1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "asm/codeBuffer.hpp" |
27 | #include "code/oopRecorder.inline.hpp" |
28 | #include "compiler/disassembler.hpp" |
29 | #include "oops/methodData.hpp" |
30 | #include "oops/oop.inline.hpp" |
31 | #include "runtime/icache.hpp" |
32 | #include "runtime/safepointVerifiers.hpp" |
33 | #include "utilities/align.hpp" |
34 | #include "utilities/copy.hpp" |
35 | #include "utilities/xmlstream.hpp" |
36 | |
37 | // The structure of a CodeSection: |
38 | // |
39 | // _start -> +----------------+ |
40 | // | machine code...| |
41 | // _end -> |----------------| |
42 | // | | |
43 | // | (empty) | |
44 | // | | |
45 | // | | |
46 | // +----------------+ |
47 | // _limit -> | | |
48 | // |
49 | // _locs_start -> +----------------+ |
50 | // |reloc records...| |
51 | // |----------------| |
52 | // _locs_end -> | | |
53 | // | | |
54 | // | (empty) | |
55 | // | | |
56 | // | | |
57 | // +----------------+ |
58 | // _locs_limit -> | | |
59 | // The _end (resp. _limit) pointer refers to the first |
60 | // unused (resp. unallocated) byte. |
61 | |
62 | // The structure of the CodeBuffer while code is being accumulated: |
63 | // |
64 | // _total_start -> \ |
65 | // _insts._start -> +----------------+ |
66 | // | | |
67 | // | Code | |
68 | // | | |
69 | // _stubs._start -> |----------------| |
70 | // | | |
71 | // | Stubs | (also handlers for deopt/exception) |
72 | // | | |
73 | // _consts._start -> |----------------| |
74 | // | | |
75 | // | Constants | |
76 | // | | |
77 | // +----------------+ |
78 | // + _total_size -> | | |
79 | // |
80 | // When the code and relocations are copied to the code cache, |
81 | // the empty parts of each section are removed, and everything |
82 | // is copied into contiguous locations. |
83 | |
84 | typedef CodeBuffer::csize_t csize_t; // file-local definition |
85 | |
86 | // External buffer, in a predefined CodeBlob. |
87 | // Important: The code_start must be taken exactly, and not realigned. |
88 | CodeBuffer::CodeBuffer(CodeBlob* blob) { |
89 | // Provide code buffer with meaningful name |
90 | initialize_misc(blob->name()); |
91 | initialize(blob->content_begin(), blob->content_size()); |
92 | verify_section_allocation(); |
93 | } |
94 | |
95 | void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) { |
96 | // Compute maximal alignment. |
97 | int align = _insts.alignment(); |
98 | // Always allow for empty slop around each section. |
99 | int slop = (int) CodeSection::end_slop(); |
100 | |
101 | assert(blob() == NULL, "only once" ); |
102 | set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1))); |
103 | if (blob() == NULL) { |
104 | // The assembler constructor will throw a fatal on an empty CodeBuffer. |
105 | return; // caller must test this |
106 | } |
107 | |
108 | // Set up various pointers into the blob. |
109 | initialize(_total_start, _total_size); |
110 | |
111 | assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned" ); |
112 | |
113 | pd_initialize(); |
114 | |
115 | if (locs_size != 0) { |
116 | _insts.initialize_locs(locs_size / sizeof(relocInfo)); |
117 | } |
118 | |
119 | verify_section_allocation(); |
120 | } |
121 | |
122 | |
123 | CodeBuffer::~CodeBuffer() { |
124 | verify_section_allocation(); |
125 | |
126 | // If we allocate our code buffer from the CodeCache |
127 | // via a BufferBlob, and it's not permanent, then |
128 | // free the BufferBlob. |
129 | // The rest of the memory will be freed when the ResourceObj |
130 | // is released. |
131 | for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) { |
132 | // Previous incarnations of this buffer are held live, so that internal |
133 | // addresses constructed before expansions will not be confused. |
134 | cb->free_blob(); |
135 | } |
136 | |
137 | // free any overflow storage |
138 | delete _overflow_arena; |
139 | |
140 | // Claim is that stack allocation ensures resources are cleaned up. |
141 | // This is resource clean up, let's hope that all were properly copied out. |
142 | free_strings(); |
143 | |
144 | #ifdef ASSERT |
145 | // Save allocation type to execute assert in ~ResourceObj() |
146 | // which is called after this destructor. |
147 | assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object" ); |
148 | ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type(); |
149 | Copy::fill_to_bytes(this, sizeof(*this), badResourceValue); |
150 | ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at); |
151 | #endif |
152 | } |
153 | |
154 | void CodeBuffer::initialize_oop_recorder(OopRecorder* r) { |
155 | assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once" ); |
156 | DEBUG_ONLY(_default_oop_recorder.freeze()); // force unused OR to be frozen |
157 | _oop_recorder = r; |
158 | } |
159 | |
160 | void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) { |
161 | assert(cs != &_insts, "insts is the memory provider, not the consumer" ); |
162 | csize_t slop = CodeSection::end_slop(); // margin between sections |
163 | int align = cs->alignment(); |
164 | assert(is_power_of_2(align), "sanity" ); |
165 | address start = _insts._start; |
166 | address limit = _insts._limit; |
167 | address middle = limit - size; |
168 | middle -= (intptr_t)middle & (align-1); // align the division point downward |
169 | guarantee(middle - slop > start, "need enough space to divide up" ); |
170 | _insts._limit = middle - slop; // subtract desired space, plus slop |
171 | cs->initialize(middle, limit - middle); |
172 | assert(cs->start() == middle, "sanity" ); |
173 | assert(cs->limit() == limit, "sanity" ); |
174 | // give it some relocations to start with, if the main section has them |
175 | if (_insts.has_locs()) cs->initialize_locs(1); |
176 | } |
177 | |
178 | void CodeBuffer::freeze_section(CodeSection* cs) { |
179 | CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1); |
180 | csize_t frozen_size = cs->size(); |
181 | if (next_cs != NULL) { |
182 | frozen_size = next_cs->align_at_start(frozen_size); |
183 | } |
184 | address old_limit = cs->limit(); |
185 | address new_limit = cs->start() + frozen_size; |
186 | relocInfo* old_locs_limit = cs->locs_limit(); |
187 | relocInfo* new_locs_limit = cs->locs_end(); |
188 | // Patch the limits. |
189 | cs->_limit = new_limit; |
190 | cs->_locs_limit = new_locs_limit; |
191 | cs->_frozen = true; |
192 | if (next_cs != NULL && !next_cs->is_allocated() && !next_cs->is_frozen()) { |
193 | // Give remaining buffer space to the following section. |
194 | next_cs->initialize(new_limit, old_limit - new_limit); |
195 | next_cs->initialize_shared_locs(new_locs_limit, |
196 | old_locs_limit - new_locs_limit); |
197 | } |
198 | } |
199 | |
200 | void CodeBuffer::set_blob(BufferBlob* blob) { |
201 | _blob = blob; |
202 | if (blob != NULL) { |
203 | address start = blob->content_begin(); |
204 | address end = blob->content_end(); |
205 | // Round up the starting address. |
206 | int align = _insts.alignment(); |
207 | start += (-(intptr_t)start) & (align-1); |
208 | _total_start = start; |
209 | _total_size = end - start; |
210 | } else { |
211 | #ifdef ASSERT |
212 | // Clean out dangling pointers. |
213 | _total_start = badAddress; |
214 | _consts._start = _consts._end = badAddress; |
215 | _insts._start = _insts._end = badAddress; |
216 | _stubs._start = _stubs._end = badAddress; |
217 | #endif //ASSERT |
218 | } |
219 | } |
220 | |
221 | void CodeBuffer::free_blob() { |
222 | if (_blob != NULL) { |
223 | BufferBlob::free(_blob); |
224 | set_blob(NULL); |
225 | } |
226 | } |
227 | |
228 | const char* CodeBuffer::code_section_name(int n) { |
229 | #ifdef PRODUCT |
230 | return NULL; |
231 | #else //PRODUCT |
232 | switch (n) { |
233 | case SECT_CONSTS: return "consts" ; |
234 | case SECT_INSTS: return "insts" ; |
235 | case SECT_STUBS: return "stubs" ; |
236 | default: return NULL; |
237 | } |
238 | #endif //PRODUCT |
239 | } |
240 | |
241 | int CodeBuffer::section_index_of(address addr) const { |
242 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
243 | const CodeSection* cs = code_section(n); |
244 | if (cs->allocates(addr)) return n; |
245 | } |
246 | return SECT_NONE; |
247 | } |
248 | |
249 | int CodeBuffer::locator(address addr) const { |
250 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
251 | const CodeSection* cs = code_section(n); |
252 | if (cs->allocates(addr)) { |
253 | return locator(addr - cs->start(), n); |
254 | } |
255 | } |
256 | return -1; |
257 | } |
258 | |
259 | address CodeBuffer::locator_address(int locator) const { |
260 | if (locator < 0) return NULL; |
261 | address start = code_section(locator_sect(locator))->start(); |
262 | return start + locator_pos(locator); |
263 | } |
264 | |
265 | bool CodeBuffer::is_backward_branch(Label& L) { |
266 | return L.is_bound() && insts_end() <= locator_address(L.loc()); |
267 | } |
268 | |
269 | address CodeBuffer::decode_begin() { |
270 | address begin = _insts.start(); |
271 | if (_decode_begin != NULL && _decode_begin > begin) |
272 | begin = _decode_begin; |
273 | return begin; |
274 | } |
275 | |
276 | |
277 | GrowableArray<int>* CodeBuffer::create_patch_overflow() { |
278 | if (_overflow_arena == NULL) { |
279 | _overflow_arena = new (mtCode) Arena(mtCode); |
280 | } |
281 | return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0); |
282 | } |
283 | |
284 | |
285 | // Helper function for managing labels and their target addresses. |
286 | // Returns a sensible address, and if it is not the label's final |
287 | // address, notes the dependency (at 'branch_pc') on the label. |
288 | address CodeSection::target(Label& L, address branch_pc) { |
289 | if (L.is_bound()) { |
290 | int loc = L.loc(); |
291 | if (index() == CodeBuffer::locator_sect(loc)) { |
292 | return start() + CodeBuffer::locator_pos(loc); |
293 | } else { |
294 | return outer()->locator_address(loc); |
295 | } |
296 | } else { |
297 | assert(allocates2(branch_pc), "sanity" ); |
298 | address base = start(); |
299 | int patch_loc = CodeBuffer::locator(branch_pc - base, index()); |
300 | L.add_patch_at(outer(), patch_loc); |
301 | |
302 | // Need to return a pc, doesn't matter what it is since it will be |
303 | // replaced during resolution later. |
304 | // Don't return NULL or badAddress, since branches shouldn't overflow. |
305 | // Don't return base either because that could overflow displacements |
306 | // for shorter branches. It will get checked when bound. |
307 | return branch_pc; |
308 | } |
309 | } |
310 | |
311 | void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) { |
312 | RelocationHolder rh; |
313 | switch (rtype) { |
314 | case relocInfo::none: return; |
315 | case relocInfo::opt_virtual_call_type: { |
316 | rh = opt_virtual_call_Relocation::spec(method_index); |
317 | break; |
318 | } |
319 | case relocInfo::static_call_type: { |
320 | rh = static_call_Relocation::spec(method_index); |
321 | break; |
322 | } |
323 | case relocInfo::virtual_call_type: { |
324 | assert(method_index == 0, "resolved method overriding is not supported" ); |
325 | rh = Relocation::spec_simple(rtype); |
326 | break; |
327 | } |
328 | default: { |
329 | rh = Relocation::spec_simple(rtype); |
330 | break; |
331 | } |
332 | } |
333 | relocate(at, rh, format); |
334 | } |
335 | |
336 | void CodeSection::relocate(address at, RelocationHolder const& spec, int format) { |
337 | // Do not relocate in scratch buffers. |
338 | if (scratch_emit()) { return; } |
339 | Relocation* reloc = spec.reloc(); |
340 | relocInfo::relocType rtype = (relocInfo::relocType) reloc->type(); |
341 | if (rtype == relocInfo::none) return; |
342 | |
343 | // The assertion below has been adjusted, to also work for |
344 | // relocation for fixup. Sometimes we want to put relocation |
345 | // information for the next instruction, since it will be patched |
346 | // with a call. |
347 | assert(start() <= at && at <= end()+1, |
348 | "cannot relocate data outside code boundaries" ); |
349 | |
350 | if (!has_locs()) { |
351 | // no space for relocation information provided => code cannot be |
352 | // relocated. Make sure that relocate is only called with rtypes |
353 | // that can be ignored for this kind of code. |
354 | assert(rtype == relocInfo::none || |
355 | rtype == relocInfo::runtime_call_type || |
356 | rtype == relocInfo::internal_word_type|| |
357 | rtype == relocInfo::section_word_type || |
358 | rtype == relocInfo::external_word_type, |
359 | "code needs relocation information" ); |
360 | // leave behind an indication that we attempted a relocation |
361 | DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress); |
362 | return; |
363 | } |
364 | |
365 | // Advance the point, noting the offset we'll have to record. |
366 | csize_t offset = at - locs_point(); |
367 | set_locs_point(at); |
368 | |
369 | // Test for a couple of overflow conditions; maybe expand the buffer. |
370 | relocInfo* end = locs_end(); |
371 | relocInfo* req = end + relocInfo::length_limit; |
372 | // Check for (potential) overflow |
373 | if (req >= locs_limit() || offset >= relocInfo::offset_limit()) { |
374 | req += (uint)offset / (uint)relocInfo::offset_limit(); |
375 | if (req >= locs_limit()) { |
376 | // Allocate or reallocate. |
377 | expand_locs(locs_count() + (req - end)); |
378 | // reload pointer |
379 | end = locs_end(); |
380 | } |
381 | } |
382 | |
383 | // If the offset is giant, emit filler relocs, of type 'none', but |
384 | // each carrying the largest possible offset, to advance the locs_point. |
385 | while (offset >= relocInfo::offset_limit()) { |
386 | assert(end < locs_limit(), "adjust previous paragraph of code" ); |
387 | *end++ = filler_relocInfo(); |
388 | offset -= filler_relocInfo().addr_offset(); |
389 | } |
390 | |
391 | // If it's a simple reloc with no data, we'll just write (rtype | offset). |
392 | (*end) = relocInfo(rtype, offset, format); |
393 | |
394 | // If it has data, insert the prefix, as (data_prefix_tag | data1), data2. |
395 | end->initialize(this, reloc); |
396 | } |
397 | |
398 | void CodeSection::initialize_locs(int locs_capacity) { |
399 | assert(_locs_start == NULL, "only one locs init step, please" ); |
400 | // Apply a priori lower limits to relocation size: |
401 | csize_t min_locs = MAX2(size() / 16, (csize_t)4); |
402 | if (locs_capacity < min_locs) locs_capacity = min_locs; |
403 | relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity); |
404 | _locs_start = locs_start; |
405 | _locs_end = locs_start; |
406 | _locs_limit = locs_start + locs_capacity; |
407 | _locs_own = true; |
408 | } |
409 | |
410 | void CodeSection::initialize_shared_locs(relocInfo* buf, int length) { |
411 | assert(_locs_start == NULL, "do this before locs are allocated" ); |
412 | // Internal invariant: locs buf must be fully aligned. |
413 | // See copy_relocations_to() below. |
414 | while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) { |
415 | ++buf; --length; |
416 | } |
417 | if (length > 0) { |
418 | _locs_start = buf; |
419 | _locs_end = buf; |
420 | _locs_limit = buf + length; |
421 | _locs_own = false; |
422 | } |
423 | } |
424 | |
425 | void CodeSection::initialize_locs_from(const CodeSection* source_cs) { |
426 | int lcount = source_cs->locs_count(); |
427 | if (lcount != 0) { |
428 | initialize_shared_locs(source_cs->locs_start(), lcount); |
429 | _locs_end = _locs_limit = _locs_start + lcount; |
430 | assert(is_allocated(), "must have copied code already" ); |
431 | set_locs_point(start() + source_cs->locs_point_off()); |
432 | } |
433 | assert(this->locs_count() == source_cs->locs_count(), "sanity" ); |
434 | } |
435 | |
436 | void CodeSection::expand_locs(int new_capacity) { |
437 | if (_locs_start == NULL) { |
438 | initialize_locs(new_capacity); |
439 | return; |
440 | } else { |
441 | int old_count = locs_count(); |
442 | int old_capacity = locs_capacity(); |
443 | if (new_capacity < old_capacity * 2) |
444 | new_capacity = old_capacity * 2; |
445 | relocInfo* locs_start; |
446 | if (_locs_own) { |
447 | locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity); |
448 | } else { |
449 | locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity); |
450 | Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo)); |
451 | _locs_own = true; |
452 | } |
453 | _locs_start = locs_start; |
454 | _locs_end = locs_start + old_count; |
455 | _locs_limit = locs_start + new_capacity; |
456 | } |
457 | } |
458 | |
459 | |
460 | /// Support for emitting the code to its final location. |
461 | /// The pattern is the same for all functions. |
462 | /// We iterate over all the sections, padding each to alignment. |
463 | |
464 | csize_t CodeBuffer::total_content_size() const { |
465 | csize_t size_so_far = 0; |
466 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
467 | const CodeSection* cs = code_section(n); |
468 | if (cs->is_empty()) continue; // skip trivial section |
469 | size_so_far = cs->align_at_start(size_so_far); |
470 | size_so_far += cs->size(); |
471 | } |
472 | return size_so_far; |
473 | } |
474 | |
475 | void CodeBuffer::compute_final_layout(CodeBuffer* dest) const { |
476 | address buf = dest->_total_start; |
477 | csize_t buf_offset = 0; |
478 | assert(dest->_total_size >= total_content_size(), "must be big enough" ); |
479 | |
480 | { |
481 | // not sure why this is here, but why not... |
482 | int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment); |
483 | assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment" ); |
484 | } |
485 | |
486 | const CodeSection* prev_cs = NULL; |
487 | CodeSection* prev_dest_cs = NULL; |
488 | |
489 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
490 | // figure compact layout of each section |
491 | const CodeSection* cs = code_section(n); |
492 | csize_t csize = cs->size(); |
493 | |
494 | CodeSection* dest_cs = dest->code_section(n); |
495 | if (!cs->is_empty()) { |
496 | // Compute initial padding; assign it to the previous non-empty guy. |
497 | // Cf. figure_expanded_capacities. |
498 | csize_t padding = cs->align_at_start(buf_offset) - buf_offset; |
499 | if (prev_dest_cs != NULL) { |
500 | if (padding != 0) { |
501 | buf_offset += padding; |
502 | prev_dest_cs->_limit += padding; |
503 | } |
504 | } else { |
505 | guarantee(padding == 0, "In first iteration no padding should be needed." ); |
506 | } |
507 | #ifdef ASSERT |
508 | if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) { |
509 | // Make sure the ends still match up. |
510 | // This is important because a branch in a frozen section |
511 | // might target code in a following section, via a Label, |
512 | // and without a relocation record. See Label::patch_instructions. |
513 | address dest_start = buf+buf_offset; |
514 | csize_t start2start = cs->start() - prev_cs->start(); |
515 | csize_t dest_start2start = dest_start - prev_dest_cs->start(); |
516 | assert(start2start == dest_start2start, "cannot stretch frozen sect" ); |
517 | } |
518 | #endif //ASSERT |
519 | prev_dest_cs = dest_cs; |
520 | prev_cs = cs; |
521 | } |
522 | |
523 | debug_only(dest_cs->_start = NULL); // defeat double-initialization assert |
524 | dest_cs->initialize(buf+buf_offset, csize); |
525 | dest_cs->set_end(buf+buf_offset+csize); |
526 | assert(dest_cs->is_allocated(), "must always be allocated" ); |
527 | assert(cs->is_empty() == dest_cs->is_empty(), "sanity" ); |
528 | |
529 | buf_offset += csize; |
530 | } |
531 | |
532 | // Done calculating sections; did it come out to the right end? |
533 | assert(buf_offset == total_content_size(), "sanity" ); |
534 | dest->verify_section_allocation(); |
535 | } |
536 | |
537 | // Append an oop reference that keeps the class alive. |
538 | static void append_oop_references(GrowableArray<oop>* oops, Klass* k) { |
539 | oop cl = k->klass_holder(); |
540 | if (cl != NULL && !oops->contains(cl)) { |
541 | oops->append(cl); |
542 | } |
543 | } |
544 | |
545 | void CodeBuffer::finalize_oop_references(const methodHandle& mh) { |
546 | NoSafepointVerifier nsv; |
547 | |
548 | GrowableArray<oop> oops; |
549 | |
550 | // Make sure that immediate metadata records something in the OopRecorder |
551 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
552 | // pull code out of each section |
553 | CodeSection* cs = code_section(n); |
554 | if (cs->is_empty()) continue; // skip trivial section |
555 | RelocIterator iter(cs); |
556 | while (iter.next()) { |
557 | if (iter.type() == relocInfo::metadata_type) { |
558 | metadata_Relocation* md = iter.metadata_reloc(); |
559 | if (md->metadata_is_immediate()) { |
560 | Metadata* m = md->metadata_value(); |
561 | if (oop_recorder()->is_real(m)) { |
562 | if (m->is_methodData()) { |
563 | m = ((MethodData*)m)->method(); |
564 | } |
565 | if (m->is_method()) { |
566 | m = ((Method*)m)->method_holder(); |
567 | } |
568 | if (m->is_klass()) { |
569 | append_oop_references(&oops, (Klass*)m); |
570 | } else { |
571 | // XXX This will currently occur for MDO which don't |
572 | // have a backpointer. This has to be fixed later. |
573 | m->print(); |
574 | ShouldNotReachHere(); |
575 | } |
576 | } |
577 | } |
578 | } |
579 | } |
580 | } |
581 | |
582 | if (!oop_recorder()->is_unused()) { |
583 | for (int i = 0; i < oop_recorder()->metadata_count(); i++) { |
584 | Metadata* m = oop_recorder()->metadata_at(i); |
585 | if (oop_recorder()->is_real(m)) { |
586 | if (m->is_methodData()) { |
587 | m = ((MethodData*)m)->method(); |
588 | } |
589 | if (m->is_method()) { |
590 | m = ((Method*)m)->method_holder(); |
591 | } |
592 | if (m->is_klass()) { |
593 | append_oop_references(&oops, (Klass*)m); |
594 | } else { |
595 | m->print(); |
596 | ShouldNotReachHere(); |
597 | } |
598 | } |
599 | } |
600 | |
601 | } |
602 | |
603 | // Add the class loader of Method* for the nmethod itself |
604 | append_oop_references(&oops, mh->method_holder()); |
605 | |
606 | // Add any oops that we've found |
607 | Thread* thread = Thread::current(); |
608 | for (int i = 0; i < oops.length(); i++) { |
609 | oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i))); |
610 | } |
611 | } |
612 | |
613 | |
614 | |
615 | csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const { |
616 | csize_t size_so_far = 0; |
617 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
618 | const CodeSection* cur_cs = code_section(n); |
619 | if (!cur_cs->is_empty()) { |
620 | size_so_far = cur_cs->align_at_start(size_so_far); |
621 | } |
622 | if (cur_cs->index() == cs->index()) { |
623 | return size_so_far; |
624 | } |
625 | size_so_far += cur_cs->size(); |
626 | } |
627 | ShouldNotReachHere(); |
628 | return -1; |
629 | } |
630 | |
631 | csize_t CodeBuffer::total_relocation_size() const { |
632 | csize_t total = copy_relocations_to(NULL); // dry run only |
633 | return (csize_t) align_up(total, HeapWordSize); |
634 | } |
635 | |
636 | csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const { |
637 | csize_t buf_offset = 0; |
638 | csize_t code_end_so_far = 0; |
639 | csize_t code_point_so_far = 0; |
640 | |
641 | assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned" ); |
642 | assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized" ); |
643 | |
644 | for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) { |
645 | if (only_inst && (n != (int)SECT_INSTS)) { |
646 | // Need only relocation info for code. |
647 | continue; |
648 | } |
649 | // pull relocs out of each section |
650 | const CodeSection* cs = code_section(n); |
651 | assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity" ); |
652 | if (cs->is_empty()) continue; // skip trivial section |
653 | relocInfo* lstart = cs->locs_start(); |
654 | relocInfo* lend = cs->locs_end(); |
655 | csize_t lsize = (csize_t)( (address)lend - (address)lstart ); |
656 | csize_t csize = cs->size(); |
657 | code_end_so_far = cs->align_at_start(code_end_so_far); |
658 | |
659 | if (lsize > 0) { |
660 | // Figure out how to advance the combined relocation point |
661 | // first to the beginning of this section. |
662 | // We'll insert one or more filler relocs to span that gap. |
663 | // (Don't bother to improve this by editing the first reloc's offset.) |
664 | csize_t new_code_point = code_end_so_far; |
665 | for (csize_t jump; |
666 | code_point_so_far < new_code_point; |
667 | code_point_so_far += jump) { |
668 | jump = new_code_point - code_point_so_far; |
669 | relocInfo filler = filler_relocInfo(); |
670 | if (jump >= filler.addr_offset()) { |
671 | jump = filler.addr_offset(); |
672 | } else { // else shrink the filler to fit |
673 | filler = relocInfo(relocInfo::none, jump); |
674 | } |
675 | if (buf != NULL) { |
676 | assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds" ); |
677 | *(relocInfo*)(buf+buf_offset) = filler; |
678 | } |
679 | buf_offset += sizeof(filler); |
680 | } |
681 | |
682 | // Update code point and end to skip past this section: |
683 | csize_t last_code_point = code_end_so_far + cs->locs_point_off(); |
684 | assert(code_point_so_far <= last_code_point, "sanity" ); |
685 | code_point_so_far = last_code_point; // advance past this guy's relocs |
686 | } |
687 | code_end_so_far += csize; // advance past this guy's instructions too |
688 | |
689 | // Done with filler; emit the real relocations: |
690 | if (buf != NULL && lsize != 0) { |
691 | assert(buf_offset + lsize <= buf_limit, "target in bounds" ); |
692 | assert((uintptr_t)lstart % HeapWordSize == 0, "sane start" ); |
693 | if (buf_offset % HeapWordSize == 0) { |
694 | // Use wordwise copies if possible: |
695 | Copy::disjoint_words((HeapWord*)lstart, |
696 | (HeapWord*)(buf+buf_offset), |
697 | (lsize + HeapWordSize-1) / HeapWordSize); |
698 | } else { |
699 | Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize); |
700 | } |
701 | } |
702 | buf_offset += lsize; |
703 | } |
704 | |
705 | // Align end of relocation info in target. |
706 | while (buf_offset % HeapWordSize != 0) { |
707 | if (buf != NULL) { |
708 | relocInfo padding = relocInfo(relocInfo::none, 0); |
709 | assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds" ); |
710 | *(relocInfo*)(buf+buf_offset) = padding; |
711 | } |
712 | buf_offset += sizeof(relocInfo); |
713 | } |
714 | |
715 | assert(only_inst || code_end_so_far == total_content_size(), "sanity" ); |
716 | |
717 | return buf_offset; |
718 | } |
719 | |
720 | csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const { |
721 | address buf = NULL; |
722 | csize_t buf_offset = 0; |
723 | csize_t buf_limit = 0; |
724 | |
725 | if (dest != NULL) { |
726 | buf = (address)dest->relocation_begin(); |
727 | buf_limit = (address)dest->relocation_end() - buf; |
728 | } |
729 | // if dest == NULL, this is just the sizing pass |
730 | // |
731 | buf_offset = copy_relocations_to(buf, buf_limit, false); |
732 | |
733 | return buf_offset; |
734 | } |
735 | |
736 | void CodeBuffer::copy_code_to(CodeBlob* dest_blob) { |
737 | #ifndef PRODUCT |
738 | if (PrintNMethods && (WizardMode || Verbose)) { |
739 | tty->print("done with CodeBuffer:" ); |
740 | ((CodeBuffer*)this)->print(); |
741 | } |
742 | #endif //PRODUCT |
743 | |
744 | CodeBuffer dest(dest_blob); |
745 | assert(dest_blob->content_size() >= total_content_size(), "good sizing" ); |
746 | this->compute_final_layout(&dest); |
747 | |
748 | // Set beginning of constant table before relocating. |
749 | dest_blob->set_ctable_begin(dest.consts()->start()); |
750 | |
751 | relocate_code_to(&dest); |
752 | |
753 | // transfer strings and comments from buffer to blob |
754 | dest_blob->set_strings(_code_strings); |
755 | |
756 | // Done moving code bytes; were they the right size? |
757 | assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity" ); |
758 | |
759 | // Flush generated code |
760 | ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size()); |
761 | } |
762 | |
763 | // Move all my code into another code buffer. Consult applicable |
764 | // relocs to repair embedded addresses. The layout in the destination |
765 | // CodeBuffer is different to the source CodeBuffer: the destination |
766 | // CodeBuffer gets the final layout (consts, insts, stubs in order of |
767 | // ascending address). |
768 | void CodeBuffer::relocate_code_to(CodeBuffer* dest) const { |
769 | address dest_end = dest->_total_start + dest->_total_size; |
770 | address dest_filled = NULL; |
771 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
772 | // pull code out of each section |
773 | const CodeSection* cs = code_section(n); |
774 | if (cs->is_empty()) continue; // skip trivial section |
775 | CodeSection* dest_cs = dest->code_section(n); |
776 | assert(cs->size() == dest_cs->size(), "sanity" ); |
777 | csize_t usize = dest_cs->size(); |
778 | csize_t wsize = align_up(usize, HeapWordSize); |
779 | assert(dest_cs->start() + wsize <= dest_end, "no overflow" ); |
780 | // Copy the code as aligned machine words. |
781 | // This may also include an uninitialized partial word at the end. |
782 | Copy::disjoint_words((HeapWord*)cs->start(), |
783 | (HeapWord*)dest_cs->start(), |
784 | wsize / HeapWordSize); |
785 | |
786 | if (dest->blob() == NULL) { |
787 | // Destination is a final resting place, not just another buffer. |
788 | // Normalize uninitialized bytes in the final padding. |
789 | Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(), |
790 | Assembler::code_fill_byte()); |
791 | } |
792 | // Keep track of the highest filled address |
793 | dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining()); |
794 | |
795 | assert(cs->locs_start() != (relocInfo*)badAddress, |
796 | "this section carries no reloc storage, but reloc was attempted" ); |
797 | |
798 | // Make the new code copy use the old copy's relocations: |
799 | dest_cs->initialize_locs_from(cs); |
800 | } |
801 | |
802 | // Do relocation after all sections are copied. |
803 | // This is necessary if the code uses constants in stubs, which are |
804 | // relocated when the corresponding instruction in the code (e.g., a |
805 | // call) is relocated. Stubs are placed behind the main code |
806 | // section, so that section has to be copied before relocating. |
807 | for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) { |
808 | // pull code out of each section |
809 | const CodeSection* cs = code_section(n); |
810 | if (cs->is_empty()) continue; // skip trivial section |
811 | CodeSection* dest_cs = dest->code_section(n); |
812 | { // Repair the pc relative information in the code after the move |
813 | RelocIterator iter(dest_cs); |
814 | while (iter.next()) { |
815 | iter.reloc()->fix_relocation_after_move(this, dest); |
816 | } |
817 | } |
818 | } |
819 | |
820 | if (dest->blob() == NULL && dest_filled != NULL) { |
821 | // Destination is a final resting place, not just another buffer. |
822 | // Normalize uninitialized bytes in the final padding. |
823 | Copy::fill_to_bytes(dest_filled, dest_end - dest_filled, |
824 | Assembler::code_fill_byte()); |
825 | |
826 | } |
827 | } |
828 | |
829 | csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs, |
830 | csize_t amount, |
831 | csize_t* new_capacity) { |
832 | csize_t new_total_cap = 0; |
833 | |
834 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
835 | const CodeSection* sect = code_section(n); |
836 | |
837 | if (!sect->is_empty()) { |
838 | // Compute initial padding; assign it to the previous section, |
839 | // even if it's empty (e.g. consts section can be empty). |
840 | // Cf. compute_final_layout |
841 | csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap; |
842 | if (padding != 0) { |
843 | new_total_cap += padding; |
844 | assert(n - 1 >= SECT_FIRST, "sanity" ); |
845 | new_capacity[n - 1] += padding; |
846 | } |
847 | } |
848 | |
849 | csize_t exp = sect->size(); // 100% increase |
850 | if ((uint)exp < 4*K) exp = 4*K; // minimum initial increase |
851 | if (sect == which_cs) { |
852 | if (exp < amount) exp = amount; |
853 | if (StressCodeBuffers) exp = amount; // expand only slightly |
854 | } else if (n == SECT_INSTS) { |
855 | // scale down inst increases to a more modest 25% |
856 | exp = 4*K + ((exp - 4*K) >> 2); |
857 | if (StressCodeBuffers) exp = amount / 2; // expand only slightly |
858 | } else if (sect->is_empty()) { |
859 | // do not grow an empty secondary section |
860 | exp = 0; |
861 | } |
862 | // Allow for inter-section slop: |
863 | exp += CodeSection::end_slop(); |
864 | csize_t new_cap = sect->size() + exp; |
865 | if (new_cap < sect->capacity()) { |
866 | // No need to expand after all. |
867 | new_cap = sect->capacity(); |
868 | } |
869 | new_capacity[n] = new_cap; |
870 | new_total_cap += new_cap; |
871 | } |
872 | |
873 | return new_total_cap; |
874 | } |
875 | |
876 | void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) { |
877 | #ifndef PRODUCT |
878 | if (PrintNMethods && (WizardMode || Verbose)) { |
879 | tty->print("expanding CodeBuffer:" ); |
880 | this->print(); |
881 | } |
882 | |
883 | if (StressCodeBuffers && blob() != NULL) { |
884 | static int expand_count = 0; |
885 | if (expand_count >= 0) expand_count += 1; |
886 | if (expand_count > 100 && is_power_of_2(expand_count)) { |
887 | tty->print_cr("StressCodeBuffers: have expanded %d times" , expand_count); |
888 | // simulate an occasional allocation failure: |
889 | free_blob(); |
890 | } |
891 | } |
892 | #endif //PRODUCT |
893 | |
894 | // Resizing must be allowed |
895 | { |
896 | if (blob() == NULL) return; // caller must check for blob == NULL |
897 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
898 | guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen" ); |
899 | } |
900 | } |
901 | |
902 | // Figure new capacity for each section. |
903 | csize_t new_capacity[SECT_LIMIT]; |
904 | memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT); |
905 | csize_t new_total_cap |
906 | = figure_expanded_capacities(which_cs, amount, new_capacity); |
907 | |
908 | // Create a new (temporary) code buffer to hold all the new data |
909 | CodeBuffer cb(name(), new_total_cap, 0); |
910 | if (cb.blob() == NULL) { |
911 | // Failed to allocate in code cache. |
912 | free_blob(); |
913 | return; |
914 | } |
915 | |
916 | // Create an old code buffer to remember which addresses used to go where. |
917 | // This will be useful when we do final assembly into the code cache, |
918 | // because we will need to know how to warp any internal address that |
919 | // has been created at any time in this CodeBuffer's past. |
920 | CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size); |
921 | bxp->take_over_code_from(this); // remember the old undersized blob |
922 | DEBUG_ONLY(this->_blob = NULL); // silence a later assert |
923 | bxp->_before_expand = this->_before_expand; |
924 | this->_before_expand = bxp; |
925 | |
926 | // Give each section its required (expanded) capacity. |
927 | for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) { |
928 | CodeSection* cb_sect = cb.code_section(n); |
929 | CodeSection* this_sect = code_section(n); |
930 | if (new_capacity[n] == 0) continue; // already nulled out |
931 | if (n != SECT_INSTS) { |
932 | cb.initialize_section_size(cb_sect, new_capacity[n]); |
933 | } |
934 | assert(cb_sect->capacity() >= new_capacity[n], "big enough" ); |
935 | address cb_start = cb_sect->start(); |
936 | cb_sect->set_end(cb_start + this_sect->size()); |
937 | if (this_sect->mark() == NULL) { |
938 | cb_sect->clear_mark(); |
939 | } else { |
940 | cb_sect->set_mark(cb_start + this_sect->mark_off()); |
941 | } |
942 | } |
943 | |
944 | // Needs to be initialized when calling fix_relocation_after_move. |
945 | cb.blob()->set_ctable_begin(cb.consts()->start()); |
946 | |
947 | // Move all the code and relocations to the new blob: |
948 | relocate_code_to(&cb); |
949 | |
950 | // Copy the temporary code buffer into the current code buffer. |
951 | // Basically, do {*this = cb}, except for some control information. |
952 | this->take_over_code_from(&cb); |
953 | cb.set_blob(NULL); |
954 | |
955 | // Zap the old code buffer contents, to avoid mistakenly using them. |
956 | debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size, |
957 | badCodeHeapFreeVal)); |
958 | |
959 | _decode_begin = NULL; // sanity |
960 | |
961 | // Make certain that the new sections are all snugly inside the new blob. |
962 | verify_section_allocation(); |
963 | |
964 | #ifndef PRODUCT |
965 | if (PrintNMethods && (WizardMode || Verbose)) { |
966 | tty->print("expanded CodeBuffer:" ); |
967 | this->print(); |
968 | } |
969 | #endif //PRODUCT |
970 | } |
971 | |
972 | void CodeBuffer::take_over_code_from(CodeBuffer* cb) { |
973 | // Must already have disposed of the old blob somehow. |
974 | assert(blob() == NULL, "must be empty" ); |
975 | // Take the new blob away from cb. |
976 | set_blob(cb->blob()); |
977 | // Take over all the section pointers. |
978 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
979 | CodeSection* cb_sect = cb->code_section(n); |
980 | CodeSection* this_sect = code_section(n); |
981 | this_sect->take_over_code_from(cb_sect); |
982 | } |
983 | _overflow_arena = cb->_overflow_arena; |
984 | // Make sure the old cb won't try to use it or free it. |
985 | DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress); |
986 | } |
987 | |
988 | void CodeBuffer::verify_section_allocation() { |
989 | address tstart = _total_start; |
990 | if (tstart == badAddress) return; // smashed by set_blob(NULL) |
991 | address tend = tstart + _total_size; |
992 | if (_blob != NULL) { |
993 | |
994 | guarantee(tstart >= _blob->content_begin(), "sanity" ); |
995 | guarantee(tend <= _blob->content_end(), "sanity" ); |
996 | } |
997 | // Verify disjointness. |
998 | for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { |
999 | CodeSection* sect = code_section(n); |
1000 | if (!sect->is_allocated() || sect->is_empty()) continue; |
1001 | guarantee((intptr_t)sect->start() % sect->alignment() == 0 |
1002 | || sect->is_empty() || _blob == NULL, |
1003 | "start is aligned" ); |
1004 | for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) { |
1005 | CodeSection* other = code_section(m); |
1006 | if (!other->is_allocated() || other == sect) continue; |
1007 | guarantee(!other->contains(sect->start() ), "sanity" ); |
1008 | // limit is an exclusive address and can be the start of another |
1009 | // section. |
1010 | guarantee(!other->contains(sect->limit() - 1), "sanity" ); |
1011 | } |
1012 | guarantee(sect->end() <= tend, "sanity" ); |
1013 | guarantee(sect->end() <= sect->limit(), "sanity" ); |
1014 | } |
1015 | } |
1016 | |
1017 | void CodeBuffer::log_section_sizes(const char* name) { |
1018 | if (xtty != NULL) { |
1019 | ttyLocker ttyl; |
1020 | // log info about buffer usage |
1021 | xtty->print_cr("<blob name='%s' size='%d'>" , name, _total_size); |
1022 | for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) { |
1023 | CodeSection* sect = code_section(n); |
1024 | if (!sect->is_allocated() || sect->is_empty()) continue; |
1025 | xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>" , |
1026 | n, sect->limit() - sect->start(), sect->limit() - sect->end()); |
1027 | } |
1028 | xtty->print_cr("</blob>" ); |
1029 | } |
1030 | } |
1031 | |
1032 | #ifndef PRODUCT |
1033 | |
1034 | void CodeSection::decode() { |
1035 | Disassembler::decode(start(), end()); |
1036 | } |
1037 | |
1038 | void CodeBuffer::block_comment(intptr_t offset, const char * comment) { |
1039 | if (_collect_comments) { |
1040 | _code_strings.add_comment(offset, comment); |
1041 | } |
1042 | } |
1043 | |
1044 | const char* CodeBuffer::code_string(const char* str) { |
1045 | return _code_strings.add_string(str); |
1046 | } |
1047 | |
1048 | class CodeString: public CHeapObj<mtCode> { |
1049 | private: |
1050 | friend class CodeStrings; |
1051 | const char * _string; |
1052 | CodeString* _next; |
1053 | intptr_t _offset; |
1054 | |
1055 | ~CodeString() { |
1056 | assert(_next == NULL, "wrong interface for freeing list" ); |
1057 | os::free((void*)_string); |
1058 | } |
1059 | |
1060 | bool is_comment() const { return _offset >= 0; } |
1061 | |
1062 | public: |
1063 | CodeString(const char * string, intptr_t offset = -1) |
1064 | : _next(NULL), _offset(offset) { |
1065 | _string = os::strdup(string, mtCode); |
1066 | } |
1067 | |
1068 | const char * string() const { return _string; } |
1069 | intptr_t offset() const { assert(_offset >= 0, "offset for non comment?" ); return _offset; } |
1070 | CodeString* next() const { return _next; } |
1071 | |
1072 | void set_next(CodeString* next) { _next = next; } |
1073 | |
1074 | CodeString* first_comment() { |
1075 | if (is_comment()) { |
1076 | return this; |
1077 | } else { |
1078 | return next_comment(); |
1079 | } |
1080 | } |
1081 | CodeString* next_comment() const { |
1082 | CodeString* s = _next; |
1083 | while (s != NULL && !s->is_comment()) { |
1084 | s = s->_next; |
1085 | } |
1086 | return s; |
1087 | } |
1088 | }; |
1089 | |
1090 | CodeString* CodeStrings::find(intptr_t offset) const { |
1091 | CodeString* a = _strings->first_comment(); |
1092 | while (a != NULL && a->offset() != offset) { |
1093 | a = a->next_comment(); |
1094 | } |
1095 | return a; |
1096 | } |
1097 | |
1098 | // Convenience for add_comment. |
1099 | CodeString* CodeStrings::find_last(intptr_t offset) const { |
1100 | CodeString* a = find(offset); |
1101 | if (a != NULL) { |
1102 | CodeString* c = NULL; |
1103 | while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) { |
1104 | a = c; |
1105 | } |
1106 | } |
1107 | return a; |
1108 | } |
1109 | |
1110 | void CodeStrings::add_comment(intptr_t offset, const char * comment) { |
1111 | check_valid(); |
1112 | CodeString* c = new CodeString(comment, offset); |
1113 | CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset); |
1114 | |
1115 | if (inspos) { |
1116 | // insert after already existing comments with same offset |
1117 | c->set_next(inspos->next()); |
1118 | inspos->set_next(c); |
1119 | } else { |
1120 | // no comments with such offset, yet. Insert before anything else. |
1121 | c->set_next(_strings); |
1122 | _strings = c; |
1123 | } |
1124 | } |
1125 | |
1126 | void CodeStrings::assign(CodeStrings& other) { |
1127 | other.check_valid(); |
1128 | assert(is_null(), "Cannot assign onto non-empty CodeStrings" ); |
1129 | _strings = other._strings; |
1130 | #ifdef ASSERT |
1131 | _defunct = false; |
1132 | #endif |
1133 | other.set_null_and_invalidate(); |
1134 | } |
1135 | |
1136 | // Deep copy of CodeStrings for consistent memory management. |
1137 | // Only used for actual disassembly so this is cheaper than reference counting |
1138 | // for the "normal" fastdebug case. |
1139 | void CodeStrings::copy(CodeStrings& other) { |
1140 | other.check_valid(); |
1141 | check_valid(); |
1142 | assert(is_null(), "Cannot copy onto non-empty CodeStrings" ); |
1143 | CodeString* n = other._strings; |
1144 | CodeString** ps = &_strings; |
1145 | while (n != NULL) { |
1146 | *ps = new CodeString(n->string(),n->offset()); |
1147 | ps = &((*ps)->_next); |
1148 | n = n->next(); |
1149 | } |
1150 | } |
1151 | |
1152 | const char* CodeStrings::_prefix = " ;; " ; // default: can be changed via set_prefix |
1153 | |
1154 | // Check if any block comments are pending for the given offset. |
1155 | bool CodeStrings::has_block_comment(intptr_t offset) const { |
1156 | if (_strings == NULL) return false; |
1157 | CodeString* c = find(offset); |
1158 | return c != NULL; |
1159 | } |
1160 | |
1161 | void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const { |
1162 | check_valid(); |
1163 | if (_strings != NULL) { |
1164 | CodeString* c = find(offset); |
1165 | while (c && c->offset() == offset) { |
1166 | stream->bol(); |
1167 | stream->print("%s" , _prefix); |
1168 | // Don't interpret as format strings since it could contain % |
1169 | stream->print_raw(c->string()); |
1170 | stream->bol(); // advance to next line only if string didn't contain a cr() at the end. |
1171 | c = c->next_comment(); |
1172 | } |
1173 | } |
1174 | } |
1175 | |
1176 | // Also sets isNull() |
1177 | void CodeStrings::free() { |
1178 | CodeString* n = _strings; |
1179 | while (n) { |
1180 | // unlink the node from the list saving a pointer to the next |
1181 | CodeString* p = n->next(); |
1182 | n->set_next(NULL); |
1183 | delete n; |
1184 | n = p; |
1185 | } |
1186 | set_null_and_invalidate(); |
1187 | } |
1188 | |
1189 | const char* CodeStrings::add_string(const char * string) { |
1190 | check_valid(); |
1191 | CodeString* s = new CodeString(string); |
1192 | s->set_next(_strings); |
1193 | _strings = s; |
1194 | assert(s->string() != NULL, "should have a string" ); |
1195 | return s->string(); |
1196 | } |
1197 | |
1198 | void CodeBuffer::decode() { |
1199 | ttyLocker ttyl; |
1200 | Disassembler::decode(decode_begin(), insts_end(), tty); |
1201 | _decode_begin = insts_end(); |
1202 | } |
1203 | |
1204 | void CodeSection::print(const char* name) { |
1205 | csize_t locs_size = locs_end() - locs_start(); |
1206 | tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s" , |
1207 | name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(), |
1208 | is_frozen()? " [frozen]" : "" ); |
1209 | tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d" , |
1210 | name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off()); |
1211 | if (PrintRelocations) { |
1212 | RelocIterator iter(this); |
1213 | iter.print(); |
1214 | } |
1215 | } |
1216 | |
1217 | void CodeBuffer::print() { |
1218 | if (this == NULL) { |
1219 | tty->print_cr("NULL CodeBuffer pointer" ); |
1220 | return; |
1221 | } |
1222 | |
1223 | tty->print_cr("CodeBuffer:" ); |
1224 | for (int n = 0; n < (int)SECT_LIMIT; n++) { |
1225 | // print each section |
1226 | CodeSection* cs = code_section(n); |
1227 | cs->print(code_section_name(n)); |
1228 | } |
1229 | } |
1230 | |
1231 | // Directly disassemble code buffer. |
1232 | void CodeBuffer::decode(address start, address end) { |
1233 | ttyLocker ttyl; |
1234 | Disassembler::decode(this, start, end, tty); |
1235 | } |
1236 | |
1237 | #endif // PRODUCT |
1238 | |