| 1 | /* |
| 2 | * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/classLoaderDataGraph.hpp" |
| 27 | #include "gc/shared/cardTableRS.hpp" |
| 28 | #include "gc/shared/genCollectedHeap.hpp" |
| 29 | #include "gc/shared/genOopClosures.hpp" |
| 30 | #include "gc/shared/generation.hpp" |
| 31 | #include "gc/shared/space.inline.hpp" |
| 32 | #include "memory/allocation.inline.hpp" |
| 33 | #include "memory/iterator.inline.hpp" |
| 34 | #include "oops/access.inline.hpp" |
| 35 | #include "oops/oop.inline.hpp" |
| 36 | #include "runtime/atomic.hpp" |
| 37 | #include "runtime/java.hpp" |
| 38 | #include "runtime/os.hpp" |
| 39 | #include "utilities/macros.hpp" |
| 40 | |
| 41 | class HasAccumulatedModifiedOopsClosure : public CLDClosure { |
| 42 | bool _found; |
| 43 | public: |
| 44 | HasAccumulatedModifiedOopsClosure() : _found(false) {} |
| 45 | void do_cld(ClassLoaderData* cld) { |
| 46 | if (_found) { |
| 47 | return; |
| 48 | } |
| 49 | |
| 50 | if (cld->has_accumulated_modified_oops()) { |
| 51 | _found = true; |
| 52 | } |
| 53 | } |
| 54 | bool found() { |
| 55 | return _found; |
| 56 | } |
| 57 | }; |
| 58 | |
| 59 | bool CLDRemSet::mod_union_is_clear() { |
| 60 | HasAccumulatedModifiedOopsClosure closure; |
| 61 | ClassLoaderDataGraph::cld_do(&closure); |
| 62 | |
| 63 | return !closure.found(); |
| 64 | } |
| 65 | |
| 66 | |
| 67 | class ClearCLDModUnionClosure : public CLDClosure { |
| 68 | public: |
| 69 | void do_cld(ClassLoaderData* cld) { |
| 70 | if (cld->has_accumulated_modified_oops()) { |
| 71 | cld->clear_accumulated_modified_oops(); |
| 72 | } |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | void CLDRemSet::clear_mod_union() { |
| 77 | ClearCLDModUnionClosure closure; |
| 78 | ClassLoaderDataGraph::cld_do(&closure); |
| 79 | } |
| 80 | |
| 81 | CardTable::CardValue CardTableRS::find_unused_youngergenP_card_value() { |
| 82 | for (CardValue v = youngergenP1_card; |
| 83 | v < cur_youngergen_and_prev_nonclean_card; |
| 84 | v++) { |
| 85 | bool seen = false; |
| 86 | for (int g = 0; g < _regions_to_iterate; g++) { |
| 87 | if (_last_cur_val_in_gen[g] == v) { |
| 88 | seen = true; |
| 89 | break; |
| 90 | } |
| 91 | } |
| 92 | if (!seen) { |
| 93 | return v; |
| 94 | } |
| 95 | } |
| 96 | ShouldNotReachHere(); |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) { |
| 101 | // Parallel or sequential, we must always set the prev to equal the |
| 102 | // last one written. |
| 103 | if (parallel) { |
| 104 | // Find a parallel value to be used next. |
| 105 | jbyte next_val = find_unused_youngergenP_card_value(); |
| 106 | set_cur_youngergen_card_val(next_val); |
| 107 | |
| 108 | } else { |
| 109 | // In an sequential traversal we will always write youngergen, so that |
| 110 | // the inline barrier is correct. |
| 111 | set_cur_youngergen_card_val(youngergen_card); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | void CardTableRS::younger_refs_iterate(Generation* g, |
| 116 | OopsInGenClosure* blk, |
| 117 | uint n_threads) { |
| 118 | // The indexing in this array is slightly odd. We want to access |
| 119 | // the old generation record here, which is at index 2. |
| 120 | _last_cur_val_in_gen[2] = cur_youngergen_card_val(); |
| 121 | g->younger_refs_iterate(blk, n_threads); |
| 122 | } |
| 123 | |
| 124 | inline bool ClearNoncleanCardWrapper::clear_card(CardValue* entry) { |
| 125 | if (_is_par) { |
| 126 | return clear_card_parallel(entry); |
| 127 | } else { |
| 128 | return clear_card_serial(entry); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | inline bool ClearNoncleanCardWrapper::clear_card_parallel(CardValue* entry) { |
| 133 | while (true) { |
| 134 | // In the parallel case, we may have to do this several times. |
| 135 | CardValue entry_val = *entry; |
| 136 | assert(entry_val != CardTableRS::clean_card_val(), |
| 137 | "We shouldn't be looking at clean cards, and this should " |
| 138 | "be the only place they get cleaned." ); |
| 139 | if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val) |
| 140 | || _ct->is_prev_youngergen_card_val(entry_val)) { |
| 141 | CardValue res = |
| 142 | Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val); |
| 143 | if (res == entry_val) { |
| 144 | break; |
| 145 | } else { |
| 146 | assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card, |
| 147 | "The CAS above should only fail if another thread did " |
| 148 | "a GC write barrier." ); |
| 149 | } |
| 150 | } else if (entry_val == |
| 151 | CardTableRS::cur_youngergen_and_prev_nonclean_card) { |
| 152 | // Parallelism shouldn't matter in this case. Only the thread |
| 153 | // assigned to scan the card should change this value. |
| 154 | *entry = _ct->cur_youngergen_card_val(); |
| 155 | break; |
| 156 | } else { |
| 157 | assert(entry_val == _ct->cur_youngergen_card_val(), |
| 158 | "Should be the only possibility." ); |
| 159 | // In this case, the card was clean before, and become |
| 160 | // cur_youngergen only because of processing of a promoted object. |
| 161 | // We don't have to look at the card. |
| 162 | return false; |
| 163 | } |
| 164 | } |
| 165 | return true; |
| 166 | } |
| 167 | |
| 168 | |
| 169 | inline bool ClearNoncleanCardWrapper::clear_card_serial(CardValue* entry) { |
| 170 | CardValue entry_val = *entry; |
| 171 | assert(entry_val != CardTableRS::clean_card_val(), |
| 172 | "We shouldn't be looking at clean cards, and this should " |
| 173 | "be the only place they get cleaned." ); |
| 174 | assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card, |
| 175 | "This should be possible in the sequential case." ); |
| 176 | *entry = CardTableRS::clean_card_val(); |
| 177 | return true; |
| 178 | } |
| 179 | |
| 180 | ClearNoncleanCardWrapper::ClearNoncleanCardWrapper( |
| 181 | DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct, bool is_par) : |
| 182 | _dirty_card_closure(dirty_card_closure), _ct(ct), _is_par(is_par) { |
| 183 | } |
| 184 | |
| 185 | bool ClearNoncleanCardWrapper::is_word_aligned(CardTable::CardValue* entry) { |
| 186 | return (((intptr_t)entry) & (BytesPerWord-1)) == 0; |
| 187 | } |
| 188 | |
| 189 | // The regions are visited in *decreasing* address order. |
| 190 | // This order aids with imprecise card marking, where a dirty |
| 191 | // card may cause scanning, and summarization marking, of objects |
| 192 | // that extend onto subsequent cards. |
| 193 | void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) { |
| 194 | assert(mr.word_size() > 0, "Error" ); |
| 195 | assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned" ); |
| 196 | // mr.end() may not necessarily be card aligned. |
| 197 | CardValue* cur_entry = _ct->byte_for(mr.last()); |
| 198 | const CardValue* limit = _ct->byte_for(mr.start()); |
| 199 | HeapWord* end_of_non_clean = mr.end(); |
| 200 | HeapWord* start_of_non_clean = end_of_non_clean; |
| 201 | while (cur_entry >= limit) { |
| 202 | HeapWord* cur_hw = _ct->addr_for(cur_entry); |
| 203 | if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) { |
| 204 | // Continue the dirty range by opening the |
| 205 | // dirty window one card to the left. |
| 206 | start_of_non_clean = cur_hw; |
| 207 | } else { |
| 208 | // We hit a "clean" card; process any non-empty |
| 209 | // "dirty" range accumulated so far. |
| 210 | if (start_of_non_clean < end_of_non_clean) { |
| 211 | const MemRegion mrd(start_of_non_clean, end_of_non_clean); |
| 212 | _dirty_card_closure->do_MemRegion(mrd); |
| 213 | } |
| 214 | |
| 215 | // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary |
| 216 | if (is_word_aligned(cur_entry)) { |
| 217 | CardValue* cur_row = cur_entry - BytesPerWord; |
| 218 | while (cur_row >= limit && *((intptr_t*)cur_row) == CardTableRS::clean_card_row_val()) { |
| 219 | cur_row -= BytesPerWord; |
| 220 | } |
| 221 | cur_entry = cur_row + BytesPerWord; |
| 222 | cur_hw = _ct->addr_for(cur_entry); |
| 223 | } |
| 224 | |
| 225 | // Reset the dirty window, while continuing to look |
| 226 | // for the next dirty card that will start a |
| 227 | // new dirty window. |
| 228 | end_of_non_clean = cur_hw; |
| 229 | start_of_non_clean = cur_hw; |
| 230 | } |
| 231 | // Note that "cur_entry" leads "start_of_non_clean" in |
| 232 | // its leftward excursion after this point |
| 233 | // in the loop and, when we hit the left end of "mr", |
| 234 | // will point off of the left end of the card-table |
| 235 | // for "mr". |
| 236 | cur_entry--; |
| 237 | } |
| 238 | // If the first card of "mr" was dirty, we will have |
| 239 | // been left with a dirty window, co-initial with "mr", |
| 240 | // which we now process. |
| 241 | if (start_of_non_clean < end_of_non_clean) { |
| 242 | const MemRegion mrd(start_of_non_clean, end_of_non_clean); |
| 243 | _dirty_card_closure->do_MemRegion(mrd); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // clean (by dirty->clean before) ==> cur_younger_gen |
| 248 | // dirty ==> cur_youngergen_and_prev_nonclean_card |
| 249 | // precleaned ==> cur_youngergen_and_prev_nonclean_card |
| 250 | // prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card |
| 251 | // cur-younger-gen ==> cur_younger_gen |
| 252 | // cur_youngergen_and_prev_nonclean_card ==> no change. |
| 253 | void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) { |
| 254 | volatile CardValue* entry = byte_for(field); |
| 255 | do { |
| 256 | CardValue entry_val = *entry; |
| 257 | // We put this first because it's probably the most common case. |
| 258 | if (entry_val == clean_card_val()) { |
| 259 | // No threat of contention with cleaning threads. |
| 260 | *entry = cur_youngergen_card_val(); |
| 261 | return; |
| 262 | } else if (card_is_dirty_wrt_gen_iter(entry_val) |
| 263 | || is_prev_youngergen_card_val(entry_val)) { |
| 264 | // Mark it as both cur and prev youngergen; card cleaning thread will |
| 265 | // eventually remove the previous stuff. |
| 266 | CardValue new_val = cur_youngergen_and_prev_nonclean_card; |
| 267 | CardValue res = Atomic::cmpxchg(new_val, entry, entry_val); |
| 268 | // Did the CAS succeed? |
| 269 | if (res == entry_val) return; |
| 270 | // Otherwise, retry, to see the new value. |
| 271 | continue; |
| 272 | } else { |
| 273 | assert(entry_val == cur_youngergen_and_prev_nonclean_card |
| 274 | || entry_val == cur_youngergen_card_val(), |
| 275 | "should be only possibilities." ); |
| 276 | return; |
| 277 | } |
| 278 | } while (true); |
| 279 | } |
| 280 | |
| 281 | void CardTableRS::younger_refs_in_space_iterate(Space* sp, |
| 282 | OopsInGenClosure* cl, |
| 283 | uint n_threads) { |
| 284 | verify_used_region_at_save_marks(sp); |
| 285 | |
| 286 | const MemRegion urasm = sp->used_region_at_save_marks(); |
| 287 | non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this, n_threads); |
| 288 | } |
| 289 | |
| 290 | #ifdef ASSERT |
| 291 | void CardTableRS::verify_used_region_at_save_marks(Space* sp) const { |
| 292 | MemRegion ur = sp->used_region(); |
| 293 | MemRegion urasm = sp->used_region_at_save_marks(); |
| 294 | |
| 295 | assert(ur.contains(urasm), |
| 296 | "Did you forget to call save_marks()? " |
| 297 | "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in " |
| 298 | "[" PTR_FORMAT ", " PTR_FORMAT ")" , |
| 299 | p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())); |
| 300 | } |
| 301 | #endif |
| 302 | |
| 303 | void CardTableRS::clear_into_younger(Generation* old_gen) { |
| 304 | assert(GenCollectedHeap::heap()->is_old_gen(old_gen), |
| 305 | "Should only be called for the old generation" ); |
| 306 | // The card tables for the youngest gen need never be cleared. |
| 307 | // There's a bit of subtlety in the clear() and invalidate() |
| 308 | // methods that we exploit here and in invalidate_or_clear() |
| 309 | // below to avoid missing cards at the fringes. If clear() or |
| 310 | // invalidate() are changed in the future, this code should |
| 311 | // be revisited. 20040107.ysr |
| 312 | clear(old_gen->prev_used_region()); |
| 313 | } |
| 314 | |
| 315 | void CardTableRS::invalidate_or_clear(Generation* old_gen) { |
| 316 | assert(GenCollectedHeap::heap()->is_old_gen(old_gen), |
| 317 | "Should only be called for the old generation" ); |
| 318 | // Invalidate the cards for the currently occupied part of |
| 319 | // the old generation and clear the cards for the |
| 320 | // unoccupied part of the generation (if any, making use |
| 321 | // of that generation's prev_used_region to determine that |
| 322 | // region). No need to do anything for the youngest |
| 323 | // generation. Also see note#20040107.ysr above. |
| 324 | MemRegion used_mr = old_gen->used_region(); |
| 325 | MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr); |
| 326 | if (!to_be_cleared_mr.is_empty()) { |
| 327 | clear(to_be_cleared_mr); |
| 328 | } |
| 329 | invalidate(used_mr); |
| 330 | } |
| 331 | |
| 332 | |
| 333 | class VerifyCleanCardClosure: public BasicOopIterateClosure { |
| 334 | private: |
| 335 | HeapWord* _boundary; |
| 336 | HeapWord* _begin; |
| 337 | HeapWord* _end; |
| 338 | protected: |
| 339 | template <class T> void do_oop_work(T* p) { |
| 340 | HeapWord* jp = (HeapWord*)p; |
| 341 | assert(jp >= _begin && jp < _end, |
| 342 | "Error: jp " PTR_FORMAT " should be within " |
| 343 | "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")" , |
| 344 | p2i(jp), p2i(_begin), p2i(_end)); |
| 345 | oop obj = RawAccess<>::oop_load(p); |
| 346 | guarantee(obj == NULL || (HeapWord*)obj >= _boundary, |
| 347 | "pointer " PTR_FORMAT " at " PTR_FORMAT " on " |
| 348 | "clean card crosses boundary" PTR_FORMAT, |
| 349 | p2i(obj), p2i(jp), p2i(_boundary)); |
| 350 | } |
| 351 | |
| 352 | public: |
| 353 | VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) : |
| 354 | _boundary(b), _begin(begin), _end(end) { |
| 355 | assert(b <= begin, |
| 356 | "Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT, |
| 357 | p2i(b), p2i(begin)); |
| 358 | assert(begin <= end, |
| 359 | "Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT, |
| 360 | p2i(begin), p2i(end)); |
| 361 | } |
| 362 | |
| 363 | virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); } |
| 364 | virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); } |
| 365 | }; |
| 366 | |
| 367 | class VerifyCTSpaceClosure: public SpaceClosure { |
| 368 | private: |
| 369 | CardTableRS* _ct; |
| 370 | HeapWord* _boundary; |
| 371 | public: |
| 372 | VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) : |
| 373 | _ct(ct), _boundary(boundary) {} |
| 374 | virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); } |
| 375 | }; |
| 376 | |
| 377 | class VerifyCTGenClosure: public GenCollectedHeap::GenClosure { |
| 378 | CardTableRS* _ct; |
| 379 | public: |
| 380 | VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {} |
| 381 | void do_generation(Generation* gen) { |
| 382 | // Skip the youngest generation. |
| 383 | if (GenCollectedHeap::heap()->is_young_gen(gen)) { |
| 384 | return; |
| 385 | } |
| 386 | // Normally, we're interested in pointers to younger generations. |
| 387 | VerifyCTSpaceClosure blk(_ct, gen->reserved().start()); |
| 388 | gen->space_iterate(&blk, true); |
| 389 | } |
| 390 | }; |
| 391 | |
| 392 | void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) { |
| 393 | // We don't need to do young-gen spaces. |
| 394 | if (s->end() <= gen_boundary) return; |
| 395 | MemRegion used = s->used_region(); |
| 396 | |
| 397 | CardValue* cur_entry = byte_for(used.start()); |
| 398 | CardValue* limit = byte_after(used.last()); |
| 399 | while (cur_entry < limit) { |
| 400 | if (*cur_entry == clean_card_val()) { |
| 401 | CardValue* first_dirty = cur_entry+1; |
| 402 | while (first_dirty < limit && |
| 403 | *first_dirty == clean_card_val()) { |
| 404 | first_dirty++; |
| 405 | } |
| 406 | // If the first object is a regular object, and it has a |
| 407 | // young-to-old field, that would mark the previous card. |
| 408 | HeapWord* boundary = addr_for(cur_entry); |
| 409 | HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty); |
| 410 | HeapWord* boundary_block = s->block_start(boundary); |
| 411 | HeapWord* begin = boundary; // Until proven otherwise. |
| 412 | HeapWord* start_block = boundary_block; // Until proven otherwise. |
| 413 | if (boundary_block < boundary) { |
| 414 | if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) { |
| 415 | oop boundary_obj = oop(boundary_block); |
| 416 | if (!boundary_obj->is_objArray() && |
| 417 | !boundary_obj->is_typeArray()) { |
| 418 | guarantee(cur_entry > byte_for(used.start()), |
| 419 | "else boundary would be boundary_block" ); |
| 420 | if (*byte_for(boundary_block) != clean_card_val()) { |
| 421 | begin = boundary_block + s->block_size(boundary_block); |
| 422 | start_block = begin; |
| 423 | } |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | // Now traverse objects until end. |
| 428 | if (begin < end) { |
| 429 | MemRegion mr(begin, end); |
| 430 | VerifyCleanCardClosure verify_blk(gen_boundary, begin, end); |
| 431 | for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) { |
| 432 | if (s->block_is_obj(cur) && s->obj_is_alive(cur)) { |
| 433 | oop(cur)->oop_iterate(&verify_blk, mr); |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | cur_entry = first_dirty; |
| 438 | } else { |
| 439 | // We'd normally expect that cur_youngergen_and_prev_nonclean_card |
| 440 | // is a transient value, that cannot be in the card table |
| 441 | // except during GC, and thus assert that: |
| 442 | // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card, |
| 443 | // "Illegal CT value"); |
| 444 | // That however, need not hold, as will become clear in the |
| 445 | // following... |
| 446 | |
| 447 | // We'd normally expect that if we are in the parallel case, |
| 448 | // we can't have left a prev value (which would be different |
| 449 | // from the current value) in the card table, and so we'd like to |
| 450 | // assert that: |
| 451 | // guarantee(cur_youngergen_card_val() == youngergen_card |
| 452 | // || !is_prev_youngergen_card_val(*cur_entry), |
| 453 | // "Illegal CT value"); |
| 454 | // That, however, may not hold occasionally, because of |
| 455 | // CMS or MSC in the old gen. To wit, consider the |
| 456 | // following two simple illustrative scenarios: |
| 457 | // (a) CMS: Consider the case where a large object L |
| 458 | // spanning several cards is allocated in the old |
| 459 | // gen, and has a young gen reference stored in it, dirtying |
| 460 | // some interior cards. A young collection scans the card, |
| 461 | // finds a young ref and installs a youngergenP_n value. |
| 462 | // L then goes dead. Now a CMS collection starts, |
| 463 | // finds L dead and sweeps it up. Assume that L is |
| 464 | // abutting _unallocated_blk, so _unallocated_blk is |
| 465 | // adjusted down to (below) L. Assume further that |
| 466 | // no young collection intervenes during this CMS cycle. |
| 467 | // The next young gen cycle will not get to look at this |
| 468 | // youngergenP_n card since it lies in the unoccupied |
| 469 | // part of the space. |
| 470 | // Some young collections later the blocks on this |
| 471 | // card can be re-allocated either due to direct allocation |
| 472 | // or due to absorbing promotions. At this time, the |
| 473 | // before-gc verification will fail the above assert. |
| 474 | // (b) MSC: In this case, an object L with a young reference |
| 475 | // is on a card that (therefore) holds a youngergen_n value. |
| 476 | // Suppose also that L lies towards the end of the used |
| 477 | // the used space before GC. An MSC collection |
| 478 | // occurs that compacts to such an extent that this |
| 479 | // card is no longer in the occupied part of the space. |
| 480 | // Since current code in MSC does not always clear cards |
| 481 | // in the unused part of old gen, this stale youngergen_n |
| 482 | // value is left behind and can later be covered by |
| 483 | // an object when promotion or direct allocation |
| 484 | // re-allocates that part of the heap. |
| 485 | // |
| 486 | // Fortunately, the presence of such stale card values is |
| 487 | // "only" a minor annoyance in that subsequent young collections |
| 488 | // might needlessly scan such cards, but would still never corrupt |
| 489 | // the heap as a result. However, it's likely not to be a significant |
| 490 | // performance inhibitor in practice. For instance, |
| 491 | // some recent measurements with unoccupied cards eagerly cleared |
| 492 | // out to maintain this invariant, showed next to no |
| 493 | // change in young collection times; of course one can construct |
| 494 | // degenerate examples where the cost can be significant.) |
| 495 | // Note, in particular, that if the "stale" card is modified |
| 496 | // after re-allocation, it would be dirty, not "stale". Thus, |
| 497 | // we can never have a younger ref in such a card and it is |
| 498 | // safe not to scan that card in any collection. [As we see |
| 499 | // below, we do some unnecessary scanning |
| 500 | // in some cases in the current parallel scanning algorithm.] |
| 501 | // |
| 502 | // The main point below is that the parallel card scanning code |
| 503 | // deals correctly with these stale card values. There are two main |
| 504 | // cases to consider where we have a stale "young gen" value and a |
| 505 | // "derivative" case to consider, where we have a stale |
| 506 | // "cur_younger_gen_and_prev_non_clean" value, as will become |
| 507 | // apparent in the case analysis below. |
| 508 | // o Case 1. If the stale value corresponds to a younger_gen_n |
| 509 | // value other than the cur_younger_gen value then the code |
| 510 | // treats this as being tantamount to a prev_younger_gen |
| 511 | // card. This means that the card may be unnecessarily scanned. |
| 512 | // There are two sub-cases to consider: |
| 513 | // o Case 1a. Let us say that the card is in the occupied part |
| 514 | // of the generation at the time the collection begins. In |
| 515 | // that case the card will be either cleared when it is scanned |
| 516 | // for young pointers, or will be set to cur_younger_gen as a |
| 517 | // result of promotion. (We have elided the normal case where |
| 518 | // the scanning thread and the promoting thread interleave |
| 519 | // possibly resulting in a transient |
| 520 | // cur_younger_gen_and_prev_non_clean value before settling |
| 521 | // to cur_younger_gen. [End Case 1a.] |
| 522 | // o Case 1b. Consider now the case when the card is in the unoccupied |
| 523 | // part of the space which becomes occupied because of promotions |
| 524 | // into it during the current young GC. In this case the card |
| 525 | // will never be scanned for young references. The current |
| 526 | // code will set the card value to either |
| 527 | // cur_younger_gen_and_prev_non_clean or leave |
| 528 | // it with its stale value -- because the promotions didn't |
| 529 | // result in any younger refs on that card. Of these two |
| 530 | // cases, the latter will be covered in Case 1a during |
| 531 | // a subsequent scan. To deal with the former case, we need |
| 532 | // to further consider how we deal with a stale value of |
| 533 | // cur_younger_gen_and_prev_non_clean in our case analysis |
| 534 | // below. This we do in Case 3 below. [End Case 1b] |
| 535 | // [End Case 1] |
| 536 | // o Case 2. If the stale value corresponds to cur_younger_gen being |
| 537 | // a value not necessarily written by a current promotion, the |
| 538 | // card will not be scanned by the younger refs scanning code. |
| 539 | // (This is OK since as we argued above such cards cannot contain |
| 540 | // any younger refs.) The result is that this value will be |
| 541 | // treated as a prev_younger_gen value in a subsequent collection, |
| 542 | // which is addressed in Case 1 above. [End Case 2] |
| 543 | // o Case 3. We here consider the "derivative" case from Case 1b. above |
| 544 | // because of which we may find a stale |
| 545 | // cur_younger_gen_and_prev_non_clean card value in the table. |
| 546 | // Once again, as in Case 1, we consider two subcases, depending |
| 547 | // on whether the card lies in the occupied or unoccupied part |
| 548 | // of the space at the start of the young collection. |
| 549 | // o Case 3a. Let us say the card is in the occupied part of |
| 550 | // the old gen at the start of the young collection. In that |
| 551 | // case, the card will be scanned by the younger refs scanning |
| 552 | // code which will set it to cur_younger_gen. In a subsequent |
| 553 | // scan, the card will be considered again and get its final |
| 554 | // correct value. [End Case 3a] |
| 555 | // o Case 3b. Now consider the case where the card is in the |
| 556 | // unoccupied part of the old gen, and is occupied as a result |
| 557 | // of promotions during thus young gc. In that case, |
| 558 | // the card will not be scanned for younger refs. The presence |
| 559 | // of newly promoted objects on the card will then result in |
| 560 | // its keeping the value cur_younger_gen_and_prev_non_clean |
| 561 | // value, which we have dealt with in Case 3 here. [End Case 3b] |
| 562 | // [End Case 3] |
| 563 | // |
| 564 | // (Please refer to the code in the helper class |
| 565 | // ClearNonCleanCardWrapper and in CardTable for details.) |
| 566 | // |
| 567 | // The informal arguments above can be tightened into a formal |
| 568 | // correctness proof and it behooves us to write up such a proof, |
| 569 | // or to use model checking to prove that there are no lingering |
| 570 | // concerns. |
| 571 | // |
| 572 | // Clearly because of Case 3b one cannot bound the time for |
| 573 | // which a card will retain what we have called a "stale" value. |
| 574 | // However, one can obtain a Loose upper bound on the redundant |
| 575 | // work as a result of such stale values. Note first that any |
| 576 | // time a stale card lies in the occupied part of the space at |
| 577 | // the start of the collection, it is scanned by younger refs |
| 578 | // code and we can define a rank function on card values that |
| 579 | // declines when this is so. Note also that when a card does not |
| 580 | // lie in the occupied part of the space at the beginning of a |
| 581 | // young collection, its rank can either decline or stay unchanged. |
| 582 | // In this case, no extra work is done in terms of redundant |
| 583 | // younger refs scanning of that card. |
| 584 | // Then, the case analysis above reveals that, in the worst case, |
| 585 | // any such stale card will be scanned unnecessarily at most twice. |
| 586 | // |
| 587 | // It is nonetheless advisable to try and get rid of some of this |
| 588 | // redundant work in a subsequent (low priority) re-design of |
| 589 | // the card-scanning code, if only to simplify the underlying |
| 590 | // state machine analysis/proof. ysr 1/28/2002. XXX |
| 591 | cur_entry++; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | void CardTableRS::verify() { |
| 597 | // At present, we only know how to verify the card table RS for |
| 598 | // generational heaps. |
| 599 | VerifyCTGenClosure blk(this); |
| 600 | GenCollectedHeap::heap()->generation_iterate(&blk, false); |
| 601 | CardTable::verify(); |
| 602 | } |
| 603 | |
| 604 | CardTableRS::CardTableRS(MemRegion whole_heap, bool scanned_concurrently) : |
| 605 | CardTable(whole_heap, scanned_concurrently), |
| 606 | _cur_youngergen_card_val(youngergenP1_card), |
| 607 | // LNC functionality |
| 608 | _lowest_non_clean(NULL), |
| 609 | _lowest_non_clean_chunk_size(NULL), |
| 610 | _lowest_non_clean_base_chunk_index(NULL), |
| 611 | _last_LNC_resizing_collection(NULL) |
| 612 | { |
| 613 | // max_gens is really GenCollectedHeap::heap()->gen_policy()->number_of_generations() |
| 614 | // (which is always 2, young & old), but GenCollectedHeap has not been initialized yet. |
| 615 | uint max_gens = 2; |
| 616 | _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(CardValue, max_gens + 1, |
| 617 | mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL); |
| 618 | if (_last_cur_val_in_gen == NULL) { |
| 619 | vm_exit_during_initialization("Could not create last_cur_val_in_gen array." ); |
| 620 | } |
| 621 | for (uint i = 0; i < max_gens + 1; i++) { |
| 622 | _last_cur_val_in_gen[i] = clean_card_val(); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | CardTableRS::~CardTableRS() { |
| 627 | if (_last_cur_val_in_gen) { |
| 628 | FREE_C_HEAP_ARRAY(CardValue, _last_cur_val_in_gen); |
| 629 | _last_cur_val_in_gen = NULL; |
| 630 | } |
| 631 | if (_lowest_non_clean) { |
| 632 | FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean); |
| 633 | _lowest_non_clean = NULL; |
| 634 | } |
| 635 | if (_lowest_non_clean_chunk_size) { |
| 636 | FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size); |
| 637 | _lowest_non_clean_chunk_size = NULL; |
| 638 | } |
| 639 | if (_lowest_non_clean_base_chunk_index) { |
| 640 | FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index); |
| 641 | _lowest_non_clean_base_chunk_index = NULL; |
| 642 | } |
| 643 | if (_last_LNC_resizing_collection) { |
| 644 | FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection); |
| 645 | _last_LNC_resizing_collection = NULL; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | void CardTableRS::initialize() { |
| 650 | CardTable::initialize(); |
| 651 | _lowest_non_clean = |
| 652 | NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC); |
| 653 | _lowest_non_clean_chunk_size = |
| 654 | NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC); |
| 655 | _lowest_non_clean_base_chunk_index = |
| 656 | NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC); |
| 657 | _last_LNC_resizing_collection = |
| 658 | NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC); |
| 659 | if (_lowest_non_clean == NULL |
| 660 | || _lowest_non_clean_chunk_size == NULL |
| 661 | || _lowest_non_clean_base_chunk_index == NULL |
| 662 | || _last_LNC_resizing_collection == NULL) |
| 663 | vm_exit_during_initialization("couldn't allocate an LNC array." ); |
| 664 | for (int i = 0; i < _max_covered_regions; i++) { |
| 665 | _lowest_non_clean[i] = NULL; |
| 666 | _lowest_non_clean_chunk_size[i] = 0; |
| 667 | _last_LNC_resizing_collection[i] = -1; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | bool CardTableRS::card_will_be_scanned(CardValue cv) { |
| 672 | return card_is_dirty_wrt_gen_iter(cv) || is_prev_nonclean_card_val(cv); |
| 673 | } |
| 674 | |
| 675 | bool CardTableRS::card_may_have_been_dirty(CardValue cv) { |
| 676 | return |
| 677 | cv != clean_card && |
| 678 | (card_is_dirty_wrt_gen_iter(cv) || |
| 679 | CardTableRS::youngergen_may_have_been_dirty(cv)); |
| 680 | } |
| 681 | |
| 682 | void CardTableRS::non_clean_card_iterate_possibly_parallel( |
| 683 | Space* sp, |
| 684 | MemRegion mr, |
| 685 | OopsInGenClosure* cl, |
| 686 | CardTableRS* ct, |
| 687 | uint n_threads) |
| 688 | { |
| 689 | if (!mr.is_empty()) { |
| 690 | if (n_threads > 0) { |
| 691 | non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads); |
| 692 | } else { |
| 693 | // clear_cl finds contiguous dirty ranges of cards to process and clear. |
| 694 | |
| 695 | // This is the single-threaded version used by DefNew. |
| 696 | const bool parallel = false; |
| 697 | |
| 698 | DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary(), parallel); |
| 699 | ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel); |
| 700 | |
| 701 | clear_cl.do_MemRegion(mr); |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | void CardTableRS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr, |
| 707 | OopsInGenClosure* cl, CardTableRS* ct, |
| 708 | uint n_threads) { |
| 709 | fatal("Parallel gc not supported here." ); |
| 710 | } |
| 711 | |
| 712 | bool CardTableRS::is_in_young(oop obj) const { |
| 713 | return GenCollectedHeap::heap()->is_in_young(obj); |
| 714 | } |
| 715 | |