupport.inline.hpp" |
| 51 | #include "runtime/init.hpp" |
| 52 | #include "runtime/java.hpp" |
| 53 | #include "runtime/javaCalls.hpp" |
| 54 | #include "runtime/mutexLocker.hpp" |
| 55 | #include "runtime/objectMonitor.hpp" |
| 56 | #include "runtime/orderAccess.hpp" |
| 57 | #include "runtime/osThread.hpp" |
| 58 | #include "runtime/perfMemory.hpp" |
| 59 | #include "runtime/sharedRuntime.hpp" |
| 60 | #include "runtime/statSampler.hpp" |
| 61 | #include "runtime/stubRoutines.hpp" |
| 62 | #include "runtime/thread.inline.hpp" |
| 63 | #include "runtime/threadCritical.hpp" |
| 64 | #include "runtime/threadSMR.hpp" |
| 65 | #include "runtime/timer.hpp" |
| 66 | #include "runtime/vm_version.hpp" |
| 67 | #include "semaphore_posix.hpp" |
| 68 | #include "services/attachListener.hpp" |
| 69 | #include "services/memTracker.hpp" |
| 70 | #include "services/runtimeService.hpp" |
| 71 | #include "utilities/align.hpp" |
| 72 | #include "utilities/decoder.hpp" |
| 73 | #include "utilities/defaultStream.hpp" |
| 74 | #include "utilities/events.hpp" |
| 75 | #include "utilities/elfFile.hpp" |
| 76 | #include "utilities/growableArray.hpp" |
| 77 | #include "utilities/macros.hpp" |
| 78 | #include "utilities/vmError.hpp" |
| 79 | |
| 80 | // put OS-includes here |
| 81 | # include <sys/types.h> |
| 82 | # include <sys/mman.h> |
| 83 | # include <sys/stat.h> |
| 84 | # include <sys/select.h> |
| 85 | # include <pthread.h> |
| 86 | # include <signal.h> |
| 87 | # include <errno.h> |
| 88 | # include <dlfcn.h> |
| 89 | # include <stdio.h> |
| 90 | # include <unistd.h> |
| 91 | # include <sys/resource.h> |
| 92 | # include <pthread.h> |
| 93 | # include <sys/stat.h> |
| 94 | # include <sys/time.h> |
| 95 | # include <sys/times.h> |
| 96 | # include <sys/utsname.h> |
| 97 | # include <sys/socket.h> |
| 98 | # include <sys/wait.h> |
| 99 | # include <pwd.h> |
| 100 | # include <poll.h> |
| 101 | # include <fcntl.h> |
| 102 | # include <string.h> |
| 103 | # include <syscall.h> |
| 104 | # include <sys/sysinfo.h> |
| 105 | # include <gnu/libc-version.h> |
| 106 | # include <sys/ipc.h> |
| 107 | # include <sys/shm.h> |
| 108 | # include <link.h> |
| 109 | # include <stdint.h> |
| 110 | # include <inttypes.h> |
| 111 | # include <sys/ioctl.h> |
| 112 | |
| 113 | #ifndef _GNU_SOURCE |
| 114 | #define _GNU_SOURCE |
| 115 | #include <sched.h> |
| 116 | #undef _GNU_SOURCE |
| 117 | #else |
| 118 | #include <sched.h> |
| 119 | #endif |
| 120 | |
| 121 | // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling |
| 122 | // getrusage() is prepared to handle the associated failure. |
| 123 | #ifndef RUSAGE_THREAD |
| 124 | #define RUSAGE_THREAD (1) /* only the calling thread */ |
| 125 | #endif |
| 126 | |
| 127 | #define MAX_PATH (2 * K) |
| 128 | |
| 129 | #define MAX_SECS 100000000 |
| 130 | |
| 131 | // for timer info max values which include all bits |
| 132 | #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) |
| 133 | |
| 134 | enum CoredumpFilterBit { |
| 135 | FILE_BACKED_PVT_BIT = 1 << 2, |
| 136 | FILE_BACKED_SHARED_BIT = 1 << 3, |
| 137 | LARGEPAGES_BIT = 1 << 6, |
| 138 | DAX_SHARED_BIT = 1 << 8 |
| 139 | }; |
| 140 | |
| 141 | //////////////////////////////////////////////////////////////////////////////// |
| 142 | // global variables |
| 143 | julong os::Linux::_physical_memory = 0; |
| 144 | |
| 145 | address os::Linux::_initial_thread_stack_bottom = NULL; |
| 146 | uintptr_t os::Linux::_initial_thread_stack_size = 0; |
| 147 | |
| 148 | int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL; |
| 149 | int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL; |
| 150 | Mutex* os::Linux::_createThread_lock = NULL; |
| 151 | pthread_t os::Linux::_main_thread; |
| 152 | int os::Linux::_page_size = -1; |
| 153 | bool os::Linux::_supports_fast_thread_cpu_time = false; |
| 154 | uint32_t os::Linux::_os_version = 0; |
| 155 | const char * os::Linux::_glibc_version = NULL; |
| 156 | const char * os::Linux::_libpthread_version = NULL; |
| 157 | |
| 158 | static jlong initial_time_count=0; |
| 159 | |
| 160 | static int clock_tics_per_sec = 100; |
| 161 | |
| 162 | // If the VM might have been created on the primordial thread, we need to resolve the |
| 163 | // primordial thread stack bounds and check if the current thread might be the |
| 164 | // primordial thread in places. If we know that the primordial thread is never used, |
| 165 | // such as when the VM was created by one of the standard java launchers, we can |
| 166 | // avoid this |
| 167 | static bool suppress_primordial_thread_resolution = false; |
| 168 | |
| 169 | // For diagnostics to print a message once. see run_periodic_checks |
| 170 | static sigset_t check_signal_done; |
| 171 | static bool check_signals = true; |
| 172 | |
| 173 | // Signal number used to suspend/resume a thread |
| 174 | |
| 175 | // do not use any signal number less than SIGSEGV, see 4355769 |
| 176 | static int SR_signum = SIGUSR2; |
| 177 | sigset_t SR_sigset; |
| 178 | |
| 179 | // utility functions |
| 180 | |
| 181 | static int SR_initialize(); |
| 182 | |
| 183 | julong os::available_memory() { |
| 184 | return Linux::available_memory(); |
| 185 | } |
| 186 | |
| 187 | julong os::Linux::available_memory() { |
| 188 | // values in struct sysinfo are "unsigned long" |
| 189 | struct sysinfo si; |
| 190 | julong avail_mem; |
| 191 | |
| 192 | if (OSContainer::is_containerized()) { |
| 193 | jlong mem_limit, mem_usage; |
| 194 | if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) { |
| 195 | log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value" , |
| 196 | mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited" , mem_limit); |
| 197 | } |
| 198 | if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) { |
| 199 | log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value" , mem_usage); |
| 200 | } |
| 201 | if (mem_limit > 0 && mem_usage > 0 ) { |
| 202 | avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0; |
| 203 | log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem); |
| 204 | return avail_mem; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | sysinfo(&si); |
| 209 | avail_mem = (julong)si.freeram * si.mem_unit; |
| 210 | log_trace(os)("available memory: " JULONG_FORMAT, avail_mem); |
| 211 | return avail_mem; |
| 212 | } |
| 213 | |
| 214 | julong os::physical_memory() { |
| 215 | jlong phys_mem = 0; |
| 216 | if (OSContainer::is_containerized()) { |
| 217 | jlong mem_limit; |
| 218 | if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) { |
| 219 | log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit); |
| 220 | return mem_limit; |
| 221 | } |
| 222 | log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value" , |
| 223 | mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited" , mem_limit); |
| 224 | } |
| 225 | |
| 226 | phys_mem = Linux::physical_memory(); |
| 227 | log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem); |
| 228 | return phys_mem; |
| 229 | } |
| 230 | |
| 231 | static uint64_t initial_total_ticks = 0; |
| 232 | static uint64_t initial_steal_ticks = 0; |
| 233 | static bool has_initial_tick_info = false; |
| 234 | |
| 235 | static void next_line(FILE *f) { |
| 236 | int c; |
| 237 | do { |
| 238 | c = fgetc(f); |
| 239 | } while (c != '\n' && c != EOF); |
| 240 | } |
| 241 | |
| 242 | bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) { |
| 243 | FILE* fh; |
| 244 | uint64_t userTicks, niceTicks, systemTicks, idleTicks; |
| 245 | // since at least kernel 2.6 : iowait: time waiting for I/O to complete |
| 246 | // irq: time servicing interrupts; softirq: time servicing softirqs |
| 247 | uint64_t iowTicks = 0, irqTicks = 0, sirqTicks= 0; |
| 248 | // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment |
| 249 | uint64_t stealTicks = 0; |
| 250 | // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the |
| 251 | // control of the Linux kernel |
| 252 | uint64_t guestNiceTicks = 0; |
| 253 | int logical_cpu = -1; |
| 254 | const int required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5; |
| 255 | int n; |
| 256 | |
| 257 | memset(pticks, 0, sizeof(CPUPerfTicks)); |
| 258 | |
| 259 | if ((fh = fopen("/proc/stat" , "r" )) == NULL) { |
| 260 | return false; |
| 261 | } |
| 262 | |
| 263 | if (which_logical_cpu == -1) { |
| 264 | n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
| 265 | UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
| 266 | UINT64_FORMAT " " UINT64_FORMAT " " , |
| 267 | &userTicks, &niceTicks, &systemTicks, &idleTicks, |
| 268 | &iowTicks, &irqTicks, &sirqTicks, |
| 269 | &stealTicks, &guestNiceTicks); |
| 270 | } else { |
| 271 | // Move to next line |
| 272 | next_line(fh); |
| 273 | |
| 274 | // find the line for requested cpu faster to just iterate linefeeds? |
| 275 | for (int i = 0; i < which_logical_cpu; i++) { |
| 276 | next_line(fh); |
| 277 | } |
| 278 | |
| 279 | n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
| 280 | UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " |
| 281 | UINT64_FORMAT " " UINT64_FORMAT " " , |
| 282 | &logical_cpu, &userTicks, &niceTicks, |
| 283 | &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks, |
| 284 | &stealTicks, &guestNiceTicks); |
| 285 | } |
| 286 | |
| 287 | fclose(fh); |
| 288 | if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) { |
| 289 | return false; |
| 290 | } |
| 291 | pticks->used = userTicks + niceTicks; |
| 292 | pticks->usedKernel = systemTicks + irqTicks + sirqTicks; |
| 293 | pticks->total = userTicks + niceTicks + systemTicks + idleTicks + |
| 294 | iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks; |
| 295 | |
| 296 | if (n > required_tickinfo_count + 3) { |
| 297 | pticks->steal = stealTicks; |
| 298 | pticks->has_steal_ticks = true; |
| 299 | } else { |
| 300 | pticks->steal = 0; |
| 301 | pticks->has_steal_ticks = false; |
| 302 | } |
| 303 | |
| 304 | return true; |
| 305 | } |
| 306 | |
| 307 | // Return true if user is running as root. |
| 308 | |
| 309 | bool os::have_special_privileges() { |
| 310 | static bool init = false; |
| 311 | static bool privileges = false; |
| 312 | if (!init) { |
| 313 | privileges = (getuid() != geteuid()) || (getgid() != getegid()); |
| 314 | init = true; |
| 315 | } |
| 316 | return privileges; |
| 317 | } |
| 318 | |
| 319 | |
| 320 | #ifndef SYS_gettid |
| 321 | // i386: 224, ia64: 1105, amd64: 186, sparc 143 |
| 322 | #ifdef __ia64__ |
| 323 | #define SYS_gettid 1105 |
| 324 | #else |
| 325 | #ifdef __i386__ |
| 326 | #define SYS_gettid 224 |
| 327 | #else |
| 328 | #ifdef __amd64__ |
| 329 | #define SYS_gettid 186 |
| 330 | #else |
| 331 | #ifdef __sparc__ |
| 332 | #define SYS_gettid 143 |
| 333 | #else |
| 334 | #error define gettid for the arch |
| 335 | #endif |
| 336 | #endif |
| 337 | #endif |
| 338 | #endif |
| 339 | #endif |
| 340 | |
| 341 | |
| 342 | // pid_t gettid() |
| 343 | // |
| 344 | // Returns the kernel thread id of the currently running thread. Kernel |
| 345 | // thread id is used to access /proc. |
| 346 | pid_t os::Linux::gettid() { |
| 347 | int rslt = syscall(SYS_gettid); |
| 348 | assert(rslt != -1, "must be." ); // old linuxthreads implementation? |
| 349 | return (pid_t)rslt; |
| 350 | } |
| 351 | |
| 352 | // Most versions of linux have a bug where the number of processors are |
| 353 | // determined by looking at the /proc file system. In a chroot environment, |
| 354 | // the system call returns 1. |
| 355 | static bool unsafe_chroot_detected = false; |
| 356 | static const char *unstable_chroot_error = "/proc file system not found.\n" |
| 357 | "Java may be unstable running multithreaded in a chroot " |
| 358 | "environment on Linux when /proc filesystem is not mounted." ; |
| 359 | |
| 360 | void os::Linux::initialize_system_info() { |
| 361 | set_processor_count(sysconf(_SC_NPROCESSORS_CONF)); |
| 362 | if (processor_count() == 1) { |
| 363 | pid_t pid = os::Linux::gettid(); |
| 364 | char fname[32]; |
| 365 | jio_snprintf(fname, sizeof(fname), "/proc/%d" , pid); |
| 366 | FILE *fp = fopen(fname, "r" ); |
| 367 | if (fp == NULL) { |
| 368 | unsafe_chroot_detected = true; |
| 369 | } else { |
| 370 | fclose(fp); |
| 371 | } |
| 372 | } |
| 373 | _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE); |
| 374 | assert(processor_count() > 0, "linux error" ); |
| 375 | } |
| 376 | |
| 377 | void os::init_system_properties_values() { |
| 378 | // The next steps are taken in the product version: |
| 379 | // |
| 380 | // Obtain the JAVA_HOME value from the location of libjvm.so. |
| 381 | // This library should be located at: |
| 382 | // <JAVA_HOME>/lib/{client|server}/libjvm.so. |
| 383 | // |
| 384 | // If "/jre/lib/" appears at the right place in the path, then we |
| 385 | // assume libjvm.so is installed in a JDK and we use this path. |
| 386 | // |
| 387 | // Otherwise exit with message: "Could not create the Java virtual machine." |
| 388 | // |
| 389 | // The following extra steps are taken in the debugging version: |
| 390 | // |
| 391 | // If "/jre/lib/" does NOT appear at the right place in the path |
| 392 | // instead of exit check for $JAVA_HOME environment variable. |
| 393 | // |
| 394 | // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>, |
| 395 | // then we append a fake suffix "hotspot/libjvm.so" to this path so |
| 396 | // it looks like libjvm.so is installed there |
| 397 | // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so. |
| 398 | // |
| 399 | // Otherwise exit. |
| 400 | // |
| 401 | // Important note: if the location of libjvm.so changes this |
| 402 | // code needs to be changed accordingly. |
| 403 | |
| 404 | // See ld(1): |
| 405 | // The linker uses the following search paths to locate required |
| 406 | // shared libraries: |
| 407 | // 1: ... |
| 408 | // ... |
| 409 | // 7: The default directories, normally /lib and /usr/lib. |
| 410 | #ifndef OVERRIDE_LIBPATH |
| 411 | #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390) |
| 412 | #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib" |
| 413 | #else |
| 414 | #define DEFAULT_LIBPATH "/lib:/usr/lib" |
| 415 | #endif |
| 416 | #else |
| 417 | #define DEFAULT_LIBPATH OVERRIDE_LIBPATH |
| 418 | #endif |
| 419 | |
| 420 | // Base path of extensions installed on the system. |
| 421 | #define SYS_EXT_DIR "/usr/java/packages" |
| 422 | #define EXTENSIONS_DIR "/lib/ext" |
| 423 | |
| 424 | // Buffer that fits several sprintfs. |
| 425 | // Note that the space for the colon and the trailing null are provided |
| 426 | // by the nulls included by the sizeof operator. |
| 427 | const size_t bufsize = |
| 428 | MAX2((size_t)MAXPATHLEN, // For dll_dir & friends. |
| 429 | (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir |
| 430 | char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal); |
| 431 | |
| 432 | // sysclasspath, java_home, dll_dir |
| 433 | { |
| 434 | char *pslash; |
| 435 | os::jvm_path(buf, bufsize); |
| 436 | |
| 437 | // Found the full path to libjvm.so. |
| 438 | // Now cut the path to <java_home>/jre if we can. |
| 439 | pslash = strrchr(buf, '/'); |
| 440 | if (pslash != NULL) { |
| 441 | *pslash = '\0'; // Get rid of /libjvm.so. |
| 442 | } |
| 443 | pslash = strrchr(buf, '/'); |
| 444 | if (pslash != NULL) { |
| 445 | *pslash = '\0'; // Get rid of /{client|server|hotspot}. |
| 446 | } |
| 447 | Arguments::set_dll_dir(buf); |
| 448 | |
| 449 | if (pslash != NULL) { |
| 450 | pslash = strrchr(buf, '/'); |
| 451 | if (pslash != NULL) { |
| 452 | *pslash = '\0'; // Get rid of /lib. |
| 453 | } |
| 454 | } |
| 455 | Arguments::set_java_home(buf); |
| 456 | if (!set_boot_path('/', ':')) { |
| 457 | vm_exit_during_initialization("Failed setting boot class path." , NULL); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // Where to look for native libraries. |
| 462 | // |
| 463 | // Note: Due to a legacy implementation, most of the library path |
| 464 | // is set in the launcher. This was to accomodate linking restrictions |
| 465 | // on legacy Linux implementations (which are no longer supported). |
| 466 | // Eventually, all the library path setting will be done here. |
| 467 | // |
| 468 | // However, to prevent the proliferation of improperly built native |
| 469 | // libraries, the new path component /usr/java/packages is added here. |
| 470 | // Eventually, all the library path setting will be done here. |
| 471 | { |
| 472 | // Get the user setting of LD_LIBRARY_PATH, and prepended it. It |
| 473 | // should always exist (until the legacy problem cited above is |
| 474 | // addressed). |
| 475 | const char *v = ::getenv("LD_LIBRARY_PATH" ); |
| 476 | const char *v_colon = ":" ; |
| 477 | if (v == NULL) { v = "" ; v_colon = "" ; } |
| 478 | // That's +1 for the colon and +1 for the trailing '\0'. |
| 479 | char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, |
| 480 | strlen(v) + 1 + |
| 481 | sizeof(SYS_EXT_DIR) + sizeof("/lib/" ) + sizeof(DEFAULT_LIBPATH) + 1, |
| 482 | mtInternal); |
| 483 | sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon); |
| 484 | Arguments::set_library_path(ld_library_path); |
| 485 | FREE_C_HEAP_ARRAY(char, ld_library_path); |
| 486 | } |
| 487 | |
| 488 | // Extensions directories. |
| 489 | sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home()); |
| 490 | Arguments::set_ext_dirs(buf); |
| 491 | |
| 492 | FREE_C_HEAP_ARRAY(char, buf); |
| 493 | |
| 494 | #undef DEFAULT_LIBPATH |
| 495 | #undef SYS_EXT_DIR |
| 496 | #undef EXTENSIONS_DIR |
| 497 | } |
| 498 | |
| 499 | //////////////////////////////////////////////////////////////////////////////// |
| 500 | // breakpoint support |
| 501 | |
| 502 | void os::breakpoint() { |
| 503 | BREAKPOINT; |
| 504 | } |
| 505 | |
| 506 | extern "C" void breakpoint() { |
| 507 | // use debugger to set breakpoint here |
| 508 | } |
| 509 | |
| 510 | //////////////////////////////////////////////////////////////////////////////// |
| 511 | // signal support |
| 512 | |
| 513 | debug_only(static bool signal_sets_initialized = false); |
| 514 | static sigset_t unblocked_sigs, vm_sigs; |
| 515 | |
| 516 | void os::Linux::signal_sets_init() { |
| 517 | // Should also have an assertion stating we are still single-threaded. |
| 518 | assert(!signal_sets_initialized, "Already initialized" ); |
| 519 | // Fill in signals that are necessarily unblocked for all threads in |
| 520 | // the VM. Currently, we unblock the following signals: |
| 521 | // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden |
| 522 | // by -Xrs (=ReduceSignalUsage)); |
| 523 | // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all |
| 524 | // other threads. The "ReduceSignalUsage" boolean tells us not to alter |
| 525 | // the dispositions or masks wrt these signals. |
| 526 | // Programs embedding the VM that want to use the above signals for their |
| 527 | // own purposes must, at this time, use the "-Xrs" option to prevent |
| 528 | // interference with shutdown hooks and BREAK_SIGNAL thread dumping. |
| 529 | // (See bug 4345157, and other related bugs). |
| 530 | // In reality, though, unblocking these signals is really a nop, since |
| 531 | // these signals are not blocked by default. |
| 532 | sigemptyset(&unblocked_sigs); |
| 533 | sigaddset(&unblocked_sigs, SIGILL); |
| 534 | sigaddset(&unblocked_sigs, SIGSEGV); |
| 535 | sigaddset(&unblocked_sigs, SIGBUS); |
| 536 | sigaddset(&unblocked_sigs, SIGFPE); |
| 537 | #if defined(PPC64) |
| 538 | sigaddset(&unblocked_sigs, SIGTRAP); |
| 539 | #endif |
| 540 | sigaddset(&unblocked_sigs, SR_signum); |
| 541 | |
| 542 | if (!ReduceSignalUsage) { |
| 543 | if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) { |
| 544 | sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL); |
| 545 | } |
| 546 | if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) { |
| 547 | sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL); |
| 548 | } |
| 549 | if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) { |
| 550 | sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL); |
| 551 | } |
| 552 | } |
| 553 | // Fill in signals that are blocked by all but the VM thread. |
| 554 | sigemptyset(&vm_sigs); |
| 555 | if (!ReduceSignalUsage) { |
| 556 | sigaddset(&vm_sigs, BREAK_SIGNAL); |
| 557 | } |
| 558 | debug_only(signal_sets_initialized = true); |
| 559 | |
| 560 | } |
| 561 | |
| 562 | // These are signals that are unblocked while a thread is running Java. |
| 563 | // (For some reason, they get blocked by default.) |
| 564 | sigset_t* os::Linux::unblocked_signals() { |
| 565 | assert(signal_sets_initialized, "Not initialized" ); |
| 566 | return &unblocked_sigs; |
| 567 | } |
| 568 | |
| 569 | // These are the signals that are blocked while a (non-VM) thread is |
| 570 | // running Java. Only the VM thread handles these signals. |
| 571 | sigset_t* os::Linux::vm_signals() { |
| 572 | assert(signal_sets_initialized, "Not initialized" ); |
| 573 | return &vm_sigs; |
| 574 | } |
| 575 | |
| 576 | void os::Linux::hotspot_sigmask(Thread* thread) { |
| 577 | |
| 578 | //Save caller's signal mask before setting VM signal mask |
| 579 | sigset_t caller_sigmask; |
| 580 | pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask); |
| 581 | |
| 582 | OSThread* osthread = thread->osthread(); |
| 583 | osthread->set_caller_sigmask(caller_sigmask); |
| 584 | |
| 585 | pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL); |
| 586 | |
| 587 | if (!ReduceSignalUsage) { |
| 588 | if (thread->is_VM_thread()) { |
| 589 | // Only the VM thread handles BREAK_SIGNAL ... |
| 590 | pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL); |
| 591 | } else { |
| 592 | // ... all other threads block BREAK_SIGNAL |
| 593 | pthread_sigmask(SIG_BLOCK, vm_signals(), NULL); |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | ////////////////////////////////////////////////////////////////////////////// |
| 599 | // detecting pthread library |
| 600 | |
| 601 | void os::Linux::libpthread_init() { |
| 602 | // Save glibc and pthread version strings. |
| 603 | #if !defined(_CS_GNU_LIBC_VERSION) || \ |
| 604 | !defined(_CS_GNU_LIBPTHREAD_VERSION) |
| 605 | #error "glibc too old (< 2.3.2)" |
| 606 | #endif |
| 607 | |
| 608 | size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0); |
| 609 | assert(n > 0, "cannot retrieve glibc version" ); |
| 610 | char *str = (char *)malloc(n, mtInternal); |
| 611 | confstr(_CS_GNU_LIBC_VERSION, str, n); |
| 612 | os::Linux::set_glibc_version(str); |
| 613 | |
| 614 | n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0); |
| 615 | assert(n > 0, "cannot retrieve pthread version" ); |
| 616 | str = (char *)malloc(n, mtInternal); |
| 617 | confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n); |
| 618 | os::Linux::set_libpthread_version(str); |
| 619 | } |
| 620 | |
| 621 | ///////////////////////////////////////////////////////////////////////////// |
| 622 | // thread stack expansion |
| 623 | |
| 624 | // os::Linux::manually_expand_stack() takes care of expanding the thread |
| 625 | // stack. Note that this is normally not needed: pthread stacks allocate |
| 626 | // thread stack using mmap() without MAP_NORESERVE, so the stack is already |
| 627 | // committed. Therefore it is not necessary to expand the stack manually. |
| 628 | // |
| 629 | // Manually expanding the stack was historically needed on LinuxThreads |
| 630 | // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays |
| 631 | // it is kept to deal with very rare corner cases: |
| 632 | // |
| 633 | // For one, user may run the VM on an own implementation of threads |
| 634 | // whose stacks are - like the old LinuxThreads - implemented using |
| 635 | // mmap(MAP_GROWSDOWN). |
| 636 | // |
| 637 | // Also, this coding may be needed if the VM is running on the primordial |
| 638 | // thread. Normally we avoid running on the primordial thread; however, |
| 639 | // user may still invoke the VM on the primordial thread. |
| 640 | // |
| 641 | // The following historical comment describes the details about running |
| 642 | // on a thread stack allocated with mmap(MAP_GROWSDOWN): |
| 643 | |
| 644 | |
| 645 | // Force Linux kernel to expand current thread stack. If "bottom" is close |
| 646 | // to the stack guard, caller should block all signals. |
| 647 | // |
| 648 | // MAP_GROWSDOWN: |
| 649 | // A special mmap() flag that is used to implement thread stacks. It tells |
| 650 | // kernel that the memory region should extend downwards when needed. This |
| 651 | // allows early versions of LinuxThreads to only mmap the first few pages |
| 652 | // when creating a new thread. Linux kernel will automatically expand thread |
| 653 | // stack as needed (on page faults). |
| 654 | // |
| 655 | // However, because the memory region of a MAP_GROWSDOWN stack can grow on |
| 656 | // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN |
| 657 | // region, it's hard to tell if the fault is due to a legitimate stack |
| 658 | // access or because of reading/writing non-exist memory (e.g. buffer |
| 659 | // overrun). As a rule, if the fault happens below current stack pointer, |
| 660 | // Linux kernel does not expand stack, instead a SIGSEGV is sent to the |
| 661 | // application (see Linux kernel fault.c). |
| 662 | // |
| 663 | // This Linux feature can cause SIGSEGV when VM bangs thread stack for |
| 664 | // stack overflow detection. |
| 665 | // |
| 666 | // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do |
| 667 | // not use MAP_GROWSDOWN. |
| 668 | // |
| 669 | // To get around the problem and allow stack banging on Linux, we need to |
| 670 | // manually expand thread stack after receiving the SIGSEGV. |
| 671 | // |
| 672 | // There are two ways to expand thread stack to address "bottom", we used |
| 673 | // both of them in JVM before 1.5: |
| 674 | // 1. adjust stack pointer first so that it is below "bottom", and then |
| 675 | // touch "bottom" |
| 676 | // 2. mmap() the page in question |
| 677 | // |
| 678 | // Now alternate signal stack is gone, it's harder to use 2. For instance, |
| 679 | // if current sp is already near the lower end of page 101, and we need to |
| 680 | // call mmap() to map page 100, it is possible that part of the mmap() frame |
| 681 | // will be placed in page 100. When page 100 is mapped, it is zero-filled. |
| 682 | // That will destroy the mmap() frame and cause VM to crash. |
| 683 | // |
| 684 | // The following code works by adjusting sp first, then accessing the "bottom" |
| 685 | // page to force a page fault. Linux kernel will then automatically expand the |
| 686 | // stack mapping. |
| 687 | // |
| 688 | // _expand_stack_to() assumes its frame size is less than page size, which |
| 689 | // should always be true if the function is not inlined. |
| 690 | |
| 691 | static void NOINLINE _expand_stack_to(address bottom) { |
| 692 | address sp; |
| 693 | size_t size; |
| 694 | volatile char *p; |
| 695 | |
| 696 | // Adjust bottom to point to the largest address within the same page, it |
| 697 | // gives us a one-page buffer if alloca() allocates slightly more memory. |
| 698 | bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size()); |
| 699 | bottom += os::Linux::page_size() - 1; |
| 700 | |
| 701 | // sp might be slightly above current stack pointer; if that's the case, we |
| 702 | // will alloca() a little more space than necessary, which is OK. Don't use |
| 703 | // os::current_stack_pointer(), as its result can be slightly below current |
| 704 | // stack pointer, causing us to not alloca enough to reach "bottom". |
| 705 | sp = (address)&sp; |
| 706 | |
| 707 | if (sp > bottom) { |
| 708 | size = sp - bottom; |
| 709 | p = (volatile char *)alloca(size); |
| 710 | assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?" ); |
| 711 | p[0] = '\0'; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | void os::Linux::expand_stack_to(address bottom) { |
| 716 | _expand_stack_to(bottom); |
| 717 | } |
| 718 | |
| 719 | bool os::Linux::manually_expand_stack(JavaThread * t, address addr) { |
| 720 | assert(t!=NULL, "just checking" ); |
| 721 | assert(t->osthread()->expanding_stack(), "expand should be set" ); |
| 722 | assert(t->stack_base() != NULL, "stack_base was not initialized" ); |
| 723 | |
| 724 | if (addr < t->stack_base() && addr >= t->stack_reserved_zone_base()) { |
| 725 | sigset_t mask_all, old_sigset; |
| 726 | sigfillset(&mask_all); |
| 727 | pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset); |
| 728 | _expand_stack_to(addr); |
| 729 | pthread_sigmask(SIG_SETMASK, &old_sigset, NULL); |
| 730 | return true; |
| 731 | } |
| 732 | return false; |
| 733 | } |
| 734 | |
| 735 | ////////////////////////////////////////////////////////////////////////////// |
| 736 | // create new thread |
| 737 | |
| 738 | // Thread start routine for all newly created threads |
| 739 | static void *thread_native_entry(Thread *thread) { |
| 740 | |
| 741 | thread->record_stack_base_and_size(); |
| 742 | |
| 743 | // Try to randomize the cache line index of hot stack frames. |
| 744 | // This helps when threads of the same stack traces evict each other's |
| 745 | // cache lines. The threads can be either from the same JVM instance, or |
| 746 | // from different JVM instances. The benefit is especially true for |
| 747 | // processors with hyperthreading technology. |
| 748 | static int counter = 0; |
| 749 | int pid = os::current_process_id(); |
| 750 | alloca(((pid ^ counter++) & 7) * 128); |
| 751 | |
| 752 | thread->initialize_thread_current(); |
| 753 | |
| 754 | OSThread* osthread = thread->osthread(); |
| 755 | Monitor* sync = osthread->startThread_lock(); |
| 756 | |
| 757 | osthread->set_thread_id(os::current_thread_id()); |
| 758 | |
| 759 | log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
| 760 | os::current_thread_id(), (uintx) pthread_self()); |
| 761 | |
| 762 | if (UseNUMA) { |
| 763 | int lgrp_id = os::numa_get_group_id(); |
| 764 | if (lgrp_id != -1) { |
| 765 | thread->set_lgrp_id(lgrp_id); |
| 766 | } |
| 767 | } |
| 768 | // initialize signal mask for this thread |
| 769 | os::Linux::hotspot_sigmask(thread); |
| 770 | |
| 771 | // initialize floating point control register |
| 772 | os::Linux::init_thread_fpu_state(); |
| 773 | |
| 774 | // handshaking with parent thread |
| 775 | { |
| 776 | MutexLocker ml(sync, Mutex::_no_safepoint_check_flag); |
| 777 | |
| 778 | // notify parent thread |
| 779 | osthread->set_state(INITIALIZED); |
| 780 | sync->notify_all(); |
| 781 | |
| 782 | // wait until os::start_thread() |
| 783 | while (osthread->get_state() == INITIALIZED) { |
| 784 | sync->wait_without_safepoint_check(); |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | assert(osthread->pthread_id() != 0, "pthread_id was not set as expected" ); |
| 789 | |
| 790 | // call one more level start routine |
| 791 | thread->call_run(); |
| 792 | |
| 793 | // Note: at this point the thread object may already have deleted itself. |
| 794 | // Prevent dereferencing it from here on out. |
| 795 | thread = NULL; |
| 796 | |
| 797 | log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
| 798 | os::current_thread_id(), (uintx) pthread_self()); |
| 799 | |
| 800 | return 0; |
| 801 | } |
| 802 | |
| 803 | bool os::create_thread(Thread* thread, ThreadType thr_type, |
| 804 | size_t req_stack_size) { |
| 805 | assert(thread->osthread() == NULL, "caller responsible" ); |
| 806 | |
| 807 | // Allocate the OSThread object |
| 808 | OSThread* osthread = new OSThread(NULL, NULL); |
| 809 | if (osthread == NULL) { |
| 810 | return false; |
| 811 | } |
| 812 | |
| 813 | // set the correct thread state |
| 814 | osthread->set_thread_type(thr_type); |
| 815 | |
| 816 | // Initial state is ALLOCATED but not INITIALIZED |
| 817 | osthread->set_state(ALLOCATED); |
| 818 | |
| 819 | thread->set_osthread(osthread); |
| 820 | |
| 821 | // init thread attributes |
| 822 | pthread_attr_t attr; |
| 823 | pthread_attr_init(&attr); |
| 824 | pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| 825 | |
| 826 | // Calculate stack size if it's not specified by caller. |
| 827 | size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size); |
| 828 | // In the Linux NPTL pthread implementation the guard size mechanism |
| 829 | // is not implemented properly. The posix standard requires adding |
| 830 | // the size of the guard pages to the stack size, instead Linux |
| 831 | // takes the space out of 'stacksize'. Thus we adapt the requested |
| 832 | // stack_size by the size of the guard pages to mimick proper |
| 833 | // behaviour. However, be careful not to end up with a size |
| 834 | // of zero due to overflow. Don't add the guard page in that case. |
| 835 | size_t guard_size = os::Linux::default_guard_size(thr_type); |
| 836 | if (stack_size <= SIZE_MAX - guard_size) { |
| 837 | stack_size += guard_size; |
| 838 | } |
| 839 | assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned" ); |
| 840 | |
| 841 | int status = pthread_attr_setstacksize(&attr, stack_size); |
| 842 | assert_status(status == 0, status, "pthread_attr_setstacksize" ); |
| 843 | |
| 844 | // Configure glibc guard page. |
| 845 | pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type)); |
| 846 | |
| 847 | ThreadState state; |
| 848 | |
| 849 | { |
| 850 | pthread_t tid; |
| 851 | int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread); |
| 852 | |
| 853 | char buf[64]; |
| 854 | if (ret == 0) { |
| 855 | log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). " , |
| 856 | (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr)); |
| 857 | } else { |
| 858 | log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s." , |
| 859 | os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr)); |
| 860 | // Log some OS information which might explain why creating the thread failed. |
| 861 | log_info(os, thread)("Number of threads approx. running in the VM: %d" , Threads::number_of_threads()); |
| 862 | LogStream st(Log(os, thread)::info()); |
| 863 | os::Posix::print_rlimit_info(&st); |
| 864 | os::print_memory_info(&st); |
| 865 | os::Linux::print_proc_sys_info(&st); |
| 866 | os::Linux::print_container_info(&st); |
| 867 | } |
| 868 | |
| 869 | pthread_attr_destroy(&attr); |
| 870 | |
| 871 | if (ret != 0) { |
| 872 | // Need to clean up stuff we've allocated so far |
| 873 | thread->set_osthread(NULL); |
| 874 | delete osthread; |
| 875 | return false; |
| 876 | } |
| 877 | |
| 878 | // Store pthread info into the OSThread |
| 879 | osthread->set_pthread_id(tid); |
| 880 | |
| 881 | // Wait until child thread is either initialized or aborted |
| 882 | { |
| 883 | Monitor* sync_with_child = osthread->startThread_lock(); |
| 884 | MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag); |
| 885 | while ((state = osthread->get_state()) == ALLOCATED) { |
| 886 | sync_with_child->wait_without_safepoint_check(); |
| 887 | } |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | // Aborted due to thread limit being reached |
| 892 | if (state == ZOMBIE) { |
| 893 | thread->set_osthread(NULL); |
| 894 | delete osthread; |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | // The thread is returned suspended (in state INITIALIZED), |
| 899 | // and is started higher up in the call chain |
| 900 | assert(state == INITIALIZED, "race condition" ); |
| 901 | return true; |
| 902 | } |
| 903 | |
| 904 | ///////////////////////////////////////////////////////////////////////////// |
| 905 | // attach existing thread |
| 906 | |
| 907 | // bootstrap the main thread |
| 908 | bool os::create_main_thread(JavaThread* thread) { |
| 909 | assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread" ); |
| 910 | return create_attached_thread(thread); |
| 911 | } |
| 912 | |
| 913 | bool os::create_attached_thread(JavaThread* thread) { |
| 914 | #ifdef ASSERT |
| 915 | thread->verify_not_published(); |
| 916 | #endif |
| 917 | |
| 918 | // Allocate the OSThread object |
| 919 | OSThread* osthread = new OSThread(NULL, NULL); |
| 920 | |
| 921 | if (osthread == NULL) { |
| 922 | return false; |
| 923 | } |
| 924 | |
| 925 | // Store pthread info into the OSThread |
| 926 | osthread->set_thread_id(os::Linux::gettid()); |
| 927 | osthread->set_pthread_id(::pthread_self()); |
| 928 | |
| 929 | // initialize floating point control register |
| 930 | os::Linux::init_thread_fpu_state(); |
| 931 | |
| 932 | // Initial thread state is RUNNABLE |
| 933 | osthread->set_state(RUNNABLE); |
| 934 | |
| 935 | thread->set_osthread(osthread); |
| 936 | |
| 937 | if (UseNUMA) { |
| 938 | int lgrp_id = os::numa_get_group_id(); |
| 939 | if (lgrp_id != -1) { |
| 940 | thread->set_lgrp_id(lgrp_id); |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | if (os::is_primordial_thread()) { |
| 945 | // If current thread is primordial thread, its stack is mapped on demand, |
| 946 | // see notes about MAP_GROWSDOWN. Here we try to force kernel to map |
| 947 | // the entire stack region to avoid SEGV in stack banging. |
| 948 | // It is also useful to get around the heap-stack-gap problem on SuSE |
| 949 | // kernel (see 4821821 for details). We first expand stack to the top |
| 950 | // of yellow zone, then enable stack yellow zone (order is significant, |
| 951 | // enabling yellow zone first will crash JVM on SuSE Linux), so there |
| 952 | // is no gap between the last two virtual memory regions. |
| 953 | |
| 954 | JavaThread *jt = (JavaThread *)thread; |
| 955 | address addr = jt->stack_reserved_zone_base(); |
| 956 | assert(addr != NULL, "initialization problem?" ); |
| 957 | assert(jt->stack_available(addr) > 0, "stack guard should not be enabled" ); |
| 958 | |
| 959 | osthread->set_expanding_stack(); |
| 960 | os::Linux::manually_expand_stack(jt, addr); |
| 961 | osthread->clear_expanding_stack(); |
| 962 | } |
| 963 | |
| 964 | // initialize signal mask for this thread |
| 965 | // and save the caller's signal mask |
| 966 | os::Linux::hotspot_sigmask(thread); |
| 967 | |
| 968 | log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ")." , |
| 969 | os::current_thread_id(), (uintx) pthread_self()); |
| 970 | |
| 971 | return true; |
| 972 | } |
| 973 | |
| 974 | void os::pd_start_thread(Thread* thread) { |
| 975 | OSThread * osthread = thread->osthread(); |
| 976 | assert(osthread->get_state() != INITIALIZED, "just checking" ); |
| 977 | Monitor* sync_with_child = osthread->startThread_lock(); |
| 978 | MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag); |
| 979 | sync_with_child->notify(); |
| 980 | } |
| 981 | |
| 982 | // Free Linux resources related to the OSThread |
| 983 | void os::free_thread(OSThread* osthread) { |
| 984 | assert(osthread != NULL, "osthread not set" ); |
| 985 | |
| 986 | // We are told to free resources of the argument thread, |
| 987 | // but we can only really operate on the current thread. |
| 988 | assert(Thread::current()->osthread() == osthread, |
| 989 | "os::free_thread but not current thread" ); |
| 990 | |
| 991 | #ifdef ASSERT |
| 992 | sigset_t current; |
| 993 | sigemptyset(¤t); |
| 994 | pthread_sigmask(SIG_SETMASK, NULL, ¤t); |
| 995 | assert(!sigismember(¤t, SR_signum), "SR signal should not be blocked!" ); |
| 996 | #endif |
| 997 | |
| 998 | // Restore caller's signal mask |
| 999 | sigset_t sigmask = osthread->caller_sigmask(); |
| 1000 | pthread_sigmask(SIG_SETMASK, &sigmask, NULL); |
| 1001 | |
| 1002 | delete osthread; |
| 1003 | } |
| 1004 | |
| 1005 | ////////////////////////////////////////////////////////////////////////////// |
| 1006 | // primordial thread |
| 1007 | |
| 1008 | // Check if current thread is the primordial thread, similar to Solaris thr_main. |
| 1009 | bool os::is_primordial_thread(void) { |
| 1010 | if (suppress_primordial_thread_resolution) { |
| 1011 | return false; |
| 1012 | } |
| 1013 | char dummy; |
| 1014 | // If called before init complete, thread stack bottom will be null. |
| 1015 | // Can be called if fatal error occurs before initialization. |
| 1016 | if (os::Linux::initial_thread_stack_bottom() == NULL) return false; |
| 1017 | assert(os::Linux::initial_thread_stack_bottom() != NULL && |
| 1018 | os::Linux::initial_thread_stack_size() != 0, |
| 1019 | "os::init did not locate primordial thread's stack region" ); |
| 1020 | if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() && |
| 1021 | (address)&dummy < os::Linux::initial_thread_stack_bottom() + |
| 1022 | os::Linux::initial_thread_stack_size()) { |
| 1023 | return true; |
| 1024 | } else { |
| 1025 | return false; |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | // Find the virtual memory area that contains addr |
| 1030 | static bool find_vma(address addr, address* vma_low, address* vma_high) { |
| 1031 | FILE *fp = fopen("/proc/self/maps" , "r" ); |
| 1032 | if (fp) { |
| 1033 | address low, high; |
| 1034 | while (!feof(fp)) { |
| 1035 | if (fscanf(fp, "%p-%p" , &low, &high) == 2) { |
| 1036 | if (low <= addr && addr < high) { |
| 1037 | if (vma_low) *vma_low = low; |
| 1038 | if (vma_high) *vma_high = high; |
| 1039 | fclose(fp); |
| 1040 | return true; |
| 1041 | } |
| 1042 | } |
| 1043 | for (;;) { |
| 1044 | int ch = fgetc(fp); |
| 1045 | if (ch == EOF || ch == (int)'\n') break; |
| 1046 | } |
| 1047 | } |
| 1048 | fclose(fp); |
| 1049 | } |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | // Locate primordial thread stack. This special handling of primordial thread stack |
| 1054 | // is needed because pthread_getattr_np() on most (all?) Linux distros returns |
| 1055 | // bogus value for the primordial process thread. While the launcher has created |
| 1056 | // the VM in a new thread since JDK 6, we still have to allow for the use of the |
| 1057 | // JNI invocation API from a primordial thread. |
| 1058 | void os::Linux::capture_initial_stack(size_t max_size) { |
| 1059 | |
| 1060 | // max_size is either 0 (which means accept OS default for thread stacks) or |
| 1061 | // a user-specified value known to be at least the minimum needed. If we |
| 1062 | // are actually on the primordial thread we can make it appear that we have a |
| 1063 | // smaller max_size stack by inserting the guard pages at that location. But we |
| 1064 | // cannot do anything to emulate a larger stack than what has been provided by |
| 1065 | // the OS or threading library. In fact if we try to use a stack greater than |
| 1066 | // what is set by rlimit then we will crash the hosting process. |
| 1067 | |
| 1068 | // Maximum stack size is the easy part, get it from RLIMIT_STACK. |
| 1069 | // If this is "unlimited" then it will be a huge value. |
| 1070 | struct rlimit rlim; |
| 1071 | getrlimit(RLIMIT_STACK, &rlim); |
| 1072 | size_t stack_size = rlim.rlim_cur; |
| 1073 | |
| 1074 | // 6308388: a bug in ld.so will relocate its own .data section to the |
| 1075 | // lower end of primordial stack; reduce ulimit -s value a little bit |
| 1076 | // so we won't install guard page on ld.so's data section. |
| 1077 | // But ensure we don't underflow the stack size - allow 1 page spare |
| 1078 | if (stack_size >= (size_t)(3 * page_size())) { |
| 1079 | stack_size -= 2 * page_size(); |
| 1080 | } |
| 1081 | |
| 1082 | // Try to figure out where the stack base (top) is. This is harder. |
| 1083 | // |
| 1084 | // When an application is started, glibc saves the initial stack pointer in |
| 1085 | // a global variable "__libc_stack_end", which is then used by system |
| 1086 | // libraries. __libc_stack_end should be pretty close to stack top. The |
| 1087 | // variable is available since the very early days. However, because it is |
| 1088 | // a private interface, it could disappear in the future. |
| 1089 | // |
| 1090 | // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar |
| 1091 | // to __libc_stack_end, it is very close to stack top, but isn't the real |
| 1092 | // stack top. Note that /proc may not exist if VM is running as a chroot |
| 1093 | // program, so reading /proc/<pid>/stat could fail. Also the contents of |
| 1094 | // /proc/<pid>/stat could change in the future (though unlikely). |
| 1095 | // |
| 1096 | // We try __libc_stack_end first. If that doesn't work, look for |
| 1097 | // /proc/<pid>/stat. If neither of them works, we use current stack pointer |
| 1098 | // as a hint, which should work well in most cases. |
| 1099 | |
| 1100 | uintptr_t stack_start; |
| 1101 | |
| 1102 | // try __libc_stack_end first |
| 1103 | uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end" ); |
| 1104 | if (p && *p) { |
| 1105 | stack_start = *p; |
| 1106 | } else { |
| 1107 | // see if we can get the start_stack field from /proc/self/stat |
| 1108 | FILE *fp; |
| 1109 | int pid; |
| 1110 | char state; |
| 1111 | int ppid; |
| 1112 | int pgrp; |
| 1113 | int session; |
| 1114 | int nr; |
| 1115 | int tpgrp; |
| 1116 | unsigned long flags; |
| 1117 | unsigned long minflt; |
| 1118 | unsigned long cminflt; |
| 1119 | unsigned long majflt; |
| 1120 | unsigned long cmajflt; |
| 1121 | unsigned long utime; |
| 1122 | unsigned long stime; |
| 1123 | long cutime; |
| 1124 | long cstime; |
| 1125 | long prio; |
| 1126 | long nice; |
| 1127 | long junk; |
| 1128 | long it_real; |
| 1129 | uintptr_t start; |
| 1130 | uintptr_t vsize; |
| 1131 | intptr_t ; |
| 1132 | uintptr_t ; |
| 1133 | uintptr_t scodes; |
| 1134 | uintptr_t ecode; |
| 1135 | int i; |
| 1136 | |
| 1137 | // Figure what the primordial thread stack base is. Code is inspired |
| 1138 | // by email from Hans Boehm. /proc/self/stat begins with current pid, |
| 1139 | // followed by command name surrounded by parentheses, state, etc. |
| 1140 | char stat[2048]; |
| 1141 | int statlen; |
| 1142 | |
| 1143 | fp = fopen("/proc/self/stat" , "r" ); |
| 1144 | if (fp) { |
| 1145 | statlen = fread(stat, 1, 2047, fp); |
| 1146 | stat[statlen] = '\0'; |
| 1147 | fclose(fp); |
| 1148 | |
| 1149 | // Skip pid and the command string. Note that we could be dealing with |
| 1150 | // weird command names, e.g. user could decide to rename java launcher |
| 1151 | // to "java 1.4.2 :)", then the stat file would look like |
| 1152 | // 1234 (java 1.4.2 :)) R ... ... |
| 1153 | // We don't really need to know the command string, just find the last |
| 1154 | // occurrence of ")" and then start parsing from there. See bug 4726580. |
| 1155 | char * s = strrchr(stat, ')'); |
| 1156 | |
| 1157 | i = 0; |
| 1158 | if (s) { |
| 1159 | // Skip blank chars |
| 1160 | do { s++; } while (s && isspace(*s)); |
| 1161 | |
| 1162 | #define _UFM UINTX_FORMAT |
| 1163 | #define _DFM INTX_FORMAT |
| 1164 | |
| 1165 | // 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 |
| 1166 | // 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 |
| 1167 | i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM, |
| 1168 | &state, // 3 %c |
| 1169 | &ppid, // 4 %d |
| 1170 | &pgrp, // 5 %d |
| 1171 | &session, // 6 %d |
| 1172 | &nr, // 7 %d |
| 1173 | &tpgrp, // 8 %d |
| 1174 | &flags, // 9 %lu |
| 1175 | &minflt, // 10 %lu |
| 1176 | &cminflt, // 11 %lu |
| 1177 | &majflt, // 12 %lu |
| 1178 | &cmajflt, // 13 %lu |
| 1179 | &utime, // 14 %lu |
| 1180 | &stime, // 15 %lu |
| 1181 | &cutime, // 16 %ld |
| 1182 | &cstime, // 17 %ld |
| 1183 | &prio, // 18 %ld |
| 1184 | &nice, // 19 %ld |
| 1185 | &junk, // 20 %ld |
| 1186 | &it_real, // 21 %ld |
| 1187 | &start, // 22 UINTX_FORMAT |
| 1188 | &vsize, // 23 UINTX_FORMAT |
| 1189 | &rss, // 24 INTX_FORMAT |
| 1190 | &rsslim, // 25 UINTX_FORMAT |
| 1191 | &scodes, // 26 UINTX_FORMAT |
| 1192 | &ecode, // 27 UINTX_FORMAT |
| 1193 | &stack_start); // 28 UINTX_FORMAT |
| 1194 | } |
| 1195 | |
| 1196 | #undef _UFM |
| 1197 | #undef _DFM |
| 1198 | |
| 1199 | if (i != 28 - 2) { |
| 1200 | assert(false, "Bad conversion from /proc/self/stat" ); |
| 1201 | // product mode - assume we are the primordial thread, good luck in the |
| 1202 | // embedded case. |
| 1203 | warning("Can't detect primordial thread stack location - bad conversion" ); |
| 1204 | stack_start = (uintptr_t) &rlim; |
| 1205 | } |
| 1206 | } else { |
| 1207 | // For some reason we can't open /proc/self/stat (for example, running on |
| 1208 | // FreeBSD with a Linux emulator, or inside chroot), this should work for |
| 1209 | // most cases, so don't abort: |
| 1210 | warning("Can't detect primordial thread stack location - no /proc/self/stat" ); |
| 1211 | stack_start = (uintptr_t) &rlim; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | // Now we have a pointer (stack_start) very close to the stack top, the |
| 1216 | // next thing to do is to figure out the exact location of stack top. We |
| 1217 | // can find out the virtual memory area that contains stack_start by |
| 1218 | // reading /proc/self/maps, it should be the last vma in /proc/self/maps, |
| 1219 | // and its upper limit is the real stack top. (again, this would fail if |
| 1220 | // running inside chroot, because /proc may not exist.) |
| 1221 | |
| 1222 | uintptr_t stack_top; |
| 1223 | address low, high; |
| 1224 | if (find_vma((address)stack_start, &low, &high)) { |
| 1225 | // success, "high" is the true stack top. (ignore "low", because initial |
| 1226 | // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.) |
| 1227 | stack_top = (uintptr_t)high; |
| 1228 | } else { |
| 1229 | // failed, likely because /proc/self/maps does not exist |
| 1230 | warning("Can't detect primordial thread stack location - find_vma failed" ); |
| 1231 | // best effort: stack_start is normally within a few pages below the real |
| 1232 | // stack top, use it as stack top, and reduce stack size so we won't put |
| 1233 | // guard page outside stack. |
| 1234 | stack_top = stack_start; |
| 1235 | stack_size -= 16 * page_size(); |
| 1236 | } |
| 1237 | |
| 1238 | // stack_top could be partially down the page so align it |
| 1239 | stack_top = align_up(stack_top, page_size()); |
| 1240 | |
| 1241 | // Allowed stack value is minimum of max_size and what we derived from rlimit |
| 1242 | if (max_size > 0) { |
| 1243 | _initial_thread_stack_size = MIN2(max_size, stack_size); |
| 1244 | } else { |
| 1245 | // Accept the rlimit max, but if stack is unlimited then it will be huge, so |
| 1246 | // clamp it at 8MB as we do on Solaris |
| 1247 | _initial_thread_stack_size = MIN2(stack_size, 8*M); |
| 1248 | } |
| 1249 | _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size()); |
| 1250 | _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size; |
| 1251 | |
| 1252 | assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!" ); |
| 1253 | |
| 1254 | if (log_is_enabled(Info, os, thread)) { |
| 1255 | // See if we seem to be on primordial process thread |
| 1256 | bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) && |
| 1257 | uintptr_t(&rlim) < stack_top; |
| 1258 | |
| 1259 | log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: " |
| 1260 | SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT, |
| 1261 | primordial ? "primordial" : "user" , max_size / K, _initial_thread_stack_size / K, |
| 1262 | stack_top, intptr_t(_initial_thread_stack_bottom)); |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | //////////////////////////////////////////////////////////////////////////////// |
| 1267 | // time support |
| 1268 | |
| 1269 | #ifndef SUPPORTS_CLOCK_MONOTONIC |
| 1270 | #error "Build platform doesn't support clock_gettime and related functionality" |
| 1271 | #endif |
| 1272 | |
| 1273 | // Time since start-up in seconds to a fine granularity. |
| 1274 | // Used by VMSelfDestructTimer and the MemProfiler. |
| 1275 | double os::elapsedTime() { |
| 1276 | |
| 1277 | return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution |
| 1278 | } |
| 1279 | |
| 1280 | jlong os::elapsed_counter() { |
| 1281 | return javaTimeNanos() - initial_time_count; |
| 1282 | } |
| 1283 | |
| 1284 | jlong os::elapsed_frequency() { |
| 1285 | return NANOSECS_PER_SEC; // nanosecond resolution |
| 1286 | } |
| 1287 | |
| 1288 | bool os::supports_vtime() { return true; } |
| 1289 | bool os::enable_vtime() { return false; } |
| 1290 | bool os::vtime_enabled() { return false; } |
| 1291 | |
| 1292 | double os::elapsedVTime() { |
| 1293 | struct rusage usage; |
| 1294 | int retval = getrusage(RUSAGE_THREAD, &usage); |
| 1295 | if (retval == 0) { |
| 1296 | return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000); |
| 1297 | } else { |
| 1298 | // better than nothing, but not much |
| 1299 | return elapsedTime(); |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | jlong os::javaTimeMillis() { |
| 1304 | timeval time; |
| 1305 | int status = gettimeofday(&time, NULL); |
| 1306 | assert(status != -1, "linux error" ); |
| 1307 | return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000); |
| 1308 | } |
| 1309 | |
| 1310 | void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) { |
| 1311 | timeval time; |
| 1312 | int status = gettimeofday(&time, NULL); |
| 1313 | assert(status != -1, "linux error" ); |
| 1314 | seconds = jlong(time.tv_sec); |
| 1315 | nanos = jlong(time.tv_usec) * 1000; |
| 1316 | } |
| 1317 | |
| 1318 | void os::Linux::fast_thread_clock_init() { |
| 1319 | if (!UseLinuxPosixThreadCPUClocks) { |
| 1320 | return; |
| 1321 | } |
| 1322 | clockid_t clockid; |
| 1323 | struct timespec tp; |
| 1324 | int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) = |
| 1325 | (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid" ); |
| 1326 | |
| 1327 | // Switch to using fast clocks for thread cpu time if |
| 1328 | // the clock_getres() returns 0 error code. |
| 1329 | // Note, that some kernels may support the current thread |
| 1330 | // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks |
| 1331 | // returned by the pthread_getcpuclockid(). |
| 1332 | // If the fast Posix clocks are supported then the clock_getres() |
| 1333 | // must return at least tp.tv_sec == 0 which means a resolution |
| 1334 | // better than 1 sec. This is extra check for reliability. |
| 1335 | |
| 1336 | if (pthread_getcpuclockid_func && |
| 1337 | pthread_getcpuclockid_func(_main_thread, &clockid) == 0 && |
| 1338 | os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) { |
| 1339 | _supports_fast_thread_cpu_time = true; |
| 1340 | _pthread_getcpuclockid = pthread_getcpuclockid_func; |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | jlong os::javaTimeNanos() { |
| 1345 | if (os::supports_monotonic_clock()) { |
| 1346 | struct timespec tp; |
| 1347 | int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp); |
| 1348 | assert(status == 0, "gettime error" ); |
| 1349 | jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec); |
| 1350 | return result; |
| 1351 | } else { |
| 1352 | timeval time; |
| 1353 | int status = gettimeofday(&time, NULL); |
| 1354 | assert(status != -1, "linux error" ); |
| 1355 | jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec); |
| 1356 | return 1000 * usecs; |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { |
| 1361 | if (os::supports_monotonic_clock()) { |
| 1362 | info_ptr->max_value = ALL_64_BITS; |
| 1363 | |
| 1364 | // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past |
| 1365 | info_ptr->may_skip_backward = false; // not subject to resetting or drifting |
| 1366 | info_ptr->may_skip_forward = false; // not subject to resetting or drifting |
| 1367 | } else { |
| 1368 | // gettimeofday - based on time in seconds since the Epoch thus does not wrap |
| 1369 | info_ptr->max_value = ALL_64_BITS; |
| 1370 | |
| 1371 | // gettimeofday is a real time clock so it skips |
| 1372 | info_ptr->may_skip_backward = true; |
| 1373 | info_ptr->may_skip_forward = true; |
| 1374 | } |
| 1375 | |
| 1376 | info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time |
| 1377 | } |
| 1378 | |
| 1379 | // Return the real, user, and system times in seconds from an |
| 1380 | // arbitrary fixed point in the past. |
| 1381 | bool os::getTimesSecs(double* process_real_time, |
| 1382 | double* process_user_time, |
| 1383 | double* process_system_time) { |
| 1384 | struct tms ticks; |
| 1385 | clock_t real_ticks = times(&ticks); |
| 1386 | |
| 1387 | if (real_ticks == (clock_t) (-1)) { |
| 1388 | return false; |
| 1389 | } else { |
| 1390 | double ticks_per_second = (double) clock_tics_per_sec; |
| 1391 | *process_user_time = ((double) ticks.tms_utime) / ticks_per_second; |
| 1392 | *process_system_time = ((double) ticks.tms_stime) / ticks_per_second; |
| 1393 | *process_real_time = ((double) real_ticks) / ticks_per_second; |
| 1394 | |
| 1395 | return true; |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | |
| 1400 | char * os::local_time_string(char *buf, size_t buflen) { |
| 1401 | struct tm t; |
| 1402 | time_t long_time; |
| 1403 | time(&long_time); |
| 1404 | localtime_r(&long_time, &t); |
| 1405 | jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d" , |
| 1406 | t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, |
| 1407 | t.tm_hour, t.tm_min, t.tm_sec); |
| 1408 | return buf; |
| 1409 | } |
| 1410 | |
| 1411 | struct tm* os::localtime_pd(const time_t* clock, struct tm* res) { |
| 1412 | return localtime_r(clock, res); |
| 1413 | } |
| 1414 | |
| 1415 | //////////////////////////////////////////////////////////////////////////////// |
| 1416 | // runtime exit support |
| 1417 | |
| 1418 | // Note: os::shutdown() might be called very early during initialization, or |
| 1419 | // called from signal handler. Before adding something to os::shutdown(), make |
| 1420 | // sure it is async-safe and can handle partially initialized VM. |
| 1421 | void os::shutdown() { |
| 1422 | |
| 1423 | // allow PerfMemory to attempt cleanup of any persistent resources |
| 1424 | perfMemory_exit(); |
| 1425 | |
| 1426 | // needs to remove object in file system |
| 1427 | AttachListener::abort(); |
| 1428 | |
| 1429 | // flush buffered output, finish log files |
| 1430 | ostream_abort(); |
| 1431 | |
| 1432 | // Check for abort hook |
| 1433 | abort_hook_t abort_hook = Arguments::abort_hook(); |
| 1434 | if (abort_hook != NULL) { |
| 1435 | abort_hook(); |
| 1436 | } |
| 1437 | |
| 1438 | } |
| 1439 | |
| 1440 | // Note: os::abort() might be called very early during initialization, or |
| 1441 | // called from signal handler. Before adding something to os::abort(), make |
| 1442 | // sure it is async-safe and can handle partially initialized VM. |
| 1443 | void os::abort(bool dump_core, void* siginfo, const void* context) { |
| 1444 | os::shutdown(); |
| 1445 | if (dump_core) { |
| 1446 | if (DumpPrivateMappingsInCore) { |
| 1447 | ClassLoader::close_jrt_image(); |
| 1448 | } |
| 1449 | #ifndef PRODUCT |
| 1450 | fdStream out(defaultStream::output_fd()); |
| 1451 | out.print_raw("Current thread is " ); |
| 1452 | char buf[16]; |
| 1453 | jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id()); |
| 1454 | out.print_raw_cr(buf); |
| 1455 | out.print_raw_cr("Dumping core ..." ); |
| 1456 | #endif |
| 1457 | ::abort(); // dump core |
| 1458 | } |
| 1459 | |
| 1460 | ::exit(1); |
| 1461 | } |
| 1462 | |
| 1463 | // Die immediately, no exit hook, no abort hook, no cleanup. |
| 1464 | // Dump a core file, if possible, for debugging. |
| 1465 | void os::die() { |
| 1466 | if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) { |
| 1467 | // For TimeoutInErrorHandlingTest.java, we just kill the VM |
| 1468 | // and don't take the time to generate a core file. |
| 1469 | os::signal_raise(SIGKILL); |
| 1470 | } else { |
| 1471 | ::abort(); |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | // thread_id is kernel thread id (similar to Solaris LWP id) |
| 1476 | intx os::current_thread_id() { return os::Linux::gettid(); } |
| 1477 | int os::current_process_id() { |
| 1478 | return ::getpid(); |
| 1479 | } |
| 1480 | |
| 1481 | // DLL functions |
| 1482 | |
| 1483 | const char* os::dll_file_extension() { return ".so" ; } |
| 1484 | |
| 1485 | // This must be hard coded because it's the system's temporary |
| 1486 | // directory not the java application's temp directory, ala java.io.tmpdir. |
| 1487 | const char* os::get_temp_directory() { return "/tmp" ; } |
| 1488 | |
| 1489 | static bool file_exists(const char* filename) { |
| 1490 | struct stat statbuf; |
| 1491 | if (filename == NULL || strlen(filename) == 0) { |
| 1492 | return false; |
| 1493 | } |
| 1494 | return os::stat(filename, &statbuf) == 0; |
| 1495 | } |
| 1496 | |
| 1497 | // check if addr is inside libjvm.so |
| 1498 | bool os::address_is_in_vm(address addr) { |
| 1499 | static address libjvm_base_addr; |
| 1500 | Dl_info dlinfo; |
| 1501 | |
| 1502 | if (libjvm_base_addr == NULL) { |
| 1503 | if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) { |
| 1504 | libjvm_base_addr = (address)dlinfo.dli_fbase; |
| 1505 | } |
| 1506 | assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm" ); |
| 1507 | } |
| 1508 | |
| 1509 | if (dladdr((void *)addr, &dlinfo) != 0) { |
| 1510 | if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true; |
| 1511 | } |
| 1512 | |
| 1513 | return false; |
| 1514 | } |
| 1515 | |
| 1516 | bool os::dll_address_to_function_name(address addr, char *buf, |
| 1517 | int buflen, int *offset, |
| 1518 | bool demangle) { |
| 1519 | // buf is not optional, but offset is optional |
| 1520 | assert(buf != NULL, "sanity check" ); |
| 1521 | |
| 1522 | Dl_info dlinfo; |
| 1523 | |
| 1524 | if (dladdr((void*)addr, &dlinfo) != 0) { |
| 1525 | // see if we have a matching symbol |
| 1526 | if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) { |
| 1527 | if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) { |
| 1528 | jio_snprintf(buf, buflen, "%s" , dlinfo.dli_sname); |
| 1529 | } |
| 1530 | if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr; |
| 1531 | return true; |
| 1532 | } |
| 1533 | // no matching symbol so try for just file info |
| 1534 | if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) { |
| 1535 | if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase), |
| 1536 | buf, buflen, offset, dlinfo.dli_fname, demangle)) { |
| 1537 | return true; |
| 1538 | } |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | buf[0] = '\0'; |
| 1543 | if (offset != NULL) *offset = -1; |
| 1544 | return false; |
| 1545 | } |
| 1546 | |
| 1547 | struct _address_to_library_name { |
| 1548 | address addr; // input : memory address |
| 1549 | size_t buflen; // size of fname |
| 1550 | char* fname; // output: library name |
| 1551 | address base; // library base addr |
| 1552 | }; |
| 1553 | |
| 1554 | static int address_to_library_name_callback(struct dl_phdr_info *info, |
| 1555 | size_t size, void *data) { |
| 1556 | int i; |
| 1557 | bool found = false; |
| 1558 | address libbase = NULL; |
| 1559 | struct _address_to_library_name * d = (struct _address_to_library_name *)data; |
| 1560 | |
| 1561 | // iterate through all loadable segments |
| 1562 | for (i = 0; i < info->dlpi_phnum; i++) { |
| 1563 | address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); |
| 1564 | if (info->dlpi_phdr[i].p_type == PT_LOAD) { |
| 1565 | // base address of a library is the lowest address of its loaded |
| 1566 | // segments. |
| 1567 | if (libbase == NULL || libbase > segbase) { |
| 1568 | libbase = segbase; |
| 1569 | } |
| 1570 | // see if 'addr' is within current segment |
| 1571 | if (segbase <= d->addr && |
| 1572 | d->addr < segbase + info->dlpi_phdr[i].p_memsz) { |
| 1573 | found = true; |
| 1574 | } |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | // dlpi_name is NULL or empty if the ELF file is executable, return 0 |
| 1579 | // so dll_address_to_library_name() can fall through to use dladdr() which |
| 1580 | // can figure out executable name from argv[0]. |
| 1581 | if (found && info->dlpi_name && info->dlpi_name[0]) { |
| 1582 | d->base = libbase; |
| 1583 | if (d->fname) { |
| 1584 | jio_snprintf(d->fname, d->buflen, "%s" , info->dlpi_name); |
| 1585 | } |
| 1586 | return 1; |
| 1587 | } |
| 1588 | return 0; |
| 1589 | } |
| 1590 | |
| 1591 | bool os::dll_address_to_library_name(address addr, char* buf, |
| 1592 | int buflen, int* offset) { |
| 1593 | // buf is not optional, but offset is optional |
| 1594 | assert(buf != NULL, "sanity check" ); |
| 1595 | |
| 1596 | Dl_info dlinfo; |
| 1597 | struct _address_to_library_name data; |
| 1598 | |
| 1599 | // There is a bug in old glibc dladdr() implementation that it could resolve |
| 1600 | // to wrong library name if the .so file has a base address != NULL. Here |
| 1601 | // we iterate through the program headers of all loaded libraries to find |
| 1602 | // out which library 'addr' really belongs to. This workaround can be |
| 1603 | // removed once the minimum requirement for glibc is moved to 2.3.x. |
| 1604 | data.addr = addr; |
| 1605 | data.fname = buf; |
| 1606 | data.buflen = buflen; |
| 1607 | data.base = NULL; |
| 1608 | int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data); |
| 1609 | |
| 1610 | if (rslt) { |
| 1611 | // buf already contains library name |
| 1612 | if (offset) *offset = addr - data.base; |
| 1613 | return true; |
| 1614 | } |
| 1615 | if (dladdr((void*)addr, &dlinfo) != 0) { |
| 1616 | if (dlinfo.dli_fname != NULL) { |
| 1617 | jio_snprintf(buf, buflen, "%s" , dlinfo.dli_fname); |
| 1618 | } |
| 1619 | if (dlinfo.dli_fbase != NULL && offset != NULL) { |
| 1620 | *offset = addr - (address)dlinfo.dli_fbase; |
| 1621 | } |
| 1622 | return true; |
| 1623 | } |
| 1624 | |
| 1625 | buf[0] = '\0'; |
| 1626 | if (offset) *offset = -1; |
| 1627 | return false; |
| 1628 | } |
| 1629 | |
| 1630 | // Loads .dll/.so and |
| 1631 | // in case of error it checks if .dll/.so was built for the |
| 1632 | // same architecture as Hotspot is running on |
| 1633 | |
| 1634 | |
| 1635 | // Remember the stack's state. The Linux dynamic linker will change |
| 1636 | // the stack to 'executable' at most once, so we must safepoint only once. |
| 1637 | bool os::Linux::_stack_is_executable = false; |
| 1638 | |
| 1639 | // VM operation that loads a library. This is necessary if stack protection |
| 1640 | // of the Java stacks can be lost during loading the library. If we |
| 1641 | // do not stop the Java threads, they can stack overflow before the stacks |
| 1642 | // are protected again. |
| 1643 | class VM_LinuxDllLoad: public VM_Operation { |
| 1644 | private: |
| 1645 | const char *_filename; |
| 1646 | char *_ebuf; |
| 1647 | int _ebuflen; |
| 1648 | void *_lib; |
| 1649 | public: |
| 1650 | VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) : |
| 1651 | _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {} |
| 1652 | VMOp_Type type() const { return VMOp_LinuxDllLoad; } |
| 1653 | void doit() { |
| 1654 | _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen); |
| 1655 | os::Linux::_stack_is_executable = true; |
| 1656 | } |
| 1657 | void* loaded_library() { return _lib; } |
| 1658 | }; |
| 1659 | |
| 1660 | void * os::dll_load(const char *filename, char *ebuf, int ebuflen) { |
| 1661 | void * result = NULL; |
| 1662 | bool load_attempted = false; |
| 1663 | |
| 1664 | // Check whether the library to load might change execution rights |
| 1665 | // of the stack. If they are changed, the protection of the stack |
| 1666 | // guard pages will be lost. We need a safepoint to fix this. |
| 1667 | // |
| 1668 | // See Linux man page execstack(8) for more info. |
| 1669 | if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) { |
| 1670 | if (!ElfFile::specifies_noexecstack(filename)) { |
| 1671 | if (!is_init_completed()) { |
| 1672 | os::Linux::_stack_is_executable = true; |
| 1673 | // This is OK - No Java threads have been created yet, and hence no |
| 1674 | // stack guard pages to fix. |
| 1675 | // |
| 1676 | // Dynamic loader will make all stacks executable after |
| 1677 | // this function returns, and will not do that again. |
| 1678 | assert(Threads::number_of_threads() == 0, "no Java threads should exist yet." ); |
| 1679 | } else { |
| 1680 | warning("You have loaded library %s which might have disabled stack guard. " |
| 1681 | "The VM will try to fix the stack guard now.\n" |
| 1682 | "It's highly recommended that you fix the library with " |
| 1683 | "'execstack -c <libfile>', or link it with '-z noexecstack'." , |
| 1684 | filename); |
| 1685 | |
| 1686 | assert(Thread::current()->is_Java_thread(), "must be Java thread" ); |
| 1687 | JavaThread *jt = JavaThread::current(); |
| 1688 | if (jt->thread_state() != _thread_in_native) { |
| 1689 | // This happens when a compiler thread tries to load a hsdis-<arch>.so file |
| 1690 | // that requires ExecStack. Cannot enter safe point. Let's give up. |
| 1691 | warning("Unable to fix stack guard. Giving up." ); |
| 1692 | } else { |
| 1693 | if (!LoadExecStackDllInVMThread) { |
| 1694 | // This is for the case where the DLL has an static |
| 1695 | // constructor function that executes JNI code. We cannot |
| 1696 | // load such DLLs in the VMThread. |
| 1697 | result = os::Linux::dlopen_helper(filename, ebuf, ebuflen); |
| 1698 | } |
| 1699 | |
| 1700 | ThreadInVMfromNative tiv(jt); |
| 1701 | debug_only(VMNativeEntryWrapper vew;) |
| 1702 | |
| 1703 | VM_LinuxDllLoad op(filename, ebuf, ebuflen); |
| 1704 | VMThread::execute(&op); |
| 1705 | if (LoadExecStackDllInVMThread) { |
| 1706 | result = op.loaded_library(); |
| 1707 | } |
| 1708 | load_attempted = true; |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | if (!load_attempted) { |
| 1715 | result = os::Linux::dlopen_helper(filename, ebuf, ebuflen); |
| 1716 | } |
| 1717 | |
| 1718 | if (result != NULL) { |
| 1719 | // Successful loading |
| 1720 | return result; |
| 1721 | } |
| 1722 | |
| 1723 | Elf32_Ehdr elf_head; |
| 1724 | int diag_msg_max_length=ebuflen-strlen(ebuf); |
| 1725 | char* diag_msg_buf=ebuf+strlen(ebuf); |
| 1726 | |
| 1727 | if (diag_msg_max_length==0) { |
| 1728 | // No more space in ebuf for additional diagnostics message |
| 1729 | return NULL; |
| 1730 | } |
| 1731 | |
| 1732 | |
| 1733 | int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK); |
| 1734 | |
| 1735 | if (file_descriptor < 0) { |
| 1736 | // Can't open library, report dlerror() message |
| 1737 | return NULL; |
| 1738 | } |
| 1739 | |
| 1740 | bool failed_to_read_elf_head= |
| 1741 | (sizeof(elf_head)!= |
| 1742 | (::read(file_descriptor, &elf_head,sizeof(elf_head)))); |
| 1743 | |
| 1744 | ::close(file_descriptor); |
| 1745 | if (failed_to_read_elf_head) { |
| 1746 | // file i/o error - report dlerror() msg |
| 1747 | return NULL; |
| 1748 | } |
| 1749 | |
| 1750 | typedef struct { |
| 1751 | Elf32_Half code; // Actual value as defined in elf.h |
| 1752 | Elf32_Half compat_class; // Compatibility of archs at VM's sense |
| 1753 | unsigned char elf_class; // 32 or 64 bit |
| 1754 | unsigned char endianess; // MSB or LSB |
| 1755 | char* name; // String representation |
| 1756 | } arch_t; |
| 1757 | |
| 1758 | #ifndef EM_486 |
| 1759 | #define EM_486 6 /* Intel 80486 */ |
| 1760 | #endif |
| 1761 | #ifndef EM_AARCH64 |
| 1762 | #define EM_AARCH64 183 /* ARM AARCH64 */ |
| 1763 | #endif |
| 1764 | |
| 1765 | static const arch_t arch_array[]={ |
| 1766 | {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32" }, |
| 1767 | {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32" }, |
| 1768 | {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64" }, |
| 1769 | {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64" }, |
| 1770 | {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32" }, |
| 1771 | {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32" }, |
| 1772 | {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64" }, |
| 1773 | {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32" }, |
| 1774 | #if defined(VM_LITTLE_ENDIAN) |
| 1775 | {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE" }, |
| 1776 | {EM_SH, EM_SH, ELFCLASS32, ELFDATA2LSB, (char*)"SuperH" }, |
| 1777 | #else |
| 1778 | {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64" }, |
| 1779 | {EM_SH, EM_SH, ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE" }, |
| 1780 | #endif |
| 1781 | {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM" }, |
| 1782 | {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390" }, |
| 1783 | {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha" }, |
| 1784 | {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel" }, |
| 1785 | {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS" }, |
| 1786 | {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC" }, |
| 1787 | {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k" }, |
| 1788 | {EM_AARCH64, EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64" }, |
| 1789 | }; |
| 1790 | |
| 1791 | #if (defined IA32) |
| 1792 | static Elf32_Half running_arch_code=EM_386; |
| 1793 | #elif (defined AMD64) || (defined X32) |
| 1794 | static Elf32_Half running_arch_code=EM_X86_64; |
| 1795 | #elif (defined IA64) |
| 1796 | static Elf32_Half running_arch_code=EM_IA_64; |
| 1797 | #elif (defined __sparc) && (defined _LP64) |
| 1798 | static Elf32_Half running_arch_code=EM_SPARCV9; |
| 1799 | #elif (defined __sparc) && (!defined _LP64) |
| 1800 | static Elf32_Half running_arch_code=EM_SPARC; |
| 1801 | #elif (defined __powerpc64__) |
| 1802 | static Elf32_Half running_arch_code=EM_PPC64; |
| 1803 | #elif (defined __powerpc__) |
| 1804 | static Elf32_Half running_arch_code=EM_PPC; |
| 1805 | #elif (defined AARCH64) |
| 1806 | static Elf32_Half running_arch_code=EM_AARCH64; |
| 1807 | #elif (defined ARM) |
| 1808 | static Elf32_Half running_arch_code=EM_ARM; |
| 1809 | #elif (defined S390) |
| 1810 | static Elf32_Half running_arch_code=EM_S390; |
| 1811 | #elif (defined ALPHA) |
| 1812 | static Elf32_Half running_arch_code=EM_ALPHA; |
| 1813 | #elif (defined MIPSEL) |
| 1814 | static Elf32_Half running_arch_code=EM_MIPS_RS3_LE; |
| 1815 | #elif (defined PARISC) |
| 1816 | static Elf32_Half running_arch_code=EM_PARISC; |
| 1817 | #elif (defined MIPS) |
| 1818 | static Elf32_Half running_arch_code=EM_MIPS; |
| 1819 | #elif (defined M68K) |
| 1820 | static Elf32_Half running_arch_code=EM_68K; |
| 1821 | #elif (defined SH) |
| 1822 | static Elf32_Half running_arch_code=EM_SH; |
| 1823 | #else |
| 1824 | #error Method os::dll_load requires that one of following is defined:\ |
| 1825 | AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc |
| 1826 | #endif |
| 1827 | |
| 1828 | // Identify compatability class for VM's architecture and library's architecture |
| 1829 | // Obtain string descriptions for architectures |
| 1830 | |
| 1831 | arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL}; |
| 1832 | int running_arch_index=-1; |
| 1833 | |
| 1834 | for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) { |
| 1835 | if (running_arch_code == arch_array[i].code) { |
| 1836 | running_arch_index = i; |
| 1837 | } |
| 1838 | if (lib_arch.code == arch_array[i].code) { |
| 1839 | lib_arch.compat_class = arch_array[i].compat_class; |
| 1840 | lib_arch.name = arch_array[i].name; |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | assert(running_arch_index != -1, |
| 1845 | "Didn't find running architecture code (running_arch_code) in arch_array" ); |
| 1846 | if (running_arch_index == -1) { |
| 1847 | // Even though running architecture detection failed |
| 1848 | // we may still continue with reporting dlerror() message |
| 1849 | return NULL; |
| 1850 | } |
| 1851 | |
| 1852 | if (lib_arch.endianess != arch_array[running_arch_index].endianess) { |
| 1853 | ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)" ); |
| 1854 | return NULL; |
| 1855 | } |
| 1856 | |
| 1857 | #ifndef S390 |
| 1858 | if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) { |
| 1859 | ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)" ); |
| 1860 | return NULL; |
| 1861 | } |
| 1862 | #endif // !S390 |
| 1863 | |
| 1864 | if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) { |
| 1865 | if (lib_arch.name!=NULL) { |
| 1866 | ::snprintf(diag_msg_buf, diag_msg_max_length-1, |
| 1867 | " (Possible cause: can't load %s-bit .so on a %s-bit platform)" , |
| 1868 | lib_arch.name, arch_array[running_arch_index].name); |
| 1869 | } else { |
| 1870 | ::snprintf(diag_msg_buf, diag_msg_max_length-1, |
| 1871 | " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)" , |
| 1872 | lib_arch.code, |
| 1873 | arch_array[running_arch_index].name); |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | return NULL; |
| 1878 | } |
| 1879 | |
| 1880 | void * os::Linux::dlopen_helper(const char *filename, char *ebuf, |
| 1881 | int ebuflen) { |
| 1882 | void * result = ::dlopen(filename, RTLD_LAZY); |
| 1883 | if (result == NULL) { |
| 1884 | const char* error_report = ::dlerror(); |
| 1885 | if (error_report == NULL) { |
| 1886 | error_report = "dlerror returned no error description" ; |
| 1887 | } |
| 1888 | if (ebuf != NULL && ebuflen > 0) { |
| 1889 | ::strncpy(ebuf, error_report, ebuflen-1); |
| 1890 | ebuf[ebuflen-1]='\0'; |
| 1891 | } |
| 1892 | Events::log(NULL, "Loading shared library %s failed, %s" , filename, error_report); |
| 1893 | } else { |
| 1894 | Events::log(NULL, "Loaded shared library %s" , filename); |
| 1895 | } |
| 1896 | return result; |
| 1897 | } |
| 1898 | |
| 1899 | void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, |
| 1900 | int ebuflen) { |
| 1901 | void * result = NULL; |
| 1902 | if (LoadExecStackDllInVMThread) { |
| 1903 | result = dlopen_helper(filename, ebuf, ebuflen); |
| 1904 | } |
| 1905 | |
| 1906 | // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a |
| 1907 | // library that requires an executable stack, or which does not have this |
| 1908 | // stack attribute set, dlopen changes the stack attribute to executable. The |
| 1909 | // read protection of the guard pages gets lost. |
| 1910 | // |
| 1911 | // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad |
| 1912 | // may have been queued at the same time. |
| 1913 | |
| 1914 | if (!_stack_is_executable) { |
| 1915 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
| 1916 | if (!jt->stack_guard_zone_unused() && // Stack not yet fully initialized |
| 1917 | jt->stack_guards_enabled()) { // No pending stack overflow exceptions |
| 1918 | if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) { |
| 1919 | warning("Attempt to reguard stack yellow zone failed." ); |
| 1920 | } |
| 1921 | } |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | return result; |
| 1926 | } |
| 1927 | |
| 1928 | void* os::dll_lookup(void* handle, const char* name) { |
| 1929 | void* res = dlsym(handle, name); |
| 1930 | return res; |
| 1931 | } |
| 1932 | |
| 1933 | void* os::get_default_process_handle() { |
| 1934 | return (void*)::dlopen(NULL, RTLD_LAZY); |
| 1935 | } |
| 1936 | |
| 1937 | static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) { |
| 1938 | int fd = ::open(filename, O_RDONLY); |
| 1939 | if (fd == -1) { |
| 1940 | return false; |
| 1941 | } |
| 1942 | |
| 1943 | if (hdr != NULL) { |
| 1944 | st->print_cr("%s" , hdr); |
| 1945 | } |
| 1946 | |
| 1947 | char buf[33]; |
| 1948 | int bytes; |
| 1949 | buf[32] = '\0'; |
| 1950 | while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) { |
| 1951 | st->print_raw(buf, bytes); |
| 1952 | } |
| 1953 | |
| 1954 | ::close(fd); |
| 1955 | |
| 1956 | return true; |
| 1957 | } |
| 1958 | |
| 1959 | void os::print_dll_info(outputStream *st) { |
| 1960 | st->print_cr("Dynamic libraries:" ); |
| 1961 | |
| 1962 | char fname[32]; |
| 1963 | pid_t pid = os::Linux::gettid(); |
| 1964 | |
| 1965 | jio_snprintf(fname, sizeof(fname), "/proc/%d/maps" , pid); |
| 1966 | |
| 1967 | if (!_print_ascii_file(fname, st)) { |
| 1968 | st->print("Can not get library information for pid = %d\n" , pid); |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) { |
| 1973 | FILE *procmapsFile = NULL; |
| 1974 | |
| 1975 | // Open the procfs maps file for the current process |
| 1976 | if ((procmapsFile = fopen("/proc/self/maps" , "r" )) != NULL) { |
| 1977 | // Allocate PATH_MAX for file name plus a reasonable size for other fields. |
| 1978 | char line[PATH_MAX + 100]; |
| 1979 | |
| 1980 | // Read line by line from 'file' |
| 1981 | while (fgets(line, sizeof(line), procmapsFile) != NULL) { |
| 1982 | u8 base, top, offset, inode; |
| 1983 | char permissions[5]; |
| 1984 | char device[6]; |
| 1985 | char name[PATH_MAX + 1]; |
| 1986 | |
| 1987 | // Parse fields from line |
| 1988 | sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s" , |
| 1989 | &base, &top, permissions, &offset, device, &inode, name); |
| 1990 | |
| 1991 | // Filter by device id '00:00' so that we only get file system mapped files. |
| 1992 | if (strcmp(device, "00:00" ) != 0) { |
| 1993 | |
| 1994 | // Call callback with the fields of interest |
| 1995 | if(callback(name, (address)base, (address)top, param)) { |
| 1996 | // Oops abort, callback aborted |
| 1997 | fclose(procmapsFile); |
| 1998 | return 1; |
| 1999 | } |
| 2000 | } |
| 2001 | } |
| 2002 | fclose(procmapsFile); |
| 2003 | } |
| 2004 | return 0; |
| 2005 | } |
| 2006 | |
| 2007 | void os::print_os_info_brief(outputStream* st) { |
| 2008 | os::Linux::print_distro_info(st); |
| 2009 | |
| 2010 | os::Posix::print_uname_info(st); |
| 2011 | |
| 2012 | os::Linux::print_libversion_info(st); |
| 2013 | |
| 2014 | } |
| 2015 | |
| 2016 | void os::print_os_info(outputStream* st) { |
| 2017 | st->print("OS:" ); |
| 2018 | |
| 2019 | os::Linux::print_distro_info(st); |
| 2020 | |
| 2021 | os::Posix::print_uname_info(st); |
| 2022 | |
| 2023 | // Print warning if unsafe chroot environment detected |
| 2024 | if (unsafe_chroot_detected) { |
| 2025 | st->print("WARNING!! " ); |
| 2026 | st->print_cr("%s" , unstable_chroot_error); |
| 2027 | } |
| 2028 | |
| 2029 | os::Linux::print_libversion_info(st); |
| 2030 | |
| 2031 | os::Posix::print_rlimit_info(st); |
| 2032 | |
| 2033 | os::Posix::print_load_average(st); |
| 2034 | |
| 2035 | os::Linux::print_full_memory_info(st); |
| 2036 | |
| 2037 | os::Linux::print_proc_sys_info(st); |
| 2038 | |
| 2039 | os::Linux::print_ld_preload_file(st); |
| 2040 | |
| 2041 | os::Linux::print_container_info(st); |
| 2042 | |
| 2043 | VM_Version::print_platform_virtualization_info(st); |
| 2044 | |
| 2045 | os::Linux::print_steal_info(st); |
| 2046 | } |
| 2047 | |
| 2048 | // Try to identify popular distros. |
| 2049 | // Most Linux distributions have a /etc/XXX-release file, which contains |
| 2050 | // the OS version string. Newer Linux distributions have a /etc/lsb-release |
| 2051 | // file that also contains the OS version string. Some have more than one |
| 2052 | // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and |
| 2053 | // /etc/redhat-release.), so the order is important. |
| 2054 | // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have |
| 2055 | // their own specific XXX-release file as well as a redhat-release file. |
| 2056 | // Because of this the XXX-release file needs to be searched for before the |
| 2057 | // redhat-release file. |
| 2058 | // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the |
| 2059 | // search for redhat-release / SuSE-release needs to be before lsb-release. |
| 2060 | // Since the lsb-release file is the new standard it needs to be searched |
| 2061 | // before the older style release files. |
| 2062 | // Searching system-release (Red Hat) and os-release (other Linuxes) are a |
| 2063 | // next to last resort. The os-release file is a new standard that contains |
| 2064 | // distribution information and the system-release file seems to be an old |
| 2065 | // standard that has been replaced by the lsb-release and os-release files. |
| 2066 | // Searching for the debian_version file is the last resort. It contains |
| 2067 | // an informative string like "6.0.6" or "wheezy/sid". Because of this |
| 2068 | // "Debian " is printed before the contents of the debian_version file. |
| 2069 | |
| 2070 | const char* distro_files[] = { |
| 2071 | "/etc/oracle-release" , |
| 2072 | "/etc/mandriva-release" , |
| 2073 | "/etc/mandrake-release" , |
| 2074 | "/etc/sun-release" , |
| 2075 | "/etc/redhat-release" , |
| 2076 | "/etc/SuSE-release" , |
| 2077 | "/etc/lsb-release" , |
| 2078 | "/etc/turbolinux-release" , |
| 2079 | "/etc/gentoo-release" , |
| 2080 | "/etc/ltib-release" , |
| 2081 | "/etc/angstrom-version" , |
| 2082 | "/etc/system-release" , |
| 2083 | "/etc/os-release" , |
| 2084 | NULL }; |
| 2085 | |
| 2086 | void os::Linux::print_distro_info(outputStream* st) { |
| 2087 | for (int i = 0;; i++) { |
| 2088 | const char* file = distro_files[i]; |
| 2089 | if (file == NULL) { |
| 2090 | break; // done |
| 2091 | } |
| 2092 | // If file prints, we found it. |
| 2093 | if (_print_ascii_file(file, st)) { |
| 2094 | return; |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | if (file_exists("/etc/debian_version" )) { |
| 2099 | st->print("Debian " ); |
| 2100 | _print_ascii_file("/etc/debian_version" , st); |
| 2101 | } else { |
| 2102 | st->print("Linux" ); |
| 2103 | } |
| 2104 | st->cr(); |
| 2105 | } |
| 2106 | |
| 2107 | static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) { |
| 2108 | char buf[256]; |
| 2109 | while (fgets(buf, sizeof(buf), fp)) { |
| 2110 | // Edit out extra stuff in expected format |
| 2111 | if (strstr(buf, "DISTRIB_DESCRIPTION=" ) != NULL || strstr(buf, "PRETTY_NAME=" ) != NULL) { |
| 2112 | char* ptr = strstr(buf, "\"" ); // the name is in quotes |
| 2113 | if (ptr != NULL) { |
| 2114 | ptr++; // go beyond first quote |
| 2115 | char* nl = strchr(ptr, '\"'); |
| 2116 | if (nl != NULL) *nl = '\0'; |
| 2117 | strncpy(distro, ptr, length); |
| 2118 | } else { |
| 2119 | ptr = strstr(buf, "=" ); |
| 2120 | ptr++; // go beyond equals then |
| 2121 | char* nl = strchr(ptr, '\n'); |
| 2122 | if (nl != NULL) *nl = '\0'; |
| 2123 | strncpy(distro, ptr, length); |
| 2124 | } |
| 2125 | return; |
| 2126 | } else if (get_first_line) { |
| 2127 | char* nl = strchr(buf, '\n'); |
| 2128 | if (nl != NULL) *nl = '\0'; |
| 2129 | strncpy(distro, buf, length); |
| 2130 | return; |
| 2131 | } |
| 2132 | } |
| 2133 | // print last line and close |
| 2134 | char* nl = strchr(buf, '\n'); |
| 2135 | if (nl != NULL) *nl = '\0'; |
| 2136 | strncpy(distro, buf, length); |
| 2137 | } |
| 2138 | |
| 2139 | static void parse_os_info(char* distro, size_t length, const char* file) { |
| 2140 | FILE* fp = fopen(file, "r" ); |
| 2141 | if (fp != NULL) { |
| 2142 | // if suse format, print out first line |
| 2143 | bool get_first_line = (strcmp(file, "/etc/SuSE-release" ) == 0); |
| 2144 | parse_os_info_helper(fp, distro, length, get_first_line); |
| 2145 | fclose(fp); |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | void os::get_summary_os_info(char* buf, size_t buflen) { |
| 2150 | for (int i = 0;; i++) { |
| 2151 | const char* file = distro_files[i]; |
| 2152 | if (file == NULL) { |
| 2153 | break; // ran out of distro_files |
| 2154 | } |
| 2155 | if (file_exists(file)) { |
| 2156 | parse_os_info(buf, buflen, file); |
| 2157 | return; |
| 2158 | } |
| 2159 | } |
| 2160 | // special case for debian |
| 2161 | if (file_exists("/etc/debian_version" )) { |
| 2162 | strncpy(buf, "Debian " , buflen); |
| 2163 | if (buflen > 7) { |
| 2164 | parse_os_info(&buf[7], buflen-7, "/etc/debian_version" ); |
| 2165 | } |
| 2166 | } else { |
| 2167 | strncpy(buf, "Linux" , buflen); |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | void os::Linux::print_libversion_info(outputStream* st) { |
| 2172 | // libc, pthread |
| 2173 | st->print("libc:" ); |
| 2174 | st->print("%s " , os::Linux::glibc_version()); |
| 2175 | st->print("%s " , os::Linux::libpthread_version()); |
| 2176 | st->cr(); |
| 2177 | } |
| 2178 | |
| 2179 | void os::Linux::print_proc_sys_info(outputStream* st) { |
| 2180 | st->cr(); |
| 2181 | st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):" ); |
| 2182 | _print_ascii_file("/proc/sys/kernel/threads-max" , st); |
| 2183 | st->cr(); |
| 2184 | st->cr(); |
| 2185 | |
| 2186 | st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):" ); |
| 2187 | _print_ascii_file("/proc/sys/vm/max_map_count" , st); |
| 2188 | st->cr(); |
| 2189 | st->cr(); |
| 2190 | |
| 2191 | st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):" ); |
| 2192 | _print_ascii_file("/proc/sys/kernel/pid_max" , st); |
| 2193 | st->cr(); |
| 2194 | st->cr(); |
| 2195 | } |
| 2196 | |
| 2197 | void os::Linux::print_full_memory_info(outputStream* st) { |
| 2198 | st->print("\n/proc/meminfo:\n" ); |
| 2199 | _print_ascii_file("/proc/meminfo" , st); |
| 2200 | st->cr(); |
| 2201 | } |
| 2202 | |
| 2203 | void os::Linux::print_ld_preload_file(outputStream* st) { |
| 2204 | _print_ascii_file("/etc/ld.so.preload" , st, "\n/etc/ld.so.preload:" ); |
| 2205 | st->cr(); |
| 2206 | } |
| 2207 | |
| 2208 | void os::Linux::print_container_info(outputStream* st) { |
| 2209 | if (!OSContainer::is_containerized()) { |
| 2210 | return; |
| 2211 | } |
| 2212 | |
| 2213 | st->print("container (cgroup) information:\n" ); |
| 2214 | |
| 2215 | const char *p_ct = OSContainer::container_type(); |
| 2216 | st->print("container_type: %s\n" , p_ct != NULL ? p_ct : "not supported" ); |
| 2217 | |
| 2218 | char *p = OSContainer::cpu_cpuset_cpus(); |
| 2219 | st->print("cpu_cpuset_cpus: %s\n" , p != NULL ? p : "not supported" ); |
| 2220 | free(p); |
| 2221 | |
| 2222 | p = OSContainer::cpu_cpuset_memory_nodes(); |
| 2223 | st->print("cpu_memory_nodes: %s\n" , p != NULL ? p : "not supported" ); |
| 2224 | free(p); |
| 2225 | |
| 2226 | int i = OSContainer::active_processor_count(); |
| 2227 | st->print("active_processor_count: " ); |
| 2228 | if (i > 0) { |
| 2229 | st->print("%d\n" , i); |
| 2230 | } else { |
| 2231 | st->print("not supported\n" ); |
| 2232 | } |
| 2233 | |
| 2234 | i = OSContainer::cpu_quota(); |
| 2235 | st->print("cpu_quota: " ); |
| 2236 | if (i > 0) { |
| 2237 | st->print("%d\n" , i); |
| 2238 | } else { |
| 2239 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no quota" ); |
| 2240 | } |
| 2241 | |
| 2242 | i = OSContainer::cpu_period(); |
| 2243 | st->print("cpu_period: " ); |
| 2244 | if (i > 0) { |
| 2245 | st->print("%d\n" , i); |
| 2246 | } else { |
| 2247 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no period" ); |
| 2248 | } |
| 2249 | |
| 2250 | i = OSContainer::cpu_shares(); |
| 2251 | st->print("cpu_shares: " ); |
| 2252 | if (i > 0) { |
| 2253 | st->print("%d\n" , i); |
| 2254 | } else { |
| 2255 | st->print("%s\n" , i == OSCONTAINER_ERROR ? "not supported" : "no shares" ); |
| 2256 | } |
| 2257 | |
| 2258 | jlong j = OSContainer::memory_limit_in_bytes(); |
| 2259 | st->print("memory_limit_in_bytes: " ); |
| 2260 | if (j > 0) { |
| 2261 | st->print(JLONG_FORMAT "\n" , j); |
| 2262 | } else { |
| 2263 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
| 2264 | } |
| 2265 | |
| 2266 | j = OSContainer::memory_and_swap_limit_in_bytes(); |
| 2267 | st->print("memory_and_swap_limit_in_bytes: " ); |
| 2268 | if (j > 0) { |
| 2269 | st->print(JLONG_FORMAT "\n" , j); |
| 2270 | } else { |
| 2271 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
| 2272 | } |
| 2273 | |
| 2274 | j = OSContainer::memory_soft_limit_in_bytes(); |
| 2275 | st->print("memory_soft_limit_in_bytes: " ); |
| 2276 | if (j > 0) { |
| 2277 | st->print(JLONG_FORMAT "\n" , j); |
| 2278 | } else { |
| 2279 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
| 2280 | } |
| 2281 | |
| 2282 | j = OSContainer::OSContainer::memory_usage_in_bytes(); |
| 2283 | st->print("memory_usage_in_bytes: " ); |
| 2284 | if (j > 0) { |
| 2285 | st->print(JLONG_FORMAT "\n" , j); |
| 2286 | } else { |
| 2287 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
| 2288 | } |
| 2289 | |
| 2290 | j = OSContainer::OSContainer::memory_max_usage_in_bytes(); |
| 2291 | st->print("memory_max_usage_in_bytes: " ); |
| 2292 | if (j > 0) { |
| 2293 | st->print(JLONG_FORMAT "\n" , j); |
| 2294 | } else { |
| 2295 | st->print("%s\n" , j == OSCONTAINER_ERROR ? "not supported" : "unlimited" ); |
| 2296 | } |
| 2297 | st->cr(); |
| 2298 | } |
| 2299 | |
| 2300 | void os::Linux::print_steal_info(outputStream* st) { |
| 2301 | if (has_initial_tick_info) { |
| 2302 | CPUPerfTicks pticks; |
| 2303 | bool res = os::Linux::get_tick_information(&pticks, -1); |
| 2304 | |
| 2305 | if (res && pticks.has_steal_ticks) { |
| 2306 | uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks; |
| 2307 | uint64_t total_ticks_difference = pticks.total - initial_total_ticks; |
| 2308 | double steal_ticks_perc = 0.0; |
| 2309 | if (total_ticks_difference != 0) { |
| 2310 | steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference; |
| 2311 | } |
| 2312 | st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference); |
| 2313 | st->print_cr("Steal ticks percentage since vm start:%7.3f" , steal_ticks_perc); |
| 2314 | } |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | void os::print_memory_info(outputStream* st) { |
| 2319 | |
| 2320 | st->print("Memory:" ); |
| 2321 | st->print(" %dk page" , os::vm_page_size()>>10); |
| 2322 | |
| 2323 | // values in struct sysinfo are "unsigned long" |
| 2324 | struct sysinfo si; |
| 2325 | sysinfo(&si); |
| 2326 | |
| 2327 | st->print(", physical " UINT64_FORMAT "k" , |
| 2328 | os::physical_memory() >> 10); |
| 2329 | st->print("(" UINT64_FORMAT "k free)" , |
| 2330 | os::available_memory() >> 10); |
| 2331 | st->print(", swap " UINT64_FORMAT "k" , |
| 2332 | ((jlong)si.totalswap * si.mem_unit) >> 10); |
| 2333 | st->print("(" UINT64_FORMAT "k free)" , |
| 2334 | ((jlong)si.freeswap * si.mem_unit) >> 10); |
| 2335 | st->cr(); |
| 2336 | } |
| 2337 | |
| 2338 | // Print the first "model name" line and the first "flags" line |
| 2339 | // that we find and nothing more. We assume "model name" comes |
| 2340 | // before "flags" so if we find a second "model name", then the |
| 2341 | // "flags" field is considered missing. |
| 2342 | static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) { |
| 2343 | #if defined(IA32) || defined(AMD64) |
| 2344 | // Other platforms have less repetitive cpuinfo files |
| 2345 | FILE *fp = fopen("/proc/cpuinfo" , "r" ); |
| 2346 | if (fp) { |
| 2347 | while (!feof(fp)) { |
| 2348 | if (fgets(buf, buflen, fp)) { |
| 2349 | // Assume model name comes before flags |
| 2350 | bool model_name_printed = false; |
| 2351 | if (strstr(buf, "model name" ) != NULL) { |
| 2352 | if (!model_name_printed) { |
| 2353 | st->print_raw("CPU Model and flags from /proc/cpuinfo:\n" ); |
| 2354 | st->print_raw(buf); |
| 2355 | model_name_printed = true; |
| 2356 | } else { |
| 2357 | // model name printed but not flags? Odd, just return |
| 2358 | fclose(fp); |
| 2359 | return true; |
| 2360 | } |
| 2361 | } |
| 2362 | // print the flags line too |
| 2363 | if (strstr(buf, "flags" ) != NULL) { |
| 2364 | st->print_raw(buf); |
| 2365 | fclose(fp); |
| 2366 | return true; |
| 2367 | } |
| 2368 | } |
| 2369 | } |
| 2370 | fclose(fp); |
| 2371 | } |
| 2372 | #endif // x86 platforms |
| 2373 | return false; |
| 2374 | } |
| 2375 | |
| 2376 | void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) { |
| 2377 | // Only print the model name if the platform provides this as a summary |
| 2378 | if (!print_model_name_and_flags(st, buf, buflen)) { |
| 2379 | st->print("\n/proc/cpuinfo:\n" ); |
| 2380 | if (!_print_ascii_file("/proc/cpuinfo" , st)) { |
| 2381 | st->print_cr(" <Not Available>" ); |
| 2382 | } |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | #if defined(AMD64) || defined(IA32) || defined(X32) |
| 2387 | const char* search_string = "model name" ; |
| 2388 | #elif defined(M68K) |
| 2389 | const char* search_string = "CPU" ; |
| 2390 | #elif defined(PPC64) |
| 2391 | const char* search_string = "cpu" ; |
| 2392 | #elif defined(S390) |
| 2393 | const char* search_string = "machine =" ; |
| 2394 | #elif defined(SPARC) |
| 2395 | const char* search_string = "cpu" ; |
| 2396 | #else |
| 2397 | const char* search_string = "Processor" ; |
| 2398 | #endif |
| 2399 | |
| 2400 | // Parses the cpuinfo file for string representing the model name. |
| 2401 | void os::get_summary_cpu_info(char* cpuinfo, size_t length) { |
| 2402 | FILE* fp = fopen("/proc/cpuinfo" , "r" ); |
| 2403 | if (fp != NULL) { |
| 2404 | while (!feof(fp)) { |
| 2405 | char buf[256]; |
| 2406 | if (fgets(buf, sizeof(buf), fp)) { |
| 2407 | char* start = strstr(buf, search_string); |
| 2408 | if (start != NULL) { |
| 2409 | char *ptr = start + strlen(search_string); |
| 2410 | char *end = buf + strlen(buf); |
| 2411 | while (ptr != end) { |
| 2412 | // skip whitespace and colon for the rest of the name. |
| 2413 | if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') { |
| 2414 | break; |
| 2415 | } |
| 2416 | ptr++; |
| 2417 | } |
| 2418 | if (ptr != end) { |
| 2419 | // reasonable string, get rid of newline and keep the rest |
| 2420 | char* nl = strchr(buf, '\n'); |
| 2421 | if (nl != NULL) *nl = '\0'; |
| 2422 | strncpy(cpuinfo, ptr, length); |
| 2423 | fclose(fp); |
| 2424 | return; |
| 2425 | } |
| 2426 | } |
| 2427 | } |
| 2428 | } |
| 2429 | fclose(fp); |
| 2430 | } |
| 2431 | // cpuinfo not found or parsing failed, just print generic string. The entire |
| 2432 | // /proc/cpuinfo file will be printed later in the file (or enough of it for x86) |
| 2433 | #if defined(AARCH64) |
| 2434 | strncpy(cpuinfo, "AArch64" , length); |
| 2435 | #elif defined(AMD64) |
| 2436 | strncpy(cpuinfo, "x86_64" , length); |
| 2437 | #elif defined(ARM) // Order wrt. AARCH64 is relevant! |
| 2438 | strncpy(cpuinfo, "ARM" , length); |
| 2439 | #elif defined(IA32) |
| 2440 | strncpy(cpuinfo, "x86_32" , length); |
| 2441 | #elif defined(IA64) |
| 2442 | strncpy(cpuinfo, "IA64" , length); |
| 2443 | #elif defined(PPC) |
| 2444 | strncpy(cpuinfo, "PPC64" , length); |
| 2445 | #elif defined(S390) |
| 2446 | strncpy(cpuinfo, "S390" , length); |
| 2447 | #elif defined(SPARC) |
| 2448 | strncpy(cpuinfo, "sparcv9" , length); |
| 2449 | #elif defined(ZERO_LIBARCH) |
| 2450 | strncpy(cpuinfo, ZERO_LIBARCH, length); |
| 2451 | #else |
| 2452 | strncpy(cpuinfo, "unknown" , length); |
| 2453 | #endif |
| 2454 | } |
| 2455 | |
| 2456 | static void print_signal_handler(outputStream* st, int sig, |
| 2457 | char* buf, size_t buflen); |
| 2458 | |
| 2459 | void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) { |
| 2460 | st->print_cr("Signal Handlers:" ); |
| 2461 | print_signal_handler(st, SIGSEGV, buf, buflen); |
| 2462 | print_signal_handler(st, SIGBUS , buf, buflen); |
| 2463 | print_signal_handler(st, SIGFPE , buf, buflen); |
| 2464 | print_signal_handler(st, SIGPIPE, buf, buflen); |
| 2465 | print_signal_handler(st, SIGXFSZ, buf, buflen); |
| 2466 | print_signal_handler(st, SIGILL , buf, buflen); |
| 2467 | print_signal_handler(st, SR_signum, buf, buflen); |
| 2468 | print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen); |
| 2469 | print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen); |
| 2470 | print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen); |
| 2471 | print_signal_handler(st, BREAK_SIGNAL, buf, buflen); |
| 2472 | #if defined(PPC64) |
| 2473 | print_signal_handler(st, SIGTRAP, buf, buflen); |
| 2474 | #endif |
| 2475 | } |
| 2476 | |
| 2477 | static char saved_jvm_path[MAXPATHLEN] = {0}; |
| 2478 | |
| 2479 | // Find the full path to the current module, libjvm.so |
| 2480 | void os::jvm_path(char *buf, jint buflen) { |
| 2481 | // Error checking. |
| 2482 | if (buflen < MAXPATHLEN) { |
| 2483 | assert(false, "must use a large-enough buffer" ); |
| 2484 | buf[0] = '\0'; |
| 2485 | return; |
| 2486 | } |
| 2487 | // Lazy resolve the path to current module. |
| 2488 | if (saved_jvm_path[0] != 0) { |
| 2489 | strcpy(buf, saved_jvm_path); |
| 2490 | return; |
| 2491 | } |
| 2492 | |
| 2493 | char dli_fname[MAXPATHLEN]; |
| 2494 | bool ret = dll_address_to_library_name( |
| 2495 | CAST_FROM_FN_PTR(address, os::jvm_path), |
| 2496 | dli_fname, sizeof(dli_fname), NULL); |
| 2497 | assert(ret, "cannot locate libjvm" ); |
| 2498 | char *rp = NULL; |
| 2499 | if (ret && dli_fname[0] != '\0') { |
| 2500 | rp = os::Posix::realpath(dli_fname, buf, buflen); |
| 2501 | } |
| 2502 | if (rp == NULL) { |
| 2503 | return; |
| 2504 | } |
| 2505 | |
| 2506 | if (Arguments::sun_java_launcher_is_altjvm()) { |
| 2507 | // Support for the java launcher's '-XXaltjvm=<path>' option. Typical |
| 2508 | // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so". |
| 2509 | // If "/jre/lib/" appears at the right place in the string, then |
| 2510 | // assume we are installed in a JDK and we're done. Otherwise, check |
| 2511 | // for a JAVA_HOME environment variable and fix up the path so it |
| 2512 | // looks like libjvm.so is installed there (append a fake suffix |
| 2513 | // hotspot/libjvm.so). |
| 2514 | const char *p = buf + strlen(buf) - 1; |
| 2515 | for (int count = 0; p > buf && count < 5; ++count) { |
| 2516 | for (--p; p > buf && *p != '/'; --p) |
| 2517 | /* empty */ ; |
| 2518 | } |
| 2519 | |
| 2520 | if (strncmp(p, "/jre/lib/" , 9) != 0) { |
| 2521 | // Look for JAVA_HOME in the environment. |
| 2522 | char* java_home_var = ::getenv("JAVA_HOME" ); |
| 2523 | if (java_home_var != NULL && java_home_var[0] != 0) { |
| 2524 | char* jrelib_p; |
| 2525 | int len; |
| 2526 | |
| 2527 | // Check the current module name "libjvm.so". |
| 2528 | p = strrchr(buf, '/'); |
| 2529 | if (p == NULL) { |
| 2530 | return; |
| 2531 | } |
| 2532 | assert(strstr(p, "/libjvm" ) == p, "invalid library name" ); |
| 2533 | |
| 2534 | rp = os::Posix::realpath(java_home_var, buf, buflen); |
| 2535 | if (rp == NULL) { |
| 2536 | return; |
| 2537 | } |
| 2538 | |
| 2539 | // determine if this is a legacy image or modules image |
| 2540 | // modules image doesn't have "jre" subdirectory |
| 2541 | len = strlen(buf); |
| 2542 | assert(len < buflen, "Ran out of buffer room" ); |
| 2543 | jrelib_p = buf + len; |
| 2544 | snprintf(jrelib_p, buflen-len, "/jre/lib" ); |
| 2545 | if (0 != access(buf, F_OK)) { |
| 2546 | snprintf(jrelib_p, buflen-len, "/lib" ); |
| 2547 | } |
| 2548 | |
| 2549 | if (0 == access(buf, F_OK)) { |
| 2550 | // Use current module name "libjvm.so" |
| 2551 | len = strlen(buf); |
| 2552 | snprintf(buf + len, buflen-len, "/hotspot/libjvm.so" ); |
| 2553 | } else { |
| 2554 | // Go back to path of .so |
| 2555 | rp = os::Posix::realpath(dli_fname, buf, buflen); |
| 2556 | if (rp == NULL) { |
| 2557 | return; |
| 2558 | } |
| 2559 | } |
| 2560 | } |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | strncpy(saved_jvm_path, buf, MAXPATHLEN); |
| 2565 | saved_jvm_path[MAXPATHLEN - 1] = '\0'; |
| 2566 | } |
| 2567 | |
| 2568 | void os::print_jni_name_prefix_on(outputStream* st, int args_size) { |
| 2569 | // no prefix required, not even "_" |
| 2570 | } |
| 2571 | |
| 2572 | void os::print_jni_name_suffix_on(outputStream* st, int args_size) { |
| 2573 | // no suffix required |
| 2574 | } |
| 2575 | |
| 2576 | //////////////////////////////////////////////////////////////////////////////// |
| 2577 | // sun.misc.Signal support |
| 2578 | |
| 2579 | static volatile jint sigint_count = 0; |
| 2580 | |
| 2581 | static void UserHandler(int sig, void *siginfo, void *context) { |
| 2582 | // 4511530 - sem_post is serialized and handled by the manager thread. When |
| 2583 | // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We |
| 2584 | // don't want to flood the manager thread with sem_post requests. |
| 2585 | if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) { |
| 2586 | return; |
| 2587 | } |
| 2588 | |
| 2589 | // Ctrl-C is pressed during error reporting, likely because the error |
| 2590 | // handler fails to abort. Let VM die immediately. |
| 2591 | if (sig == SIGINT && VMError::is_error_reported()) { |
| 2592 | os::die(); |
| 2593 | } |
| 2594 | |
| 2595 | os::signal_notify(sig); |
| 2596 | } |
| 2597 | |
| 2598 | void* os::user_handler() { |
| 2599 | return CAST_FROM_FN_PTR(void*, UserHandler); |
| 2600 | } |
| 2601 | |
| 2602 | extern "C" { |
| 2603 | typedef void (*sa_handler_t)(int); |
| 2604 | typedef void (*sa_sigaction_t)(int, siginfo_t *, void *); |
| 2605 | } |
| 2606 | |
| 2607 | void* os::signal(int signal_number, void* handler) { |
| 2608 | struct sigaction sigAct, oldSigAct; |
| 2609 | |
| 2610 | sigfillset(&(sigAct.sa_mask)); |
| 2611 | sigAct.sa_flags = SA_RESTART|SA_SIGINFO; |
| 2612 | sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler); |
| 2613 | |
| 2614 | if (sigaction(signal_number, &sigAct, &oldSigAct)) { |
| 2615 | // -1 means registration failed |
| 2616 | return (void *)-1; |
| 2617 | } |
| 2618 | |
| 2619 | return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler); |
| 2620 | } |
| 2621 | |
| 2622 | void os::signal_raise(int signal_number) { |
| 2623 | ::raise(signal_number); |
| 2624 | } |
| 2625 | |
| 2626 | // The following code is moved from os.cpp for making this |
| 2627 | // code platform specific, which it is by its very nature. |
| 2628 | |
| 2629 | // Will be modified when max signal is changed to be dynamic |
| 2630 | int os::sigexitnum_pd() { |
| 2631 | return NSIG; |
| 2632 | } |
| 2633 | |
| 2634 | // a counter for each possible signal value |
| 2635 | static volatile jint pending_signals[NSIG+1] = { 0 }; |
| 2636 | |
| 2637 | // Linux(POSIX) specific hand shaking semaphore. |
| 2638 | static Semaphore* sig_sem = NULL; |
| 2639 | static PosixSemaphore sr_semaphore; |
| 2640 | |
| 2641 | static void jdk_misc_signal_init() { |
| 2642 | // Initialize signal structures |
| 2643 | ::memset((void*)pending_signals, 0, sizeof(pending_signals)); |
| 2644 | |
| 2645 | // Initialize signal semaphore |
| 2646 | sig_sem = new Semaphore(); |
| 2647 | } |
| 2648 | |
| 2649 | void os::signal_notify(int sig) { |
| 2650 | if (sig_sem != NULL) { |
| 2651 | Atomic::inc(&pending_signals[sig]); |
| 2652 | sig_sem->signal(); |
| 2653 | } else { |
| 2654 | // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init |
| 2655 | // initialization isn't called. |
| 2656 | assert(ReduceSignalUsage, "signal semaphore should be created" ); |
| 2657 | } |
| 2658 | } |
| 2659 | |
| 2660 | static int check_pending_signals() { |
| 2661 | Atomic::store(0, &sigint_count); |
| 2662 | for (;;) { |
| 2663 | for (int i = 0; i < NSIG + 1; i++) { |
| 2664 | jint n = pending_signals[i]; |
| 2665 | if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) { |
| 2666 | return i; |
| 2667 | } |
| 2668 | } |
| 2669 | JavaThread *thread = JavaThread::current(); |
| 2670 | ThreadBlockInVM tbivm(thread); |
| 2671 | |
| 2672 | bool threadIsSuspended; |
| 2673 | do { |
| 2674 | thread->set_suspend_equivalent(); |
| 2675 | // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() |
| 2676 | sig_sem->wait(); |
| 2677 | |
| 2678 | // were we externally suspended while we were waiting? |
| 2679 | threadIsSuspended = thread->handle_special_suspend_equivalent_condition(); |
| 2680 | if (threadIsSuspended) { |
| 2681 | // The semaphore has been incremented, but while we were waiting |
| 2682 | // another thread suspended us. We don't want to continue running |
| 2683 | // while suspended because that would surprise the thread that |
| 2684 | // suspended us. |
| 2685 | sig_sem->signal(); |
| 2686 | |
| 2687 | thread->java_suspend_self(); |
| 2688 | } |
| 2689 | } while (threadIsSuspended); |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | int os::signal_wait() { |
| 2694 | return check_pending_signals(); |
| 2695 | } |
| 2696 | |
| 2697 | //////////////////////////////////////////////////////////////////////////////// |
| 2698 | // Virtual Memory |
| 2699 | |
| 2700 | int os::vm_page_size() { |
| 2701 | // Seems redundant as all get out |
| 2702 | assert(os::Linux::page_size() != -1, "must call os::init" ); |
| 2703 | return os::Linux::page_size(); |
| 2704 | } |
| 2705 | |
| 2706 | // Solaris allocates memory by pages. |
| 2707 | int os::vm_allocation_granularity() { |
| 2708 | assert(os::Linux::page_size() != -1, "must call os::init" ); |
| 2709 | return os::Linux::page_size(); |
| 2710 | } |
| 2711 | |
| 2712 | // Rationale behind this function: |
| 2713 | // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable |
| 2714 | // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get |
| 2715 | // samples for JITted code. Here we create private executable mapping over the code cache |
| 2716 | // and then we can use standard (well, almost, as mapping can change) way to provide |
| 2717 | // info for the reporting script by storing timestamp and location of symbol |
| 2718 | void linux_wrap_code(char* base, size_t size) { |
| 2719 | static volatile jint cnt = 0; |
| 2720 | |
| 2721 | if (!UseOprofile) { |
| 2722 | return; |
| 2723 | } |
| 2724 | |
| 2725 | char buf[PATH_MAX+1]; |
| 2726 | int num = Atomic::add(1, &cnt); |
| 2727 | |
| 2728 | snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d" , |
| 2729 | os::get_temp_directory(), os::current_process_id(), num); |
| 2730 | unlink(buf); |
| 2731 | |
| 2732 | int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU); |
| 2733 | |
| 2734 | if (fd != -1) { |
| 2735 | off_t rv = ::lseek(fd, size-2, SEEK_SET); |
| 2736 | if (rv != (off_t)-1) { |
| 2737 | if (::write(fd, "" , 1) == 1) { |
| 2738 | mmap(base, size, |
| 2739 | PROT_READ|PROT_WRITE|PROT_EXEC, |
| 2740 | MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0); |
| 2741 | } |
| 2742 | } |
| 2743 | ::close(fd); |
| 2744 | unlink(buf); |
| 2745 | } |
| 2746 | } |
| 2747 | |
| 2748 | static bool recoverable_mmap_error(int err) { |
| 2749 | // See if the error is one we can let the caller handle. This |
| 2750 | // list of errno values comes from JBS-6843484. I can't find a |
| 2751 | // Linux man page that documents this specific set of errno |
| 2752 | // values so while this list currently matches Solaris, it may |
| 2753 | // change as we gain experience with this failure mode. |
| 2754 | switch (err) { |
| 2755 | case EBADF: |
| 2756 | case EINVAL: |
| 2757 | case ENOTSUP: |
| 2758 | // let the caller deal with these errors |
| 2759 | return true; |
| 2760 | |
| 2761 | default: |
| 2762 | // Any remaining errors on this OS can cause our reserved mapping |
| 2763 | // to be lost. That can cause confusion where different data |
| 2764 | // structures think they have the same memory mapped. The worst |
| 2765 | // scenario is if both the VM and a library think they have the |
| 2766 | // same memory mapped. |
| 2767 | return false; |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | static void warn_fail_commit_memory(char* addr, size_t size, bool exec, |
| 2772 | int err) { |
| 2773 | warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT |
| 2774 | ", %d) failed; error='%s' (errno=%d)" , p2i(addr), size, exec, |
| 2775 | os::strerror(err), err); |
| 2776 | } |
| 2777 | |
| 2778 | static void warn_fail_commit_memory(char* addr, size_t size, |
| 2779 | size_t alignment_hint, bool exec, |
| 2780 | int err) { |
| 2781 | warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT |
| 2782 | ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)" , p2i(addr), size, |
| 2783 | alignment_hint, exec, os::strerror(err), err); |
| 2784 | } |
| 2785 | |
| 2786 | // NOTE: Linux kernel does not really reserve the pages for us. |
| 2787 | // All it does is to check if there are enough free pages |
| 2788 | // left at the time of mmap(). This could be a potential |
| 2789 | // problem. |
| 2790 | int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) { |
| 2791 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
| 2792 | uintptr_t res = (uintptr_t) ::mmap(addr, size, prot, |
| 2793 | MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0); |
| 2794 | if (res != (uintptr_t) MAP_FAILED) { |
| 2795 | if (UseNUMAInterleaving) { |
| 2796 | numa_make_global(addr, size); |
| 2797 | } |
| 2798 | return 0; |
| 2799 | } |
| 2800 | |
| 2801 | int err = errno; // save errno from mmap() call above |
| 2802 | |
| 2803 | if (!recoverable_mmap_error(err)) { |
| 2804 | warn_fail_commit_memory(addr, size, exec, err); |
| 2805 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory." ); |
| 2806 | } |
| 2807 | |
| 2808 | return err; |
| 2809 | } |
| 2810 | |
| 2811 | bool os::pd_commit_memory(char* addr, size_t size, bool exec) { |
| 2812 | return os::Linux::commit_memory_impl(addr, size, exec) == 0; |
| 2813 | } |
| 2814 | |
| 2815 | void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec, |
| 2816 | const char* mesg) { |
| 2817 | assert(mesg != NULL, "mesg must be specified" ); |
| 2818 | int err = os::Linux::commit_memory_impl(addr, size, exec); |
| 2819 | if (err != 0) { |
| 2820 | // the caller wants all commit errors to exit with the specified mesg: |
| 2821 | warn_fail_commit_memory(addr, size, exec, err); |
| 2822 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s" , mesg); |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | // Define MAP_HUGETLB here so we can build HotSpot on old systems. |
| 2827 | #ifndef MAP_HUGETLB |
| 2828 | #define MAP_HUGETLB 0x40000 |
| 2829 | #endif |
| 2830 | |
| 2831 | // Define MADV_HUGEPAGE here so we can build HotSpot on old systems. |
| 2832 | #ifndef MADV_HUGEPAGE |
| 2833 | #define MADV_HUGEPAGE 14 |
| 2834 | #endif |
| 2835 | |
| 2836 | int os::Linux::commit_memory_impl(char* addr, size_t size, |
| 2837 | size_t alignment_hint, bool exec) { |
| 2838 | int err = os::Linux::commit_memory_impl(addr, size, exec); |
| 2839 | if (err == 0) { |
| 2840 | realign_memory(addr, size, alignment_hint); |
| 2841 | } |
| 2842 | return err; |
| 2843 | } |
| 2844 | |
| 2845 | bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, |
| 2846 | bool exec) { |
| 2847 | return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0; |
| 2848 | } |
| 2849 | |
| 2850 | void os::pd_commit_memory_or_exit(char* addr, size_t size, |
| 2851 | size_t alignment_hint, bool exec, |
| 2852 | const char* mesg) { |
| 2853 | assert(mesg != NULL, "mesg must be specified" ); |
| 2854 | int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec); |
| 2855 | if (err != 0) { |
| 2856 | // the caller wants all commit errors to exit with the specified mesg: |
| 2857 | warn_fail_commit_memory(addr, size, alignment_hint, exec, err); |
| 2858 | vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s" , mesg); |
| 2859 | } |
| 2860 | } |
| 2861 | |
| 2862 | void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { |
| 2863 | if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) { |
| 2864 | // We don't check the return value: madvise(MADV_HUGEPAGE) may not |
| 2865 | // be supported or the memory may already be backed by huge pages. |
| 2866 | ::madvise(addr, bytes, MADV_HUGEPAGE); |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { |
| 2871 | // This method works by doing an mmap over an existing mmaping and effectively discarding |
| 2872 | // the existing pages. However it won't work for SHM-based large pages that cannot be |
| 2873 | // uncommitted at all. We don't do anything in this case to avoid creating a segment with |
| 2874 | // small pages on top of the SHM segment. This method always works for small pages, so we |
| 2875 | // allow that in any case. |
| 2876 | if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) { |
| 2877 | commit_memory(addr, bytes, alignment_hint, !ExecMem); |
| 2878 | } |
| 2879 | } |
| 2880 | |
| 2881 | void os::numa_make_global(char *addr, size_t bytes) { |
| 2882 | Linux::numa_interleave_memory(addr, bytes); |
| 2883 | } |
| 2884 | |
| 2885 | // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the |
| 2886 | // bind policy to MPOL_PREFERRED for the current thread. |
| 2887 | #define USE_MPOL_PREFERRED 0 |
| 2888 | |
| 2889 | void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { |
| 2890 | // To make NUMA and large pages more robust when both enabled, we need to ease |
| 2891 | // the requirements on where the memory should be allocated. MPOL_BIND is the |
| 2892 | // default policy and it will force memory to be allocated on the specified |
| 2893 | // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on |
| 2894 | // the specified node, but will not force it. Using this policy will prevent |
| 2895 | // getting SIGBUS when trying to allocate large pages on NUMA nodes with no |
| 2896 | // free large pages. |
| 2897 | Linux::numa_set_bind_policy(USE_MPOL_PREFERRED); |
| 2898 | Linux::numa_tonode_memory(addr, bytes, lgrp_hint); |
| 2899 | } |
| 2900 | |
| 2901 | bool os::numa_topology_changed() { return false; } |
| 2902 | |
| 2903 | size_t os::numa_get_groups_num() { |
| 2904 | // Return just the number of nodes in which it's possible to allocate memory |
| 2905 | // (in numa terminology, configured nodes). |
| 2906 | return Linux::numa_num_configured_nodes(); |
| 2907 | } |
| 2908 | |
| 2909 | int os::numa_get_group_id() { |
| 2910 | int cpu_id = Linux::sched_getcpu(); |
| 2911 | if (cpu_id != -1) { |
| 2912 | int lgrp_id = Linux::get_node_by_cpu(cpu_id); |
| 2913 | if (lgrp_id != -1) { |
| 2914 | return lgrp_id; |
| 2915 | } |
| 2916 | } |
| 2917 | return 0; |
| 2918 | } |
| 2919 | |
| 2920 | int os::Linux::get_existing_num_nodes() { |
| 2921 | int node; |
| 2922 | int highest_node_number = Linux::numa_max_node(); |
| 2923 | int num_nodes = 0; |
| 2924 | |
| 2925 | // Get the total number of nodes in the system including nodes without memory. |
| 2926 | for (node = 0; node <= highest_node_number; node++) { |
| 2927 | if (is_node_in_existing_nodes(node)) { |
| 2928 | num_nodes++; |
| 2929 | } |
| 2930 | } |
| 2931 | return num_nodes; |
| 2932 | } |
| 2933 | |
| 2934 | size_t os::numa_get_leaf_groups(int *ids, size_t size) { |
| 2935 | int highest_node_number = Linux::numa_max_node(); |
| 2936 | size_t i = 0; |
| 2937 | |
| 2938 | // Map all node ids in which it is possible to allocate memory. Also nodes are |
| 2939 | // not always consecutively available, i.e. available from 0 to the highest |
| 2940 | // node number. If the nodes have been bound explicitly using numactl membind, |
| 2941 | // then allocate memory from those nodes only. |
| 2942 | for (int node = 0; node <= highest_node_number; node++) { |
| 2943 | if (Linux::is_node_in_bound_nodes((unsigned int)node)) { |
| 2944 | ids[i++] = node; |
| 2945 | } |
| 2946 | } |
| 2947 | return i; |
| 2948 | } |
| 2949 | |
| 2950 | bool os::get_page_info(char *start, page_info* info) { |
| 2951 | return false; |
| 2952 | } |
| 2953 | |
| 2954 | char *os::scan_pages(char *start, char* end, page_info* page_expected, |
| 2955 | page_info* page_found) { |
| 2956 | return end; |
| 2957 | } |
| 2958 | |
| 2959 | |
| 2960 | int os::Linux::sched_getcpu_syscall(void) { |
| 2961 | unsigned int cpu = 0; |
| 2962 | int retval = -1; |
| 2963 | |
| 2964 | #if defined(IA32) |
| 2965 | #ifndef SYS_getcpu |
| 2966 | #define SYS_getcpu 318 |
| 2967 | #endif |
| 2968 | retval = syscall(SYS_getcpu, &cpu, NULL, NULL); |
| 2969 | #elif defined(AMD64) |
| 2970 | // Unfortunately we have to bring all these macros here from vsyscall.h |
| 2971 | // to be able to compile on old linuxes. |
| 2972 | #define __NR_vgetcpu 2 |
| 2973 | #define VSYSCALL_START (-10UL << 20) |
| 2974 | #define VSYSCALL_SIZE 1024 |
| 2975 | #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr)) |
| 2976 | typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache); |
| 2977 | vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu); |
| 2978 | retval = vgetcpu(&cpu, NULL, NULL); |
| 2979 | #endif |
| 2980 | |
| 2981 | return (retval == -1) ? retval : cpu; |
| 2982 | } |
| 2983 | |
| 2984 | void os::Linux::sched_getcpu_init() { |
| 2985 | // sched_getcpu() should be in libc. |
| 2986 | set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, |
| 2987 | dlsym(RTLD_DEFAULT, "sched_getcpu" ))); |
| 2988 | |
| 2989 | // If it's not, try a direct syscall. |
| 2990 | if (sched_getcpu() == -1) { |
| 2991 | set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, |
| 2992 | (void*)&sched_getcpu_syscall)); |
| 2993 | } |
| 2994 | |
| 2995 | if (sched_getcpu() == -1) { |
| 2996 | vm_exit_during_initialization("getcpu(2) system call not supported by kernel" ); |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | // Something to do with the numa-aware allocator needs these symbols |
| 3001 | extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { } |
| 3002 | extern "C" JNIEXPORT void numa_error(char *where) { } |
| 3003 | |
| 3004 | // Handle request to load libnuma symbol version 1.1 (API v1). If it fails |
| 3005 | // load symbol from base version instead. |
| 3006 | void* os::Linux::libnuma_dlsym(void* handle, const char *name) { |
| 3007 | void *f = dlvsym(handle, name, "libnuma_1.1" ); |
| 3008 | if (f == NULL) { |
| 3009 | f = dlsym(handle, name); |
| 3010 | } |
| 3011 | return f; |
| 3012 | } |
| 3013 | |
| 3014 | // Handle request to load libnuma symbol version 1.2 (API v2) only. |
| 3015 | // Return NULL if the symbol is not defined in this particular version. |
| 3016 | void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) { |
| 3017 | return dlvsym(handle, name, "libnuma_1.2" ); |
| 3018 | } |
| 3019 | |
| 3020 | bool os::Linux::libnuma_init() { |
| 3021 | if (sched_getcpu() != -1) { // Requires sched_getcpu() support |
| 3022 | void *handle = dlopen("libnuma.so.1" , RTLD_LAZY); |
| 3023 | if (handle != NULL) { |
| 3024 | set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t, |
| 3025 | libnuma_dlsym(handle, "numa_node_to_cpus" ))); |
| 3026 | set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t, |
| 3027 | libnuma_dlsym(handle, "numa_max_node" ))); |
| 3028 | set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t, |
| 3029 | libnuma_dlsym(handle, "numa_num_configured_nodes" ))); |
| 3030 | set_numa_available(CAST_TO_FN_PTR(numa_available_func_t, |
| 3031 | libnuma_dlsym(handle, "numa_available" ))); |
| 3032 | set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t, |
| 3033 | libnuma_dlsym(handle, "numa_tonode_memory" ))); |
| 3034 | set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t, |
| 3035 | libnuma_dlsym(handle, "numa_interleave_memory" ))); |
| 3036 | set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t, |
| 3037 | libnuma_v2_dlsym(handle, "numa_interleave_memory" ))); |
| 3038 | set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t, |
| 3039 | libnuma_dlsym(handle, "numa_set_bind_policy" ))); |
| 3040 | set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t, |
| 3041 | libnuma_dlsym(handle, "numa_bitmask_isbitset" ))); |
| 3042 | set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t, |
| 3043 | libnuma_dlsym(handle, "numa_distance" ))); |
| 3044 | set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t, |
| 3045 | libnuma_v2_dlsym(handle, "numa_get_membind" ))); |
| 3046 | set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t, |
| 3047 | libnuma_v2_dlsym(handle, "numa_get_interleave_mask" ))); |
| 3048 | |
| 3049 | if (numa_available() != -1) { |
| 3050 | set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes" )); |
| 3051 | set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr" )); |
| 3052 | set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr" )); |
| 3053 | set_numa_interleave_bitmask(_numa_get_interleave_mask()); |
| 3054 | set_numa_membind_bitmask(_numa_get_membind()); |
| 3055 | // Create an index -> node mapping, since nodes are not always consecutive |
| 3056 | _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true); |
| 3057 | rebuild_nindex_to_node_map(); |
| 3058 | // Create a cpu -> node mapping |
| 3059 | _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true); |
| 3060 | rebuild_cpu_to_node_map(); |
| 3061 | return true; |
| 3062 | } |
| 3063 | } |
| 3064 | } |
| 3065 | return false; |
| 3066 | } |
| 3067 | |
| 3068 | size_t os::Linux::default_guard_size(os::ThreadType thr_type) { |
| 3069 | // Creating guard page is very expensive. Java thread has HotSpot |
| 3070 | // guard pages, only enable glibc guard page for non-Java threads. |
| 3071 | // (Remember: compiler thread is a Java thread, too!) |
| 3072 | return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size()); |
| 3073 | } |
| 3074 | |
| 3075 | void os::Linux::rebuild_nindex_to_node_map() { |
| 3076 | int highest_node_number = Linux::numa_max_node(); |
| 3077 | |
| 3078 | nindex_to_node()->clear(); |
| 3079 | for (int node = 0; node <= highest_node_number; node++) { |
| 3080 | if (Linux::is_node_in_existing_nodes(node)) { |
| 3081 | nindex_to_node()->append(node); |
| 3082 | } |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id. |
| 3087 | // The table is later used in get_node_by_cpu(). |
| 3088 | void os::Linux::rebuild_cpu_to_node_map() { |
| 3089 | const size_t NCPUS = 32768; // Since the buffer size computation is very obscure |
| 3090 | // in libnuma (possible values are starting from 16, |
| 3091 | // and continuing up with every other power of 2, but less |
| 3092 | // than the maximum number of CPUs supported by kernel), and |
| 3093 | // is a subject to change (in libnuma version 2 the requirements |
| 3094 | // are more reasonable) we'll just hardcode the number they use |
| 3095 | // in the library. |
| 3096 | const size_t BitsPerCLong = sizeof(long) * CHAR_BIT; |
| 3097 | |
| 3098 | size_t cpu_num = processor_count(); |
| 3099 | size_t cpu_map_size = NCPUS / BitsPerCLong; |
| 3100 | size_t cpu_map_valid_size = |
| 3101 | MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size); |
| 3102 | |
| 3103 | cpu_to_node()->clear(); |
| 3104 | cpu_to_node()->at_grow(cpu_num - 1); |
| 3105 | |
| 3106 | size_t node_num = get_existing_num_nodes(); |
| 3107 | |
| 3108 | int distance = 0; |
| 3109 | int closest_distance = INT_MAX; |
| 3110 | int closest_node = 0; |
| 3111 | unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal); |
| 3112 | for (size_t i = 0; i < node_num; i++) { |
| 3113 | // Check if node is configured (not a memory-less node). If it is not, find |
| 3114 | // the closest configured node. Check also if node is bound, i.e. it's allowed |
| 3115 | // to allocate memory from the node. If it's not allowed, map cpus in that node |
| 3116 | // to the closest node from which memory allocation is allowed. |
| 3117 | if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) || |
| 3118 | !is_node_in_bound_nodes(nindex_to_node()->at(i))) { |
| 3119 | closest_distance = INT_MAX; |
| 3120 | // Check distance from all remaining nodes in the system. Ignore distance |
| 3121 | // from itself, from another non-configured node, and from another non-bound |
| 3122 | // node. |
| 3123 | for (size_t m = 0; m < node_num; m++) { |
| 3124 | if (m != i && |
| 3125 | is_node_in_configured_nodes(nindex_to_node()->at(m)) && |
| 3126 | is_node_in_bound_nodes(nindex_to_node()->at(m))) { |
| 3127 | distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m)); |
| 3128 | // If a closest node is found, update. There is always at least one |
| 3129 | // configured and bound node in the system so there is always at least |
| 3130 | // one node close. |
| 3131 | if (distance != 0 && distance < closest_distance) { |
| 3132 | closest_distance = distance; |
| 3133 | closest_node = nindex_to_node()->at(m); |
| 3134 | } |
| 3135 | } |
| 3136 | } |
| 3137 | } else { |
| 3138 | // Current node is already a configured node. |
| 3139 | closest_node = nindex_to_node()->at(i); |
| 3140 | } |
| 3141 | |
| 3142 | // Get cpus from the original node and map them to the closest node. If node |
| 3143 | // is a configured node (not a memory-less node), then original node and |
| 3144 | // closest node are the same. |
| 3145 | if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) { |
| 3146 | for (size_t j = 0; j < cpu_map_valid_size; j++) { |
| 3147 | if (cpu_map[j] != 0) { |
| 3148 | for (size_t k = 0; k < BitsPerCLong; k++) { |
| 3149 | if (cpu_map[j] & (1UL << k)) { |
| 3150 | cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node); |
| 3151 | } |
| 3152 | } |
| 3153 | } |
| 3154 | } |
| 3155 | } |
| 3156 | } |
| 3157 | FREE_C_HEAP_ARRAY(unsigned long, cpu_map); |
| 3158 | } |
| 3159 | |
| 3160 | int os::Linux::get_node_by_cpu(int cpu_id) { |
| 3161 | if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) { |
| 3162 | return cpu_to_node()->at(cpu_id); |
| 3163 | } |
| 3164 | return -1; |
| 3165 | } |
| 3166 | |
| 3167 | GrowableArray<int>* os::Linux::_cpu_to_node; |
| 3168 | GrowableArray<int>* os::Linux::_nindex_to_node; |
| 3169 | os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu; |
| 3170 | os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus; |
| 3171 | os::Linux::numa_max_node_func_t os::Linux::_numa_max_node; |
| 3172 | os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes; |
| 3173 | os::Linux::numa_available_func_t os::Linux::_numa_available; |
| 3174 | os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory; |
| 3175 | os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory; |
| 3176 | os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2; |
| 3177 | os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy; |
| 3178 | os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset; |
| 3179 | os::Linux::numa_distance_func_t os::Linux::_numa_distance; |
| 3180 | os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind; |
| 3181 | os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask; |
| 3182 | os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy; |
| 3183 | unsigned long* os::Linux::_numa_all_nodes; |
| 3184 | struct bitmask* os::Linux::_numa_all_nodes_ptr; |
| 3185 | struct bitmask* os::Linux::_numa_nodes_ptr; |
| 3186 | struct bitmask* os::Linux::_numa_interleave_bitmask; |
| 3187 | struct bitmask* os::Linux::_numa_membind_bitmask; |
| 3188 | |
| 3189 | bool os::pd_uncommit_memory(char* addr, size_t size) { |
| 3190 | uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE, |
| 3191 | MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0); |
| 3192 | return res != (uintptr_t) MAP_FAILED; |
| 3193 | } |
| 3194 | |
| 3195 | static address get_stack_commited_bottom(address bottom, size_t size) { |
| 3196 | address nbot = bottom; |
| 3197 | address ntop = bottom + size; |
| 3198 | |
| 3199 | size_t page_sz = os::vm_page_size(); |
| 3200 | unsigned pages = size / page_sz; |
| 3201 | |
| 3202 | unsigned char vec[1]; |
| 3203 | unsigned imin = 1, imax = pages + 1, imid; |
| 3204 | int mincore_return_value = 0; |
| 3205 | |
| 3206 | assert(imin <= imax, "Unexpected page size" ); |
| 3207 | |
| 3208 | while (imin < imax) { |
| 3209 | imid = (imax + imin) / 2; |
| 3210 | nbot = ntop - (imid * page_sz); |
| 3211 | |
| 3212 | // Use a trick with mincore to check whether the page is mapped or not. |
| 3213 | // mincore sets vec to 1 if page resides in memory and to 0 if page |
| 3214 | // is swapped output but if page we are asking for is unmapped |
| 3215 | // it returns -1,ENOMEM |
| 3216 | mincore_return_value = mincore(nbot, page_sz, vec); |
| 3217 | |
| 3218 | if (mincore_return_value == -1) { |
| 3219 | // Page is not mapped go up |
| 3220 | // to find first mapped page |
| 3221 | if (errno != EAGAIN) { |
| 3222 | assert(errno == ENOMEM, "Unexpected mincore errno" ); |
| 3223 | imax = imid; |
| 3224 | } |
| 3225 | } else { |
| 3226 | // Page is mapped go down |
| 3227 | // to find first not mapped page |
| 3228 | imin = imid + 1; |
| 3229 | } |
| 3230 | } |
| 3231 | |
| 3232 | nbot = nbot + page_sz; |
| 3233 | |
| 3234 | // Adjust stack bottom one page up if last checked page is not mapped |
| 3235 | if (mincore_return_value == -1) { |
| 3236 | nbot = nbot + page_sz; |
| 3237 | } |
| 3238 | |
| 3239 | return nbot; |
| 3240 | } |
| 3241 | |
| 3242 | bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) { |
| 3243 | int mincore_return_value; |
| 3244 | const size_t stripe = 1024; // query this many pages each time |
| 3245 | unsigned char vec[stripe + 1]; |
| 3246 | // set a guard |
| 3247 | vec[stripe] = 'X'; |
| 3248 | |
| 3249 | const size_t page_sz = os::vm_page_size(); |
| 3250 | size_t pages = size / page_sz; |
| 3251 | |
| 3252 | assert(is_aligned(start, page_sz), "Start address must be page aligned" ); |
| 3253 | assert(is_aligned(size, page_sz), "Size must be page aligned" ); |
| 3254 | |
| 3255 | committed_start = NULL; |
| 3256 | |
| 3257 | int loops = (pages + stripe - 1) / stripe; |
| 3258 | int committed_pages = 0; |
| 3259 | address loop_base = start; |
| 3260 | bool found_range = false; |
| 3261 | |
| 3262 | for (int index = 0; index < loops && !found_range; index ++) { |
| 3263 | assert(pages > 0, "Nothing to do" ); |
| 3264 | int pages_to_query = (pages >= stripe) ? stripe : pages; |
| 3265 | pages -= pages_to_query; |
| 3266 | |
| 3267 | // Get stable read |
| 3268 | while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN); |
| 3269 | |
| 3270 | // During shutdown, some memory goes away without properly notifying NMT, |
| 3271 | // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object. |
| 3272 | // Bailout and return as not committed for now. |
| 3273 | if (mincore_return_value == -1 && errno == ENOMEM) { |
| 3274 | return false; |
| 3275 | } |
| 3276 | |
| 3277 | assert(vec[stripe] == 'X', "overflow guard" ); |
| 3278 | assert(mincore_return_value == 0, "Range must be valid" ); |
| 3279 | // Process this stripe |
| 3280 | for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) { |
| 3281 | if ((vec[vecIdx] & 0x01) == 0) { // not committed |
| 3282 | // End of current contiguous region |
| 3283 | if (committed_start != NULL) { |
| 3284 | found_range = true; |
| 3285 | break; |
| 3286 | } |
| 3287 | } else { // committed |
| 3288 | // Start of region |
| 3289 | if (committed_start == NULL) { |
| 3290 | committed_start = loop_base + page_sz * vecIdx; |
| 3291 | } |
| 3292 | committed_pages ++; |
| 3293 | } |
| 3294 | } |
| 3295 | |
| 3296 | loop_base += pages_to_query * page_sz; |
| 3297 | } |
| 3298 | |
| 3299 | if (committed_start != NULL) { |
| 3300 | assert(committed_pages > 0, "Must have committed region" ); |
| 3301 | assert(committed_pages <= int(size / page_sz), "Can not commit more than it has" ); |
| 3302 | assert(committed_start >= start && committed_start < start + size, "Out of range" ); |
| 3303 | committed_size = page_sz * committed_pages; |
| 3304 | return true; |
| 3305 | } else { |
| 3306 | assert(committed_pages == 0, "Should not have committed region" ); |
| 3307 | return false; |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | |
| 3312 | // Linux uses a growable mapping for the stack, and if the mapping for |
| 3313 | // the stack guard pages is not removed when we detach a thread the |
| 3314 | // stack cannot grow beyond the pages where the stack guard was |
| 3315 | // mapped. If at some point later in the process the stack expands to |
| 3316 | // that point, the Linux kernel cannot expand the stack any further |
| 3317 | // because the guard pages are in the way, and a segfault occurs. |
| 3318 | // |
| 3319 | // However, it's essential not to split the stack region by unmapping |
| 3320 | // a region (leaving a hole) that's already part of the stack mapping, |
| 3321 | // so if the stack mapping has already grown beyond the guard pages at |
| 3322 | // the time we create them, we have to truncate the stack mapping. |
| 3323 | // So, we need to know the extent of the stack mapping when |
| 3324 | // create_stack_guard_pages() is called. |
| 3325 | |
| 3326 | // We only need this for stacks that are growable: at the time of |
| 3327 | // writing thread stacks don't use growable mappings (i.e. those |
| 3328 | // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this |
| 3329 | // only applies to the main thread. |
| 3330 | |
| 3331 | // If the (growable) stack mapping already extends beyond the point |
| 3332 | // where we're going to put our guard pages, truncate the mapping at |
| 3333 | // that point by munmap()ping it. This ensures that when we later |
| 3334 | // munmap() the guard pages we don't leave a hole in the stack |
| 3335 | // mapping. This only affects the main/primordial thread |
| 3336 | |
| 3337 | bool os::pd_create_stack_guard_pages(char* addr, size_t size) { |
| 3338 | if (os::is_primordial_thread()) { |
| 3339 | // As we manually grow stack up to bottom inside create_attached_thread(), |
| 3340 | // it's likely that os::Linux::initial_thread_stack_bottom is mapped and |
| 3341 | // we don't need to do anything special. |
| 3342 | // Check it first, before calling heavy function. |
| 3343 | uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom(); |
| 3344 | unsigned char vec[1]; |
| 3345 | |
| 3346 | if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) { |
| 3347 | // Fallback to slow path on all errors, including EAGAIN |
| 3348 | stack_extent = (uintptr_t) get_stack_commited_bottom( |
| 3349 | os::Linux::initial_thread_stack_bottom(), |
| 3350 | (size_t)addr - stack_extent); |
| 3351 | } |
| 3352 | |
| 3353 | if (stack_extent < (uintptr_t)addr) { |
| 3354 | ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent)); |
| 3355 | } |
| 3356 | } |
| 3357 | |
| 3358 | return os::commit_memory(addr, size, !ExecMem); |
| 3359 | } |
| 3360 | |
| 3361 | // If this is a growable mapping, remove the guard pages entirely by |
| 3362 | // munmap()ping them. If not, just call uncommit_memory(). This only |
| 3363 | // affects the main/primordial thread, but guard against future OS changes. |
| 3364 | // It's safe to always unmap guard pages for primordial thread because we |
| 3365 | // always place it right after end of the mapped region. |
| 3366 | |
| 3367 | bool os::remove_stack_guard_pages(char* addr, size_t size) { |
| 3368 | uintptr_t stack_extent, stack_base; |
| 3369 | |
| 3370 | if (os::is_primordial_thread()) { |
| 3371 | return ::munmap(addr, size) == 0; |
| 3372 | } |
| 3373 | |
| 3374 | return os::uncommit_memory(addr, size); |
| 3375 | } |
| 3376 | |
| 3377 | // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory |
| 3378 | // at 'requested_addr'. If there are existing memory mappings at the same |
| 3379 | // location, however, they will be overwritten. If 'fixed' is false, |
| 3380 | // 'requested_addr' is only treated as a hint, the return value may or |
| 3381 | // may not start from the requested address. Unlike Linux mmap(), this |
| 3382 | // function returns NULL to indicate failure. |
| 3383 | static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) { |
| 3384 | char * addr; |
| 3385 | int flags; |
| 3386 | |
| 3387 | flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS; |
| 3388 | if (fixed) { |
| 3389 | assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address" ); |
| 3390 | flags |= MAP_FIXED; |
| 3391 | } |
| 3392 | |
| 3393 | // Map reserved/uncommitted pages PROT_NONE so we fail early if we |
| 3394 | // touch an uncommitted page. Otherwise, the read/write might |
| 3395 | // succeed if we have enough swap space to back the physical page. |
| 3396 | addr = (char*)::mmap(requested_addr, bytes, PROT_NONE, |
| 3397 | flags, -1, 0); |
| 3398 | |
| 3399 | return addr == MAP_FAILED ? NULL : addr; |
| 3400 | } |
| 3401 | |
| 3402 | // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address |
| 3403 | // (req_addr != NULL) or with a given alignment. |
| 3404 | // - bytes shall be a multiple of alignment. |
| 3405 | // - req_addr can be NULL. If not NULL, it must be a multiple of alignment. |
| 3406 | // - alignment sets the alignment at which memory shall be allocated. |
| 3407 | // It must be a multiple of allocation granularity. |
| 3408 | // Returns address of memory or NULL. If req_addr was not NULL, will only return |
| 3409 | // req_addr or NULL. |
| 3410 | static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) { |
| 3411 | |
| 3412 | size_t = bytes; |
| 3413 | if (req_addr == NULL && alignment > 0) { |
| 3414 | extra_size += alignment; |
| 3415 | } |
| 3416 | |
| 3417 | char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE, |
| 3418 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
| 3419 | -1, 0); |
| 3420 | if (start == MAP_FAILED) { |
| 3421 | start = NULL; |
| 3422 | } else { |
| 3423 | if (req_addr != NULL) { |
| 3424 | if (start != req_addr) { |
| 3425 | ::munmap(start, extra_size); |
| 3426 | start = NULL; |
| 3427 | } |
| 3428 | } else { |
| 3429 | char* const start_aligned = align_up(start, alignment); |
| 3430 | char* const end_aligned = start_aligned + bytes; |
| 3431 | char* const end = start + extra_size; |
| 3432 | if (start_aligned > start) { |
| 3433 | ::munmap(start, start_aligned - start); |
| 3434 | } |
| 3435 | if (end_aligned < end) { |
| 3436 | ::munmap(end_aligned, end - end_aligned); |
| 3437 | } |
| 3438 | start = start_aligned; |
| 3439 | } |
| 3440 | } |
| 3441 | return start; |
| 3442 | } |
| 3443 | |
| 3444 | static int anon_munmap(char * addr, size_t size) { |
| 3445 | return ::munmap(addr, size) == 0; |
| 3446 | } |
| 3447 | |
| 3448 | char* os::pd_reserve_memory(size_t bytes, char* requested_addr, |
| 3449 | size_t alignment_hint) { |
| 3450 | return anon_mmap(requested_addr, bytes, (requested_addr != NULL)); |
| 3451 | } |
| 3452 | |
| 3453 | bool os::pd_release_memory(char* addr, size_t size) { |
| 3454 | return anon_munmap(addr, size); |
| 3455 | } |
| 3456 | |
| 3457 | static bool linux_mprotect(char* addr, size_t size, int prot) { |
| 3458 | // Linux wants the mprotect address argument to be page aligned. |
| 3459 | char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size()); |
| 3460 | |
| 3461 | // According to SUSv3, mprotect() should only be used with mappings |
| 3462 | // established by mmap(), and mmap() always maps whole pages. Unaligned |
| 3463 | // 'addr' likely indicates problem in the VM (e.g. trying to change |
| 3464 | // protection of malloc'ed or statically allocated memory). Check the |
| 3465 | // caller if you hit this assert. |
| 3466 | assert(addr == bottom, "sanity check" ); |
| 3467 | |
| 3468 | size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size()); |
| 3469 | Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x" , p2i(bottom), p2i(bottom+size), prot); |
| 3470 | return ::mprotect(bottom, size, prot) == 0; |
| 3471 | } |
| 3472 | |
| 3473 | // Set protections specified |
| 3474 | bool os::protect_memory(char* addr, size_t bytes, ProtType prot, |
| 3475 | bool is_committed) { |
| 3476 | unsigned int p = 0; |
| 3477 | switch (prot) { |
| 3478 | case MEM_PROT_NONE: p = PROT_NONE; break; |
| 3479 | case MEM_PROT_READ: p = PROT_READ; break; |
| 3480 | case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break; |
| 3481 | case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break; |
| 3482 | default: |
| 3483 | ShouldNotReachHere(); |
| 3484 | } |
| 3485 | // is_committed is unused. |
| 3486 | return linux_mprotect(addr, bytes, p); |
| 3487 | } |
| 3488 | |
| 3489 | bool os::guard_memory(char* addr, size_t size) { |
| 3490 | return linux_mprotect(addr, size, PROT_NONE); |
| 3491 | } |
| 3492 | |
| 3493 | bool os::unguard_memory(char* addr, size_t size) { |
| 3494 | return linux_mprotect(addr, size, PROT_READ|PROT_WRITE); |
| 3495 | } |
| 3496 | |
| 3497 | bool os::Linux::transparent_huge_pages_sanity_check(bool warn, |
| 3498 | size_t page_size) { |
| 3499 | bool result = false; |
| 3500 | void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE, |
| 3501 | MAP_ANONYMOUS|MAP_PRIVATE, |
| 3502 | -1, 0); |
| 3503 | if (p != MAP_FAILED) { |
| 3504 | void *aligned_p = align_up(p, page_size); |
| 3505 | |
| 3506 | result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0; |
| 3507 | |
| 3508 | munmap(p, page_size * 2); |
| 3509 | } |
| 3510 | |
| 3511 | if (warn && !result) { |
| 3512 | warning("TransparentHugePages is not supported by the operating system." ); |
| 3513 | } |
| 3514 | |
| 3515 | return result; |
| 3516 | } |
| 3517 | |
| 3518 | bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) { |
| 3519 | bool result = false; |
| 3520 | void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE, |
| 3521 | MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB, |
| 3522 | -1, 0); |
| 3523 | |
| 3524 | if (p != MAP_FAILED) { |
| 3525 | // We don't know if this really is a huge page or not. |
| 3526 | FILE *fp = fopen("/proc/self/maps" , "r" ); |
| 3527 | if (fp) { |
| 3528 | while (!feof(fp)) { |
| 3529 | char chars[257]; |
| 3530 | long x = 0; |
| 3531 | if (fgets(chars, sizeof(chars), fp)) { |
| 3532 | if (sscanf(chars, "%lx-%*x" , &x) == 1 |
| 3533 | && x == (long)p) { |
| 3534 | if (strstr (chars, "hugepage" )) { |
| 3535 | result = true; |
| 3536 | break; |
| 3537 | } |
| 3538 | } |
| 3539 | } |
| 3540 | } |
| 3541 | fclose(fp); |
| 3542 | } |
| 3543 | munmap(p, page_size); |
| 3544 | } |
| 3545 | |
| 3546 | if (warn && !result) { |
| 3547 | warning("HugeTLBFS is not supported by the operating system." ); |
| 3548 | } |
| 3549 | |
| 3550 | return result; |
| 3551 | } |
| 3552 | |
| 3553 | // From the coredump_filter documentation: |
| 3554 | // |
| 3555 | // - (bit 0) anonymous private memory |
| 3556 | // - (bit 1) anonymous shared memory |
| 3557 | // - (bit 2) file-backed private memory |
| 3558 | // - (bit 3) file-backed shared memory |
| 3559 | // - (bit 4) ELF header pages in file-backed private memory areas (it is |
| 3560 | // effective only if the bit 2 is cleared) |
| 3561 | // - (bit 5) hugetlb private memory |
| 3562 | // - (bit 6) hugetlb shared memory |
| 3563 | // - (bit 7) dax private memory |
| 3564 | // - (bit 8) dax shared memory |
| 3565 | // |
| 3566 | static void set_coredump_filter(CoredumpFilterBit bit) { |
| 3567 | FILE *f; |
| 3568 | long cdm; |
| 3569 | |
| 3570 | if ((f = fopen("/proc/self/coredump_filter" , "r+" )) == NULL) { |
| 3571 | return; |
| 3572 | } |
| 3573 | |
| 3574 | if (fscanf(f, "%lx" , &cdm) != 1) { |
| 3575 | fclose(f); |
| 3576 | return; |
| 3577 | } |
| 3578 | |
| 3579 | long saved_cdm = cdm; |
| 3580 | rewind(f); |
| 3581 | cdm |= bit; |
| 3582 | |
| 3583 | if (cdm != saved_cdm) { |
| 3584 | fprintf(f, "%#lx" , cdm); |
| 3585 | } |
| 3586 | |
| 3587 | fclose(f); |
| 3588 | } |
| 3589 | |
| 3590 | // Large page support |
| 3591 | |
| 3592 | static size_t _large_page_size = 0; |
| 3593 | |
| 3594 | size_t os::Linux::find_large_page_size() { |
| 3595 | size_t large_page_size = 0; |
| 3596 | |
| 3597 | // large_page_size on Linux is used to round up heap size. x86 uses either |
| 3598 | // 2M or 4M page, depending on whether PAE (Physical Address Extensions) |
| 3599 | // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use |
| 3600 | // page as large as 256M. |
| 3601 | // |
| 3602 | // Here we try to figure out page size by parsing /proc/meminfo and looking |
| 3603 | // for a line with the following format: |
| 3604 | // Hugepagesize: 2048 kB |
| 3605 | // |
| 3606 | // If we can't determine the value (e.g. /proc is not mounted, or the text |
| 3607 | // format has been changed), we'll use the largest page size supported by |
| 3608 | // the processor. |
| 3609 | |
| 3610 | #ifndef ZERO |
| 3611 | large_page_size = |
| 3612 | AARCH64_ONLY(2 * M) |
| 3613 | AMD64_ONLY(2 * M) |
| 3614 | ARM32_ONLY(2 * M) |
| 3615 | IA32_ONLY(4 * M) |
| 3616 | IA64_ONLY(256 * M) |
| 3617 | PPC_ONLY(4 * M) |
| 3618 | S390_ONLY(1 * M) |
| 3619 | SPARC_ONLY(4 * M); |
| 3620 | #endif // ZERO |
| 3621 | |
| 3622 | FILE *fp = fopen("/proc/meminfo" , "r" ); |
| 3623 | if (fp) { |
| 3624 | while (!feof(fp)) { |
| 3625 | int x = 0; |
| 3626 | char buf[16]; |
| 3627 | if (fscanf(fp, "Hugepagesize: %d" , &x) == 1) { |
| 3628 | if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n" ) == 0) { |
| 3629 | large_page_size = x * K; |
| 3630 | break; |
| 3631 | } |
| 3632 | } else { |
| 3633 | // skip to next line |
| 3634 | for (;;) { |
| 3635 | int ch = fgetc(fp); |
| 3636 | if (ch == EOF || ch == (int)'\n') break; |
| 3637 | } |
| 3638 | } |
| 3639 | } |
| 3640 | fclose(fp); |
| 3641 | } |
| 3642 | |
| 3643 | if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) { |
| 3644 | warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is " |
| 3645 | SIZE_FORMAT "%s." , byte_size_in_proper_unit(large_page_size), |
| 3646 | proper_unit_for_byte_size(large_page_size)); |
| 3647 | } |
| 3648 | |
| 3649 | return large_page_size; |
| 3650 | } |
| 3651 | |
| 3652 | size_t os::Linux::setup_large_page_size() { |
| 3653 | _large_page_size = Linux::find_large_page_size(); |
| 3654 | const size_t default_page_size = (size_t)Linux::page_size(); |
| 3655 | if (_large_page_size > default_page_size) { |
| 3656 | _page_sizes[0] = _large_page_size; |
| 3657 | _page_sizes[1] = default_page_size; |
| 3658 | _page_sizes[2] = 0; |
| 3659 | } |
| 3660 | |
| 3661 | return _large_page_size; |
| 3662 | } |
| 3663 | |
| 3664 | bool os::Linux::setup_large_page_type(size_t page_size) { |
| 3665 | if (FLAG_IS_DEFAULT(UseHugeTLBFS) && |
| 3666 | FLAG_IS_DEFAULT(UseSHM) && |
| 3667 | FLAG_IS_DEFAULT(UseTransparentHugePages)) { |
| 3668 | |
| 3669 | // The type of large pages has not been specified by the user. |
| 3670 | |
| 3671 | // Try UseHugeTLBFS and then UseSHM. |
| 3672 | UseHugeTLBFS = UseSHM = true; |
| 3673 | |
| 3674 | // Don't try UseTransparentHugePages since there are known |
| 3675 | // performance issues with it turned on. This might change in the future. |
| 3676 | UseTransparentHugePages = false; |
| 3677 | } |
| 3678 | |
| 3679 | if (UseTransparentHugePages) { |
| 3680 | bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages); |
| 3681 | if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) { |
| 3682 | UseHugeTLBFS = false; |
| 3683 | UseSHM = false; |
| 3684 | return true; |
| 3685 | } |
| 3686 | UseTransparentHugePages = false; |
| 3687 | } |
| 3688 | |
| 3689 | if (UseHugeTLBFS) { |
| 3690 | bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS); |
| 3691 | if (hugetlbfs_sanity_check(warn_on_failure, page_size)) { |
| 3692 | UseSHM = false; |
| 3693 | return true; |
| 3694 | } |
| 3695 | UseHugeTLBFS = false; |
| 3696 | } |
| 3697 | |
| 3698 | return UseSHM; |
| 3699 | } |
| 3700 | |
| 3701 | void os::large_page_init() { |
| 3702 | if (!UseLargePages && |
| 3703 | !UseTransparentHugePages && |
| 3704 | !UseHugeTLBFS && |
| 3705 | !UseSHM) { |
| 3706 | // Not using large pages. |
| 3707 | return; |
| 3708 | } |
| 3709 | |
| 3710 | if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) { |
| 3711 | // The user explicitly turned off large pages. |
| 3712 | // Ignore the rest of the large pages flags. |
| 3713 | UseTransparentHugePages = false; |
| 3714 | UseHugeTLBFS = false; |
| 3715 | UseSHM = false; |
| 3716 | return; |
| 3717 | } |
| 3718 | |
| 3719 | size_t large_page_size = Linux::setup_large_page_size(); |
| 3720 | UseLargePages = Linux::setup_large_page_type(large_page_size); |
| 3721 | |
| 3722 | set_coredump_filter(LARGEPAGES_BIT); |
| 3723 | } |
| 3724 | |
| 3725 | #ifndef SHM_HUGETLB |
| 3726 | #define SHM_HUGETLB 04000 |
| 3727 | #endif |
| 3728 | |
| 3729 | #define shm_warning_format(format, ...) \ |
| 3730 | do { \ |
| 3731 | if (UseLargePages && \ |
| 3732 | (!FLAG_IS_DEFAULT(UseLargePages) || \ |
| 3733 | !FLAG_IS_DEFAULT(UseSHM) || \ |
| 3734 | !FLAG_IS_DEFAULT(LargePageSizeInBytes))) { \ |
| 3735 | warning(format, __VA_ARGS__); \ |
| 3736 | } \ |
| 3737 | } while (0) |
| 3738 | |
| 3739 | #define shm_warning(str) shm_warning_format("%s", str) |
| 3740 | |
| 3741 | #define shm_warning_with_errno(str) \ |
| 3742 | do { \ |
| 3743 | int err = errno; \ |
| 3744 | shm_warning_format(str " (error = %d)", err); \ |
| 3745 | } while (0) |
| 3746 | |
| 3747 | static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) { |
| 3748 | assert(is_aligned(bytes, alignment), "Must be divisible by the alignment" ); |
| 3749 | |
| 3750 | if (!is_aligned(alignment, SHMLBA)) { |
| 3751 | assert(false, "Code below assumes that alignment is at least SHMLBA aligned" ); |
| 3752 | return NULL; |
| 3753 | } |
| 3754 | |
| 3755 | // To ensure that we get 'alignment' aligned memory from shmat, |
| 3756 | // we pre-reserve aligned virtual memory and then attach to that. |
| 3757 | |
| 3758 | char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL); |
| 3759 | if (pre_reserved_addr == NULL) { |
| 3760 | // Couldn't pre-reserve aligned memory. |
| 3761 | shm_warning("Failed to pre-reserve aligned memory for shmat." ); |
| 3762 | return NULL; |
| 3763 | } |
| 3764 | |
| 3765 | // SHM_REMAP is needed to allow shmat to map over an existing mapping. |
| 3766 | char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP); |
| 3767 | |
| 3768 | if ((intptr_t)addr == -1) { |
| 3769 | int err = errno; |
| 3770 | shm_warning_with_errno("Failed to attach shared memory." ); |
| 3771 | |
| 3772 | assert(err != EACCES, "Unexpected error" ); |
| 3773 | assert(err != EIDRM, "Unexpected error" ); |
| 3774 | assert(err != EINVAL, "Unexpected error" ); |
| 3775 | |
| 3776 | // Since we don't know if the kernel unmapped the pre-reserved memory area |
| 3777 | // we can't unmap it, since that would potentially unmap memory that was |
| 3778 | // mapped from other threads. |
| 3779 | return NULL; |
| 3780 | } |
| 3781 | |
| 3782 | return addr; |
| 3783 | } |
| 3784 | |
| 3785 | static char* shmat_at_address(int shmid, char* req_addr) { |
| 3786 | if (!is_aligned(req_addr, SHMLBA)) { |
| 3787 | assert(false, "Requested address needs to be SHMLBA aligned" ); |
| 3788 | return NULL; |
| 3789 | } |
| 3790 | |
| 3791 | char* addr = (char*)shmat(shmid, req_addr, 0); |
| 3792 | |
| 3793 | if ((intptr_t)addr == -1) { |
| 3794 | shm_warning_with_errno("Failed to attach shared memory." ); |
| 3795 | return NULL; |
| 3796 | } |
| 3797 | |
| 3798 | return addr; |
| 3799 | } |
| 3800 | |
| 3801 | static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) { |
| 3802 | // If a req_addr has been provided, we assume that the caller has already aligned the address. |
| 3803 | if (req_addr != NULL) { |
| 3804 | assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size" ); |
| 3805 | assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment" ); |
| 3806 | return shmat_at_address(shmid, req_addr); |
| 3807 | } |
| 3808 | |
| 3809 | // Since shmid has been setup with SHM_HUGETLB, shmat will automatically |
| 3810 | // return large page size aligned memory addresses when req_addr == NULL. |
| 3811 | // However, if the alignment is larger than the large page size, we have |
| 3812 | // to manually ensure that the memory returned is 'alignment' aligned. |
| 3813 | if (alignment > os::large_page_size()) { |
| 3814 | assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size" ); |
| 3815 | return shmat_with_alignment(shmid, bytes, alignment); |
| 3816 | } else { |
| 3817 | return shmat_at_address(shmid, NULL); |
| 3818 | } |
| 3819 | } |
| 3820 | |
| 3821 | char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, |
| 3822 | char* req_addr, bool exec) { |
| 3823 | // "exec" is passed in but not used. Creating the shared image for |
| 3824 | // the code cache doesn't have an SHM_X executable permission to check. |
| 3825 | assert(UseLargePages && UseSHM, "only for SHM large pages" ); |
| 3826 | assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address" ); |
| 3827 | assert(is_aligned(req_addr, alignment), "Unaligned address" ); |
| 3828 | |
| 3829 | if (!is_aligned(bytes, os::large_page_size())) { |
| 3830 | return NULL; // Fallback to small pages. |
| 3831 | } |
| 3832 | |
| 3833 | // Create a large shared memory region to attach to based on size. |
| 3834 | // Currently, size is the total size of the heap. |
| 3835 | int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W); |
| 3836 | if (shmid == -1) { |
| 3837 | // Possible reasons for shmget failure: |
| 3838 | // 1. shmmax is too small for Java heap. |
| 3839 | // > check shmmax value: cat /proc/sys/kernel/shmmax |
| 3840 | // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax |
| 3841 | // 2. not enough large page memory. |
| 3842 | // > check available large pages: cat /proc/meminfo |
| 3843 | // > increase amount of large pages: |
| 3844 | // echo new_value > /proc/sys/vm/nr_hugepages |
| 3845 | // Note 1: different Linux may use different name for this property, |
| 3846 | // e.g. on Redhat AS-3 it is "hugetlb_pool". |
| 3847 | // Note 2: it's possible there's enough physical memory available but |
| 3848 | // they are so fragmented after a long run that they can't |
| 3849 | // coalesce into large pages. Try to reserve large pages when |
| 3850 | // the system is still "fresh". |
| 3851 | shm_warning_with_errno("Failed to reserve shared memory." ); |
| 3852 | return NULL; |
| 3853 | } |
| 3854 | |
| 3855 | // Attach to the region. |
| 3856 | char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr); |
| 3857 | |
| 3858 | // Remove shmid. If shmat() is successful, the actual shared memory segment |
| 3859 | // will be deleted when it's detached by shmdt() or when the process |
| 3860 | // terminates. If shmat() is not successful this will remove the shared |
| 3861 | // segment immediately. |
| 3862 | shmctl(shmid, IPC_RMID, NULL); |
| 3863 | |
| 3864 | return addr; |
| 3865 | } |
| 3866 | |
| 3867 | static void warn_on_large_pages_failure(char* req_addr, size_t bytes, |
| 3868 | int error) { |
| 3869 | assert(error == ENOMEM, "Only expect to fail if no memory is available" ); |
| 3870 | |
| 3871 | bool warn_on_failure = UseLargePages && |
| 3872 | (!FLAG_IS_DEFAULT(UseLargePages) || |
| 3873 | !FLAG_IS_DEFAULT(UseHugeTLBFS) || |
| 3874 | !FLAG_IS_DEFAULT(LargePageSizeInBytes)); |
| 3875 | |
| 3876 | if (warn_on_failure) { |
| 3877 | char msg[128]; |
| 3878 | jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: " |
| 3879 | PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d)." , req_addr, bytes, error); |
| 3880 | warning("%s" , msg); |
| 3881 | } |
| 3882 | } |
| 3883 | |
| 3884 | char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, |
| 3885 | char* req_addr, |
| 3886 | bool exec) { |
| 3887 | assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages" ); |
| 3888 | assert(is_aligned(bytes, os::large_page_size()), "Unaligned size" ); |
| 3889 | assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address" ); |
| 3890 | |
| 3891 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
| 3892 | char* addr = (char*)::mmap(req_addr, bytes, prot, |
| 3893 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB, |
| 3894 | -1, 0); |
| 3895 | |
| 3896 | if (addr == MAP_FAILED) { |
| 3897 | warn_on_large_pages_failure(req_addr, bytes, errno); |
| 3898 | return NULL; |
| 3899 | } |
| 3900 | |
| 3901 | assert(is_aligned(addr, os::large_page_size()), "Must be" ); |
| 3902 | |
| 3903 | return addr; |
| 3904 | } |
| 3905 | |
| 3906 | // Reserve memory using mmap(MAP_HUGETLB). |
| 3907 | // - bytes shall be a multiple of alignment. |
| 3908 | // - req_addr can be NULL. If not NULL, it must be a multiple of alignment. |
| 3909 | // - alignment sets the alignment at which memory shall be allocated. |
| 3910 | // It must be a multiple of allocation granularity. |
| 3911 | // Returns address of memory or NULL. If req_addr was not NULL, will only return |
| 3912 | // req_addr or NULL. |
| 3913 | char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, |
| 3914 | size_t alignment, |
| 3915 | char* req_addr, |
| 3916 | bool exec) { |
| 3917 | size_t large_page_size = os::large_page_size(); |
| 3918 | assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes" ); |
| 3919 | |
| 3920 | assert(is_aligned(req_addr, alignment), "Must be" ); |
| 3921 | assert(is_aligned(bytes, alignment), "Must be" ); |
| 3922 | |
| 3923 | // First reserve - but not commit - the address range in small pages. |
| 3924 | char* const start = anon_mmap_aligned(bytes, alignment, req_addr); |
| 3925 | |
| 3926 | if (start == NULL) { |
| 3927 | return NULL; |
| 3928 | } |
| 3929 | |
| 3930 | assert(is_aligned(start, alignment), "Must be" ); |
| 3931 | |
| 3932 | char* end = start + bytes; |
| 3933 | |
| 3934 | // Find the regions of the allocated chunk that can be promoted to large pages. |
| 3935 | char* lp_start = align_up(start, large_page_size); |
| 3936 | char* lp_end = align_down(end, large_page_size); |
| 3937 | |
| 3938 | size_t lp_bytes = lp_end - lp_start; |
| 3939 | |
| 3940 | assert(is_aligned(lp_bytes, large_page_size), "Must be" ); |
| 3941 | |
| 3942 | if (lp_bytes == 0) { |
| 3943 | // The mapped region doesn't even span the start and the end of a large page. |
| 3944 | // Fall back to allocate a non-special area. |
| 3945 | ::munmap(start, end - start); |
| 3946 | return NULL; |
| 3947 | } |
| 3948 | |
| 3949 | int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; |
| 3950 | |
| 3951 | void* result; |
| 3952 | |
| 3953 | // Commit small-paged leading area. |
| 3954 | if (start != lp_start) { |
| 3955 | result = ::mmap(start, lp_start - start, prot, |
| 3956 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, |
| 3957 | -1, 0); |
| 3958 | if (result == MAP_FAILED) { |
| 3959 | ::munmap(lp_start, end - lp_start); |
| 3960 | return NULL; |
| 3961 | } |
| 3962 | } |
| 3963 | |
| 3964 | // Commit large-paged area. |
| 3965 | result = ::mmap(lp_start, lp_bytes, prot, |
| 3966 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB, |
| 3967 | -1, 0); |
| 3968 | if (result == MAP_FAILED) { |
| 3969 | warn_on_large_pages_failure(lp_start, lp_bytes, errno); |
| 3970 | // If the mmap above fails, the large pages region will be unmapped and we |
| 3971 | // have regions before and after with small pages. Release these regions. |
| 3972 | // |
| 3973 | // | mapped | unmapped | mapped | |
| 3974 | // ^ ^ ^ ^ |
| 3975 | // start lp_start lp_end end |
| 3976 | // |
| 3977 | ::munmap(start, lp_start - start); |
| 3978 | ::munmap(lp_end, end - lp_end); |
| 3979 | return NULL; |
| 3980 | } |
| 3981 | |
| 3982 | // Commit small-paged trailing area. |
| 3983 | if (lp_end != end) { |
| 3984 | result = ::mmap(lp_end, end - lp_end, prot, |
| 3985 | MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, |
| 3986 | -1, 0); |
| 3987 | if (result == MAP_FAILED) { |
| 3988 | ::munmap(start, lp_end - start); |
| 3989 | return NULL; |
| 3990 | } |
| 3991 | } |
| 3992 | |
| 3993 | return start; |
| 3994 | } |
| 3995 | |
| 3996 | char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, |
| 3997 | size_t alignment, |
| 3998 | char* req_addr, |
| 3999 | bool exec) { |
| 4000 | assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages" ); |
| 4001 | assert(is_aligned(req_addr, alignment), "Must be" ); |
| 4002 | assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be" ); |
| 4003 | assert(is_power_of_2(os::large_page_size()), "Must be" ); |
| 4004 | assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes" ); |
| 4005 | |
| 4006 | if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) { |
| 4007 | return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec); |
| 4008 | } else { |
| 4009 | return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec); |
| 4010 | } |
| 4011 | } |
| 4012 | |
| 4013 | char* os::reserve_memory_special(size_t bytes, size_t alignment, |
| 4014 | char* req_addr, bool exec) { |
| 4015 | assert(UseLargePages, "only for large pages" ); |
| 4016 | |
| 4017 | char* addr; |
| 4018 | if (UseSHM) { |
| 4019 | addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec); |
| 4020 | } else { |
| 4021 | assert(UseHugeTLBFS, "must be" ); |
| 4022 | addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec); |
| 4023 | } |
| 4024 | |
| 4025 | if (addr != NULL) { |
| 4026 | if (UseNUMAInterleaving) { |
| 4027 | numa_make_global(addr, bytes); |
| 4028 | } |
| 4029 | |
| 4030 | // The memory is committed |
| 4031 | MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC); |
| 4032 | } |
| 4033 | |
| 4034 | return addr; |
| 4035 | } |
| 4036 | |
| 4037 | bool os::Linux::release_memory_special_shm(char* base, size_t bytes) { |
| 4038 | // detaching the SHM segment will also delete it, see reserve_memory_special_shm() |
| 4039 | return shmdt(base) == 0; |
| 4040 | } |
| 4041 | |
| 4042 | bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) { |
| 4043 | return pd_release_memory(base, bytes); |
| 4044 | } |
| 4045 | |
| 4046 | bool os::release_memory_special(char* base, size_t bytes) { |
| 4047 | bool res; |
| 4048 | if (MemTracker::tracking_level() > NMT_minimal) { |
| 4049 | Tracker tkr(Tracker::release); |
| 4050 | res = os::Linux::release_memory_special_impl(base, bytes); |
| 4051 | if (res) { |
| 4052 | tkr.record((address)base, bytes); |
| 4053 | } |
| 4054 | |
| 4055 | } else { |
| 4056 | res = os::Linux::release_memory_special_impl(base, bytes); |
| 4057 | } |
| 4058 | return res; |
| 4059 | } |
| 4060 | |
| 4061 | bool os::Linux::release_memory_special_impl(char* base, size_t bytes) { |
| 4062 | assert(UseLargePages, "only for large pages" ); |
| 4063 | bool res; |
| 4064 | |
| 4065 | if (UseSHM) { |
| 4066 | res = os::Linux::release_memory_special_shm(base, bytes); |
| 4067 | } else { |
| 4068 | assert(UseHugeTLBFS, "must be" ); |
| 4069 | res = os::Linux::release_memory_special_huge_tlbfs(base, bytes); |
| 4070 | } |
| 4071 | return res; |
| 4072 | } |
| 4073 | |
| 4074 | size_t os::large_page_size() { |
| 4075 | return _large_page_size; |
| 4076 | } |
| 4077 | |
| 4078 | // With SysV SHM the entire memory region must be allocated as shared |
| 4079 | // memory. |
| 4080 | // HugeTLBFS allows application to commit large page memory on demand. |
| 4081 | // However, when committing memory with HugeTLBFS fails, the region |
| 4082 | // that was supposed to be committed will lose the old reservation |
| 4083 | // and allow other threads to steal that memory region. Because of this |
| 4084 | // behavior we can't commit HugeTLBFS memory. |
| 4085 | bool os::can_commit_large_page_memory() { |
| 4086 | return UseTransparentHugePages; |
| 4087 | } |
| 4088 | |
| 4089 | bool os::can_execute_large_page_memory() { |
| 4090 | return UseTransparentHugePages || UseHugeTLBFS; |
| 4091 | } |
| 4092 | |
| 4093 | char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) { |
| 4094 | assert(file_desc >= 0, "file_desc is not valid" ); |
| 4095 | char* result = pd_attempt_reserve_memory_at(bytes, requested_addr); |
| 4096 | if (result != NULL) { |
| 4097 | if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) { |
| 4098 | vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory" )); |
| 4099 | } |
| 4100 | } |
| 4101 | return result; |
| 4102 | } |
| 4103 | |
| 4104 | // Reserve memory at an arbitrary address, only if that area is |
| 4105 | // available (and not reserved for something else). |
| 4106 | |
| 4107 | char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) { |
| 4108 | // Assert only that the size is a multiple of the page size, since |
| 4109 | // that's all that mmap requires, and since that's all we really know |
| 4110 | // about at this low abstraction level. If we need higher alignment, |
| 4111 | // we can either pass an alignment to this method or verify alignment |
| 4112 | // in one of the methods further up the call chain. See bug 5044738. |
| 4113 | assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block" ); |
| 4114 | |
| 4115 | // Repeatedly allocate blocks until the block is allocated at the |
| 4116 | // right spot. |
| 4117 | |
| 4118 | // Linux mmap allows caller to pass an address as hint; give it a try first, |
| 4119 | // if kernel honors the hint then we can return immediately. |
| 4120 | char * addr = anon_mmap(requested_addr, bytes, false); |
| 4121 | if (addr == requested_addr) { |
| 4122 | return requested_addr; |
| 4123 | } |
| 4124 | |
| 4125 | if (addr != NULL) { |
| 4126 | // mmap() is successful but it fails to reserve at the requested address |
| 4127 | anon_munmap(addr, bytes); |
| 4128 | } |
| 4129 | |
| 4130 | return NULL; |
| 4131 | } |
| 4132 | |
| 4133 | // Sleep forever; naked call to OS-specific sleep; use with CAUTION |
| 4134 | void os::infinite_sleep() { |
| 4135 | while (true) { // sleep forever ... |
| 4136 | ::sleep(100); // ... 100 seconds at a time |
| 4137 | } |
| 4138 | } |
| 4139 | |
| 4140 | // Used to convert frequent JVM_Yield() to nops |
| 4141 | bool os::dont_yield() { |
| 4142 | return DontYieldALot; |
| 4143 | } |
| 4144 | |
| 4145 | // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will |
| 4146 | // actually give up the CPU. Since skip buddy (v2.6.28): |
| 4147 | // |
| 4148 | // * Sets the yielding task as skip buddy for current CPU's run queue. |
| 4149 | // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task). |
| 4150 | // * Clears skip buddies for this run queue (yielding task no longer a skip buddy). |
| 4151 | // |
| 4152 | // An alternative is calling os::naked_short_nanosleep with a small number to avoid |
| 4153 | // getting re-scheduled immediately. |
| 4154 | // |
| 4155 | void os::naked_yield() { |
| 4156 | sched_yield(); |
| 4157 | } |
| 4158 | |
| 4159 | //////////////////////////////////////////////////////////////////////////////// |
| 4160 | // thread priority support |
| 4161 | |
| 4162 | // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER |
| 4163 | // only supports dynamic priority, static priority must be zero. For real-time |
| 4164 | // applications, Linux supports SCHED_RR which allows static priority (1-99). |
| 4165 | // However, for large multi-threaded applications, SCHED_RR is not only slower |
| 4166 | // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out |
| 4167 | // of 5 runs - Sep 2005). |
| 4168 | // |
| 4169 | // The following code actually changes the niceness of kernel-thread/LWP. It |
| 4170 | // has an assumption that setpriority() only modifies one kernel-thread/LWP, |
| 4171 | // not the entire user process, and user level threads are 1:1 mapped to kernel |
| 4172 | // threads. It has always been the case, but could change in the future. For |
| 4173 | // this reason, the code should not be used as default (ThreadPriorityPolicy=0). |
| 4174 | // It is only used when ThreadPriorityPolicy=1 and may require system level permission |
| 4175 | // (e.g., root privilege or CAP_SYS_NICE capability). |
| 4176 | |
| 4177 | int os::java_to_os_priority[CriticalPriority + 1] = { |
| 4178 | 19, // 0 Entry should never be used |
| 4179 | |
| 4180 | 4, // 1 MinPriority |
| 4181 | 3, // 2 |
| 4182 | 2, // 3 |
| 4183 | |
| 4184 | 1, // 4 |
| 4185 | 0, // 5 NormPriority |
| 4186 | -1, // 6 |
| 4187 | |
| 4188 | -2, // 7 |
| 4189 | -3, // 8 |
| 4190 | -4, // 9 NearMaxPriority |
| 4191 | |
| 4192 | -5, // 10 MaxPriority |
| 4193 | |
| 4194 | -5 // 11 CriticalPriority |
| 4195 | }; |
| 4196 | |
| 4197 | static int prio_init() { |
| 4198 | if (ThreadPriorityPolicy == 1) { |
| 4199 | if (geteuid() != 0) { |
| 4200 | if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) { |
| 4201 | warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \ |
| 4202 | "e.g., being the root user. If the necessary permission is not " \ |
| 4203 | "possessed, changes to priority will be silently ignored." ); |
| 4204 | } |
| 4205 | } |
| 4206 | } |
| 4207 | if (UseCriticalJavaThreadPriority) { |
| 4208 | os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority]; |
| 4209 | } |
| 4210 | return 0; |
| 4211 | } |
| 4212 | |
| 4213 | OSReturn os::set_native_priority(Thread* thread, int newpri) { |
| 4214 | if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK; |
| 4215 | |
| 4216 | int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri); |
| 4217 | return (ret == 0) ? OS_OK : OS_ERR; |
| 4218 | } |
| 4219 | |
| 4220 | OSReturn os::get_native_priority(const Thread* const thread, |
| 4221 | int *priority_ptr) { |
| 4222 | if (!UseThreadPriorities || ThreadPriorityPolicy == 0) { |
| 4223 | *priority_ptr = java_to_os_priority[NormPriority]; |
| 4224 | return OS_OK; |
| 4225 | } |
| 4226 | |
| 4227 | errno = 0; |
| 4228 | *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id()); |
| 4229 | return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR); |
| 4230 | } |
| 4231 | |
| 4232 | //////////////////////////////////////////////////////////////////////////////// |
| 4233 | // suspend/resume support |
| 4234 | |
| 4235 | // The low-level signal-based suspend/resume support is a remnant from the |
| 4236 | // old VM-suspension that used to be for java-suspension, safepoints etc, |
| 4237 | // within hotspot. Currently used by JFR's OSThreadSampler |
| 4238 | // |
| 4239 | // The remaining code is greatly simplified from the more general suspension |
| 4240 | // code that used to be used. |
| 4241 | // |
| 4242 | // The protocol is quite simple: |
| 4243 | // - suspend: |
| 4244 | // - sends a signal to the target thread |
| 4245 | // - polls the suspend state of the osthread using a yield loop |
| 4246 | // - target thread signal handler (SR_handler) sets suspend state |
| 4247 | // and blocks in sigsuspend until continued |
| 4248 | // - resume: |
| 4249 | // - sets target osthread state to continue |
| 4250 | // - sends signal to end the sigsuspend loop in the SR_handler |
| 4251 | // |
| 4252 | // Note that the SR_lock plays no role in this suspend/resume protocol, |
| 4253 | // but is checked for NULL in SR_handler as a thread termination indicator. |
| 4254 | // The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs. |
| 4255 | // |
| 4256 | // Note that resume_clear_context() and suspend_save_context() are needed |
| 4257 | // by SR_handler(), so that fetch_frame_from_ucontext() works, |
| 4258 | // which in part is used by: |
| 4259 | // - Forte Analyzer: AsyncGetCallTrace() |
| 4260 | // - StackBanging: get_frame_at_stack_banging_point() |
| 4261 | |
| 4262 | static void resume_clear_context(OSThread *osthread) { |
| 4263 | osthread->set_ucontext(NULL); |
| 4264 | osthread->set_siginfo(NULL); |
| 4265 | } |
| 4266 | |
| 4267 | static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, |
| 4268 | ucontext_t* context) { |
| 4269 | osthread->set_ucontext(context); |
| 4270 | osthread->set_siginfo(siginfo); |
| 4271 | } |
| 4272 | |
| 4273 | // Handler function invoked when a thread's execution is suspended or |
| 4274 | // resumed. We have to be careful that only async-safe functions are |
| 4275 | // called here (Note: most pthread functions are not async safe and |
| 4276 | // should be avoided.) |
| 4277 | // |
| 4278 | // Note: sigwait() is a more natural fit than sigsuspend() from an |
| 4279 | // interface point of view, but sigwait() prevents the signal hander |
| 4280 | // from being run. libpthread would get very confused by not having |
| 4281 | // its signal handlers run and prevents sigwait()'s use with the |
| 4282 | // mutex granting granting signal. |
| 4283 | // |
| 4284 | // Currently only ever called on the VMThread and JavaThreads (PC sampling) |
| 4285 | // |
| 4286 | static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) { |
| 4287 | // Save and restore errno to avoid confusing native code with EINTR |
| 4288 | // after sigsuspend. |
| 4289 | int old_errno = errno; |
| 4290 | |
| 4291 | Thread* thread = Thread::current_or_null_safe(); |
| 4292 | assert(thread != NULL, "Missing current thread in SR_handler" ); |
| 4293 | |
| 4294 | // On some systems we have seen signal delivery get "stuck" until the signal |
| 4295 | // mask is changed as part of thread termination. Check that the current thread |
| 4296 | // has not already terminated (via SR_lock()) - else the following assertion |
| 4297 | // will fail because the thread is no longer a JavaThread as the ~JavaThread |
| 4298 | // destructor has completed. |
| 4299 | |
| 4300 | if (thread->SR_lock() == NULL) { |
| 4301 | return; |
| 4302 | } |
| 4303 | |
| 4304 | assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread" ); |
| 4305 | |
| 4306 | OSThread* osthread = thread->osthread(); |
| 4307 | |
| 4308 | os::SuspendResume::State current = osthread->sr.state(); |
| 4309 | if (current == os::SuspendResume::SR_SUSPEND_REQUEST) { |
| 4310 | suspend_save_context(osthread, siginfo, context); |
| 4311 | |
| 4312 | // attempt to switch the state, we assume we had a SUSPEND_REQUEST |
| 4313 | os::SuspendResume::State state = osthread->sr.suspended(); |
| 4314 | if (state == os::SuspendResume::SR_SUSPENDED) { |
| 4315 | sigset_t suspend_set; // signals for sigsuspend() |
| 4316 | sigemptyset(&suspend_set); |
| 4317 | // get current set of blocked signals and unblock resume signal |
| 4318 | pthread_sigmask(SIG_BLOCK, NULL, &suspend_set); |
| 4319 | sigdelset(&suspend_set, SR_signum); |
| 4320 | |
| 4321 | sr_semaphore.signal(); |
| 4322 | // wait here until we are resumed |
| 4323 | while (1) { |
| 4324 | sigsuspend(&suspend_set); |
| 4325 | |
| 4326 | os::SuspendResume::State result = osthread->sr.running(); |
| 4327 | if (result == os::SuspendResume::SR_RUNNING) { |
| 4328 | sr_semaphore.signal(); |
| 4329 | break; |
| 4330 | } |
| 4331 | } |
| 4332 | |
| 4333 | } else if (state == os::SuspendResume::SR_RUNNING) { |
| 4334 | // request was cancelled, continue |
| 4335 | } else { |
| 4336 | ShouldNotReachHere(); |
| 4337 | } |
| 4338 | |
| 4339 | resume_clear_context(osthread); |
| 4340 | } else if (current == os::SuspendResume::SR_RUNNING) { |
| 4341 | // request was cancelled, continue |
| 4342 | } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) { |
| 4343 | // ignore |
| 4344 | } else { |
| 4345 | // ignore |
| 4346 | } |
| 4347 | |
| 4348 | errno = old_errno; |
| 4349 | } |
| 4350 | |
| 4351 | static int SR_initialize() { |
| 4352 | struct sigaction act; |
| 4353 | char *s; |
| 4354 | |
| 4355 | // Get signal number to use for suspend/resume |
| 4356 | if ((s = ::getenv("_JAVA_SR_SIGNUM" )) != 0) { |
| 4357 | int sig = ::strtol(s, 0, 10); |
| 4358 | if (sig > MAX2(SIGSEGV, SIGBUS) && // See 4355769. |
| 4359 | sig < NSIG) { // Must be legal signal and fit into sigflags[]. |
| 4360 | SR_signum = sig; |
| 4361 | } else { |
| 4362 | warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead." , |
| 4363 | sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum); |
| 4364 | } |
| 4365 | } |
| 4366 | |
| 4367 | assert(SR_signum > SIGSEGV && SR_signum > SIGBUS, |
| 4368 | "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769" ); |
| 4369 | |
| 4370 | sigemptyset(&SR_sigset); |
| 4371 | sigaddset(&SR_sigset, SR_signum); |
| 4372 | |
| 4373 | // Set up signal handler for suspend/resume |
| 4374 | act.sa_flags = SA_RESTART|SA_SIGINFO; |
| 4375 | act.sa_handler = (void (*)(int)) SR_handler; |
| 4376 | |
| 4377 | // SR_signum is blocked by default. |
| 4378 | // 4528190 - We also need to block pthread restart signal (32 on all |
| 4379 | // supported Linux platforms). Note that LinuxThreads need to block |
| 4380 | // this signal for all threads to work properly. So we don't have |
| 4381 | // to use hard-coded signal number when setting up the mask. |
| 4382 | pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask); |
| 4383 | |
| 4384 | if (sigaction(SR_signum, &act, 0) == -1) { |
| 4385 | return -1; |
| 4386 | } |
| 4387 | |
| 4388 | // Save signal flag |
| 4389 | os::Linux::set_our_sigflags(SR_signum, act.sa_flags); |
| 4390 | return 0; |
| 4391 | } |
| 4392 | |
| 4393 | static int sr_notify(OSThread* osthread) { |
| 4394 | int status = pthread_kill(osthread->pthread_id(), SR_signum); |
| 4395 | assert_status(status == 0, status, "pthread_kill" ); |
| 4396 | return status; |
| 4397 | } |
| 4398 | |
| 4399 | // "Randomly" selected value for how long we want to spin |
| 4400 | // before bailing out on suspending a thread, also how often |
| 4401 | // we send a signal to a thread we want to resume |
| 4402 | static const int RANDOMLY_LARGE_INTEGER = 1000000; |
| 4403 | static const int RANDOMLY_LARGE_INTEGER2 = 100; |
| 4404 | |
| 4405 | // returns true on success and false on error - really an error is fatal |
| 4406 | // but this seems the normal response to library errors |
| 4407 | static bool do_suspend(OSThread* osthread) { |
| 4408 | assert(osthread->sr.is_running(), "thread should be running" ); |
| 4409 | assert(!sr_semaphore.trywait(), "semaphore has invalid state" ); |
| 4410 | |
| 4411 | // mark as suspended and send signal |
| 4412 | if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) { |
| 4413 | // failed to switch, state wasn't running? |
| 4414 | ShouldNotReachHere(); |
| 4415 | return false; |
| 4416 | } |
| 4417 | |
| 4418 | if (sr_notify(osthread) != 0) { |
| 4419 | ShouldNotReachHere(); |
| 4420 | } |
| 4421 | |
| 4422 | // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED |
| 4423 | while (true) { |
| 4424 | if (sr_semaphore.timedwait(2)) { |
| 4425 | break; |
| 4426 | } else { |
| 4427 | // timeout |
| 4428 | os::SuspendResume::State cancelled = osthread->sr.cancel_suspend(); |
| 4429 | if (cancelled == os::SuspendResume::SR_RUNNING) { |
| 4430 | return false; |
| 4431 | } else if (cancelled == os::SuspendResume::SR_SUSPENDED) { |
| 4432 | // make sure that we consume the signal on the semaphore as well |
| 4433 | sr_semaphore.wait(); |
| 4434 | break; |
| 4435 | } else { |
| 4436 | ShouldNotReachHere(); |
| 4437 | return false; |
| 4438 | } |
| 4439 | } |
| 4440 | } |
| 4441 | |
| 4442 | guarantee(osthread->sr.is_suspended(), "Must be suspended" ); |
| 4443 | return true; |
| 4444 | } |
| 4445 | |
| 4446 | static void do_resume(OSThread* osthread) { |
| 4447 | assert(osthread->sr.is_suspended(), "thread should be suspended" ); |
| 4448 | assert(!sr_semaphore.trywait(), "invalid semaphore state" ); |
| 4449 | |
| 4450 | if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) { |
| 4451 | // failed to switch to WAKEUP_REQUEST |
| 4452 | ShouldNotReachHere(); |
| 4453 | return; |
| 4454 | } |
| 4455 | |
| 4456 | while (true) { |
| 4457 | if (sr_notify(osthread) == 0) { |
| 4458 | if (sr_semaphore.timedwait(2)) { |
| 4459 | if (osthread->sr.is_running()) { |
| 4460 | return; |
| 4461 | } |
| 4462 | } |
| 4463 | } else { |
| 4464 | ShouldNotReachHere(); |
| 4465 | } |
| 4466 | } |
| 4467 | |
| 4468 | guarantee(osthread->sr.is_running(), "Must be running!" ); |
| 4469 | } |
| 4470 | |
| 4471 | /////////////////////////////////////////////////////////////////////////////////// |
| 4472 | // signal handling (except suspend/resume) |
| 4473 | |
| 4474 | // This routine may be used by user applications as a "hook" to catch signals. |
| 4475 | // The user-defined signal handler must pass unrecognized signals to this |
| 4476 | // routine, and if it returns true (non-zero), then the signal handler must |
| 4477 | // return immediately. If the flag "abort_if_unrecognized" is true, then this |
| 4478 | // routine will never retun false (zero), but instead will execute a VM panic |
| 4479 | // routine kill the process. |
| 4480 | // |
| 4481 | // If this routine returns false, it is OK to call it again. This allows |
| 4482 | // the user-defined signal handler to perform checks either before or after |
| 4483 | // the VM performs its own checks. Naturally, the user code would be making |
| 4484 | // a serious error if it tried to handle an exception (such as a null check |
| 4485 | // or breakpoint) that the VM was generating for its own correct operation. |
| 4486 | // |
| 4487 | // This routine may recognize any of the following kinds of signals: |
| 4488 | // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1. |
| 4489 | // It should be consulted by handlers for any of those signals. |
| 4490 | // |
| 4491 | // The caller of this routine must pass in the three arguments supplied |
| 4492 | // to the function referred to in the "sa_sigaction" (not the "sa_handler") |
| 4493 | // field of the structure passed to sigaction(). This routine assumes that |
| 4494 | // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART. |
| 4495 | // |
| 4496 | // Note that the VM will print warnings if it detects conflicting signal |
| 4497 | // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers". |
| 4498 | // |
| 4499 | extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo, |
| 4500 | siginfo_t* siginfo, |
| 4501 | void* ucontext, |
| 4502 | int abort_if_unrecognized); |
| 4503 | |
| 4504 | static void signalHandler(int sig, siginfo_t* info, void* uc) { |
| 4505 | assert(info != NULL && uc != NULL, "it must be old kernel" ); |
| 4506 | int orig_errno = errno; // Preserve errno value over signal handler. |
| 4507 | JVM_handle_linux_signal(sig, info, uc, true); |
| 4508 | errno = orig_errno; |
| 4509 | } |
| 4510 | |
| 4511 | |
| 4512 | // This boolean allows users to forward their own non-matching signals |
| 4513 | // to JVM_handle_linux_signal, harmlessly. |
| 4514 | bool os::Linux::signal_handlers_are_installed = false; |
| 4515 | |
| 4516 | // For signal-chaining |
| 4517 | bool os::Linux::libjsig_is_loaded = false; |
| 4518 | typedef struct sigaction *(*get_signal_t)(int); |
| 4519 | get_signal_t os::Linux::get_signal_action = NULL; |
| 4520 | |
| 4521 | struct sigaction* os::Linux::get_chained_signal_action(int sig) { |
| 4522 | struct sigaction *actp = NULL; |
| 4523 | |
| 4524 | if (libjsig_is_loaded) { |
| 4525 | // Retrieve the old signal handler from libjsig |
| 4526 | actp = (*get_signal_action)(sig); |
| 4527 | } |
| 4528 | if (actp == NULL) { |
| 4529 | // Retrieve the preinstalled signal handler from jvm |
| 4530 | actp = os::Posix::get_preinstalled_handler(sig); |
| 4531 | } |
| 4532 | |
| 4533 | return actp; |
| 4534 | } |
| 4535 | |
| 4536 | static bool call_chained_handler(struct sigaction *actp, int sig, |
| 4537 | siginfo_t *siginfo, void *context) { |
| 4538 | // Call the old signal handler |
| 4539 | if (actp->sa_handler == SIG_DFL) { |
| 4540 | // It's more reasonable to let jvm treat it as an unexpected exception |
| 4541 | // instead of taking the default action. |
| 4542 | return false; |
| 4543 | } else if (actp->sa_handler != SIG_IGN) { |
| 4544 | if ((actp->sa_flags & SA_NODEFER) == 0) { |
| 4545 | // automaticlly block the signal |
| 4546 | sigaddset(&(actp->sa_mask), sig); |
| 4547 | } |
| 4548 | |
| 4549 | sa_handler_t hand = NULL; |
| 4550 | sa_sigaction_t sa = NULL; |
| 4551 | bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0; |
| 4552 | // retrieve the chained handler |
| 4553 | if (siginfo_flag_set) { |
| 4554 | sa = actp->sa_sigaction; |
| 4555 | } else { |
| 4556 | hand = actp->sa_handler; |
| 4557 | } |
| 4558 | |
| 4559 | if ((actp->sa_flags & SA_RESETHAND) != 0) { |
| 4560 | actp->sa_handler = SIG_DFL; |
| 4561 | } |
| 4562 | |
| 4563 | // try to honor the signal mask |
| 4564 | sigset_t oset; |
| 4565 | sigemptyset(&oset); |
| 4566 | pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset); |
| 4567 | |
| 4568 | // call into the chained handler |
| 4569 | if (siginfo_flag_set) { |
| 4570 | (*sa)(sig, siginfo, context); |
| 4571 | } else { |
| 4572 | (*hand)(sig); |
| 4573 | } |
| 4574 | |
| 4575 | // restore the signal mask |
| 4576 | pthread_sigmask(SIG_SETMASK, &oset, NULL); |
| 4577 | } |
| 4578 | // Tell jvm's signal handler the signal is taken care of. |
| 4579 | return true; |
| 4580 | } |
| 4581 | |
| 4582 | bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) { |
| 4583 | bool chained = false; |
| 4584 | // signal-chaining |
| 4585 | if (UseSignalChaining) { |
| 4586 | struct sigaction *actp = get_chained_signal_action(sig); |
| 4587 | if (actp != NULL) { |
| 4588 | chained = call_chained_handler(actp, sig, siginfo, context); |
| 4589 | } |
| 4590 | } |
| 4591 | return chained; |
| 4592 | } |
| 4593 | |
| 4594 | // for diagnostic |
| 4595 | int sigflags[NSIG]; |
| 4596 | |
| 4597 | int os::Linux::get_our_sigflags(int sig) { |
| 4598 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
| 4599 | return sigflags[sig]; |
| 4600 | } |
| 4601 | |
| 4602 | void os::Linux::set_our_sigflags(int sig, int flags) { |
| 4603 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
| 4604 | if (sig > 0 && sig < NSIG) { |
| 4605 | sigflags[sig] = flags; |
| 4606 | } |
| 4607 | } |
| 4608 | |
| 4609 | void os::Linux::set_signal_handler(int sig, bool set_installed) { |
| 4610 | // Check for overwrite. |
| 4611 | struct sigaction oldAct; |
| 4612 | sigaction(sig, (struct sigaction*)NULL, &oldAct); |
| 4613 | |
| 4614 | void* oldhand = oldAct.sa_sigaction |
| 4615 | ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) |
| 4616 | : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); |
| 4617 | if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) && |
| 4618 | oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) && |
| 4619 | oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) { |
| 4620 | if (AllowUserSignalHandlers || !set_installed) { |
| 4621 | // Do not overwrite; user takes responsibility to forward to us. |
| 4622 | return; |
| 4623 | } else if (UseSignalChaining) { |
| 4624 | // save the old handler in jvm |
| 4625 | os::Posix::save_preinstalled_handler(sig, oldAct); |
| 4626 | // libjsig also interposes the sigaction() call below and saves the |
| 4627 | // old sigaction on it own. |
| 4628 | } else { |
| 4629 | fatal("Encountered unexpected pre-existing sigaction handler " |
| 4630 | "%#lx for signal %d." , (long)oldhand, sig); |
| 4631 | } |
| 4632 | } |
| 4633 | |
| 4634 | struct sigaction sigAct; |
| 4635 | sigfillset(&(sigAct.sa_mask)); |
| 4636 | sigAct.sa_handler = SIG_DFL; |
| 4637 | if (!set_installed) { |
| 4638 | sigAct.sa_flags = SA_SIGINFO|SA_RESTART; |
| 4639 | } else { |
| 4640 | sigAct.sa_sigaction = signalHandler; |
| 4641 | sigAct.sa_flags = SA_SIGINFO|SA_RESTART; |
| 4642 | } |
| 4643 | // Save flags, which are set by ours |
| 4644 | assert(sig > 0 && sig < NSIG, "vm signal out of expected range" ); |
| 4645 | sigflags[sig] = sigAct.sa_flags; |
| 4646 | |
| 4647 | int ret = sigaction(sig, &sigAct, &oldAct); |
| 4648 | assert(ret == 0, "check" ); |
| 4649 | |
| 4650 | void* oldhand2 = oldAct.sa_sigaction |
| 4651 | ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) |
| 4652 | : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); |
| 4653 | assert(oldhand2 == oldhand, "no concurrent signal handler installation" ); |
| 4654 | } |
| 4655 | |
| 4656 | // install signal handlers for signals that HotSpot needs to |
| 4657 | // handle in order to support Java-level exception handling. |
| 4658 | |
| 4659 | void os::Linux::install_signal_handlers() { |
| 4660 | if (!signal_handlers_are_installed) { |
| 4661 | signal_handlers_are_installed = true; |
| 4662 | |
| 4663 | // signal-chaining |
| 4664 | typedef void (*signal_setting_t)(); |
| 4665 | signal_setting_t begin_signal_setting = NULL; |
| 4666 | signal_setting_t end_signal_setting = NULL; |
| 4667 | begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t, |
| 4668 | dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting" )); |
| 4669 | if (begin_signal_setting != NULL) { |
| 4670 | end_signal_setting = CAST_TO_FN_PTR(signal_setting_t, |
| 4671 | dlsym(RTLD_DEFAULT, "JVM_end_signal_setting" )); |
| 4672 | get_signal_action = CAST_TO_FN_PTR(get_signal_t, |
| 4673 | dlsym(RTLD_DEFAULT, "JVM_get_signal_action" )); |
| 4674 | libjsig_is_loaded = true; |
| 4675 | assert(UseSignalChaining, "should enable signal-chaining" ); |
| 4676 | } |
| 4677 | if (libjsig_is_loaded) { |
| 4678 | // Tell libjsig jvm is setting signal handlers |
| 4679 | (*begin_signal_setting)(); |
| 4680 | } |
| 4681 | |
| 4682 | set_signal_handler(SIGSEGV, true); |
| 4683 | set_signal_handler(SIGPIPE, true); |
| 4684 | set_signal_handler(SIGBUS, true); |
| 4685 | set_signal_handler(SIGILL, true); |
| 4686 | set_signal_handler(SIGFPE, true); |
| 4687 | #if defined(PPC64) |
| 4688 | set_signal_handler(SIGTRAP, true); |
| 4689 | #endif |
| 4690 | set_signal_handler(SIGXFSZ, true); |
| 4691 | |
| 4692 | if (libjsig_is_loaded) { |
| 4693 | // Tell libjsig jvm finishes setting signal handlers |
| 4694 | (*end_signal_setting)(); |
| 4695 | } |
| 4696 | |
| 4697 | // We don't activate signal checker if libjsig is in place, we trust ourselves |
| 4698 | // and if UserSignalHandler is installed all bets are off. |
| 4699 | // Log that signal checking is off only if -verbose:jni is specified. |
| 4700 | if (CheckJNICalls) { |
| 4701 | if (libjsig_is_loaded) { |
| 4702 | if (PrintJNIResolving) { |
| 4703 | tty->print_cr("Info: libjsig is activated, all active signal checking is disabled" ); |
| 4704 | } |
| 4705 | check_signals = false; |
| 4706 | } |
| 4707 | if (AllowUserSignalHandlers) { |
| 4708 | if (PrintJNIResolving) { |
| 4709 | tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled" ); |
| 4710 | } |
| 4711 | check_signals = false; |
| 4712 | } |
| 4713 | } |
| 4714 | } |
| 4715 | } |
| 4716 | |
| 4717 | // This is the fastest way to get thread cpu time on Linux. |
| 4718 | // Returns cpu time (user+sys) for any thread, not only for current. |
| 4719 | // POSIX compliant clocks are implemented in the kernels 2.6.16+. |
| 4720 | // It might work on 2.6.10+ with a special kernel/glibc patch. |
| 4721 | // For reference, please, see IEEE Std 1003.1-2004: |
| 4722 | // http://www.unix.org/single_unix_specification |
| 4723 | |
| 4724 | jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) { |
| 4725 | struct timespec tp; |
| 4726 | int rc = os::Posix::clock_gettime(clockid, &tp); |
| 4727 | assert(rc == 0, "clock_gettime is expected to return 0 code" ); |
| 4728 | |
| 4729 | return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec; |
| 4730 | } |
| 4731 | |
| 4732 | void os::Linux::initialize_os_info() { |
| 4733 | assert(_os_version == 0, "OS info already initialized" ); |
| 4734 | |
| 4735 | struct utsname _uname; |
| 4736 | |
| 4737 | uint32_t major; |
| 4738 | uint32_t minor; |
| 4739 | uint32_t fix; |
| 4740 | |
| 4741 | int rc; |
| 4742 | |
| 4743 | // Kernel version is unknown if |
| 4744 | // verification below fails. |
| 4745 | _os_version = 0x01000000; |
| 4746 | |
| 4747 | rc = uname(&_uname); |
| 4748 | if (rc != -1) { |
| 4749 | |
| 4750 | rc = sscanf(_uname.release,"%d.%d.%d" , &major, &minor, &fix); |
| 4751 | if (rc == 3) { |
| 4752 | |
| 4753 | if (major < 256 && minor < 256 && fix < 256) { |
| 4754 | // Kernel version format is as expected, |
| 4755 | // set it overriding unknown state. |
| 4756 | _os_version = (major << 16) | |
| 4757 | (minor << 8 ) | |
| 4758 | (fix << 0 ) ; |
| 4759 | } |
| 4760 | } |
| 4761 | } |
| 4762 | } |
| 4763 | |
| 4764 | uint32_t os::Linux::os_version() { |
| 4765 | assert(_os_version != 0, "not initialized" ); |
| 4766 | return _os_version & 0x00FFFFFF; |
| 4767 | } |
| 4768 | |
| 4769 | bool os::Linux::os_version_is_known() { |
| 4770 | assert(_os_version != 0, "not initialized" ); |
| 4771 | return _os_version & 0x01000000 ? false : true; |
| 4772 | } |
| 4773 | |
| 4774 | ///// |
| 4775 | // glibc on Linux platform uses non-documented flag |
| 4776 | // to indicate, that some special sort of signal |
| 4777 | // trampoline is used. |
| 4778 | // We will never set this flag, and we should |
| 4779 | // ignore this flag in our diagnostic |
| 4780 | #ifdef SIGNIFICANT_SIGNAL_MASK |
| 4781 | #undef SIGNIFICANT_SIGNAL_MASK |
| 4782 | #endif |
| 4783 | #define SIGNIFICANT_SIGNAL_MASK (~0x04000000) |
| 4784 | |
| 4785 | static const char* get_signal_handler_name(address handler, |
| 4786 | char* buf, int buflen) { |
| 4787 | int offset = 0; |
| 4788 | bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset); |
| 4789 | if (found) { |
| 4790 | // skip directory names |
| 4791 | const char *p1, *p2; |
| 4792 | p1 = buf; |
| 4793 | size_t len = strlen(os::file_separator()); |
| 4794 | while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len; |
| 4795 | jio_snprintf(buf, buflen, "%s+0x%x" , p1, offset); |
| 4796 | } else { |
| 4797 | jio_snprintf(buf, buflen, PTR_FORMAT, handler); |
| 4798 | } |
| 4799 | return buf; |
| 4800 | } |
| 4801 | |
| 4802 | static void print_signal_handler(outputStream* st, int sig, |
| 4803 | char* buf, size_t buflen) { |
| 4804 | struct sigaction sa; |
| 4805 | |
| 4806 | sigaction(sig, NULL, &sa); |
| 4807 | |
| 4808 | // See comment for SIGNIFICANT_SIGNAL_MASK define |
| 4809 | sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK; |
| 4810 | |
| 4811 | st->print("%s: " , os::exception_name(sig, buf, buflen)); |
| 4812 | |
| 4813 | address handler = (sa.sa_flags & SA_SIGINFO) |
| 4814 | ? CAST_FROM_FN_PTR(address, sa.sa_sigaction) |
| 4815 | : CAST_FROM_FN_PTR(address, sa.sa_handler); |
| 4816 | |
| 4817 | if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) { |
| 4818 | st->print("SIG_DFL" ); |
| 4819 | } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) { |
| 4820 | st->print("SIG_IGN" ); |
| 4821 | } else { |
| 4822 | st->print("[%s]" , get_signal_handler_name(handler, buf, buflen)); |
| 4823 | } |
| 4824 | |
| 4825 | st->print(", sa_mask[0]=" ); |
| 4826 | os::Posix::print_signal_set_short(st, &sa.sa_mask); |
| 4827 | |
| 4828 | address rh = VMError::get_resetted_sighandler(sig); |
| 4829 | // May be, handler was resetted by VMError? |
| 4830 | if (rh != NULL) { |
| 4831 | handler = rh; |
| 4832 | sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK; |
| 4833 | } |
| 4834 | |
| 4835 | st->print(", sa_flags=" ); |
| 4836 | os::Posix::print_sa_flags(st, sa.sa_flags); |
| 4837 | |
| 4838 | // Check: is it our handler? |
| 4839 | if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) || |
| 4840 | handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) { |
| 4841 | // It is our signal handler |
| 4842 | // check for flags, reset system-used one! |
| 4843 | if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) { |
| 4844 | st->print( |
| 4845 | ", flags was changed from " PTR32_FORMAT ", consider using jsig library" , |
| 4846 | os::Linux::get_our_sigflags(sig)); |
| 4847 | } |
| 4848 | } |
| 4849 | st->cr(); |
| 4850 | } |
| 4851 | |
| 4852 | |
| 4853 | #define DO_SIGNAL_CHECK(sig) \ |
| 4854 | do { \ |
| 4855 | if (!sigismember(&check_signal_done, sig)) { \ |
| 4856 | os::Linux::check_signal_handler(sig); \ |
| 4857 | } \ |
| 4858 | } while (0) |
| 4859 | |
| 4860 | // This method is a periodic task to check for misbehaving JNI applications |
| 4861 | // under CheckJNI, we can add any periodic checks here |
| 4862 | |
| 4863 | void os::run_periodic_checks() { |
| 4864 | if (check_signals == false) return; |
| 4865 | |
| 4866 | // SEGV and BUS if overridden could potentially prevent |
| 4867 | // generation of hs*.log in the event of a crash, debugging |
| 4868 | // such a case can be very challenging, so we absolutely |
| 4869 | // check the following for a good measure: |
| 4870 | DO_SIGNAL_CHECK(SIGSEGV); |
| 4871 | DO_SIGNAL_CHECK(SIGILL); |
| 4872 | DO_SIGNAL_CHECK(SIGFPE); |
| 4873 | DO_SIGNAL_CHECK(SIGBUS); |
| 4874 | DO_SIGNAL_CHECK(SIGPIPE); |
| 4875 | DO_SIGNAL_CHECK(SIGXFSZ); |
| 4876 | #if defined(PPC64) |
| 4877 | DO_SIGNAL_CHECK(SIGTRAP); |
| 4878 | #endif |
| 4879 | |
| 4880 | // ReduceSignalUsage allows the user to override these handlers |
| 4881 | // see comments at the very top and jvm_md.h |
| 4882 | if (!ReduceSignalUsage) { |
| 4883 | DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL); |
| 4884 | DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL); |
| 4885 | DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL); |
| 4886 | DO_SIGNAL_CHECK(BREAK_SIGNAL); |
| 4887 | } |
| 4888 | |
| 4889 | DO_SIGNAL_CHECK(SR_signum); |
| 4890 | } |
| 4891 | |
| 4892 | typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *); |
| 4893 | |
| 4894 | static os_sigaction_t os_sigaction = NULL; |
| 4895 | |
| 4896 | void os::Linux::check_signal_handler(int sig) { |
| 4897 | char buf[O_BUFLEN]; |
| 4898 | address jvmHandler = NULL; |
| 4899 | |
| 4900 | |
| 4901 | struct sigaction act; |
| 4902 | if (os_sigaction == NULL) { |
| 4903 | // only trust the default sigaction, in case it has been interposed |
| 4904 | os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction" ); |
| 4905 | if (os_sigaction == NULL) return; |
| 4906 | } |
| 4907 | |
| 4908 | os_sigaction(sig, (struct sigaction*)NULL, &act); |
| 4909 | |
| 4910 | |
| 4911 | act.sa_flags &= SIGNIFICANT_SIGNAL_MASK; |
| 4912 | |
| 4913 | address thisHandler = (act.sa_flags & SA_SIGINFO) |
| 4914 | ? CAST_FROM_FN_PTR(address, act.sa_sigaction) |
| 4915 | : CAST_FROM_FN_PTR(address, act.sa_handler); |
| 4916 | |
| 4917 | |
| 4918 | switch (sig) { |
| 4919 | case SIGSEGV: |
| 4920 | case SIGBUS: |
| 4921 | case SIGFPE: |
| 4922 | case SIGPIPE: |
| 4923 | case SIGILL: |
| 4924 | case SIGXFSZ: |
| 4925 | jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler); |
| 4926 | break; |
| 4927 | |
| 4928 | case SHUTDOWN1_SIGNAL: |
| 4929 | case SHUTDOWN2_SIGNAL: |
| 4930 | case SHUTDOWN3_SIGNAL: |
| 4931 | case BREAK_SIGNAL: |
| 4932 | jvmHandler = (address)user_handler(); |
| 4933 | break; |
| 4934 | |
| 4935 | default: |
| 4936 | if (sig == SR_signum) { |
| 4937 | jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler); |
| 4938 | } else { |
| 4939 | return; |
| 4940 | } |
| 4941 | break; |
| 4942 | } |
| 4943 | |
| 4944 | if (thisHandler != jvmHandler) { |
| 4945 | tty->print("Warning: %s handler " , exception_name(sig, buf, O_BUFLEN)); |
| 4946 | tty->print("expected:%s" , get_signal_handler_name(jvmHandler, buf, O_BUFLEN)); |
| 4947 | tty->print_cr(" found:%s" , get_signal_handler_name(thisHandler, buf, O_BUFLEN)); |
| 4948 | // No need to check this sig any longer |
| 4949 | sigaddset(&check_signal_done, sig); |
| 4950 | // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN |
| 4951 | if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) { |
| 4952 | tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell" , |
| 4953 | exception_name(sig, buf, O_BUFLEN)); |
| 4954 | } |
| 4955 | } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) { |
| 4956 | tty->print("Warning: %s handler flags " , exception_name(sig, buf, O_BUFLEN)); |
| 4957 | tty->print("expected:" ); |
| 4958 | os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig)); |
| 4959 | tty->cr(); |
| 4960 | tty->print(" found:" ); |
| 4961 | os::Posix::print_sa_flags(tty, act.sa_flags); |
| 4962 | tty->cr(); |
| 4963 | // No need to check this sig any longer |
| 4964 | sigaddset(&check_signal_done, sig); |
| 4965 | } |
| 4966 | |
| 4967 | // Dump all the signal |
| 4968 | if (sigismember(&check_signal_done, sig)) { |
| 4969 | print_signal_handlers(tty, buf, O_BUFLEN); |
| 4970 | } |
| 4971 | } |
| 4972 | |
| 4973 | extern void report_error(char* file_name, int line_no, char* title, |
| 4974 | char* format, ...); |
| 4975 | |
| 4976 | // this is called _before_ most of the global arguments have been parsed |
| 4977 | void os::init(void) { |
| 4978 | char dummy; // used to get a guess on initial stack address |
| 4979 | |
| 4980 | clock_tics_per_sec = sysconf(_SC_CLK_TCK); |
| 4981 | |
| 4982 | init_random(1234567); |
| 4983 | |
| 4984 | Linux::set_page_size(sysconf(_SC_PAGESIZE)); |
| 4985 | if (Linux::page_size() == -1) { |
| 4986 | fatal("os_linux.cpp: os::init: sysconf failed (%s)" , |
| 4987 | os::strerror(errno)); |
| 4988 | } |
| 4989 | init_page_sizes((size_t) Linux::page_size()); |
| 4990 | |
| 4991 | Linux::initialize_system_info(); |
| 4992 | |
| 4993 | Linux::initialize_os_info(); |
| 4994 | |
| 4995 | os::Linux::CPUPerfTicks pticks; |
| 4996 | bool res = os::Linux::get_tick_information(&pticks, -1); |
| 4997 | |
| 4998 | if (res && pticks.has_steal_ticks) { |
| 4999 | has_initial_tick_info = true; |
| 5000 | initial_total_ticks = pticks.total; |
| 5001 | initial_steal_ticks = pticks.steal; |
| 5002 | } |
| 5003 | |
| 5004 | // _main_thread points to the thread that created/loaded the JVM. |
| 5005 | Linux::_main_thread = pthread_self(); |
| 5006 | |
| 5007 | // retrieve entry point for pthread_setname_np |
| 5008 | Linux::_pthread_setname_np = |
| 5009 | (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np" ); |
| 5010 | |
| 5011 | os::Posix::init(); |
| 5012 | |
| 5013 | initial_time_count = javaTimeNanos(); |
| 5014 | |
| 5015 | // Always warn if no monotonic clock available |
| 5016 | if (!os::Posix::supports_monotonic_clock()) { |
| 5017 | warning("No monotonic clock was available - timed services may " \ |
| 5018 | "be adversely affected if the time-of-day clock changes" ); |
| 5019 | } |
| 5020 | } |
| 5021 | |
| 5022 | // To install functions for atexit system call |
| 5023 | extern "C" { |
| 5024 | static void perfMemory_exit_helper() { |
| 5025 | perfMemory_exit(); |
| 5026 | } |
| 5027 | } |
| 5028 | |
| 5029 | void os::pd_init_container_support() { |
| 5030 | OSContainer::init(); |
| 5031 | } |
| 5032 | |
| 5033 | void os::Linux::numa_init() { |
| 5034 | |
| 5035 | // Java can be invoked as |
| 5036 | // 1. Without numactl and heap will be allocated/configured on all nodes as |
| 5037 | // per the system policy. |
| 5038 | // 2. With numactl --interleave: |
| 5039 | // Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same |
| 5040 | // API for membind case bitmask is reset. |
| 5041 | // Interleave is only hint and Kernel can fallback to other nodes if |
| 5042 | // no memory is available on the target nodes. |
| 5043 | // 3. With numactl --membind: |
| 5044 | // Use numa_get_membind(v2) API to get nodes bitmask. The same API for |
| 5045 | // interleave case returns bitmask of all nodes. |
| 5046 | // numa_all_nodes_ptr holds bitmask of all nodes. |
| 5047 | // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct |
| 5048 | // bitmask when externally configured to run on all or fewer nodes. |
| 5049 | |
| 5050 | if (!Linux::libnuma_init()) { |
| 5051 | UseNUMA = false; |
| 5052 | } else { |
| 5053 | if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) { |
| 5054 | // If there's only one node (they start from 0) or if the process |
| 5055 | // is bound explicitly to a single node using membind, disable NUMA. |
| 5056 | UseNUMA = false; |
| 5057 | } else { |
| 5058 | |
| 5059 | LogTarget(Info,os) log; |
| 5060 | LogStream ls(log); |
| 5061 | |
| 5062 | Linux::set_configured_numa_policy(Linux::identify_numa_policy()); |
| 5063 | |
| 5064 | struct bitmask* bmp = Linux::_numa_membind_bitmask; |
| 5065 | const char* numa_mode = "membind" ; |
| 5066 | |
| 5067 | if (Linux::is_running_in_interleave_mode()) { |
| 5068 | bmp = Linux::_numa_interleave_bitmask; |
| 5069 | numa_mode = "interleave" ; |
| 5070 | } |
| 5071 | |
| 5072 | ls.print("UseNUMA is enabled and invoked in '%s' mode." |
| 5073 | " Heap will be configured using NUMA memory nodes:" , numa_mode); |
| 5074 | |
| 5075 | for (int node = 0; node <= Linux::numa_max_node(); node++) { |
| 5076 | if (Linux::_numa_bitmask_isbitset(bmp, node)) { |
| 5077 | ls.print(" %d" , node); |
| 5078 | } |
| 5079 | } |
| 5080 | } |
| 5081 | } |
| 5082 | |
| 5083 | if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) { |
| 5084 | // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way |
| 5085 | // we can make the adaptive lgrp chunk resizing work. If the user specified both |
| 5086 | // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn |
| 5087 | // and disable adaptive resizing. |
| 5088 | if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) { |
| 5089 | warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, " |
| 5090 | "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)" ); |
| 5091 | UseAdaptiveSizePolicy = false; |
| 5092 | UseAdaptiveNUMAChunkSizing = false; |
| 5093 | } |
| 5094 | } |
| 5095 | |
| 5096 | if (!UseNUMA && ForceNUMA) { |
| 5097 | UseNUMA = true; |
| 5098 | } |
| 5099 | } |
| 5100 | |
| 5101 | // this is called _after_ the global arguments have been parsed |
| 5102 | jint os::init_2(void) { |
| 5103 | |
| 5104 | // This could be set after os::Posix::init() but all platforms |
| 5105 | // have to set it the same so we have to mirror Solaris. |
| 5106 | DEBUG_ONLY(os::set_mutex_init_done();) |
| 5107 | |
| 5108 | os::Posix::init_2(); |
| 5109 | |
| 5110 | Linux::fast_thread_clock_init(); |
| 5111 | |
| 5112 | // initialize suspend/resume support - must do this before signal_sets_init() |
| 5113 | if (SR_initialize() != 0) { |
| 5114 | perror("SR_initialize failed" ); |
| 5115 | return JNI_ERR; |
| 5116 | } |
| 5117 | |
| 5118 | Linux::signal_sets_init(); |
| 5119 | Linux::install_signal_handlers(); |
| 5120 | // Initialize data for jdk.internal.misc.Signal |
| 5121 | if (!ReduceSignalUsage) { |
| 5122 | jdk_misc_signal_init(); |
| 5123 | } |
| 5124 | |
| 5125 | // Check and sets minimum stack sizes against command line options |
| 5126 | if (Posix::set_minimum_stack_sizes() == JNI_ERR) { |
| 5127 | return JNI_ERR; |
| 5128 | } |
| 5129 | |
| 5130 | #if defined(IA32) |
| 5131 | // Need to ensure we've determined the process's initial stack to |
| 5132 | // perform the workaround |
| 5133 | Linux::capture_initial_stack(JavaThread::stack_size_at_create()); |
| 5134 | workaround_expand_exec_shield_cs_limit(); |
| 5135 | #else |
| 5136 | suppress_primordial_thread_resolution = Arguments::created_by_java_launcher(); |
| 5137 | if (!suppress_primordial_thread_resolution) { |
| 5138 | Linux::capture_initial_stack(JavaThread::stack_size_at_create()); |
| 5139 | } |
| 5140 | #endif |
| 5141 | |
| 5142 | Linux::libpthread_init(); |
| 5143 | Linux::sched_getcpu_init(); |
| 5144 | log_info(os)("HotSpot is running with %s, %s" , |
| 5145 | Linux::glibc_version(), Linux::libpthread_version()); |
| 5146 | |
| 5147 | if (UseNUMA) { |
| 5148 | Linux::numa_init(); |
| 5149 | } |
| 5150 | |
| 5151 | if (MaxFDLimit) { |
| 5152 | // set the number of file descriptors to max. print out error |
| 5153 | // if getrlimit/setrlimit fails but continue regardless. |
| 5154 | struct rlimit nbr_files; |
| 5155 | int status = getrlimit(RLIMIT_NOFILE, &nbr_files); |
| 5156 | if (status != 0) { |
| 5157 | log_info(os)("os::init_2 getrlimit failed: %s" , os::strerror(errno)); |
| 5158 | } else { |
| 5159 | nbr_files.rlim_cur = nbr_files.rlim_max; |
| 5160 | status = setrlimit(RLIMIT_NOFILE, &nbr_files); |
| 5161 | if (status != 0) { |
| 5162 | log_info(os)("os::init_2 setrlimit failed: %s" , os::strerror(errno)); |
| 5163 | } |
| 5164 | } |
| 5165 | } |
| 5166 | |
| 5167 | // Initialize lock used to serialize thread creation (see os::create_thread) |
| 5168 | Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock" , false)); |
| 5169 | |
| 5170 | // at-exit methods are called in the reverse order of their registration. |
| 5171 | // atexit functions are called on return from main or as a result of a |
| 5172 | // call to exit(3C). There can be only 32 of these functions registered |
| 5173 | // and atexit() does not set errno. |
| 5174 | |
| 5175 | if (PerfAllowAtExitRegistration) { |
| 5176 | // only register atexit functions if PerfAllowAtExitRegistration is set. |
| 5177 | // atexit functions can be delayed until process exit time, which |
| 5178 | // can be problematic for embedded VM situations. Embedded VMs should |
| 5179 | // call DestroyJavaVM() to assure that VM resources are released. |
| 5180 | |
| 5181 | // note: perfMemory_exit_helper atexit function may be removed in |
| 5182 | // the future if the appropriate cleanup code can be added to the |
| 5183 | // VM_Exit VMOperation's doit method. |
| 5184 | if (atexit(perfMemory_exit_helper) != 0) { |
| 5185 | warning("os::init_2 atexit(perfMemory_exit_helper) failed" ); |
| 5186 | } |
| 5187 | } |
| 5188 | |
| 5189 | // initialize thread priority policy |
| 5190 | prio_init(); |
| 5191 | |
| 5192 | if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) { |
| 5193 | set_coredump_filter(DAX_SHARED_BIT); |
| 5194 | } |
| 5195 | |
| 5196 | if (DumpPrivateMappingsInCore) { |
| 5197 | set_coredump_filter(FILE_BACKED_PVT_BIT); |
| 5198 | } |
| 5199 | |
| 5200 | if (DumpSharedMappingsInCore) { |
| 5201 | set_coredump_filter(FILE_BACKED_SHARED_BIT); |
| 5202 | } |
| 5203 | |
| 5204 | return JNI_OK; |
| 5205 | } |
| 5206 | |
| 5207 | // Mark the polling page as unreadable |
| 5208 | void os::make_polling_page_unreadable(void) { |
| 5209 | if (!guard_memory((char*)_polling_page, Linux::page_size())) { |
| 5210 | fatal("Could not disable polling page" ); |
| 5211 | } |
| 5212 | } |
| 5213 | |
| 5214 | // Mark the polling page as readable |
| 5215 | void os::make_polling_page_readable(void) { |
| 5216 | if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) { |
| 5217 | fatal("Could not enable polling page" ); |
| 5218 | } |
| 5219 | } |
| 5220 | |
| 5221 | // older glibc versions don't have this macro (which expands to |
| 5222 | // an optimized bit-counting function) so we have to roll our own |
| 5223 | #ifndef CPU_COUNT |
| 5224 | |
| 5225 | static int _cpu_count(const cpu_set_t* cpus) { |
| 5226 | int count = 0; |
| 5227 | // only look up to the number of configured processors |
| 5228 | for (int i = 0; i < os::processor_count(); i++) { |
| 5229 | if (CPU_ISSET(i, cpus)) { |
| 5230 | count++; |
| 5231 | } |
| 5232 | } |
| 5233 | return count; |
| 5234 | } |
| 5235 | |
| 5236 | #define CPU_COUNT(cpus) _cpu_count(cpus) |
| 5237 | |
| 5238 | #endif // CPU_COUNT |
| 5239 | |
| 5240 | // Get the current number of available processors for this process. |
| 5241 | // This value can change at any time during a process's lifetime. |
| 5242 | // sched_getaffinity gives an accurate answer as it accounts for cpusets. |
| 5243 | // If it appears there may be more than 1024 processors then we do a |
| 5244 | // dynamic check - see 6515172 for details. |
| 5245 | // If anything goes wrong we fallback to returning the number of online |
| 5246 | // processors - which can be greater than the number available to the process. |
| 5247 | int os::Linux::active_processor_count() { |
| 5248 | cpu_set_t cpus; // can represent at most 1024 (CPU_SETSIZE) processors |
| 5249 | cpu_set_t* cpus_p = &cpus; |
| 5250 | int cpus_size = sizeof(cpu_set_t); |
| 5251 | |
| 5252 | int configured_cpus = os::processor_count(); // upper bound on available cpus |
| 5253 | int cpu_count = 0; |
| 5254 | |
| 5255 | // old build platforms may not support dynamic cpu sets |
| 5256 | #ifdef CPU_ALLOC |
| 5257 | |
| 5258 | // To enable easy testing of the dynamic path on different platforms we |
| 5259 | // introduce a diagnostic flag: UseCpuAllocPath |
| 5260 | if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) { |
| 5261 | // kernel may use a mask bigger than cpu_set_t |
| 5262 | log_trace(os)("active_processor_count: using dynamic path %s" |
| 5263 | "- configured processors: %d" , |
| 5264 | UseCpuAllocPath ? "(forced) " : "" , |
| 5265 | configured_cpus); |
| 5266 | cpus_p = CPU_ALLOC(configured_cpus); |
| 5267 | if (cpus_p != NULL) { |
| 5268 | cpus_size = CPU_ALLOC_SIZE(configured_cpus); |
| 5269 | // zero it just to be safe |
| 5270 | CPU_ZERO_S(cpus_size, cpus_p); |
| 5271 | } |
| 5272 | else { |
| 5273 | // failed to allocate so fallback to online cpus |
| 5274 | int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN); |
| 5275 | log_trace(os)("active_processor_count: " |
| 5276 | "CPU_ALLOC failed (%s) - using " |
| 5277 | "online processor count: %d" , |
| 5278 | os::strerror(errno), online_cpus); |
| 5279 | return online_cpus; |
| 5280 | } |
| 5281 | } |
| 5282 | else { |
| 5283 | log_trace(os)("active_processor_count: using static path - configured processors: %d" , |
| 5284 | configured_cpus); |
| 5285 | } |
| 5286 | #else // CPU_ALLOC |
| 5287 | // these stubs won't be executed |
| 5288 | #define CPU_COUNT_S(size, cpus) -1 |
| 5289 | #define CPU_FREE(cpus) |
| 5290 | |
| 5291 | log_trace(os)("active_processor_count: only static path available - configured processors: %d" , |
| 5292 | configured_cpus); |
| 5293 | #endif // CPU_ALLOC |
| 5294 | |
| 5295 | // pid 0 means the current thread - which we have to assume represents the process |
| 5296 | if (sched_getaffinity(0, cpus_size, cpus_p) == 0) { |
| 5297 | if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used |
| 5298 | cpu_count = CPU_COUNT_S(cpus_size, cpus_p); |
| 5299 | } |
| 5300 | else { |
| 5301 | cpu_count = CPU_COUNT(cpus_p); |
| 5302 | } |
| 5303 | log_trace(os)("active_processor_count: sched_getaffinity processor count: %d" , cpu_count); |
| 5304 | } |
| 5305 | else { |
| 5306 | cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN); |
| 5307 | warning("sched_getaffinity failed (%s)- using online processor count (%d) " |
| 5308 | "which may exceed available processors" , os::strerror(errno), cpu_count); |
| 5309 | } |
| 5310 | |
| 5311 | if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used |
| 5312 | CPU_FREE(cpus_p); |
| 5313 | } |
| 5314 | |
| 5315 | assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check" ); |
| 5316 | return cpu_count; |
| 5317 | } |
| 5318 | |
| 5319 | // Determine the active processor count from one of |
| 5320 | // three different sources: |
| 5321 | // |
| 5322 | // 1. User option -XX:ActiveProcessorCount |
| 5323 | // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN) |
| 5324 | // 3. extracted from cgroup cpu subsystem (shares and quotas) |
| 5325 | // |
| 5326 | // Option 1, if specified, will always override. |
| 5327 | // If the cgroup subsystem is active and configured, we |
| 5328 | // will return the min of the cgroup and option 2 results. |
| 5329 | // This is required since tools, such as numactl, that |
| 5330 | // alter cpu affinity do not update cgroup subsystem |
| 5331 | // cpuset configuration files. |
| 5332 | int os::active_processor_count() { |
| 5333 | // User has overridden the number of active processors |
| 5334 | if (ActiveProcessorCount > 0) { |
| 5335 | log_trace(os)("active_processor_count: " |
| 5336 | "active processor count set by user : %d" , |
| 5337 | ActiveProcessorCount); |
| 5338 | return ActiveProcessorCount; |
| 5339 | } |
| 5340 | |
| 5341 | int active_cpus; |
| 5342 | if (OSContainer::is_containerized()) { |
| 5343 | active_cpus = OSContainer::active_processor_count(); |
| 5344 | log_trace(os)("active_processor_count: determined by OSContainer: %d" , |
| 5345 | active_cpus); |
| 5346 | } else { |
| 5347 | active_cpus = os::Linux::active_processor_count(); |
| 5348 | } |
| 5349 | |
| 5350 | return active_cpus; |
| 5351 | } |
| 5352 | |
| 5353 | uint os::processor_id() { |
| 5354 | const int id = Linux::sched_getcpu(); |
| 5355 | assert(id >= 0 && id < _processor_count, "Invalid processor id" ); |
| 5356 | return (uint)id; |
| 5357 | } |
| 5358 | |
| 5359 | void os::set_native_thread_name(const char *name) { |
| 5360 | if (Linux::_pthread_setname_np) { |
| 5361 | char buf [16]; // according to glibc manpage, 16 chars incl. '/0' |
| 5362 | snprintf(buf, sizeof(buf), "%s" , name); |
| 5363 | buf[sizeof(buf) - 1] = '\0'; |
| 5364 | const int rc = Linux::_pthread_setname_np(pthread_self(), buf); |
| 5365 | // ERANGE should not happen; all other errors should just be ignored. |
| 5366 | assert(rc != ERANGE, "pthread_setname_np failed" ); |
| 5367 | } |
| 5368 | } |
| 5369 | |
| 5370 | bool os::distribute_processes(uint length, uint* distribution) { |
| 5371 | // Not yet implemented. |
| 5372 | return false; |
| 5373 | } |
| 5374 | |
| 5375 | bool os::bind_to_processor(uint processor_id) { |
| 5376 | // Not yet implemented. |
| 5377 | return false; |
| 5378 | } |
| 5379 | |
| 5380 | /// |
| 5381 | |
| 5382 | void os::SuspendedThreadTask::internal_do_task() { |
| 5383 | if (do_suspend(_thread->osthread())) { |
| 5384 | SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext()); |
| 5385 | do_task(context); |
| 5386 | do_resume(_thread->osthread()); |
| 5387 | } |
| 5388 | } |
| 5389 | |
| 5390 | //////////////////////////////////////////////////////////////////////////////// |
| 5391 | // debug support |
| 5392 | |
| 5393 | bool os::find(address addr, outputStream* st) { |
| 5394 | Dl_info dlinfo; |
| 5395 | memset(&dlinfo, 0, sizeof(dlinfo)); |
| 5396 | if (dladdr(addr, &dlinfo) != 0) { |
| 5397 | st->print(PTR_FORMAT ": " , p2i(addr)); |
| 5398 | if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) { |
| 5399 | st->print("%s+" PTR_FORMAT, dlinfo.dli_sname, |
| 5400 | p2i(addr) - p2i(dlinfo.dli_saddr)); |
| 5401 | } else if (dlinfo.dli_fbase != NULL) { |
| 5402 | st->print("<offset " PTR_FORMAT ">" , p2i(addr) - p2i(dlinfo.dli_fbase)); |
| 5403 | } else { |
| 5404 | st->print("<absolute address>" ); |
| 5405 | } |
| 5406 | if (dlinfo.dli_fname != NULL) { |
| 5407 | st->print(" in %s" , dlinfo.dli_fname); |
| 5408 | } |
| 5409 | if (dlinfo.dli_fbase != NULL) { |
| 5410 | st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase)); |
| 5411 | } |
| 5412 | st->cr(); |
| 5413 | |
| 5414 | if (Verbose) { |
| 5415 | // decode some bytes around the PC |
| 5416 | address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size()); |
| 5417 | address end = clamp_address_in_page(addr+40, addr, os::vm_page_size()); |
| 5418 | address lowest = (address) dlinfo.dli_sname; |
| 5419 | if (!lowest) lowest = (address) dlinfo.dli_fbase; |
| 5420 | if (begin < lowest) begin = lowest; |
| 5421 | Dl_info dlinfo2; |
| 5422 | if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr |
| 5423 | && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) { |
| 5424 | end = (address) dlinfo2.dli_saddr; |
| 5425 | } |
| 5426 | Disassembler::decode(begin, end, st); |
| 5427 | } |
| 5428 | return true; |
| 5429 | } |
| 5430 | return false; |
| 5431 | } |
| 5432 | |
| 5433 | //////////////////////////////////////////////////////////////////////////////// |
| 5434 | // misc |
| 5435 | |
| 5436 | // This does not do anything on Linux. This is basically a hook for being |
| 5437 | // able to use structured exception handling (thread-local exception filters) |
| 5438 | // on, e.g., Win32. |
| 5439 | void |
| 5440 | os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method, |
| 5441 | JavaCallArguments* args, Thread* thread) { |
| 5442 | f(value, method, args, thread); |
| 5443 | } |
| 5444 | |
| 5445 | void os::print_statistics() { |
| 5446 | } |
| 5447 | |
| 5448 | bool os::message_box(const char* title, const char* message) { |
| 5449 | int i; |
| 5450 | fdStream err(defaultStream::error_fd()); |
| 5451 | for (i = 0; i < 78; i++) err.print_raw("=" ); |
| 5452 | err.cr(); |
| 5453 | err.print_raw_cr(title); |
| 5454 | for (i = 0; i < 78; i++) err.print_raw("-" ); |
| 5455 | err.cr(); |
| 5456 | err.print_raw_cr(message); |
| 5457 | for (i = 0; i < 78; i++) err.print_raw("=" ); |
| 5458 | err.cr(); |
| 5459 | |
| 5460 | char buf[16]; |
| 5461 | // Prevent process from exiting upon "read error" without consuming all CPU |
| 5462 | while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); } |
| 5463 | |
| 5464 | return buf[0] == 'y' || buf[0] == 'Y'; |
| 5465 | } |
| 5466 | |
| 5467 | // Is a (classpath) directory empty? |
| 5468 | bool os::dir_is_empty(const char* path) { |
| 5469 | DIR *dir = NULL; |
| 5470 | struct dirent *ptr; |
| 5471 | |
| 5472 | dir = opendir(path); |
| 5473 | if (dir == NULL) return true; |
| 5474 | |
| 5475 | // Scan the directory |
| 5476 | bool result = true; |
| 5477 | while (result && (ptr = readdir(dir)) != NULL) { |
| 5478 | if (strcmp(ptr->d_name, "." ) != 0 && strcmp(ptr->d_name, ".." ) != 0) { |
| 5479 | result = false; |
| 5480 | } |
| 5481 | } |
| 5482 | closedir(dir); |
| 5483 | return result; |
| 5484 | } |
| 5485 | |
| 5486 | // This code originates from JDK's sysOpen and open64_w |
| 5487 | // from src/solaris/hpi/src/system_md.c |
| 5488 | |
| 5489 | int os::open(const char *path, int oflag, int mode) { |
| 5490 | if (strlen(path) > MAX_PATH - 1) { |
| 5491 | errno = ENAMETOOLONG; |
| 5492 | return -1; |
| 5493 | } |
| 5494 | |
| 5495 | // All file descriptors that are opened in the Java process and not |
| 5496 | // specifically destined for a subprocess should have the close-on-exec |
| 5497 | // flag set. If we don't set it, then careless 3rd party native code |
| 5498 | // might fork and exec without closing all appropriate file descriptors |
| 5499 | // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in |
| 5500 | // turn might: |
| 5501 | // |
| 5502 | // - cause end-of-file to fail to be detected on some file |
| 5503 | // descriptors, resulting in mysterious hangs, or |
| 5504 | // |
| 5505 | // - might cause an fopen in the subprocess to fail on a system |
| 5506 | // suffering from bug 1085341. |
| 5507 | // |
| 5508 | // (Yes, the default setting of the close-on-exec flag is a Unix |
| 5509 | // design flaw) |
| 5510 | // |
| 5511 | // See: |
| 5512 | // 1085341: 32-bit stdio routines should support file descriptors >255 |
| 5513 | // 4843136: (process) pipe file descriptor from Runtime.exec not being closed |
| 5514 | // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9 |
| 5515 | // |
| 5516 | // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open(). |
| 5517 | // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor |
| 5518 | // because it saves a system call and removes a small window where the flag |
| 5519 | // is unset. On ancient Linux kernels the O_CLOEXEC flag will be ignored |
| 5520 | // and we fall back to using FD_CLOEXEC (see below). |
| 5521 | #ifdef O_CLOEXEC |
| 5522 | oflag |= O_CLOEXEC; |
| 5523 | #endif |
| 5524 | |
| 5525 | int fd = ::open64(path, oflag, mode); |
| 5526 | if (fd == -1) return -1; |
| 5527 | |
| 5528 | //If the open succeeded, the file might still be a directory |
| 5529 | { |
| 5530 | struct stat64 buf64; |
| 5531 | int ret = ::fstat64(fd, &buf64); |
| 5532 | int st_mode = buf64.st_mode; |
| 5533 | |
| 5534 | if (ret != -1) { |
| 5535 | if ((st_mode & S_IFMT) == S_IFDIR) { |
| 5536 | errno = EISDIR; |
| 5537 | ::close(fd); |
| 5538 | return -1; |
| 5539 | } |
| 5540 | } else { |
| 5541 | ::close(fd); |
| 5542 | return -1; |
| 5543 | } |
| 5544 | } |
| 5545 | |
| 5546 | #ifdef FD_CLOEXEC |
| 5547 | // Validate that the use of the O_CLOEXEC flag on open above worked. |
| 5548 | // With recent kernels, we will perform this check exactly once. |
| 5549 | static sig_atomic_t O_CLOEXEC_is_known_to_work = 0; |
| 5550 | if (!O_CLOEXEC_is_known_to_work) { |
| 5551 | int flags = ::fcntl(fd, F_GETFD); |
| 5552 | if (flags != -1) { |
| 5553 | if ((flags & FD_CLOEXEC) != 0) |
| 5554 | O_CLOEXEC_is_known_to_work = 1; |
| 5555 | else |
| 5556 | ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC); |
| 5557 | } |
| 5558 | } |
| 5559 | #endif |
| 5560 | |
| 5561 | return fd; |
| 5562 | } |
| 5563 | |
| 5564 | |
| 5565 | // create binary file, rewriting existing file if required |
| 5566 | int os::create_binary_file(const char* path, bool rewrite_existing) { |
| 5567 | int oflags = O_WRONLY | O_CREAT; |
| 5568 | if (!rewrite_existing) { |
| 5569 | oflags |= O_EXCL; |
| 5570 | } |
| 5571 | return ::open64(path, oflags, S_IREAD | S_IWRITE); |
| 5572 | } |
| 5573 | |
| 5574 | // return current position of file pointer |
| 5575 | jlong os::current_file_offset(int fd) { |
| 5576 | return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR); |
| 5577 | } |
| 5578 | |
| 5579 | // move file pointer to the specified offset |
| 5580 | jlong os::seek_to_file_offset(int fd, jlong offset) { |
| 5581 | return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET); |
| 5582 | } |
| 5583 | |
| 5584 | // This code originates from JDK's sysAvailable |
| 5585 | // from src/solaris/hpi/src/native_threads/src/sys_api_td.c |
| 5586 | |
| 5587 | int os::available(int fd, jlong *bytes) { |
| 5588 | jlong cur, end; |
| 5589 | int mode; |
| 5590 | struct stat64 buf64; |
| 5591 | |
| 5592 | if (::fstat64(fd, &buf64) >= 0) { |
| 5593 | mode = buf64.st_mode; |
| 5594 | if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) { |
| 5595 | int n; |
| 5596 | if (::ioctl(fd, FIONREAD, &n) >= 0) { |
| 5597 | *bytes = n; |
| 5598 | return 1; |
| 5599 | } |
| 5600 | } |
| 5601 | } |
| 5602 | if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) { |
| 5603 | return 0; |
| 5604 | } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) { |
| 5605 | return 0; |
| 5606 | } else if (::lseek64(fd, cur, SEEK_SET) == -1) { |
| 5607 | return 0; |
| 5608 | } |
| 5609 | *bytes = end - cur; |
| 5610 | return 1; |
| 5611 | } |
| 5612 | |
| 5613 | // Map a block of memory. |
| 5614 | char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset, |
| 5615 | char *addr, size_t bytes, bool read_only, |
| 5616 | bool allow_exec) { |
| 5617 | int prot; |
| 5618 | int flags = MAP_PRIVATE; |
| 5619 | |
| 5620 | if (read_only) { |
| 5621 | prot = PROT_READ; |
| 5622 | } else { |
| 5623 | prot = PROT_READ | PROT_WRITE; |
| 5624 | } |
| 5625 | |
| 5626 | if (allow_exec) { |
| 5627 | prot |= PROT_EXEC; |
| 5628 | } |
| 5629 | |
| 5630 | if (addr != NULL) { |
| 5631 | flags |= MAP_FIXED; |
| 5632 | } |
| 5633 | |
| 5634 | char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags, |
| 5635 | fd, file_offset); |
| 5636 | if (mapped_address == MAP_FAILED) { |
| 5637 | return NULL; |
| 5638 | } |
| 5639 | return mapped_address; |
| 5640 | } |
| 5641 | |
| 5642 | |
| 5643 | // Remap a block of memory. |
| 5644 | char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset, |
| 5645 | char *addr, size_t bytes, bool read_only, |
| 5646 | bool allow_exec) { |
| 5647 | // same as map_memory() on this OS |
| 5648 | return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only, |
| 5649 | allow_exec); |
| 5650 | } |
| 5651 | |
| 5652 | |
| 5653 | // Unmap a block of memory. |
| 5654 | bool os::pd_unmap_memory(char* addr, size_t bytes) { |
| 5655 | return munmap(addr, bytes) == 0; |
| 5656 | } |
| 5657 | |
| 5658 | static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time); |
| 5659 | |
| 5660 | static jlong fast_cpu_time(Thread *thread) { |
| 5661 | clockid_t clockid; |
| 5662 | int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(), |
| 5663 | &clockid); |
| 5664 | if (rc == 0) { |
| 5665 | return os::Linux::fast_thread_cpu_time(clockid); |
| 5666 | } else { |
| 5667 | // It's possible to encounter a terminated native thread that failed |
| 5668 | // to detach itself from the VM - which should result in ESRCH. |
| 5669 | assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed" ); |
| 5670 | return -1; |
| 5671 | } |
| 5672 | } |
| 5673 | |
| 5674 | // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool) |
| 5675 | // are used by JVM M&M and JVMTI to get user+sys or user CPU time |
| 5676 | // of a thread. |
| 5677 | // |
| 5678 | // current_thread_cpu_time() and thread_cpu_time(Thread*) returns |
| 5679 | // the fast estimate available on the platform. |
| 5680 | |
| 5681 | jlong os::current_thread_cpu_time() { |
| 5682 | if (os::Linux::supports_fast_thread_cpu_time()) { |
| 5683 | return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID); |
| 5684 | } else { |
| 5685 | // return user + sys since the cost is the same |
| 5686 | return slow_thread_cpu_time(Thread::current(), true /* user + sys */); |
| 5687 | } |
| 5688 | } |
| 5689 | |
| 5690 | jlong os::thread_cpu_time(Thread* thread) { |
| 5691 | // consistent with what current_thread_cpu_time() returns |
| 5692 | if (os::Linux::supports_fast_thread_cpu_time()) { |
| 5693 | return fast_cpu_time(thread); |
| 5694 | } else { |
| 5695 | return slow_thread_cpu_time(thread, true /* user + sys */); |
| 5696 | } |
| 5697 | } |
| 5698 | |
| 5699 | jlong os::current_thread_cpu_time(bool user_sys_cpu_time) { |
| 5700 | if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) { |
| 5701 | return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID); |
| 5702 | } else { |
| 5703 | return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time); |
| 5704 | } |
| 5705 | } |
| 5706 | |
| 5707 | jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) { |
| 5708 | if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) { |
| 5709 | return fast_cpu_time(thread); |
| 5710 | } else { |
| 5711 | return slow_thread_cpu_time(thread, user_sys_cpu_time); |
| 5712 | } |
| 5713 | } |
| 5714 | |
| 5715 | // -1 on error. |
| 5716 | static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) { |
| 5717 | pid_t tid = thread->osthread()->thread_id(); |
| 5718 | char *s; |
| 5719 | char stat[2048]; |
| 5720 | int statlen; |
| 5721 | char proc_name[64]; |
| 5722 | int count; |
| 5723 | long sys_time, user_time; |
| 5724 | char cdummy; |
| 5725 | int idummy; |
| 5726 | long ldummy; |
| 5727 | FILE *fp; |
| 5728 | |
| 5729 | snprintf(proc_name, 64, "/proc/self/task/%d/stat" , tid); |
| 5730 | fp = fopen(proc_name, "r" ); |
| 5731 | if (fp == NULL) return -1; |
| 5732 | statlen = fread(stat, 1, 2047, fp); |
| 5733 | stat[statlen] = '\0'; |
| 5734 | fclose(fp); |
| 5735 | |
| 5736 | // Skip pid and the command string. Note that we could be dealing with |
| 5737 | // weird command names, e.g. user could decide to rename java launcher |
| 5738 | // to "java 1.4.2 :)", then the stat file would look like |
| 5739 | // 1234 (java 1.4.2 :)) R ... ... |
| 5740 | // We don't really need to know the command string, just find the last |
| 5741 | // occurrence of ")" and then start parsing from there. See bug 4726580. |
| 5742 | s = strrchr(stat, ')'); |
| 5743 | if (s == NULL) return -1; |
| 5744 | |
| 5745 | // Skip blank chars |
| 5746 | do { s++; } while (s && isspace(*s)); |
| 5747 | |
| 5748 | count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu" , |
| 5749 | &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy, |
| 5750 | &ldummy, &ldummy, &ldummy, &ldummy, &ldummy, |
| 5751 | &user_time, &sys_time); |
| 5752 | if (count != 13) return -1; |
| 5753 | if (user_sys_cpu_time) { |
| 5754 | return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec); |
| 5755 | } else { |
| 5756 | return (jlong)user_time * (1000000000 / clock_tics_per_sec); |
| 5757 | } |
| 5758 | } |
| 5759 | |
| 5760 | void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { |
| 5761 | info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits |
| 5762 | info_ptr->may_skip_backward = false; // elapsed time not wall time |
| 5763 | info_ptr->may_skip_forward = false; // elapsed time not wall time |
| 5764 | info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned |
| 5765 | } |
| 5766 | |
| 5767 | void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { |
| 5768 | info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits |
| 5769 | info_ptr->may_skip_backward = false; // elapsed time not wall time |
| 5770 | info_ptr->may_skip_forward = false; // elapsed time not wall time |
| 5771 | info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned |
| 5772 | } |
| 5773 | |
| 5774 | bool os::is_thread_cpu_time_supported() { |
| 5775 | return true; |
| 5776 | } |
| 5777 | |
| 5778 | // System loadavg support. Returns -1 if load average cannot be obtained. |
| 5779 | // Linux doesn't yet have a (official) notion of processor sets, |
| 5780 | // so just return the system wide load average. |
| 5781 | int os::loadavg(double loadavg[], int nelem) { |
| 5782 | return ::getloadavg(loadavg, nelem); |
| 5783 | } |
| 5784 | |
| 5785 | void os::pause() { |
| 5786 | char filename[MAX_PATH]; |
| 5787 | if (PauseAtStartupFile && PauseAtStartupFile[0]) { |
| 5788 | jio_snprintf(filename, MAX_PATH, "%s" , PauseAtStartupFile); |
| 5789 | } else { |
| 5790 | jio_snprintf(filename, MAX_PATH, "./vm.paused.%d" , current_process_id()); |
| 5791 | } |
| 5792 | |
| 5793 | int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666); |
| 5794 | if (fd != -1) { |
| 5795 | struct stat buf; |
| 5796 | ::close(fd); |
| 5797 | while (::stat(filename, &buf) == 0) { |
| 5798 | (void)::poll(NULL, 0, 100); |
| 5799 | } |
| 5800 | } else { |
| 5801 | jio_fprintf(stderr, |
| 5802 | "Could not open pause file '%s', continuing immediately.\n" , filename); |
| 5803 | } |
| 5804 | } |
| 5805 | |
| 5806 | extern char** environ; |
| 5807 | |
| 5808 | // Run the specified command in a separate process. Return its exit value, |
| 5809 | // or -1 on failure (e.g. can't fork a new process). |
| 5810 | // Unlike system(), this function can be called from signal handler. It |
| 5811 | // doesn't block SIGINT et al. |
| 5812 | int os::fork_and_exec(char* cmd, bool use_vfork_if_available) { |
| 5813 | const char * argv[4] = {"sh" , "-c" , cmd, NULL}; |
| 5814 | |
| 5815 | pid_t pid ; |
| 5816 | |
| 5817 | if (use_vfork_if_available) { |
| 5818 | pid = vfork(); |
| 5819 | } else { |
| 5820 | pid = fork(); |
| 5821 | } |
| 5822 | |
| 5823 | if (pid < 0) { |
| 5824 | // fork failed |
| 5825 | return -1; |
| 5826 | |
| 5827 | } else if (pid == 0) { |
| 5828 | // child process |
| 5829 | |
| 5830 | execve("/bin/sh" , (char* const*)argv, environ); |
| 5831 | |
| 5832 | // execve failed |
| 5833 | _exit(-1); |
| 5834 | |
| 5835 | } else { |
| 5836 | // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't |
| 5837 | // care about the actual exit code, for now. |
| 5838 | |
| 5839 | int status; |
| 5840 | |
| 5841 | // Wait for the child process to exit. This returns immediately if |
| 5842 | // the child has already exited. */ |
| 5843 | while (waitpid(pid, &status, 0) < 0) { |
| 5844 | switch (errno) { |
| 5845 | case ECHILD: return 0; |
| 5846 | case EINTR: break; |
| 5847 | default: return -1; |
| 5848 | } |
| 5849 | } |
| 5850 | |
| 5851 | if (WIFEXITED(status)) { |
| 5852 | // The child exited normally; get its exit code. |
| 5853 | return WEXITSTATUS(status); |
| 5854 | } else if (WIFSIGNALED(status)) { |
| 5855 | // The child exited because of a signal |
| 5856 | // The best value to return is 0x80 + signal number, |
| 5857 | // because that is what all Unix shells do, and because |
| 5858 | // it allows callers to distinguish between process exit and |
| 5859 | // process death by signal. |
| 5860 | return 0x80 + WTERMSIG(status); |
| 5861 | } else { |
| 5862 | // Unknown exit code; pass it through |
| 5863 | return status; |
| 5864 | } |
| 5865 | } |
| 5866 | } |
| 5867 | |
| 5868 | // Get the default path to the core file |
| 5869 | // Returns the length of the string |
| 5870 | int os::get_core_path(char* buffer, size_t bufferSize) { |
| 5871 | /* |
| 5872 | * Max length of /proc/sys/kernel/core_pattern is 128 characters. |
| 5873 | * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt |
| 5874 | */ |
| 5875 | const int core_pattern_len = 129; |
| 5876 | char core_pattern[core_pattern_len] = {0}; |
| 5877 | |
| 5878 | int core_pattern_file = ::open("/proc/sys/kernel/core_pattern" , O_RDONLY); |
| 5879 | if (core_pattern_file == -1) { |
| 5880 | return -1; |
| 5881 | } |
| 5882 | |
| 5883 | ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len); |
| 5884 | ::close(core_pattern_file); |
| 5885 | if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') { |
| 5886 | return -1; |
| 5887 | } |
| 5888 | if (core_pattern[ret-1] == '\n') { |
| 5889 | core_pattern[ret-1] = '\0'; |
| 5890 | } else { |
| 5891 | core_pattern[ret] = '\0'; |
| 5892 | } |
| 5893 | |
| 5894 | // Replace the %p in the core pattern with the process id. NOTE: we do this |
| 5895 | // only if the pattern doesn't start with "|", and we support only one %p in |
| 5896 | // the pattern. |
| 5897 | char *pid_pos = strstr(core_pattern, "%p" ); |
| 5898 | const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "" ; // skip over the "%p" |
| 5899 | int written; |
| 5900 | |
| 5901 | if (core_pattern[0] == '/') { |
| 5902 | if (pid_pos != NULL) { |
| 5903 | *pid_pos = '\0'; |
| 5904 | written = jio_snprintf(buffer, bufferSize, "%s%d%s" , core_pattern, |
| 5905 | current_process_id(), tail); |
| 5906 | } else { |
| 5907 | written = jio_snprintf(buffer, bufferSize, "%s" , core_pattern); |
| 5908 | } |
| 5909 | } else { |
| 5910 | char cwd[PATH_MAX]; |
| 5911 | |
| 5912 | const char* p = get_current_directory(cwd, PATH_MAX); |
| 5913 | if (p == NULL) { |
| 5914 | return -1; |
| 5915 | } |
| 5916 | |
| 5917 | if (core_pattern[0] == '|') { |
| 5918 | written = jio_snprintf(buffer, bufferSize, |
| 5919 | "\"%s\" (or dumping to %s/core.%d)" , |
| 5920 | &core_pattern[1], p, current_process_id()); |
| 5921 | } else if (pid_pos != NULL) { |
| 5922 | *pid_pos = '\0'; |
| 5923 | written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s" , p, core_pattern, |
| 5924 | current_process_id(), tail); |
| 5925 | } else { |
| 5926 | written = jio_snprintf(buffer, bufferSize, "%s/%s" , p, core_pattern); |
| 5927 | } |
| 5928 | } |
| 5929 | |
| 5930 | if (written < 0) { |
| 5931 | return -1; |
| 5932 | } |
| 5933 | |
| 5934 | if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) { |
| 5935 | int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid" , O_RDONLY); |
| 5936 | |
| 5937 | if (core_uses_pid_file != -1) { |
| 5938 | char core_uses_pid = 0; |
| 5939 | ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1); |
| 5940 | ::close(core_uses_pid_file); |
| 5941 | |
| 5942 | if (core_uses_pid == '1') { |
| 5943 | jio_snprintf(buffer + written, bufferSize - written, |
| 5944 | ".%d" , current_process_id()); |
| 5945 | } |
| 5946 | } |
| 5947 | } |
| 5948 | |
| 5949 | return strlen(buffer); |
| 5950 | } |
| 5951 | |
| 5952 | bool os::start_debugging(char *buf, int buflen) { |
| 5953 | int len = (int)strlen(buf); |
| 5954 | char *p = &buf[len]; |
| 5955 | |
| 5956 | jio_snprintf(p, buflen-len, |
| 5957 | "\n\n" |
| 5958 | "Do you want to debug the problem?\n\n" |
| 5959 | "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n" |
| 5960 | "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n" |
| 5961 | "Otherwise, press RETURN to abort..." , |
| 5962 | os::current_process_id(), os::current_process_id(), |
| 5963 | os::current_thread_id(), os::current_thread_id()); |
| 5964 | |
| 5965 | bool yes = os::message_box("Unexpected Error" , buf); |
| 5966 | |
| 5967 | if (yes) { |
| 5968 | // yes, user asked VM to launch debugger |
| 5969 | jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d" , |
| 5970 | os::current_process_id(), os::current_process_id()); |
| 5971 | |
| 5972 | os::fork_and_exec(buf); |
| 5973 | yes = false; |
| 5974 | } |
| 5975 | return yes; |
| 5976 | } |
| 5977 | |
| 5978 | |
| 5979 | // Java/Compiler thread: |
| 5980 | // |
| 5981 | // Low memory addresses |
| 5982 | // P0 +------------------------+ |
| 5983 | // | |\ Java thread created by VM does not have glibc |
| 5984 | // | glibc guard page | - guard page, attached Java thread usually has |
| 5985 | // | |/ 1 glibc guard page. |
| 5986 | // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() |
| 5987 | // | |\ |
| 5988 | // | HotSpot Guard Pages | - red, yellow and reserved pages |
| 5989 | // | |/ |
| 5990 | // +------------------------+ JavaThread::stack_reserved_zone_base() |
| 5991 | // | |\ |
| 5992 | // | Normal Stack | - |
| 5993 | // | |/ |
| 5994 | // P2 +------------------------+ Thread::stack_base() |
| 5995 | // |
| 5996 | // Non-Java thread: |
| 5997 | // |
| 5998 | // Low memory addresses |
| 5999 | // P0 +------------------------+ |
| 6000 | // | |\ |
| 6001 | // | glibc guard page | - usually 1 page |
| 6002 | // | |/ |
| 6003 | // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() |
| 6004 | // | |\ |
| 6005 | // | Normal Stack | - |
| 6006 | // | |/ |
| 6007 | // P2 +------------------------+ Thread::stack_base() |
| 6008 | // |
| 6009 | // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size |
| 6010 | // returned from pthread_attr_getstack(). |
| 6011 | // ** Due to NPTL implementation error, linux takes the glibc guard page out |
| 6012 | // of the stack size given in pthread_attr. We work around this for |
| 6013 | // threads created by the VM. (We adapt bottom to be P1 and size accordingly.) |
| 6014 | // |
| 6015 | #ifndef ZERO |
| 6016 | static void current_stack_region(address * bottom, size_t * size) { |
| 6017 | if (os::is_primordial_thread()) { |
| 6018 | // primordial thread needs special handling because pthread_getattr_np() |
| 6019 | // may return bogus value. |
| 6020 | *bottom = os::Linux::initial_thread_stack_bottom(); |
| 6021 | *size = os::Linux::initial_thread_stack_size(); |
| 6022 | } else { |
| 6023 | pthread_attr_t attr; |
| 6024 | |
| 6025 | int rslt = pthread_getattr_np(pthread_self(), &attr); |
| 6026 | |
| 6027 | // JVM needs to know exact stack location, abort if it fails |
| 6028 | if (rslt != 0) { |
| 6029 | if (rslt == ENOMEM) { |
| 6030 | vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np" ); |
| 6031 | } else { |
| 6032 | fatal("pthread_getattr_np failed with error = %d" , rslt); |
| 6033 | } |
| 6034 | } |
| 6035 | |
| 6036 | if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) { |
| 6037 | fatal("Cannot locate current stack attributes!" ); |
| 6038 | } |
| 6039 | |
| 6040 | // Work around NPTL stack guard error. |
| 6041 | size_t guard_size = 0; |
| 6042 | rslt = pthread_attr_getguardsize(&attr, &guard_size); |
| 6043 | if (rslt != 0) { |
| 6044 | fatal("pthread_attr_getguardsize failed with error = %d" , rslt); |
| 6045 | } |
| 6046 | *bottom += guard_size; |
| 6047 | *size -= guard_size; |
| 6048 | |
| 6049 | pthread_attr_destroy(&attr); |
| 6050 | |
| 6051 | } |
| 6052 | assert(os::current_stack_pointer() >= *bottom && |
| 6053 | os::current_stack_pointer() < *bottom + *size, "just checking" ); |
| 6054 | } |
| 6055 | |
| 6056 | address os::current_stack_base() { |
| 6057 | address bottom; |
| 6058 | size_t size; |
| 6059 | current_stack_region(&bottom, &size); |
| 6060 | return (bottom + size); |
| 6061 | } |
| 6062 | |
| 6063 | size_t os::current_stack_size() { |
| 6064 | // This stack size includes the usable stack and HotSpot guard pages |
| 6065 | // (for the threads that have Hotspot guard pages). |
| 6066 | address bottom; |
| 6067 | size_t size; |
| 6068 | current_stack_region(&bottom, &size); |
| 6069 | return size; |
| 6070 | } |
| 6071 | #endif |
| 6072 | |
| 6073 | static inline struct timespec get_mtime(const char* filename) { |
| 6074 | struct stat st; |
| 6075 | int ret = os::stat(filename, &st); |
| 6076 | assert(ret == 0, "failed to stat() file '%s': %s" , filename, os::strerror(errno)); |
| 6077 | return st.st_mtim; |
| 6078 | } |
| 6079 | |
| 6080 | int os::compare_file_modified_times(const char* file1, const char* file2) { |
| 6081 | struct timespec filetime1 = get_mtime(file1); |
| 6082 | struct timespec filetime2 = get_mtime(file2); |
| 6083 | int diff = filetime1.tv_sec - filetime2.tv_sec; |
| 6084 | if (diff == 0) { |
| 6085 | return filetime1.tv_nsec - filetime2.tv_nsec; |
| 6086 | } |
| 6087 | return diff; |
| 6088 | } |
| 6089 | |
| 6090 | /////////////// Unit tests /////////////// |
| 6091 | |
| 6092 | #ifndef PRODUCT |
| 6093 | |
| 6094 | class TestReserveMemorySpecial : AllStatic { |
| 6095 | public: |
| 6096 | static void small_page_write(void* addr, size_t size) { |
| 6097 | size_t page_size = os::vm_page_size(); |
| 6098 | |
| 6099 | char* end = (char*)addr + size; |
| 6100 | for (char* p = (char*)addr; p < end; p += page_size) { |
| 6101 | *p = 1; |
| 6102 | } |
| 6103 | } |
| 6104 | |
| 6105 | static void test_reserve_memory_special_huge_tlbfs_only(size_t size) { |
| 6106 | if (!UseHugeTLBFS) { |
| 6107 | return; |
| 6108 | } |
| 6109 | |
| 6110 | char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false); |
| 6111 | |
| 6112 | if (addr != NULL) { |
| 6113 | small_page_write(addr, size); |
| 6114 | |
| 6115 | os::Linux::release_memory_special_huge_tlbfs(addr, size); |
| 6116 | } |
| 6117 | } |
| 6118 | |
| 6119 | static void test_reserve_memory_special_huge_tlbfs_only() { |
| 6120 | if (!UseHugeTLBFS) { |
| 6121 | return; |
| 6122 | } |
| 6123 | |
| 6124 | size_t lp = os::large_page_size(); |
| 6125 | |
| 6126 | for (size_t size = lp; size <= lp * 10; size += lp) { |
| 6127 | test_reserve_memory_special_huge_tlbfs_only(size); |
| 6128 | } |
| 6129 | } |
| 6130 | |
| 6131 | static void test_reserve_memory_special_huge_tlbfs_mixed() { |
| 6132 | size_t lp = os::large_page_size(); |
| 6133 | size_t ag = os::vm_allocation_granularity(); |
| 6134 | |
| 6135 | // sizes to test |
| 6136 | const size_t sizes[] = { |
| 6137 | lp, lp + ag, lp + lp / 2, lp * 2, |
| 6138 | lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2, |
| 6139 | lp * 10, lp * 10 + lp / 2 |
| 6140 | }; |
| 6141 | const int num_sizes = sizeof(sizes) / sizeof(size_t); |
| 6142 | |
| 6143 | // For each size/alignment combination, we test three scenarios: |
| 6144 | // 1) with req_addr == NULL |
| 6145 | // 2) with a non-null req_addr at which we expect to successfully allocate |
| 6146 | // 3) with a non-null req_addr which contains a pre-existing mapping, at which we |
| 6147 | // expect the allocation to either fail or to ignore req_addr |
| 6148 | |
| 6149 | // Pre-allocate two areas; they shall be as large as the largest allocation |
| 6150 | // and aligned to the largest alignment we will be testing. |
| 6151 | const size_t mapping_size = sizes[num_sizes - 1] * 2; |
| 6152 | char* const mapping1 = (char*) ::mmap(NULL, mapping_size, |
| 6153 | PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
| 6154 | -1, 0); |
| 6155 | assert(mapping1 != MAP_FAILED, "should work" ); |
| 6156 | |
| 6157 | char* const mapping2 = (char*) ::mmap(NULL, mapping_size, |
| 6158 | PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, |
| 6159 | -1, 0); |
| 6160 | assert(mapping2 != MAP_FAILED, "should work" ); |
| 6161 | |
| 6162 | // Unmap the first mapping, but leave the second mapping intact: the first |
| 6163 | // mapping will serve as a value for a "good" req_addr (case 2). The second |
| 6164 | // mapping, still intact, as "bad" req_addr (case 3). |
| 6165 | ::munmap(mapping1, mapping_size); |
| 6166 | |
| 6167 | // Case 1 |
| 6168 | for (int i = 0; i < num_sizes; i++) { |
| 6169 | const size_t size = sizes[i]; |
| 6170 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
| 6171 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false); |
| 6172 | if (p != NULL) { |
| 6173 | assert(is_aligned(p, alignment), "must be" ); |
| 6174 | small_page_write(p, size); |
| 6175 | os::Linux::release_memory_special_huge_tlbfs(p, size); |
| 6176 | } |
| 6177 | } |
| 6178 | } |
| 6179 | |
| 6180 | // Case 2 |
| 6181 | for (int i = 0; i < num_sizes; i++) { |
| 6182 | const size_t size = sizes[i]; |
| 6183 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
| 6184 | char* const req_addr = align_up(mapping1, alignment); |
| 6185 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false); |
| 6186 | if (p != NULL) { |
| 6187 | assert(p == req_addr, "must be" ); |
| 6188 | small_page_write(p, size); |
| 6189 | os::Linux::release_memory_special_huge_tlbfs(p, size); |
| 6190 | } |
| 6191 | } |
| 6192 | } |
| 6193 | |
| 6194 | // Case 3 |
| 6195 | for (int i = 0; i < num_sizes; i++) { |
| 6196 | const size_t size = sizes[i]; |
| 6197 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
| 6198 | char* const req_addr = align_up(mapping2, alignment); |
| 6199 | char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false); |
| 6200 | // as the area around req_addr contains already existing mappings, the API should always |
| 6201 | // return NULL (as per contract, it cannot return another address) |
| 6202 | assert(p == NULL, "must be" ); |
| 6203 | } |
| 6204 | } |
| 6205 | |
| 6206 | ::munmap(mapping2, mapping_size); |
| 6207 | |
| 6208 | } |
| 6209 | |
| 6210 | static void test_reserve_memory_special_huge_tlbfs() { |
| 6211 | if (!UseHugeTLBFS) { |
| 6212 | return; |
| 6213 | } |
| 6214 | |
| 6215 | test_reserve_memory_special_huge_tlbfs_only(); |
| 6216 | test_reserve_memory_special_huge_tlbfs_mixed(); |
| 6217 | } |
| 6218 | |
| 6219 | static void test_reserve_memory_special_shm(size_t size, size_t alignment) { |
| 6220 | if (!UseSHM) { |
| 6221 | return; |
| 6222 | } |
| 6223 | |
| 6224 | char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false); |
| 6225 | |
| 6226 | if (addr != NULL) { |
| 6227 | assert(is_aligned(addr, alignment), "Check" ); |
| 6228 | assert(is_aligned(addr, os::large_page_size()), "Check" ); |
| 6229 | |
| 6230 | small_page_write(addr, size); |
| 6231 | |
| 6232 | os::Linux::release_memory_special_shm(addr, size); |
| 6233 | } |
| 6234 | } |
| 6235 | |
| 6236 | static void test_reserve_memory_special_shm() { |
| 6237 | size_t lp = os::large_page_size(); |
| 6238 | size_t ag = os::vm_allocation_granularity(); |
| 6239 | |
| 6240 | for (size_t size = ag; size < lp * 3; size += ag) { |
| 6241 | for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) { |
| 6242 | test_reserve_memory_special_shm(size, alignment); |
| 6243 | } |
| 6244 | } |
| 6245 | } |
| 6246 | |
| 6247 | static void test() { |
| 6248 | test_reserve_memory_special_huge_tlbfs(); |
| 6249 | test_reserve_memory_special_shm(); |
| 6250 | } |
| 6251 | }; |
| 6252 | |
| 6253 | void TestReserveMemorySpecial_test() { |
| 6254 | TestReserveMemorySpecial::test(); |
| 6255 | } |
| 6256 | |
| 6257 | #endif |
| 6258 | |