1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "aot/aotLoader.hpp"
27#include "code/codeBlob.hpp"
28#include "code/codeCache.hpp"
29#include "code/codeHeapState.hpp"
30#include "code/compiledIC.hpp"
31#include "code/dependencies.hpp"
32#include "code/dependencyContext.hpp"
33#include "code/icBuffer.hpp"
34#include "code/nmethod.hpp"
35#include "code/pcDesc.hpp"
36#include "compiler/compileBroker.hpp"
37#include "jfr/jfrEvents.hpp"
38#include "logging/log.hpp"
39#include "logging/logStream.hpp"
40#include "memory/allocation.inline.hpp"
41#include "memory/iterator.hpp"
42#include "memory/resourceArea.hpp"
43#include "memory/universe.hpp"
44#include "oops/method.inline.hpp"
45#include "oops/objArrayOop.hpp"
46#include "oops/oop.inline.hpp"
47#include "oops/verifyOopClosure.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/compilationPolicy.hpp"
50#include "runtime/deoptimization.hpp"
51#include "runtime/handles.inline.hpp"
52#include "runtime/icache.hpp"
53#include "runtime/java.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/safepointVerifiers.hpp"
56#include "runtime/sweeper.hpp"
57#include "runtime/vmThread.hpp"
58#include "services/memoryService.hpp"
59#include "utilities/align.hpp"
60#include "utilities/vmError.hpp"
61#include "utilities/xmlstream.hpp"
62#ifdef COMPILER1
63#include "c1/c1_Compilation.hpp"
64#include "c1/c1_Compiler.hpp"
65#endif
66#ifdef COMPILER2
67#include "opto/c2compiler.hpp"
68#include "opto/compile.hpp"
69#include "opto/node.hpp"
70#endif
71
72// Helper class for printing in CodeCache
73class CodeBlob_sizes {
74 private:
75 int count;
76 int total_size;
77 int header_size;
78 int code_size;
79 int stub_size;
80 int relocation_size;
81 int scopes_oop_size;
82 int scopes_metadata_size;
83 int scopes_data_size;
84 int scopes_pcs_size;
85
86 public:
87 CodeBlob_sizes() {
88 count = 0;
89 total_size = 0;
90 header_size = 0;
91 code_size = 0;
92 stub_size = 0;
93 relocation_size = 0;
94 scopes_oop_size = 0;
95 scopes_metadata_size = 0;
96 scopes_data_size = 0;
97 scopes_pcs_size = 0;
98 }
99
100 int total() { return total_size; }
101 bool is_empty() { return count == 0; }
102
103 void print(const char* title) {
104 tty->print_cr(" #%d %s = %dK (hdr %d%%, loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
105 count,
106 title,
107 (int)(total() / K),
108 header_size * 100 / total_size,
109 relocation_size * 100 / total_size,
110 code_size * 100 / total_size,
111 stub_size * 100 / total_size,
112 scopes_oop_size * 100 / total_size,
113 scopes_metadata_size * 100 / total_size,
114 scopes_data_size * 100 / total_size,
115 scopes_pcs_size * 100 / total_size);
116 }
117
118 void add(CodeBlob* cb) {
119 count++;
120 total_size += cb->size();
121 header_size += cb->header_size();
122 relocation_size += cb->relocation_size();
123 if (cb->is_nmethod()) {
124 nmethod* nm = cb->as_nmethod_or_null();
125 code_size += nm->insts_size();
126 stub_size += nm->stub_size();
127
128 scopes_oop_size += nm->oops_size();
129 scopes_metadata_size += nm->metadata_size();
130 scopes_data_size += nm->scopes_data_size();
131 scopes_pcs_size += nm->scopes_pcs_size();
132 } else {
133 code_size += cb->code_size();
134 }
135 }
136};
137
138// Iterate over all CodeHeaps
139#define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
140#define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
141#define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
142
143// Iterate over all CodeBlobs (cb) on the given CodeHeap
144#define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
145
146address CodeCache::_low_bound = 0;
147address CodeCache::_high_bound = 0;
148int CodeCache::_number_of_nmethods_with_dependencies = 0;
149ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
150
151// Initialize arrays of CodeHeap subsets
152GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
153GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
154GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
155GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
156
157void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
158 size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
159 // Prepare error message
160 const char* error = "Invalid code heap sizes";
161 err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
162 " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
163 non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
164
165 if (total_size > cache_size) {
166 // Some code heap sizes were explicitly set: total_size must be <= cache_size
167 message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
168 vm_exit_during_initialization(error, message);
169 } else if (all_set && total_size != cache_size) {
170 // All code heap sizes were explicitly set: total_size must equal cache_size
171 message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
172 vm_exit_during_initialization(error, message);
173 }
174}
175
176void CodeCache::initialize_heaps() {
177 bool non_nmethod_set = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
178 bool profiled_set = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
179 bool non_profiled_set = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
180 size_t min_size = os::vm_page_size();
181 size_t cache_size = ReservedCodeCacheSize;
182 size_t non_nmethod_size = NonNMethodCodeHeapSize;
183 size_t profiled_size = ProfiledCodeHeapSize;
184 size_t non_profiled_size = NonProfiledCodeHeapSize;
185 // Check if total size set via command line flags exceeds the reserved size
186 check_heap_sizes((non_nmethod_set ? non_nmethod_size : min_size),
187 (profiled_set ? profiled_size : min_size),
188 (non_profiled_set ? non_profiled_size : min_size),
189 cache_size,
190 non_nmethod_set && profiled_set && non_profiled_set);
191
192 // Determine size of compiler buffers
193 size_t code_buffers_size = 0;
194#ifdef COMPILER1
195 // C1 temporary code buffers (see Compiler::init_buffer_blob())
196 const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
197 code_buffers_size += c1_count * Compiler::code_buffer_size();
198#endif
199#ifdef COMPILER2
200 // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
201 const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
202 // Initial size of constant table (this may be increased if a compiled method needs more space)
203 code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
204#endif
205
206 // Increase default non_nmethod_size to account for compiler buffers
207 if (!non_nmethod_set) {
208 non_nmethod_size += code_buffers_size;
209 }
210 // Calculate default CodeHeap sizes if not set by user
211 if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
212 // Check if we have enough space for the non-nmethod code heap
213 if (cache_size > non_nmethod_size) {
214 // Use the default value for non_nmethod_size and one half of the
215 // remaining size for non-profiled and one half for profiled methods
216 size_t remaining_size = cache_size - non_nmethod_size;
217 profiled_size = remaining_size / 2;
218 non_profiled_size = remaining_size - profiled_size;
219 } else {
220 // Use all space for the non-nmethod heap and set other heaps to minimal size
221 non_nmethod_size = cache_size - 2 * min_size;
222 profiled_size = min_size;
223 non_profiled_size = min_size;
224 }
225 } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
226 // The user explicitly set some code heap sizes. Increase or decrease the (default)
227 // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
228 // code heap sizes and then only change non-nmethod code heap size if still necessary.
229 intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
230 if (non_profiled_set) {
231 if (!profiled_set) {
232 // Adapt size of profiled code heap
233 if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
234 // Not enough space available, set to minimum size
235 diff_size += profiled_size - min_size;
236 profiled_size = min_size;
237 } else {
238 profiled_size += diff_size;
239 diff_size = 0;
240 }
241 }
242 } else if (profiled_set) {
243 // Adapt size of non-profiled code heap
244 if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
245 // Not enough space available, set to minimum size
246 diff_size += non_profiled_size - min_size;
247 non_profiled_size = min_size;
248 } else {
249 non_profiled_size += diff_size;
250 diff_size = 0;
251 }
252 } else if (non_nmethod_set) {
253 // Distribute remaining size between profiled and non-profiled code heaps
254 diff_size = cache_size - non_nmethod_size;
255 profiled_size = diff_size / 2;
256 non_profiled_size = diff_size - profiled_size;
257 diff_size = 0;
258 }
259 if (diff_size != 0) {
260 // Use non-nmethod code heap for remaining space requirements
261 assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
262 non_nmethod_size += diff_size;
263 }
264 }
265
266 // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
267 if (!heap_available(CodeBlobType::MethodProfiled)) {
268 non_profiled_size += profiled_size;
269 profiled_size = 0;
270 }
271 // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
272 if (!heap_available(CodeBlobType::MethodNonProfiled)) {
273 non_nmethod_size += non_profiled_size;
274 non_profiled_size = 0;
275 }
276 // Make sure we have enough space for VM internal code
277 uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
278 if (non_nmethod_size < min_code_cache_size) {
279 vm_exit_during_initialization(err_msg(
280 "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
281 non_nmethod_size/K, min_code_cache_size/K));
282 }
283
284 // Verify sizes and update flag values
285 assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
286 FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod_size);
287 FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled_size);
288 FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled_size);
289
290 // If large page support is enabled, align code heaps according to large
291 // page size to make sure that code cache is covered by large pages.
292 const size_t alignment = MAX2(page_size(false, 8), (size_t) os::vm_allocation_granularity());
293 non_nmethod_size = align_up(non_nmethod_size, alignment);
294 profiled_size = align_down(profiled_size, alignment);
295
296 // Reserve one continuous chunk of memory for CodeHeaps and split it into
297 // parts for the individual heaps. The memory layout looks like this:
298 // ---------- high -----------
299 // Non-profiled nmethods
300 // Profiled nmethods
301 // Non-nmethods
302 // ---------- low ------------
303 ReservedCodeSpace rs = reserve_heap_memory(cache_size);
304 ReservedSpace non_method_space = rs.first_part(non_nmethod_size);
305 ReservedSpace rest = rs.last_part(non_nmethod_size);
306 ReservedSpace profiled_space = rest.first_part(profiled_size);
307 ReservedSpace non_profiled_space = rest.last_part(profiled_size);
308
309 // Non-nmethods (stubs, adapters, ...)
310 add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
311 // Tier 2 and tier 3 (profiled) methods
312 add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
313 // Tier 1 and tier 4 (non-profiled) methods and native methods
314 add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
315}
316
317size_t CodeCache::page_size(bool aligned, size_t min_pages) {
318 if (os::can_execute_large_page_memory()) {
319 if (InitialCodeCacheSize < ReservedCodeCacheSize) {
320 // Make sure that the page size allows for an incremental commit of the reserved space
321 min_pages = MAX2(min_pages, (size_t)8);
322 }
323 return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
324 os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
325 } else {
326 return os::vm_page_size();
327 }
328}
329
330ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
331 // Align and reserve space for code cache
332 const size_t rs_ps = page_size();
333 const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
334 const size_t rs_size = align_up(size, rs_align);
335 ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
336 if (!rs.is_reserved()) {
337 vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
338 rs_size/K));
339 }
340
341 // Initialize bounds
342 _low_bound = (address)rs.base();
343 _high_bound = _low_bound + rs.size();
344 return rs;
345}
346
347// Heaps available for allocation
348bool CodeCache::heap_available(int code_blob_type) {
349 if (!SegmentedCodeCache) {
350 // No segmentation: use a single code heap
351 return (code_blob_type == CodeBlobType::All);
352 } else if (Arguments::is_interpreter_only()) {
353 // Interpreter only: we don't need any method code heaps
354 return (code_blob_type == CodeBlobType::NonNMethod);
355 } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
356 // Tiered compilation: use all code heaps
357 return (code_blob_type < CodeBlobType::All);
358 } else {
359 // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
360 return (code_blob_type == CodeBlobType::NonNMethod) ||
361 (code_blob_type == CodeBlobType::MethodNonProfiled);
362 }
363}
364
365const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
366 switch(code_blob_type) {
367 case CodeBlobType::NonNMethod:
368 return "NonNMethodCodeHeapSize";
369 break;
370 case CodeBlobType::MethodNonProfiled:
371 return "NonProfiledCodeHeapSize";
372 break;
373 case CodeBlobType::MethodProfiled:
374 return "ProfiledCodeHeapSize";
375 break;
376 }
377 ShouldNotReachHere();
378 return NULL;
379}
380
381int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
382 if (lhs->code_blob_type() == rhs->code_blob_type()) {
383 return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
384 } else {
385 return lhs->code_blob_type() - rhs->code_blob_type();
386 }
387}
388
389void CodeCache::add_heap(CodeHeap* heap) {
390 assert(!Universe::is_fully_initialized(), "late heap addition?");
391
392 _heaps->insert_sorted<code_heap_compare>(heap);
393
394 int type = heap->code_blob_type();
395 if (code_blob_type_accepts_compiled(type)) {
396 _compiled_heaps->insert_sorted<code_heap_compare>(heap);
397 }
398 if (code_blob_type_accepts_nmethod(type)) {
399 _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
400 }
401 if (code_blob_type_accepts_allocable(type)) {
402 _allocable_heaps->insert_sorted<code_heap_compare>(heap);
403 }
404}
405
406void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
407 // Check if heap is needed
408 if (!heap_available(code_blob_type)) {
409 return;
410 }
411
412 // Create CodeHeap
413 CodeHeap* heap = new CodeHeap(name, code_blob_type);
414 add_heap(heap);
415
416 // Reserve Space
417 size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
418 size_initial = align_up(size_initial, os::vm_page_size());
419 if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
420 vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
421 heap->name(), size_initial/K));
422 }
423
424 // Register the CodeHeap
425 MemoryService::add_code_heap_memory_pool(heap, name);
426}
427
428CodeHeap* CodeCache::get_code_heap_containing(void* start) {
429 FOR_ALL_HEAPS(heap) {
430 if ((*heap)->contains(start)) {
431 return *heap;
432 }
433 }
434 return NULL;
435}
436
437CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
438 assert(cb != NULL, "CodeBlob is null");
439 FOR_ALL_HEAPS(heap) {
440 if ((*heap)->contains_blob(cb)) {
441 return *heap;
442 }
443 }
444 ShouldNotReachHere();
445 return NULL;
446}
447
448CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
449 FOR_ALL_HEAPS(heap) {
450 if ((*heap)->accepts(code_blob_type)) {
451 return *heap;
452 }
453 }
454 return NULL;
455}
456
457CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
458 assert_locked_or_safepoint(CodeCache_lock);
459 assert(heap != NULL, "heap is null");
460 return (CodeBlob*)heap->first();
461}
462
463CodeBlob* CodeCache::first_blob(int code_blob_type) {
464 if (heap_available(code_blob_type)) {
465 return first_blob(get_code_heap(code_blob_type));
466 } else {
467 return NULL;
468 }
469}
470
471CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
472 assert_locked_or_safepoint(CodeCache_lock);
473 assert(heap != NULL, "heap is null");
474 return (CodeBlob*)heap->next(cb);
475}
476
477/**
478 * Do not seize the CodeCache lock here--if the caller has not
479 * already done so, we are going to lose bigtime, since the code
480 * cache will contain a garbage CodeBlob until the caller can
481 * run the constructor for the CodeBlob subclass he is busy
482 * instantiating.
483 */
484CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
485 // Possibly wakes up the sweeper thread.
486 NMethodSweeper::notify(code_blob_type);
487 assert_locked_or_safepoint(CodeCache_lock);
488 assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
489 if (size <= 0) {
490 return NULL;
491 }
492 CodeBlob* cb = NULL;
493
494 // Get CodeHeap for the given CodeBlobType
495 CodeHeap* heap = get_code_heap(code_blob_type);
496 assert(heap != NULL, "heap is null");
497
498 while (true) {
499 cb = (CodeBlob*)heap->allocate(size);
500 if (cb != NULL) break;
501 if (!heap->expand_by(CodeCacheExpansionSize)) {
502 // Save original type for error reporting
503 if (orig_code_blob_type == CodeBlobType::All) {
504 orig_code_blob_type = code_blob_type;
505 }
506 // Expansion failed
507 if (SegmentedCodeCache) {
508 // Fallback solution: Try to store code in another code heap.
509 // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
510 // Note that in the sweeper, we check the reverse_free_ratio of the code heap
511 // and force stack scanning if less than 10% of the code heap are free.
512 int type = code_blob_type;
513 switch (type) {
514 case CodeBlobType::NonNMethod:
515 type = CodeBlobType::MethodNonProfiled;
516 break;
517 case CodeBlobType::MethodNonProfiled:
518 type = CodeBlobType::MethodProfiled;
519 break;
520 case CodeBlobType::MethodProfiled:
521 // Avoid loop if we already tried that code heap
522 if (type == orig_code_blob_type) {
523 type = CodeBlobType::MethodNonProfiled;
524 }
525 break;
526 }
527 if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
528 if (PrintCodeCacheExtension) {
529 tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
530 heap->name(), get_code_heap(type)->name());
531 }
532 return allocate(size, type, orig_code_blob_type);
533 }
534 }
535 MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
536 CompileBroker::handle_full_code_cache(orig_code_blob_type);
537 return NULL;
538 }
539 if (PrintCodeCacheExtension) {
540 ResourceMark rm;
541 if (_nmethod_heaps->length() >= 1) {
542 tty->print("%s", heap->name());
543 } else {
544 tty->print("CodeCache");
545 }
546 tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
547 (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
548 (address)heap->high() - (address)heap->low_boundary());
549 }
550 }
551 print_trace("allocation", cb, size);
552 return cb;
553}
554
555void CodeCache::free(CodeBlob* cb) {
556 assert_locked_or_safepoint(CodeCache_lock);
557 CodeHeap* heap = get_code_heap(cb);
558 print_trace("free", cb);
559 if (cb->is_nmethod()) {
560 heap->set_nmethod_count(heap->nmethod_count() - 1);
561 if (((nmethod *)cb)->has_dependencies()) {
562 _number_of_nmethods_with_dependencies--;
563 }
564 }
565 if (cb->is_adapter_blob()) {
566 heap->set_adapter_count(heap->adapter_count() - 1);
567 }
568
569 // Get heap for given CodeBlob and deallocate
570 get_code_heap(cb)->deallocate(cb);
571
572 assert(heap->blob_count() >= 0, "sanity check");
573}
574
575void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
576 assert_locked_or_safepoint(CodeCache_lock);
577 guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
578 print_trace("free_unused_tail", cb);
579
580 // We also have to account for the extra space (i.e. header) used by the CodeBlob
581 // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
582 used += CodeBlob::align_code_offset(cb->header_size());
583
584 // Get heap for given CodeBlob and deallocate its unused tail
585 get_code_heap(cb)->deallocate_tail(cb, used);
586 // Adjust the sizes of the CodeBlob
587 cb->adjust_size(used);
588}
589
590void CodeCache::commit(CodeBlob* cb) {
591 // this is called by nmethod::nmethod, which must already own CodeCache_lock
592 assert_locked_or_safepoint(CodeCache_lock);
593 CodeHeap* heap = get_code_heap(cb);
594 if (cb->is_nmethod()) {
595 heap->set_nmethod_count(heap->nmethod_count() + 1);
596 if (((nmethod *)cb)->has_dependencies()) {
597 _number_of_nmethods_with_dependencies++;
598 }
599 }
600 if (cb->is_adapter_blob()) {
601 heap->set_adapter_count(heap->adapter_count() + 1);
602 }
603
604 // flush the hardware I-cache
605 ICache::invalidate_range(cb->content_begin(), cb->content_size());
606}
607
608bool CodeCache::contains(void *p) {
609 // S390 uses contains() in current_frame(), which is used before
610 // code cache initialization if NativeMemoryTracking=detail is set.
611 S390_ONLY(if (_heaps == NULL) return false;)
612 // It should be ok to call contains without holding a lock.
613 FOR_ALL_HEAPS(heap) {
614 if ((*heap)->contains(p)) {
615 return true;
616 }
617 }
618 return false;
619}
620
621bool CodeCache::contains(nmethod *nm) {
622 return contains((void *)nm);
623}
624
625// This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
626// looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
627// valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
628CodeBlob* CodeCache::find_blob(void* start) {
629 CodeBlob* result = find_blob_unsafe(start);
630 // We could potentially look up non_entrant methods
631 guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
632 return result;
633}
634
635// Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
636// what you are doing)
637CodeBlob* CodeCache::find_blob_unsafe(void* start) {
638 // NMT can walk the stack before code cache is created
639 if (_heaps != NULL) {
640 CodeHeap* heap = get_code_heap_containing(start);
641 if (heap != NULL) {
642 return heap->find_blob_unsafe(start);
643 }
644 }
645 return NULL;
646}
647
648nmethod* CodeCache::find_nmethod(void* start) {
649 CodeBlob* cb = find_blob(start);
650 assert(cb->is_nmethod(), "did not find an nmethod");
651 return (nmethod*)cb;
652}
653
654void CodeCache::blobs_do(void f(CodeBlob* nm)) {
655 assert_locked_or_safepoint(CodeCache_lock);
656 FOR_ALL_HEAPS(heap) {
657 FOR_ALL_BLOBS(cb, *heap) {
658 f(cb);
659 }
660 }
661}
662
663void CodeCache::nmethods_do(void f(nmethod* nm)) {
664 assert_locked_or_safepoint(CodeCache_lock);
665 NMethodIterator iter(NMethodIterator::all_blobs);
666 while(iter.next()) {
667 f(iter.method());
668 }
669}
670
671void CodeCache::metadata_do(MetadataClosure* f) {
672 assert_locked_or_safepoint(CodeCache_lock);
673 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
674 while(iter.next()) {
675 iter.method()->metadata_do(f);
676 }
677 AOTLoader::metadata_do(f);
678}
679
680int CodeCache::alignment_unit() {
681 return (int)_heaps->first()->alignment_unit();
682}
683
684int CodeCache::alignment_offset() {
685 return (int)_heaps->first()->alignment_offset();
686}
687
688// Mark nmethods for unloading if they contain otherwise unreachable oops.
689void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
690 assert_locked_or_safepoint(CodeCache_lock);
691 UnloadingScope scope(is_alive);
692 CompiledMethodIterator iter(CompiledMethodIterator::only_alive);
693 while(iter.next()) {
694 iter.method()->do_unloading(unloading_occurred);
695 }
696}
697
698void CodeCache::blobs_do(CodeBlobClosure* f) {
699 assert_locked_or_safepoint(CodeCache_lock);
700 FOR_ALL_ALLOCABLE_HEAPS(heap) {
701 FOR_ALL_BLOBS(cb, *heap) {
702 if (cb->is_alive()) {
703 f->do_code_blob(cb);
704#ifdef ASSERT
705 if (cb->is_nmethod()) {
706 Universe::heap()->verify_nmethod((nmethod*)cb);
707 }
708#endif //ASSERT
709 }
710 }
711 }
712}
713
714void CodeCache::verify_clean_inline_caches() {
715#ifdef ASSERT
716 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
717 while(iter.next()) {
718 nmethod* nm = iter.method();
719 assert(!nm->is_unloaded(), "Tautology");
720 nm->verify_clean_inline_caches();
721 nm->verify();
722 }
723#endif
724}
725
726void CodeCache::verify_icholder_relocations() {
727#ifdef ASSERT
728 // make sure that we aren't leaking icholders
729 int count = 0;
730 FOR_ALL_HEAPS(heap) {
731 FOR_ALL_BLOBS(cb, *heap) {
732 CompiledMethod *nm = cb->as_compiled_method_or_null();
733 if (nm != NULL) {
734 count += nm->verify_icholder_relocations();
735 }
736 }
737 }
738 assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
739 CompiledICHolder::live_count(), "must agree");
740#endif
741}
742
743// Defer freeing of concurrently cleaned ExceptionCache entries until
744// after a global handshake operation.
745void CodeCache::release_exception_cache(ExceptionCache* entry) {
746 if (SafepointSynchronize::is_at_safepoint()) {
747 delete entry;
748 } else {
749 for (;;) {
750 ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
751 entry->set_purge_list_next(purge_list_head);
752 if (Atomic::cmpxchg(entry, &_exception_cache_purge_list, purge_list_head) == purge_list_head) {
753 break;
754 }
755 }
756 }
757}
758
759// Delete exception caches that have been concurrently unlinked,
760// followed by a global handshake operation.
761void CodeCache::purge_exception_caches() {
762 ExceptionCache* curr = _exception_cache_purge_list;
763 while (curr != NULL) {
764 ExceptionCache* next = curr->purge_list_next();
765 delete curr;
766 curr = next;
767 }
768 _exception_cache_purge_list = NULL;
769}
770
771uint8_t CodeCache::_unloading_cycle = 1;
772
773void CodeCache::increment_unloading_cycle() {
774 if (_unloading_cycle == 1) {
775 _unloading_cycle = 2;
776 } else {
777 _unloading_cycle = 1;
778 }
779}
780
781CodeCache::UnloadingScope::UnloadingScope(BoolObjectClosure* is_alive)
782 : _is_unloading_behaviour(is_alive)
783{
784 _saved_behaviour = IsUnloadingBehaviour::current();
785 IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
786 increment_unloading_cycle();
787 DependencyContext::cleaning_start();
788}
789
790CodeCache::UnloadingScope::~UnloadingScope() {
791 IsUnloadingBehaviour::set_current(_saved_behaviour);
792 DependencyContext::cleaning_end();
793}
794
795void CodeCache::verify_oops() {
796 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
797 VerifyOopClosure voc;
798 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
799 while(iter.next()) {
800 nmethod* nm = iter.method();
801 nm->oops_do(&voc);
802 nm->verify_oop_relocations();
803 }
804}
805
806int CodeCache::blob_count(int code_blob_type) {
807 CodeHeap* heap = get_code_heap(code_blob_type);
808 return (heap != NULL) ? heap->blob_count() : 0;
809}
810
811int CodeCache::blob_count() {
812 int count = 0;
813 FOR_ALL_HEAPS(heap) {
814 count += (*heap)->blob_count();
815 }
816 return count;
817}
818
819int CodeCache::nmethod_count(int code_blob_type) {
820 CodeHeap* heap = get_code_heap(code_blob_type);
821 return (heap != NULL) ? heap->nmethod_count() : 0;
822}
823
824int CodeCache::nmethod_count() {
825 int count = 0;
826 FOR_ALL_NMETHOD_HEAPS(heap) {
827 count += (*heap)->nmethod_count();
828 }
829 return count;
830}
831
832int CodeCache::adapter_count(int code_blob_type) {
833 CodeHeap* heap = get_code_heap(code_blob_type);
834 return (heap != NULL) ? heap->adapter_count() : 0;
835}
836
837int CodeCache::adapter_count() {
838 int count = 0;
839 FOR_ALL_HEAPS(heap) {
840 count += (*heap)->adapter_count();
841 }
842 return count;
843}
844
845address CodeCache::low_bound(int code_blob_type) {
846 CodeHeap* heap = get_code_heap(code_blob_type);
847 return (heap != NULL) ? (address)heap->low_boundary() : NULL;
848}
849
850address CodeCache::high_bound(int code_blob_type) {
851 CodeHeap* heap = get_code_heap(code_blob_type);
852 return (heap != NULL) ? (address)heap->high_boundary() : NULL;
853}
854
855size_t CodeCache::capacity() {
856 size_t cap = 0;
857 FOR_ALL_ALLOCABLE_HEAPS(heap) {
858 cap += (*heap)->capacity();
859 }
860 return cap;
861}
862
863size_t CodeCache::unallocated_capacity(int code_blob_type) {
864 CodeHeap* heap = get_code_heap(code_blob_type);
865 return (heap != NULL) ? heap->unallocated_capacity() : 0;
866}
867
868size_t CodeCache::unallocated_capacity() {
869 size_t unallocated_cap = 0;
870 FOR_ALL_ALLOCABLE_HEAPS(heap) {
871 unallocated_cap += (*heap)->unallocated_capacity();
872 }
873 return unallocated_cap;
874}
875
876size_t CodeCache::max_capacity() {
877 size_t max_cap = 0;
878 FOR_ALL_ALLOCABLE_HEAPS(heap) {
879 max_cap += (*heap)->max_capacity();
880 }
881 return max_cap;
882}
883
884/**
885 * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
886 * is free, reverse_free_ratio() returns 4.
887 */
888double CodeCache::reverse_free_ratio(int code_blob_type) {
889 CodeHeap* heap = get_code_heap(code_blob_type);
890 if (heap == NULL) {
891 return 0;
892 }
893
894 double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
895 double max_capacity = (double)heap->max_capacity();
896 double result = max_capacity / unallocated_capacity;
897 assert (max_capacity >= unallocated_capacity, "Must be");
898 assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
899 return result;
900}
901
902size_t CodeCache::bytes_allocated_in_freelists() {
903 size_t allocated_bytes = 0;
904 FOR_ALL_ALLOCABLE_HEAPS(heap) {
905 allocated_bytes += (*heap)->allocated_in_freelist();
906 }
907 return allocated_bytes;
908}
909
910int CodeCache::allocated_segments() {
911 int number_of_segments = 0;
912 FOR_ALL_ALLOCABLE_HEAPS(heap) {
913 number_of_segments += (*heap)->allocated_segments();
914 }
915 return number_of_segments;
916}
917
918size_t CodeCache::freelists_length() {
919 size_t length = 0;
920 FOR_ALL_ALLOCABLE_HEAPS(heap) {
921 length += (*heap)->freelist_length();
922 }
923 return length;
924}
925
926void icache_init();
927
928void CodeCache::initialize() {
929 assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
930#ifdef COMPILER2
931 assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
932#endif
933 assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
934 // This was originally just a check of the alignment, causing failure, instead, round
935 // the code cache to the page size. In particular, Solaris is moving to a larger
936 // default page size.
937 CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
938
939 if (SegmentedCodeCache) {
940 // Use multiple code heaps
941 initialize_heaps();
942 } else {
943 // Use a single code heap
944 FLAG_SET_ERGO(NonNMethodCodeHeapSize, 0);
945 FLAG_SET_ERGO(ProfiledCodeHeapSize, 0);
946 FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0);
947 ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
948 add_heap(rs, "CodeCache", CodeBlobType::All);
949 }
950
951 // Initialize ICache flush mechanism
952 // This service is needed for os::register_code_area
953 icache_init();
954
955 // Give OS a chance to register generated code area.
956 // This is used on Windows 64 bit platforms to register
957 // Structured Exception Handlers for our generated code.
958 os::register_code_area((char*)low_bound(), (char*)high_bound());
959}
960
961void codeCache_init() {
962 CodeCache::initialize();
963 // Load AOT libraries and add AOT code heaps.
964 AOTLoader::initialize();
965}
966
967//------------------------------------------------------------------------------------------------
968
969int CodeCache::number_of_nmethods_with_dependencies() {
970 return _number_of_nmethods_with_dependencies;
971}
972
973void CodeCache::clear_inline_caches() {
974 assert_locked_or_safepoint(CodeCache_lock);
975 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
976 while(iter.next()) {
977 iter.method()->clear_inline_caches();
978 }
979}
980
981void CodeCache::cleanup_inline_caches() {
982 assert_locked_or_safepoint(CodeCache_lock);
983 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
984 while(iter.next()) {
985 iter.method()->cleanup_inline_caches(/*clean_all=*/true);
986 }
987}
988
989// Keeps track of time spent for checking dependencies
990NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
991
992int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
993 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
994 int number_of_marked_CodeBlobs = 0;
995
996 // search the hierarchy looking for nmethods which are affected by the loading of this class
997
998 // then search the interfaces this class implements looking for nmethods
999 // which might be dependent of the fact that an interface only had one
1000 // implementor.
1001 // nmethod::check_all_dependencies works only correctly, if no safepoint
1002 // can happen
1003 NoSafepointVerifier nsv;
1004 for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1005 Klass* d = str.klass();
1006 number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1007 }
1008
1009#ifndef PRODUCT
1010 if (VerifyDependencies) {
1011 // Object pointers are used as unique identifiers for dependency arguments. This
1012 // is only possible if no safepoint, i.e., GC occurs during the verification code.
1013 dependentCheckTime.start();
1014 nmethod::check_all_dependencies(changes);
1015 dependentCheckTime.stop();
1016 }
1017#endif
1018
1019 return number_of_marked_CodeBlobs;
1020}
1021
1022CompiledMethod* CodeCache::find_compiled(void* start) {
1023 CodeBlob *cb = find_blob(start);
1024 assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1025 return (CompiledMethod*)cb;
1026}
1027
1028bool CodeCache::is_far_target(address target) {
1029#if INCLUDE_AOT
1030 return NativeCall::is_far_call(_low_bound, target) ||
1031 NativeCall::is_far_call(_high_bound, target);
1032#else
1033 return false;
1034#endif
1035}
1036
1037#ifdef INCLUDE_JVMTI
1038// RedefineClasses support for unloading nmethods that are dependent on "old" methods.
1039// We don't really expect this table to grow very large. If it does, it can become a hashtable.
1040static GrowableArray<CompiledMethod*>* old_compiled_method_table = NULL;
1041
1042static void add_to_old_table(CompiledMethod* c) {
1043 if (old_compiled_method_table == NULL) {
1044 old_compiled_method_table = new (ResourceObj::C_HEAP, mtCode) GrowableArray<CompiledMethod*>(100, true);
1045 }
1046 old_compiled_method_table->push(c);
1047}
1048
1049static void reset_old_method_table() {
1050 if (old_compiled_method_table != NULL) {
1051 delete old_compiled_method_table;
1052 old_compiled_method_table = NULL;
1053 }
1054}
1055
1056// Remove this method when zombied or unloaded.
1057void CodeCache::unregister_old_nmethod(CompiledMethod* c) {
1058 assert_lock_strong(CodeCache_lock);
1059 if (old_compiled_method_table != NULL) {
1060 int index = old_compiled_method_table->find(c);
1061 if (index != -1) {
1062 old_compiled_method_table->delete_at(index);
1063 }
1064 }
1065}
1066
1067void CodeCache::old_nmethods_do(MetadataClosure* f) {
1068 // Walk old method table and mark those on stack.
1069 int length = 0;
1070 if (old_compiled_method_table != NULL) {
1071 length = old_compiled_method_table->length();
1072 for (int i = 0; i < length; i++) {
1073 CompiledMethod* cm = old_compiled_method_table->at(i);
1074 // Only walk alive nmethods, the dead ones will get removed by the sweeper.
1075 if (cm->is_alive()) {
1076 old_compiled_method_table->at(i)->metadata_do(f);
1077 }
1078 }
1079 }
1080 log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1081}
1082
1083// Just marks the methods in this class as needing deoptimization
1084void CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1085 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1086
1087 // Mark dependent AOT nmethods, which are only found via the class redefined.
1088 // TODO: add dependencies to aotCompiledMethod's metadata section so this isn't
1089 // needed.
1090 AOTLoader::mark_evol_dependent_methods(dependee);
1091}
1092
1093
1094// Walk compiled methods and mark dependent methods for deoptimization.
1095int CodeCache::mark_dependents_for_evol_deoptimization() {
1096 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1097 // Each redefinition creates a new set of nmethods that have references to "old" Methods
1098 // So delete old method table and create a new one.
1099 reset_old_method_table();
1100
1101 int number_of_marked_CodeBlobs = 0;
1102 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1103 while(iter.next()) {
1104 CompiledMethod* nm = iter.method();
1105 // Walk all alive nmethods to check for old Methods.
1106 // This includes methods whose inline caches point to old methods, so
1107 // inline cache clearing is unnecessary.
1108 if (nm->has_evol_metadata()) {
1109 nm->mark_for_deoptimization();
1110 add_to_old_table(nm);
1111 number_of_marked_CodeBlobs++;
1112 }
1113 }
1114
1115 // return total count of nmethods marked for deoptimization, if zero the caller
1116 // can skip deoptimization
1117 return number_of_marked_CodeBlobs;
1118}
1119
1120void CodeCache::mark_all_nmethods_for_evol_deoptimization() {
1121 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1122 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1123 while(iter.next()) {
1124 CompiledMethod* nm = iter.method();
1125 if (!nm->method()->is_method_handle_intrinsic()) {
1126 nm->mark_for_deoptimization();
1127 if (nm->has_evol_metadata()) {
1128 add_to_old_table(nm);
1129 }
1130 }
1131 }
1132}
1133
1134// Flushes compiled methods dependent on redefined classes, that have already been
1135// marked for deoptimization.
1136void CodeCache::flush_evol_dependents() {
1137 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1138
1139 // CodeCache can only be updated by a thread_in_VM and they will all be
1140 // stopped during the safepoint so CodeCache will be safe to update without
1141 // holding the CodeCache_lock.
1142
1143 // At least one nmethod has been marked for deoptimization
1144
1145 // All this already happens inside a VM_Operation, so we'll do all the work here.
1146 // Stuff copied from VM_Deoptimize and modified slightly.
1147
1148 // We do not want any GCs to happen while we are in the middle of this VM operation
1149 ResourceMark rm;
1150 DeoptimizationMarker dm;
1151
1152 // Deoptimize all activations depending on marked nmethods
1153 Deoptimization::deoptimize_dependents();
1154
1155 // Make the dependent methods not entrant
1156 make_marked_nmethods_not_entrant();
1157}
1158#endif // INCLUDE_JVMTI
1159
1160// Deoptimize all methods
1161void CodeCache::mark_all_nmethods_for_deoptimization() {
1162 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1163 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1164 while(iter.next()) {
1165 CompiledMethod* nm = iter.method();
1166 if (!nm->method()->is_method_handle_intrinsic()) {
1167 nm->mark_for_deoptimization();
1168 }
1169 }
1170}
1171
1172int CodeCache::mark_for_deoptimization(Method* dependee) {
1173 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1174 int number_of_marked_CodeBlobs = 0;
1175
1176 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1177 while(iter.next()) {
1178 CompiledMethod* nm = iter.method();
1179 if (nm->is_dependent_on_method(dependee)) {
1180 ResourceMark rm;
1181 nm->mark_for_deoptimization();
1182 number_of_marked_CodeBlobs++;
1183 }
1184 }
1185
1186 return number_of_marked_CodeBlobs;
1187}
1188
1189void CodeCache::make_marked_nmethods_not_entrant() {
1190 assert_locked_or_safepoint(CodeCache_lock);
1191 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1192 while(iter.next()) {
1193 CompiledMethod* nm = iter.method();
1194 if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1195 nm->make_not_entrant();
1196 }
1197 }
1198}
1199
1200// Flushes compiled methods dependent on dependee.
1201void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1202 assert_lock_strong(Compile_lock);
1203
1204 if (number_of_nmethods_with_dependencies() == 0) return;
1205
1206 // CodeCache can only be updated by a thread_in_VM and they will all be
1207 // stopped during the safepoint so CodeCache will be safe to update without
1208 // holding the CodeCache_lock.
1209
1210 KlassDepChange changes(dependee);
1211
1212 // Compute the dependent nmethods
1213 if (mark_for_deoptimization(changes) > 0) {
1214 // At least one nmethod has been marked for deoptimization
1215 VM_Deoptimize op;
1216 VMThread::execute(&op);
1217 }
1218}
1219
1220// Flushes compiled methods dependent on dependee
1221void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1222 // --- Compile_lock is not held. However we are at a safepoint.
1223 assert_locked_or_safepoint(Compile_lock);
1224
1225 // CodeCache can only be updated by a thread_in_VM and they will all be
1226 // stopped dring the safepoint so CodeCache will be safe to update without
1227 // holding the CodeCache_lock.
1228
1229 // Compute the dependent nmethods
1230 if (mark_for_deoptimization(m_h()) > 0) {
1231 // At least one nmethod has been marked for deoptimization
1232
1233 // All this already happens inside a VM_Operation, so we'll do all the work here.
1234 // Stuff copied from VM_Deoptimize and modified slightly.
1235
1236 // We do not want any GCs to happen while we are in the middle of this VM operation
1237 ResourceMark rm;
1238 DeoptimizationMarker dm;
1239
1240 // Deoptimize all activations depending on marked nmethods
1241 Deoptimization::deoptimize_dependents();
1242
1243 // Make the dependent methods not entrant
1244 make_marked_nmethods_not_entrant();
1245 }
1246}
1247
1248void CodeCache::verify() {
1249 assert_locked_or_safepoint(CodeCache_lock);
1250 FOR_ALL_HEAPS(heap) {
1251 (*heap)->verify();
1252 FOR_ALL_BLOBS(cb, *heap) {
1253 if (cb->is_alive()) {
1254 cb->verify();
1255 }
1256 }
1257 }
1258}
1259
1260// A CodeHeap is full. Print out warning and report event.
1261PRAGMA_DIAG_PUSH
1262PRAGMA_FORMAT_NONLITERAL_IGNORED
1263void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1264 // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1265 CodeHeap* heap = get_code_heap(code_blob_type);
1266 assert(heap != NULL, "heap is null");
1267
1268 if ((heap->full_count() == 0) || print) {
1269 // Not yet reported for this heap, report
1270 if (SegmentedCodeCache) {
1271 ResourceMark rm;
1272 stringStream msg1_stream, msg2_stream;
1273 msg1_stream.print("%s is full. Compiler has been disabled.",
1274 get_code_heap_name(code_blob_type));
1275 msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1276 get_code_heap_flag_name(code_blob_type));
1277 const char *msg1 = msg1_stream.as_string();
1278 const char *msg2 = msg2_stream.as_string();
1279
1280 log_warning(codecache)("%s", msg1);
1281 log_warning(codecache)("%s", msg2);
1282 warning("%s", msg1);
1283 warning("%s", msg2);
1284 } else {
1285 const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1286 const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1287
1288 log_warning(codecache)("%s", msg1);
1289 log_warning(codecache)("%s", msg2);
1290 warning("%s", msg1);
1291 warning("%s", msg2);
1292 }
1293 ResourceMark rm;
1294 stringStream s;
1295 // Dump code cache into a buffer before locking the tty.
1296 {
1297 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1298 print_summary(&s);
1299 }
1300 {
1301 ttyLocker ttyl;
1302 tty->print("%s", s.as_string());
1303 }
1304
1305 if (heap->full_count() == 0) {
1306 if (PrintCodeHeapAnalytics) {
1307 CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot!
1308 }
1309 }
1310 }
1311
1312 heap->report_full();
1313
1314 EventCodeCacheFull event;
1315 if (event.should_commit()) {
1316 event.set_codeBlobType((u1)code_blob_type);
1317 event.set_startAddress((u8)heap->low_boundary());
1318 event.set_commitedTopAddress((u8)heap->high());
1319 event.set_reservedTopAddress((u8)heap->high_boundary());
1320 event.set_entryCount(heap->blob_count());
1321 event.set_methodCount(heap->nmethod_count());
1322 event.set_adaptorCount(heap->adapter_count());
1323 event.set_unallocatedCapacity(heap->unallocated_capacity());
1324 event.set_fullCount(heap->full_count());
1325 event.commit();
1326 }
1327}
1328PRAGMA_DIAG_POP
1329
1330void CodeCache::print_memory_overhead() {
1331 size_t wasted_bytes = 0;
1332 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1333 CodeHeap* curr_heap = *heap;
1334 for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1335 HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1336 wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1337 }
1338 }
1339 // Print bytes that are allocated in the freelist
1340 ttyLocker ttl;
1341 tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length());
1342 tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K);
1343 tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K));
1344 tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment
1345}
1346
1347//------------------------------------------------------------------------------------------------
1348// Non-product version
1349
1350#ifndef PRODUCT
1351
1352void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1353 if (PrintCodeCache2) { // Need to add a new flag
1354 ResourceMark rm;
1355 if (size == 0) size = cb->size();
1356 tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1357 }
1358}
1359
1360void CodeCache::print_internals() {
1361 int nmethodCount = 0;
1362 int runtimeStubCount = 0;
1363 int adapterCount = 0;
1364 int deoptimizationStubCount = 0;
1365 int uncommonTrapStubCount = 0;
1366 int bufferBlobCount = 0;
1367 int total = 0;
1368 int nmethodAlive = 0;
1369 int nmethodNotEntrant = 0;
1370 int nmethodZombie = 0;
1371 int nmethodUnloaded = 0;
1372 int nmethodJava = 0;
1373 int nmethodNative = 0;
1374 int max_nm_size = 0;
1375 ResourceMark rm;
1376
1377 int i = 0;
1378 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1379 if ((_nmethod_heaps->length() >= 1) && Verbose) {
1380 tty->print_cr("-- %s --", (*heap)->name());
1381 }
1382 FOR_ALL_BLOBS(cb, *heap) {
1383 total++;
1384 if (cb->is_nmethod()) {
1385 nmethod* nm = (nmethod*)cb;
1386
1387 if (Verbose && nm->method() != NULL) {
1388 ResourceMark rm;
1389 char *method_name = nm->method()->name_and_sig_as_C_string();
1390 tty->print("%s", method_name);
1391 if(nm->is_alive()) { tty->print_cr(" alive"); }
1392 if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1393 if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1394 }
1395
1396 nmethodCount++;
1397
1398 if(nm->is_alive()) { nmethodAlive++; }
1399 if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1400 if(nm->is_zombie()) { nmethodZombie++; }
1401 if(nm->is_unloaded()) { nmethodUnloaded++; }
1402 if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1403
1404 if(nm->method() != NULL && nm->is_java_method()) {
1405 nmethodJava++;
1406 max_nm_size = MAX2(max_nm_size, nm->size());
1407 }
1408 } else if (cb->is_runtime_stub()) {
1409 runtimeStubCount++;
1410 } else if (cb->is_deoptimization_stub()) {
1411 deoptimizationStubCount++;
1412 } else if (cb->is_uncommon_trap_stub()) {
1413 uncommonTrapStubCount++;
1414 } else if (cb->is_adapter_blob()) {
1415 adapterCount++;
1416 } else if (cb->is_buffer_blob()) {
1417 bufferBlobCount++;
1418 }
1419 }
1420 }
1421
1422 int bucketSize = 512;
1423 int bucketLimit = max_nm_size / bucketSize + 1;
1424 int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1425 memset(buckets, 0, sizeof(int) * bucketLimit);
1426
1427 NMethodIterator iter(NMethodIterator::all_blobs);
1428 while(iter.next()) {
1429 nmethod* nm = iter.method();
1430 if(nm->method() != NULL && nm->is_java_method()) {
1431 buckets[nm->size() / bucketSize]++;
1432 }
1433 }
1434
1435 tty->print_cr("Code Cache Entries (total of %d)",total);
1436 tty->print_cr("-------------------------------------------------");
1437 tty->print_cr("nmethods: %d",nmethodCount);
1438 tty->print_cr("\talive: %d",nmethodAlive);
1439 tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1440 tty->print_cr("\tzombie: %d",nmethodZombie);
1441 tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1442 tty->print_cr("\tjava: %d",nmethodJava);
1443 tty->print_cr("\tnative: %d",nmethodNative);
1444 tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1445 tty->print_cr("adapters: %d",adapterCount);
1446 tty->print_cr("buffer blobs: %d",bufferBlobCount);
1447 tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1448 tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1449 tty->print_cr("\nnmethod size distribution (non-zombie java)");
1450 tty->print_cr("-------------------------------------------------");
1451
1452 for(int i=0; i<bucketLimit; i++) {
1453 if(buckets[i] != 0) {
1454 tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1455 tty->fill_to(40);
1456 tty->print_cr("%d",buckets[i]);
1457 }
1458 }
1459
1460 FREE_C_HEAP_ARRAY(int, buckets);
1461 print_memory_overhead();
1462}
1463
1464#endif // !PRODUCT
1465
1466void CodeCache::print() {
1467 print_summary(tty);
1468
1469#ifndef PRODUCT
1470 if (!Verbose) return;
1471
1472 CodeBlob_sizes live;
1473 CodeBlob_sizes dead;
1474
1475 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1476 FOR_ALL_BLOBS(cb, *heap) {
1477 if (!cb->is_alive()) {
1478 dead.add(cb);
1479 } else {
1480 live.add(cb);
1481 }
1482 }
1483 }
1484
1485 tty->print_cr("CodeCache:");
1486 tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1487
1488 if (!live.is_empty()) {
1489 live.print("live");
1490 }
1491 if (!dead.is_empty()) {
1492 dead.print("dead");
1493 }
1494
1495 if (WizardMode) {
1496 // print the oop_map usage
1497 int code_size = 0;
1498 int number_of_blobs = 0;
1499 int number_of_oop_maps = 0;
1500 int map_size = 0;
1501 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1502 FOR_ALL_BLOBS(cb, *heap) {
1503 if (cb->is_alive()) {
1504 number_of_blobs++;
1505 code_size += cb->code_size();
1506 ImmutableOopMapSet* set = cb->oop_maps();
1507 if (set != NULL) {
1508 number_of_oop_maps += set->count();
1509 map_size += set->nr_of_bytes();
1510 }
1511 }
1512 }
1513 }
1514 tty->print_cr("OopMaps");
1515 tty->print_cr(" #blobs = %d", number_of_blobs);
1516 tty->print_cr(" code size = %d", code_size);
1517 tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
1518 tty->print_cr(" map size = %d", map_size);
1519 }
1520
1521#endif // !PRODUCT
1522}
1523
1524void CodeCache::print_summary(outputStream* st, bool detailed) {
1525 int full_count = 0;
1526 FOR_ALL_HEAPS(heap_iterator) {
1527 CodeHeap* heap = (*heap_iterator);
1528 size_t total = (heap->high_boundary() - heap->low_boundary());
1529 if (_heaps->length() >= 1) {
1530 st->print("%s:", heap->name());
1531 } else {
1532 st->print("CodeCache:");
1533 }
1534 st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1535 "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1536 total/K, (total - heap->unallocated_capacity())/K,
1537 heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1538
1539 if (detailed) {
1540 st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1541 p2i(heap->low_boundary()),
1542 p2i(heap->high()),
1543 p2i(heap->high_boundary()));
1544
1545 full_count += get_codemem_full_count(heap->code_blob_type());
1546 }
1547 }
1548
1549 if (detailed) {
1550 st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1551 " adapters=" UINT32_FORMAT,
1552 blob_count(), nmethod_count(), adapter_count());
1553 st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1554 "enabled" : Arguments::mode() == Arguments::_int ?
1555 "disabled (interpreter mode)" :
1556 "disabled (not enough contiguous free space left)");
1557 st->print_cr(" stopped_count=%d, restarted_count=%d",
1558 CompileBroker::get_total_compiler_stopped_count(),
1559 CompileBroker::get_total_compiler_restarted_count());
1560 st->print_cr(" full_count=%d", full_count);
1561 }
1562}
1563
1564void CodeCache::print_codelist(outputStream* st) {
1565 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1566
1567 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1568 while (iter.next()) {
1569 CompiledMethod* cm = iter.method();
1570 ResourceMark rm;
1571 char* method_name = cm->method()->name_and_sig_as_C_string();
1572 st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1573 cm->compile_id(), cm->comp_level(), cm->get_state(),
1574 method_name,
1575 (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1576 }
1577}
1578
1579void CodeCache::print_layout(outputStream* st) {
1580 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1581 ResourceMark rm;
1582 print_summary(st, true);
1583}
1584
1585void CodeCache::log_state(outputStream* st) {
1586 st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1587 " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1588 blob_count(), nmethod_count(), adapter_count(),
1589 unallocated_capacity());
1590}
1591
1592//---< BEGIN >--- CodeHeap State Analytics.
1593
1594void CodeCache::aggregate(outputStream *out, size_t granularity) {
1595 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1596 CodeHeapState::aggregate(out, (*heap), granularity);
1597 }
1598}
1599
1600void CodeCache::discard(outputStream *out) {
1601 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1602 CodeHeapState::discard(out, (*heap));
1603 }
1604}
1605
1606void CodeCache::print_usedSpace(outputStream *out) {
1607 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1608 CodeHeapState::print_usedSpace(out, (*heap));
1609 }
1610}
1611
1612void CodeCache::print_freeSpace(outputStream *out) {
1613 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1614 CodeHeapState::print_freeSpace(out, (*heap));
1615 }
1616}
1617
1618void CodeCache::print_count(outputStream *out) {
1619 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1620 CodeHeapState::print_count(out, (*heap));
1621 }
1622}
1623
1624void CodeCache::print_space(outputStream *out) {
1625 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1626 CodeHeapState::print_space(out, (*heap));
1627 }
1628}
1629
1630void CodeCache::print_age(outputStream *out) {
1631 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1632 CodeHeapState::print_age(out, (*heap));
1633 }
1634}
1635
1636void CodeCache::print_names(outputStream *out) {
1637 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1638 CodeHeapState::print_names(out, (*heap));
1639 }
1640}
1641//---< END >--- CodeHeap State Analytics.
1642