1 | /* |
2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "c1/c1_Compilation.hpp" |
27 | #include "c1/c1_Defs.hpp" |
28 | #include "c1/c1_FrameMap.hpp" |
29 | #include "c1/c1_Instruction.hpp" |
30 | #include "c1/c1_LIRAssembler.hpp" |
31 | #include "c1/c1_LIRGenerator.hpp" |
32 | #include "c1/c1_ValueStack.hpp" |
33 | #include "ci/ciArrayKlass.hpp" |
34 | #include "ci/ciInstance.hpp" |
35 | #include "ci/ciObjArray.hpp" |
36 | #include "ci/ciUtilities.hpp" |
37 | #include "gc/shared/barrierSet.hpp" |
38 | #include "gc/shared/c1/barrierSetC1.hpp" |
39 | #include "runtime/arguments.hpp" |
40 | #include "runtime/sharedRuntime.hpp" |
41 | #include "runtime/stubRoutines.hpp" |
42 | #include "runtime/vm_version.hpp" |
43 | #include "utilities/bitMap.inline.hpp" |
44 | #include "utilities/macros.hpp" |
45 | |
46 | #ifdef ASSERT |
47 | #define __ gen()->lir(__FILE__, __LINE__)-> |
48 | #else |
49 | #define __ gen()->lir()-> |
50 | #endif |
51 | |
52 | #ifndef PATCHED_ADDR |
53 | #define PATCHED_ADDR (max_jint) |
54 | #endif |
55 | |
56 | void PhiResolverState::reset() { |
57 | _virtual_operands.clear(); |
58 | _other_operands.clear(); |
59 | _vreg_table.clear(); |
60 | } |
61 | |
62 | |
63 | //-------------------------------------------------------------- |
64 | // PhiResolver |
65 | |
66 | // Resolves cycles: |
67 | // |
68 | // r1 := r2 becomes temp := r1 |
69 | // r2 := r1 r1 := r2 |
70 | // r2 := temp |
71 | // and orders moves: |
72 | // |
73 | // r2 := r3 becomes r1 := r2 |
74 | // r1 := r2 r2 := r3 |
75 | |
76 | PhiResolver::PhiResolver(LIRGenerator* gen) |
77 | : _gen(gen) |
78 | , _state(gen->resolver_state()) |
79 | , _temp(LIR_OprFact::illegalOpr) |
80 | { |
81 | // reinitialize the shared state arrays |
82 | _state.reset(); |
83 | } |
84 | |
85 | |
86 | void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { |
87 | assert(src->is_valid(), "" ); |
88 | assert(dest->is_valid(), "" ); |
89 | __ move(src, dest); |
90 | } |
91 | |
92 | |
93 | void PhiResolver::move_temp_to(LIR_Opr dest) { |
94 | assert(_temp->is_valid(), "" ); |
95 | emit_move(_temp, dest); |
96 | NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); |
97 | } |
98 | |
99 | |
100 | void PhiResolver::move_to_temp(LIR_Opr src) { |
101 | assert(_temp->is_illegal(), "" ); |
102 | _temp = _gen->new_register(src->type()); |
103 | emit_move(src, _temp); |
104 | } |
105 | |
106 | |
107 | // Traverse assignment graph in depth first order and generate moves in post order |
108 | // ie. two assignments: b := c, a := b start with node c: |
109 | // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) |
110 | // Generates moves in this order: move b to a and move c to b |
111 | // ie. cycle a := b, b := a start with node a |
112 | // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) |
113 | // Generates moves in this order: move b to temp, move a to b, move temp to a |
114 | void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { |
115 | if (!dest->visited()) { |
116 | dest->set_visited(); |
117 | for (int i = dest->no_of_destinations()-1; i >= 0; i --) { |
118 | move(dest, dest->destination_at(i)); |
119 | } |
120 | } else if (!dest->start_node()) { |
121 | // cylce in graph detected |
122 | assert(_loop == NULL, "only one loop valid!" ); |
123 | _loop = dest; |
124 | move_to_temp(src->operand()); |
125 | return; |
126 | } // else dest is a start node |
127 | |
128 | if (!dest->assigned()) { |
129 | if (_loop == dest) { |
130 | move_temp_to(dest->operand()); |
131 | dest->set_assigned(); |
132 | } else if (src != NULL) { |
133 | emit_move(src->operand(), dest->operand()); |
134 | dest->set_assigned(); |
135 | } |
136 | } |
137 | } |
138 | |
139 | |
140 | PhiResolver::~PhiResolver() { |
141 | int i; |
142 | // resolve any cycles in moves from and to virtual registers |
143 | for (i = virtual_operands().length() - 1; i >= 0; i --) { |
144 | ResolveNode* node = virtual_operands().at(i); |
145 | if (!node->visited()) { |
146 | _loop = NULL; |
147 | move(NULL, node); |
148 | node->set_start_node(); |
149 | assert(_temp->is_illegal(), "move_temp_to() call missing" ); |
150 | } |
151 | } |
152 | |
153 | // generate move for move from non virtual register to abitrary destination |
154 | for (i = other_operands().length() - 1; i >= 0; i --) { |
155 | ResolveNode* node = other_operands().at(i); |
156 | for (int j = node->no_of_destinations() - 1; j >= 0; j --) { |
157 | emit_move(node->operand(), node->destination_at(j)->operand()); |
158 | } |
159 | } |
160 | } |
161 | |
162 | |
163 | ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { |
164 | ResolveNode* node; |
165 | if (opr->is_virtual()) { |
166 | int vreg_num = opr->vreg_number(); |
167 | node = vreg_table().at_grow(vreg_num, NULL); |
168 | assert(node == NULL || node->operand() == opr, "" ); |
169 | if (node == NULL) { |
170 | node = new ResolveNode(opr); |
171 | vreg_table().at_put(vreg_num, node); |
172 | } |
173 | // Make sure that all virtual operands show up in the list when |
174 | // they are used as the source of a move. |
175 | if (source && !virtual_operands().contains(node)) { |
176 | virtual_operands().append(node); |
177 | } |
178 | } else { |
179 | assert(source, "" ); |
180 | node = new ResolveNode(opr); |
181 | other_operands().append(node); |
182 | } |
183 | return node; |
184 | } |
185 | |
186 | |
187 | void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { |
188 | assert(dest->is_virtual(), "" ); |
189 | // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); |
190 | assert(src->is_valid(), "" ); |
191 | assert(dest->is_valid(), "" ); |
192 | ResolveNode* source = source_node(src); |
193 | source->append(destination_node(dest)); |
194 | } |
195 | |
196 | |
197 | //-------------------------------------------------------------- |
198 | // LIRItem |
199 | |
200 | void LIRItem::set_result(LIR_Opr opr) { |
201 | assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change" ); |
202 | value()->set_operand(opr); |
203 | |
204 | if (opr->is_virtual()) { |
205 | _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); |
206 | } |
207 | |
208 | _result = opr; |
209 | } |
210 | |
211 | void LIRItem::load_item() { |
212 | if (result()->is_illegal()) { |
213 | // update the items result |
214 | _result = value()->operand(); |
215 | } |
216 | if (!result()->is_register()) { |
217 | LIR_Opr reg = _gen->new_register(value()->type()); |
218 | __ move(result(), reg); |
219 | if (result()->is_constant()) { |
220 | _result = reg; |
221 | } else { |
222 | set_result(reg); |
223 | } |
224 | } |
225 | } |
226 | |
227 | |
228 | void LIRItem::load_for_store(BasicType type) { |
229 | if (_gen->can_store_as_constant(value(), type)) { |
230 | _result = value()->operand(); |
231 | if (!_result->is_constant()) { |
232 | _result = LIR_OprFact::value_type(value()->type()); |
233 | } |
234 | } else if (type == T_BYTE || type == T_BOOLEAN) { |
235 | load_byte_item(); |
236 | } else { |
237 | load_item(); |
238 | } |
239 | } |
240 | |
241 | void LIRItem::load_item_force(LIR_Opr reg) { |
242 | LIR_Opr r = result(); |
243 | if (r != reg) { |
244 | #if !defined(ARM) && !defined(E500V2) |
245 | if (r->type() != reg->type()) { |
246 | // moves between different types need an intervening spill slot |
247 | r = _gen->force_to_spill(r, reg->type()); |
248 | } |
249 | #endif |
250 | __ move(r, reg); |
251 | _result = reg; |
252 | } |
253 | } |
254 | |
255 | ciObject* LIRItem::get_jobject_constant() const { |
256 | ObjectType* oc = type()->as_ObjectType(); |
257 | if (oc) { |
258 | return oc->constant_value(); |
259 | } |
260 | return NULL; |
261 | } |
262 | |
263 | |
264 | jint LIRItem::get_jint_constant() const { |
265 | assert(is_constant() && value() != NULL, "" ); |
266 | assert(type()->as_IntConstant() != NULL, "type check" ); |
267 | return type()->as_IntConstant()->value(); |
268 | } |
269 | |
270 | |
271 | jint LIRItem::get_address_constant() const { |
272 | assert(is_constant() && value() != NULL, "" ); |
273 | assert(type()->as_AddressConstant() != NULL, "type check" ); |
274 | return type()->as_AddressConstant()->value(); |
275 | } |
276 | |
277 | |
278 | jfloat LIRItem::get_jfloat_constant() const { |
279 | assert(is_constant() && value() != NULL, "" ); |
280 | assert(type()->as_FloatConstant() != NULL, "type check" ); |
281 | return type()->as_FloatConstant()->value(); |
282 | } |
283 | |
284 | |
285 | jdouble LIRItem::get_jdouble_constant() const { |
286 | assert(is_constant() && value() != NULL, "" ); |
287 | assert(type()->as_DoubleConstant() != NULL, "type check" ); |
288 | return type()->as_DoubleConstant()->value(); |
289 | } |
290 | |
291 | |
292 | jlong LIRItem::get_jlong_constant() const { |
293 | assert(is_constant() && value() != NULL, "" ); |
294 | assert(type()->as_LongConstant() != NULL, "type check" ); |
295 | return type()->as_LongConstant()->value(); |
296 | } |
297 | |
298 | |
299 | |
300 | //-------------------------------------------------------------- |
301 | |
302 | |
303 | void LIRGenerator::block_do_prolog(BlockBegin* block) { |
304 | #ifndef PRODUCT |
305 | if (PrintIRWithLIR) { |
306 | block->print(); |
307 | } |
308 | #endif |
309 | |
310 | // set up the list of LIR instructions |
311 | assert(block->lir() == NULL, "LIR list already computed for this block" ); |
312 | _lir = new LIR_List(compilation(), block); |
313 | block->set_lir(_lir); |
314 | |
315 | __ branch_destination(block->label()); |
316 | |
317 | if (LIRTraceExecution && |
318 | Compilation::current()->hir()->start()->block_id() != block->block_id() && |
319 | !block->is_set(BlockBegin::exception_entry_flag)) { |
320 | assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst" ); |
321 | trace_block_entry(block); |
322 | } |
323 | } |
324 | |
325 | |
326 | void LIRGenerator::block_do_epilog(BlockBegin* block) { |
327 | #ifndef PRODUCT |
328 | if (PrintIRWithLIR) { |
329 | tty->cr(); |
330 | } |
331 | #endif |
332 | |
333 | // LIR_Opr for unpinned constants shouldn't be referenced by other |
334 | // blocks so clear them out after processing the block. |
335 | for (int i = 0; i < _unpinned_constants.length(); i++) { |
336 | _unpinned_constants.at(i)->clear_operand(); |
337 | } |
338 | _unpinned_constants.trunc_to(0); |
339 | |
340 | // clear our any registers for other local constants |
341 | _constants.trunc_to(0); |
342 | _reg_for_constants.trunc_to(0); |
343 | } |
344 | |
345 | |
346 | void LIRGenerator::block_do(BlockBegin* block) { |
347 | CHECK_BAILOUT(); |
348 | |
349 | block_do_prolog(block); |
350 | set_block(block); |
351 | |
352 | for (Instruction* instr = block; instr != NULL; instr = instr->next()) { |
353 | if (instr->is_pinned()) do_root(instr); |
354 | } |
355 | |
356 | set_block(NULL); |
357 | block_do_epilog(block); |
358 | } |
359 | |
360 | |
361 | //-------------------------LIRGenerator----------------------------- |
362 | |
363 | // This is where the tree-walk starts; instr must be root; |
364 | void LIRGenerator::do_root(Value instr) { |
365 | CHECK_BAILOUT(); |
366 | |
367 | InstructionMark im(compilation(), instr); |
368 | |
369 | assert(instr->is_pinned(), "use only with roots" ); |
370 | assert(instr->subst() == instr, "shouldn't have missed substitution" ); |
371 | |
372 | instr->visit(this); |
373 | |
374 | assert(!instr->has_uses() || instr->operand()->is_valid() || |
375 | instr->as_Constant() != NULL || bailed_out(), "invalid item set" ); |
376 | } |
377 | |
378 | |
379 | // This is called for each node in tree; the walk stops if a root is reached |
380 | void LIRGenerator::walk(Value instr) { |
381 | InstructionMark im(compilation(), instr); |
382 | //stop walk when encounter a root |
383 | if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { |
384 | assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited" ); |
385 | } else { |
386 | assert(instr->subst() == instr, "shouldn't have missed substitution" ); |
387 | instr->visit(this); |
388 | // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); |
389 | } |
390 | } |
391 | |
392 | |
393 | CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { |
394 | assert(state != NULL, "state must be defined" ); |
395 | |
396 | #ifndef PRODUCT |
397 | state->verify(); |
398 | #endif |
399 | |
400 | ValueStack* s = state; |
401 | for_each_state(s) { |
402 | if (s->kind() == ValueStack::EmptyExceptionState) { |
403 | assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty" ); |
404 | continue; |
405 | } |
406 | |
407 | int index; |
408 | Value value; |
409 | for_each_stack_value(s, index, value) { |
410 | assert(value->subst() == value, "missed substitution" ); |
411 | if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { |
412 | walk(value); |
413 | assert(value->operand()->is_valid(), "must be evaluated now" ); |
414 | } |
415 | } |
416 | |
417 | int bci = s->bci(); |
418 | IRScope* scope = s->scope(); |
419 | ciMethod* method = scope->method(); |
420 | |
421 | MethodLivenessResult liveness = method->liveness_at_bci(bci); |
422 | if (bci == SynchronizationEntryBCI) { |
423 | if (x->as_ExceptionObject() || x->as_Throw()) { |
424 | // all locals are dead on exit from the synthetic unlocker |
425 | liveness.clear(); |
426 | } else { |
427 | assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke" ); |
428 | } |
429 | } |
430 | if (!liveness.is_valid()) { |
431 | // Degenerate or breakpointed method. |
432 | bailout("Degenerate or breakpointed method" ); |
433 | } else { |
434 | assert((int)liveness.size() == s->locals_size(), "error in use of liveness" ); |
435 | for_each_local_value(s, index, value) { |
436 | assert(value->subst() == value, "missed substition" ); |
437 | if (liveness.at(index) && !value->type()->is_illegal()) { |
438 | if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { |
439 | walk(value); |
440 | assert(value->operand()->is_valid(), "must be evaluated now" ); |
441 | } |
442 | } else { |
443 | // NULL out this local so that linear scan can assume that all non-NULL values are live. |
444 | s->invalidate_local(index); |
445 | } |
446 | } |
447 | } |
448 | } |
449 | |
450 | return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); |
451 | } |
452 | |
453 | |
454 | CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { |
455 | return state_for(x, x->exception_state()); |
456 | } |
457 | |
458 | |
459 | void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { |
460 | /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation |
461 | * is active and the class hasn't yet been resolved we need to emit a patch that resolves |
462 | * the class. */ |
463 | if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { |
464 | assert(info != NULL, "info must be set if class is not loaded" ); |
465 | __ klass2reg_patch(NULL, r, info); |
466 | } else { |
467 | // no patching needed |
468 | __ metadata2reg(obj->constant_encoding(), r); |
469 | } |
470 | } |
471 | |
472 | |
473 | void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, |
474 | CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { |
475 | CodeStub* stub = new RangeCheckStub(range_check_info, index, array); |
476 | if (index->is_constant()) { |
477 | cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), |
478 | index->as_jint(), null_check_info); |
479 | __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch |
480 | } else { |
481 | cmp_reg_mem(lir_cond_aboveEqual, index, array, |
482 | arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); |
483 | __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch |
484 | } |
485 | } |
486 | |
487 | |
488 | void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { |
489 | CodeStub* stub = new RangeCheckStub(info, index); |
490 | if (index->is_constant()) { |
491 | cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); |
492 | __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch |
493 | } else { |
494 | cmp_reg_mem(lir_cond_aboveEqual, index, buffer, |
495 | java_nio_Buffer::limit_offset(), T_INT, info); |
496 | __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch |
497 | } |
498 | __ move(index, result); |
499 | } |
500 | |
501 | |
502 | |
503 | void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { |
504 | LIR_Opr result_op = result; |
505 | LIR_Opr left_op = left; |
506 | LIR_Opr right_op = right; |
507 | |
508 | if (TwoOperandLIRForm && left_op != result_op) { |
509 | assert(right_op != result_op, "malformed" ); |
510 | __ move(left_op, result_op); |
511 | left_op = result_op; |
512 | } |
513 | |
514 | switch(code) { |
515 | case Bytecodes::_dadd: |
516 | case Bytecodes::_fadd: |
517 | case Bytecodes::_ladd: |
518 | case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; |
519 | case Bytecodes::_fmul: |
520 | case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; |
521 | |
522 | case Bytecodes::_dmul: |
523 | { |
524 | if (is_strictfp) { |
525 | __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; |
526 | } else { |
527 | __ mul(left_op, right_op, result_op); break; |
528 | } |
529 | } |
530 | break; |
531 | |
532 | case Bytecodes::_imul: |
533 | { |
534 | bool did_strength_reduce = false; |
535 | |
536 | if (right->is_constant()) { |
537 | jint c = right->as_jint(); |
538 | if (c > 0 && is_power_of_2(c)) { |
539 | // do not need tmp here |
540 | __ shift_left(left_op, exact_log2(c), result_op); |
541 | did_strength_reduce = true; |
542 | } else { |
543 | did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); |
544 | } |
545 | } |
546 | // we couldn't strength reduce so just emit the multiply |
547 | if (!did_strength_reduce) { |
548 | __ mul(left_op, right_op, result_op); |
549 | } |
550 | } |
551 | break; |
552 | |
553 | case Bytecodes::_dsub: |
554 | case Bytecodes::_fsub: |
555 | case Bytecodes::_lsub: |
556 | case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; |
557 | |
558 | case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; |
559 | // ldiv and lrem are implemented with a direct runtime call |
560 | |
561 | case Bytecodes::_ddiv: |
562 | { |
563 | if (is_strictfp) { |
564 | __ div_strictfp (left_op, right_op, result_op, tmp_op); break; |
565 | } else { |
566 | __ div (left_op, right_op, result_op); break; |
567 | } |
568 | } |
569 | break; |
570 | |
571 | case Bytecodes::_drem: |
572 | case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; |
573 | |
574 | default: ShouldNotReachHere(); |
575 | } |
576 | } |
577 | |
578 | |
579 | void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { |
580 | arithmetic_op(code, result, left, right, false, tmp); |
581 | } |
582 | |
583 | |
584 | void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { |
585 | arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); |
586 | } |
587 | |
588 | |
589 | void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { |
590 | arithmetic_op(code, result, left, right, is_strictfp, tmp); |
591 | } |
592 | |
593 | |
594 | void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { |
595 | |
596 | if (TwoOperandLIRForm && value != result_op |
597 | // Only 32bit right shifts require two operand form on S390. |
598 | S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { |
599 | assert(count != result_op, "malformed" ); |
600 | __ move(value, result_op); |
601 | value = result_op; |
602 | } |
603 | |
604 | assert(count->is_constant() || count->is_register(), "must be" ); |
605 | switch(code) { |
606 | case Bytecodes::_ishl: |
607 | case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; |
608 | case Bytecodes::_ishr: |
609 | case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; |
610 | case Bytecodes::_iushr: |
611 | case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; |
612 | default: ShouldNotReachHere(); |
613 | } |
614 | } |
615 | |
616 | |
617 | void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { |
618 | if (TwoOperandLIRForm && left_op != result_op) { |
619 | assert(right_op != result_op, "malformed" ); |
620 | __ move(left_op, result_op); |
621 | left_op = result_op; |
622 | } |
623 | |
624 | switch(code) { |
625 | case Bytecodes::_iand: |
626 | case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; |
627 | |
628 | case Bytecodes::_ior: |
629 | case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; |
630 | |
631 | case Bytecodes::_ixor: |
632 | case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; |
633 | |
634 | default: ShouldNotReachHere(); |
635 | } |
636 | } |
637 | |
638 | |
639 | void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { |
640 | if (!GenerateSynchronizationCode) return; |
641 | // for slow path, use debug info for state after successful locking |
642 | CodeStub* slow_path = new MonitorEnterStub(object, lock, info); |
643 | __ load_stack_address_monitor(monitor_no, lock); |
644 | // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter |
645 | __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); |
646 | } |
647 | |
648 | |
649 | void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { |
650 | if (!GenerateSynchronizationCode) return; |
651 | // setup registers |
652 | LIR_Opr hdr = lock; |
653 | lock = new_hdr; |
654 | CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); |
655 | __ load_stack_address_monitor(monitor_no, lock); |
656 | __ unlock_object(hdr, object, lock, scratch, slow_path); |
657 | } |
658 | |
659 | #ifndef PRODUCT |
660 | void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { |
661 | if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { |
662 | tty->print_cr(" ###class not loaded at new bci %d" , new_instance->printable_bci()); |
663 | } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { |
664 | tty->print_cr(" ###class not resolved at new bci %d" , new_instance->printable_bci()); |
665 | } |
666 | } |
667 | #endif |
668 | |
669 | void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { |
670 | klass2reg_with_patching(klass_reg, klass, info, is_unresolved); |
671 | // If klass is not loaded we do not know if the klass has finalizers: |
672 | if (UseFastNewInstance && klass->is_loaded() |
673 | && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { |
674 | |
675 | Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; |
676 | |
677 | CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); |
678 | |
679 | assert(klass->is_loaded(), "must be loaded" ); |
680 | // allocate space for instance |
681 | assert(klass->size_helper() >= 0, "illegal instance size" ); |
682 | const int instance_size = align_object_size(klass->size_helper()); |
683 | __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, |
684 | oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); |
685 | } else { |
686 | CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); |
687 | __ branch(lir_cond_always, T_ILLEGAL, slow_path); |
688 | __ branch_destination(slow_path->continuation()); |
689 | } |
690 | } |
691 | |
692 | |
693 | static bool is_constant_zero(Instruction* inst) { |
694 | IntConstant* c = inst->type()->as_IntConstant(); |
695 | if (c) { |
696 | return (c->value() == 0); |
697 | } |
698 | return false; |
699 | } |
700 | |
701 | |
702 | static bool positive_constant(Instruction* inst) { |
703 | IntConstant* c = inst->type()->as_IntConstant(); |
704 | if (c) { |
705 | return (c->value() >= 0); |
706 | } |
707 | return false; |
708 | } |
709 | |
710 | |
711 | static ciArrayKlass* as_array_klass(ciType* type) { |
712 | if (type != NULL && type->is_array_klass() && type->is_loaded()) { |
713 | return (ciArrayKlass*)type; |
714 | } else { |
715 | return NULL; |
716 | } |
717 | } |
718 | |
719 | static ciType* phi_declared_type(Phi* phi) { |
720 | ciType* t = phi->operand_at(0)->declared_type(); |
721 | if (t == NULL) { |
722 | return NULL; |
723 | } |
724 | for(int i = 1; i < phi->operand_count(); i++) { |
725 | if (t != phi->operand_at(i)->declared_type()) { |
726 | return NULL; |
727 | } |
728 | } |
729 | return t; |
730 | } |
731 | |
732 | void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { |
733 | Instruction* src = x->argument_at(0); |
734 | Instruction* src_pos = x->argument_at(1); |
735 | Instruction* dst = x->argument_at(2); |
736 | Instruction* dst_pos = x->argument_at(3); |
737 | Instruction* length = x->argument_at(4); |
738 | |
739 | // first try to identify the likely type of the arrays involved |
740 | ciArrayKlass* expected_type = NULL; |
741 | bool is_exact = false, src_objarray = false, dst_objarray = false; |
742 | { |
743 | ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); |
744 | ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); |
745 | Phi* phi; |
746 | if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { |
747 | src_declared_type = as_array_klass(phi_declared_type(phi)); |
748 | } |
749 | ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); |
750 | ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); |
751 | if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { |
752 | dst_declared_type = as_array_klass(phi_declared_type(phi)); |
753 | } |
754 | |
755 | if (src_exact_type != NULL && src_exact_type == dst_exact_type) { |
756 | // the types exactly match so the type is fully known |
757 | is_exact = true; |
758 | expected_type = src_exact_type; |
759 | } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { |
760 | ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; |
761 | ciArrayKlass* src_type = NULL; |
762 | if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { |
763 | src_type = (ciArrayKlass*) src_exact_type; |
764 | } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { |
765 | src_type = (ciArrayKlass*) src_declared_type; |
766 | } |
767 | if (src_type != NULL) { |
768 | if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { |
769 | is_exact = true; |
770 | expected_type = dst_type; |
771 | } |
772 | } |
773 | } |
774 | // at least pass along a good guess |
775 | if (expected_type == NULL) expected_type = dst_exact_type; |
776 | if (expected_type == NULL) expected_type = src_declared_type; |
777 | if (expected_type == NULL) expected_type = dst_declared_type; |
778 | |
779 | src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); |
780 | dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); |
781 | } |
782 | |
783 | // if a probable array type has been identified, figure out if any |
784 | // of the required checks for a fast case can be elided. |
785 | int flags = LIR_OpArrayCopy::all_flags; |
786 | |
787 | if (!src_objarray) |
788 | flags &= ~LIR_OpArrayCopy::src_objarray; |
789 | if (!dst_objarray) |
790 | flags &= ~LIR_OpArrayCopy::dst_objarray; |
791 | |
792 | if (!x->arg_needs_null_check(0)) |
793 | flags &= ~LIR_OpArrayCopy::src_null_check; |
794 | if (!x->arg_needs_null_check(2)) |
795 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
796 | |
797 | |
798 | if (expected_type != NULL) { |
799 | Value length_limit = NULL; |
800 | |
801 | IfOp* ifop = length->as_IfOp(); |
802 | if (ifop != NULL) { |
803 | // look for expressions like min(v, a.length) which ends up as |
804 | // x > y ? y : x or x >= y ? y : x |
805 | if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && |
806 | ifop->x() == ifop->fval() && |
807 | ifop->y() == ifop->tval()) { |
808 | length_limit = ifop->y(); |
809 | } |
810 | } |
811 | |
812 | // try to skip null checks and range checks |
813 | NewArray* src_array = src->as_NewArray(); |
814 | if (src_array != NULL) { |
815 | flags &= ~LIR_OpArrayCopy::src_null_check; |
816 | if (length_limit != NULL && |
817 | src_array->length() == length_limit && |
818 | is_constant_zero(src_pos)) { |
819 | flags &= ~LIR_OpArrayCopy::src_range_check; |
820 | } |
821 | } |
822 | |
823 | NewArray* dst_array = dst->as_NewArray(); |
824 | if (dst_array != NULL) { |
825 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
826 | if (length_limit != NULL && |
827 | dst_array->length() == length_limit && |
828 | is_constant_zero(dst_pos)) { |
829 | flags &= ~LIR_OpArrayCopy::dst_range_check; |
830 | } |
831 | } |
832 | |
833 | // check from incoming constant values |
834 | if (positive_constant(src_pos)) |
835 | flags &= ~LIR_OpArrayCopy::src_pos_positive_check; |
836 | if (positive_constant(dst_pos)) |
837 | flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; |
838 | if (positive_constant(length)) |
839 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
840 | |
841 | // see if the range check can be elided, which might also imply |
842 | // that src or dst is non-null. |
843 | ArrayLength* al = length->as_ArrayLength(); |
844 | if (al != NULL) { |
845 | if (al->array() == src) { |
846 | // it's the length of the source array |
847 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
848 | flags &= ~LIR_OpArrayCopy::src_null_check; |
849 | if (is_constant_zero(src_pos)) |
850 | flags &= ~LIR_OpArrayCopy::src_range_check; |
851 | } |
852 | if (al->array() == dst) { |
853 | // it's the length of the destination array |
854 | flags &= ~LIR_OpArrayCopy::length_positive_check; |
855 | flags &= ~LIR_OpArrayCopy::dst_null_check; |
856 | if (is_constant_zero(dst_pos)) |
857 | flags &= ~LIR_OpArrayCopy::dst_range_check; |
858 | } |
859 | } |
860 | if (is_exact) { |
861 | flags &= ~LIR_OpArrayCopy::type_check; |
862 | } |
863 | } |
864 | |
865 | IntConstant* src_int = src_pos->type()->as_IntConstant(); |
866 | IntConstant* dst_int = dst_pos->type()->as_IntConstant(); |
867 | if (src_int && dst_int) { |
868 | int s_offs = src_int->value(); |
869 | int d_offs = dst_int->value(); |
870 | if (src_int->value() >= dst_int->value()) { |
871 | flags &= ~LIR_OpArrayCopy::overlapping; |
872 | } |
873 | if (expected_type != NULL) { |
874 | BasicType t = expected_type->element_type()->basic_type(); |
875 | int element_size = type2aelembytes(t); |
876 | if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && |
877 | ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { |
878 | flags &= ~LIR_OpArrayCopy::unaligned; |
879 | } |
880 | } |
881 | } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { |
882 | // src and dest positions are the same, or dst is zero so assume |
883 | // nonoverlapping copy. |
884 | flags &= ~LIR_OpArrayCopy::overlapping; |
885 | } |
886 | |
887 | if (src == dst) { |
888 | // moving within a single array so no type checks are needed |
889 | if (flags & LIR_OpArrayCopy::type_check) { |
890 | flags &= ~LIR_OpArrayCopy::type_check; |
891 | } |
892 | } |
893 | *flagsp = flags; |
894 | *expected_typep = (ciArrayKlass*)expected_type; |
895 | } |
896 | |
897 | |
898 | LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { |
899 | assert(opr->is_register(), "why spill if item is not register?" ); |
900 | |
901 | if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { |
902 | LIR_Opr result = new_register(T_FLOAT); |
903 | set_vreg_flag(result, must_start_in_memory); |
904 | assert(opr->is_register(), "only a register can be spilled" ); |
905 | assert(opr->value_type()->is_float(), "rounding only for floats available" ); |
906 | __ roundfp(opr, LIR_OprFact::illegalOpr, result); |
907 | return result; |
908 | } |
909 | return opr; |
910 | } |
911 | |
912 | |
913 | LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { |
914 | assert(type2size[t] == type2size[value->type()], |
915 | "size mismatch: t=%s, value->type()=%s" , type2name(t), type2name(value->type())); |
916 | if (!value->is_register()) { |
917 | // force into a register |
918 | LIR_Opr r = new_register(value->type()); |
919 | __ move(value, r); |
920 | value = r; |
921 | } |
922 | |
923 | // create a spill location |
924 | LIR_Opr tmp = new_register(t); |
925 | set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); |
926 | |
927 | // move from register to spill |
928 | __ move(value, tmp); |
929 | return tmp; |
930 | } |
931 | |
932 | void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { |
933 | if (if_instr->should_profile()) { |
934 | ciMethod* method = if_instr->profiled_method(); |
935 | assert(method != NULL, "method should be set if branch is profiled" ); |
936 | ciMethodData* md = method->method_data_or_null(); |
937 | assert(md != NULL, "Sanity" ); |
938 | ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); |
939 | assert(data != NULL, "must have profiling data" ); |
940 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
941 | int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); |
942 | int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); |
943 | if (if_instr->is_swapped()) { |
944 | int t = taken_count_offset; |
945 | taken_count_offset = not_taken_count_offset; |
946 | not_taken_count_offset = t; |
947 | } |
948 | |
949 | LIR_Opr md_reg = new_register(T_METADATA); |
950 | __ metadata2reg(md->constant_encoding(), md_reg); |
951 | |
952 | LIR_Opr data_offset_reg = new_pointer_register(); |
953 | __ cmove(lir_cond(cond), |
954 | LIR_OprFact::intptrConst(taken_count_offset), |
955 | LIR_OprFact::intptrConst(not_taken_count_offset), |
956 | data_offset_reg, as_BasicType(if_instr->x()->type())); |
957 | |
958 | // MDO cells are intptr_t, so the data_reg width is arch-dependent. |
959 | LIR_Opr data_reg = new_pointer_register(); |
960 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
961 | __ move(data_addr, data_reg); |
962 | // Use leal instead of add to avoid destroying condition codes on x86 |
963 | LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); |
964 | __ leal(LIR_OprFact::address(fake_incr_value), data_reg); |
965 | __ move(data_reg, data_addr); |
966 | } |
967 | } |
968 | |
969 | // Phi technique: |
970 | // This is about passing live values from one basic block to the other. |
971 | // In code generated with Java it is rather rare that more than one |
972 | // value is on the stack from one basic block to the other. |
973 | // We optimize our technique for efficient passing of one value |
974 | // (of type long, int, double..) but it can be extended. |
975 | // When entering or leaving a basic block, all registers and all spill |
976 | // slots are release and empty. We use the released registers |
977 | // and spill slots to pass the live values from one block |
978 | // to the other. The topmost value, i.e., the value on TOS of expression |
979 | // stack is passed in registers. All other values are stored in spilling |
980 | // area. Every Phi has an index which designates its spill slot |
981 | // At exit of a basic block, we fill the register(s) and spill slots. |
982 | // At entry of a basic block, the block_prolog sets up the content of phi nodes |
983 | // and locks necessary registers and spilling slots. |
984 | |
985 | |
986 | // move current value to referenced phi function |
987 | void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { |
988 | Phi* phi = sux_val->as_Phi(); |
989 | // cur_val can be null without phi being null in conjunction with inlining |
990 | if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { |
991 | Phi* cur_phi = cur_val->as_Phi(); |
992 | if (cur_phi != NULL && cur_phi->is_illegal()) { |
993 | // Phi and local would need to get invalidated |
994 | // (which is unexpected for Linear Scan). |
995 | // But this case is very rare so we simply bail out. |
996 | bailout("propagation of illegal phi" ); |
997 | return; |
998 | } |
999 | LIR_Opr operand = cur_val->operand(); |
1000 | if (operand->is_illegal()) { |
1001 | assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, |
1002 | "these can be produced lazily" ); |
1003 | operand = operand_for_instruction(cur_val); |
1004 | } |
1005 | resolver->move(operand, operand_for_instruction(phi)); |
1006 | } |
1007 | } |
1008 | |
1009 | |
1010 | // Moves all stack values into their PHI position |
1011 | void LIRGenerator::move_to_phi(ValueStack* cur_state) { |
1012 | BlockBegin* bb = block(); |
1013 | if (bb->number_of_sux() == 1) { |
1014 | BlockBegin* sux = bb->sux_at(0); |
1015 | assert(sux->number_of_preds() > 0, "invalid CFG" ); |
1016 | |
1017 | // a block with only one predecessor never has phi functions |
1018 | if (sux->number_of_preds() > 1) { |
1019 | PhiResolver resolver(this); |
1020 | |
1021 | ValueStack* sux_state = sux->state(); |
1022 | Value sux_value; |
1023 | int index; |
1024 | |
1025 | assert(cur_state->scope() == sux_state->scope(), "not matching" ); |
1026 | assert(cur_state->locals_size() == sux_state->locals_size(), "not matching" ); |
1027 | assert(cur_state->stack_size() == sux_state->stack_size(), "not matching" ); |
1028 | |
1029 | for_each_stack_value(sux_state, index, sux_value) { |
1030 | move_to_phi(&resolver, cur_state->stack_at(index), sux_value); |
1031 | } |
1032 | |
1033 | for_each_local_value(sux_state, index, sux_value) { |
1034 | move_to_phi(&resolver, cur_state->local_at(index), sux_value); |
1035 | } |
1036 | |
1037 | assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal" ); |
1038 | } |
1039 | } |
1040 | } |
1041 | |
1042 | |
1043 | LIR_Opr LIRGenerator::new_register(BasicType type) { |
1044 | int vreg = _virtual_register_number; |
1045 | // add a little fudge factor for the bailout, since the bailout is |
1046 | // only checked periodically. This gives a few extra registers to |
1047 | // hand out before we really run out, which helps us keep from |
1048 | // tripping over assertions. |
1049 | if (vreg + 20 >= LIR_OprDesc::vreg_max) { |
1050 | bailout("out of virtual registers" ); |
1051 | if (vreg + 2 >= LIR_OprDesc::vreg_max) { |
1052 | // wrap it around |
1053 | _virtual_register_number = LIR_OprDesc::vreg_base; |
1054 | } |
1055 | } |
1056 | _virtual_register_number += 1; |
1057 | return LIR_OprFact::virtual_register(vreg, type); |
1058 | } |
1059 | |
1060 | |
1061 | // Try to lock using register in hint |
1062 | LIR_Opr LIRGenerator::rlock(Value instr) { |
1063 | return new_register(instr->type()); |
1064 | } |
1065 | |
1066 | |
1067 | // does an rlock and sets result |
1068 | LIR_Opr LIRGenerator::rlock_result(Value x) { |
1069 | LIR_Opr reg = rlock(x); |
1070 | set_result(x, reg); |
1071 | return reg; |
1072 | } |
1073 | |
1074 | |
1075 | // does an rlock and sets result |
1076 | LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { |
1077 | LIR_Opr reg; |
1078 | switch (type) { |
1079 | case T_BYTE: |
1080 | case T_BOOLEAN: |
1081 | reg = rlock_byte(type); |
1082 | break; |
1083 | default: |
1084 | reg = rlock(x); |
1085 | break; |
1086 | } |
1087 | |
1088 | set_result(x, reg); |
1089 | return reg; |
1090 | } |
1091 | |
1092 | |
1093 | //--------------------------------------------------------------------- |
1094 | ciObject* LIRGenerator::get_jobject_constant(Value value) { |
1095 | ObjectType* oc = value->type()->as_ObjectType(); |
1096 | if (oc) { |
1097 | return oc->constant_value(); |
1098 | } |
1099 | return NULL; |
1100 | } |
1101 | |
1102 | |
1103 | void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { |
1104 | assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block" ); |
1105 | assert(block()->next() == x, "ExceptionObject must be first instruction of block" ); |
1106 | |
1107 | // no moves are created for phi functions at the begin of exception |
1108 | // handlers, so assign operands manually here |
1109 | for_each_phi_fun(block(), phi, |
1110 | if (!phi->is_illegal()) { operand_for_instruction(phi); }); |
1111 | |
1112 | LIR_Opr thread_reg = getThreadPointer(); |
1113 | __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), |
1114 | exceptionOopOpr()); |
1115 | __ move_wide(LIR_OprFact::oopConst(NULL), |
1116 | new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); |
1117 | __ move_wide(LIR_OprFact::oopConst(NULL), |
1118 | new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); |
1119 | |
1120 | LIR_Opr result = new_register(T_OBJECT); |
1121 | __ move(exceptionOopOpr(), result); |
1122 | set_result(x, result); |
1123 | } |
1124 | |
1125 | |
1126 | //---------------------------------------------------------------------- |
1127 | //---------------------------------------------------------------------- |
1128 | //---------------------------------------------------------------------- |
1129 | //---------------------------------------------------------------------- |
1130 | // visitor functions |
1131 | //---------------------------------------------------------------------- |
1132 | //---------------------------------------------------------------------- |
1133 | //---------------------------------------------------------------------- |
1134 | //---------------------------------------------------------------------- |
1135 | |
1136 | void LIRGenerator::do_Phi(Phi* x) { |
1137 | // phi functions are never visited directly |
1138 | ShouldNotReachHere(); |
1139 | } |
1140 | |
1141 | |
1142 | // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. |
1143 | void LIRGenerator::do_Constant(Constant* x) { |
1144 | if (x->state_before() != NULL) { |
1145 | // Any constant with a ValueStack requires patching so emit the patch here |
1146 | LIR_Opr reg = rlock_result(x); |
1147 | CodeEmitInfo* info = state_for(x, x->state_before()); |
1148 | __ oop2reg_patch(NULL, reg, info); |
1149 | } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { |
1150 | if (!x->is_pinned()) { |
1151 | // unpinned constants are handled specially so that they can be |
1152 | // put into registers when they are used multiple times within a |
1153 | // block. After the block completes their operand will be |
1154 | // cleared so that other blocks can't refer to that register. |
1155 | set_result(x, load_constant(x)); |
1156 | } else { |
1157 | LIR_Opr res = x->operand(); |
1158 | if (!res->is_valid()) { |
1159 | res = LIR_OprFact::value_type(x->type()); |
1160 | } |
1161 | if (res->is_constant()) { |
1162 | LIR_Opr reg = rlock_result(x); |
1163 | __ move(res, reg); |
1164 | } else { |
1165 | set_result(x, res); |
1166 | } |
1167 | } |
1168 | } else { |
1169 | set_result(x, LIR_OprFact::value_type(x->type())); |
1170 | } |
1171 | } |
1172 | |
1173 | |
1174 | void LIRGenerator::do_Local(Local* x) { |
1175 | // operand_for_instruction has the side effect of setting the result |
1176 | // so there's no need to do it here. |
1177 | operand_for_instruction(x); |
1178 | } |
1179 | |
1180 | |
1181 | void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { |
1182 | Unimplemented(); |
1183 | } |
1184 | |
1185 | |
1186 | void LIRGenerator::do_Return(Return* x) { |
1187 | if (compilation()->env()->dtrace_method_probes()) { |
1188 | BasicTypeList signature; |
1189 | signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
1190 | signature.append(T_METADATA); // Method* |
1191 | LIR_OprList* args = new LIR_OprList(); |
1192 | args->append(getThreadPointer()); |
1193 | LIR_Opr meth = new_register(T_METADATA); |
1194 | __ metadata2reg(method()->constant_encoding(), meth); |
1195 | args->append(meth); |
1196 | call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); |
1197 | } |
1198 | |
1199 | if (x->type()->is_void()) { |
1200 | __ return_op(LIR_OprFact::illegalOpr); |
1201 | } else { |
1202 | LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); |
1203 | LIRItem result(x->result(), this); |
1204 | |
1205 | result.load_item_force(reg); |
1206 | __ return_op(result.result()); |
1207 | } |
1208 | set_no_result(x); |
1209 | } |
1210 | |
1211 | // Examble: ref.get() |
1212 | // Combination of LoadField and g1 pre-write barrier |
1213 | void LIRGenerator::do_Reference_get(Intrinsic* x) { |
1214 | |
1215 | const int referent_offset = java_lang_ref_Reference::referent_offset; |
1216 | guarantee(referent_offset > 0, "referent offset not initialized" ); |
1217 | |
1218 | assert(x->number_of_arguments() == 1, "wrong type" ); |
1219 | |
1220 | LIRItem reference(x->argument_at(0), this); |
1221 | reference.load_item(); |
1222 | |
1223 | // need to perform the null check on the reference objecy |
1224 | CodeEmitInfo* info = NULL; |
1225 | if (x->needs_null_check()) { |
1226 | info = state_for(x); |
1227 | } |
1228 | |
1229 | LIR_Opr result = rlock_result(x, T_OBJECT); |
1230 | access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, |
1231 | reference, LIR_OprFact::intConst(referent_offset), result); |
1232 | } |
1233 | |
1234 | // Example: clazz.isInstance(object) |
1235 | void LIRGenerator::do_isInstance(Intrinsic* x) { |
1236 | assert(x->number_of_arguments() == 2, "wrong type" ); |
1237 | |
1238 | // TODO could try to substitute this node with an equivalent InstanceOf |
1239 | // if clazz is known to be a constant Class. This will pick up newly found |
1240 | // constants after HIR construction. I'll leave this to a future change. |
1241 | |
1242 | // as a first cut, make a simple leaf call to runtime to stay platform independent. |
1243 | // could follow the aastore example in a future change. |
1244 | |
1245 | LIRItem clazz(x->argument_at(0), this); |
1246 | LIRItem object(x->argument_at(1), this); |
1247 | clazz.load_item(); |
1248 | object.load_item(); |
1249 | LIR_Opr result = rlock_result(x); |
1250 | |
1251 | // need to perform null check on clazz |
1252 | if (x->needs_null_check()) { |
1253 | CodeEmitInfo* info = state_for(x); |
1254 | __ null_check(clazz.result(), info); |
1255 | } |
1256 | |
1257 | LIR_Opr call_result = call_runtime(clazz.value(), object.value(), |
1258 | CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), |
1259 | x->type(), |
1260 | NULL); // NULL CodeEmitInfo results in a leaf call |
1261 | __ move(call_result, result); |
1262 | } |
1263 | |
1264 | // Example: object.getClass () |
1265 | void LIRGenerator::do_getClass(Intrinsic* x) { |
1266 | assert(x->number_of_arguments() == 1, "wrong type" ); |
1267 | |
1268 | LIRItem rcvr(x->argument_at(0), this); |
1269 | rcvr.load_item(); |
1270 | LIR_Opr temp = new_register(T_METADATA); |
1271 | LIR_Opr result = rlock_result(x); |
1272 | |
1273 | // need to perform the null check on the rcvr |
1274 | CodeEmitInfo* info = NULL; |
1275 | if (x->needs_null_check()) { |
1276 | info = state_for(x); |
1277 | } |
1278 | |
1279 | // FIXME T_ADDRESS should actually be T_METADATA but it can't because the |
1280 | // meaning of these two is mixed up (see JDK-8026837). |
1281 | __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); |
1282 | __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); |
1283 | // mirror = ((OopHandle)mirror)->resolve(); |
1284 | access_load(IN_NATIVE, T_OBJECT, |
1285 | LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); |
1286 | } |
1287 | |
1288 | // java.lang.Class::isPrimitive() |
1289 | void LIRGenerator::do_isPrimitive(Intrinsic* x) { |
1290 | assert(x->number_of_arguments() == 1, "wrong type" ); |
1291 | |
1292 | LIRItem rcvr(x->argument_at(0), this); |
1293 | rcvr.load_item(); |
1294 | LIR_Opr temp = new_register(T_METADATA); |
1295 | LIR_Opr result = rlock_result(x); |
1296 | |
1297 | CodeEmitInfo* info = NULL; |
1298 | if (x->needs_null_check()) { |
1299 | info = state_for(x); |
1300 | } |
1301 | |
1302 | __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info); |
1303 | __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0)); |
1304 | __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); |
1305 | } |
1306 | |
1307 | |
1308 | // Example: Thread.currentThread() |
1309 | void LIRGenerator::do_currentThread(Intrinsic* x) { |
1310 | assert(x->number_of_arguments() == 0, "wrong type" ); |
1311 | LIR_Opr reg = rlock_result(x); |
1312 | __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); |
1313 | } |
1314 | |
1315 | |
1316 | void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { |
1317 | assert(x->number_of_arguments() == 1, "wrong type" ); |
1318 | LIRItem receiver(x->argument_at(0), this); |
1319 | |
1320 | receiver.load_item(); |
1321 | BasicTypeList signature; |
1322 | signature.append(T_OBJECT); // receiver |
1323 | LIR_OprList* args = new LIR_OprList(); |
1324 | args->append(receiver.result()); |
1325 | CodeEmitInfo* info = state_for(x, x->state()); |
1326 | call_runtime(&signature, args, |
1327 | CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), |
1328 | voidType, info); |
1329 | |
1330 | set_no_result(x); |
1331 | } |
1332 | |
1333 | |
1334 | //------------------------local access-------------------------------------- |
1335 | |
1336 | LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { |
1337 | if (x->operand()->is_illegal()) { |
1338 | Constant* c = x->as_Constant(); |
1339 | if (c != NULL) { |
1340 | x->set_operand(LIR_OprFact::value_type(c->type())); |
1341 | } else { |
1342 | assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local" ); |
1343 | // allocate a virtual register for this local or phi |
1344 | x->set_operand(rlock(x)); |
1345 | _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); |
1346 | } |
1347 | } |
1348 | return x->operand(); |
1349 | } |
1350 | |
1351 | |
1352 | Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { |
1353 | if (opr->is_virtual()) { |
1354 | return instruction_for_vreg(opr->vreg_number()); |
1355 | } |
1356 | return NULL; |
1357 | } |
1358 | |
1359 | |
1360 | Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { |
1361 | if (reg_num < _instruction_for_operand.length()) { |
1362 | return _instruction_for_operand.at(reg_num); |
1363 | } |
1364 | return NULL; |
1365 | } |
1366 | |
1367 | |
1368 | void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { |
1369 | if (_vreg_flags.size_in_bits() == 0) { |
1370 | BitMap2D temp(100, num_vreg_flags); |
1371 | _vreg_flags = temp; |
1372 | } |
1373 | _vreg_flags.at_put_grow(vreg_num, f, true); |
1374 | } |
1375 | |
1376 | bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { |
1377 | if (!_vreg_flags.is_valid_index(vreg_num, f)) { |
1378 | return false; |
1379 | } |
1380 | return _vreg_flags.at(vreg_num, f); |
1381 | } |
1382 | |
1383 | |
1384 | // Block local constant handling. This code is useful for keeping |
1385 | // unpinned constants and constants which aren't exposed in the IR in |
1386 | // registers. Unpinned Constant instructions have their operands |
1387 | // cleared when the block is finished so that other blocks can't end |
1388 | // up referring to their registers. |
1389 | |
1390 | LIR_Opr LIRGenerator::load_constant(Constant* x) { |
1391 | assert(!x->is_pinned(), "only for unpinned constants" ); |
1392 | _unpinned_constants.append(x); |
1393 | return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); |
1394 | } |
1395 | |
1396 | |
1397 | LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { |
1398 | BasicType t = c->type(); |
1399 | for (int i = 0; i < _constants.length(); i++) { |
1400 | LIR_Const* other = _constants.at(i); |
1401 | if (t == other->type()) { |
1402 | switch (t) { |
1403 | case T_INT: |
1404 | case T_FLOAT: |
1405 | if (c->as_jint_bits() != other->as_jint_bits()) continue; |
1406 | break; |
1407 | case T_LONG: |
1408 | case T_DOUBLE: |
1409 | if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; |
1410 | if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; |
1411 | break; |
1412 | case T_OBJECT: |
1413 | if (c->as_jobject() != other->as_jobject()) continue; |
1414 | break; |
1415 | default: |
1416 | break; |
1417 | } |
1418 | return _reg_for_constants.at(i); |
1419 | } |
1420 | } |
1421 | |
1422 | LIR_Opr result = new_register(t); |
1423 | __ move((LIR_Opr)c, result); |
1424 | _constants.append(c); |
1425 | _reg_for_constants.append(result); |
1426 | return result; |
1427 | } |
1428 | |
1429 | //------------------------field access-------------------------------------- |
1430 | |
1431 | void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { |
1432 | assert(x->number_of_arguments() == 4, "wrong type" ); |
1433 | LIRItem obj (x->argument_at(0), this); // object |
1434 | LIRItem offset(x->argument_at(1), this); // offset of field |
1435 | LIRItem cmp (x->argument_at(2), this); // value to compare with field |
1436 | LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp |
1437 | assert(obj.type()->tag() == objectTag, "invalid type" ); |
1438 | |
1439 | // In 64bit the type can be long, sparc doesn't have this assert |
1440 | // assert(offset.type()->tag() == intTag, "invalid type"); |
1441 | |
1442 | assert(cmp.type()->tag() == type->tag(), "invalid type" ); |
1443 | assert(val.type()->tag() == type->tag(), "invalid type" ); |
1444 | |
1445 | LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), |
1446 | obj, offset, cmp, val); |
1447 | set_result(x, result); |
1448 | } |
1449 | |
1450 | // Comment copied form templateTable_i486.cpp |
1451 | // ---------------------------------------------------------------------------- |
1452 | // Volatile variables demand their effects be made known to all CPU's in |
1453 | // order. Store buffers on most chips allow reads & writes to reorder; the |
1454 | // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of |
1455 | // memory barrier (i.e., it's not sufficient that the interpreter does not |
1456 | // reorder volatile references, the hardware also must not reorder them). |
1457 | // |
1458 | // According to the new Java Memory Model (JMM): |
1459 | // (1) All volatiles are serialized wrt to each other. |
1460 | // ALSO reads & writes act as aquire & release, so: |
1461 | // (2) A read cannot let unrelated NON-volatile memory refs that happen after |
1462 | // the read float up to before the read. It's OK for non-volatile memory refs |
1463 | // that happen before the volatile read to float down below it. |
1464 | // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs |
1465 | // that happen BEFORE the write float down to after the write. It's OK for |
1466 | // non-volatile memory refs that happen after the volatile write to float up |
1467 | // before it. |
1468 | // |
1469 | // We only put in barriers around volatile refs (they are expensive), not |
1470 | // _between_ memory refs (that would require us to track the flavor of the |
1471 | // previous memory refs). Requirements (2) and (3) require some barriers |
1472 | // before volatile stores and after volatile loads. These nearly cover |
1473 | // requirement (1) but miss the volatile-store-volatile-load case. This final |
1474 | // case is placed after volatile-stores although it could just as well go |
1475 | // before volatile-loads. |
1476 | |
1477 | |
1478 | void LIRGenerator::do_StoreField(StoreField* x) { |
1479 | bool needs_patching = x->needs_patching(); |
1480 | bool is_volatile = x->field()->is_volatile(); |
1481 | BasicType field_type = x->field_type(); |
1482 | |
1483 | CodeEmitInfo* info = NULL; |
1484 | if (needs_patching) { |
1485 | assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access" ); |
1486 | info = state_for(x, x->state_before()); |
1487 | } else if (x->needs_null_check()) { |
1488 | NullCheck* nc = x->explicit_null_check(); |
1489 | if (nc == NULL) { |
1490 | info = state_for(x); |
1491 | } else { |
1492 | info = state_for(nc); |
1493 | } |
1494 | } |
1495 | |
1496 | LIRItem object(x->obj(), this); |
1497 | LIRItem value(x->value(), this); |
1498 | |
1499 | object.load_item(); |
1500 | |
1501 | if (is_volatile || needs_patching) { |
1502 | // load item if field is volatile (fewer special cases for volatiles) |
1503 | // load item if field not initialized |
1504 | // load item if field not constant |
1505 | // because of code patching we cannot inline constants |
1506 | if (field_type == T_BYTE || field_type == T_BOOLEAN) { |
1507 | value.load_byte_item(); |
1508 | } else { |
1509 | value.load_item(); |
1510 | } |
1511 | } else { |
1512 | value.load_for_store(field_type); |
1513 | } |
1514 | |
1515 | set_no_result(x); |
1516 | |
1517 | #ifndef PRODUCT |
1518 | if (PrintNotLoaded && needs_patching) { |
1519 | tty->print_cr(" ###class not loaded at store_%s bci %d" , |
1520 | x->is_static() ? "static" : "field" , x->printable_bci()); |
1521 | } |
1522 | #endif |
1523 | |
1524 | if (x->needs_null_check() && |
1525 | (needs_patching || |
1526 | MacroAssembler::needs_explicit_null_check(x->offset()))) { |
1527 | // Emit an explicit null check because the offset is too large. |
1528 | // If the class is not loaded and the object is NULL, we need to deoptimize to throw a |
1529 | // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. |
1530 | __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); |
1531 | } |
1532 | |
1533 | DecoratorSet decorators = IN_HEAP; |
1534 | if (is_volatile) { |
1535 | decorators |= MO_SEQ_CST; |
1536 | } |
1537 | if (needs_patching) { |
1538 | decorators |= C1_NEEDS_PATCHING; |
1539 | } |
1540 | |
1541 | access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), |
1542 | value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); |
1543 | } |
1544 | |
1545 | void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { |
1546 | assert(x->is_pinned(),"" ); |
1547 | bool needs_range_check = x->compute_needs_range_check(); |
1548 | bool use_length = x->length() != NULL; |
1549 | bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; |
1550 | bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || |
1551 | !get_jobject_constant(x->value())->is_null_object() || |
1552 | x->should_profile()); |
1553 | |
1554 | LIRItem array(x->array(), this); |
1555 | LIRItem index(x->index(), this); |
1556 | LIRItem value(x->value(), this); |
1557 | LIRItem length(this); |
1558 | |
1559 | array.load_item(); |
1560 | index.load_nonconstant(); |
1561 | |
1562 | if (use_length && needs_range_check) { |
1563 | length.set_instruction(x->length()); |
1564 | length.load_item(); |
1565 | |
1566 | } |
1567 | if (needs_store_check || x->check_boolean()) { |
1568 | value.load_item(); |
1569 | } else { |
1570 | value.load_for_store(x->elt_type()); |
1571 | } |
1572 | |
1573 | set_no_result(x); |
1574 | |
1575 | // the CodeEmitInfo must be duplicated for each different |
1576 | // LIR-instruction because spilling can occur anywhere between two |
1577 | // instructions and so the debug information must be different |
1578 | CodeEmitInfo* range_check_info = state_for(x); |
1579 | CodeEmitInfo* null_check_info = NULL; |
1580 | if (x->needs_null_check()) { |
1581 | null_check_info = new CodeEmitInfo(range_check_info); |
1582 | } |
1583 | |
1584 | if (GenerateRangeChecks && needs_range_check) { |
1585 | if (use_length) { |
1586 | __ cmp(lir_cond_belowEqual, length.result(), index.result()); |
1587 | __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); |
1588 | } else { |
1589 | array_range_check(array.result(), index.result(), null_check_info, range_check_info); |
1590 | // range_check also does the null check |
1591 | null_check_info = NULL; |
1592 | } |
1593 | } |
1594 | |
1595 | if (GenerateArrayStoreCheck && needs_store_check) { |
1596 | CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); |
1597 | array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); |
1598 | } |
1599 | |
1600 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
1601 | if (x->check_boolean()) { |
1602 | decorators |= C1_MASK_BOOLEAN; |
1603 | } |
1604 | |
1605 | access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), |
1606 | NULL, null_check_info); |
1607 | } |
1608 | |
1609 | void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, |
1610 | LIRItem& base, LIR_Opr offset, LIR_Opr result, |
1611 | CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { |
1612 | decorators |= ACCESS_READ; |
1613 | LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); |
1614 | if (access.is_raw()) { |
1615 | _barrier_set->BarrierSetC1::load_at(access, result); |
1616 | } else { |
1617 | _barrier_set->load_at(access, result); |
1618 | } |
1619 | } |
1620 | |
1621 | void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, |
1622 | LIR_Opr addr, LIR_Opr result) { |
1623 | decorators |= ACCESS_READ; |
1624 | LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); |
1625 | access.set_resolved_addr(addr); |
1626 | if (access.is_raw()) { |
1627 | _barrier_set->BarrierSetC1::load(access, result); |
1628 | } else { |
1629 | _barrier_set->load(access, result); |
1630 | } |
1631 | } |
1632 | |
1633 | void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, |
1634 | LIRItem& base, LIR_Opr offset, LIR_Opr value, |
1635 | CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { |
1636 | decorators |= ACCESS_WRITE; |
1637 | LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); |
1638 | if (access.is_raw()) { |
1639 | _barrier_set->BarrierSetC1::store_at(access, value); |
1640 | } else { |
1641 | _barrier_set->store_at(access, value); |
1642 | } |
1643 | } |
1644 | |
1645 | LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, |
1646 | LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { |
1647 | decorators |= ACCESS_READ; |
1648 | decorators |= ACCESS_WRITE; |
1649 | // Atomic operations are SEQ_CST by default |
1650 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
1651 | LIRAccess access(this, decorators, base, offset, type); |
1652 | if (access.is_raw()) { |
1653 | return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); |
1654 | } else { |
1655 | return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); |
1656 | } |
1657 | } |
1658 | |
1659 | LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, |
1660 | LIRItem& base, LIRItem& offset, LIRItem& value) { |
1661 | decorators |= ACCESS_READ; |
1662 | decorators |= ACCESS_WRITE; |
1663 | // Atomic operations are SEQ_CST by default |
1664 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
1665 | LIRAccess access(this, decorators, base, offset, type); |
1666 | if (access.is_raw()) { |
1667 | return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); |
1668 | } else { |
1669 | return _barrier_set->atomic_xchg_at(access, value); |
1670 | } |
1671 | } |
1672 | |
1673 | LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, |
1674 | LIRItem& base, LIRItem& offset, LIRItem& value) { |
1675 | decorators |= ACCESS_READ; |
1676 | decorators |= ACCESS_WRITE; |
1677 | // Atomic operations are SEQ_CST by default |
1678 | decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; |
1679 | LIRAccess access(this, decorators, base, offset, type); |
1680 | if (access.is_raw()) { |
1681 | return _barrier_set->BarrierSetC1::atomic_add_at(access, value); |
1682 | } else { |
1683 | return _barrier_set->atomic_add_at(access, value); |
1684 | } |
1685 | } |
1686 | |
1687 | LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) { |
1688 | // Use stronger ACCESS_WRITE|ACCESS_READ by default. |
1689 | if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { |
1690 | decorators |= ACCESS_READ | ACCESS_WRITE; |
1691 | } |
1692 | |
1693 | return _barrier_set->resolve(this, decorators, obj); |
1694 | } |
1695 | |
1696 | void LIRGenerator::do_LoadField(LoadField* x) { |
1697 | bool needs_patching = x->needs_patching(); |
1698 | bool is_volatile = x->field()->is_volatile(); |
1699 | BasicType field_type = x->field_type(); |
1700 | |
1701 | CodeEmitInfo* info = NULL; |
1702 | if (needs_patching) { |
1703 | assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access" ); |
1704 | info = state_for(x, x->state_before()); |
1705 | } else if (x->needs_null_check()) { |
1706 | NullCheck* nc = x->explicit_null_check(); |
1707 | if (nc == NULL) { |
1708 | info = state_for(x); |
1709 | } else { |
1710 | info = state_for(nc); |
1711 | } |
1712 | } |
1713 | |
1714 | LIRItem object(x->obj(), this); |
1715 | |
1716 | object.load_item(); |
1717 | |
1718 | #ifndef PRODUCT |
1719 | if (PrintNotLoaded && needs_patching) { |
1720 | tty->print_cr(" ###class not loaded at load_%s bci %d" , |
1721 | x->is_static() ? "static" : "field" , x->printable_bci()); |
1722 | } |
1723 | #endif |
1724 | |
1725 | bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); |
1726 | if (x->needs_null_check() && |
1727 | (needs_patching || |
1728 | MacroAssembler::needs_explicit_null_check(x->offset()) || |
1729 | stress_deopt)) { |
1730 | LIR_Opr obj = object.result(); |
1731 | if (stress_deopt) { |
1732 | obj = new_register(T_OBJECT); |
1733 | __ move(LIR_OprFact::oopConst(NULL), obj); |
1734 | } |
1735 | // Emit an explicit null check because the offset is too large. |
1736 | // If the class is not loaded and the object is NULL, we need to deoptimize to throw a |
1737 | // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. |
1738 | __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); |
1739 | } |
1740 | |
1741 | DecoratorSet decorators = IN_HEAP; |
1742 | if (is_volatile) { |
1743 | decorators |= MO_SEQ_CST; |
1744 | } |
1745 | if (needs_patching) { |
1746 | decorators |= C1_NEEDS_PATCHING; |
1747 | } |
1748 | |
1749 | LIR_Opr result = rlock_result(x, field_type); |
1750 | access_load_at(decorators, field_type, |
1751 | object, LIR_OprFact::intConst(x->offset()), result, |
1752 | info ? new CodeEmitInfo(info) : NULL, info); |
1753 | } |
1754 | |
1755 | |
1756 | //------------------------java.nio.Buffer.checkIndex------------------------ |
1757 | |
1758 | // int java.nio.Buffer.checkIndex(int) |
1759 | void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { |
1760 | // NOTE: by the time we are in checkIndex() we are guaranteed that |
1761 | // the buffer is non-null (because checkIndex is package-private and |
1762 | // only called from within other methods in the buffer). |
1763 | assert(x->number_of_arguments() == 2, "wrong type" ); |
1764 | LIRItem buf (x->argument_at(0), this); |
1765 | LIRItem index(x->argument_at(1), this); |
1766 | buf.load_item(); |
1767 | index.load_item(); |
1768 | |
1769 | LIR_Opr result = rlock_result(x); |
1770 | if (GenerateRangeChecks) { |
1771 | CodeEmitInfo* info = state_for(x); |
1772 | CodeStub* stub = new RangeCheckStub(info, index.result()); |
1773 | LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result()); |
1774 | if (index.result()->is_constant()) { |
1775 | cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); |
1776 | __ branch(lir_cond_belowEqual, T_INT, stub); |
1777 | } else { |
1778 | cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj, |
1779 | java_nio_Buffer::limit_offset(), T_INT, info); |
1780 | __ branch(lir_cond_aboveEqual, T_INT, stub); |
1781 | } |
1782 | __ move(index.result(), result); |
1783 | } else { |
1784 | // Just load the index into the result register |
1785 | __ move(index.result(), result); |
1786 | } |
1787 | } |
1788 | |
1789 | |
1790 | //------------------------array access-------------------------------------- |
1791 | |
1792 | |
1793 | void LIRGenerator::do_ArrayLength(ArrayLength* x) { |
1794 | LIRItem array(x->array(), this); |
1795 | array.load_item(); |
1796 | LIR_Opr reg = rlock_result(x); |
1797 | |
1798 | CodeEmitInfo* info = NULL; |
1799 | if (x->needs_null_check()) { |
1800 | NullCheck* nc = x->explicit_null_check(); |
1801 | if (nc == NULL) { |
1802 | info = state_for(x); |
1803 | } else { |
1804 | info = state_for(nc); |
1805 | } |
1806 | if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { |
1807 | LIR_Opr obj = new_register(T_OBJECT); |
1808 | __ move(LIR_OprFact::oopConst(NULL), obj); |
1809 | __ null_check(obj, new CodeEmitInfo(info)); |
1810 | } |
1811 | } |
1812 | __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); |
1813 | } |
1814 | |
1815 | |
1816 | void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { |
1817 | bool use_length = x->length() != NULL; |
1818 | LIRItem array(x->array(), this); |
1819 | LIRItem index(x->index(), this); |
1820 | LIRItem length(this); |
1821 | bool needs_range_check = x->compute_needs_range_check(); |
1822 | |
1823 | if (use_length && needs_range_check) { |
1824 | length.set_instruction(x->length()); |
1825 | length.load_item(); |
1826 | } |
1827 | |
1828 | array.load_item(); |
1829 | if (index.is_constant() && can_inline_as_constant(x->index())) { |
1830 | // let it be a constant |
1831 | index.dont_load_item(); |
1832 | } else { |
1833 | index.load_item(); |
1834 | } |
1835 | |
1836 | CodeEmitInfo* range_check_info = state_for(x); |
1837 | CodeEmitInfo* null_check_info = NULL; |
1838 | if (x->needs_null_check()) { |
1839 | NullCheck* nc = x->explicit_null_check(); |
1840 | if (nc != NULL) { |
1841 | null_check_info = state_for(nc); |
1842 | } else { |
1843 | null_check_info = range_check_info; |
1844 | } |
1845 | if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { |
1846 | LIR_Opr obj = new_register(T_OBJECT); |
1847 | __ move(LIR_OprFact::oopConst(NULL), obj); |
1848 | __ null_check(obj, new CodeEmitInfo(null_check_info)); |
1849 | } |
1850 | } |
1851 | |
1852 | if (GenerateRangeChecks && needs_range_check) { |
1853 | if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { |
1854 | __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result())); |
1855 | } else if (use_length) { |
1856 | // TODO: use a (modified) version of array_range_check that does not require a |
1857 | // constant length to be loaded to a register |
1858 | __ cmp(lir_cond_belowEqual, length.result(), index.result()); |
1859 | __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); |
1860 | } else { |
1861 | array_range_check(array.result(), index.result(), null_check_info, range_check_info); |
1862 | // The range check performs the null check, so clear it out for the load |
1863 | null_check_info = NULL; |
1864 | } |
1865 | } |
1866 | |
1867 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
1868 | |
1869 | LIR_Opr result = rlock_result(x, x->elt_type()); |
1870 | access_load_at(decorators, x->elt_type(), |
1871 | array, index.result(), result, |
1872 | NULL, null_check_info); |
1873 | } |
1874 | |
1875 | |
1876 | void LIRGenerator::do_NullCheck(NullCheck* x) { |
1877 | if (x->can_trap()) { |
1878 | LIRItem value(x->obj(), this); |
1879 | value.load_item(); |
1880 | CodeEmitInfo* info = state_for(x); |
1881 | __ null_check(value.result(), info); |
1882 | } |
1883 | } |
1884 | |
1885 | |
1886 | void LIRGenerator::do_TypeCast(TypeCast* x) { |
1887 | LIRItem value(x->obj(), this); |
1888 | value.load_item(); |
1889 | // the result is the same as from the node we are casting |
1890 | set_result(x, value.result()); |
1891 | } |
1892 | |
1893 | |
1894 | void LIRGenerator::do_Throw(Throw* x) { |
1895 | LIRItem exception(x->exception(), this); |
1896 | exception.load_item(); |
1897 | set_no_result(x); |
1898 | LIR_Opr exception_opr = exception.result(); |
1899 | CodeEmitInfo* info = state_for(x, x->state()); |
1900 | |
1901 | #ifndef PRODUCT |
1902 | if (PrintC1Statistics) { |
1903 | increment_counter(Runtime1::throw_count_address(), T_INT); |
1904 | } |
1905 | #endif |
1906 | |
1907 | // check if the instruction has an xhandler in any of the nested scopes |
1908 | bool unwind = false; |
1909 | if (info->exception_handlers()->length() == 0) { |
1910 | // this throw is not inside an xhandler |
1911 | unwind = true; |
1912 | } else { |
1913 | // get some idea of the throw type |
1914 | bool type_is_exact = true; |
1915 | ciType* throw_type = x->exception()->exact_type(); |
1916 | if (throw_type == NULL) { |
1917 | type_is_exact = false; |
1918 | throw_type = x->exception()->declared_type(); |
1919 | } |
1920 | if (throw_type != NULL && throw_type->is_instance_klass()) { |
1921 | ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; |
1922 | unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); |
1923 | } |
1924 | } |
1925 | |
1926 | // do null check before moving exception oop into fixed register |
1927 | // to avoid a fixed interval with an oop during the null check. |
1928 | // Use a copy of the CodeEmitInfo because debug information is |
1929 | // different for null_check and throw. |
1930 | if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { |
1931 | // if the exception object wasn't created using new then it might be null. |
1932 | __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); |
1933 | } |
1934 | |
1935 | if (compilation()->env()->jvmti_can_post_on_exceptions()) { |
1936 | // we need to go through the exception lookup path to get JVMTI |
1937 | // notification done |
1938 | unwind = false; |
1939 | } |
1940 | |
1941 | // move exception oop into fixed register |
1942 | __ move(exception_opr, exceptionOopOpr()); |
1943 | |
1944 | if (unwind) { |
1945 | __ unwind_exception(exceptionOopOpr()); |
1946 | } else { |
1947 | __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); |
1948 | } |
1949 | } |
1950 | |
1951 | |
1952 | void LIRGenerator::do_RoundFP(RoundFP* x) { |
1953 | LIRItem input(x->input(), this); |
1954 | input.load_item(); |
1955 | LIR_Opr input_opr = input.result(); |
1956 | assert(input_opr->is_register(), "why round if value is not in a register?" ); |
1957 | assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value" ); |
1958 | if (input_opr->is_single_fpu()) { |
1959 | set_result(x, round_item(input_opr)); // This code path not currently taken |
1960 | } else { |
1961 | LIR_Opr result = new_register(T_DOUBLE); |
1962 | set_vreg_flag(result, must_start_in_memory); |
1963 | __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); |
1964 | set_result(x, result); |
1965 | } |
1966 | } |
1967 | |
1968 | // Here UnsafeGetRaw may have x->base() and x->index() be int or long |
1969 | // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. |
1970 | void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { |
1971 | LIRItem base(x->base(), this); |
1972 | LIRItem idx(this); |
1973 | |
1974 | base.load_item(); |
1975 | if (x->has_index()) { |
1976 | idx.set_instruction(x->index()); |
1977 | idx.load_nonconstant(); |
1978 | } |
1979 | |
1980 | LIR_Opr reg = rlock_result(x, x->basic_type()); |
1981 | |
1982 | int log2_scale = 0; |
1983 | if (x->has_index()) { |
1984 | log2_scale = x->log2_scale(); |
1985 | } |
1986 | |
1987 | assert(!x->has_index() || idx.value() == x->index(), "should match" ); |
1988 | |
1989 | LIR_Opr base_op = base.result(); |
1990 | LIR_Opr index_op = idx.result(); |
1991 | #ifndef _LP64 |
1992 | if (base_op->type() == T_LONG) { |
1993 | base_op = new_register(T_INT); |
1994 | __ convert(Bytecodes::_l2i, base.result(), base_op); |
1995 | } |
1996 | if (x->has_index()) { |
1997 | if (index_op->type() == T_LONG) { |
1998 | LIR_Opr long_index_op = index_op; |
1999 | if (index_op->is_constant()) { |
2000 | long_index_op = new_register(T_LONG); |
2001 | __ move(index_op, long_index_op); |
2002 | } |
2003 | index_op = new_register(T_INT); |
2004 | __ convert(Bytecodes::_l2i, long_index_op, index_op); |
2005 | } else { |
2006 | assert(x->index()->type()->tag() == intTag, "must be" ); |
2007 | } |
2008 | } |
2009 | // At this point base and index should be all ints. |
2010 | assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int" ); |
2011 | assert(!x->has_index() || index_op->type() == T_INT, "index should be an int" ); |
2012 | #else |
2013 | if (x->has_index()) { |
2014 | if (index_op->type() == T_INT) { |
2015 | if (!index_op->is_constant()) { |
2016 | index_op = new_register(T_LONG); |
2017 | __ convert(Bytecodes::_i2l, idx.result(), index_op); |
2018 | } |
2019 | } else { |
2020 | assert(index_op->type() == T_LONG, "must be" ); |
2021 | if (index_op->is_constant()) { |
2022 | index_op = new_register(T_LONG); |
2023 | __ move(idx.result(), index_op); |
2024 | } |
2025 | } |
2026 | } |
2027 | // At this point base is a long non-constant |
2028 | // Index is a long register or a int constant. |
2029 | // We allow the constant to stay an int because that would allow us a more compact encoding by |
2030 | // embedding an immediate offset in the address expression. If we have a long constant, we have to |
2031 | // move it into a register first. |
2032 | assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant" ); |
2033 | assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || |
2034 | (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type" ); |
2035 | #endif |
2036 | |
2037 | BasicType dst_type = x->basic_type(); |
2038 | |
2039 | LIR_Address* addr; |
2040 | if (index_op->is_constant()) { |
2041 | assert(log2_scale == 0, "must not have a scale" ); |
2042 | assert(index_op->type() == T_INT, "only int constants supported" ); |
2043 | addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); |
2044 | } else { |
2045 | #ifdef X86 |
2046 | addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); |
2047 | #elif defined(GENERATE_ADDRESS_IS_PREFERRED) |
2048 | addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); |
2049 | #else |
2050 | if (index_op->is_illegal() || log2_scale == 0) { |
2051 | addr = new LIR_Address(base_op, index_op, dst_type); |
2052 | } else { |
2053 | LIR_Opr tmp = new_pointer_register(); |
2054 | __ shift_left(index_op, log2_scale, tmp); |
2055 | addr = new LIR_Address(base_op, tmp, dst_type); |
2056 | } |
2057 | #endif |
2058 | } |
2059 | |
2060 | if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { |
2061 | __ unaligned_move(addr, reg); |
2062 | } else { |
2063 | if (dst_type == T_OBJECT && x->is_wide()) { |
2064 | __ move_wide(addr, reg); |
2065 | } else { |
2066 | __ move(addr, reg); |
2067 | } |
2068 | } |
2069 | } |
2070 | |
2071 | |
2072 | void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { |
2073 | int log2_scale = 0; |
2074 | BasicType type = x->basic_type(); |
2075 | |
2076 | if (x->has_index()) { |
2077 | log2_scale = x->log2_scale(); |
2078 | } |
2079 | |
2080 | LIRItem base(x->base(), this); |
2081 | LIRItem value(x->value(), this); |
2082 | LIRItem idx(this); |
2083 | |
2084 | base.load_item(); |
2085 | if (x->has_index()) { |
2086 | idx.set_instruction(x->index()); |
2087 | idx.load_item(); |
2088 | } |
2089 | |
2090 | if (type == T_BYTE || type == T_BOOLEAN) { |
2091 | value.load_byte_item(); |
2092 | } else { |
2093 | value.load_item(); |
2094 | } |
2095 | |
2096 | set_no_result(x); |
2097 | |
2098 | LIR_Opr base_op = base.result(); |
2099 | LIR_Opr index_op = idx.result(); |
2100 | |
2101 | #ifdef GENERATE_ADDRESS_IS_PREFERRED |
2102 | LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); |
2103 | #else |
2104 | #ifndef _LP64 |
2105 | if (base_op->type() == T_LONG) { |
2106 | base_op = new_register(T_INT); |
2107 | __ convert(Bytecodes::_l2i, base.result(), base_op); |
2108 | } |
2109 | if (x->has_index()) { |
2110 | if (index_op->type() == T_LONG) { |
2111 | index_op = new_register(T_INT); |
2112 | __ convert(Bytecodes::_l2i, idx.result(), index_op); |
2113 | } |
2114 | } |
2115 | // At this point base and index should be all ints and not constants |
2116 | assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int" ); |
2117 | assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int" ); |
2118 | #else |
2119 | if (x->has_index()) { |
2120 | if (index_op->type() == T_INT) { |
2121 | index_op = new_register(T_LONG); |
2122 | __ convert(Bytecodes::_i2l, idx.result(), index_op); |
2123 | } |
2124 | } |
2125 | // At this point base and index are long and non-constant |
2126 | assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long" ); |
2127 | assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long" ); |
2128 | #endif |
2129 | |
2130 | if (log2_scale != 0) { |
2131 | // temporary fix (platform dependent code without shift on Intel would be better) |
2132 | // TODO: ARM also allows embedded shift in the address |
2133 | LIR_Opr tmp = new_pointer_register(); |
2134 | if (TwoOperandLIRForm) { |
2135 | __ move(index_op, tmp); |
2136 | index_op = tmp; |
2137 | } |
2138 | __ shift_left(index_op, log2_scale, tmp); |
2139 | if (!TwoOperandLIRForm) { |
2140 | index_op = tmp; |
2141 | } |
2142 | } |
2143 | |
2144 | LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); |
2145 | #endif // !GENERATE_ADDRESS_IS_PREFERRED |
2146 | __ move(value.result(), addr); |
2147 | } |
2148 | |
2149 | |
2150 | void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { |
2151 | BasicType type = x->basic_type(); |
2152 | LIRItem src(x->object(), this); |
2153 | LIRItem off(x->offset(), this); |
2154 | |
2155 | off.load_item(); |
2156 | src.load_item(); |
2157 | |
2158 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; |
2159 | |
2160 | if (x->is_volatile()) { |
2161 | decorators |= MO_SEQ_CST; |
2162 | } |
2163 | if (type == T_BOOLEAN) { |
2164 | decorators |= C1_MASK_BOOLEAN; |
2165 | } |
2166 | if (type == T_ARRAY || type == T_OBJECT) { |
2167 | decorators |= ON_UNKNOWN_OOP_REF; |
2168 | } |
2169 | |
2170 | LIR_Opr result = rlock_result(x, type); |
2171 | access_load_at(decorators, type, |
2172 | src, off.result(), result); |
2173 | } |
2174 | |
2175 | |
2176 | void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { |
2177 | BasicType type = x->basic_type(); |
2178 | LIRItem src(x->object(), this); |
2179 | LIRItem off(x->offset(), this); |
2180 | LIRItem data(x->value(), this); |
2181 | |
2182 | src.load_item(); |
2183 | if (type == T_BOOLEAN || type == T_BYTE) { |
2184 | data.load_byte_item(); |
2185 | } else { |
2186 | data.load_item(); |
2187 | } |
2188 | off.load_item(); |
2189 | |
2190 | set_no_result(x); |
2191 | |
2192 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; |
2193 | if (type == T_ARRAY || type == T_OBJECT) { |
2194 | decorators |= ON_UNKNOWN_OOP_REF; |
2195 | } |
2196 | if (x->is_volatile()) { |
2197 | decorators |= MO_SEQ_CST; |
2198 | } |
2199 | access_store_at(decorators, type, src, off.result(), data.result()); |
2200 | } |
2201 | |
2202 | void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { |
2203 | BasicType type = x->basic_type(); |
2204 | LIRItem src(x->object(), this); |
2205 | LIRItem off(x->offset(), this); |
2206 | LIRItem value(x->value(), this); |
2207 | |
2208 | DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; |
2209 | |
2210 | if (type == T_ARRAY || type == T_OBJECT) { |
2211 | decorators |= ON_UNKNOWN_OOP_REF; |
2212 | } |
2213 | |
2214 | LIR_Opr result; |
2215 | if (x->is_add()) { |
2216 | result = access_atomic_add_at(decorators, type, src, off, value); |
2217 | } else { |
2218 | result = access_atomic_xchg_at(decorators, type, src, off, value); |
2219 | } |
2220 | set_result(x, result); |
2221 | } |
2222 | |
2223 | void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { |
2224 | int lng = x->length(); |
2225 | |
2226 | for (int i = 0; i < lng; i++) { |
2227 | SwitchRange* one_range = x->at(i); |
2228 | int low_key = one_range->low_key(); |
2229 | int high_key = one_range->high_key(); |
2230 | BlockBegin* dest = one_range->sux(); |
2231 | if (low_key == high_key) { |
2232 | __ cmp(lir_cond_equal, value, low_key); |
2233 | __ branch(lir_cond_equal, T_INT, dest); |
2234 | } else if (high_key - low_key == 1) { |
2235 | __ cmp(lir_cond_equal, value, low_key); |
2236 | __ branch(lir_cond_equal, T_INT, dest); |
2237 | __ cmp(lir_cond_equal, value, high_key); |
2238 | __ branch(lir_cond_equal, T_INT, dest); |
2239 | } else { |
2240 | LabelObj* L = new LabelObj(); |
2241 | __ cmp(lir_cond_less, value, low_key); |
2242 | __ branch(lir_cond_less, T_INT, L->label()); |
2243 | __ cmp(lir_cond_lessEqual, value, high_key); |
2244 | __ branch(lir_cond_lessEqual, T_INT, dest); |
2245 | __ branch_destination(L->label()); |
2246 | } |
2247 | } |
2248 | __ jump(default_sux); |
2249 | } |
2250 | |
2251 | |
2252 | SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { |
2253 | SwitchRangeList* res = new SwitchRangeList(); |
2254 | int len = x->length(); |
2255 | if (len > 0) { |
2256 | BlockBegin* sux = x->sux_at(0); |
2257 | int key = x->lo_key(); |
2258 | BlockBegin* default_sux = x->default_sux(); |
2259 | SwitchRange* range = new SwitchRange(key, sux); |
2260 | for (int i = 0; i < len; i++, key++) { |
2261 | BlockBegin* new_sux = x->sux_at(i); |
2262 | if (sux == new_sux) { |
2263 | // still in same range |
2264 | range->set_high_key(key); |
2265 | } else { |
2266 | // skip tests which explicitly dispatch to the default |
2267 | if (sux != default_sux) { |
2268 | res->append(range); |
2269 | } |
2270 | range = new SwitchRange(key, new_sux); |
2271 | } |
2272 | sux = new_sux; |
2273 | } |
2274 | if (res->length() == 0 || res->last() != range) res->append(range); |
2275 | } |
2276 | return res; |
2277 | } |
2278 | |
2279 | |
2280 | // we expect the keys to be sorted by increasing value |
2281 | SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { |
2282 | SwitchRangeList* res = new SwitchRangeList(); |
2283 | int len = x->length(); |
2284 | if (len > 0) { |
2285 | BlockBegin* default_sux = x->default_sux(); |
2286 | int key = x->key_at(0); |
2287 | BlockBegin* sux = x->sux_at(0); |
2288 | SwitchRange* range = new SwitchRange(key, sux); |
2289 | for (int i = 1; i < len; i++) { |
2290 | int new_key = x->key_at(i); |
2291 | BlockBegin* new_sux = x->sux_at(i); |
2292 | if (key+1 == new_key && sux == new_sux) { |
2293 | // still in same range |
2294 | range->set_high_key(new_key); |
2295 | } else { |
2296 | // skip tests which explicitly dispatch to the default |
2297 | if (range->sux() != default_sux) { |
2298 | res->append(range); |
2299 | } |
2300 | range = new SwitchRange(new_key, new_sux); |
2301 | } |
2302 | key = new_key; |
2303 | sux = new_sux; |
2304 | } |
2305 | if (res->length() == 0 || res->last() != range) res->append(range); |
2306 | } |
2307 | return res; |
2308 | } |
2309 | |
2310 | |
2311 | void LIRGenerator::do_TableSwitch(TableSwitch* x) { |
2312 | LIRItem tag(x->tag(), this); |
2313 | tag.load_item(); |
2314 | set_no_result(x); |
2315 | |
2316 | if (x->is_safepoint()) { |
2317 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
2318 | } |
2319 | |
2320 | // move values into phi locations |
2321 | move_to_phi(x->state()); |
2322 | |
2323 | int lo_key = x->lo_key(); |
2324 | int len = x->length(); |
2325 | assert(lo_key <= (lo_key + (len - 1)), "integer overflow" ); |
2326 | LIR_Opr value = tag.result(); |
2327 | |
2328 | if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { |
2329 | ciMethod* method = x->state()->scope()->method(); |
2330 | ciMethodData* md = method->method_data_or_null(); |
2331 | assert(md != NULL, "Sanity" ); |
2332 | ciProfileData* data = md->bci_to_data(x->state()->bci()); |
2333 | assert(data != NULL, "must have profiling data" ); |
2334 | assert(data->is_MultiBranchData(), "bad profile data?" ); |
2335 | int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); |
2336 | LIR_Opr md_reg = new_register(T_METADATA); |
2337 | __ metadata2reg(md->constant_encoding(), md_reg); |
2338 | LIR_Opr data_offset_reg = new_pointer_register(); |
2339 | LIR_Opr tmp_reg = new_pointer_register(); |
2340 | |
2341 | __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); |
2342 | for (int i = 0; i < len; i++) { |
2343 | int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); |
2344 | __ cmp(lir_cond_equal, value, i + lo_key); |
2345 | __ move(data_offset_reg, tmp_reg); |
2346 | __ cmove(lir_cond_equal, |
2347 | LIR_OprFact::intptrConst(count_offset), |
2348 | tmp_reg, |
2349 | data_offset_reg, T_INT); |
2350 | } |
2351 | |
2352 | LIR_Opr data_reg = new_pointer_register(); |
2353 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
2354 | __ move(data_addr, data_reg); |
2355 | __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); |
2356 | __ move(data_reg, data_addr); |
2357 | } |
2358 | |
2359 | if (UseTableRanges) { |
2360 | do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); |
2361 | } else { |
2362 | for (int i = 0; i < len; i++) { |
2363 | __ cmp(lir_cond_equal, value, i + lo_key); |
2364 | __ branch(lir_cond_equal, T_INT, x->sux_at(i)); |
2365 | } |
2366 | __ jump(x->default_sux()); |
2367 | } |
2368 | } |
2369 | |
2370 | |
2371 | void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { |
2372 | LIRItem tag(x->tag(), this); |
2373 | tag.load_item(); |
2374 | set_no_result(x); |
2375 | |
2376 | if (x->is_safepoint()) { |
2377 | __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); |
2378 | } |
2379 | |
2380 | // move values into phi locations |
2381 | move_to_phi(x->state()); |
2382 | |
2383 | LIR_Opr value = tag.result(); |
2384 | int len = x->length(); |
2385 | |
2386 | if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { |
2387 | ciMethod* method = x->state()->scope()->method(); |
2388 | ciMethodData* md = method->method_data_or_null(); |
2389 | assert(md != NULL, "Sanity" ); |
2390 | ciProfileData* data = md->bci_to_data(x->state()->bci()); |
2391 | assert(data != NULL, "must have profiling data" ); |
2392 | assert(data->is_MultiBranchData(), "bad profile data?" ); |
2393 | int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); |
2394 | LIR_Opr md_reg = new_register(T_METADATA); |
2395 | __ metadata2reg(md->constant_encoding(), md_reg); |
2396 | LIR_Opr data_offset_reg = new_pointer_register(); |
2397 | LIR_Opr tmp_reg = new_pointer_register(); |
2398 | |
2399 | __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); |
2400 | for (int i = 0; i < len; i++) { |
2401 | int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); |
2402 | __ cmp(lir_cond_equal, value, x->key_at(i)); |
2403 | __ move(data_offset_reg, tmp_reg); |
2404 | __ cmove(lir_cond_equal, |
2405 | LIR_OprFact::intptrConst(count_offset), |
2406 | tmp_reg, |
2407 | data_offset_reg, T_INT); |
2408 | } |
2409 | |
2410 | LIR_Opr data_reg = new_pointer_register(); |
2411 | LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); |
2412 | __ move(data_addr, data_reg); |
2413 | __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); |
2414 | __ move(data_reg, data_addr); |
2415 | } |
2416 | |
2417 | if (UseTableRanges) { |
2418 | do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); |
2419 | } else { |
2420 | int len = x->length(); |
2421 | for (int i = 0; i < len; i++) { |
2422 | __ cmp(lir_cond_equal, value, x->key_at(i)); |
2423 | __ branch(lir_cond_equal, T_INT, x->sux_at(i)); |
2424 | } |
2425 | __ jump(x->default_sux()); |
2426 | } |
2427 | } |
2428 | |
2429 | |
2430 | void LIRGenerator::do_Goto(Goto* x) { |
2431 | set_no_result(x); |
2432 | |
2433 | if (block()->next()->as_OsrEntry()) { |
2434 | // need to free up storage used for OSR entry point |
2435 | LIR_Opr osrBuffer = block()->next()->operand(); |
2436 | BasicTypeList signature; |
2437 | signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer |
2438 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
2439 | __ move(osrBuffer, cc->args()->at(0)); |
2440 | __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), |
2441 | getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); |
2442 | } |
2443 | |
2444 | if (x->is_safepoint()) { |
2445 | ValueStack* state = x->state_before() ? x->state_before() : x->state(); |
2446 | |
2447 | // increment backedge counter if needed |
2448 | CodeEmitInfo* info = state_for(x, state); |
2449 | increment_backedge_counter(info, x->profiled_bci()); |
2450 | CodeEmitInfo* safepoint_info = state_for(x, state); |
2451 | __ safepoint(safepoint_poll_register(), safepoint_info); |
2452 | } |
2453 | |
2454 | // Gotos can be folded Ifs, handle this case. |
2455 | if (x->should_profile()) { |
2456 | ciMethod* method = x->profiled_method(); |
2457 | assert(method != NULL, "method should be set if branch is profiled" ); |
2458 | ciMethodData* md = method->method_data_or_null(); |
2459 | assert(md != NULL, "Sanity" ); |
2460 | ciProfileData* data = md->bci_to_data(x->profiled_bci()); |
2461 | assert(data != NULL, "must have profiling data" ); |
2462 | int offset; |
2463 | if (x->direction() == Goto::taken) { |
2464 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
2465 | offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); |
2466 | } else if (x->direction() == Goto::not_taken) { |
2467 | assert(data->is_BranchData(), "need BranchData for two-way branches" ); |
2468 | offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); |
2469 | } else { |
2470 | assert(data->is_JumpData(), "need JumpData for branches" ); |
2471 | offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); |
2472 | } |
2473 | LIR_Opr md_reg = new_register(T_METADATA); |
2474 | __ metadata2reg(md->constant_encoding(), md_reg); |
2475 | |
2476 | increment_counter(new LIR_Address(md_reg, offset, |
2477 | NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); |
2478 | } |
2479 | |
2480 | // emit phi-instruction move after safepoint since this simplifies |
2481 | // describing the state as the safepoint. |
2482 | move_to_phi(x->state()); |
2483 | |
2484 | __ jump(x->default_sux()); |
2485 | } |
2486 | |
2487 | /** |
2488 | * Emit profiling code if needed for arguments, parameters, return value types |
2489 | * |
2490 | * @param md MDO the code will update at runtime |
2491 | * @param md_base_offset common offset in the MDO for this profile and subsequent ones |
2492 | * @param md_offset offset in the MDO (on top of md_base_offset) for this profile |
2493 | * @param profiled_k current profile |
2494 | * @param obj IR node for the object to be profiled |
2495 | * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). |
2496 | * Set once we find an update to make and use for next ones. |
2497 | * @param not_null true if we know obj cannot be null |
2498 | * @param signature_at_call_k signature at call for obj |
2499 | * @param callee_signature_k signature of callee for obj |
2500 | * at call and callee signatures differ at method handle call |
2501 | * @return the only klass we know will ever be seen at this profile point |
2502 | */ |
2503 | ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, |
2504 | Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, |
2505 | ciKlass* callee_signature_k) { |
2506 | ciKlass* result = NULL; |
2507 | bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); |
2508 | bool do_update = !TypeEntries::is_type_unknown(profiled_k); |
2509 | // known not to be null or null bit already set and already set to |
2510 | // unknown: nothing we can do to improve profiling |
2511 | if (!do_null && !do_update) { |
2512 | return result; |
2513 | } |
2514 | |
2515 | ciKlass* exact_klass = NULL; |
2516 | Compilation* comp = Compilation::current(); |
2517 | if (do_update) { |
2518 | // try to find exact type, using CHA if possible, so that loading |
2519 | // the klass from the object can be avoided |
2520 | ciType* type = obj->exact_type(); |
2521 | if (type == NULL) { |
2522 | type = obj->declared_type(); |
2523 | type = comp->cha_exact_type(type); |
2524 | } |
2525 | assert(type == NULL || type->is_klass(), "type should be class" ); |
2526 | exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; |
2527 | |
2528 | do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; |
2529 | } |
2530 | |
2531 | if (!do_null && !do_update) { |
2532 | return result; |
2533 | } |
2534 | |
2535 | ciKlass* exact_signature_k = NULL; |
2536 | if (do_update) { |
2537 | // Is the type from the signature exact (the only one possible)? |
2538 | exact_signature_k = signature_at_call_k->exact_klass(); |
2539 | if (exact_signature_k == NULL) { |
2540 | exact_signature_k = comp->cha_exact_type(signature_at_call_k); |
2541 | } else { |
2542 | result = exact_signature_k; |
2543 | // Known statically. No need to emit any code: prevent |
2544 | // LIR_Assembler::emit_profile_type() from emitting useless code |
2545 | profiled_k = ciTypeEntries::with_status(result, profiled_k); |
2546 | } |
2547 | // exact_klass and exact_signature_k can be both non NULL but |
2548 | // different if exact_klass is loaded after the ciObject for |
2549 | // exact_signature_k is created. |
2550 | if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { |
2551 | // sometimes the type of the signature is better than the best type |
2552 | // the compiler has |
2553 | exact_klass = exact_signature_k; |
2554 | } |
2555 | if (callee_signature_k != NULL && |
2556 | callee_signature_k != signature_at_call_k) { |
2557 | ciKlass* improved_klass = callee_signature_k->exact_klass(); |
2558 | if (improved_klass == NULL) { |
2559 | improved_klass = comp->cha_exact_type(callee_signature_k); |
2560 | } |
2561 | if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { |
2562 | exact_klass = exact_signature_k; |
2563 | } |
2564 | } |
2565 | do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; |
2566 | } |
2567 | |
2568 | if (!do_null && !do_update) { |
2569 | return result; |
2570 | } |
2571 | |
2572 | if (mdp == LIR_OprFact::illegalOpr) { |
2573 | mdp = new_register(T_METADATA); |
2574 | __ metadata2reg(md->constant_encoding(), mdp); |
2575 | if (md_base_offset != 0) { |
2576 | LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); |
2577 | mdp = new_pointer_register(); |
2578 | __ leal(LIR_OprFact::address(base_type_address), mdp); |
2579 | } |
2580 | } |
2581 | LIRItem value(obj, this); |
2582 | value.load_item(); |
2583 | __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), |
2584 | value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); |
2585 | return result; |
2586 | } |
2587 | |
2588 | // profile parameters on entry to the root of the compilation |
2589 | void LIRGenerator::profile_parameters(Base* x) { |
2590 | if (compilation()->profile_parameters()) { |
2591 | CallingConvention* args = compilation()->frame_map()->incoming_arguments(); |
2592 | ciMethodData* md = scope()->method()->method_data_or_null(); |
2593 | assert(md != NULL, "Sanity" ); |
2594 | |
2595 | if (md->parameters_type_data() != NULL) { |
2596 | ciParametersTypeData* parameters_type_data = md->parameters_type_data(); |
2597 | ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); |
2598 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
2599 | for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { |
2600 | LIR_Opr src = args->at(i); |
2601 | assert(!src->is_illegal(), "check" ); |
2602 | BasicType t = src->type(); |
2603 | if (t == T_OBJECT || t == T_ARRAY) { |
2604 | intptr_t profiled_k = parameters->type(j); |
2605 | Local* local = x->state()->local_at(java_index)->as_Local(); |
2606 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), |
2607 | in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), |
2608 | profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); |
2609 | // If the profile is known statically set it once for all and do not emit any code |
2610 | if (exact != NULL) { |
2611 | md->set_parameter_type(j, exact); |
2612 | } |
2613 | j++; |
2614 | } |
2615 | java_index += type2size[t]; |
2616 | } |
2617 | } |
2618 | } |
2619 | } |
2620 | |
2621 | void LIRGenerator::do_Base(Base* x) { |
2622 | __ std_entry(LIR_OprFact::illegalOpr); |
2623 | // Emit moves from physical registers / stack slots to virtual registers |
2624 | CallingConvention* args = compilation()->frame_map()->incoming_arguments(); |
2625 | IRScope* irScope = compilation()->hir()->top_scope(); |
2626 | int java_index = 0; |
2627 | for (int i = 0; i < args->length(); i++) { |
2628 | LIR_Opr src = args->at(i); |
2629 | assert(!src->is_illegal(), "check" ); |
2630 | BasicType t = src->type(); |
2631 | |
2632 | // Types which are smaller than int are passed as int, so |
2633 | // correct the type which passed. |
2634 | switch (t) { |
2635 | case T_BYTE: |
2636 | case T_BOOLEAN: |
2637 | case T_SHORT: |
2638 | case T_CHAR: |
2639 | t = T_INT; |
2640 | break; |
2641 | default: |
2642 | break; |
2643 | } |
2644 | |
2645 | LIR_Opr dest = new_register(t); |
2646 | __ move(src, dest); |
2647 | |
2648 | // Assign new location to Local instruction for this local |
2649 | Local* local = x->state()->local_at(java_index)->as_Local(); |
2650 | assert(local != NULL, "Locals for incoming arguments must have been created" ); |
2651 | #ifndef __SOFTFP__ |
2652 | // The java calling convention passes double as long and float as int. |
2653 | assert(as_ValueType(t)->tag() == local->type()->tag(), "check" ); |
2654 | #endif // __SOFTFP__ |
2655 | local->set_operand(dest); |
2656 | _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); |
2657 | java_index += type2size[t]; |
2658 | } |
2659 | |
2660 | if (compilation()->env()->dtrace_method_probes()) { |
2661 | BasicTypeList signature; |
2662 | signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
2663 | signature.append(T_METADATA); // Method* |
2664 | LIR_OprList* args = new LIR_OprList(); |
2665 | args->append(getThreadPointer()); |
2666 | LIR_Opr meth = new_register(T_METADATA); |
2667 | __ metadata2reg(method()->constant_encoding(), meth); |
2668 | args->append(meth); |
2669 | call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); |
2670 | } |
2671 | |
2672 | if (method()->is_synchronized()) { |
2673 | LIR_Opr obj; |
2674 | if (method()->is_static()) { |
2675 | obj = new_register(T_OBJECT); |
2676 | __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); |
2677 | } else { |
2678 | Local* receiver = x->state()->local_at(0)->as_Local(); |
2679 | assert(receiver != NULL, "must already exist" ); |
2680 | obj = receiver->operand(); |
2681 | } |
2682 | assert(obj->is_valid(), "must be valid" ); |
2683 | |
2684 | if (method()->is_synchronized() && GenerateSynchronizationCode) { |
2685 | LIR_Opr lock = syncLockOpr(); |
2686 | __ load_stack_address_monitor(0, lock); |
2687 | |
2688 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); |
2689 | CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); |
2690 | |
2691 | // receiver is guaranteed non-NULL so don't need CodeEmitInfo |
2692 | __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); |
2693 | } |
2694 | } |
2695 | if (compilation()->age_code()) { |
2696 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); |
2697 | decrement_age(info); |
2698 | } |
2699 | // increment invocation counters if needed |
2700 | if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. |
2701 | profile_parameters(x); |
2702 | CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); |
2703 | increment_invocation_counter(info); |
2704 | } |
2705 | |
2706 | // all blocks with a successor must end with an unconditional jump |
2707 | // to the successor even if they are consecutive |
2708 | __ jump(x->default_sux()); |
2709 | } |
2710 | |
2711 | |
2712 | void LIRGenerator::do_OsrEntry(OsrEntry* x) { |
2713 | // construct our frame and model the production of incoming pointer |
2714 | // to the OSR buffer. |
2715 | __ osr_entry(LIR_Assembler::osrBufferPointer()); |
2716 | LIR_Opr result = rlock_result(x); |
2717 | __ move(LIR_Assembler::osrBufferPointer(), result); |
2718 | } |
2719 | |
2720 | |
2721 | void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { |
2722 | assert(args->length() == arg_list->length(), |
2723 | "args=%d, arg_list=%d" , args->length(), arg_list->length()); |
2724 | for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { |
2725 | LIRItem* param = args->at(i); |
2726 | LIR_Opr loc = arg_list->at(i); |
2727 | if (loc->is_register()) { |
2728 | param->load_item_force(loc); |
2729 | } else { |
2730 | LIR_Address* addr = loc->as_address_ptr(); |
2731 | param->load_for_store(addr->type()); |
2732 | if (addr->type() == T_OBJECT) { |
2733 | __ move_wide(param->result(), addr); |
2734 | } else |
2735 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
2736 | __ unaligned_move(param->result(), addr); |
2737 | } else { |
2738 | __ move(param->result(), addr); |
2739 | } |
2740 | } |
2741 | } |
2742 | |
2743 | if (x->has_receiver()) { |
2744 | LIRItem* receiver = args->at(0); |
2745 | LIR_Opr loc = arg_list->at(0); |
2746 | if (loc->is_register()) { |
2747 | receiver->load_item_force(loc); |
2748 | } else { |
2749 | assert(loc->is_address(), "just checking" ); |
2750 | receiver->load_for_store(T_OBJECT); |
2751 | __ move_wide(receiver->result(), loc->as_address_ptr()); |
2752 | } |
2753 | } |
2754 | } |
2755 | |
2756 | |
2757 | // Visits all arguments, returns appropriate items without loading them |
2758 | LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { |
2759 | LIRItemList* argument_items = new LIRItemList(); |
2760 | if (x->has_receiver()) { |
2761 | LIRItem* receiver = new LIRItem(x->receiver(), this); |
2762 | argument_items->append(receiver); |
2763 | } |
2764 | for (int i = 0; i < x->number_of_arguments(); i++) { |
2765 | LIRItem* param = new LIRItem(x->argument_at(i), this); |
2766 | argument_items->append(param); |
2767 | } |
2768 | return argument_items; |
2769 | } |
2770 | |
2771 | |
2772 | // The invoke with receiver has following phases: |
2773 | // a) traverse and load/lock receiver; |
2774 | // b) traverse all arguments -> item-array (invoke_visit_argument) |
2775 | // c) push receiver on stack |
2776 | // d) load each of the items and push on stack |
2777 | // e) unlock receiver |
2778 | // f) move receiver into receiver-register %o0 |
2779 | // g) lock result registers and emit call operation |
2780 | // |
2781 | // Before issuing a call, we must spill-save all values on stack |
2782 | // that are in caller-save register. "spill-save" moves those registers |
2783 | // either in a free callee-save register or spills them if no free |
2784 | // callee save register is available. |
2785 | // |
2786 | // The problem is where to invoke spill-save. |
2787 | // - if invoked between e) and f), we may lock callee save |
2788 | // register in "spill-save" that destroys the receiver register |
2789 | // before f) is executed |
2790 | // - if we rearrange f) to be earlier (by loading %o0) it |
2791 | // may destroy a value on the stack that is currently in %o0 |
2792 | // and is waiting to be spilled |
2793 | // - if we keep the receiver locked while doing spill-save, |
2794 | // we cannot spill it as it is spill-locked |
2795 | // |
2796 | void LIRGenerator::do_Invoke(Invoke* x) { |
2797 | CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); |
2798 | |
2799 | LIR_OprList* arg_list = cc->args(); |
2800 | LIRItemList* args = invoke_visit_arguments(x); |
2801 | LIR_Opr receiver = LIR_OprFact::illegalOpr; |
2802 | |
2803 | // setup result register |
2804 | LIR_Opr result_register = LIR_OprFact::illegalOpr; |
2805 | if (x->type() != voidType) { |
2806 | result_register = result_register_for(x->type()); |
2807 | } |
2808 | |
2809 | CodeEmitInfo* info = state_for(x, x->state()); |
2810 | |
2811 | invoke_load_arguments(x, args, arg_list); |
2812 | |
2813 | if (x->has_receiver()) { |
2814 | args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); |
2815 | receiver = args->at(0)->result(); |
2816 | } |
2817 | |
2818 | // emit invoke code |
2819 | assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match" ); |
2820 | |
2821 | // JSR 292 |
2822 | // Preserve the SP over MethodHandle call sites, if needed. |
2823 | ciMethod* target = x->target(); |
2824 | bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? |
2825 | target->is_method_handle_intrinsic() || |
2826 | target->is_compiled_lambda_form()); |
2827 | if (is_method_handle_invoke) { |
2828 | info->set_is_method_handle_invoke(true); |
2829 | if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { |
2830 | __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); |
2831 | } |
2832 | } |
2833 | |
2834 | switch (x->code()) { |
2835 | case Bytecodes::_invokestatic: |
2836 | __ call_static(target, result_register, |
2837 | SharedRuntime::get_resolve_static_call_stub(), |
2838 | arg_list, info); |
2839 | break; |
2840 | case Bytecodes::_invokespecial: |
2841 | case Bytecodes::_invokevirtual: |
2842 | case Bytecodes::_invokeinterface: |
2843 | // for loaded and final (method or class) target we still produce an inline cache, |
2844 | // in order to be able to call mixed mode |
2845 | if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { |
2846 | __ call_opt_virtual(target, receiver, result_register, |
2847 | SharedRuntime::get_resolve_opt_virtual_call_stub(), |
2848 | arg_list, info); |
2849 | } else if (x->vtable_index() < 0) { |
2850 | __ call_icvirtual(target, receiver, result_register, |
2851 | SharedRuntime::get_resolve_virtual_call_stub(), |
2852 | arg_list, info); |
2853 | } else { |
2854 | int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes(); |
2855 | int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes(); |
2856 | __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); |
2857 | } |
2858 | break; |
2859 | case Bytecodes::_invokedynamic: { |
2860 | __ call_dynamic(target, receiver, result_register, |
2861 | SharedRuntime::get_resolve_static_call_stub(), |
2862 | arg_list, info); |
2863 | break; |
2864 | } |
2865 | default: |
2866 | fatal("unexpected bytecode: %s" , Bytecodes::name(x->code())); |
2867 | break; |
2868 | } |
2869 | |
2870 | // JSR 292 |
2871 | // Restore the SP after MethodHandle call sites, if needed. |
2872 | if (is_method_handle_invoke |
2873 | && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { |
2874 | __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); |
2875 | } |
2876 | |
2877 | if (x->type()->is_float() || x->type()->is_double()) { |
2878 | // Force rounding of results from non-strictfp when in strictfp |
2879 | // scope (or when we don't know the strictness of the callee, to |
2880 | // be safe.) |
2881 | if (method()->is_strict()) { |
2882 | if (!x->target_is_loaded() || !x->target_is_strictfp()) { |
2883 | result_register = round_item(result_register); |
2884 | } |
2885 | } |
2886 | } |
2887 | |
2888 | if (result_register->is_valid()) { |
2889 | LIR_Opr result = rlock_result(x); |
2890 | __ move(result_register, result); |
2891 | } |
2892 | } |
2893 | |
2894 | |
2895 | void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { |
2896 | assert(x->number_of_arguments() == 1, "wrong type" ); |
2897 | LIRItem value (x->argument_at(0), this); |
2898 | LIR_Opr reg = rlock_result(x); |
2899 | value.load_item(); |
2900 | LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); |
2901 | __ move(tmp, reg); |
2902 | } |
2903 | |
2904 | |
2905 | |
2906 | // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() |
2907 | void LIRGenerator::do_IfOp(IfOp* x) { |
2908 | #ifdef ASSERT |
2909 | { |
2910 | ValueTag xtag = x->x()->type()->tag(); |
2911 | ValueTag ttag = x->tval()->type()->tag(); |
2912 | assert(xtag == intTag || xtag == objectTag, "cannot handle others" ); |
2913 | assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others" ); |
2914 | assert(ttag == x->fval()->type()->tag(), "cannot handle others" ); |
2915 | } |
2916 | #endif |
2917 | |
2918 | LIRItem left(x->x(), this); |
2919 | LIRItem right(x->y(), this); |
2920 | left.load_item(); |
2921 | if (can_inline_as_constant(right.value())) { |
2922 | right.dont_load_item(); |
2923 | } else { |
2924 | right.load_item(); |
2925 | } |
2926 | |
2927 | LIRItem t_val(x->tval(), this); |
2928 | LIRItem f_val(x->fval(), this); |
2929 | t_val.dont_load_item(); |
2930 | f_val.dont_load_item(); |
2931 | LIR_Opr reg = rlock_result(x); |
2932 | |
2933 | __ cmp(lir_cond(x->cond()), left.result(), right.result()); |
2934 | __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); |
2935 | } |
2936 | |
2937 | #ifdef JFR_HAVE_INTRINSICS |
2938 | void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { |
2939 | CodeEmitInfo* info = state_for(x); |
2940 | CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check |
2941 | |
2942 | assert(info != NULL, "must have info" ); |
2943 | LIRItem arg(x->argument_at(0), this); |
2944 | |
2945 | arg.load_item(); |
2946 | LIR_Opr klass = new_register(T_METADATA); |
2947 | __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info); |
2948 | LIR_Opr id = new_register(T_LONG); |
2949 | ByteSize offset = KLASS_TRACE_ID_OFFSET; |
2950 | LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); |
2951 | |
2952 | __ move(trace_id_addr, id); |
2953 | __ logical_or(id, LIR_OprFact::longConst(0x01l), id); |
2954 | __ store(id, trace_id_addr); |
2955 | |
2956 | #ifdef TRACE_ID_META_BITS |
2957 | __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id); |
2958 | #endif |
2959 | #ifdef TRACE_ID_SHIFT |
2960 | __ unsigned_shift_right(id, TRACE_ID_SHIFT, id); |
2961 | #endif |
2962 | |
2963 | __ move(id, rlock_result(x)); |
2964 | } |
2965 | |
2966 | void LIRGenerator::do_getEventWriter(Intrinsic* x) { |
2967 | LabelObj* L_end = new LabelObj(); |
2968 | |
2969 | LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), |
2970 | in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), |
2971 | T_OBJECT); |
2972 | LIR_Opr result = rlock_result(x); |
2973 | __ move_wide(jobj_addr, result); |
2974 | __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL)); |
2975 | __ branch(lir_cond_equal, T_OBJECT, L_end->label()); |
2976 | |
2977 | LIR_Opr jobj = new_register(T_OBJECT); |
2978 | __ move(result, jobj); |
2979 | access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); |
2980 | |
2981 | __ branch_destination(L_end->label()); |
2982 | } |
2983 | |
2984 | #endif |
2985 | |
2986 | |
2987 | void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { |
2988 | assert(x->number_of_arguments() == 0, "wrong type" ); |
2989 | // Enforce computation of _reserved_argument_area_size which is required on some platforms. |
2990 | BasicTypeList signature; |
2991 | CallingConvention* cc = frame_map()->c_calling_convention(&signature); |
2992 | LIR_Opr reg = result_register_for(x->type()); |
2993 | __ call_runtime_leaf(routine, getThreadTemp(), |
2994 | reg, new LIR_OprList()); |
2995 | LIR_Opr result = rlock_result(x); |
2996 | __ move(reg, result); |
2997 | } |
2998 | |
2999 | |
3000 | |
3001 | void LIRGenerator::do_Intrinsic(Intrinsic* x) { |
3002 | switch (x->id()) { |
3003 | case vmIntrinsics::_intBitsToFloat : |
3004 | case vmIntrinsics::_doubleToRawLongBits : |
3005 | case vmIntrinsics::_longBitsToDouble : |
3006 | case vmIntrinsics::_floatToRawIntBits : { |
3007 | do_FPIntrinsics(x); |
3008 | break; |
3009 | } |
3010 | |
3011 | #ifdef JFR_HAVE_INTRINSICS |
3012 | case vmIntrinsics::_getClassId: |
3013 | do_ClassIDIntrinsic(x); |
3014 | break; |
3015 | case vmIntrinsics::_getEventWriter: |
3016 | do_getEventWriter(x); |
3017 | break; |
3018 | case vmIntrinsics::_counterTime: |
3019 | do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); |
3020 | break; |
3021 | #endif |
3022 | |
3023 | case vmIntrinsics::_currentTimeMillis: |
3024 | do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); |
3025 | break; |
3026 | |
3027 | case vmIntrinsics::_nanoTime: |
3028 | do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); |
3029 | break; |
3030 | |
3031 | case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; |
3032 | case vmIntrinsics::_isInstance: do_isInstance(x); break; |
3033 | case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; |
3034 | case vmIntrinsics::_getClass: do_getClass(x); break; |
3035 | case vmIntrinsics::_currentThread: do_currentThread(x); break; |
3036 | |
3037 | case vmIntrinsics::_dlog: // fall through |
3038 | case vmIntrinsics::_dlog10: // fall through |
3039 | case vmIntrinsics::_dabs: // fall through |
3040 | case vmIntrinsics::_dsqrt: // fall through |
3041 | case vmIntrinsics::_dtan: // fall through |
3042 | case vmIntrinsics::_dsin : // fall through |
3043 | case vmIntrinsics::_dcos : // fall through |
3044 | case vmIntrinsics::_dexp : // fall through |
3045 | case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; |
3046 | case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; |
3047 | |
3048 | case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; |
3049 | case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; |
3050 | |
3051 | // java.nio.Buffer.checkIndex |
3052 | case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; |
3053 | |
3054 | case vmIntrinsics::_compareAndSetReference: |
3055 | do_CompareAndSwap(x, objectType); |
3056 | break; |
3057 | case vmIntrinsics::_compareAndSetInt: |
3058 | do_CompareAndSwap(x, intType); |
3059 | break; |
3060 | case vmIntrinsics::_compareAndSetLong: |
3061 | do_CompareAndSwap(x, longType); |
3062 | break; |
3063 | |
3064 | case vmIntrinsics::_loadFence : |
3065 | __ membar_acquire(); |
3066 | break; |
3067 | case vmIntrinsics::_storeFence: |
3068 | __ membar_release(); |
3069 | break; |
3070 | case vmIntrinsics::_fullFence : |
3071 | __ membar(); |
3072 | break; |
3073 | case vmIntrinsics::_onSpinWait: |
3074 | __ on_spin_wait(); |
3075 | break; |
3076 | case vmIntrinsics::_Reference_get: |
3077 | do_Reference_get(x); |
3078 | break; |
3079 | |
3080 | case vmIntrinsics::_updateCRC32: |
3081 | case vmIntrinsics::_updateBytesCRC32: |
3082 | case vmIntrinsics::_updateByteBufferCRC32: |
3083 | do_update_CRC32(x); |
3084 | break; |
3085 | |
3086 | case vmIntrinsics::_updateBytesCRC32C: |
3087 | case vmIntrinsics::_updateDirectByteBufferCRC32C: |
3088 | do_update_CRC32C(x); |
3089 | break; |
3090 | |
3091 | case vmIntrinsics::_vectorizedMismatch: |
3092 | do_vectorizedMismatch(x); |
3093 | break; |
3094 | |
3095 | default: ShouldNotReachHere(); break; |
3096 | } |
3097 | } |
3098 | |
3099 | void LIRGenerator::profile_arguments(ProfileCall* x) { |
3100 | if (compilation()->profile_arguments()) { |
3101 | int bci = x->bci_of_invoke(); |
3102 | ciMethodData* md = x->method()->method_data_or_null(); |
3103 | assert(md != NULL, "Sanity" ); |
3104 | ciProfileData* data = md->bci_to_data(bci); |
3105 | if (data != NULL) { |
3106 | if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || |
3107 | (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { |
3108 | ByteSize = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); |
3109 | int base_offset = md->byte_offset_of_slot(data, extra); |
3110 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
3111 | ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); |
3112 | |
3113 | Bytecodes::Code bc = x->method()->java_code_at_bci(bci); |
3114 | int start = 0; |
3115 | int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); |
3116 | if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { |
3117 | // first argument is not profiled at call (method handle invoke) |
3118 | assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected" ); |
3119 | start = 1; |
3120 | } |
3121 | ciSignature* callee_signature = x->callee()->signature(); |
3122 | // method handle call to virtual method |
3123 | bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); |
3124 | ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); |
3125 | |
3126 | bool ignored_will_link; |
3127 | ciSignature* signature_at_call = NULL; |
3128 | x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); |
3129 | ciSignatureStream signature_at_call_stream(signature_at_call); |
3130 | |
3131 | // if called through method handle invoke, some arguments may have been popped |
3132 | for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { |
3133 | int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); |
3134 | ciKlass* exact = profile_type(md, base_offset, off, |
3135 | args->type(i), x->profiled_arg_at(i+start), mdp, |
3136 | !x->arg_needs_null_check(i+start), |
3137 | signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); |
3138 | if (exact != NULL) { |
3139 | md->set_argument_type(bci, i, exact); |
3140 | } |
3141 | } |
3142 | } else { |
3143 | #ifdef ASSERT |
3144 | Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); |
3145 | int n = x->nb_profiled_args(); |
3146 | assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || |
3147 | (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), |
3148 | "only at JSR292 bytecodes" ); |
3149 | #endif |
3150 | } |
3151 | } |
3152 | } |
3153 | } |
3154 | |
3155 | // profile parameters on entry to an inlined method |
3156 | void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { |
3157 | if (compilation()->profile_parameters() && x->inlined()) { |
3158 | ciMethodData* md = x->callee()->method_data_or_null(); |
3159 | if (md != NULL) { |
3160 | ciParametersTypeData* parameters_type_data = md->parameters_type_data(); |
3161 | if (parameters_type_data != NULL) { |
3162 | ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); |
3163 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
3164 | bool has_receiver = !x->callee()->is_static(); |
3165 | ciSignature* sig = x->callee()->signature(); |
3166 | ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); |
3167 | int i = 0; // to iterate on the Instructions |
3168 | Value arg = x->recv(); |
3169 | bool not_null = false; |
3170 | int bci = x->bci_of_invoke(); |
3171 | Bytecodes::Code bc = x->method()->java_code_at_bci(bci); |
3172 | // The first parameter is the receiver so that's what we start |
3173 | // with if it exists. One exception is method handle call to |
3174 | // virtual method: the receiver is in the args list |
3175 | if (arg == NULL || !Bytecodes::has_receiver(bc)) { |
3176 | i = 1; |
3177 | arg = x->profiled_arg_at(0); |
3178 | not_null = !x->arg_needs_null_check(0); |
3179 | } |
3180 | int k = 0; // to iterate on the profile data |
3181 | for (;;) { |
3182 | intptr_t profiled_k = parameters->type(k); |
3183 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), |
3184 | in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), |
3185 | profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); |
3186 | // If the profile is known statically set it once for all and do not emit any code |
3187 | if (exact != NULL) { |
3188 | md->set_parameter_type(k, exact); |
3189 | } |
3190 | k++; |
3191 | if (k >= parameters_type_data->number_of_parameters()) { |
3192 | #ifdef ASSERT |
3193 | int extra = 0; |
3194 | if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && |
3195 | x->nb_profiled_args() >= TypeProfileParmsLimit && |
3196 | x->recv() != NULL && Bytecodes::has_receiver(bc)) { |
3197 | extra += 1; |
3198 | } |
3199 | assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?" ); |
3200 | #endif |
3201 | break; |
3202 | } |
3203 | arg = x->profiled_arg_at(i); |
3204 | not_null = !x->arg_needs_null_check(i); |
3205 | i++; |
3206 | } |
3207 | } |
3208 | } |
3209 | } |
3210 | } |
3211 | |
3212 | void LIRGenerator::do_ProfileCall(ProfileCall* x) { |
3213 | // Need recv in a temporary register so it interferes with the other temporaries |
3214 | LIR_Opr recv = LIR_OprFact::illegalOpr; |
3215 | LIR_Opr mdo = new_register(T_METADATA); |
3216 | // tmp is used to hold the counters on SPARC |
3217 | LIR_Opr tmp = new_pointer_register(); |
3218 | |
3219 | if (x->nb_profiled_args() > 0) { |
3220 | profile_arguments(x); |
3221 | } |
3222 | |
3223 | // profile parameters on inlined method entry including receiver |
3224 | if (x->recv() != NULL || x->nb_profiled_args() > 0) { |
3225 | profile_parameters_at_call(x); |
3226 | } |
3227 | |
3228 | if (x->recv() != NULL) { |
3229 | LIRItem value(x->recv(), this); |
3230 | value.load_item(); |
3231 | recv = new_register(T_OBJECT); |
3232 | __ move(value.result(), recv); |
3233 | } |
3234 | __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); |
3235 | } |
3236 | |
3237 | void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { |
3238 | int bci = x->bci_of_invoke(); |
3239 | ciMethodData* md = x->method()->method_data_or_null(); |
3240 | assert(md != NULL, "Sanity" ); |
3241 | ciProfileData* data = md->bci_to_data(bci); |
3242 | if (data != NULL) { |
3243 | assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type" ); |
3244 | ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); |
3245 | LIR_Opr mdp = LIR_OprFact::illegalOpr; |
3246 | |
3247 | bool ignored_will_link; |
3248 | ciSignature* signature_at_call = NULL; |
3249 | x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); |
3250 | |
3251 | // The offset within the MDO of the entry to update may be too large |
3252 | // to be used in load/store instructions on some platforms. So have |
3253 | // profile_type() compute the address of the profile in a register. |
3254 | ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, |
3255 | ret->type(), x->ret(), mdp, |
3256 | !x->needs_null_check(), |
3257 | signature_at_call->return_type()->as_klass(), |
3258 | x->callee()->signature()->return_type()->as_klass()); |
3259 | if (exact != NULL) { |
3260 | md->set_return_type(bci, exact); |
3261 | } |
3262 | } |
3263 | } |
3264 | |
3265 | void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { |
3266 | // We can safely ignore accessors here, since c2 will inline them anyway, |
3267 | // accessors are also always mature. |
3268 | if (!x->inlinee()->is_accessor()) { |
3269 | CodeEmitInfo* info = state_for(x, x->state(), true); |
3270 | // Notify the runtime very infrequently only to take care of counter overflows |
3271 | int freq_log = Tier23InlineeNotifyFreqLog; |
3272 | double scale; |
3273 | if (_method->has_option_value("CompileThresholdScaling" , scale)) { |
3274 | freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); |
3275 | } |
3276 | increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); |
3277 | } |
3278 | } |
3279 | |
3280 | void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { |
3281 | if (compilation()->count_backedges()) { |
3282 | #if defined(X86) && !defined(_LP64) |
3283 | // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. |
3284 | LIR_Opr left_copy = new_register(left->type()); |
3285 | __ move(left, left_copy); |
3286 | __ cmp(cond, left_copy, right); |
3287 | #else |
3288 | __ cmp(cond, left, right); |
3289 | #endif |
3290 | LIR_Opr step = new_register(T_INT); |
3291 | LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); |
3292 | LIR_Opr zero = LIR_OprFact::intConst(0); |
3293 | __ cmove(cond, |
3294 | (left_bci < bci) ? plus_one : zero, |
3295 | (right_bci < bci) ? plus_one : zero, |
3296 | step, left->type()); |
3297 | increment_backedge_counter(info, step, bci); |
3298 | } |
3299 | } |
3300 | |
3301 | |
3302 | void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { |
3303 | int freq_log = 0; |
3304 | int level = compilation()->env()->comp_level(); |
3305 | if (level == CompLevel_limited_profile) { |
3306 | freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); |
3307 | } else if (level == CompLevel_full_profile) { |
3308 | freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); |
3309 | } else { |
3310 | ShouldNotReachHere(); |
3311 | } |
3312 | // Increment the appropriate invocation/backedge counter and notify the runtime. |
3313 | double scale; |
3314 | if (_method->has_option_value("CompileThresholdScaling" , scale)) { |
3315 | freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); |
3316 | } |
3317 | increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); |
3318 | } |
3319 | |
3320 | void LIRGenerator::decrement_age(CodeEmitInfo* info) { |
3321 | ciMethod* method = info->scope()->method(); |
3322 | MethodCounters* mc_adr = method->ensure_method_counters(); |
3323 | if (mc_adr != NULL) { |
3324 | LIR_Opr mc = new_pointer_register(); |
3325 | __ move(LIR_OprFact::intptrConst(mc_adr), mc); |
3326 | int offset = in_bytes(MethodCounters::nmethod_age_offset()); |
3327 | LIR_Address* counter = new LIR_Address(mc, offset, T_INT); |
3328 | LIR_Opr result = new_register(T_INT); |
3329 | __ load(counter, result); |
3330 | __ sub(result, LIR_OprFact::intConst(1), result); |
3331 | __ store(result, counter); |
3332 | // DeoptimizeStub will reexecute from the current state in code info. |
3333 | CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, |
3334 | Deoptimization::Action_make_not_entrant); |
3335 | __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); |
3336 | __ branch(lir_cond_lessEqual, T_INT, deopt); |
3337 | } |
3338 | } |
3339 | |
3340 | |
3341 | void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, |
3342 | ciMethod *method, LIR_Opr step, int frequency, |
3343 | int bci, bool backedge, bool notify) { |
3344 | assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0" ); |
3345 | int level = _compilation->env()->comp_level(); |
3346 | assert(level > CompLevel_simple, "Shouldn't be here" ); |
3347 | |
3348 | int offset = -1; |
3349 | LIR_Opr counter_holder = NULL; |
3350 | if (level == CompLevel_limited_profile) { |
3351 | MethodCounters* counters_adr = method->ensure_method_counters(); |
3352 | if (counters_adr == NULL) { |
3353 | bailout("method counters allocation failed" ); |
3354 | return; |
3355 | } |
3356 | counter_holder = new_pointer_register(); |
3357 | __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); |
3358 | offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : |
3359 | MethodCounters::invocation_counter_offset()); |
3360 | } else if (level == CompLevel_full_profile) { |
3361 | counter_holder = new_register(T_METADATA); |
3362 | offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : |
3363 | MethodData::invocation_counter_offset()); |
3364 | ciMethodData* md = method->method_data_or_null(); |
3365 | assert(md != NULL, "Sanity" ); |
3366 | __ metadata2reg(md->constant_encoding(), counter_holder); |
3367 | } else { |
3368 | ShouldNotReachHere(); |
3369 | } |
3370 | LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); |
3371 | LIR_Opr result = new_register(T_INT); |
3372 | __ load(counter, result); |
3373 | __ add(result, step, result); |
3374 | __ store(result, counter); |
3375 | if (notify && (!backedge || UseOnStackReplacement)) { |
3376 | LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); |
3377 | // The bci for info can point to cmp for if's we want the if bci |
3378 | CodeStub* overflow = new CounterOverflowStub(info, bci, meth); |
3379 | int freq = frequency << InvocationCounter::count_shift; |
3380 | if (freq == 0) { |
3381 | if (!step->is_constant()) { |
3382 | __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); |
3383 | __ branch(lir_cond_notEqual, T_ILLEGAL, overflow); |
3384 | } else { |
3385 | __ branch(lir_cond_always, T_ILLEGAL, overflow); |
3386 | } |
3387 | } else { |
3388 | LIR_Opr mask = load_immediate(freq, T_INT); |
3389 | if (!step->is_constant()) { |
3390 | // If step is 0, make sure the overflow check below always fails |
3391 | __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); |
3392 | __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); |
3393 | } |
3394 | __ logical_and(result, mask, result); |
3395 | __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); |
3396 | __ branch(lir_cond_equal, T_INT, overflow); |
3397 | } |
3398 | __ branch_destination(overflow->continuation()); |
3399 | } |
3400 | } |
3401 | |
3402 | void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { |
3403 | LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); |
3404 | BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); |
3405 | |
3406 | if (x->pass_thread()) { |
3407 | signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread |
3408 | args->append(getThreadPointer()); |
3409 | } |
3410 | |
3411 | for (int i = 0; i < x->number_of_arguments(); i++) { |
3412 | Value a = x->argument_at(i); |
3413 | LIRItem* item = new LIRItem(a, this); |
3414 | item->load_item(); |
3415 | args->append(item->result()); |
3416 | signature->append(as_BasicType(a->type())); |
3417 | } |
3418 | |
3419 | LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); |
3420 | if (x->type() == voidType) { |
3421 | set_no_result(x); |
3422 | } else { |
3423 | __ move(result, rlock_result(x)); |
3424 | } |
3425 | } |
3426 | |
3427 | #ifdef ASSERT |
3428 | void LIRGenerator::do_Assert(Assert *x) { |
3429 | ValueTag tag = x->x()->type()->tag(); |
3430 | If::Condition cond = x->cond(); |
3431 | |
3432 | LIRItem xitem(x->x(), this); |
3433 | LIRItem yitem(x->y(), this); |
3434 | LIRItem* xin = &xitem; |
3435 | LIRItem* yin = &yitem; |
3436 | |
3437 | assert(tag == intTag, "Only integer assertions are valid!" ); |
3438 | |
3439 | xin->load_item(); |
3440 | yin->dont_load_item(); |
3441 | |
3442 | set_no_result(x); |
3443 | |
3444 | LIR_Opr left = xin->result(); |
3445 | LIR_Opr right = yin->result(); |
3446 | |
3447 | __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); |
3448 | } |
3449 | #endif |
3450 | |
3451 | void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { |
3452 | |
3453 | |
3454 | Instruction *a = x->x(); |
3455 | Instruction *b = x->y(); |
3456 | if (!a || StressRangeCheckElimination) { |
3457 | assert(!b || StressRangeCheckElimination, "B must also be null" ); |
3458 | |
3459 | CodeEmitInfo *info = state_for(x, x->state()); |
3460 | CodeStub* stub = new PredicateFailedStub(info); |
3461 | |
3462 | __ jump(stub); |
3463 | } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { |
3464 | int a_int = a->type()->as_IntConstant()->value(); |
3465 | int b_int = b->type()->as_IntConstant()->value(); |
3466 | |
3467 | bool ok = false; |
3468 | |
3469 | switch(x->cond()) { |
3470 | case Instruction::eql: ok = (a_int == b_int); break; |
3471 | case Instruction::neq: ok = (a_int != b_int); break; |
3472 | case Instruction::lss: ok = (a_int < b_int); break; |
3473 | case Instruction::leq: ok = (a_int <= b_int); break; |
3474 | case Instruction::gtr: ok = (a_int > b_int); break; |
3475 | case Instruction::geq: ok = (a_int >= b_int); break; |
3476 | case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; |
3477 | case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; |
3478 | default: ShouldNotReachHere(); |
3479 | } |
3480 | |
3481 | if (ok) { |
3482 | |
3483 | CodeEmitInfo *info = state_for(x, x->state()); |
3484 | CodeStub* stub = new PredicateFailedStub(info); |
3485 | |
3486 | __ jump(stub); |
3487 | } |
3488 | } else { |
3489 | |
3490 | ValueTag tag = x->x()->type()->tag(); |
3491 | If::Condition cond = x->cond(); |
3492 | LIRItem xitem(x->x(), this); |
3493 | LIRItem yitem(x->y(), this); |
3494 | LIRItem* xin = &xitem; |
3495 | LIRItem* yin = &yitem; |
3496 | |
3497 | assert(tag == intTag, "Only integer deoptimizations are valid!" ); |
3498 | |
3499 | xin->load_item(); |
3500 | yin->dont_load_item(); |
3501 | set_no_result(x); |
3502 | |
3503 | LIR_Opr left = xin->result(); |
3504 | LIR_Opr right = yin->result(); |
3505 | |
3506 | CodeEmitInfo *info = state_for(x, x->state()); |
3507 | CodeStub* stub = new PredicateFailedStub(info); |
3508 | |
3509 | __ cmp(lir_cond(cond), left, right); |
3510 | __ branch(lir_cond(cond), right->type(), stub); |
3511 | } |
3512 | } |
3513 | |
3514 | |
3515 | LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { |
3516 | LIRItemList args(1); |
3517 | LIRItem value(arg1, this); |
3518 | args.append(&value); |
3519 | BasicTypeList signature; |
3520 | signature.append(as_BasicType(arg1->type())); |
3521 | |
3522 | return call_runtime(&signature, &args, entry, result_type, info); |
3523 | } |
3524 | |
3525 | |
3526 | LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { |
3527 | LIRItemList args(2); |
3528 | LIRItem value1(arg1, this); |
3529 | LIRItem value2(arg2, this); |
3530 | args.append(&value1); |
3531 | args.append(&value2); |
3532 | BasicTypeList signature; |
3533 | signature.append(as_BasicType(arg1->type())); |
3534 | signature.append(as_BasicType(arg2->type())); |
3535 | |
3536 | return call_runtime(&signature, &args, entry, result_type, info); |
3537 | } |
3538 | |
3539 | |
3540 | LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, |
3541 | address entry, ValueType* result_type, CodeEmitInfo* info) { |
3542 | // get a result register |
3543 | LIR_Opr phys_reg = LIR_OprFact::illegalOpr; |
3544 | LIR_Opr result = LIR_OprFact::illegalOpr; |
3545 | if (result_type->tag() != voidTag) { |
3546 | result = new_register(result_type); |
3547 | phys_reg = result_register_for(result_type); |
3548 | } |
3549 | |
3550 | // move the arguments into the correct location |
3551 | CallingConvention* cc = frame_map()->c_calling_convention(signature); |
3552 | assert(cc->length() == args->length(), "argument mismatch" ); |
3553 | for (int i = 0; i < args->length(); i++) { |
3554 | LIR_Opr arg = args->at(i); |
3555 | LIR_Opr loc = cc->at(i); |
3556 | if (loc->is_register()) { |
3557 | __ move(arg, loc); |
3558 | } else { |
3559 | LIR_Address* addr = loc->as_address_ptr(); |
3560 | // if (!can_store_as_constant(arg)) { |
3561 | // LIR_Opr tmp = new_register(arg->type()); |
3562 | // __ move(arg, tmp); |
3563 | // arg = tmp; |
3564 | // } |
3565 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
3566 | __ unaligned_move(arg, addr); |
3567 | } else { |
3568 | __ move(arg, addr); |
3569 | } |
3570 | } |
3571 | } |
3572 | |
3573 | if (info) { |
3574 | __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); |
3575 | } else { |
3576 | __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); |
3577 | } |
3578 | if (result->is_valid()) { |
3579 | __ move(phys_reg, result); |
3580 | } |
3581 | return result; |
3582 | } |
3583 | |
3584 | |
3585 | LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, |
3586 | address entry, ValueType* result_type, CodeEmitInfo* info) { |
3587 | // get a result register |
3588 | LIR_Opr phys_reg = LIR_OprFact::illegalOpr; |
3589 | LIR_Opr result = LIR_OprFact::illegalOpr; |
3590 | if (result_type->tag() != voidTag) { |
3591 | result = new_register(result_type); |
3592 | phys_reg = result_register_for(result_type); |
3593 | } |
3594 | |
3595 | // move the arguments into the correct location |
3596 | CallingConvention* cc = frame_map()->c_calling_convention(signature); |
3597 | |
3598 | assert(cc->length() == args->length(), "argument mismatch" ); |
3599 | for (int i = 0; i < args->length(); i++) { |
3600 | LIRItem* arg = args->at(i); |
3601 | LIR_Opr loc = cc->at(i); |
3602 | if (loc->is_register()) { |
3603 | arg->load_item_force(loc); |
3604 | } else { |
3605 | LIR_Address* addr = loc->as_address_ptr(); |
3606 | arg->load_for_store(addr->type()); |
3607 | if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { |
3608 | __ unaligned_move(arg->result(), addr); |
3609 | } else { |
3610 | __ move(arg->result(), addr); |
3611 | } |
3612 | } |
3613 | } |
3614 | |
3615 | if (info) { |
3616 | __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); |
3617 | } else { |
3618 | __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); |
3619 | } |
3620 | if (result->is_valid()) { |
3621 | __ move(phys_reg, result); |
3622 | } |
3623 | return result; |
3624 | } |
3625 | |
3626 | void LIRGenerator::do_MemBar(MemBar* x) { |
3627 | LIR_Code code = x->code(); |
3628 | switch(code) { |
3629 | case lir_membar_acquire : __ membar_acquire(); break; |
3630 | case lir_membar_release : __ membar_release(); break; |
3631 | case lir_membar : __ membar(); break; |
3632 | case lir_membar_loadload : __ membar_loadload(); break; |
3633 | case lir_membar_storestore: __ membar_storestore(); break; |
3634 | case lir_membar_loadstore : __ membar_loadstore(); break; |
3635 | case lir_membar_storeload : __ membar_storeload(); break; |
3636 | default : ShouldNotReachHere(); break; |
3637 | } |
3638 | } |
3639 | |
3640 | LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { |
3641 | LIR_Opr value_fixed = rlock_byte(T_BYTE); |
3642 | if (TwoOperandLIRForm) { |
3643 | __ move(value, value_fixed); |
3644 | __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); |
3645 | } else { |
3646 | __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); |
3647 | } |
3648 | LIR_Opr klass = new_register(T_METADATA); |
3649 | __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); |
3650 | null_check_info = NULL; |
3651 | LIR_Opr layout = new_register(T_INT); |
3652 | __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); |
3653 | int diffbit = Klass::layout_helper_boolean_diffbit(); |
3654 | __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); |
3655 | __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); |
3656 | __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); |
3657 | value = value_fixed; |
3658 | return value; |
3659 | } |
3660 | |
3661 | LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { |
3662 | if (x->check_boolean()) { |
3663 | value = mask_boolean(array, value, null_check_info); |
3664 | } |
3665 | return value; |
3666 | } |
3667 | |