1 | /* |
2 | * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/stringTable.hpp" |
27 | #include "code/codeCache.hpp" |
28 | #include "gc/parallel/gcTaskManager.hpp" |
29 | #include "gc/parallel/parallelScavengeHeap.hpp" |
30 | #include "gc/parallel/psAdaptiveSizePolicy.hpp" |
31 | #include "gc/parallel/psClosure.inline.hpp" |
32 | #include "gc/parallel/psMarkSweepProxy.hpp" |
33 | #include "gc/parallel/psParallelCompact.inline.hpp" |
34 | #include "gc/parallel/psPromotionManager.inline.hpp" |
35 | #include "gc/parallel/psScavenge.inline.hpp" |
36 | #include "gc/parallel/psTasks.hpp" |
37 | #include "gc/shared/gcCause.hpp" |
38 | #include "gc/shared/gcHeapSummary.hpp" |
39 | #include "gc/shared/gcId.hpp" |
40 | #include "gc/shared/gcLocker.hpp" |
41 | #include "gc/shared/gcTimer.hpp" |
42 | #include "gc/shared/gcTrace.hpp" |
43 | #include "gc/shared/gcTraceTime.inline.hpp" |
44 | #include "gc/shared/isGCActiveMark.hpp" |
45 | #include "gc/shared/referencePolicy.hpp" |
46 | #include "gc/shared/referenceProcessor.hpp" |
47 | #include "gc/shared/referenceProcessorPhaseTimes.hpp" |
48 | #include "gc/shared/spaceDecorator.hpp" |
49 | #include "gc/shared/weakProcessor.hpp" |
50 | #include "memory/resourceArea.hpp" |
51 | #include "memory/universe.hpp" |
52 | #include "logging/log.hpp" |
53 | #include "oops/access.inline.hpp" |
54 | #include "oops/compressedOops.inline.hpp" |
55 | #include "oops/oop.inline.hpp" |
56 | #include "runtime/biasedLocking.hpp" |
57 | #include "runtime/handles.inline.hpp" |
58 | #include "runtime/threadCritical.hpp" |
59 | #include "runtime/vmThread.hpp" |
60 | #include "runtime/vmOperations.hpp" |
61 | #include "services/memoryService.hpp" |
62 | #include "utilities/stack.inline.hpp" |
63 | |
64 | HeapWord* PSScavenge::_to_space_top_before_gc = NULL; |
65 | int PSScavenge::_consecutive_skipped_scavenges = 0; |
66 | SpanSubjectToDiscoveryClosure PSScavenge::_span_based_discoverer; |
67 | ReferenceProcessor* PSScavenge::_ref_processor = NULL; |
68 | PSCardTable* PSScavenge::_card_table = NULL; |
69 | bool PSScavenge::_survivor_overflow = false; |
70 | uint PSScavenge::_tenuring_threshold = 0; |
71 | HeapWord* PSScavenge::_young_generation_boundary = NULL; |
72 | uintptr_t PSScavenge::_young_generation_boundary_compressed = 0; |
73 | elapsedTimer PSScavenge::_accumulated_time; |
74 | STWGCTimer PSScavenge::_gc_timer; |
75 | ParallelScavengeTracer PSScavenge::_gc_tracer; |
76 | CollectorCounters* PSScavenge::_counters = NULL; |
77 | |
78 | // Define before use |
79 | class PSIsAliveClosure: public BoolObjectClosure { |
80 | public: |
81 | bool do_object_b(oop p) { |
82 | return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded(); |
83 | } |
84 | }; |
85 | |
86 | PSIsAliveClosure PSScavenge::_is_alive_closure; |
87 | |
88 | class PSKeepAliveClosure: public OopClosure { |
89 | protected: |
90 | MutableSpace* _to_space; |
91 | PSPromotionManager* _promotion_manager; |
92 | |
93 | public: |
94 | PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) { |
95 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
96 | _to_space = heap->young_gen()->to_space(); |
97 | |
98 | assert(_promotion_manager != NULL, "Sanity" ); |
99 | } |
100 | |
101 | template <class T> void do_oop_work(T* p) { |
102 | assert (oopDesc::is_oop(RawAccess<IS_NOT_NULL>::oop_load(p)), |
103 | "expected an oop while scanning weak refs" ); |
104 | |
105 | // Weak refs may be visited more than once. |
106 | if (PSScavenge::should_scavenge(p, _to_space)) { |
107 | _promotion_manager->copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(p); |
108 | } |
109 | } |
110 | virtual void do_oop(oop* p) { PSKeepAliveClosure::do_oop_work(p); } |
111 | virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); } |
112 | }; |
113 | |
114 | class PSEvacuateFollowersClosure: public VoidClosure { |
115 | private: |
116 | PSPromotionManager* _promotion_manager; |
117 | public: |
118 | PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {} |
119 | |
120 | virtual void do_void() { |
121 | assert(_promotion_manager != NULL, "Sanity" ); |
122 | _promotion_manager->drain_stacks(true); |
123 | guarantee(_promotion_manager->stacks_empty(), |
124 | "stacks should be empty at this point" ); |
125 | } |
126 | }; |
127 | |
128 | class PSRefProcTaskProxy: public GCTask { |
129 | typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; |
130 | ProcessTask & _rp_task; |
131 | uint _work_id; |
132 | public: |
133 | PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id) |
134 | : _rp_task(rp_task), |
135 | _work_id(work_id) |
136 | { } |
137 | |
138 | private: |
139 | virtual char* name() { return (char *)"Process referents by policy in parallel" ; } |
140 | virtual void do_it(GCTaskManager* manager, uint which); |
141 | }; |
142 | |
143 | void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which) |
144 | { |
145 | PSPromotionManager* promotion_manager = |
146 | PSPromotionManager::gc_thread_promotion_manager(which); |
147 | assert(promotion_manager != NULL, "sanity check" ); |
148 | PSKeepAliveClosure keep_alive(promotion_manager); |
149 | PSEvacuateFollowersClosure evac_followers(promotion_manager); |
150 | PSIsAliveClosure is_alive; |
151 | _rp_task.work(_work_id, is_alive, keep_alive, evac_followers); |
152 | } |
153 | |
154 | class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor { |
155 | virtual void execute(ProcessTask& task, uint ergo_workers); |
156 | }; |
157 | |
158 | void PSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) |
159 | { |
160 | GCTaskQueue* q = GCTaskQueue::create(); |
161 | GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager(); |
162 | uint active_workers = manager->active_workers(); |
163 | |
164 | assert(active_workers == ergo_workers, |
165 | "Ergonomically chosen workers (%u) must be equal to active workers (%u)" , |
166 | ergo_workers, active_workers); |
167 | |
168 | for(uint i=0; i < active_workers; i++) { |
169 | q->enqueue(new PSRefProcTaskProxy(task, i)); |
170 | } |
171 | TaskTerminator terminator(active_workers, |
172 | (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()); |
173 | if (task.marks_oops_alive() && active_workers > 1) { |
174 | for (uint j = 0; j < active_workers; j++) { |
175 | q->enqueue(new StealTask(terminator.terminator())); |
176 | } |
177 | } |
178 | manager->execute_and_wait(q); |
179 | } |
180 | |
181 | // This method contains all heap specific policy for invoking scavenge. |
182 | // PSScavenge::invoke_no_policy() will do nothing but attempt to |
183 | // scavenge. It will not clean up after failed promotions, bail out if |
184 | // we've exceeded policy time limits, or any other special behavior. |
185 | // All such policy should be placed here. |
186 | // |
187 | // Note that this method should only be called from the vm_thread while |
188 | // at a safepoint! |
189 | bool PSScavenge::invoke() { |
190 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
191 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread" ); |
192 | assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant" ); |
193 | |
194 | ParallelScavengeHeap* const heap = ParallelScavengeHeap::heap(); |
195 | PSAdaptiveSizePolicy* policy = heap->size_policy(); |
196 | IsGCActiveMark mark; |
197 | |
198 | const bool scavenge_done = PSScavenge::invoke_no_policy(); |
199 | const bool need_full_gc = !scavenge_done || |
200 | policy->should_full_GC(heap->old_gen()->free_in_bytes()); |
201 | bool full_gc_done = false; |
202 | |
203 | if (UsePerfData) { |
204 | PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); |
205 | const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped; |
206 | counters->update_full_follows_scavenge(ffs_val); |
207 | } |
208 | |
209 | if (need_full_gc) { |
210 | GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy); |
211 | SoftRefPolicy* srp = heap->soft_ref_policy(); |
212 | const bool clear_all_softrefs = srp->should_clear_all_soft_refs(); |
213 | |
214 | if (UseParallelOldGC) { |
215 | full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs); |
216 | } else { |
217 | full_gc_done = PSMarkSweepProxy::invoke_no_policy(clear_all_softrefs); |
218 | } |
219 | } |
220 | |
221 | return full_gc_done; |
222 | } |
223 | |
224 | class PSAddThreadRootsTaskClosure : public ThreadClosure { |
225 | private: |
226 | GCTaskQueue* _q; |
227 | |
228 | public: |
229 | PSAddThreadRootsTaskClosure(GCTaskQueue* q) : _q(q) { } |
230 | void do_thread(Thread* t) { |
231 | _q->enqueue(new ThreadRootsTask(t)); |
232 | } |
233 | }; |
234 | |
235 | // This method contains no policy. You should probably |
236 | // be calling invoke() instead. |
237 | bool PSScavenge::invoke_no_policy() { |
238 | assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint" ); |
239 | assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread" ); |
240 | |
241 | _gc_timer.register_gc_start(); |
242 | |
243 | TimeStamp scavenge_entry; |
244 | TimeStamp scavenge_midpoint; |
245 | TimeStamp scavenge_exit; |
246 | |
247 | scavenge_entry.update(); |
248 | |
249 | if (GCLocker::check_active_before_gc()) { |
250 | return false; |
251 | } |
252 | |
253 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
254 | GCCause::Cause gc_cause = heap->gc_cause(); |
255 | |
256 | // Check for potential problems. |
257 | if (!should_attempt_scavenge()) { |
258 | return false; |
259 | } |
260 | |
261 | GCIdMark gc_id_mark; |
262 | _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); |
263 | |
264 | bool promotion_failure_occurred = false; |
265 | |
266 | PSYoungGen* young_gen = heap->young_gen(); |
267 | PSOldGen* old_gen = heap->old_gen(); |
268 | PSAdaptiveSizePolicy* size_policy = heap->size_policy(); |
269 | |
270 | heap->increment_total_collections(); |
271 | |
272 | if (AdaptiveSizePolicy::should_update_eden_stats(gc_cause)) { |
273 | // Gather the feedback data for eden occupancy. |
274 | young_gen->eden_space()->accumulate_statistics(); |
275 | } |
276 | |
277 | heap->print_heap_before_gc(); |
278 | heap->trace_heap_before_gc(&_gc_tracer); |
279 | |
280 | assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity" ); |
281 | assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity" ); |
282 | |
283 | // Fill in TLABs |
284 | heap->ensure_parsability(true); // retire TLABs |
285 | |
286 | if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { |
287 | HandleMark hm; // Discard invalid handles created during verification |
288 | Universe::verify("Before GC" ); |
289 | } |
290 | |
291 | { |
292 | ResourceMark rm; |
293 | HandleMark hm; |
294 | |
295 | GCTraceCPUTime tcpu; |
296 | GCTraceTime(Info, gc) tm("Pause Young" , NULL, gc_cause, true); |
297 | TraceCollectorStats tcs(counters()); |
298 | TraceMemoryManagerStats tms(heap->young_gc_manager(), gc_cause); |
299 | |
300 | if (log_is_enabled(Debug, gc, heap, exit)) { |
301 | accumulated_time()->start(); |
302 | } |
303 | |
304 | // Let the size policy know we're starting |
305 | size_policy->minor_collection_begin(); |
306 | |
307 | // Verify the object start arrays. |
308 | if (VerifyObjectStartArray && |
309 | VerifyBeforeGC) { |
310 | old_gen->verify_object_start_array(); |
311 | } |
312 | |
313 | // Verify no unmarked old->young roots |
314 | if (VerifyRememberedSets) { |
315 | heap->card_table()->verify_all_young_refs_imprecise(); |
316 | } |
317 | |
318 | assert(young_gen->to_space()->is_empty(), |
319 | "Attempt to scavenge with live objects in to_space" ); |
320 | young_gen->to_space()->clear(SpaceDecorator::Mangle); |
321 | |
322 | save_to_space_top_before_gc(); |
323 | |
324 | #if COMPILER2_OR_JVMCI |
325 | DerivedPointerTable::clear(); |
326 | #endif |
327 | |
328 | reference_processor()->enable_discovery(); |
329 | reference_processor()->setup_policy(false); |
330 | |
331 | PreGCValues pre_gc_values(heap); |
332 | |
333 | // Reset our survivor overflow. |
334 | set_survivor_overflow(false); |
335 | |
336 | // We need to save the old top values before |
337 | // creating the promotion_manager. We pass the top |
338 | // values to the card_table, to prevent it from |
339 | // straying into the promotion labs. |
340 | HeapWord* old_top = old_gen->object_space()->top(); |
341 | |
342 | // Release all previously held resources |
343 | gc_task_manager()->release_all_resources(); |
344 | |
345 | // Set the number of GC threads to be used in this collection |
346 | gc_task_manager()->set_active_gang(); |
347 | gc_task_manager()->task_idle_workers(); |
348 | // Get the active number of workers here and use that value |
349 | // throughout the methods. |
350 | uint active_workers = gc_task_manager()->active_workers(); |
351 | |
352 | PSPromotionManager::pre_scavenge(); |
353 | |
354 | // We'll use the promotion manager again later. |
355 | PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager(); |
356 | { |
357 | GCTraceTime(Debug, gc, phases) tm("Scavenge" , &_gc_timer); |
358 | ParallelScavengeHeap::ParStrongRootsScope psrs; |
359 | |
360 | GCTaskQueue* q = GCTaskQueue::create(); |
361 | |
362 | if (!old_gen->object_space()->is_empty()) { |
363 | // There are only old-to-young pointers if there are objects |
364 | // in the old gen. |
365 | uint stripe_total = active_workers; |
366 | for(uint i=0; i < stripe_total; i++) { |
367 | q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total)); |
368 | } |
369 | } |
370 | |
371 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe)); |
372 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles)); |
373 | // We scan the thread roots in parallel |
374 | PSAddThreadRootsTaskClosure cl(q); |
375 | Threads::java_threads_and_vm_thread_do(&cl); |
376 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer)); |
377 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management)); |
378 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary)); |
379 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::class_loader_data)); |
380 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti)); |
381 | q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache)); |
382 | JVMCI_ONLY(q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmci));) |
383 | |
384 | TaskTerminator terminator(active_workers, |
385 | (TaskQueueSetSuper*) promotion_manager->stack_array_depth()); |
386 | // If active_workers can exceed 1, add a StrealTask. |
387 | // PSPromotionManager::drain_stacks_depth() does not fully drain its |
388 | // stacks and expects a StealTask to complete the draining if |
389 | // ParallelGCThreads is > 1. |
390 | if (gc_task_manager()->workers() > 1) { |
391 | for (uint j = 0; j < active_workers; j++) { |
392 | q->enqueue(new StealTask(terminator.terminator())); |
393 | } |
394 | } |
395 | |
396 | gc_task_manager()->execute_and_wait(q); |
397 | } |
398 | |
399 | scavenge_midpoint.update(); |
400 | |
401 | // Process reference objects discovered during scavenge |
402 | { |
403 | GCTraceTime(Debug, gc, phases) tm("Reference Processing" , &_gc_timer); |
404 | |
405 | reference_processor()->setup_policy(false); // not always_clear |
406 | reference_processor()->set_active_mt_degree(active_workers); |
407 | PSKeepAliveClosure keep_alive(promotion_manager); |
408 | PSEvacuateFollowersClosure evac_followers(promotion_manager); |
409 | ReferenceProcessorStats stats; |
410 | ReferenceProcessorPhaseTimes pt(&_gc_timer, reference_processor()->max_num_queues()); |
411 | if (reference_processor()->processing_is_mt()) { |
412 | PSRefProcTaskExecutor task_executor; |
413 | stats = reference_processor()->process_discovered_references( |
414 | &_is_alive_closure, &keep_alive, &evac_followers, &task_executor, |
415 | &pt); |
416 | } else { |
417 | stats = reference_processor()->process_discovered_references( |
418 | &_is_alive_closure, &keep_alive, &evac_followers, NULL, &pt); |
419 | } |
420 | |
421 | _gc_tracer.report_gc_reference_stats(stats); |
422 | pt.print_all_references(); |
423 | } |
424 | |
425 | assert(promotion_manager->stacks_empty(),"stacks should be empty at this point" ); |
426 | |
427 | PSScavengeRootsClosure root_closure(promotion_manager); |
428 | |
429 | { |
430 | GCTraceTime(Debug, gc, phases) tm("Weak Processing" , &_gc_timer); |
431 | WeakProcessor::weak_oops_do(&_is_alive_closure, &root_closure); |
432 | } |
433 | |
434 | // Verify that usage of root_closure didn't copy any objects. |
435 | assert(promotion_manager->stacks_empty(),"stacks should be empty at this point" ); |
436 | |
437 | // Finally, flush the promotion_manager's labs, and deallocate its stacks. |
438 | promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer); |
439 | if (promotion_failure_occurred) { |
440 | clean_up_failed_promotion(); |
441 | log_info(gc, promotion)("Promotion failed" ); |
442 | } |
443 | |
444 | _gc_tracer.report_tenuring_threshold(tenuring_threshold()); |
445 | |
446 | // Let the size policy know we're done. Note that we count promotion |
447 | // failure cleanup time as part of the collection (otherwise, we're |
448 | // implicitly saying it's mutator time). |
449 | size_policy->minor_collection_end(gc_cause); |
450 | |
451 | if (!promotion_failure_occurred) { |
452 | // Swap the survivor spaces. |
453 | young_gen->eden_space()->clear(SpaceDecorator::Mangle); |
454 | young_gen->from_space()->clear(SpaceDecorator::Mangle); |
455 | young_gen->swap_spaces(); |
456 | |
457 | size_t survived = young_gen->from_space()->used_in_bytes(); |
458 | size_t promoted = old_gen->used_in_bytes() - pre_gc_values.old_gen_used(); |
459 | size_policy->update_averages(_survivor_overflow, survived, promoted); |
460 | |
461 | // A successful scavenge should restart the GC time limit count which is |
462 | // for full GC's. |
463 | size_policy->reset_gc_overhead_limit_count(); |
464 | if (UseAdaptiveSizePolicy) { |
465 | // Calculate the new survivor size and tenuring threshold |
466 | |
467 | log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d " , heap->total_collections()); |
468 | log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, |
469 | old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); |
470 | |
471 | if (UsePerfData) { |
472 | PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters(); |
473 | counters->update_old_eden_size( |
474 | size_policy->calculated_eden_size_in_bytes()); |
475 | counters->update_old_promo_size( |
476 | size_policy->calculated_promo_size_in_bytes()); |
477 | counters->update_old_capacity(old_gen->capacity_in_bytes()); |
478 | counters->update_young_capacity(young_gen->capacity_in_bytes()); |
479 | counters->update_survived(survived); |
480 | counters->update_promoted(promoted); |
481 | counters->update_survivor_overflowed(_survivor_overflow); |
482 | } |
483 | |
484 | size_t max_young_size = young_gen->max_size(); |
485 | |
486 | // Deciding a free ratio in the young generation is tricky, so if |
487 | // MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating |
488 | // that the old generation size may have been limited because of them) we |
489 | // should then limit our young generation size using NewRatio to have it |
490 | // follow the old generation size. |
491 | if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) { |
492 | max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size()); |
493 | } |
494 | |
495 | size_t survivor_limit = |
496 | size_policy->max_survivor_size(max_young_size); |
497 | _tenuring_threshold = |
498 | size_policy->compute_survivor_space_size_and_threshold( |
499 | _survivor_overflow, |
500 | _tenuring_threshold, |
501 | survivor_limit); |
502 | |
503 | log_debug(gc, age)("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max threshold " UINTX_FORMAT ")" , |
504 | size_policy->calculated_survivor_size_in_bytes(), |
505 | _tenuring_threshold, MaxTenuringThreshold); |
506 | |
507 | if (UsePerfData) { |
508 | PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters(); |
509 | counters->update_tenuring_threshold(_tenuring_threshold); |
510 | counters->update_survivor_size_counters(); |
511 | } |
512 | |
513 | // Do call at minor collections? |
514 | // Don't check if the size_policy is ready at this |
515 | // level. Let the size_policy check that internally. |
516 | if (UseAdaptiveGenerationSizePolicyAtMinorCollection && |
517 | (AdaptiveSizePolicy::should_update_eden_stats(gc_cause))) { |
518 | // Calculate optimal free space amounts |
519 | assert(young_gen->max_size() > |
520 | young_gen->from_space()->capacity_in_bytes() + |
521 | young_gen->to_space()->capacity_in_bytes(), |
522 | "Sizes of space in young gen are out-of-bounds" ); |
523 | |
524 | size_t young_live = young_gen->used_in_bytes(); |
525 | size_t eden_live = young_gen->eden_space()->used_in_bytes(); |
526 | size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); |
527 | size_t max_old_gen_size = old_gen->max_gen_size(); |
528 | size_t max_eden_size = max_young_size - |
529 | young_gen->from_space()->capacity_in_bytes() - |
530 | young_gen->to_space()->capacity_in_bytes(); |
531 | |
532 | // Used for diagnostics |
533 | size_policy->clear_generation_free_space_flags(); |
534 | |
535 | size_policy->compute_eden_space_size(young_live, |
536 | eden_live, |
537 | cur_eden, |
538 | max_eden_size, |
539 | false /* not full gc*/); |
540 | |
541 | size_policy->check_gc_overhead_limit(eden_live, |
542 | max_old_gen_size, |
543 | max_eden_size, |
544 | false /* not full gc*/, |
545 | gc_cause, |
546 | heap->soft_ref_policy()); |
547 | |
548 | size_policy->decay_supplemental_growth(false /* not full gc*/); |
549 | } |
550 | // Resize the young generation at every collection |
551 | // even if new sizes have not been calculated. This is |
552 | // to allow resizes that may have been inhibited by the |
553 | // relative location of the "to" and "from" spaces. |
554 | |
555 | // Resizing the old gen at young collections can cause increases |
556 | // that don't feed back to the generation sizing policy until |
557 | // a full collection. Don't resize the old gen here. |
558 | |
559 | heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), |
560 | size_policy->calculated_survivor_size_in_bytes()); |
561 | |
562 | log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d " , heap->total_collections()); |
563 | } |
564 | |
565 | // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can |
566 | // cause the change of the heap layout. Make sure eden is reshaped if that's the case. |
567 | // Also update() will case adaptive NUMA chunk resizing. |
568 | assert(young_gen->eden_space()->is_empty(), "eden space should be empty now" ); |
569 | young_gen->eden_space()->update(); |
570 | |
571 | heap->gc_policy_counters()->update_counters(); |
572 | |
573 | heap->resize_all_tlabs(); |
574 | |
575 | assert(young_gen->to_space()->is_empty(), "to space should be empty now" ); |
576 | } |
577 | |
578 | #if COMPILER2_OR_JVMCI |
579 | DerivedPointerTable::update_pointers(); |
580 | #endif |
581 | |
582 | NOT_PRODUCT(reference_processor()->verify_no_references_recorded()); |
583 | |
584 | // Re-verify object start arrays |
585 | if (VerifyObjectStartArray && |
586 | VerifyAfterGC) { |
587 | old_gen->verify_object_start_array(); |
588 | } |
589 | |
590 | // Verify all old -> young cards are now precise |
591 | if (VerifyRememberedSets) { |
592 | // Precise verification will give false positives. Until this is fixed, |
593 | // use imprecise verification. |
594 | // heap->card_table()->verify_all_young_refs_precise(); |
595 | heap->card_table()->verify_all_young_refs_imprecise(); |
596 | } |
597 | |
598 | if (log_is_enabled(Debug, gc, heap, exit)) { |
599 | accumulated_time()->stop(); |
600 | } |
601 | |
602 | young_gen->print_used_change(pre_gc_values.young_gen_used()); |
603 | old_gen->print_used_change(pre_gc_values.old_gen_used()); |
604 | MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used()); |
605 | |
606 | // Track memory usage and detect low memory |
607 | MemoryService::track_memory_usage(); |
608 | heap->update_counters(); |
609 | |
610 | gc_task_manager()->release_idle_workers(); |
611 | } |
612 | |
613 | if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { |
614 | HandleMark hm; // Discard invalid handles created during verification |
615 | Universe::verify("After GC" ); |
616 | } |
617 | |
618 | heap->print_heap_after_gc(); |
619 | heap->trace_heap_after_gc(&_gc_tracer); |
620 | |
621 | scavenge_exit.update(); |
622 | |
623 | log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT, |
624 | scavenge_entry.ticks(), scavenge_midpoint.ticks(), |
625 | scavenge_exit.ticks()); |
626 | gc_task_manager()->print_task_time_stamps(); |
627 | |
628 | #ifdef TRACESPINNING |
629 | ParallelTaskTerminator::print_termination_counts(); |
630 | #endif |
631 | |
632 | AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); |
633 | |
634 | _gc_timer.register_gc_end(); |
635 | |
636 | _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); |
637 | |
638 | return !promotion_failure_occurred; |
639 | } |
640 | |
641 | // This method iterates over all objects in the young generation, |
642 | // removing all forwarding references. It then restores any preserved marks. |
643 | void PSScavenge::clean_up_failed_promotion() { |
644 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
645 | PSYoungGen* young_gen = heap->young_gen(); |
646 | |
647 | RemoveForwardedPointerClosure remove_fwd_ptr_closure; |
648 | young_gen->object_iterate(&remove_fwd_ptr_closure); |
649 | |
650 | PSPromotionManager::restore_preserved_marks(); |
651 | |
652 | // Reset the PromotionFailureALot counters. |
653 | NOT_PRODUCT(heap->reset_promotion_should_fail();) |
654 | } |
655 | |
656 | bool PSScavenge::should_attempt_scavenge() { |
657 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
658 | PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters(); |
659 | |
660 | if (UsePerfData) { |
661 | counters->update_scavenge_skipped(not_skipped); |
662 | } |
663 | |
664 | PSYoungGen* young_gen = heap->young_gen(); |
665 | PSOldGen* old_gen = heap->old_gen(); |
666 | |
667 | // Do not attempt to promote unless to_space is empty |
668 | if (!young_gen->to_space()->is_empty()) { |
669 | _consecutive_skipped_scavenges++; |
670 | if (UsePerfData) { |
671 | counters->update_scavenge_skipped(to_space_not_empty); |
672 | } |
673 | return false; |
674 | } |
675 | |
676 | // Test to see if the scavenge will likely fail. |
677 | PSAdaptiveSizePolicy* policy = heap->size_policy(); |
678 | |
679 | // A similar test is done in the policy's should_full_GC(). If this is |
680 | // changed, decide if that test should also be changed. |
681 | size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes(); |
682 | size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes()); |
683 | bool result = promotion_estimate < old_gen->free_in_bytes(); |
684 | |
685 | log_trace(ergo)("%s scavenge: average_promoted " SIZE_FORMAT " padded_average_promoted " SIZE_FORMAT " free in old gen " SIZE_FORMAT, |
686 | result ? "Do" : "Skip" , (size_t) policy->average_promoted_in_bytes(), |
687 | (size_t) policy->padded_average_promoted_in_bytes(), |
688 | old_gen->free_in_bytes()); |
689 | if (young_gen->used_in_bytes() < (size_t) policy->padded_average_promoted_in_bytes()) { |
690 | log_trace(ergo)(" padded_promoted_average is greater than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes()); |
691 | } |
692 | |
693 | if (result) { |
694 | _consecutive_skipped_scavenges = 0; |
695 | } else { |
696 | _consecutive_skipped_scavenges++; |
697 | if (UsePerfData) { |
698 | counters->update_scavenge_skipped(promoted_too_large); |
699 | } |
700 | } |
701 | return result; |
702 | } |
703 | |
704 | // Used to add tasks |
705 | GCTaskManager* const PSScavenge::gc_task_manager() { |
706 | assert(ParallelScavengeHeap::gc_task_manager() != NULL, |
707 | "shouldn't return NULL" ); |
708 | return ParallelScavengeHeap::gc_task_manager(); |
709 | } |
710 | |
711 | // Adaptive size policy support. When the young generation/old generation |
712 | // boundary moves, _young_generation_boundary must be reset |
713 | void PSScavenge::set_young_generation_boundary(HeapWord* v) { |
714 | _young_generation_boundary = v; |
715 | if (UseCompressedOops) { |
716 | _young_generation_boundary_compressed = (uintptr_t)CompressedOops::encode((oop)v); |
717 | } |
718 | } |
719 | |
720 | void PSScavenge::initialize() { |
721 | // Arguments must have been parsed |
722 | |
723 | if (AlwaysTenure || NeverTenure) { |
724 | assert(MaxTenuringThreshold == 0 || MaxTenuringThreshold == markOopDesc::max_age + 1, |
725 | "MaxTenuringThreshold should be 0 or markOopDesc::max_age + 1, but is %d" , (int) MaxTenuringThreshold); |
726 | _tenuring_threshold = MaxTenuringThreshold; |
727 | } else { |
728 | // We want to smooth out our startup times for the AdaptiveSizePolicy |
729 | _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold : |
730 | MaxTenuringThreshold; |
731 | } |
732 | |
733 | ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); |
734 | PSYoungGen* young_gen = heap->young_gen(); |
735 | PSOldGen* old_gen = heap->old_gen(); |
736 | |
737 | // Set boundary between young_gen and old_gen |
738 | assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(), |
739 | "old above young" ); |
740 | set_young_generation_boundary(young_gen->eden_space()->bottom()); |
741 | |
742 | // Initialize ref handling object for scavenging. |
743 | _span_based_discoverer.set_span(young_gen->reserved()); |
744 | _ref_processor = |
745 | new ReferenceProcessor(&_span_based_discoverer, |
746 | ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing |
747 | ParallelGCThreads, // mt processing degree |
748 | true, // mt discovery |
749 | ParallelGCThreads, // mt discovery degree |
750 | true, // atomic_discovery |
751 | NULL, // header provides liveness info |
752 | false); |
753 | |
754 | // Cache the cardtable |
755 | _card_table = heap->card_table(); |
756 | |
757 | _counters = new CollectorCounters("Parallel young collection pauses" , 0); |
758 | } |
759 | |