| 1 | /* |
| 2 | * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "memory/allocation.inline.hpp" |
| 27 | #include "opto/addnode.hpp" |
| 28 | #include "opto/castnode.hpp" |
| 29 | #include "opto/cfgnode.hpp" |
| 30 | #include "opto/connode.hpp" |
| 31 | #include "opto/machnode.hpp" |
| 32 | #include "opto/mulnode.hpp" |
| 33 | #include "opto/phaseX.hpp" |
| 34 | #include "opto/subnode.hpp" |
| 35 | |
| 36 | // Portions of code courtesy of Clifford Click |
| 37 | |
| 38 | // Classic Add functionality. This covers all the usual 'add' behaviors for |
| 39 | // an algebraic ring. Add-integer, add-float, add-double, and binary-or are |
| 40 | // all inherited from this class. The various identity values are supplied |
| 41 | // by virtual functions. |
| 42 | |
| 43 | |
| 44 | //============================================================================= |
| 45 | //------------------------------hash------------------------------------------- |
| 46 | // Hash function over AddNodes. Needs to be commutative; i.e., I swap |
| 47 | // (commute) inputs to AddNodes willy-nilly so the hash function must return |
| 48 | // the same value in the presence of edge swapping. |
| 49 | uint AddNode::hash() const { |
| 50 | return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
| 51 | } |
| 52 | |
| 53 | //------------------------------Identity--------------------------------------- |
| 54 | // If either input is a constant 0, return the other input. |
| 55 | Node* AddNode::Identity(PhaseGVN* phase) { |
| 56 | const Type *zero = add_id(); // The additive identity |
| 57 | if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); |
| 58 | if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); |
| 59 | return this; |
| 60 | } |
| 61 | |
| 62 | //------------------------------commute---------------------------------------- |
| 63 | // Commute operands to move loads and constants to the right. |
| 64 | static bool commute(Node *add, bool con_left, bool con_right) { |
| 65 | Node *in1 = add->in(1); |
| 66 | Node *in2 = add->in(2); |
| 67 | |
| 68 | // Convert "1+x" into "x+1". |
| 69 | // Right is a constant; leave it |
| 70 | if( con_right ) return false; |
| 71 | // Left is a constant; move it right. |
| 72 | if( con_left ) { |
| 73 | add->swap_edges(1, 2); |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | // Convert "Load+x" into "x+Load". |
| 78 | // Now check for loads |
| 79 | if (in2->is_Load()) { |
| 80 | if (!in1->is_Load()) { |
| 81 | // already x+Load to return |
| 82 | return false; |
| 83 | } |
| 84 | // both are loads, so fall through to sort inputs by idx |
| 85 | } else if( in1->is_Load() ) { |
| 86 | // Left is a Load and Right is not; move it right. |
| 87 | add->swap_edges(1, 2); |
| 88 | return true; |
| 89 | } |
| 90 | |
| 91 | PhiNode *phi; |
| 92 | // Check for tight loop increments: Loop-phi of Add of loop-phi |
| 93 | if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add) |
| 94 | return false; |
| 95 | if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){ |
| 96 | add->swap_edges(1, 2); |
| 97 | return true; |
| 98 | } |
| 99 | |
| 100 | // Otherwise, sort inputs (commutativity) to help value numbering. |
| 101 | if( in1->_idx > in2->_idx ) { |
| 102 | add->swap_edges(1, 2); |
| 103 | return true; |
| 104 | } |
| 105 | return false; |
| 106 | } |
| 107 | |
| 108 | //------------------------------Idealize--------------------------------------- |
| 109 | // If we get here, we assume we are associative! |
| 110 | Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 111 | const Type *t1 = phase->type( in(1) ); |
| 112 | const Type *t2 = phase->type( in(2) ); |
| 113 | bool con_left = t1->singleton(); |
| 114 | bool con_right = t2->singleton(); |
| 115 | |
| 116 | // Check for commutative operation desired |
| 117 | if( commute(this,con_left,con_right) ) return this; |
| 118 | |
| 119 | AddNode *progress = NULL; // Progress flag |
| 120 | |
| 121 | // Convert "(x+1)+2" into "x+(1+2)". If the right input is a |
| 122 | // constant, and the left input is an add of a constant, flatten the |
| 123 | // expression tree. |
| 124 | Node *add1 = in(1); |
| 125 | Node *add2 = in(2); |
| 126 | int add1_op = add1->Opcode(); |
| 127 | int this_op = Opcode(); |
| 128 | if( con_right && t2 != Type::TOP && // Right input is a constant? |
| 129 | add1_op == this_op ) { // Left input is an Add? |
| 130 | |
| 131 | // Type of left _in right input |
| 132 | const Type *t12 = phase->type( add1->in(2) ); |
| 133 | if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? |
| 134 | // Check for rare case of closed data cycle which can happen inside |
| 135 | // unreachable loops. In these cases the computation is undefined. |
| 136 | #ifdef ASSERT |
| 137 | Node *add11 = add1->in(1); |
| 138 | int add11_op = add11->Opcode(); |
| 139 | if( (add1 == add1->in(1)) |
| 140 | || (add11_op == this_op && add11->in(1) == add1) ) { |
| 141 | assert(false, "dead loop in AddNode::Ideal" ); |
| 142 | } |
| 143 | #endif |
| 144 | // The Add of the flattened expression |
| 145 | Node *x1 = add1->in(1); |
| 146 | Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 )); |
| 147 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
| 148 | if( igvn ) { |
| 149 | set_req_X(2,x2,igvn); |
| 150 | set_req_X(1,x1,igvn); |
| 151 | } else { |
| 152 | set_req(2,x2); |
| 153 | set_req(1,x1); |
| 154 | } |
| 155 | progress = this; // Made progress |
| 156 | add1 = in(1); |
| 157 | add1_op = add1->Opcode(); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. |
| 162 | if( add1_op == this_op && !con_right ) { |
| 163 | Node *a12 = add1->in(2); |
| 164 | const Type *t12 = phase->type( a12 ); |
| 165 | if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && |
| 166 | !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) { |
| 167 | assert(add1->in(1) != this, "dead loop in AddNode::Ideal" ); |
| 168 | add2 = add1->clone(); |
| 169 | add2->set_req(2, in(2)); |
| 170 | add2 = phase->transform(add2); |
| 171 | set_req(1, add2); |
| 172 | set_req(2, a12); |
| 173 | progress = this; |
| 174 | add2 = a12; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. |
| 179 | int add2_op = add2->Opcode(); |
| 180 | if( add2_op == this_op && !con_left ) { |
| 181 | Node *a22 = add2->in(2); |
| 182 | const Type *t22 = phase->type( a22 ); |
| 183 | if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && |
| 184 | !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) { |
| 185 | assert(add2->in(1) != this, "dead loop in AddNode::Ideal" ); |
| 186 | Node *addx = add2->clone(); |
| 187 | addx->set_req(1, in(1)); |
| 188 | addx->set_req(2, add2->in(1)); |
| 189 | addx = phase->transform(addx); |
| 190 | set_req(1, addx); |
| 191 | set_req(2, a22); |
| 192 | progress = this; |
| 193 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
| 194 | if (add2->outcnt() == 0 && igvn) { |
| 195 | // add disconnected. |
| 196 | igvn->_worklist.push(add2); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | return progress; |
| 202 | } |
| 203 | |
| 204 | //------------------------------Value----------------------------------------- |
| 205 | // An add node sums it's two _in. If one input is an RSD, we must mixin |
| 206 | // the other input's symbols. |
| 207 | const Type* AddNode::Value(PhaseGVN* phase) const { |
| 208 | // Either input is TOP ==> the result is TOP |
| 209 | const Type *t1 = phase->type( in(1) ); |
| 210 | const Type *t2 = phase->type( in(2) ); |
| 211 | if( t1 == Type::TOP ) return Type::TOP; |
| 212 | if( t2 == Type::TOP ) return Type::TOP; |
| 213 | |
| 214 | // Either input is BOTTOM ==> the result is the local BOTTOM |
| 215 | const Type *bot = bottom_type(); |
| 216 | if( (t1 == bot) || (t2 == bot) || |
| 217 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| 218 | return bot; |
| 219 | |
| 220 | // Check for an addition involving the additive identity |
| 221 | const Type *tadd = add_of_identity( t1, t2 ); |
| 222 | if( tadd ) return tadd; |
| 223 | |
| 224 | return add_ring(t1,t2); // Local flavor of type addition |
| 225 | } |
| 226 | |
| 227 | //------------------------------add_identity----------------------------------- |
| 228 | // Check for addition of the identity |
| 229 | const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| 230 | const Type *zero = add_id(); // The additive identity |
| 231 | if( t1->higher_equal( zero ) ) return t2; |
| 232 | if( t2->higher_equal( zero ) ) return t1; |
| 233 | |
| 234 | return NULL; |
| 235 | } |
| 236 | |
| 237 | |
| 238 | //============================================================================= |
| 239 | //------------------------------Idealize--------------------------------------- |
| 240 | Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 241 | Node* in1 = in(1); |
| 242 | Node* in2 = in(2); |
| 243 | int op1 = in1->Opcode(); |
| 244 | int op2 = in2->Opcode(); |
| 245 | // Fold (con1-x)+con2 into (con1+con2)-x |
| 246 | if ( op1 == Op_AddI && op2 == Op_SubI ) { |
| 247 | // Swap edges to try optimizations below |
| 248 | in1 = in2; |
| 249 | in2 = in(1); |
| 250 | op1 = op2; |
| 251 | op2 = in2->Opcode(); |
| 252 | } |
| 253 | if( op1 == Op_SubI ) { |
| 254 | const Type *t_sub1 = phase->type( in1->in(1) ); |
| 255 | const Type *t_2 = phase->type( in2 ); |
| 256 | if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) |
| 257 | return new SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); |
| 258 | // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" |
| 259 | if( op2 == Op_SubI ) { |
| 260 | // Check for dead cycle: d = (a-b)+(c-d) |
| 261 | assert( in1->in(2) != this && in2->in(2) != this, |
| 262 | "dead loop in AddINode::Ideal" ); |
| 263 | Node *sub = new SubINode(NULL, NULL); |
| 264 | sub->init_req(1, phase->transform(new AddINode(in1->in(1), in2->in(1) ) )); |
| 265 | sub->init_req(2, phase->transform(new AddINode(in1->in(2), in2->in(2) ) )); |
| 266 | return sub; |
| 267 | } |
| 268 | // Convert "(a-b)+(b+c)" into "(a+c)" |
| 269 | if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) { |
| 270 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal" ); |
| 271 | return new AddINode(in1->in(1), in2->in(2)); |
| 272 | } |
| 273 | // Convert "(a-b)+(c+b)" into "(a+c)" |
| 274 | if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) { |
| 275 | assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal" ); |
| 276 | return new AddINode(in1->in(1), in2->in(1)); |
| 277 | } |
| 278 | // Convert "(a-b)+(b-c)" into "(a-c)" |
| 279 | if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) { |
| 280 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal" ); |
| 281 | return new SubINode(in1->in(1), in2->in(2)); |
| 282 | } |
| 283 | // Convert "(a-b)+(c-a)" into "(c-b)" |
| 284 | if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) { |
| 285 | assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal" ); |
| 286 | return new SubINode(in2->in(1), in1->in(2)); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // Convert "x+(0-y)" into "(x-y)" |
| 291 | if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO ) |
| 292 | return new SubINode(in1, in2->in(2) ); |
| 293 | |
| 294 | // Convert "(0-y)+x" into "(x-y)" |
| 295 | if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO ) |
| 296 | return new SubINode( in2, in1->in(2) ); |
| 297 | |
| 298 | // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. |
| 299 | // Helps with array allocation math constant folding |
| 300 | // See 4790063: |
| 301 | // Unrestricted transformation is unsafe for some runtime values of 'x' |
| 302 | // ( x == 0, z == 1, y == -1 ) fails |
| 303 | // ( x == -5, z == 1, y == 1 ) fails |
| 304 | // Transform works for small z and small negative y when the addition |
| 305 | // (x + (y << z)) does not cross zero. |
| 306 | // Implement support for negative y and (x >= -(y << z)) |
| 307 | // Have not observed cases where type information exists to support |
| 308 | // positive y and (x <= -(y << z)) |
| 309 | if( op1 == Op_URShiftI && op2 == Op_ConI && |
| 310 | in1->in(2)->Opcode() == Op_ConI ) { |
| 311 | jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter |
| 312 | jint y = phase->type( in2 )->is_int()->get_con(); |
| 313 | |
| 314 | if( z < 5 && -5 < y && y < 0 ) { |
| 315 | const Type *t_in11 = phase->type(in1->in(1)); |
| 316 | if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) { |
| 317 | Node *a = phase->transform( new AddINode( in1->in(1), phase->intcon(y<<z) ) ); |
| 318 | return new URShiftINode( a, in1->in(2) ); |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | return AddNode::Ideal(phase, can_reshape); |
| 324 | } |
| 325 | |
| 326 | |
| 327 | //------------------------------Identity--------------------------------------- |
| 328 | // Fold (x-y)+y OR y+(x-y) into x |
| 329 | Node* AddINode::Identity(PhaseGVN* phase) { |
| 330 | if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) { |
| 331 | return in(1)->in(1); |
| 332 | } |
| 333 | else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) { |
| 334 | return in(2)->in(1); |
| 335 | } |
| 336 | return AddNode::Identity(phase); |
| 337 | } |
| 338 | |
| 339 | |
| 340 | //------------------------------add_ring--------------------------------------- |
| 341 | // Supplied function returns the sum of the inputs. Guaranteed never |
| 342 | // to be passed a TOP or BOTTOM type, these are filtered out by |
| 343 | // pre-check. |
| 344 | const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { |
| 345 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 346 | const TypeInt *r1 = t1->is_int(); |
| 347 | int lo = java_add(r0->_lo, r1->_lo); |
| 348 | int hi = java_add(r0->_hi, r1->_hi); |
| 349 | if( !(r0->is_con() && r1->is_con()) ) { |
| 350 | // Not both constants, compute approximate result |
| 351 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
| 352 | lo = min_jint; hi = max_jint; // Underflow on the low side |
| 353 | } |
| 354 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
| 355 | lo = min_jint; hi = max_jint; // Overflow on the high side |
| 356 | } |
| 357 | if( lo > hi ) { // Handle overflow |
| 358 | lo = min_jint; hi = max_jint; |
| 359 | } |
| 360 | } else { |
| 361 | // both constants, compute precise result using 'lo' and 'hi' |
| 362 | // Semantics define overflow and underflow for integer addition |
| 363 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
| 364 | } |
| 365 | return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
| 366 | } |
| 367 | |
| 368 | |
| 369 | //============================================================================= |
| 370 | //------------------------------Idealize--------------------------------------- |
| 371 | Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 372 | Node* in1 = in(1); |
| 373 | Node* in2 = in(2); |
| 374 | int op1 = in1->Opcode(); |
| 375 | int op2 = in2->Opcode(); |
| 376 | // Fold (con1-x)+con2 into (con1+con2)-x |
| 377 | if ( op1 == Op_AddL && op2 == Op_SubL ) { |
| 378 | // Swap edges to try optimizations below |
| 379 | in1 = in2; |
| 380 | in2 = in(1); |
| 381 | op1 = op2; |
| 382 | op2 = in2->Opcode(); |
| 383 | } |
| 384 | // Fold (con1-x)+con2 into (con1+con2)-x |
| 385 | if( op1 == Op_SubL ) { |
| 386 | const Type *t_sub1 = phase->type( in1->in(1) ); |
| 387 | const Type *t_2 = phase->type( in2 ); |
| 388 | if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) |
| 389 | return new SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); |
| 390 | // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" |
| 391 | if( op2 == Op_SubL ) { |
| 392 | // Check for dead cycle: d = (a-b)+(c-d) |
| 393 | assert( in1->in(2) != this && in2->in(2) != this, |
| 394 | "dead loop in AddLNode::Ideal" ); |
| 395 | Node *sub = new SubLNode(NULL, NULL); |
| 396 | sub->init_req(1, phase->transform(new AddLNode(in1->in(1), in2->in(1) ) )); |
| 397 | sub->init_req(2, phase->transform(new AddLNode(in1->in(2), in2->in(2) ) )); |
| 398 | return sub; |
| 399 | } |
| 400 | // Convert "(a-b)+(b+c)" into "(a+c)" |
| 401 | if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) { |
| 402 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal" ); |
| 403 | return new AddLNode(in1->in(1), in2->in(2)); |
| 404 | } |
| 405 | // Convert "(a-b)+(c+b)" into "(a+c)" |
| 406 | if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) { |
| 407 | assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal" ); |
| 408 | return new AddLNode(in1->in(1), in2->in(1)); |
| 409 | } |
| 410 | // Convert "(a-b)+(b-c)" into "(a-c)" |
| 411 | if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) { |
| 412 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal" ); |
| 413 | return new SubLNode(in1->in(1), in2->in(2)); |
| 414 | } |
| 415 | // Convert "(a-b)+(c-a)" into "(c-b)" |
| 416 | if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) { |
| 417 | assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal" ); |
| 418 | return new SubLNode(in2->in(1), in1->in(2)); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // Convert "x+(0-y)" into "(x-y)" |
| 423 | if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO ) |
| 424 | return new SubLNode( in1, in2->in(2) ); |
| 425 | |
| 426 | // Convert "(0-y)+x" into "(x-y)" |
| 427 | if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO ) |
| 428 | return new SubLNode( in2, in1->in(2) ); |
| 429 | |
| 430 | // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)" |
| 431 | // into "(X<<1)+Y" and let shift-folding happen. |
| 432 | if( op2 == Op_AddL && |
| 433 | in2->in(1) == in1 && |
| 434 | op1 != Op_ConL && |
| 435 | 0 ) { |
| 436 | Node *shift = phase->transform(new LShiftLNode(in1,phase->intcon(1))); |
| 437 | return new AddLNode(shift,in2->in(2)); |
| 438 | } |
| 439 | |
| 440 | return AddNode::Ideal(phase, can_reshape); |
| 441 | } |
| 442 | |
| 443 | |
| 444 | //------------------------------Identity--------------------------------------- |
| 445 | // Fold (x-y)+y OR y+(x-y) into x |
| 446 | Node* AddLNode::Identity(PhaseGVN* phase) { |
| 447 | if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) { |
| 448 | return in(1)->in(1); |
| 449 | } |
| 450 | else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) { |
| 451 | return in(2)->in(1); |
| 452 | } |
| 453 | return AddNode::Identity(phase); |
| 454 | } |
| 455 | |
| 456 | |
| 457 | //------------------------------add_ring--------------------------------------- |
| 458 | // Supplied function returns the sum of the inputs. Guaranteed never |
| 459 | // to be passed a TOP or BOTTOM type, these are filtered out by |
| 460 | // pre-check. |
| 461 | const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 462 | const TypeLong *r0 = t0->is_long(); // Handy access |
| 463 | const TypeLong *r1 = t1->is_long(); |
| 464 | jlong lo = java_add(r0->_lo, r1->_lo); |
| 465 | jlong hi = java_add(r0->_hi, r1->_hi); |
| 466 | if( !(r0->is_con() && r1->is_con()) ) { |
| 467 | // Not both constants, compute approximate result |
| 468 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
| 469 | lo =min_jlong; hi = max_jlong; // Underflow on the low side |
| 470 | } |
| 471 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
| 472 | lo = min_jlong; hi = max_jlong; // Overflow on the high side |
| 473 | } |
| 474 | if( lo > hi ) { // Handle overflow |
| 475 | lo = min_jlong; hi = max_jlong; |
| 476 | } |
| 477 | } else { |
| 478 | // both constants, compute precise result using 'lo' and 'hi' |
| 479 | // Semantics define overflow and underflow for integer addition |
| 480 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
| 481 | } |
| 482 | return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
| 483 | } |
| 484 | |
| 485 | |
| 486 | //============================================================================= |
| 487 | //------------------------------add_of_identity-------------------------------- |
| 488 | // Check for addition of the identity |
| 489 | const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| 490 | // x ADD 0 should return x unless 'x' is a -zero |
| 491 | // |
| 492 | // const Type *zero = add_id(); // The additive identity |
| 493 | // jfloat f1 = t1->getf(); |
| 494 | // jfloat f2 = t2->getf(); |
| 495 | // |
| 496 | // if( t1->higher_equal( zero ) ) return t2; |
| 497 | // if( t2->higher_equal( zero ) ) return t1; |
| 498 | |
| 499 | return NULL; |
| 500 | } |
| 501 | |
| 502 | //------------------------------add_ring--------------------------------------- |
| 503 | // Supplied function returns the sum of the inputs. |
| 504 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 505 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 506 | const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 507 | // We must be adding 2 float constants. |
| 508 | return TypeF::make( t0->getf() + t1->getf() ); |
| 509 | } |
| 510 | |
| 511 | //------------------------------Ideal------------------------------------------ |
| 512 | Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 513 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
| 514 | return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms |
| 515 | } |
| 516 | |
| 517 | // Floating point additions are not associative because of boundary conditions (infinity) |
| 518 | return commute(this, |
| 519 | phase->type( in(1) )->singleton(), |
| 520 | phase->type( in(2) )->singleton() ) ? this : NULL; |
| 521 | } |
| 522 | |
| 523 | |
| 524 | //============================================================================= |
| 525 | //------------------------------add_of_identity-------------------------------- |
| 526 | // Check for addition of the identity |
| 527 | const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| 528 | // x ADD 0 should return x unless 'x' is a -zero |
| 529 | // |
| 530 | // const Type *zero = add_id(); // The additive identity |
| 531 | // jfloat f1 = t1->getf(); |
| 532 | // jfloat f2 = t2->getf(); |
| 533 | // |
| 534 | // if( t1->higher_equal( zero ) ) return t2; |
| 535 | // if( t2->higher_equal( zero ) ) return t1; |
| 536 | |
| 537 | return NULL; |
| 538 | } |
| 539 | //------------------------------add_ring--------------------------------------- |
| 540 | // Supplied function returns the sum of the inputs. |
| 541 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 542 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 543 | const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 544 | // We must be adding 2 double constants. |
| 545 | return TypeD::make( t0->getd() + t1->getd() ); |
| 546 | } |
| 547 | |
| 548 | //------------------------------Ideal------------------------------------------ |
| 549 | Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 550 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
| 551 | return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms |
| 552 | } |
| 553 | |
| 554 | // Floating point additions are not associative because of boundary conditions (infinity) |
| 555 | return commute(this, |
| 556 | phase->type( in(1) )->singleton(), |
| 557 | phase->type( in(2) )->singleton() ) ? this : NULL; |
| 558 | } |
| 559 | |
| 560 | |
| 561 | //============================================================================= |
| 562 | //------------------------------Identity--------------------------------------- |
| 563 | // If one input is a constant 0, return the other input. |
| 564 | Node* AddPNode::Identity(PhaseGVN* phase) { |
| 565 | return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; |
| 566 | } |
| 567 | |
| 568 | //------------------------------Idealize--------------------------------------- |
| 569 | Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 570 | // Bail out if dead inputs |
| 571 | if( phase->type( in(Address) ) == Type::TOP ) return NULL; |
| 572 | |
| 573 | // If the left input is an add of a constant, flatten the expression tree. |
| 574 | const Node *n = in(Address); |
| 575 | if (n->is_AddP() && n->in(Base) == in(Base)) { |
| 576 | const AddPNode *addp = n->as_AddP(); // Left input is an AddP |
| 577 | assert( !addp->in(Address)->is_AddP() || |
| 578 | addp->in(Address)->as_AddP() != addp, |
| 579 | "dead loop in AddPNode::Ideal" ); |
| 580 | // Type of left input's right input |
| 581 | const Type *t = phase->type( addp->in(Offset) ); |
| 582 | if( t == Type::TOP ) return NULL; |
| 583 | const TypeX *t12 = t->is_intptr_t(); |
| 584 | if( t12->is_con() ) { // Left input is an add of a constant? |
| 585 | // If the right input is a constant, combine constants |
| 586 | const Type *temp_t2 = phase->type( in(Offset) ); |
| 587 | if( temp_t2 == Type::TOP ) return NULL; |
| 588 | const TypeX *t2 = temp_t2->is_intptr_t(); |
| 589 | Node* address; |
| 590 | Node* offset; |
| 591 | if( t2->is_con() ) { |
| 592 | // The Add of the flattened expression |
| 593 | address = addp->in(Address); |
| 594 | offset = phase->MakeConX(t2->get_con() + t12->get_con()); |
| 595 | } else { |
| 596 | // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) |
| 597 | address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); |
| 598 | offset = addp->in(Offset); |
| 599 | } |
| 600 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
| 601 | if( igvn ) { |
| 602 | set_req_X(Address,address,igvn); |
| 603 | set_req_X(Offset,offset,igvn); |
| 604 | } else { |
| 605 | set_req(Address,address); |
| 606 | set_req(Offset,offset); |
| 607 | } |
| 608 | return this; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | // Raw pointers? |
| 613 | if( in(Base)->bottom_type() == Type::TOP ) { |
| 614 | // If this is a NULL+long form (from unsafe accesses), switch to a rawptr. |
| 615 | if (phase->type(in(Address)) == TypePtr::NULL_PTR) { |
| 616 | Node* offset = in(Offset); |
| 617 | return new CastX2PNode(offset); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | // If the right is an add of a constant, push the offset down. |
| 622 | // Convert: (ptr + (offset+con)) into (ptr+offset)+con. |
| 623 | // The idea is to merge array_base+scaled_index groups together, |
| 624 | // and only have different constant offsets from the same base. |
| 625 | const Node *add = in(Offset); |
| 626 | if( add->Opcode() == Op_AddX && add->in(1) != add ) { |
| 627 | const Type *t22 = phase->type( add->in(2) ); |
| 628 | if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? |
| 629 | set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); |
| 630 | set_req(Offset, add->in(2)); |
| 631 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
| 632 | if (add->outcnt() == 0 && igvn) { |
| 633 | // add disconnected. |
| 634 | igvn->_worklist.push((Node*)add); |
| 635 | } |
| 636 | return this; // Made progress |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | return NULL; // No progress |
| 641 | } |
| 642 | |
| 643 | //------------------------------bottom_type------------------------------------ |
| 644 | // Bottom-type is the pointer-type with unknown offset. |
| 645 | const Type *AddPNode::bottom_type() const { |
| 646 | if (in(Address) == NULL) return TypePtr::BOTTOM; |
| 647 | const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); |
| 648 | if( !tp ) return Type::TOP; // TOP input means TOP output |
| 649 | assert( in(Offset)->Opcode() != Op_ConP, "" ); |
| 650 | const Type *t = in(Offset)->bottom_type(); |
| 651 | if( t == Type::TOP ) |
| 652 | return tp->add_offset(Type::OffsetTop); |
| 653 | const TypeX *tx = t->is_intptr_t(); |
| 654 | intptr_t txoffset = Type::OffsetBot; |
| 655 | if (tx->is_con()) { // Left input is an add of a constant? |
| 656 | txoffset = tx->get_con(); |
| 657 | } |
| 658 | return tp->add_offset(txoffset); |
| 659 | } |
| 660 | |
| 661 | //------------------------------Value------------------------------------------ |
| 662 | const Type* AddPNode::Value(PhaseGVN* phase) const { |
| 663 | // Either input is TOP ==> the result is TOP |
| 664 | const Type *t1 = phase->type( in(Address) ); |
| 665 | const Type *t2 = phase->type( in(Offset) ); |
| 666 | if( t1 == Type::TOP ) return Type::TOP; |
| 667 | if( t2 == Type::TOP ) return Type::TOP; |
| 668 | |
| 669 | // Left input is a pointer |
| 670 | const TypePtr *p1 = t1->isa_ptr(); |
| 671 | // Right input is an int |
| 672 | const TypeX *p2 = t2->is_intptr_t(); |
| 673 | // Add 'em |
| 674 | intptr_t p2offset = Type::OffsetBot; |
| 675 | if (p2->is_con()) { // Left input is an add of a constant? |
| 676 | p2offset = p2->get_con(); |
| 677 | } |
| 678 | return p1->add_offset(p2offset); |
| 679 | } |
| 680 | |
| 681 | //------------------------Ideal_base_and_offset-------------------------------- |
| 682 | // Split an oop pointer into a base and offset. |
| 683 | // (The offset might be Type::OffsetBot in the case of an array.) |
| 684 | // Return the base, or NULL if failure. |
| 685 | Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, |
| 686 | // second return value: |
| 687 | intptr_t& offset) { |
| 688 | if (ptr->is_AddP()) { |
| 689 | Node* base = ptr->in(AddPNode::Base); |
| 690 | Node* addr = ptr->in(AddPNode::Address); |
| 691 | Node* offs = ptr->in(AddPNode::Offset); |
| 692 | if (base == addr || base->is_top()) { |
| 693 | offset = phase->find_intptr_t_con(offs, Type::OffsetBot); |
| 694 | if (offset != Type::OffsetBot) { |
| 695 | return addr; |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | offset = Type::OffsetBot; |
| 700 | return NULL; |
| 701 | } |
| 702 | |
| 703 | //------------------------------unpack_offsets---------------------------------- |
| 704 | // Collect the AddP offset values into the elements array, giving up |
| 705 | // if there are more than length. |
| 706 | int AddPNode::unpack_offsets(Node* elements[], int length) { |
| 707 | int count = 0; |
| 708 | Node* addr = this; |
| 709 | Node* base = addr->in(AddPNode::Base); |
| 710 | while (addr->is_AddP()) { |
| 711 | if (addr->in(AddPNode::Base) != base) { |
| 712 | // give up |
| 713 | return -1; |
| 714 | } |
| 715 | elements[count++] = addr->in(AddPNode::Offset); |
| 716 | if (count == length) { |
| 717 | // give up |
| 718 | return -1; |
| 719 | } |
| 720 | addr = addr->in(AddPNode::Address); |
| 721 | } |
| 722 | if (addr != base) { |
| 723 | return -1; |
| 724 | } |
| 725 | return count; |
| 726 | } |
| 727 | |
| 728 | //------------------------------match_edge------------------------------------- |
| 729 | // Do we Match on this edge index or not? Do not match base pointer edge |
| 730 | uint AddPNode::match_edge(uint idx) const { |
| 731 | return idx > Base; |
| 732 | } |
| 733 | |
| 734 | //============================================================================= |
| 735 | //------------------------------Identity--------------------------------------- |
| 736 | Node* OrINode::Identity(PhaseGVN* phase) { |
| 737 | // x | x => x |
| 738 | if (phase->eqv(in(1), in(2))) { |
| 739 | return in(1); |
| 740 | } |
| 741 | |
| 742 | return AddNode::Identity(phase); |
| 743 | } |
| 744 | |
| 745 | //------------------------------add_ring--------------------------------------- |
| 746 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
| 747 | // the logical operations the ring's ADD is really a logical OR function. |
| 748 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 749 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 750 | const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { |
| 751 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 752 | const TypeInt *r1 = t1->is_int(); |
| 753 | |
| 754 | // If both args are bool, can figure out better types |
| 755 | if ( r0 == TypeInt::BOOL ) { |
| 756 | if ( r1 == TypeInt::ONE) { |
| 757 | return TypeInt::ONE; |
| 758 | } else if ( r1 == TypeInt::BOOL ) { |
| 759 | return TypeInt::BOOL; |
| 760 | } |
| 761 | } else if ( r0 == TypeInt::ONE ) { |
| 762 | if ( r1 == TypeInt::BOOL ) { |
| 763 | return TypeInt::ONE; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | // If either input is not a constant, just return all integers. |
| 768 | if( !r0->is_con() || !r1->is_con() ) |
| 769 | return TypeInt::INT; // Any integer, but still no symbols. |
| 770 | |
| 771 | // Otherwise just OR them bits. |
| 772 | return TypeInt::make( r0->get_con() | r1->get_con() ); |
| 773 | } |
| 774 | |
| 775 | //============================================================================= |
| 776 | //------------------------------Identity--------------------------------------- |
| 777 | Node* OrLNode::Identity(PhaseGVN* phase) { |
| 778 | // x | x => x |
| 779 | if (phase->eqv(in(1), in(2))) { |
| 780 | return in(1); |
| 781 | } |
| 782 | |
| 783 | return AddNode::Identity(phase); |
| 784 | } |
| 785 | |
| 786 | //------------------------------add_ring--------------------------------------- |
| 787 | const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 788 | const TypeLong *r0 = t0->is_long(); // Handy access |
| 789 | const TypeLong *r1 = t1->is_long(); |
| 790 | |
| 791 | // If either input is not a constant, just return all integers. |
| 792 | if( !r0->is_con() || !r1->is_con() ) |
| 793 | return TypeLong::LONG; // Any integer, but still no symbols. |
| 794 | |
| 795 | // Otherwise just OR them bits. |
| 796 | return TypeLong::make( r0->get_con() | r1->get_con() ); |
| 797 | } |
| 798 | |
| 799 | //============================================================================= |
| 800 | //------------------------------add_ring--------------------------------------- |
| 801 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
| 802 | // the logical operations the ring's ADD is really a logical OR function. |
| 803 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 804 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| 805 | const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { |
| 806 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 807 | const TypeInt *r1 = t1->is_int(); |
| 808 | |
| 809 | // Complementing a boolean? |
| 810 | if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE |
| 811 | || r1 == TypeInt::BOOL)) |
| 812 | return TypeInt::BOOL; |
| 813 | |
| 814 | if( !r0->is_con() || !r1->is_con() ) // Not constants |
| 815 | return TypeInt::INT; // Any integer, but still no symbols. |
| 816 | |
| 817 | // Otherwise just XOR them bits. |
| 818 | return TypeInt::make( r0->get_con() ^ r1->get_con() ); |
| 819 | } |
| 820 | |
| 821 | //============================================================================= |
| 822 | //------------------------------add_ring--------------------------------------- |
| 823 | const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 824 | const TypeLong *r0 = t0->is_long(); // Handy access |
| 825 | const TypeLong *r1 = t1->is_long(); |
| 826 | |
| 827 | // If either input is not a constant, just return all integers. |
| 828 | if( !r0->is_con() || !r1->is_con() ) |
| 829 | return TypeLong::LONG; // Any integer, but still no symbols. |
| 830 | |
| 831 | // Otherwise just OR them bits. |
| 832 | return TypeLong::make( r0->get_con() ^ r1->get_con() ); |
| 833 | } |
| 834 | |
| 835 | //============================================================================= |
| 836 | //------------------------------add_ring--------------------------------------- |
| 837 | // Supplied function returns the sum of the inputs. |
| 838 | const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { |
| 839 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 840 | const TypeInt *r1 = t1->is_int(); |
| 841 | |
| 842 | // Otherwise just MAX them bits. |
| 843 | return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
| 844 | } |
| 845 | |
| 846 | //============================================================================= |
| 847 | //------------------------------Idealize--------------------------------------- |
| 848 | // MINs show up in range-check loop limit calculations. Look for |
| 849 | // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" |
| 850 | Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 851 | Node *progress = NULL; |
| 852 | // Force a right-spline graph |
| 853 | Node *l = in(1); |
| 854 | Node *r = in(2); |
| 855 | // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) ) |
| 856 | // to force a right-spline graph for the rest of MinINode::Ideal(). |
| 857 | if( l->Opcode() == Op_MinI ) { |
| 858 | assert( l != l->in(1), "dead loop in MinINode::Ideal" ); |
| 859 | r = phase->transform(new MinINode(l->in(2),r)); |
| 860 | l = l->in(1); |
| 861 | set_req(1, l); |
| 862 | set_req(2, r); |
| 863 | return this; |
| 864 | } |
| 865 | |
| 866 | // Get left input & constant |
| 867 | Node *x = l; |
| 868 | int x_off = 0; |
| 869 | if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant |
| 870 | x->in(2)->is_Con() ) { |
| 871 | const Type *t = x->in(2)->bottom_type(); |
| 872 | if( t == Type::TOP ) return NULL; // No progress |
| 873 | x_off = t->is_int()->get_con(); |
| 874 | x = x->in(1); |
| 875 | } |
| 876 | |
| 877 | // Scan a right-spline-tree for MINs |
| 878 | Node *y = r; |
| 879 | int y_off = 0; |
| 880 | // Check final part of MIN tree |
| 881 | if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant |
| 882 | y->in(2)->is_Con() ) { |
| 883 | const Type *t = y->in(2)->bottom_type(); |
| 884 | if( t == Type::TOP ) return NULL; // No progress |
| 885 | y_off = t->is_int()->get_con(); |
| 886 | y = y->in(1); |
| 887 | } |
| 888 | if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) { |
| 889 | swap_edges(1, 2); |
| 890 | return this; |
| 891 | } |
| 892 | |
| 893 | |
| 894 | if( r->Opcode() == Op_MinI ) { |
| 895 | assert( r != r->in(2), "dead loop in MinINode::Ideal" ); |
| 896 | y = r->in(1); |
| 897 | // Check final part of MIN tree |
| 898 | if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant |
| 899 | y->in(2)->is_Con() ) { |
| 900 | const Type *t = y->in(2)->bottom_type(); |
| 901 | if( t == Type::TOP ) return NULL; // No progress |
| 902 | y_off = t->is_int()->get_con(); |
| 903 | y = y->in(1); |
| 904 | } |
| 905 | |
| 906 | if( x->_idx > y->_idx ) |
| 907 | return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2)))); |
| 908 | |
| 909 | // See if covers: MIN2(x+c0,MIN2(y+c1,z)) |
| 910 | if( !phase->eqv(x,y) ) return NULL; |
| 911 | // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into |
| 912 | // MIN2(x+c0 or x+c1 which less, z). |
| 913 | return new MinINode(phase->transform(new AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2)); |
| 914 | } else { |
| 915 | // See if covers: MIN2(x+c0,y+c1) |
| 916 | if( !phase->eqv(x,y) ) return NULL; |
| 917 | // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less. |
| 918 | return new AddINode(x,phase->intcon(MIN2(x_off,y_off))); |
| 919 | } |
| 920 | |
| 921 | } |
| 922 | |
| 923 | //------------------------------add_ring--------------------------------------- |
| 924 | // Supplied function returns the sum of the inputs. |
| 925 | const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { |
| 926 | const TypeInt *r0 = t0->is_int(); // Handy access |
| 927 | const TypeInt *r1 = t1->is_int(); |
| 928 | |
| 929 | // Otherwise just MIN them bits. |
| 930 | return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
| 931 | } |
| 932 | |
| 933 | //------------------------------add_ring--------------------------------------- |
| 934 | const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 935 | const TypeF *r0 = t0->is_float_constant(); |
| 936 | const TypeF *r1 = t1->is_float_constant(); |
| 937 | |
| 938 | if (r0->is_nan()) { |
| 939 | return r0; |
| 940 | } |
| 941 | if (r1->is_nan()) { |
| 942 | return r1; |
| 943 | } |
| 944 | |
| 945 | float f0 = r0->getf(); |
| 946 | float f1 = r1->getf(); |
| 947 | if (f0 != 0.0f || f1 != 0.0f) { |
| 948 | return f0 < f1 ? r0 : r1; |
| 949 | } |
| 950 | |
| 951 | // handle min of 0.0, -0.0 case. |
| 952 | return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; |
| 953 | } |
| 954 | |
| 955 | //------------------------------add_ring--------------------------------------- |
| 956 | const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 957 | const TypeD *r0 = t0->is_double_constant(); |
| 958 | const TypeD *r1 = t1->is_double_constant(); |
| 959 | |
| 960 | if (r0->is_nan()) { |
| 961 | return r0; |
| 962 | } |
| 963 | if (r1->is_nan()) { |
| 964 | return r1; |
| 965 | } |
| 966 | |
| 967 | double d0 = r0->getd(); |
| 968 | double d1 = r1->getd(); |
| 969 | if (d0 != 0.0 || d1 != 0.0) { |
| 970 | return d0 < d1 ? r0 : r1; |
| 971 | } |
| 972 | |
| 973 | // handle min of 0.0, -0.0 case. |
| 974 | return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; |
| 975 | } |
| 976 | |
| 977 | //------------------------------add_ring--------------------------------------- |
| 978 | const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 979 | const TypeF *r0 = t0->is_float_constant(); |
| 980 | const TypeF *r1 = t1->is_float_constant(); |
| 981 | |
| 982 | if (r0->is_nan()) { |
| 983 | return r0; |
| 984 | } |
| 985 | if (r1->is_nan()) { |
| 986 | return r1; |
| 987 | } |
| 988 | |
| 989 | float f0 = r0->getf(); |
| 990 | float f1 = r1->getf(); |
| 991 | if (f0 != 0.0f || f1 != 0.0f) { |
| 992 | return f0 > f1 ? r0 : r1; |
| 993 | } |
| 994 | |
| 995 | // handle max of 0.0,-0.0 case. |
| 996 | return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; |
| 997 | } |
| 998 | |
| 999 | //------------------------------add_ring--------------------------------------- |
| 1000 | const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| 1001 | const TypeD *r0 = t0->is_double_constant(); |
| 1002 | const TypeD *r1 = t1->is_double_constant(); |
| 1003 | |
| 1004 | if (r0->is_nan()) { |
| 1005 | return r0; |
| 1006 | } |
| 1007 | if (r1->is_nan()) { |
| 1008 | return r1; |
| 1009 | } |
| 1010 | |
| 1011 | double d0 = r0->getd(); |
| 1012 | double d1 = r1->getd(); |
| 1013 | if (d0 != 0.0 || d1 != 0.0) { |
| 1014 | return d0 > d1 ? r0 : r1; |
| 1015 | } |
| 1016 | |
| 1017 | // handle max of 0.0, -0.0 case. |
| 1018 | return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; |
| 1019 | } |
| 1020 | |