| 1 | /* |
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "c1/c1_Compilation.hpp" |
| 27 | #include "c1/c1_Defs.hpp" |
| 28 | #include "c1/c1_FrameMap.hpp" |
| 29 | #include "c1/c1_Instruction.hpp" |
| 30 | #include "c1/c1_LIRAssembler.hpp" |
| 31 | #include "c1/c1_LIRGenerator.hpp" |
| 32 | #include "c1/c1_ValueStack.hpp" |
| 33 | #include "ci/ciArrayKlass.hpp" |
| 34 | #include "ci/ciInstance.hpp" |
| 35 | #include "ci/ciObjArray.hpp" |
| 36 | #include "ci/ciUtilities.hpp" |
| 37 | #include "gc/shared/barrierSet.hpp" |
| 38 | #include "gc/shared/c1/barrierSetC1.hpp" |
| 39 | #include "runtime/arguments.hpp" |
| 40 | #include "runtime/sharedRuntime.hpp" |
| 41 | #include "runtime/stubRoutines.hpp" |
| 42 | #include "runtime/vm_version.hpp" |
| 43 | #include "utilities/bitMap.inline.hpp" |
| 44 | #include "utilities/macros.hpp" |
| 45 | |
| 46 | #ifdef ASSERT |
| 47 | #define __ gen()->lir(__FILE__, __LINE__)-> |
| 48 | #else |
| 49 | #define __ gen()->lir()-> |
| 50 | #endif |
| 51 | |
| 52 | #ifndef PATCHED_ADDR |
| 53 | #define PATCHED_ADDR (max_jint) |
| 54 | #endif |
| 55 | |
| 56 | void PhiResolverState::reset() { |
| 57 | _virtual_operands.clear(); |
| 58 | _other_operands.clear(); |
| 59 | _vreg_table.clear(); |
| 60 | } |
| 61 | |
| 62 | |
| 63 | //-------------------------------------------------------------- |
| 64 | // PhiResolver |
| 65 | |
| 66 | // Resolves cycles: |
| 67 | // |
| 68 | // r1 := r2 becomes temp := r1 |
| 69 | // r2 := r1 r1 := r2 |
| 70 | // r2 := temp |
| 71 | // and orders moves: |
| 72 | // |
| 73 | // r2 := r3 becomes r1 := r2 |
| 74 | // r1 := r2 r2 := r3 |
| 75 | |
| 76 | PhiResolver::PhiResolver(LIRGenerator* gen) |
| 77 | : _gen(gen) |
| 78 | , _state(gen->resolver_state()) |
| 79 | , _temp(LIR_OprFact::illegalOpr) |
| 80 | { |
| 81 | // reinitialize the shared state arrays |
| 82 | _state.reset(); |
| 83 | } |
| 84 | |
| 85 | |
| 86 | void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { |
| 87 | assert(src->is_valid(), "" ); |
| 88 | assert(dest->is_valid(), "" ); |
| 89 | __ move(src, dest); |
| 90 | } |
| 91 | |
| 92 | |
| 93 | void PhiResolver::move_temp_to(LIR_Opr dest) { |
| 94 | assert(_temp->is_valid(), "" ); |
| 95 | emit_move(_temp, dest); |
| 96 | NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); |
| 97 | } |
| 98 | |
| 99 | |
| 100 | void PhiResolver::move_to_temp(LIR_Opr src) { |
| 101 | assert(_temp->is_illegal(), "" ); |
| 102 | _temp = _gen->new_register(src->type()); |
| 103 | emit_move(src, _temp); |
| 104 | } |
| 105 | |
| 106 | |
| 107 | // Traverse assignment graph in depth first order and generate moves in post order |
| 108 | // ie. two assignments: b := c, a := b start with node c: |
| 109 | // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) |
| 110 | // Generates moves in this order: move b to a and move c to b |
| 111 | // ie. cycle a := b, b := a start with node a |
| 112 | // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) |
| 113 | // Generates moves in this order: move b to temp, move a to b, move temp to a |
| 114 | void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { |
| 115 | if (!dest->visited()) { |
| 116 | dest->set_visited(); |
| 117 | for (int i = dest->no_of_destinations()-1; i >= 0; i --) { |
| 118 | move(dest, dest->destination_at(i)); |
| 119 | } |
| 120 | } else if (!dest->start_node()) { |
| 121 | // cylce in graph detected |
| 122 | assert(_loop == NULL, "only one loop valid!" ); |
| 123 | _loop = dest; |
| 124 | move_to_temp(src->operand()); |
| 125 | return; |
| 126 | } // else dest is a start node |
| 127 | |
| 128 | if (!dest->assigned()) { |
| 129 | if (_loop == dest) { |
| 130 | move_temp_to(dest->operand()); |
| 131 | dest->set_assigned(); |
| 132 | } else if (src != NULL) { |
| 133 | emit_move(src->operand(), dest->operand()); |
| 134 | dest->set_assigned(); |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | |
| 140 | PhiResolver::~PhiResolver() { |
| 141 | int i; |
| 142 | // resolve any cycles in moves from and to virtual registers |
| 143 | for (i = virtual_operands().length() - 1; i >= 0; i --) { |
| 144 | ResolveNode* node = virtual_operands().at(i); |
| 145 | if (!node->visited()) { |
| 146 | _loop = NULL; |
| 147 | move(NULL, node); |
| 148 | node->set_start_node(); |
| 149 | assert(_temp->is_illegal(), "move_temp_to() call missing" ); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | // generate move for move from non virtual register to abitrary destination |
| 154 | for (i = other_operands().length() - 1; i >= 0; i --) { |
| 155 | ResolveNode* node = other_operands().at(i); |
| 156 | for (int j = node->no_of_destinations() - 1; j >= 0; j --) { |
| 157 | emit_move(node->operand(), node->destination_at(j)->operand()); |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | |
| 163 | ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { |
| 164 | ResolveNode* node; |
| 165 | if (opr->is_virtual()) { |
| 166 | int vreg_num = opr->vreg_number(); |
| 167 | node = vreg_table().at_grow(vreg_num, NULL); |
| 168 | assert(node == NULL || node->operand() == opr, "" ); |
| 169 | if (node == NULL) { |
| 170 | node = new ResolveNode(opr); |
| 171 | vreg_table().at_put(vreg_num, node); |
| 172 | } |
| 173 | // Make sure that all virtual operands show up in the list when |
| 174 | // they are used as the source of a move. |
| 175 | if (source && !virtual_operands().contains(node)) { |
| 176 | virtual_operands().append(node); |
| 177 | } |
| 178 | } else { |
| 179 | assert(source, "" ); |
| 180 | node = new ResolveNode(opr); |
| 181 | other_operands().append(node); |
| 182 | } |
| 183 | return node; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { |
| 188 | assert(dest->is_virtual(), "" ); |
| 189 | // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); |
| 190 | assert(src->is_valid(), "" ); |
| 191 | assert(dest->is_valid(), "" ); |
| 192 | ResolveNode* source = source_node(src); |
| 193 | source->append(destination_node(dest)); |
| 194 | } |
| 195 | |
| 196 | |
| 197 | //-------------------------------------------------------------- |
| 198 | // LIRItem |
| 199 | |
| 200 | void LIRItem::set_result(LIR_Opr opr) { |
| 201 | assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change" ); |
| 202 | value()->set_operand(opr); |
| 203 | |
| 204 | if (opr->is_virtual()) { |
| 205 | _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); |
| 206 | } |
| 207 | |
| 208 | _result = opr; |
| 209 | } |
| 210 | |
| 211 | void LIRItem::load_item() { |
| 212 | if (result()->is_illegal()) { |
| 213 | // update the items result |
| 214 | _result = value()->operand(); |
| 215 | } |
| 216 | if (!result()->is_register()) { |
| 217 | LIR_Opr reg = _gen->new_register(value()->type()); |
| 218 | __ move(result(), reg); |
| 219 | if (result()->is_constant()) { |
| 220 | _result = reg; |
| 221 | } else { |
| 222 | set_result(reg); |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | |
| 228 | void LIRItem::load_for_store(BasicType type) { |
| 229 | if (_gen->can_store_as_constant(value(), type)) { |
| 230 | _result = value()->operand(); |
| 231 | if (!_result->is_constant()) { |
| 232 | _result = LIR_OprFact::value_type(value()->type()); |
| 233 | } |
| 234 | } else if (type == T_BYTE || type == T_BOOLEAN) { |
| 235 | load_byte_item(); |
| 236 | } else { |
| 237 | load_item(); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | void LIRItem::load_item_force(LIR_Opr reg) { |
| 242 | LIR_Opr r = result(); |
| 243 | if (r != reg) { |
| 244 | #if !defined(ARM) && !defined(E500V2) |
| 245 | if (r->type() != reg->type()) { |
| 246 | // moves between different types need an intervening spill slot |
| 247 | r = _gen->force_to_spill(r, reg->type()); |
| 248 | } |
| 249 | #endif |
| 250 | __ move(r, reg); |
| 251 | _result = reg; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | ciObject* LIRItem::get_jobject_constant() const { |
| 256 | ObjectType* oc = type()->as_ObjectType(); |
| 257 | if (oc) { |
| 258 | return oc->constant_value(); |
| 259 | } |
| 260 | return NULL; |
| 261 | } |
| 262 | |
| 263 | |
| 264 | jint LIRItem::get_jint_constant() const { |
| 265 | assert(is_constant() && value() != NULL, "" ); |
| 266 | assert(type()->as_IntConstant() != NULL, "type check" ); |
| 267 | return type()->as_IntConstant()->value(); |
| 268 | } |
| 269 | |
| 270 | |
| 271 | jint LIRItem::get_address_constant() const { |
| 272 | assert(is_constant() && value() != NULL, "" ); |
| 273 | assert(type()->as_AddressConstant() != NULL, "type check" ); |
| 274 | return type()->as_AddressConstant()->value(); |
| 275 | } |
| 276 | |
| 277 | |
| 278 | jfloat LIRItem::get_jfloat_constant() const { |
| 279 | assert(is_constant() && value() != NULL, "" ); |
| 280 | assert(type()->as_FloatConstant() != NULL, "type check" ); |
| 281 | return type()->as_FloatConstant()->value(); |
| 282 | } |
| 283 | |
| 284 | |
| 285 | jdouble LIRItem::get_jdouble_constant() const { |
| 286 | assert(is_constant() && value() != NULL, "" ); |
| 287 | assert(type()->as_DoubleConstant() != NULL, "type check" ); |
| 288 | return type()->as_DoubleConstant()->value(); |
| 289 | } |
| 290 | |
| 291 | |
| 292 | jlong LIRItem::get_jlong_constant() const { |
| 293 | assert(is_constant() && value() != NULL, "" ); |
| 294 | assert(type()->as_LongConstant() != NULL, "type check" ); |
| 295 | return type()->as_LongConstant()->value(); |
| 296 | } |
| 297 | |
| 298 | |
| 299 | |
| 300 | //-------------------------------------------------------------- |
| 301 | |
| 302 | |
| 303 | void LIRGenerator::block_do_prolog(BlockBegin* block) { |
| 304 | #ifndef PRODUCT |
| 305 | if (PrintIRWithLIR) { |
| 306 | block->print(); |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | // set up the list of LIR instructions |
| 311 | assert(block->lir() == NULL, "LIR list already computed for this block" ); |
| 312 | _lir = new LIR_List(compilation(), block); |
| 313 | block->set_lir(_lir); |
| 314 | |
| 315 | __ branch_destination(block->label()); |
| 316 | |
| 317 | if (LIRTraceExecution && |
| 318 | Compilation::current()->hir()->start()->block_id() != block->block_id() && |
| 319 | !block->is_set(BlockBegin::exception_entry_flag)) { |
| 320 | assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst" ); |
| 321 | trace_block_entry(block); |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | |
| 326 | void LIRGenerator::block_do_epilog(BlockBegin* block) { |
| 327 | #ifndef PRODUCT |
| 328 | if (PrintIRWithLIR) { |
| 329 | tty->cr(); |
| 330 | } |
| 331 | #endif |
| 332 | |
| 333 | // LIR_Opr for unpinned constants shouldn't be referenced by other |
| 334 | // blocks so clear them out after processing the block. |
| 335 | for (int i = 0; i < _unpinned_constants.length(); i++) { |
| 336 | _unpinned_constants.at(i)->clear_operand(); |
| 337 | } |
| 338 | _unpinned_constants.trunc_to(0); |
| 339 | |
| 340 | // clear our any registers for other local constants |
| 341 | _constants.trunc_to(0); |
| 342 | _reg_for_constants.trunc_to(0); |
| 343 | } |
| 344 | |
| 345 | |
| 346 | void LIRGenerator::block_do(BlockBegin* block) { |
| 347 | CHECK_BAILOUT(); |
| 348 | |
| 349 | block_do_prolog(block); |
| 350 | set_block(block); |
| 351 | |
| 352 | for (Instruction* instr = block; instr != NULL; instr = instr->next()) { |
| 353 | if (instr->is_pinned()) do_root(instr); |
| 354 | } |
| 355 | |
| 356 | set_block(NULL); |
| 357 | block_do_epilog(block); |
| 358 | } |
| 359 | |
| 360 | |
| 361 | //-------------------------LIRGenerator----------------------------- |
| 362 | |
| 363 | // This is where the tree-walk starts; instr must be root; |
| 364 | void LIRGenerator::do_root(Value instr) { |
| 365 | CHECK_BAILOUT(); |
| 366 | |
| 367 | InstructionMark im(compilation(), instr); |
| 368 | |
| 369 | assert(instr->is_pinned(), "use only with roots" ); |
| 370 | assert(instr->subst() == instr, "shouldn't have missed substitution" ); |
| 371 | |
| 372 | instr->visit(this); |
| 373 | |
| 374 | assert(!instr->has_uses() || instr->operand()->is_valid() || |
| 375 | instr->as_Constant() != NULL || bailed_out(), "invalid item set" ); |
| 376 | } |
| 377 | |
| 378 | |
| 379 | // This is called for each node in tree; the walk stops if a root is reached |
| 380 | void LIRGenerator::walk(Value instr) { |
| 381 | InstructionMark im(compilation(), instr); |
| 382 | //stop walk when encounter a root |
| 383 | if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { |
| 384 | assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited" ); |
| 385 | } else { |
| 386 | assert(instr->subst() == instr, "shouldn't have missed substitution" ); |
| 387 | instr->visit(this); |
| 388 | // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | |
| 393 | CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { |
| 394 | assert(state != NULL, "state must be defined" ); |
| 395 | |
| 396 | #ifndef PRODUCT |
| 397 | state->verify(); |
| 398 | #endif |
| 399 | |
| 400 | ValueStack* s = state; |
| 401 | for_each_state(s) { |
| 402 | if (s->kind() == ValueStack::EmptyExceptionState) { |
| 403 | assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty" ); |
| 404 | continue; |
| 405 | } |
| 406 | |
| 407 | int index; |
| 408 | Value value; |
| 409 | for_each_stack_value(s, index, value) { |
| 410 | assert(value->subst() == value, "missed substitution" ); |
| 411 | if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { |
| 412 | walk(value); |
| 413 | assert(value->operand()->is_valid(), "must be evaluated now" ); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | int bci = s->bci(); |
| 418 | IRScope* scope = s->scope(); |
| 419 | ciMethod* method = scope->method(); |
| 420 | |
| 421 | MethodLivenessResult liveness = method->liveness_at_bci(bci); |
| 422 | if (bci == SynchronizationEntryBCI) { |
| 423 | if (x->as_ExceptionObject() || x->as_Throw()) { |
| 424 | // all locals are dead on exit from the synthetic unlocker |
| 425 | liveness.clear(); |
| 426 | } else { |
| 427 | assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke" ); |
| 428 | } |
| 429 | } |
| 430 | if (!liveness.is_valid()) { |
| 431 | // Degenerate or breakpointed method. |
| 432 | bailout("Degenerate or breakpointed method" ); |
| 433 | } else { |
| 434 | assert((int)liveness.size() == s->locals_size(), "error in use of liveness" ); |
| 435 | for_each_local_value(s, index, value) { |
| 436 | assert(value->subst() == value, "missed substition" ); |
| 437 | if (liveness.at(index) && !value->type()->is_illegal()) { |
| 438 | if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { |
| 439 | walk(value); |
| 440 | assert(value->operand()->is_valid(), "must be evaluated now" ); |
| 441 | } |
| 442 | } else { |
| 443 | // NULL out this local so that linear scan can assume that all non-NULL values are live. |
| 444 | s->invalidate_local(index); |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); |
| 451 | } |
| 452 | |
| 453 | |
| 454 | CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { |
| 455 | return state_for(x, x->exception_state()); |
| 456 | } |
| 457 | |
| 458 | |
| 459 | void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { |
| 460 | /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation |
| 461 | * is active and the class hasn't yet been resolved we need to emit a patch that resolves |
| 462 | * the class. */ |
| 463 | if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { |
| 464 | assert(info != NULL, "info must be set if class is not loaded" ); |
| 465 | __ klass2reg_patch(NULL, r, info); |
| 466 | } else { |
| 467 | // no patching needed |
| 468 | __ metadata2reg(obj->constant_encoding(), r); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | |
| 473 | void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, |
| 474 | CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { |
| 475 | CodeStub* stub = new RangeCheckStub(range_check_info, index, array); |
| 476 | if (index->is_constant()) { |
| 477 | cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), |
| 478 | index->as_jint(), null_check_info); |
| 479 | __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch |
| 480 | } else { |
| 481 | cmp_reg_mem(lir_cond_aboveEqual, index, array, |
| 482 | arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); |
| 483 | __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | |
| 488 | void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { |
| 489 | CodeStub* stub = new RangeCheckStub(info, index); |
| 490 | if (index->is_constant()) { |
| 491 | cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); |
| 492 | __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch |
| 493 | } else { |
| 494 | cmp_reg_mem(lir_cond_aboveEqual, index, buffer, |
| 495 | java_nio_Buffer::limit_offset(), T_INT, info); |
| 496 | __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch |
| 497 | } |
| 498 | __ move(index, result); |
| 499 | } |
| 500 | |
| 501 | |
| 502 | |
| 503 | void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { |
| 504 | LIR_Opr result_op = result; |
| 505 | LIR_Opr left_op = left; |
| 506 | LIR_Opr right_op = right; |
| 507 | |
| 508 | if (TwoOperandLIRForm && left_op != result_op) { |
| 509 | assert(right_op != result_op, "malformed" ); |
| 510 | __ move(left_op, result_op); |
| 511 | left_op = result_op; |
| 512 | } |
| 513 | |
| 514 | switch(code) { |
| 515 | case Bytecodes::_dadd: |
| 516 | case Bytecodes::_fadd: |
| 517 | case Bytecodes::_ladd: |
| 518 | case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; |
| 519 | case Bytecodes::_fmul: |
| 520 | case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; |
| 521 | |
| 522 | case Bytecodes::_dmul: |
| 523 | { |
| 524 | if (is_strictfp) { |
| 525 | __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; |
| 526 | } else { |
| 527 | __ mul(left_op, right_op, result_op); break; |
| 528 | } |
| 529 | } |
| 530 | break; |
| 531 | |
| 532 | case Bytecodes::_imul: |
| 533 | { |
| 534 | bool did_strength_reduce = false; |
| 535 | |
| 536 | if (right->is_constant()) { |
| 537 | jint c = right->as_jint(); |
| 538 | if (c > 0 && is_power_of_2(c)) { |
| 539 | // do not need tmp here |
| 540 | __ shift_left(left_op, exact_log2(c), result_op); |
| 541 | did_strength_reduce = true; |
| 542 | } else { |
| 543 | did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); |
| 544 | } |
| 545 | } |
| 546 | // we couldn't strength reduce so just emit the multiply |
| 547 | if (!did_strength_reduce) { |
| 548 | __ mul(left_op, right_op, result_op); |
| 549 | } |
| 550 | } |
| 551 | break; |
| 552 | |
| 553 | case Bytecodes::_dsub: |
| 554 | case Bytecodes::_fsub: |
| 555 | case Bytecodes::_lsub: |
| 556 | case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; |
| 557 | |
| 558 | case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; |
| 559 | // ldiv and lrem are implemented with a direct runtime call |
| 560 | |
| 561 | case Bytecodes::_ddiv: |
| 562 | { |
| 563 | if (is_strictfp) { |
| 564 | __ div_strictfp (left_op, right_op, result_op, tmp_op); break; |
| 565 | } else { |
| 566 | __ div (left_op, right_op, result_op); break; |
| 567 | } |
| 568 | } |
| 569 | break; |
| 570 | |
| 571 | case Bytecodes::_drem: |
| 572 | case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; |
| 573 | |
| 574 | default: ShouldNotReachHere(); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | |
| 579 | void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { |
| 580 | arithmetic_op(code, result, left, right, false, tmp); |
| 581 | } |
| 582 | |
| 583 | |
| 584 | void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { |
| 585 | arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); |
| 586 | } |
| 587 | |
| 588 | |
| 589 | void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { |
| 590 | arithmetic_op(code, result, left, right, is_strictfp, tmp); |
| 591 | } |
| 592 | |
| 593 | |
| 594 | void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { |
| 595 | |
| 596 | if (TwoOperandLIRForm && value != result_op |
| 597 | // Only 32bit right shifts require two operand form on S390. |
| 598 | S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { |
| 599 | assert(count != result_op, "malformed" ); |
| 600 | __ move(value, result_op); |
| 601 | value = result_op; |
| 602 | } |
| 603 | |
| 604 | assert(count->is_constant() || count->is_register(), "must be" ); |
| 605 | switch(code) { |
| 606 | case Bytecodes::_ishl: |
| 607 | case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; |
| 608 | case Bytecodes::_ishr: |
| 609 | case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; |
| 610 | case Bytecodes::_iushr: |
| 611 | case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; |
| 612 | default: ShouldNotReachHere(); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | |
| 617 | void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { |
| 618 | if (TwoOperandLIRForm && left_op != result_op) { |
| 619 | assert(right_op != result_op, "malformed" ); |
| 620 | __ move(left_op, result_op); |
| 621 | left_op = result_op; |
| 622 | } |
| 623 | |
| 624 | switch(code) { |
| 625 | case Bytecodes::_iand: |
| 626 | case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; |
| 627 | |
| 628 | case Bytecodes::_ior: |
| 629 | case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; |
| 630 | |
| 631 | case Bytecodes::_ixor: |
| 632 | case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; |
| 633 | |
| 634 | default: ShouldNotReachHere(); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | |
| 639 | void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { |
| 640 | if (!GenerateSynchronizationCode) return; |
| 641 | // for slow path, use debug info for state after successful locking |
| 642 | CodeStub* slow_path = new MonitorEnterStub(object, lock, info); |
| 643 | __ load_stack_address_monitor(monitor_no, lock); |
| 644 | // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter |
| 645 | __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { |
| 650 | if (!GenerateSynchronizationCode) return; |
| 651 | // setup registers |
| 652 | LIR_Opr hdr = lock; |
| 653 | lock = new_hdr; |
| 654 | CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); |
| 655 | __ load_stack_address_monitor(monitor_no, lock); |
| 656 | __ unlock_object(hdr, object, lock, scratch, slow_path); |
| 657 | } |
| 658 | |
| 659 | #ifndef PRODUCT |
| 660 | void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { |
| 661 | if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { |
| 662 | tty->print_cr(" ###class not loaded at new bci %d" , new_instance->printable_bci()); |
| 663 | } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { |
| 664 | tty->print_cr(" ###class not resolved at new bci %d" , new_instance->printable_bci()); |
| 665 | } |
| 666 | } |
| 667 | #endif |
| 668 | |
| 669 | void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { |
| 670 | klass2reg_with_patching(klass_reg, klass, info, is_unresolved); |
| 671 | // If klass is not loaded we do not know if the klass has finalizers: |
| 672 | if (UseFastNewInstance && klass->is_loaded() |
| 673 | && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { |
| 674 | |
| 675 | Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; |
| 676 | |
| 677 | CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); |
| 678 | |
| 679 | assert(klass->is_loaded(), "must be loaded" ); |
| 680 | // allocate space for instance |
| 681 | assert(klass->size_helper() >= 0, "illegal instance size" ); |
| 682 | const int instance_size = align_object_size(klass->size_helper()); |
| 683 | __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, |
| 684 | oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); |
| 685 | } else { |
| 686 | CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); |
| 687 | __ branch(lir_cond_always, T_ILLEGAL, slow_path); |
| 688 | __ branch_destination(slow_path->continuation()); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | |
| 693 | static bool is_constant_zero(Instruction* inst) { |
| 694 | IntConstant* c = inst->type()->as_IntConstant(); |
| 695 | if (c) { |
| 696 | return (c->value() == 0); |
| 697 | } |
| 698 | return false; |
| 699 | } |
| 700 | |
| 701 | |
| 702 | static bool positive_constant(Instruction* inst) { |
| 703 | IntConstant* c = inst->type()->as_IntConstant(); |
| 704 | if (c) { |
| 705 | return (c->value() >= 0); |
| 706 | } |
| 707 | return false; |
| 708 | } |
| 709 | |
| 710 | |
| 711 | static ciArrayKlass* as_array_klass(ciType* type) { |
| 712 | if (type != NULL && type->is_array_klass() && type->is_loaded()) { |
| 713 | return (ciArrayKlass*)type; |
| 714 | } else { |
| 715 | return NULL; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | static ciType* phi_declared_type(Phi* phi) { |
| 720 | ciType* t = phi->operand_at(0)->declared_type(); |
| 721 | if (t == NULL) { |
| 722 | return NULL; |
| 723 | } |
| 724 | for(int i = 1; i < phi->operand_count(); i++) { |
| 725 | if (t != phi->operand_at(i)->declared_type()) { |
| 726 | return NULL; |
| 727 | } |
| 728 | } |
| 729 | return t; |
| 730 | } |
| 731 | |
| 732 | void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { |
| 733 | Instruction* src = x->argument_at(0); |
| 734 | Instruction* src_pos = x->argument_at(1); |
| 735 | Instruction* dst = x->argument_at(2); |
| 736 | Instruction* dst_pos = x->argument_at(3); |
| 737 | Instruction* length = x->argument_at(4); |
| 738 | |
| 739 | // first try to identify the likely type of the arrays involved |
| 740 | ciArrayKlass* expected_type = NULL; |
| 741 | bool is_exact = false, src_objarray = false, dst_objarray = false; |
| 742 | { |
| 743 | ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); |
| 744 | ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); |
| 745 | Phi* phi; |
| 746 | if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { |
| 747 | src_declared_type = as_array_klass(phi_declared_type(phi)); |
| 748 | } |
| 749 | ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); |
| 750 | ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); |
| 751 | if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { |
| 752 | dst_declared_type = as_array_klass(phi_declared_type(phi)); |
| 753 | } |
| 754 | |
| 755 | if (src_exact_type != NULL && src_exact_type == dst_exact_type) { |
| 756 | // the types exactly match so the type is fully known |
| 757 | is_exact = true; |
| 758 | expected_type = src_exact_type; |
| 759 | } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { |
| 760 | ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; |
| 761 | ciArrayKlass* src_type = NULL; |
| 762 | if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { |
| 763 | src_type = (ciArrayKlass*) src_exact_type; |
| 764 | } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { |
| 765 | src_type = (ciArrayKlass*) src_declared_type; |
| 766 | } |
| 767 | if (src_type != NULL) { |
| 768 | if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { |
| 769 | is_exact = true; |
| 770 | expected_type = dst_type; |
| 771 | } |
| 772 | } |
| 773 | } |
| 774 | // at least pass along a good guess |
| 775 | if (expected_type == NULL) expected_type = dst_exact_type; |
| 776 | if (expected_type == NULL) expected_type = src_declared_type; |
| 777 | if (expected_type == NULL) expected_type = dst_declared_type; |
| 778 | |
| 779 | src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); |
| 780 | dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); |
| 781 | } |
| 782 | |
| 783 | // if a probable array type has been identified, figure out if any |
| 784 | // of the required checks for a fast case can be elided. |
| 785 | int flags = LIR_OpArrayCopy::all_flags; |
| 786 | |
| 787 | if (!src_objarray) |
| 788 | flags &= ~LIR_OpArrayCopy::src_objarray; |
| 789 | if (!dst_objarray) |
| 790 | flags &= ~LIR_OpArrayCopy::dst_objarray; |
| 791 | |
| 792 | if (!x->arg_needs_null_check(0)) |
| 793 | flags &= ~LIR_OpArrayCopy::src_null_check; |
| 794 | if (!x->arg_needs_null_check(2)) |
| 795 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
| 796 | |
| 797 | |
| 798 | if (expected_type != NULL) { |
| 799 | Value length_limit = NULL; |
| 800 | |
| 801 | IfOp* ifop = length->as_IfOp(); |
| 802 | if (ifop != NULL) { |
| 803 | // look for expressions like min(v, a.length) which ends up as |
| 804 | // x > y ? y : x or x >= y ? y : x |
| 805 | if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && |
| 806 | ifop->x() == ifop->fval() && |
| 807 | ifop->y() == ifop->tval()) { |
| 808 | length_limit = ifop->y(); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | // try to skip null checks and range checks |
| 813 | NewArray* src_array = src->as_NewArray(); |
| 814 | if (src_array != NULL) { |
| 815 | flags &= ~LIR_OpArrayCopy::src_null_check; |
| 816 | if (length_limit != NULL && |
| 817 | src_array->length() == length_limit && |
| 818 | is_constant_zero(src_pos)) { |
| 819 | flags &= ~LIR_OpArrayCopy::src_range_check; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | NewArray* dst_array = dst->as_NewArray(); |
| 824 | if (dst_array != NULL) { |
| 825 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
| 826 | if (length_limit != NULL && |
| 827 | dst_array->length() == length_limit && |
| 828 | is_constant_zero(dst_pos)) { |
| 829 | flags &= ~LIR_OpArrayCopy::dst_range_check; |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | // check from incoming constant values |
| 834 | if (positive_constant(src_pos)) |
| 835 | flags &= ~LIR_OpArrayCopy::src_pos_positive_check; |
| 836 | if (positive_constant(dst_pos)) |
| 837 | flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; |
| 838 | if (positive_constant(length)) |
| 839 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
| 840 | |
| 841 | // see if the range check can be elided, which might also imply |
| 842 | // that src or dst is non-null. |
| 843 | ArrayLength* al = length->as_ArrayLength(); |
| 844 | if (al != NULL) { |
| 845 | if (al->array() == src) { |
| 846 | // it's the length of the source array |
| 847 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
| 848 | flags &= ~LIR_OpArrayCopy::src_null_check; |
| 849 | if (is_constant_zero(src_pos)) |
| 850 | flags &= ~LIR_OpArrayCopy::src_range_check; |
| 851 | } |
| 852 | if (al->array() == dst) { |
| 853 | // it's the length of the destination array |
| 854 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
| 855 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
| 856 | if (is_constant_zero(dst_pos)) |
| 857 | flags &= ~LIR_OpArrayCopy::dst_range_check; |
| 858 | } |
| 859 | } |
| 860 | if (is_exact) { |
| 861 | flags &= ~LIR_OpArrayCopy::type_check; |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | IntConstant* src_int = src_pos->type()->as_IntConstant(); |
| 866 | IntConstant* dst_int = dst_pos->type()->as_IntConstant(); |
| 867 | if (src_int && dst_int) { |
| 868 | int s_offs = src_int->value(); |
| 869 | int d_offs = dst_int->value(); |
| 870 | if (src_int->value() >= dst_int->value()) { |
| 871 | flags &= ~LIR_OpArrayCopy::overlapping; |
| 872 | } |
| 873 | if (expected_type != NULL) { |
| 874 | BasicType t = expected_type->element_type()->basic_type(); |
| 875 | int element_size = type2aelembytes(t); |
| 876 | if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && |
| 877 | ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { |
| 878 | flags &= ~LIR_OpArrayCopy::unaligned; |
| 879 | } |
| 880 | } |
| 881 | } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { |
| 882 | // src and dest positions are the same, or dst is zero so assume |
| 883 | // nonoverlapping copy. |
| 884 | flags &= ~LIR_OpArrayCopy::overlapping; |
| 885 | } |
| 886 | |
| 887 | if (src == dst) { |
| 888 | // moving within a single array so no type checks are needed |
| 889 | if (flags & LIR_OpArrayCopy::type_check) { |
| 890 | flags &= ~LIR_OpArrayCopy::type_check; |
| 891 | } |
| 892 | } |
| 893 | *flagsp = flags; |
| 894 | *expected_typep = (ciArrayKlass*)expected_type; |
| 895 | } |
| 896 | |
| 897 | |
| 898 | LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { |
| 899 | assert(opr->is_register(), "why spill if item is not register?" ); |
| 900 | |
| 901 | if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { |
| 902 | LIR_Opr result = new_register(T_FLOAT); |
| 903 | set_vreg_flag(result, must_start_in_memory); |
| 904 | assert(opr->is_register(), "only a register can be spilled" ); |
| 905 | assert(opr->value_type()->is_float(), "rounding only for floats available" ); |
| 906 | __ roundfp(opr, LIR_OprFact::illegalOpr, result); |
| 907 | return result; |
| 908 | } |
| 909 | return opr; |
| 910 | } |
| 911 | |
| 912 | |
| 913 | LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { |
| 914 | assert(type2size[t] == type2size[value->type()], |
| 915 | "size mismatch: t=%s, value->type()=%s" , type2name(t), type2name(value->type())); |
| 916 | if (!value->is_register()) { |
| 917 | // force into a register |
| 918 | LIR_Opr r = new_register(value->type()); |
| 919 | __ move(value, r); |
| 920 | value = r; |
| 921 | } |
| 922 | |
| 923 | // create a spill location |
| 924 | LIR_Opr tmp = new_register(t); |
| 925 | set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); |
| 926 | |
| 927 | // move from register to spill |
| 928 | __ move(value, tmp); |
| 929 | return tmp; |
| 930 | } |
| 931 | |
| 932 | void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { |
| 933 | if (if_instr->should_profile()) { |
| 934 | ciMethod* method = if_instr->profiled_method(); |
| 935 | assert(method != NULL, "method should be set if branch is profiled" ); |
| 936 | ciMethodData* md = method->method_data_or_null(); |
| 937 | assert(md != NULL, "Sanity" ); |
| 938 | ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); |
| 939 | assert(data != NULL, "must have profiling data" ); |
| 940 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
| 941 | int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); |
| 942 | int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); |
| 943 | if (if_instr->is_swapped()) { |
| 944 | int t = taken_count_offset; |
| 945 | taken_count_offset = not_taken_count_offset; |
| 946 | not_taken_count_offset = t; |
| 947 | } |
| 948 | |
| 949 | LIR_Opr md_reg = new_register(T_METADATA); |
| 950 | __ metadata2reg(md->constant_encoding(), md_reg); |
| 951 | |
| 952 | LIR_Opr data_offset_reg = new_pointer_register(); |
| 953 | __ cmove(lir_cond(cond), |
| 954 | LIR_OprFact::intptrConst(taken_count_offset), |
| 955 | LIR_OprFact::intptrConst(not_taken_count_offset), |
| 956 | data_offset_reg, as_BasicType(if_instr->x()->type())); |
| 957 | |
| 958 | // MDO cells are intptr_t, so the data_reg width is arch-dependent. |
| 959 | LIR_Opr data_reg = new_pointer_register(); |
| 960 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
| 961 | __ move(data_addr, data_reg); |
| 962 | // Use leal instead of add to avoid destroying condition codes on x86 |
| 963 | LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); |
| 964 | __ leal(LIR_OprFact::address(fake_incr_value), data_reg); |
| 965 | __ move(data_reg, data_addr); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | // Phi technique: |
| 970 | // This is about passing live values from one basic block to the other. |
| 971 | // In code generated with Java it is rather rare that more than one |
| 972 | // value is on the stack from one basic block to the other. |
| 973 | // We optimize our technique for efficient passing of one value |
| 974 | // (of type long, int, double..) but it can be extended. |
| 975 | // When entering or leaving a basic block, all registers and all spill |
| 976 | // slots are release and empty. We use the released registers |
| 977 | // and spill slots to pass the live values from one block |
| 978 | // to the other. The topmost value, i.e., the value on TOS of expression |
| 979 | // stack is passed in registers. All other values are stored in spilling |
| 980 | // area. Every Phi has an index which designates its spill slot |
| 981 | // At exit of a basic block, we fill the register(s) and spill slots. |
| 982 | // At entry of a basic block, the block_prolog sets up the content of phi nodes |
| 983 | // and locks necessary registers and spilling slots. |
| 984 | |
| 985 | |
| 986 | // move current value to referenced phi function |
| 987 | void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { |
| 988 | Phi* phi = sux_val->as_Phi(); |
| 989 | // cur_val can be null without phi being null in conjunction with inlining |
| 990 | if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { |
| 991 | Phi* cur_phi = cur_val->as_Phi(); |
| 992 | if (cur_phi != NULL && cur_phi->is_illegal()) { |
| 993 | // Phi and local would need to get invalidated |
| 994 | // (which is unexpected for Linear Scan). |
| 995 | // But this case is very rare so we simply bail out. |
| 996 | bailout("propagation of illegal phi" ); |
| 997 | return; |
| 998 | } |
| 999 | LIR_Opr operand = cur_val->operand(); |
| 1000 | if (operand->is_illegal()) { |
| 1001 | assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, |
| 1002 | "these can be produced lazily" ); |
| 1003 | operand = operand_for_instruction(cur_val); |
| 1004 | } |
| 1005 | resolver->move(operand, operand_for_instruction(phi)); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | |
| 1010 | // Moves all stack values into their PHI position |
| 1011 | void LIRGenerator::move_to_phi(ValueStack* cur_state) { |
| 1012 | BlockBegin* bb = block(); |
| 1013 | if (bb->number_of_sux() == 1) { |
| 1014 | BlockBegin* sux = bb->sux_at(0); |
| 1015 | assert(sux->number_of_preds() > 0, "invalid CFG" ); |
| 1016 | |
| 1017 | // a block with only one predecessor never has phi functions |
| 1018 | if (sux->number_of_preds() > 1) { |
| 1019 | PhiResolver resolver(this); |
| 1020 | |
| 1021 | ValueStack* sux_state = sux->state(); |
| 1022 | Value sux_value; |
| 1023 | int index; |
| 1024 | |
| 1025 | assert(cur_state->scope() == sux_state->scope(), "not matching" ); |
| 1026 | assert(cur_state->locals_size() == sux_state->locals_size(), "not matching" ); |
| 1027 | assert(cur_state->stack_size() == sux_state->stack_size(), "not matching" ); |
| 1028 | |
| 1029 | for_each_stack_value(sux_state, index, sux_value) { |
| 1030 | move_to_phi(&resolver, cur_state->stack_at(index), sux_value); |
| 1031 | } |
| 1032 | |
| 1033 | for_each_local_value(sux_state, index, sux_value) { |
| 1034 | move_to_phi(&resolver, cur_state->local_at(index), sux_value); |
| 1035 | } |
| 1036 | |
| 1037 | assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal" ); |
| 1038 | } |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | |
| 1043 | LIR_Opr LIRGenerator::new_register(BasicType type) { |
| 1044 | int vreg = _virtual_register_number; |
| 1045 | // add a little fudge factor for the bailout, since the bailout is |
| 1046 | // only checked periodically. This gives a few extra registers to |
| 1047 | // hand out before we really run out, which helps us keep from |
| 1048 | // tripping over assertions. |
| 1049 | if (vreg + 20 >= LIR_OprDesc::vreg_max) { |
| 1050 | bailout("out of virtual registers" ); |
| 1051 | if (vreg + 2 >= LIR_OprDesc::vreg_max) { |
| 1052 | // wrap it around |
| 1053 | _virtual_register_number = LIR_OprDesc::vreg_base; |
| 1054 | } |
| 1055 | } |
| 1056 | _virtual_register_number += 1; |
| 1057 | return LIR_OprFact::virtual_register(vreg, type); |
| 1058 | } |
| 1059 | |
| 1060 | |
| 1061 | // Try to lock using register in hint |
| 1062 | LIR_Opr LIRGenerator::rlock(Value instr) { |
| 1063 | return new_register(instr->type()); |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | // does an rlock and sets result |
| 1068 | LIR_Opr LIRGenerator::rlock_result(Value x) { |
| 1069 | LIR_Opr reg = rlock(x); |
| 1070 | set_result(x, reg); |
| 1071 | return reg; |
| 1072 | } |
| 1073 | |
| 1074 | |
| 1075 | // does an rlock and sets result |
| 1076 | LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { |
| 1077 | LIR_Opr reg; |
| 1078 | switch (type) { |
| 1079 | case T_BYTE: |
| 1080 | case T_BOOLEAN: |
| 1081 | reg = rlock_byte(type); |
| 1082 | break; |
| 1083 | default: |
| 1084 | reg = rlock(x); |
| 1085 | break; |
| 1086 | } |
| 1087 | |
| 1088 | set_result(x, reg); |
| 1089 | return reg; |
| 1090 | } |
| 1091 | |
| 1092 | |
| 1093 | //--------------------------------------------------------------------- |
| 1094 | ciObject* LIRGenerator::get_jobject_constant(Value value) { |
| 1095 | ObjectType* oc = value->type()->as_ObjectType(); |
| 1096 | if (oc) { |
| 1097 | return oc->constant_value(); |
| 1098 | } |
| 1099 | return NULL; |
| 1100 | } |
| 1101 | |
| 1102 | |
| 1103 | void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { |
| 1104 | assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block" ); |
| 1105 | assert(block()->next() == x, "ExceptionObject must be first instruction of block" ); |
| 1106 | |
| 1107 | // no moves are created for phi functions at the begin of exception |
| 1108 | // handlers, so assign operands manually here |
| 1109 | for_each_phi_fun(block(), phi, |
| 1110 | if (!phi->is_illegal()) { operand_for_instruction(phi); }); |
| 1111 | |
| 1112 | LIR_Opr thread_reg = getThreadPointer(); |
| 1113 | __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), |
| 1114 | exceptionOopOpr()); |
| 1115 | __ move_wide(LIR_OprFact::oopConst(NULL), |
| 1116 | new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); |
| 1117 | __ move_wide(LIR_OprFact::oopConst(NULL), |
| 1118 | new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); |
| 1119 | |
| 1120 | LIR_Opr result = new_register(T_OBJECT); |
| 1121 | __ move(exceptionOopOpr(), result); |
| 1122 | set_result(x, result); |
| 1123 | } |
| 1124 | |
| 1125 | |
| 1126 | //---------------------------------------------------------------------- |
| 1127 | //---------------------------------------------------------------------- |
| 1128 | //---------------------------------------------------------------------- |
| 1129 | //---------------------------------------------------------------------- |
| 1130 | // visitor functions |
| 1131 | //---------------------------------------------------------------------- |
| 1132 | //---------------------------------------------------------------------- |
| 1133 | //---------------------------------------------------------------------- |
| 1134 | //---------------------------------------------------------------------- |
| 1135 | |
| 1136 | void LIRGenerator::do_Phi(Phi* x) { |
| 1137 | // phi functions are never visited directly |
| 1138 | ShouldNotReachHere(); |
| 1139 | } |
| 1140 | |
| 1141 | |
| 1142 | // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. |
| 1143 | void LIRGenerator::do_Constant(Constant* x) { |
| 1144 | if (x->state_before() != NULL) { |
| 1145 | // Any constant with a ValueStack requires patching so emit the patch here |
| 1146 | LIR_Opr reg = rlock_result(x); |
| 1147 | CodeEmitInfo* info = state_for(x, x->state_before()); |
| 1148 | __ oop2reg_patch(NULL, reg, info); |
| 1149 | } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { |
| 1150 | if (!x->is_pinned()) { |
| 1151 | // unpinned constants are handled specially so that they can be |
| 1152 | // put into registers when they are used multiple times within a |
| 1153 | // block. After the block completes their operand will be |
| 1154 | // cleared so that other blocks can't refer to that register. |
| 1155 | set_result(x, load_constant(x)); |
| 1156 | } else { |
| 1157 | LIR_Opr res = x->operand(); |
| 1158 | if (!res->is_valid()) { |
| 1159 | res = LIR_OprFact::value_type(x->type()); |
| 1160 | } |
| 1161 | if (res->is_constant()) { |
| 1162 | LIR_Opr reg = rlock_result(x); |
| 1163 | __ move(res, reg); |
| 1164 | } else { |
| 1165 | set_result(x, res); |
| 1166 | } |
| 1167 | } |
| 1168 | } else { |
| 1169 | set_result(x, LIR_OprFact::value_type(x->type())); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | |
| 1174 | void LIRGenerator::do_Local(Local* x) { |
| 1175 | // operand_for_instruction has the side effect of setting the result |
| 1176 | // so there's no need to do it here. |
| 1177 | operand_for_instruction(x); |
| 1178 | } |
| 1179 | |
| 1180 | |
| 1181 | void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { |
| 1182 | Unimplemented(); |
| 1183 | } |
| 1184 | |
| 1185 | |
| 1186 | void LIRGenerator::do_Return(Return* x) { |
| 1187 | if (compilation()->env()->dtrace_method_probes()) { |
| 1188 | BasicTypeList signature; |
| 1189 | signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
| 1190 | signature.append(T_METADATA); // Method* |
| 1191 | LIR_OprList* args = new LIR_OprList(); |
| 1192 | args->append(getThreadPointer()); |
| 1193 | LIR_Opr meth = new_register(T_METADATA); |
| 1194 | __ metadata2reg(method()->constant_encoding(), meth); |
| 1195 | args->append(meth); |
| 1196 | call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); |
| 1197 | } |
| 1198 | |
| 1199 | if (x->type()->is_void()) { |
| 1200 | __ return_op(LIR_OprFact::illegalOpr); |
| 1201 | } else { |
| 1202 | LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); |
| 1203 | LIRItem result(x->result(), this); |
| 1204 | |
| 1205 | result.load_item_force(reg); |
| 1206 | __ return_op(result.result()); |
| 1207 | } |
| 1208 | set_no_result(x); |
| 1209 | } |
| 1210 | |
| 1211 | // Examble: ref.get() |
| 1212 | // Combination of LoadField and g1 pre-write barrier |
| 1213 | void LIRGenerator::do_Reference_get(Intrinsic* x) { |
| 1214 | |
| 1215 | const int referent_offset = java_lang_ref_Reference::referent_offset; |
| 1216 | guarantee(referent_offset > 0, "referent offset not initialized" ); |
| 1217 | |
| 1218 | assert(x->number_of_arguments() == 1, "wrong type" ); |
| 1219 | |
| 1220 | LIRItem reference(x->argument_at(0), this); |
| 1221 | reference.load_item(); |
| 1222 | |
| 1223 | // need to perform the null check on the reference objecy |
| 1224 | CodeEmitInfo* info = NULL; |
| 1225 | if (x->needs_null_check()) { |
| 1226 | info = state_for(x); |
| 1227 | } |
| 1228 | |
| 1229 | LIR_Opr result = rlock_result(x, T_OBJECT); |
| 1230 | access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, |
| 1231 | reference, LIR_OprFact::intConst(referent_offset), result); |
| 1232 | } |
| 1233 | |
| 1234 | // Example: clazz.isInstance(object) |
| 1235 | void LIRGenerator::do_isInstance(Intrinsic* x) { |
| 1236 | assert(x->number_of_arguments() == 2, "wrong type" ); |
| 1237 | |
| 1238 | // TODO could try to substitute this node with an equivalent InstanceOf |
| 1239 | // if clazz is known to be a constant Class. This will pick up newly found |
| 1240 | // constants after HIR construction. I'll leave this to a future change. |
| 1241 | |
| 1242 | // as a first cut, make a simple leaf call to runtime to stay platform independent. |
| 1243 | // could follow the aastore example in a future change. |
| 1244 | |
| 1245 | LIRItem clazz(x->argument_at(0), this); |
| 1246 | LIRItem object(x->argument_at(1), this); |
| 1247 | clazz.load_item(); |
| 1248 | object.load_item(); |
| 1249 | LIR_Opr result = rlock_result(x); |
| 1250 | |
| 1251 | // need to perform null check on clazz |
| 1252 | if (x->needs_null_check()) { |
| 1253 | CodeEmitInfo* info = state_for(x); |
| 1254 | __ null_check(clazz.result(), info); |
| 1255 | } |
| 1256 | |
| 1257 | LIR_Opr call_result = call_runtime(clazz.value(), object.value(), |
| 1258 | CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), |
| 1259 | x->type(), |
| 1260 | NULL); // NULL CodeEmitInfo results in a leaf call |
| 1261 | __ move(call_result, result); |
| 1262 | } |
| 1263 | |
| 1264 | // Example: object.getClass () |
| 1265 | void LIRGenerator::do_getClass(Intrinsic* x) { |
| 1266 | assert(x->number_of_arguments() == 1, "wrong type" ); |
| 1267 | |
| 1268 | LIRItem rcvr(x->argument_at(0), this); |
| 1269 | rcvr.load_item(); |
| 1270 | LIR_Opr temp = new_register(T_METADATA); |
| 1271 | LIR_Opr result = rlock_result(x); |
| 1272 | |
| 1273 | // need to perform the null check on the rcvr |
| 1274 | CodeEmitInfo* info = NULL; |
| 1275 | if (x->needs_null_check()) { |
| 1276 | info = state_for(x); |
| 1277 | } |
| 1278 | |
| 1279 | // FIXME T_ADDRESS should actually be T_METADATA but it can't because the |
| 1280 | // meaning of these two is mixed up (see JDK-8026837). |
| 1281 | __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); |
| 1282 | __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); |
| 1283 | // mirror = ((OopHandle)mirror)->resolve(); |
| 1284 | access_load(IN_NATIVE, T_OBJECT, |
| 1285 | LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); |
| 1286 | } |
| 1287 | |
| 1288 | // java.lang.Class::isPrimitive() |
| 1289 | void LIRGenerator::do_isPrimitive(Intrinsic* x) { |
| 1290 | assert(x->number_of_arguments() == 1, "wrong type" ); |
| 1291 | |
| 1292 | LIRItem rcvr(x->argument_at(0), this); |
| 1293 | rcvr.load_item(); |
| 1294 | LIR_Opr temp = new_register(T_METADATA); |
| 1295 | LIR_Opr result = rlock_result(x); |
| 1296 | |
| 1297 | CodeEmitInfo* info = NULL; |
| 1298 | if (x->needs_null_check()) { |
| 1299 | info = state_for(x); |
| 1300 | } |
| 1301 | |
| 1302 | __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info); |
| 1303 | __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0)); |
| 1304 | __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); |
| 1305 | } |
| 1306 | |
| 1307 | |
| 1308 | // Example: Thread.currentThread() |
| 1309 | void LIRGenerator::do_currentThread(Intrinsic* x) { |
| 1310 | assert(x->number_of_arguments() == 0, "wrong type" ); |
| 1311 | LIR_Opr reg = rlock_result(x); |
| 1312 | __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); |
| 1313 | } |
| 1314 | |
| 1315 | |
| 1316 | void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { |
| 1317 | assert(x->number_of_arguments() == 1, "wrong type" ); |
| 1318 | LIRItem receiver(x->argument_at(0), this); |
| 1319 | |
| 1320 | receiver.load_item(); |
| 1321 | BasicTypeList signature; |
| 1322 | signature.append(T_OBJECT); // receiver |
| 1323 | LIR_OprList* args = new LIR_OprList(); |
| 1324 | args->append(receiver.result()); |
| 1325 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1326 | call_runtime(&signature, args, |
| 1327 | CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), |
| 1328 | voidType, info); |
| 1329 | |
| 1330 | set_no_result(x); |
| 1331 | } |
| 1332 | |
| 1333 | |
| 1334 | //------------------------local access-------------------------------------- |
| 1335 | |
| 1336 | LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { |
| 1337 | if (x->operand()->is_illegal()) { |
| 1338 | Constant* c = x->as_Constant(); |
| 1339 | if (c != NULL) { |
| 1340 | x->set_operand(LIR_OprFact::value_type(c->type())); |
| 1341 | } else { |
| 1342 | assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local" ); |
| 1343 | // allocate a virtual register for this local or phi |
| 1344 | x->set_operand(rlock(x)); |
| 1345 | _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); |
| 1346 | } |
| 1347 | } |
| 1348 | return x->operand(); |
| 1349 | } |
| 1350 | |
| 1351 | |
| 1352 | Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { |
| 1353 | if (opr->is_virtual()) { |
| 1354 | return instruction_for_vreg(opr->vreg_number()); |
| 1355 | } |
| 1356 | return NULL; |
| 1357 | } |
| 1358 | |
| 1359 | |
| 1360 | Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { |
| 1361 | if (reg_num < _instruction_for_operand.length()) { |
| 1362 | return _instruction_for_operand.at(reg_num); |
| 1363 | } |
| 1364 | return NULL; |
| 1365 | } |
| 1366 | |
| 1367 | |
| 1368 | void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { |
| 1369 | if (_vreg_flags.size_in_bits() == 0) { |
| 1370 | BitMap2D temp(100, num_vreg_flags); |
| 1371 | _vreg_flags = temp; |
| 1372 | } |
| 1373 | _vreg_flags.at_put_grow(vreg_num, f, true); |
| 1374 | } |
| 1375 | |
| 1376 | bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { |
| 1377 | if (!_vreg_flags.is_valid_index(vreg_num, f)) { |
| 1378 | return false; |
| 1379 | } |
| 1380 | return _vreg_flags.at(vreg_num, f); |
| 1381 | } |
| 1382 | |
| 1383 | |
| 1384 | // Block local constant handling. This code is useful for keeping |
| 1385 | // unpinned constants and constants which aren't exposed in the IR in |
| 1386 | // registers. Unpinned Constant instructions have their operands |
| 1387 | // cleared when the block is finished so that other blocks can't end |
| 1388 | // up referring to their registers. |
| 1389 | |
| 1390 | LIR_Opr LIRGenerator::load_constant(Constant* x) { |
| 1391 | assert(!x->is_pinned(), "only for unpinned constants" ); |
| 1392 | _unpinned_constants.append(x); |
| 1393 | return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); |
| 1394 | } |
| 1395 | |
| 1396 | |
| 1397 | LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { |
| 1398 | BasicType t = c->type(); |
| 1399 | for (int i = 0; i < _constants.length(); i++) { |
| 1400 | LIR_Const* other = _constants.at(i); |
| 1401 | if (t == other->type()) { |
| 1402 | switch (t) { |
| 1403 | case T_INT: |
| 1404 | case T_FLOAT: |
| 1405 | if (c->as_jint_bits() != other->as_jint_bits()) continue; |
| 1406 | break; |
| 1407 | case T_LONG: |
| 1408 | case T_DOUBLE: |
| 1409 | if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; |
| 1410 | if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; |
| 1411 | break; |
| 1412 | case T_OBJECT: |
| 1413 | if (c->as_jobject() != other->as_jobject()) continue; |
| 1414 | break; |
| 1415 | default: |
| 1416 | break; |
| 1417 | } |
| 1418 | return _reg_for_constants.at(i); |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | LIR_Opr result = new_register(t); |
| 1423 | __ move((LIR_Opr)c, result); |
| 1424 | _constants.append(c); |
| 1425 | _reg_for_constants.append(result); |
| 1426 | return result; |
| 1427 | } |
| 1428 | |
| 1429 | //------------------------field access-------------------------------------- |
| 1430 | |
| 1431 | void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { |
| 1432 | assert(x->number_of_arguments() == 4, "wrong type" ); |
| 1433 | LIRItem obj (x->argument_at(0), this); // object |
| 1434 | LIRItem offset(x->argument_at(1), this); // offset of field |
| 1435 | LIRItem cmp (x->argument_at(2), this); // value to compare with field |
| 1436 | LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp |
| 1437 | assert(obj.type()->tag() == objectTag, "invalid type" ); |
| 1438 | |
| 1439 | // In 64bit the type can be long, sparc doesn't have this assert |
| 1440 | // assert(offset.type()->tag() == intTag, "invalid type"); |
| 1441 | |
| 1442 | assert(cmp.type()->tag() == type->tag(), "invalid type" ); |
| 1443 | assert(val.type()->tag() == type->tag(), "invalid type" ); |
| 1444 | |
| 1445 | LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), |
| 1446 | obj, offset, cmp, val); |
| 1447 | set_result(x, result); |
| 1448 | } |
| 1449 | |
| 1450 | // Comment copied form templateTable_i486.cpp |
| 1451 | // ---------------------------------------------------------------------------- |
| 1452 | // Volatile variables demand their effects be made known to all CPU's in |
| 1453 | // order. Store buffers on most chips allow reads & writes to reorder; the |
| 1454 | // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of |
| 1455 | // memory barrier (i.e., it's not sufficient that the interpreter does not |
| 1456 | // reorder volatile references, the hardware also must not reorder them). |
| 1457 | // |
| 1458 | // According to the new Java Memory Model (JMM): |
| 1459 | // (1) All volatiles are serialized wrt to each other. |
| 1460 | // ALSO reads & writes act as aquire & release, so: |
| 1461 | // (2) A read cannot let unrelated NON-volatile memory refs that happen after |
| 1462 | // the read float up to before the read. It's OK for non-volatile memory refs |
| 1463 | // that happen before the volatile read to float down below it. |
| 1464 | // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs |
| 1465 | // that happen BEFORE the write float down to after the write. It's OK for |
| 1466 | // non-volatile memory refs that happen after the volatile write to float up |
| 1467 | // before it. |
| 1468 | // |
| 1469 | // We only put in barriers around volatile refs (they are expensive), not |
| 1470 | // _between_ memory refs (that would require us to track the flavor of the |
| 1471 | // previous memory refs). Requirements (2) and (3) require some barriers |
| 1472 | // before volatile stores and after volatile loads. These nearly cover |
| 1473 | // requirement (1) but miss the volatile-store-volatile-load case. This final |
| 1474 | // case is placed after volatile-stores although it could just as well go |
| 1475 | // before volatile-loads. |
| 1476 | |
| 1477 | |
| 1478 | void LIRGenerator::do_StoreField(StoreField* x) { |
| 1479 | bool needs_patching = x->needs_patching(); |
| 1480 | bool is_volatile = x->field()->is_volatile(); |
| 1481 | BasicType field_type = x->field_type(); |
| 1482 | |
| 1483 | CodeEmitInfo* info = NULL; |
| 1484 | if (needs_patching) { |
| 1485 | assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access" ); |
| 1486 | info = state_for(x, x->state_before()); |
| 1487 | } else if (x->needs_null_check()) { |
| 1488 | NullCheck* nc = x->explicit_null_check(); |
| 1489 | if (nc == NULL) { |
| 1490 | info = state_for(x); |
| 1491 | } else { |
| 1492 | info = state_for(nc); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | LIRItem object(x->obj(), this); |
| 1497 | LIRItem value(x->value(), this); |
| 1498 | |
| 1499 | object.load_item(); |
| 1500 | |
| 1501 | if (is_volatile || needs_patching) { |
| 1502 | // load item if field is volatile (fewer special cases for volatiles) |
| 1503 | // load item if field not initialized |
| 1504 | // load item if field not constant |
| 1505 | // because of code patching we cannot inline constants |
| 1506 | if (field_type == T_BYTE || field_type == T_BOOLEAN) { |
| 1507 | value.load_byte_item(); |
| 1508 | } else { |
| 1509 | value.load_item(); |
| 1510 | } |
| 1511 | } else { |
| 1512 | value.load_for_store(field_type); |
| 1513 | } |
| 1514 | |
| 1515 | set_no_result(x); |
| 1516 | |
| 1517 | #ifndef PRODUCT |
| 1518 | if (PrintNotLoaded && needs_patching) { |
| 1519 | tty->print_cr(" ###class not loaded at store_%s bci %d" , |
| 1520 | x->is_static() ? "static" : "field" , x->printable_bci()); |
| 1521 | } |
| 1522 | #endif |
| 1523 | |
| 1524 | if (x->needs_null_check() && |
| 1525 | (needs_patching || |
| 1526 | MacroAssembler::needs_explicit_null_check(x->offset()))) { |
| 1527 | // Emit an explicit null check because the offset is too large. |
| 1528 | // If the class is not loaded and the object is NULL, we need to deoptimize to throw a |
| 1529 | // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. |
| 1530 | __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); |
| 1531 | } |
| 1532 | |
| 1533 | DecoratorSet decorators = IN_HEAP; |
| 1534 | if (is_volatile) { |
| 1535 | decorators |= MO_SEQ_CST; |
| 1536 | } |
| 1537 | if (needs_patching) { |
| 1538 | decorators |= C1_NEEDS_PATCHING; |
| 1539 | } |
| 1540 | |
| 1541 | access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), |
| 1542 | value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); |
| 1543 | } |
| 1544 | |
| 1545 | void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { |
| 1546 | assert(x->is_pinned(),"" ); |
| 1547 | bool needs_range_check = x->compute_needs_range_check(); |
| 1548 | bool use_length = x->length() != NULL; |
| 1549 | bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; |
| 1550 | bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || |
| 1551 | !get_jobject_constant(x->value())->is_null_object() || |
| 1552 | x->should_profile()); |
| 1553 | |
| 1554 | LIRItem array(x->array(), this); |
| 1555 | LIRItem index(x->index(), this); |
| 1556 | LIRItem value(x->value(), this); |
| 1557 | LIRItem length(this); |
| 1558 | |
| 1559 | array.load_item(); |
| 1560 | index.load_nonconstant(); |
| 1561 | |
| 1562 | if (use_length && needs_range_check) { |
| 1563 | length.set_instruction(x->length()); |
| 1564 | length.load_item(); |
| 1565 | |
| 1566 | } |
| 1567 | if (needs_store_check || x->check_boolean()) { |
| 1568 | value.load_item(); |
| 1569 | } else { |
| 1570 | value.load_for_store(x->elt_type()); |
| 1571 | } |
| 1572 | |
| 1573 | set_no_result(x); |
| 1574 | |
| 1575 | // the CodeEmitInfo must be duplicated for each different |
| 1576 | // LIR-instruction because spilling can occur anywhere between two |
| 1577 | // instructions and so the debug information must be different |
| 1578 | CodeEmitInfo* range_check_info = state_for(x); |
| 1579 | CodeEmitInfo* null_check_info = NULL; |
| 1580 | if (x->needs_null_check()) { |
| 1581 | null_check_info = new CodeEmitInfo(range_check_info); |
| 1582 | } |
| 1583 | |
| 1584 | if (GenerateRangeChecks && needs_range_check) { |
| 1585 | if (use_length) { |
| 1586 | __ cmp(lir_cond_belowEqual, length.result(), index.result()); |
| 1587 | __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); |
| 1588 | } else { |
| 1589 | array_range_check(array.result(), index.result(), null_check_info, range_check_info); |
| 1590 | // range_check also does the null check |
| 1591 | null_check_info = NULL; |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | if (GenerateArrayStoreCheck && needs_store_check) { |
| 1596 | CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); |
| 1597 | array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); |
| 1598 | } |
| 1599 | |
| 1600 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
| 1601 | if (x->check_boolean()) { |
| 1602 | decorators |= C1_MASK_BOOLEAN; |
| 1603 | } |
| 1604 | |
| 1605 | access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), |
| 1606 | NULL, null_check_info); |
| 1607 | } |
| 1608 | |
| 1609 | void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, |
| 1610 | LIRItem& base, LIR_Opr offset, LIR_Opr result, |
| 1611 | CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { |
| 1612 | decorators |= ACCESS_READ; |
| 1613 | LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); |
| 1614 | if (access.is_raw()) { |
| 1615 | _barrier_set->BarrierSetC1::load_at(access, result); |
| 1616 | } else { |
| 1617 | _barrier_set->load_at(access, result); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, |
| 1622 | LIR_Opr addr, LIR_Opr result) { |
| 1623 | decorators |= ACCESS_READ; |
| 1624 | LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); |
| 1625 | access.set_resolved_addr(addr); |
| 1626 | if (access.is_raw()) { |
| 1627 | _barrier_set->BarrierSetC1::load(access, result); |
| 1628 | } else { |
| 1629 | _barrier_set->load(access, result); |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, |
| 1634 | LIRItem& base, LIR_Opr offset, LIR_Opr value, |
| 1635 | CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { |
| 1636 | decorators |= ACCESS_WRITE; |
| 1637 | LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); |
| 1638 | if (access.is_raw()) { |
| 1639 | _barrier_set->BarrierSetC1::store_at(access, value); |
| 1640 | } else { |
| 1641 | _barrier_set->store_at(access, value); |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, |
| 1646 | LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { |
| 1647 | decorators |= ACCESS_READ; |
| 1648 | decorators |= ACCESS_WRITE; |
| 1649 | // Atomic operations are SEQ_CST by default |
| 1650 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
| 1651 | LIRAccess access(this, decorators, base, offset, type); |
| 1652 | if (access.is_raw()) { |
| 1653 | return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); |
| 1654 | } else { |
| 1655 | return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, |
| 1660 | LIRItem& base, LIRItem& offset, LIRItem& value) { |
| 1661 | decorators |= ACCESS_READ; |
| 1662 | decorators |= ACCESS_WRITE; |
| 1663 | // Atomic operations are SEQ_CST by default |
| 1664 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
| 1665 | LIRAccess access(this, decorators, base, offset, type); |
| 1666 | if (access.is_raw()) { |
| 1667 | return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); |
| 1668 | } else { |
| 1669 | return _barrier_set->atomic_xchg_at(access, value); |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, |
| 1674 | LIRItem& base, LIRItem& offset, LIRItem& value) { |
| 1675 | decorators |= ACCESS_READ; |
| 1676 | decorators |= ACCESS_WRITE; |
| 1677 | // Atomic operations are SEQ_CST by default |
| 1678 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
| 1679 | LIRAccess access(this, decorators, base, offset, type); |
| 1680 | if (access.is_raw()) { |
| 1681 | return _barrier_set->BarrierSetC1::atomic_add_at(access, value); |
| 1682 | } else { |
| 1683 | return _barrier_set->atomic_add_at(access, value); |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) { |
| 1688 | // Use stronger ACCESS_WRITE|ACCESS_READ by default. |
| 1689 | if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { |
| 1690 | decorators |= ACCESS_READ | ACCESS_WRITE; |
| 1691 | } |
| 1692 | |
| 1693 | return _barrier_set->resolve(this, decorators, obj); |
| 1694 | } |
| 1695 | |
| 1696 | void LIRGenerator::do_LoadField(LoadField* x) { |
| 1697 | bool needs_patching = x->needs_patching(); |
| 1698 | bool is_volatile = x->field()->is_volatile(); |
| 1699 | BasicType field_type = x->field_type(); |
| 1700 | |
| 1701 | CodeEmitInfo* info = NULL; |
| 1702 | if (needs_patching) { |
| 1703 | assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access" ); |
| 1704 | info = state_for(x, x->state_before()); |
| 1705 | } else if (x->needs_null_check()) { |
| 1706 | NullCheck* nc = x->explicit_null_check(); |
| 1707 | if (nc == NULL) { |
| 1708 | info = state_for(x); |
| 1709 | } else { |
| 1710 | info = state_for(nc); |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | LIRItem object(x->obj(), this); |
| 1715 | |
| 1716 | object.load_item(); |
| 1717 | |
| 1718 | #ifndef PRODUCT |
| 1719 | if (PrintNotLoaded && needs_patching) { |
| 1720 | tty->print_cr(" ###class not loaded at load_%s bci %d" , |
| 1721 | x->is_static() ? "static" : "field" , x->printable_bci()); |
| 1722 | } |
| 1723 | #endif |
| 1724 | |
| 1725 | bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); |
| 1726 | if (x->needs_null_check() && |
| 1727 | (needs_patching || |
| 1728 | MacroAssembler::needs_explicit_null_check(x->offset()) || |
| 1729 | stress_deopt)) { |
| 1730 | LIR_Opr obj = object.result(); |
| 1731 | if (stress_deopt) { |
| 1732 | obj = new_register(T_OBJECT); |
| 1733 | __ move(LIR_OprFact::oopConst(NULL), obj); |
| 1734 | } |
| 1735 | // Emit an explicit null check because the offset is too large. |
| 1736 | // If the class is not loaded and the object is NULL, we need to deoptimize to throw a |
| 1737 | // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. |
| 1738 | __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); |
| 1739 | } |
| 1740 | |
| 1741 | DecoratorSet decorators = IN_HEAP; |
| 1742 | if (is_volatile) { |
| 1743 | decorators |= MO_SEQ_CST; |
| 1744 | } |
| 1745 | if (needs_patching) { |
| 1746 | decorators |= C1_NEEDS_PATCHING; |
| 1747 | } |
| 1748 | |
| 1749 | LIR_Opr result = rlock_result(x, field_type); |
| 1750 | access_load_at(decorators, field_type, |
| 1751 | object, LIR_OprFact::intConst(x->offset()), result, |
| 1752 | info ? new CodeEmitInfo(info) : NULL, info); |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | //------------------------java.nio.Buffer.checkIndex------------------------ |
| 1757 | |
| 1758 | // int java.nio.Buffer.checkIndex(int) |
| 1759 | void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { |
| 1760 | // NOTE: by the time we are in checkIndex() we are guaranteed that |
| 1761 | // the buffer is non-null (because checkIndex is package-private and |
| 1762 | // only called from within other methods in the buffer). |
| 1763 | assert(x->number_of_arguments() == 2, "wrong type" ); |
| 1764 | LIRItem buf (x->argument_at(0), this); |
| 1765 | LIRItem index(x->argument_at(1), this); |
| 1766 | buf.load_item(); |
| 1767 | index.load_item(); |
| 1768 | |
| 1769 | LIR_Opr result = rlock_result(x); |
| 1770 | if (GenerateRangeChecks) { |
| 1771 | CodeEmitInfo* info = state_for(x); |
| 1772 | CodeStub* stub = new RangeCheckStub(info, index.result()); |
| 1773 | LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result()); |
| 1774 | if (index.result()->is_constant()) { |
| 1775 | cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); |
| 1776 | __ branch(lir_cond_belowEqual, T_INT, stub); |
| 1777 | } else { |
| 1778 | cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj, |
| 1779 | java_nio_Buffer::limit_offset(), T_INT, info); |
| 1780 | __ branch(lir_cond_aboveEqual, T_INT, stub); |
| 1781 | } |
| 1782 | __ move(index.result(), result); |
| 1783 | } else { |
| 1784 | // Just load the index into the result register |
| 1785 | __ move(index.result(), result); |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | |
| 1790 | //------------------------array access-------------------------------------- |
| 1791 | |
| 1792 | |
| 1793 | void LIRGenerator::do_ArrayLength(ArrayLength* x) { |
| 1794 | LIRItem array(x->array(), this); |
| 1795 | array.load_item(); |
| 1796 | LIR_Opr reg = rlock_result(x); |
| 1797 | |
| 1798 | CodeEmitInfo* info = NULL; |
| 1799 | if (x->needs_null_check()) { |
| 1800 | NullCheck* nc = x->explicit_null_check(); |
| 1801 | if (nc == NULL) { |
| 1802 | info = state_for(x); |
| 1803 | } else { |
| 1804 | info = state_for(nc); |
| 1805 | } |
| 1806 | if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { |
| 1807 | LIR_Opr obj = new_register(T_OBJECT); |
| 1808 | __ move(LIR_OprFact::oopConst(NULL), obj); |
| 1809 | __ null_check(obj, new CodeEmitInfo(info)); |
| 1810 | } |
| 1811 | } |
| 1812 | __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); |
| 1813 | } |
| 1814 | |
| 1815 | |
| 1816 | void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { |
| 1817 | bool use_length = x->length() != NULL; |
| 1818 | LIRItem array(x->array(), this); |
| 1819 | LIRItem index(x->index(), this); |
| 1820 | LIRItem length(this); |
| 1821 | bool needs_range_check = x->compute_needs_range_check(); |
| 1822 | |
| 1823 | if (use_length && needs_range_check) { |
| 1824 | length.set_instruction(x->length()); |
| 1825 | length.load_item(); |
| 1826 | } |
| 1827 | |
| 1828 | array.load_item(); |
| 1829 | if (index.is_constant() && can_inline_as_constant(x->index())) { |
| 1830 | // let it be a constant |
| 1831 | index.dont_load_item(); |
| 1832 | } else { |
| 1833 | index.load_item(); |
| 1834 | } |
| 1835 | |
| 1836 | CodeEmitInfo* range_check_info = state_for(x); |
| 1837 | CodeEmitInfo* null_check_info = NULL; |
| 1838 | if (x->needs_null_check()) { |
| 1839 | NullCheck* nc = x->explicit_null_check(); |
| 1840 | if (nc != NULL) { |
| 1841 | null_check_info = state_for(nc); |
| 1842 | } else { |
| 1843 | null_check_info = range_check_info; |
| 1844 | } |
| 1845 | if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { |
| 1846 | LIR_Opr obj = new_register(T_OBJECT); |
| 1847 | __ move(LIR_OprFact::oopConst(NULL), obj); |
| 1848 | __ null_check(obj, new CodeEmitInfo(null_check_info)); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | if (GenerateRangeChecks && needs_range_check) { |
| 1853 | if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { |
| 1854 | __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result())); |
| 1855 | } else if (use_length) { |
| 1856 | // TODO: use a (modified) version of array_range_check that does not require a |
| 1857 | // constant length to be loaded to a register |
| 1858 | __ cmp(lir_cond_belowEqual, length.result(), index.result()); |
| 1859 | __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); |
| 1860 | } else { |
| 1861 | array_range_check(array.result(), index.result(), null_check_info, range_check_info); |
| 1862 | // The range check performs the null check, so clear it out for the load |
| 1863 | null_check_info = NULL; |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
| 1868 | |
| 1869 | LIR_Opr result = rlock_result(x, x->elt_type()); |
| 1870 | access_load_at(decorators, x->elt_type(), |
| 1871 | array, index.result(), result, |
| 1872 | NULL, null_check_info); |
| 1873 | } |
| 1874 | |
| 1875 | |
| 1876 | void LIRGenerator::do_NullCheck(NullCheck* x) { |
| 1877 | if (x->can_trap()) { |
| 1878 | LIRItem value(x->obj(), this); |
| 1879 | value.load_item(); |
| 1880 | CodeEmitInfo* info = state_for(x); |
| 1881 | __ null_check(value.result(), info); |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | |
| 1886 | void LIRGenerator::do_TypeCast(TypeCast* x) { |
| 1887 | LIRItem value(x->obj(), this); |
| 1888 | value.load_item(); |
| 1889 | // the result is the same as from the node we are casting |
| 1890 | set_result(x, value.result()); |
| 1891 | } |
| 1892 | |
| 1893 | |
| 1894 | void LIRGenerator::do_Throw(Throw* x) { |
| 1895 | LIRItem exception(x->exception(), this); |
| 1896 | exception.load_item(); |
| 1897 | set_no_result(x); |
| 1898 | LIR_Opr exception_opr = exception.result(); |
| 1899 | CodeEmitInfo* info = state_for(x, x->state()); |
| 1900 | |
| 1901 | #ifndef PRODUCT |
| 1902 | if (PrintC1Statistics) { |
| 1903 | increment_counter(Runtime1::throw_count_address(), T_INT); |
| 1904 | } |
| 1905 | #endif |
| 1906 | |
| 1907 | // check if the instruction has an xhandler in any of the nested scopes |
| 1908 | bool unwind = false; |
| 1909 | if (info->exception_handlers()->length() == 0) { |
| 1910 | // this throw is not inside an xhandler |
| 1911 | unwind = true; |
| 1912 | } else { |
| 1913 | // get some idea of the throw type |
| 1914 | bool type_is_exact = true; |
| 1915 | ciType* throw_type = x->exception()->exact_type(); |
| 1916 | if (throw_type == NULL) { |
| 1917 | type_is_exact = false; |
| 1918 | throw_type = x->exception()->declared_type(); |
| 1919 | } |
| 1920 | if (throw_type != NULL && throw_type->is_instance_klass()) { |
| 1921 | ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; |
| 1922 | unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | // do null check before moving exception oop into fixed register |
| 1927 | // to avoid a fixed interval with an oop during the null check. |
| 1928 | // Use a copy of the CodeEmitInfo because debug information is |
| 1929 | // different for null_check and throw. |
| 1930 | if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { |
| 1931 | // if the exception object wasn't created using new then it might be null. |
| 1932 | __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); |
| 1933 | } |
| 1934 | |
| 1935 | if (compilation()->env()->jvmti_can_post_on_exceptions()) { |
| 1936 | // we need to go through the exception lookup path to get JVMTI |
| 1937 | // notification done |
| 1938 | unwind = false; |
| 1939 | } |
| 1940 | |
| 1941 | // move exception oop into fixed register |
| 1942 | __ move(exception_opr, exceptionOopOpr()); |
| 1943 | |
| 1944 | if (unwind) { |
| 1945 | __ unwind_exception(exceptionOopOpr()); |
| 1946 | } else { |
| 1947 | __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | |
| 1952 | void LIRGenerator::do_RoundFP(RoundFP* x) { |
| 1953 | LIRItem input(x->input(), this); |
| 1954 | input.load_item(); |
| 1955 | LIR_Opr input_opr = input.result(); |
| 1956 | assert(input_opr->is_register(), "why round if value is not in a register?" ); |
| 1957 | assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value" ); |
| 1958 | if (input_opr->is_single_fpu()) { |
| 1959 | set_result(x, round_item(input_opr)); // This code path not currently taken |
| 1960 | } else { |
| 1961 | LIR_Opr result = new_register(T_DOUBLE); |
| 1962 | set_vreg_flag(result, must_start_in_memory); |
| 1963 | __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); |
| 1964 | set_result(x, result); |
| 1965 | } |
| 1966 | } |
| 1967 | |
| 1968 | // Here UnsafeGetRaw may have x->base() and x->index() be int or long |
| 1969 | // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. |
| 1970 | void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { |
| 1971 | LIRItem base(x->base(), this); |
| 1972 | LIRItem idx(this); |
| 1973 | |
| 1974 | base.load_item(); |
| 1975 | if (x->has_index()) { |
| 1976 | idx.set_instruction(x->index()); |
| 1977 | idx.load_nonconstant(); |
| 1978 | } |
| 1979 | |
| 1980 | LIR_Opr reg = rlock_result(x, x->basic_type()); |
| 1981 | |
| 1982 | int log2_scale = 0; |
| 1983 | if (x->has_index()) { |
| 1984 | log2_scale = x->log2_scale(); |
| 1985 | } |
| 1986 | |
| 1987 | assert(!x->has_index() || idx.value() == x->index(), "should match" ); |
| 1988 | |
| 1989 | LIR_Opr base_op = base.result(); |
| 1990 | LIR_Opr index_op = idx.result(); |
| 1991 | #ifndef _LP64 |
| 1992 | if (base_op->type() == T_LONG) { |
| 1993 | base_op = new_register(T_INT); |
| 1994 | __ convert(Bytecodes::_l2i, base.result(), base_op); |
| 1995 | } |
| 1996 | if (x->has_index()) { |
| 1997 | if (index_op->type() == T_LONG) { |
| 1998 | LIR_Opr long_index_op = index_op; |
| 1999 | if (index_op->is_constant()) { |
| 2000 | long_index_op = new_register(T_LONG); |
| 2001 | __ move(index_op, long_index_op); |
| 2002 | } |
| 2003 | index_op = new_register(T_INT); |
| 2004 | __ convert(Bytecodes::_l2i, long_index_op, index_op); |
| 2005 | } else { |
| 2006 | assert(x->index()->type()->tag() == intTag, "must be" ); |
| 2007 | } |
| 2008 | } |
| 2009 | // At this point base and index should be all ints. |
| 2010 | assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int" ); |
| 2011 | assert(!x->has_index() || index_op->type() == T_INT, "index should be an int" ); |
| 2012 | #else |
| 2013 | if (x->has_index()) { |
| 2014 | if (index_op->type() == T_INT) { |
| 2015 | if (!index_op->is_constant()) { |
| 2016 | index_op = new_register(T_LONG); |
| 2017 | __ convert(Bytecodes::_i2l, idx.result(), index_op); |
| 2018 | } |
| 2019 | } else { |
| 2020 | assert(index_op->type() == T_LONG, "must be" ); |
| 2021 | if (index_op->is_constant()) { |
| 2022 | index_op = new_register(T_LONG); |
| 2023 | __ move(idx.result(), index_op); |
| 2024 | } |
| 2025 | } |
| 2026 | } |
| 2027 | // At this point base is a long non-constant |
| 2028 | // Index is a long register or a int constant. |
| 2029 | // We allow the constant to stay an int because that would allow us a more compact encoding by |
| 2030 | // embedding an immediate offset in the address expression. If we have a long constant, we have to |
| 2031 | // move it into a register first. |
| 2032 | assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant" ); |
| 2033 | assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || |
| 2034 | (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type" ); |
| 2035 | #endif |
| 2036 | |
| 2037 | BasicType dst_type = x->basic_type(); |
| 2038 | |
| 2039 | LIR_Address* addr; |
| 2040 | if (index_op->is_constant()) { |
| 2041 | assert(log2_scale == 0, "must not have a scale" ); |
| 2042 | assert(index_op->type() == T_INT, "only int constants supported" ); |
| 2043 | addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); |
| 2044 | } else { |
| 2045 | #ifdef X86 |
| 2046 | addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); |
| 2047 | #elif defined(GENERATE_ADDRESS_IS_PREFERRED) |
| 2048 | addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); |
| 2049 | #else |
| 2050 | if (index_op->is_illegal() || log2_scale == 0) { |
| 2051 | addr = new LIR_Address(base_op, index_op, dst_type); |
| 2052 | } else { |
| 2053 | LIR_Opr tmp = new_pointer_register(); |
| 2054 | __ shift_left(index_op, log2_scale, tmp); |
| 2055 | addr = new LIR_Address(base_op, tmp, dst_type); |
| 2056 | } |
| 2057 | #endif |
| 2058 | } |
| 2059 | |
| 2060 | if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { |
| 2061 | __ unaligned_move(addr, reg); |
| 2062 | } else { |
| 2063 | if (dst_type == T_OBJECT && x->is_wide()) { |
| 2064 | __ move_wide(addr, reg); |
| 2065 | } else { |
| 2066 | __ move(addr, reg); |
| 2067 | } |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | |
| 2072 | void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { |
| 2073 | int log2_scale = 0; |
| 2074 | BasicType type = x->basic_type(); |
| 2075 | |
| 2076 | if (x->has_index()) { |
| 2077 | log2_scale = x->log2_scale(); |
| 2078 | } |
| 2079 | |
| 2080 | LIRItem base(x->base(), this); |
| 2081 | LIRItem value(x->value(), this); |
| 2082 | LIRItem idx(this); |
| 2083 | |
| 2084 | base.load_item(); |
| 2085 | if (x->has_index()) { |
| 2086 | idx.set_instruction(x->index()); |
| 2087 | idx.load_item(); |
| 2088 | } |
| 2089 | |
| 2090 | if (type == T_BYTE || type == T_BOOLEAN) { |
| 2091 | value.load_byte_item(); |
| 2092 | } else { |
| 2093 | value.load_item(); |
| 2094 | } |
| 2095 | |
| 2096 | set_no_result(x); |
| 2097 | |
| 2098 | LIR_Opr base_op = base.result(); |
| 2099 | LIR_Opr index_op = idx.result(); |
| 2100 | |
| 2101 | #ifdef GENERATE_ADDRESS_IS_PREFERRED |
| 2102 | LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); |
| 2103 | #else |
| 2104 | #ifndef _LP64 |
| 2105 | if (base_op->type() == T_LONG) { |
| 2106 | base_op = new_register(T_INT); |
| 2107 | __ convert(Bytecodes::_l2i, base.result(), base_op); |
| 2108 | } |
| 2109 | if (x->has_index()) { |
| 2110 | if (index_op->type() == T_LONG) { |
| 2111 | index_op = new_register(T_INT); |
| 2112 | __ convert(Bytecodes::_l2i, idx.result(), index_op); |
| 2113 | } |
| 2114 | } |
| 2115 | // At this point base and index should be all ints and not constants |
| 2116 | assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int" ); |
| 2117 | assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int" ); |
| 2118 | #else |
| 2119 | if (x->has_index()) { |
| 2120 | if (index_op->type() == T_INT) { |
| 2121 | index_op = new_register(T_LONG); |
| 2122 | __ convert(Bytecodes::_i2l, idx.result(), index_op); |
| 2123 | } |
| 2124 | } |
| 2125 | // At this point base and index are long and non-constant |
| 2126 | assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long" ); |
| 2127 | assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long" ); |
| 2128 | #endif |
| 2129 | |
| 2130 | if (log2_scale != 0) { |
| 2131 | // temporary fix (platform dependent code without shift on Intel would be better) |
| 2132 | // TODO: ARM also allows embedded shift in the address |
| 2133 | LIR_Opr tmp = new_pointer_register(); |
| 2134 | if (TwoOperandLIRForm) { |
| 2135 | __ move(index_op, tmp); |
| 2136 | index_op = tmp; |
| 2137 | } |
| 2138 | __ shift_left(index_op, log2_scale, tmp); |
| 2139 | if (!TwoOperandLIRForm) { |
| 2140 | index_op = tmp; |
| 2141 | } |
| 2142 | } |
| 2143 | |
| 2144 | LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); |
| 2145 | #endif // !GENERATE_ADDRESS_IS_PREFERRED |
| 2146 | __ move(value.result(), addr); |
| 2147 | } |
| 2148 | |
| 2149 | |
| 2150 | void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { |
| 2151 | BasicType type = x->basic_type(); |
| 2152 | LIRItem src(x->object(), this); |
| 2153 | LIRItem off(x->offset(), this); |
| 2154 | |
| 2155 | off.load_item(); |
| 2156 | src.load_item(); |
| 2157 | |
| 2158 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; |
| 2159 | |
| 2160 | if (x->is_volatile()) { |
| 2161 | decorators |= MO_SEQ_CST; |
| 2162 | } |
| 2163 | if (type == T_BOOLEAN) { |
| 2164 | decorators |= C1_MASK_BOOLEAN; |
| 2165 | } |
| 2166 | if (type == T_ARRAY || type == T_OBJECT) { |
| 2167 | decorators |= ON_UNKNOWN_OOP_REF; |
| 2168 | } |
| 2169 | |
| 2170 | LIR_Opr result = rlock_result(x, type); |
| 2171 | access_load_at(decorators, type, |
| 2172 | src, off.result(), result); |
| 2173 | } |
| 2174 | |
| 2175 | |
| 2176 | void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { |
| 2177 | BasicType type = x->basic_type(); |
| 2178 | LIRItem src(x->object(), this); |
| 2179 | LIRItem off(x->offset(), this); |
| 2180 | LIRItem data(x->value(), this); |
| 2181 | |
| 2182 | src.load_item(); |
| 2183 | if (type == T_BOOLEAN || type == T_BYTE) { |
| 2184 | data.load_byte_item(); |
| 2185 | } else { |
| 2186 | data.load_item(); |
| 2187 | } |
| 2188 | off.load_item(); |
| 2189 | |
| 2190 | set_no_result(x); |
| 2191 | |
| 2192 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; |
| 2193 | if (type == T_ARRAY || type == T_OBJECT) { |
| 2194 | decorators |= ON_UNKNOWN_OOP_REF; |
| 2195 | } |
| 2196 | if (x->is_volatile()) { |
| 2197 | decorators |= MO_SEQ_CST; |
| 2198 | } |
| 2199 | access_store_at(decorators, type, src, off.result(), data.result()); |
| 2200 | } |
| 2201 | |
| 2202 | void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { |
| 2203 | BasicType type = x->basic_type(); |
| 2204 | LIRItem src(x->object(), this); |
| 2205 | LIRItem off(x->offset(), this); |
| 2206 | LIRItem value(x->value(), this); |
| 2207 | |
| 2208 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; |
| 2209 | |
| 2210 | if (type == T_ARRAY || type == T_OBJECT) { |
| 2211 | decorators |= ON_UNKNOWN_OOP_REF; |
| 2212 | } |
| 2213 | |
| 2214 | LIR_Opr result; |
| 2215 | if (x->is_add()) { |
| 2216 | result = access_atomic_add_at(decorators, type, src, off, value); |
| 2217 | } else { |
| 2218 | result = access_atomic_xchg_at(decorators, type, src, off, value); |
| 2219 | } |
| 2220 | set_result(x, result); |
| 2221 | } |
| 2222 | |
| 2223 | void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { |
| 2224 | int lng = x->length(); |
| 2225 | |
| 2226 | for (int i = 0; i < lng; i++) { |
| 2227 | SwitchRange* one_range = x->at(i); |
| 2228 | int low_key = one_range->low_key(); |
| 2229 | int high_key = one_range->high_key(); |
| 2230 | BlockBegin* dest = one_range->sux(); |
| 2231 | if (low_key == high_key) { |
| 2232 | __ cmp(lir_cond_equal, value, low_key); |
| 2233 | __ branch(lir_cond_equal, T_INT, dest); |
| 2234 | } else if (high_key - low_key == 1) { |
| 2235 | __ cmp(lir_cond_equal, value, low_key); |
| 2236 | __ branch(lir_cond_equal, T_INT, dest); |
| 2237 | __ cmp(lir_cond_equal, value, high_key); |
| 2238 | __ branch(lir_cond_equal, T_INT, dest); |
| 2239 | } else { |
| 2240 | LabelObj* L = new LabelObj(); |
| 2241 | __ cmp(lir_cond_less, value, low_key); |
| 2242 | __ branch(lir_cond_less, T_INT, L->label()); |
| 2243 | __ cmp(lir_cond_lessEqual, value, high_key); |
| 2244 | __ branch(lir_cond_lessEqual, T_INT, dest); |
| 2245 | __ branch_destination(L->label()); |
| 2246 | } |
| 2247 | } |
| 2248 | __ jump(default_sux); |
| 2249 | } |
| 2250 | |
| 2251 | |
| 2252 | SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { |
| 2253 | SwitchRangeList* res = new SwitchRangeList(); |
| 2254 | int len = x->length(); |
| 2255 | if (len > 0) { |
| 2256 | BlockBegin* sux = x->sux_at(0); |
| 2257 | int key = x->lo_key(); |
| 2258 | BlockBegin* default_sux = x->default_sux(); |
| 2259 | SwitchRange* range = new SwitchRange(key, sux); |
| 2260 | for (int i = 0; i < len; i++, key++) { |
| 2261 | BlockBegin* new_sux = x->sux_at(i); |
| 2262 | if (sux == new_sux) { |
| 2263 | // still in same range |
| 2264 | range->set_high_key(key); |
| 2265 | } else { |
| 2266 | // skip tests which explicitly dispatch to the default |
| 2267 | if (sux != default_sux) { |
| 2268 | res->append(range); |
| 2269 | } |
| 2270 | range = new SwitchRange(key, new_sux); |
| 2271 | } |
| 2272 | sux = new_sux; |
| 2273 | } |
| 2274 | if (res->length() == 0 || res->last() != range) res->append(range); |
| 2275 | } |
| 2276 | return res; |
| 2277 | } |
| 2278 | |
| 2279 | |
| 2280 | // we expect the keys to be sorted by increasing value |
| 2281 | SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { |
| 2282 | SwitchRangeList* res = new SwitchRangeList(); |
| 2283 | int len = x->length(); |
| 2284 | if (len > 0) { |
| 2285 | BlockBegin* default_sux = x->default_sux(); |
| 2286 | int key = x->key_at(0); |
| 2287 | BlockBegin* sux = x->sux_at(0); |
| 2288 | SwitchRange* range = new SwitchRange(key, sux); |
| 2289 | for (int i = 1; i < len; i++) { |
| 2290 | int new_key = x->key_at(i); |
| 2291 | BlockBegin* new_sux = x->sux_at(i); |
| 2292 | if (key+1 == new_key && sux == new_sux) { |
| 2293 | // still in same range |
| 2294 | range->set_high_key(new_key); |
| 2295 | } else { |
| 2296 | // skip tests which explicitly dispatch to the default |
| 2297 | if (range->sux() != default_sux) { |
| 2298 | res->append(range); |
| 2299 | } |
| 2300 | range = new SwitchRange(new_key, new_sux); |
| 2301 | } |
| 2302 | key = new_key; |
| 2303 | sux = new_sux; |
| 2304 | } |
| 2305 | if (res->length() == 0 || res->last() != range) res->append(range); |
| 2306 | } |
| 2307 | return res; |
| 2308 | } |
| 2309 | |
| 2310 | |
| 2311 | void LIRGenerator::do_TableSwitch(TableSwitch* x) { |
| 2312 | LIRItem tag(x->tag(), this); |
| 2313 | tag.load_item(); |
| 2314 | set_no_result(x); |
| 2315 | |
| 2316 | if (x->is_safepoint()) { |
| 2317 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
| 2318 | } |
| 2319 | |
| 2320 | // move values into phi locations |
| 2321 | move_to_phi(x->state()); |
| 2322 | |
| 2323 | int lo_key = x->lo_key(); |
| 2324 | int len = x->length(); |
| 2325 | assert(lo_key <= (lo_key + (len - 1)), "integer overflow" ); |
| 2326 | LIR_Opr value = tag.result(); |
| 2327 | |
| 2328 | if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { |
| 2329 | ciMethod* method = x->state()->scope()->method(); |
| 2330 | ciMethodData* md = method->method_data_or_null(); |
| 2331 | assert(md != NULL, "Sanity" ); |
| 2332 | ciProfileData* data = md->bci_to_data(x->state()->bci()); |
| 2333 | assert(data != NULL, "must have profiling data" ); |
| 2334 | assert(data->is_MultiBranchData(), "bad profile data?" ); |
| 2335 | int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); |
| 2336 | LIR_Opr md_reg = new_register(T_METADATA); |
| 2337 | __ metadata2reg(md->constant_encoding(), md_reg); |
| 2338 | LIR_Opr data_offset_reg = new_pointer_register(); |
| 2339 | LIR_Opr tmp_reg = new_pointer_register(); |
| 2340 | |
| 2341 | __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); |
| 2342 | for (int i = 0; i < len; i++) { |
| 2343 | int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); |
| 2344 | __ cmp(lir_cond_equal, value, i + lo_key); |
| 2345 | __ move(data_offset_reg, tmp_reg); |
| 2346 | __ cmove(lir_cond_equal, |
| 2347 | LIR_OprFact::intptrConst(count_offset), |
| 2348 | tmp_reg, |
| 2349 | data_offset_reg, T_INT); |
| 2350 | } |
| 2351 | |
| 2352 | LIR_Opr data_reg = new_pointer_register(); |
| 2353 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
| 2354 | __ move(data_addr, data_reg); |
| 2355 | __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); |
| 2356 | __ move(data_reg, data_addr); |
| 2357 | } |
| 2358 | |
| 2359 | if (UseTableRanges) { |
| 2360 | do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); |
| 2361 | } else { |
| 2362 | for (int i = 0; i < len; i++) { |
| 2363 | __ cmp(lir_cond_equal, value, i + lo_key); |
| 2364 | __ branch(lir_cond_equal, T_INT, x->sux_at(i)); |
| 2365 | } |
| 2366 | __ jump(x->default_sux()); |
| 2367 | } |
| 2368 | } |
| 2369 | |
| 2370 | |
| 2371 | void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { |
| 2372 | LIRItem tag(x->tag(), this); |
| 2373 | tag.load_item(); |
| 2374 | set_no_result(x); |
| 2375 | |
| 2376 | if (x->is_safepoint()) { |
| 2377 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
| 2378 | } |
| 2379 | |
| 2380 | // move values into phi locations |
| 2381 | move_to_phi(x->state()); |
| 2382 | |
| 2383 | LIR_Opr value = tag.result(); |
| 2384 | int len = x->length(); |
| 2385 | |
| 2386 | if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { |
| 2387 | ciMethod* method = x->state()->scope()->method(); |
| 2388 | ciMethodData* md = method->method_data_or_null(); |
| 2389 | assert(md != NULL, "Sanity" ); |
| 2390 | ciProfileData* data = md->bci_to_data(x->state()->bci()); |
| 2391 | assert(data != NULL, "must have profiling data" ); |
| 2392 | assert(data->is_MultiBranchData(), "bad profile data?" ); |
| 2393 | int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); |
| 2394 | LIR_Opr md_reg = new_register(T_METADATA); |
| 2395 | __ metadata2reg(md->constant_encoding(), md_reg); |
| 2396 | LIR_Opr data_offset_reg = new_pointer_register(); |
| 2397 | LIR_Opr tmp_reg = new_pointer_register(); |
| 2398 | |
| 2399 | __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); |
| 2400 | for (int i = 0; i < len; i++) { |
| 2401 | int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); |
| 2402 | __ cmp(lir_cond_equal, value, x->key_at(i)); |
| 2403 | __ move(data_offset_reg, tmp_reg); |
| 2404 | __ cmove(lir_cond_equal, |
| 2405 | LIR_OprFact::intptrConst(count_offset), |
| 2406 | tmp_reg, |
| 2407 | data_offset_reg, T_INT); |
| 2408 | } |
| 2409 | |
| 2410 | LIR_Opr data_reg = new_pointer_register(); |
| 2411 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
| 2412 | __ move(data_addr, data_reg); |
| 2413 | __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); |
| 2414 | __ move(data_reg, data_addr); |
| 2415 | } |
| 2416 | |
| 2417 | if (UseTableRanges) { |
| 2418 | do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); |
| 2419 | } else { |
| 2420 | int len = x->length(); |
| 2421 | for (int i = 0; i < len; i++) { |
| 2422 | __ cmp(lir_cond_equal, value, x->key_at(i)); |
| 2423 | __ branch(lir_cond_equal, T_INT, x->sux_at(i)); |
| 2424 | } |
| 2425 | __ jump(x->default_sux()); |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | |
| 2430 | void LIRGenerator::do_Goto(Goto* x) { |
| 2431 | set_no_result(x); |
| 2432 | |
| 2433 | if (block()->next()->as_OsrEntry()) { |
| 2434 | // need to free up storage used for OSR entry point |
| 2435 | LIR_Opr osrBuffer = block()->next()->operand(); |
| 2436 | BasicTypeList signature; |
| 2437 | signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer |
| 2438 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
| 2439 | __ move(osrBuffer, cc->args()->at(0)); |
| 2440 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), |
| 2441 | getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); |
| 2442 | } |
| 2443 | |
| 2444 | if (x->is_safepoint()) { |
| 2445 | ValueStack* state = x->state_before() ? x->state_before() : x->state(); |
| 2446 | |
| 2447 | // increment backedge counter if needed |
| 2448 | CodeEmitInfo* info = state_for(x, state); |
| 2449 | increment_backedge_counter(info, x->profiled_bci()); |
| 2450 | CodeEmitInfo* safepoint_info = state_for(x, state); |
| 2451 | __ safepoint(safepoint_poll_register(), safepoint_info); |
| 2452 | } |
| 2453 | |
| 2454 | // Gotos can be folded Ifs, handle this case. |
| 2455 | if (x->should_profile()) { |
| 2456 | ciMethod* method = x->profiled_method(); |
| 2457 | assert(method != NULL, "method should be set if branch is profiled" ); |
| 2458 | ciMethodData* md = method->method_data_or_null(); |
| 2459 | assert(md != NULL, "Sanity" ); |
| 2460 | ciProfileData* data = md->bci_to_data(x->profiled_bci()); |
| 2461 | assert(data != NULL, "must have profiling data" ); |
| 2462 | int offset; |
| 2463 | if (x->direction() == Goto::taken) { |
| 2464 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
| 2465 | offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); |
| 2466 | } else if (x->direction() == Goto::not_taken) { |
| 2467 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
| 2468 | offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); |
| 2469 | } else { |
| 2470 | assert(data->is_JumpData(), "need JumpData for branches" ); |
| 2471 | offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); |
| 2472 | } |
| 2473 | LIR_Opr md_reg = new_register(T_METADATA); |
| 2474 | __ metadata2reg(md->constant_encoding(), md_reg); |
| 2475 | |
| 2476 | increment_counter(new LIR_Address(md_reg, offset, |
| 2477 | NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); |
| 2478 | } |
| 2479 | |
| 2480 | // emit phi-instruction move after safepoint since this simplifies |
| 2481 | // describing the state as the safepoint. |
| 2482 | move_to_phi(x->state()); |
| 2483 | |
| 2484 | __ jump(x->default_sux()); |
| 2485 | } |
| 2486 | |
| 2487 | /** |
| 2488 | * Emit profiling code if needed for arguments, parameters, return value types |
| 2489 | * |
| 2490 | * @param md MDO the code will update at runtime |
| 2491 | * @param md_base_offset common offset in the MDO for this profile and subsequent ones |
| 2492 | * @param md_offset offset in the MDO (on top of md_base_offset) for this profile |
| 2493 | * @param profiled_k current profile |
| 2494 | * @param obj IR node for the object to be profiled |
| 2495 | * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). |
| 2496 | * Set once we find an update to make and use for next ones. |
| 2497 | * @param not_null true if we know obj cannot be null |
| 2498 | * @param signature_at_call_k signature at call for obj |
| 2499 | * @param callee_signature_k signature of callee for obj |
| 2500 | * at call and callee signatures differ at method handle call |
| 2501 | * @return the only klass we know will ever be seen at this profile point |
| 2502 | */ |
| 2503 | ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, |
| 2504 | Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, |
| 2505 | ciKlass* callee_signature_k) { |
| 2506 | ciKlass* result = NULL; |
| 2507 | bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); |
| 2508 | bool do_update = !TypeEntries::is_type_unknown(profiled_k); |
| 2509 | // known not to be null or null bit already set and already set to |
| 2510 | // unknown: nothing we can do to improve profiling |
| 2511 | if (!do_null && !do_update) { |
| 2512 | return result; |
| 2513 | } |
| 2514 | |
| 2515 | ciKlass* exact_klass = NULL; |
| 2516 | Compilation* comp = Compilation::current(); |
| 2517 | if (do_update) { |
| 2518 | // try to find exact type, using CHA if possible, so that loading |
| 2519 | // the klass from the object can be avoided |
| 2520 | ciType* type = obj->exact_type(); |
| 2521 | if (type == NULL) { |
| 2522 | type = obj->declared_type(); |
| 2523 | type = comp->cha_exact_type(type); |
| 2524 | } |
| 2525 | assert(type == NULL || type->is_klass(), "type should be class" ); |
| 2526 | exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; |
| 2527 | |
| 2528 | do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; |
| 2529 | } |
| 2530 | |
| 2531 | if (!do_null && !do_update) { |
| 2532 | return result; |
| 2533 | } |
| 2534 | |
| 2535 | ciKlass* exact_signature_k = NULL; |
| 2536 | if (do_update) { |
| 2537 | // Is the type from the signature exact (the only one possible)? |
| 2538 | exact_signature_k = signature_at_call_k->exact_klass(); |
| 2539 | if (exact_signature_k == NULL) { |
| 2540 | exact_signature_k = comp->cha_exact_type(signature_at_call_k); |
| 2541 | } else { |
| 2542 | result = exact_signature_k; |
| 2543 | // Known statically. No need to emit any code: prevent |
| 2544 | // LIR_Assembler::emit_profile_type() from emitting useless code |
| 2545 | profiled_k = ciTypeEntries::with_status(result, profiled_k); |
| 2546 | } |
| 2547 | // exact_klass and exact_signature_k can be both non NULL but |
| 2548 | // different if exact_klass is loaded after the ciObject for |
| 2549 | // exact_signature_k is created. |
| 2550 | if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { |
| 2551 | // sometimes the type of the signature is better than the best type |
| 2552 | // the compiler has |
| 2553 | exact_klass = exact_signature_k; |
| 2554 | } |
| 2555 | if (callee_signature_k != NULL && |
| 2556 | callee_signature_k != signature_at_call_k) { |
| 2557 | ciKlass* improved_klass = callee_signature_k->exact_klass(); |
| 2558 | if (improved_klass == NULL) { |
| 2559 | improved_klass = comp->cha_exact_type(callee_signature_k); |
| 2560 | } |
| 2561 | if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { |
| 2562 | exact_klass = exact_signature_k; |
| 2563 | } |
| 2564 | } |
| 2565 | do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; |
| 2566 | } |
| 2567 | |
| 2568 | if (!do_null && !do_update) { |
| 2569 | return result; |
| 2570 | } |
| 2571 | |
| 2572 | if (mdp == LIR_OprFact::illegalOpr) { |
| 2573 | mdp = new_register(T_METADATA); |
| 2574 | __ metadata2reg(md->constant_encoding(), mdp); |
| 2575 | if (md_base_offset != 0) { |
| 2576 | LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); |
| 2577 | mdp = new_pointer_register(); |
| 2578 | __ leal(LIR_OprFact::address(base_type_address), mdp); |
| 2579 | } |
| 2580 | } |
| 2581 | LIRItem value(obj, this); |
| 2582 | value.load_item(); |
| 2583 | __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), |
| 2584 | value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); |
| 2585 | return result; |
| 2586 | } |
| 2587 | |
| 2588 | // profile parameters on entry to the root of the compilation |
| 2589 | void LIRGenerator::profile_parameters(Base* x) { |
| 2590 | if (compilation()->profile_parameters()) { |
| 2591 | CallingConvention* args = compilation()->frame_map()->incoming_arguments(); |
| 2592 | ciMethodData* md = scope()->method()->method_data_or_null(); |
| 2593 | assert(md != NULL, "Sanity" ); |
| 2594 | |
| 2595 | if (md->parameters_type_data() != NULL) { |
| 2596 | ciParametersTypeData* parameters_type_data = md->parameters_type_data(); |
| 2597 | ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); |
| 2598 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
| 2599 | for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { |
| 2600 | LIR_Opr src = args->at(i); |
| 2601 | assert(!src->is_illegal(), "check" ); |
| 2602 | BasicType t = src->type(); |
| 2603 | if (t == T_OBJECT || t == T_ARRAY) { |
| 2604 | intptr_t profiled_k = parameters->type(j); |
| 2605 | Local* local = x->state()->local_at(java_index)->as_Local(); |
| 2606 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), |
| 2607 | in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), |
| 2608 | profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); |
| 2609 | // If the profile is known statically set it once for all and do not emit any code |
| 2610 | if (exact != NULL) { |
| 2611 | md->set_parameter_type(j, exact); |
| 2612 | } |
| 2613 | j++; |
| 2614 | } |
| 2615 | java_index += type2size[t]; |
| 2616 | } |
| 2617 | } |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | void LIRGenerator::do_Base(Base* x) { |
| 2622 | __ std_entry(LIR_OprFact::illegalOpr); |
| 2623 | // Emit moves from physical registers / stack slots to virtual registers |
| 2624 | CallingConvention* args = compilation()->frame_map()->incoming_arguments(); |
| 2625 | IRScope* irScope = compilation()->hir()->top_scope(); |
| 2626 | int java_index = 0; |
| 2627 | for (int i = 0; i < args->length(); i++) { |
| 2628 | LIR_Opr src = args->at(i); |
| 2629 | assert(!src->is_illegal(), "check" ); |
| 2630 | BasicType t = src->type(); |
| 2631 | |
| 2632 | // Types which are smaller than int are passed as int, so |
| 2633 | // correct the type which passed. |
| 2634 | switch (t) { |
| 2635 | case T_BYTE: |
| 2636 | case T_BOOLEAN: |
| 2637 | case T_SHORT: |
| 2638 | case T_CHAR: |
| 2639 | t = T_INT; |
| 2640 | break; |
| 2641 | default: |
| 2642 | break; |
| 2643 | } |
| 2644 | |
| 2645 | LIR_Opr dest = new_register(t); |
| 2646 | __ move(src, dest); |
| 2647 | |
| 2648 | // Assign new location to Local instruction for this local |
| 2649 | Local* local = x->state()->local_at(java_index)->as_Local(); |
| 2650 | assert(local != NULL, "Locals for incoming arguments must have been created" ); |
| 2651 | #ifndef __SOFTFP__ |
| 2652 | // The java calling convention passes double as long and float as int. |
| 2653 | assert(as_ValueType(t)->tag() == local->type()->tag(), "check" ); |
| 2654 | #endif // __SOFTFP__ |
| 2655 | local->set_operand(dest); |
| 2656 | _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); |
| 2657 | java_index += type2size[t]; |
| 2658 | } |
| 2659 | |
| 2660 | if (compilation()->env()->dtrace_method_probes()) { |
| 2661 | BasicTypeList signature; |
| 2662 | signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
| 2663 | signature.append(T_METADATA); // Method* |
| 2664 | LIR_OprList* args = new LIR_OprList(); |
| 2665 | args->append(getThreadPointer()); |
| 2666 | LIR_Opr meth = new_register(T_METADATA); |
| 2667 | __ metadata2reg(method()->constant_encoding(), meth); |
| 2668 | args->append(meth); |
| 2669 | call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); |
| 2670 | } |
| 2671 | |
| 2672 | if (method()->is_synchronized()) { |
| 2673 | LIR_Opr obj; |
| 2674 | if (method()->is_static()) { |
| 2675 | obj = new_register(T_OBJECT); |
| 2676 | __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); |
| 2677 | } else { |
| 2678 | Local* receiver = x->state()->local_at(0)->as_Local(); |
| 2679 | assert(receiver != NULL, "must already exist" ); |
| 2680 | obj = receiver->operand(); |
| 2681 | } |
| 2682 | assert(obj->is_valid(), "must be valid" ); |
| 2683 | |
| 2684 | if (method()->is_synchronized() && GenerateSynchronizationCode) { |
| 2685 | LIR_Opr lock = syncLockOpr(); |
| 2686 | __ load_stack_address_monitor(0, lock); |
| 2687 | |
| 2688 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); |
| 2689 | CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); |
| 2690 | |
| 2691 | // receiver is guaranteed non-NULL so don't need CodeEmitInfo |
| 2692 | __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); |
| 2693 | } |
| 2694 | } |
| 2695 | if (compilation()->age_code()) { |
| 2696 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); |
| 2697 | decrement_age(info); |
| 2698 | } |
| 2699 | // increment invocation counters if needed |
| 2700 | if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. |
| 2701 | profile_parameters(x); |
| 2702 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); |
| 2703 | increment_invocation_counter(info); |
| 2704 | } |
| 2705 | |
| 2706 | // all blocks with a successor must end with an unconditional jump |
| 2707 | // to the successor even if they are consecutive |
| 2708 | __ jump(x->default_sux()); |
| 2709 | } |
| 2710 | |
| 2711 | |
| 2712 | void LIRGenerator::do_OsrEntry(OsrEntry* x) { |
| 2713 | // construct our frame and model the production of incoming pointer |
| 2714 | // to the OSR buffer. |
| 2715 | __ osr_entry(LIR_Assembler::osrBufferPointer()); |
| 2716 | LIR_Opr result = rlock_result(x); |
| 2717 | __ move(LIR_Assembler::osrBufferPointer(), result); |
| 2718 | } |
| 2719 | |
| 2720 | |
| 2721 | void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { |
| 2722 | assert(args->length() == arg_list->length(), |
| 2723 | "args=%d, arg_list=%d" , args->length(), arg_list->length()); |
| 2724 | for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { |
| 2725 | LIRItem* param = args->at(i); |
| 2726 | LIR_Opr loc = arg_list->at(i); |
| 2727 | if (loc->is_register()) { |
| 2728 | param->load_item_force(loc); |
| 2729 | } else { |
| 2730 | LIR_Address* addr = loc->as_address_ptr(); |
| 2731 | param->load_for_store(addr->type()); |
| 2732 | if (addr->type() == T_OBJECT) { |
| 2733 | __ move_wide(param->result(), addr); |
| 2734 | } else |
| 2735 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
| 2736 | __ unaligned_move(param->result(), addr); |
| 2737 | } else { |
| 2738 | __ move(param->result(), addr); |
| 2739 | } |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | if (x->has_receiver()) { |
| 2744 | LIRItem* receiver = args->at(0); |
| 2745 | LIR_Opr loc = arg_list->at(0); |
| 2746 | if (loc->is_register()) { |
| 2747 | receiver->load_item_force(loc); |
| 2748 | } else { |
| 2749 | assert(loc->is_address(), "just checking" ); |
| 2750 | receiver->load_for_store(T_OBJECT); |
| 2751 | __ move_wide(receiver->result(), loc->as_address_ptr()); |
| 2752 | } |
| 2753 | } |
| 2754 | } |
| 2755 | |
| 2756 | |
| 2757 | // Visits all arguments, returns appropriate items without loading them |
| 2758 | LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { |
| 2759 | LIRItemList* argument_items = new LIRItemList(); |
| 2760 | if (x->has_receiver()) { |
| 2761 | LIRItem* receiver = new LIRItem(x->receiver(), this); |
| 2762 | argument_items->append(receiver); |
| 2763 | } |
| 2764 | for (int i = 0; i < x->number_of_arguments(); i++) { |
| 2765 | LIRItem* param = new LIRItem(x->argument_at(i), this); |
| 2766 | argument_items->append(param); |
| 2767 | } |
| 2768 | return argument_items; |
| 2769 | } |
| 2770 | |
| 2771 | |
| 2772 | // The invoke with receiver has following phases: |
| 2773 | // a) traverse and load/lock receiver; |
| 2774 | // b) traverse all arguments -> item-array (invoke_visit_argument) |
| 2775 | // c) push receiver on stack |
| 2776 | // d) load each of the items and push on stack |
| 2777 | // e) unlock receiver |
| 2778 | // f) move receiver into receiver-register %o0 |
| 2779 | // g) lock result registers and emit call operation |
| 2780 | // |
| 2781 | // Before issuing a call, we must spill-save all values on stack |
| 2782 | // that are in caller-save register. "spill-save" moves those registers |
| 2783 | // either in a free callee-save register or spills them if no free |
| 2784 | // callee save register is available. |
| 2785 | // |
| 2786 | // The problem is where to invoke spill-save. |
| 2787 | // - if invoked between e) and f), we may lock callee save |
| 2788 | // register in "spill-save" that destroys the receiver register |
| 2789 | // before f) is executed |
| 2790 | // - if we rearrange f) to be earlier (by loading %o0) it |
| 2791 | // may destroy a value on the stack that is currently in %o0 |
| 2792 | // and is waiting to be spilled |
| 2793 | // - if we keep the receiver locked while doing spill-save, |
| 2794 | // we cannot spill it as it is spill-locked |
| 2795 | // |
| 2796 | void LIRGenerator::do_Invoke(Invoke* x) { |
| 2797 | CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); |
| 2798 | |
| 2799 | LIR_OprList* arg_list = cc->args(); |
| 2800 | LIRItemList* args = invoke_visit_arguments(x); |
| 2801 | LIR_Opr receiver = LIR_OprFact::illegalOpr; |
| 2802 | |
| 2803 | // setup result register |
| 2804 | LIR_Opr result_register = LIR_OprFact::illegalOpr; |
| 2805 | if (x->type() != voidType) { |
| 2806 | result_register = result_register_for(x->type()); |
| 2807 | } |
| 2808 | |
| 2809 | CodeEmitInfo* info = state_for(x, x->state()); |
| 2810 | |
| 2811 | invoke_load_arguments(x, args, arg_list); |
| 2812 | |
| 2813 | if (x->has_receiver()) { |
| 2814 | args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); |
| 2815 | receiver = args->at(0)->result(); |
| 2816 | } |
| 2817 | |
| 2818 | // emit invoke code |
| 2819 | assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match" ); |
| 2820 | |
| 2821 | // JSR 292 |
| 2822 | // Preserve the SP over MethodHandle call sites, if needed. |
| 2823 | ciMethod* target = x->target(); |
| 2824 | bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? |
| 2825 | target->is_method_handle_intrinsic() || |
| 2826 | target->is_compiled_lambda_form()); |
| 2827 | if (is_method_handle_invoke) { |
| 2828 | info->set_is_method_handle_invoke(true); |
| 2829 | if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { |
| 2830 | __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | switch (x->code()) { |
| 2835 | case Bytecodes::_invokestatic: |
| 2836 | __ call_static(target, result_register, |
| 2837 | SharedRuntime::get_resolve_static_call_stub(), |
| 2838 | arg_list, info); |
| 2839 | break; |
| 2840 | case Bytecodes::_invokespecial: |
| 2841 | case Bytecodes::_invokevirtual: |
| 2842 | case Bytecodes::_invokeinterface: |
| 2843 | // for loaded and final (method or class) target we still produce an inline cache, |
| 2844 | // in order to be able to call mixed mode |
| 2845 | if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { |
| 2846 | __ call_opt_virtual(target, receiver, result_register, |
| 2847 | SharedRuntime::get_resolve_opt_virtual_call_stub(), |
| 2848 | arg_list, info); |
| 2849 | } else if (x->vtable_index() < 0) { |
| 2850 | __ call_icvirtual(target, receiver, result_register, |
| 2851 | SharedRuntime::get_resolve_virtual_call_stub(), |
| 2852 | arg_list, info); |
| 2853 | } else { |
| 2854 | int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes(); |
| 2855 | int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes(); |
| 2856 | __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); |
| 2857 | } |
| 2858 | break; |
| 2859 | case Bytecodes::_invokedynamic: { |
| 2860 | __ call_dynamic(target, receiver, result_register, |
| 2861 | SharedRuntime::get_resolve_static_call_stub(), |
| 2862 | arg_list, info); |
| 2863 | break; |
| 2864 | } |
| 2865 | default: |
| 2866 | fatal("unexpected bytecode: %s" , Bytecodes::name(x->code())); |
| 2867 | break; |
| 2868 | } |
| 2869 | |
| 2870 | // JSR 292 |
| 2871 | // Restore the SP after MethodHandle call sites, if needed. |
| 2872 | if (is_method_handle_invoke |
| 2873 | && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { |
| 2874 | __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); |
| 2875 | } |
| 2876 | |
| 2877 | if (x->type()->is_float() || x->type()->is_double()) { |
| 2878 | // Force rounding of results from non-strictfp when in strictfp |
| 2879 | // scope (or when we don't know the strictness of the callee, to |
| 2880 | // be safe.) |
| 2881 | if (method()->is_strict()) { |
| 2882 | if (!x->target_is_loaded() || !x->target_is_strictfp()) { |
| 2883 | result_register = round_item(result_register); |
| 2884 | } |
| 2885 | } |
| 2886 | } |
| 2887 | |
| 2888 | if (result_register->is_valid()) { |
| 2889 | LIR_Opr result = rlock_result(x); |
| 2890 | __ move(result_register, result); |
| 2891 | } |
| 2892 | } |
| 2893 | |
| 2894 | |
| 2895 | void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { |
| 2896 | assert(x->number_of_arguments() == 1, "wrong type" ); |
| 2897 | LIRItem value (x->argument_at(0), this); |
| 2898 | LIR_Opr reg = rlock_result(x); |
| 2899 | value.load_item(); |
| 2900 | LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); |
| 2901 | __ move(tmp, reg); |
| 2902 | } |
| 2903 | |
| 2904 | |
| 2905 | |
| 2906 | // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() |
| 2907 | void LIRGenerator::do_IfOp(IfOp* x) { |
| 2908 | #ifdef ASSERT |
| 2909 | { |
| 2910 | ValueTag xtag = x->x()->type()->tag(); |
| 2911 | ValueTag ttag = x->tval()->type()->tag(); |
| 2912 | assert(xtag == intTag || xtag == objectTag, "cannot handle others" ); |
| 2913 | assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others" ); |
| 2914 | assert(ttag == x->fval()->type()->tag(), "cannot handle others" ); |
| 2915 | } |
| 2916 | #endif |
| 2917 | |
| 2918 | LIRItem left(x->x(), this); |
| 2919 | LIRItem right(x->y(), this); |
| 2920 | left.load_item(); |
| 2921 | if (can_inline_as_constant(right.value())) { |
| 2922 | right.dont_load_item(); |
| 2923 | } else { |
| 2924 | right.load_item(); |
| 2925 | } |
| 2926 | |
| 2927 | LIRItem t_val(x->tval(), this); |
| 2928 | LIRItem f_val(x->fval(), this); |
| 2929 | t_val.dont_load_item(); |
| 2930 | f_val.dont_load_item(); |
| 2931 | LIR_Opr reg = rlock_result(x); |
| 2932 | |
| 2933 | __ cmp(lir_cond(x->cond()), left.result(), right.result()); |
| 2934 | __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); |
| 2935 | } |
| 2936 | |
| 2937 | #ifdef JFR_HAVE_INTRINSICS |
| 2938 | void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { |
| 2939 | CodeEmitInfo* info = state_for(x); |
| 2940 | CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check |
| 2941 | |
| 2942 | assert(info != NULL, "must have info" ); |
| 2943 | LIRItem arg(x->argument_at(0), this); |
| 2944 | |
| 2945 | arg.load_item(); |
| 2946 | LIR_Opr klass = new_register(T_METADATA); |
| 2947 | __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info); |
| 2948 | LIR_Opr id = new_register(T_LONG); |
| 2949 | ByteSize offset = KLASS_TRACE_ID_OFFSET; |
| 2950 | LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); |
| 2951 | |
| 2952 | __ move(trace_id_addr, id); |
| 2953 | __ logical_or(id, LIR_OprFact::longConst(0x01l), id); |
| 2954 | __ store(id, trace_id_addr); |
| 2955 | |
| 2956 | #ifdef TRACE_ID_META_BITS |
| 2957 | __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id); |
| 2958 | #endif |
| 2959 | #ifdef TRACE_ID_SHIFT |
| 2960 | __ unsigned_shift_right(id, TRACE_ID_SHIFT, id); |
| 2961 | #endif |
| 2962 | |
| 2963 | __ move(id, rlock_result(x)); |
| 2964 | } |
| 2965 | |
| 2966 | void LIRGenerator::do_getEventWriter(Intrinsic* x) { |
| 2967 | LabelObj* L_end = new LabelObj(); |
| 2968 | |
| 2969 | LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), |
| 2970 | in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), |
| 2971 | T_OBJECT); |
| 2972 | LIR_Opr result = rlock_result(x); |
| 2973 | __ move_wide(jobj_addr, result); |
| 2974 | __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL)); |
| 2975 | __ branch(lir_cond_equal, T_OBJECT, L_end->label()); |
| 2976 | |
| 2977 | LIR_Opr jobj = new_register(T_OBJECT); |
| 2978 | __ move(result, jobj); |
| 2979 | access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); |
| 2980 | |
| 2981 | __ branch_destination(L_end->label()); |
| 2982 | } |
| 2983 | |
| 2984 | #endif |
| 2985 | |
| 2986 | |
| 2987 | void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { |
| 2988 | assert(x->number_of_arguments() == 0, "wrong type" ); |
| 2989 | // Enforce computation of _reserved_argument_area_size which is required on some platforms. |
| 2990 | BasicTypeList signature; |
| 2991 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
| 2992 | LIR_Opr reg = result_register_for(x->type()); |
| 2993 | __ call_runtime_leaf(routine, getThreadTemp(), |
| 2994 | reg, new LIR_OprList()); |
| 2995 | LIR_Opr result = rlock_result(x); |
| 2996 | __ move(reg, result); |
| 2997 | } |
| 2998 | |
| 2999 | |
| 3000 | |
| 3001 | void LIRGenerator::do_Intrinsic(Intrinsic* x) { |
| 3002 | switch (x->id()) { |
| 3003 | case vmIntrinsics::_intBitsToFloat : |
| 3004 | case vmIntrinsics::_doubleToRawLongBits : |
| 3005 | case vmIntrinsics::_longBitsToDouble : |
| 3006 | case vmIntrinsics::_floatToRawIntBits : { |
| 3007 | do_FPIntrinsics(x); |
| 3008 | break; |
| 3009 | } |
| 3010 | |
| 3011 | #ifdef JFR_HAVE_INTRINSICS |
| 3012 | case vmIntrinsics::_getClassId: |
| 3013 | do_ClassIDIntrinsic(x); |
| 3014 | break; |
| 3015 | case vmIntrinsics::_getEventWriter: |
| 3016 | do_getEventWriter(x); |
| 3017 | break; |
| 3018 | case vmIntrinsics::_counterTime: |
| 3019 | do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); |
| 3020 | break; |
| 3021 | #endif |
| 3022 | |
| 3023 | case vmIntrinsics::_currentTimeMillis: |
| 3024 | do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); |
| 3025 | break; |
| 3026 | |
| 3027 | case vmIntrinsics::_nanoTime: |
| 3028 | do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); |
| 3029 | break; |
| 3030 | |
| 3031 | case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; |
| 3032 | case vmIntrinsics::_isInstance: do_isInstance(x); break; |
| 3033 | case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; |
| 3034 | case vmIntrinsics::_getClass: do_getClass(x); break; |
| 3035 | case vmIntrinsics::_currentThread: do_currentThread(x); break; |
| 3036 | |
| 3037 | case vmIntrinsics::_dlog: // fall through |
| 3038 | case vmIntrinsics::_dlog10: // fall through |
| 3039 | case vmIntrinsics::_dabs: // fall through |
| 3040 | case vmIntrinsics::_dsqrt: // fall through |
| 3041 | case vmIntrinsics::_dtan: // fall through |
| 3042 | case vmIntrinsics::_dsin : // fall through |
| 3043 | case vmIntrinsics::_dcos : // fall through |
| 3044 | case vmIntrinsics::_dexp : // fall through |
| 3045 | case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; |
| 3046 | case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; |
| 3047 | |
| 3048 | case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; |
| 3049 | case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; |
| 3050 | |
| 3051 | // java.nio.Buffer.checkIndex |
| 3052 | case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; |
| 3053 | |
| 3054 | case vmIntrinsics::_compareAndSetReference: |
| 3055 | do_CompareAndSwap(x, objectType); |
| 3056 | break; |
| 3057 | case vmIntrinsics::_compareAndSetInt: |
| 3058 | do_CompareAndSwap(x, intType); |
| 3059 | break; |
| 3060 | case vmIntrinsics::_compareAndSetLong: |
| 3061 | do_CompareAndSwap(x, longType); |
| 3062 | break; |
| 3063 | |
| 3064 | case vmIntrinsics::_loadFence : |
| 3065 | __ membar_acquire(); |
| 3066 | break; |
| 3067 | case vmIntrinsics::_storeFence: |
| 3068 | __ membar_release(); |
| 3069 | break; |
| 3070 | case vmIntrinsics::_fullFence : |
| 3071 | __ membar(); |
| 3072 | break; |
| 3073 | case vmIntrinsics::_onSpinWait: |
| 3074 | __ on_spin_wait(); |
| 3075 | break; |
| 3076 | case vmIntrinsics::_Reference_get: |
| 3077 | do_Reference_get(x); |
| 3078 | break; |
| 3079 | |
| 3080 | case vmIntrinsics::_updateCRC32: |
| 3081 | case vmIntrinsics::_updateBytesCRC32: |
| 3082 | case vmIntrinsics::_updateByteBufferCRC32: |
| 3083 | do_update_CRC32(x); |
| 3084 | break; |
| 3085 | |
| 3086 | case vmIntrinsics::_updateBytesCRC32C: |
| 3087 | case vmIntrinsics::_updateDirectByteBufferCRC32C: |
| 3088 | do_update_CRC32C(x); |
| 3089 | break; |
| 3090 | |
| 3091 | case vmIntrinsics::_vectorizedMismatch: |
| 3092 | do_vectorizedMismatch(x); |
| 3093 | break; |
| 3094 | |
| 3095 | default: ShouldNotReachHere(); break; |
| 3096 | } |
| 3097 | } |
| 3098 | |
| 3099 | void LIRGenerator::profile_arguments(ProfileCall* x) { |
| 3100 | if (compilation()->profile_arguments()) { |
| 3101 | int bci = x->bci_of_invoke(); |
| 3102 | ciMethodData* md = x->method()->method_data_or_null(); |
| 3103 | assert(md != NULL, "Sanity" ); |
| 3104 | ciProfileData* data = md->bci_to_data(bci); |
| 3105 | if (data != NULL) { |
| 3106 | if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || |
| 3107 | (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { |
| 3108 | ByteSize = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); |
| 3109 | int base_offset = md->byte_offset_of_slot(data, extra); |
| 3110 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
| 3111 | ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); |
| 3112 | |
| 3113 | Bytecodes::Code bc = x->method()->java_code_at_bci(bci); |
| 3114 | int start = 0; |
| 3115 | int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); |
| 3116 | if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { |
| 3117 | // first argument is not profiled at call (method handle invoke) |
| 3118 | assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected" ); |
| 3119 | start = 1; |
| 3120 | } |
| 3121 | ciSignature* callee_signature = x->callee()->signature(); |
| 3122 | // method handle call to virtual method |
| 3123 | bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); |
| 3124 | ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); |
| 3125 | |
| 3126 | bool ignored_will_link; |
| 3127 | ciSignature* signature_at_call = NULL; |
| 3128 | x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); |
| 3129 | ciSignatureStream signature_at_call_stream(signature_at_call); |
| 3130 | |
| 3131 | // if called through method handle invoke, some arguments may have been popped |
| 3132 | for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { |
| 3133 | int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); |
| 3134 | ciKlass* exact = profile_type(md, base_offset, off, |
| 3135 | args->type(i), x->profiled_arg_at(i+start), mdp, |
| 3136 | !x->arg_needs_null_check(i+start), |
| 3137 | signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); |
| 3138 | if (exact != NULL) { |
| 3139 | md->set_argument_type(bci, i, exact); |
| 3140 | } |
| 3141 | } |
| 3142 | } else { |
| 3143 | #ifdef ASSERT |
| 3144 | Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); |
| 3145 | int n = x->nb_profiled_args(); |
| 3146 | assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || |
| 3147 | (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), |
| 3148 | "only at JSR292 bytecodes" ); |
| 3149 | #endif |
| 3150 | } |
| 3151 | } |
| 3152 | } |
| 3153 | } |
| 3154 | |
| 3155 | // profile parameters on entry to an inlined method |
| 3156 | void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { |
| 3157 | if (compilation()->profile_parameters() && x->inlined()) { |
| 3158 | ciMethodData* md = x->callee()->method_data_or_null(); |
| 3159 | if (md != NULL) { |
| 3160 | ciParametersTypeData* parameters_type_data = md->parameters_type_data(); |
| 3161 | if (parameters_type_data != NULL) { |
| 3162 | ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); |
| 3163 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
| 3164 | bool has_receiver = !x->callee()->is_static(); |
| 3165 | ciSignature* sig = x->callee()->signature(); |
| 3166 | ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); |
| 3167 | int i = 0; // to iterate on the Instructions |
| 3168 | Value arg = x->recv(); |
| 3169 | bool not_null = false; |
| 3170 | int bci = x->bci_of_invoke(); |
| 3171 | Bytecodes::Code bc = x->method()->java_code_at_bci(bci); |
| 3172 | // The first parameter is the receiver so that's what we start |
| 3173 | // with if it exists. One exception is method handle call to |
| 3174 | // virtual method: the receiver is in the args list |
| 3175 | if (arg == NULL || !Bytecodes::has_receiver(bc)) { |
| 3176 | i = 1; |
| 3177 | arg = x->profiled_arg_at(0); |
| 3178 | not_null = !x->arg_needs_null_check(0); |
| 3179 | } |
| 3180 | int k = 0; // to iterate on the profile data |
| 3181 | for (;;) { |
| 3182 | intptr_t profiled_k = parameters->type(k); |
| 3183 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), |
| 3184 | in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), |
| 3185 | profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); |
| 3186 | // If the profile is known statically set it once for all and do not emit any code |
| 3187 | if (exact != NULL) { |
| 3188 | md->set_parameter_type(k, exact); |
| 3189 | } |
| 3190 | k++; |
| 3191 | if (k >= parameters_type_data->number_of_parameters()) { |
| 3192 | #ifdef ASSERT |
| 3193 | int extra = 0; |
| 3194 | if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && |
| 3195 | x->nb_profiled_args() >= TypeProfileParmsLimit && |
| 3196 | x->recv() != NULL && Bytecodes::has_receiver(bc)) { |
| 3197 | extra += 1; |
| 3198 | } |
| 3199 | assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?" ); |
| 3200 | #endif |
| 3201 | break; |
| 3202 | } |
| 3203 | arg = x->profiled_arg_at(i); |
| 3204 | not_null = !x->arg_needs_null_check(i); |
| 3205 | i++; |
| 3206 | } |
| 3207 | } |
| 3208 | } |
| 3209 | } |
| 3210 | } |
| 3211 | |
| 3212 | void LIRGenerator::do_ProfileCall(ProfileCall* x) { |
| 3213 | // Need recv in a temporary register so it interferes with the other temporaries |
| 3214 | LIR_Opr recv = LIR_OprFact::illegalOpr; |
| 3215 | LIR_Opr mdo = new_register(T_METADATA); |
| 3216 | // tmp is used to hold the counters on SPARC |
| 3217 | LIR_Opr tmp = new_pointer_register(); |
| 3218 | |
| 3219 | if (x->nb_profiled_args() > 0) { |
| 3220 | profile_arguments(x); |
| 3221 | } |
| 3222 | |
| 3223 | // profile parameters on inlined method entry including receiver |
| 3224 | if (x->recv() != NULL || x->nb_profiled_args() > 0) { |
| 3225 | profile_parameters_at_call(x); |
| 3226 | } |
| 3227 | |
| 3228 | if (x->recv() != NULL) { |
| 3229 | LIRItem value(x->recv(), this); |
| 3230 | value.load_item(); |
| 3231 | recv = new_register(T_OBJECT); |
| 3232 | __ move(value.result(), recv); |
| 3233 | } |
| 3234 | __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); |
| 3235 | } |
| 3236 | |
| 3237 | void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { |
| 3238 | int bci = x->bci_of_invoke(); |
| 3239 | ciMethodData* md = x->method()->method_data_or_null(); |
| 3240 | assert(md != NULL, "Sanity" ); |
| 3241 | ciProfileData* data = md->bci_to_data(bci); |
| 3242 | if (data != NULL) { |
| 3243 | assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type" ); |
| 3244 | ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); |
| 3245 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
| 3246 | |
| 3247 | bool ignored_will_link; |
| 3248 | ciSignature* signature_at_call = NULL; |
| 3249 | x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); |
| 3250 | |
| 3251 | // The offset within the MDO of the entry to update may be too large |
| 3252 | // to be used in load/store instructions on some platforms. So have |
| 3253 | // profile_type() compute the address of the profile in a register. |
| 3254 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, |
| 3255 | ret->type(), x->ret(), mdp, |
| 3256 | !x->needs_null_check(), |
| 3257 | signature_at_call->return_type()->as_klass(), |
| 3258 | x->callee()->signature()->return_type()->as_klass()); |
| 3259 | if (exact != NULL) { |
| 3260 | md->set_return_type(bci, exact); |
| 3261 | } |
| 3262 | } |
| 3263 | } |
| 3264 | |
| 3265 | void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { |
| 3266 | // We can safely ignore accessors here, since c2 will inline them anyway, |
| 3267 | // accessors are also always mature. |
| 3268 | if (!x->inlinee()->is_accessor()) { |
| 3269 | CodeEmitInfo* info = state_for(x, x->state(), true); |
| 3270 | // Notify the runtime very infrequently only to take care of counter overflows |
| 3271 | int freq_log = Tier23InlineeNotifyFreqLog; |
| 3272 | double scale; |
| 3273 | if (_method->has_option_value("CompileThresholdScaling" , scale)) { |
| 3274 | freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); |
| 3275 | } |
| 3276 | increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); |
| 3277 | } |
| 3278 | } |
| 3279 | |
| 3280 | void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { |
| 3281 | if (compilation()->count_backedges()) { |
| 3282 | #if defined(X86) && !defined(_LP64) |
| 3283 | // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. |
| 3284 | LIR_Opr left_copy = new_register(left->type()); |
| 3285 | __ move(left, left_copy); |
| 3286 | __ cmp(cond, left_copy, right); |
| 3287 | #else |
| 3288 | __ cmp(cond, left, right); |
| 3289 | #endif |
| 3290 | LIR_Opr step = new_register(T_INT); |
| 3291 | LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); |
| 3292 | LIR_Opr zero = LIR_OprFact::intConst(0); |
| 3293 | __ cmove(cond, |
| 3294 | (left_bci < bci) ? plus_one : zero, |
| 3295 | (right_bci < bci) ? plus_one : zero, |
| 3296 | step, left->type()); |
| 3297 | increment_backedge_counter(info, step, bci); |
| 3298 | } |
| 3299 | } |
| 3300 | |
| 3301 | |
| 3302 | void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { |
| 3303 | int freq_log = 0; |
| 3304 | int level = compilation()->env()->comp_level(); |
| 3305 | if (level == CompLevel_limited_profile) { |
| 3306 | freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); |
| 3307 | } else if (level == CompLevel_full_profile) { |
| 3308 | freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); |
| 3309 | } else { |
| 3310 | ShouldNotReachHere(); |
| 3311 | } |
| 3312 | // Increment the appropriate invocation/backedge counter and notify the runtime. |
| 3313 | double scale; |
| 3314 | if (_method->has_option_value("CompileThresholdScaling" , scale)) { |
| 3315 | freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); |
| 3316 | } |
| 3317 | increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); |
| 3318 | } |
| 3319 | |
| 3320 | void LIRGenerator::decrement_age(CodeEmitInfo* info) { |
| 3321 | ciMethod* method = info->scope()->method(); |
| 3322 | MethodCounters* mc_adr = method->ensure_method_counters(); |
| 3323 | if (mc_adr != NULL) { |
| 3324 | LIR_Opr mc = new_pointer_register(); |
| 3325 | __ move(LIR_OprFact::intptrConst(mc_adr), mc); |
| 3326 | int offset = in_bytes(MethodCounters::nmethod_age_offset()); |
| 3327 | LIR_Address* counter = new LIR_Address(mc, offset, T_INT); |
| 3328 | LIR_Opr result = new_register(T_INT); |
| 3329 | __ load(counter, result); |
| 3330 | __ sub(result, LIR_OprFact::intConst(1), result); |
| 3331 | __ store(result, counter); |
| 3332 | // DeoptimizeStub will reexecute from the current state in code info. |
| 3333 | CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, |
| 3334 | Deoptimization::Action_make_not_entrant); |
| 3335 | __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); |
| 3336 | __ branch(lir_cond_lessEqual, T_INT, deopt); |
| 3337 | } |
| 3338 | } |
| 3339 | |
| 3340 | |
| 3341 | void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, |
| 3342 | ciMethod *method, LIR_Opr step, int frequency, |
| 3343 | int bci, bool backedge, bool notify) { |
| 3344 | assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0" ); |
| 3345 | int level = _compilation->env()->comp_level(); |
| 3346 | assert(level > CompLevel_simple, "Shouldn't be here" ); |
| 3347 | |
| 3348 | int offset = -1; |
| 3349 | LIR_Opr counter_holder = NULL; |
| 3350 | if (level == CompLevel_limited_profile) { |
| 3351 | MethodCounters* counters_adr = method->ensure_method_counters(); |
| 3352 | if (counters_adr == NULL) { |
| 3353 | bailout("method counters allocation failed" ); |
| 3354 | return; |
| 3355 | } |
| 3356 | counter_holder = new_pointer_register(); |
| 3357 | __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); |
| 3358 | offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : |
| 3359 | MethodCounters::invocation_counter_offset()); |
| 3360 | } else if (level == CompLevel_full_profile) { |
| 3361 | counter_holder = new_register(T_METADATA); |
| 3362 | offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : |
| 3363 | MethodData::invocation_counter_offset()); |
| 3364 | ciMethodData* md = method->method_data_or_null(); |
| 3365 | assert(md != NULL, "Sanity" ); |
| 3366 | __ metadata2reg(md->constant_encoding(), counter_holder); |
| 3367 | } else { |
| 3368 | ShouldNotReachHere(); |
| 3369 | } |
| 3370 | LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); |
| 3371 | LIR_Opr result = new_register(T_INT); |
| 3372 | __ load(counter, result); |
| 3373 | __ add(result, step, result); |
| 3374 | __ store(result, counter); |
| 3375 | if (notify && (!backedge || UseOnStackReplacement)) { |
| 3376 | LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); |
| 3377 | // The bci for info can point to cmp for if's we want the if bci |
| 3378 | CodeStub* overflow = new CounterOverflowStub(info, bci, meth); |
| 3379 | int freq = frequency << InvocationCounter::count_shift; |
| 3380 | if (freq == 0) { |
| 3381 | if (!step->is_constant()) { |
| 3382 | __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); |
| 3383 | __ branch(lir_cond_notEqual, T_ILLEGAL, overflow); |
| 3384 | } else { |
| 3385 | __ branch(lir_cond_always, T_ILLEGAL, overflow); |
| 3386 | } |
| 3387 | } else { |
| 3388 | LIR_Opr mask = load_immediate(freq, T_INT); |
| 3389 | if (!step->is_constant()) { |
| 3390 | // If step is 0, make sure the overflow check below always fails |
| 3391 | __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); |
| 3392 | __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); |
| 3393 | } |
| 3394 | __ logical_and(result, mask, result); |
| 3395 | __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); |
| 3396 | __ branch(lir_cond_equal, T_INT, overflow); |
| 3397 | } |
| 3398 | __ branch_destination(overflow->continuation()); |
| 3399 | } |
| 3400 | } |
| 3401 | |
| 3402 | void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { |
| 3403 | LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); |
| 3404 | BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); |
| 3405 | |
| 3406 | if (x->pass_thread()) { |
| 3407 | signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
| 3408 | args->append(getThreadPointer()); |
| 3409 | } |
| 3410 | |
| 3411 | for (int i = 0; i < x->number_of_arguments(); i++) { |
| 3412 | Value a = x->argument_at(i); |
| 3413 | LIRItem* item = new LIRItem(a, this); |
| 3414 | item->load_item(); |
| 3415 | args->append(item->result()); |
| 3416 | signature->append(as_BasicType(a->type())); |
| 3417 | } |
| 3418 | |
| 3419 | LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); |
| 3420 | if (x->type() == voidType) { |
| 3421 | set_no_result(x); |
| 3422 | } else { |
| 3423 | __ move(result, rlock_result(x)); |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | #ifdef ASSERT |
| 3428 | void LIRGenerator::do_Assert(Assert *x) { |
| 3429 | ValueTag tag = x->x()->type()->tag(); |
| 3430 | If::Condition cond = x->cond(); |
| 3431 | |
| 3432 | LIRItem xitem(x->x(), this); |
| 3433 | LIRItem yitem(x->y(), this); |
| 3434 | LIRItem* xin = &xitem; |
| 3435 | LIRItem* yin = &yitem; |
| 3436 | |
| 3437 | assert(tag == intTag, "Only integer assertions are valid!" ); |
| 3438 | |
| 3439 | xin->load_item(); |
| 3440 | yin->dont_load_item(); |
| 3441 | |
| 3442 | set_no_result(x); |
| 3443 | |
| 3444 | LIR_Opr left = xin->result(); |
| 3445 | LIR_Opr right = yin->result(); |
| 3446 | |
| 3447 | __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); |
| 3448 | } |
| 3449 | #endif |
| 3450 | |
| 3451 | void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { |
| 3452 | |
| 3453 | |
| 3454 | Instruction *a = x->x(); |
| 3455 | Instruction *b = x->y(); |
| 3456 | if (!a || StressRangeCheckElimination) { |
| 3457 | assert(!b || StressRangeCheckElimination, "B must also be null" ); |
| 3458 | |
| 3459 | CodeEmitInfo *info = state_for(x, x->state()); |
| 3460 | CodeStub* stub = new PredicateFailedStub(info); |
| 3461 | |
| 3462 | __ jump(stub); |
| 3463 | } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { |
| 3464 | int a_int = a->type()->as_IntConstant()->value(); |
| 3465 | int b_int = b->type()->as_IntConstant()->value(); |
| 3466 | |
| 3467 | bool ok = false; |
| 3468 | |
| 3469 | switch(x->cond()) { |
| 3470 | case Instruction::eql: ok = (a_int == b_int); break; |
| 3471 | case Instruction::neq: ok = (a_int != b_int); break; |
| 3472 | case Instruction::lss: ok = (a_int < b_int); break; |
| 3473 | case Instruction::leq: ok = (a_int <= b_int); break; |
| 3474 | case Instruction::gtr: ok = (a_int > b_int); break; |
| 3475 | case Instruction::geq: ok = (a_int >= b_int); break; |
| 3476 | case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; |
| 3477 | case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; |
| 3478 | default: ShouldNotReachHere(); |
| 3479 | } |
| 3480 | |
| 3481 | if (ok) { |
| 3482 | |
| 3483 | CodeEmitInfo *info = state_for(x, x->state()); |
| 3484 | CodeStub* stub = new PredicateFailedStub(info); |
| 3485 | |
| 3486 | __ jump(stub); |
| 3487 | } |
| 3488 | } else { |
| 3489 | |
| 3490 | ValueTag tag = x->x()->type()->tag(); |
| 3491 | If::Condition cond = x->cond(); |
| 3492 | LIRItem xitem(x->x(), this); |
| 3493 | LIRItem yitem(x->y(), this); |
| 3494 | LIRItem* xin = &xitem; |
| 3495 | LIRItem* yin = &yitem; |
| 3496 | |
| 3497 | assert(tag == intTag, "Only integer deoptimizations are valid!" ); |
| 3498 | |
| 3499 | xin->load_item(); |
| 3500 | yin->dont_load_item(); |
| 3501 | set_no_result(x); |
| 3502 | |
| 3503 | LIR_Opr left = xin->result(); |
| 3504 | LIR_Opr right = yin->result(); |
| 3505 | |
| 3506 | CodeEmitInfo *info = state_for(x, x->state()); |
| 3507 | CodeStub* stub = new PredicateFailedStub(info); |
| 3508 | |
| 3509 | __ cmp(lir_cond(cond), left, right); |
| 3510 | __ branch(lir_cond(cond), right->type(), stub); |
| 3511 | } |
| 3512 | } |
| 3513 | |
| 3514 | |
| 3515 | LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { |
| 3516 | LIRItemList args(1); |
| 3517 | LIRItem value(arg1, this); |
| 3518 | args.append(&value); |
| 3519 | BasicTypeList signature; |
| 3520 | signature.append(as_BasicType(arg1->type())); |
| 3521 | |
| 3522 | return call_runtime(&signature, &args, entry, result_type, info); |
| 3523 | } |
| 3524 | |
| 3525 | |
| 3526 | LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { |
| 3527 | LIRItemList args(2); |
| 3528 | LIRItem value1(arg1, this); |
| 3529 | LIRItem value2(arg2, this); |
| 3530 | args.append(&value1); |
| 3531 | args.append(&value2); |
| 3532 | BasicTypeList signature; |
| 3533 | signature.append(as_BasicType(arg1->type())); |
| 3534 | signature.append(as_BasicType(arg2->type())); |
| 3535 | |
| 3536 | return call_runtime(&signature, &args, entry, result_type, info); |
| 3537 | } |
| 3538 | |
| 3539 | |
| 3540 | LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, |
| 3541 | address entry, ValueType* result_type, CodeEmitInfo* info) { |
| 3542 | // get a result register |
| 3543 | LIR_Opr phys_reg = LIR_OprFact::illegalOpr; |
| 3544 | LIR_Opr result = LIR_OprFact::illegalOpr; |
| 3545 | if (result_type->tag() != voidTag) { |
| 3546 | result = new_register(result_type); |
| 3547 | phys_reg = result_register_for(result_type); |
| 3548 | } |
| 3549 | |
| 3550 | // move the arguments into the correct location |
| 3551 | CallingConvention* cc = frame_map()->c_calling_convention(signature); |
| 3552 | assert(cc->length() == args->length(), "argument mismatch" ); |
| 3553 | for (int i = 0; i < args->length(); i++) { |
| 3554 | LIR_Opr arg = args->at(i); |
| 3555 | LIR_Opr loc = cc->at(i); |
| 3556 | if (loc->is_register()) { |
| 3557 | __ move(arg, loc); |
| 3558 | } else { |
| 3559 | LIR_Address* addr = loc->as_address_ptr(); |
| 3560 | // if (!can_store_as_constant(arg)) { |
| 3561 | // LIR_Opr tmp = new_register(arg->type()); |
| 3562 | // __ move(arg, tmp); |
| 3563 | // arg = tmp; |
| 3564 | // } |
| 3565 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
| 3566 | __ unaligned_move(arg, addr); |
| 3567 | } else { |
| 3568 | __ move(arg, addr); |
| 3569 | } |
| 3570 | } |
| 3571 | } |
| 3572 | |
| 3573 | if (info) { |
| 3574 | __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); |
| 3575 | } else { |
| 3576 | __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); |
| 3577 | } |
| 3578 | if (result->is_valid()) { |
| 3579 | __ move(phys_reg, result); |
| 3580 | } |
| 3581 | return result; |
| 3582 | } |
| 3583 | |
| 3584 | |
| 3585 | LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, |
| 3586 | address entry, ValueType* result_type, CodeEmitInfo* info) { |
| 3587 | // get a result register |
| 3588 | LIR_Opr phys_reg = LIR_OprFact::illegalOpr; |
| 3589 | LIR_Opr result = LIR_OprFact::illegalOpr; |
| 3590 | if (result_type->tag() != voidTag) { |
| 3591 | result = new_register(result_type); |
| 3592 | phys_reg = result_register_for(result_type); |
| 3593 | } |
| 3594 | |
| 3595 | // move the arguments into the correct location |
| 3596 | CallingConvention* cc = frame_map()->c_calling_convention(signature); |
| 3597 | |
| 3598 | assert(cc->length() == args->length(), "argument mismatch" ); |
| 3599 | for (int i = 0; i < args->length(); i++) { |
| 3600 | LIRItem* arg = args->at(i); |
| 3601 | LIR_Opr loc = cc->at(i); |
| 3602 | if (loc->is_register()) { |
| 3603 | arg->load_item_force(loc); |
| 3604 | } else { |
| 3605 | LIR_Address* addr = loc->as_address_ptr(); |
| 3606 | arg->load_for_store(addr->type()); |
| 3607 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
| 3608 | __ unaligned_move(arg->result(), addr); |
| 3609 | } else { |
| 3610 | __ move(arg->result(), addr); |
| 3611 | } |
| 3612 | } |
| 3613 | } |
| 3614 | |
| 3615 | if (info) { |
| 3616 | __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); |
| 3617 | } else { |
| 3618 | __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); |
| 3619 | } |
| 3620 | if (result->is_valid()) { |
| 3621 | __ move(phys_reg, result); |
| 3622 | } |
| 3623 | return result; |
| 3624 | } |
| 3625 | |
| 3626 | void LIRGenerator::do_MemBar(MemBar* x) { |
| 3627 | LIR_Code code = x->code(); |
| 3628 | switch(code) { |
| 3629 | case lir_membar_acquire : __ membar_acquire(); break; |
| 3630 | case lir_membar_release : __ membar_release(); break; |
| 3631 | case lir_membar : __ membar(); break; |
| 3632 | case lir_membar_loadload : __ membar_loadload(); break; |
| 3633 | case lir_membar_storestore: __ membar_storestore(); break; |
| 3634 | case lir_membar_loadstore : __ membar_loadstore(); break; |
| 3635 | case lir_membar_storeload : __ membar_storeload(); break; |
| 3636 | default : ShouldNotReachHere(); break; |
| 3637 | } |
| 3638 | } |
| 3639 | |
| 3640 | LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { |
| 3641 | LIR_Opr value_fixed = rlock_byte(T_BYTE); |
| 3642 | if (TwoOperandLIRForm) { |
| 3643 | __ move(value, value_fixed); |
| 3644 | __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); |
| 3645 | } else { |
| 3646 | __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); |
| 3647 | } |
| 3648 | LIR_Opr klass = new_register(T_METADATA); |
| 3649 | __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); |
| 3650 | null_check_info = NULL; |
| 3651 | LIR_Opr layout = new_register(T_INT); |
| 3652 | __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); |
| 3653 | int diffbit = Klass::layout_helper_boolean_diffbit(); |
| 3654 | __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); |
| 3655 | __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); |
| 3656 | __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); |
| 3657 | value = value_fixed; |
| 3658 | return value; |
| 3659 | } |
| 3660 | |
| 3661 | LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { |
| 3662 | if (x->check_boolean()) { |
| 3663 | value = mask_boolean(array, value, null_check_info); |
| 3664 | } |
| 3665 | return value; |
| 3666 | } |
| 3667 | |