1 | /* |
2 | * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "memory/allocation.inline.hpp" |
27 | #include "opto/addnode.hpp" |
28 | #include "opto/castnode.hpp" |
29 | #include "opto/cfgnode.hpp" |
30 | #include "opto/connode.hpp" |
31 | #include "opto/machnode.hpp" |
32 | #include "opto/mulnode.hpp" |
33 | #include "opto/phaseX.hpp" |
34 | #include "opto/subnode.hpp" |
35 | |
36 | // Portions of code courtesy of Clifford Click |
37 | |
38 | // Classic Add functionality. This covers all the usual 'add' behaviors for |
39 | // an algebraic ring. Add-integer, add-float, add-double, and binary-or are |
40 | // all inherited from this class. The various identity values are supplied |
41 | // by virtual functions. |
42 | |
43 | |
44 | //============================================================================= |
45 | //------------------------------hash------------------------------------------- |
46 | // Hash function over AddNodes. Needs to be commutative; i.e., I swap |
47 | // (commute) inputs to AddNodes willy-nilly so the hash function must return |
48 | // the same value in the presence of edge swapping. |
49 | uint AddNode::hash() const { |
50 | return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
51 | } |
52 | |
53 | //------------------------------Identity--------------------------------------- |
54 | // If either input is a constant 0, return the other input. |
55 | Node* AddNode::Identity(PhaseGVN* phase) { |
56 | const Type *zero = add_id(); // The additive identity |
57 | if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); |
58 | if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); |
59 | return this; |
60 | } |
61 | |
62 | //------------------------------commute---------------------------------------- |
63 | // Commute operands to move loads and constants to the right. |
64 | static bool commute(Node *add, bool con_left, bool con_right) { |
65 | Node *in1 = add->in(1); |
66 | Node *in2 = add->in(2); |
67 | |
68 | // Convert "1+x" into "x+1". |
69 | // Right is a constant; leave it |
70 | if( con_right ) return false; |
71 | // Left is a constant; move it right. |
72 | if( con_left ) { |
73 | add->swap_edges(1, 2); |
74 | return true; |
75 | } |
76 | |
77 | // Convert "Load+x" into "x+Load". |
78 | // Now check for loads |
79 | if (in2->is_Load()) { |
80 | if (!in1->is_Load()) { |
81 | // already x+Load to return |
82 | return false; |
83 | } |
84 | // both are loads, so fall through to sort inputs by idx |
85 | } else if( in1->is_Load() ) { |
86 | // Left is a Load and Right is not; move it right. |
87 | add->swap_edges(1, 2); |
88 | return true; |
89 | } |
90 | |
91 | PhiNode *phi; |
92 | // Check for tight loop increments: Loop-phi of Add of loop-phi |
93 | if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add) |
94 | return false; |
95 | if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){ |
96 | add->swap_edges(1, 2); |
97 | return true; |
98 | } |
99 | |
100 | // Otherwise, sort inputs (commutativity) to help value numbering. |
101 | if( in1->_idx > in2->_idx ) { |
102 | add->swap_edges(1, 2); |
103 | return true; |
104 | } |
105 | return false; |
106 | } |
107 | |
108 | //------------------------------Idealize--------------------------------------- |
109 | // If we get here, we assume we are associative! |
110 | Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
111 | const Type *t1 = phase->type( in(1) ); |
112 | const Type *t2 = phase->type( in(2) ); |
113 | bool con_left = t1->singleton(); |
114 | bool con_right = t2->singleton(); |
115 | |
116 | // Check for commutative operation desired |
117 | if( commute(this,con_left,con_right) ) return this; |
118 | |
119 | AddNode *progress = NULL; // Progress flag |
120 | |
121 | // Convert "(x+1)+2" into "x+(1+2)". If the right input is a |
122 | // constant, and the left input is an add of a constant, flatten the |
123 | // expression tree. |
124 | Node *add1 = in(1); |
125 | Node *add2 = in(2); |
126 | int add1_op = add1->Opcode(); |
127 | int this_op = Opcode(); |
128 | if( con_right && t2 != Type::TOP && // Right input is a constant? |
129 | add1_op == this_op ) { // Left input is an Add? |
130 | |
131 | // Type of left _in right input |
132 | const Type *t12 = phase->type( add1->in(2) ); |
133 | if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? |
134 | // Check for rare case of closed data cycle which can happen inside |
135 | // unreachable loops. In these cases the computation is undefined. |
136 | #ifdef ASSERT |
137 | Node *add11 = add1->in(1); |
138 | int add11_op = add11->Opcode(); |
139 | if( (add1 == add1->in(1)) |
140 | || (add11_op == this_op && add11->in(1) == add1) ) { |
141 | assert(false, "dead loop in AddNode::Ideal" ); |
142 | } |
143 | #endif |
144 | // The Add of the flattened expression |
145 | Node *x1 = add1->in(1); |
146 | Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 )); |
147 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
148 | if( igvn ) { |
149 | set_req_X(2,x2,igvn); |
150 | set_req_X(1,x1,igvn); |
151 | } else { |
152 | set_req(2,x2); |
153 | set_req(1,x1); |
154 | } |
155 | progress = this; // Made progress |
156 | add1 = in(1); |
157 | add1_op = add1->Opcode(); |
158 | } |
159 | } |
160 | |
161 | // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. |
162 | if( add1_op == this_op && !con_right ) { |
163 | Node *a12 = add1->in(2); |
164 | const Type *t12 = phase->type( a12 ); |
165 | if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && |
166 | !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) { |
167 | assert(add1->in(1) != this, "dead loop in AddNode::Ideal" ); |
168 | add2 = add1->clone(); |
169 | add2->set_req(2, in(2)); |
170 | add2 = phase->transform(add2); |
171 | set_req(1, add2); |
172 | set_req(2, a12); |
173 | progress = this; |
174 | add2 = a12; |
175 | } |
176 | } |
177 | |
178 | // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. |
179 | int add2_op = add2->Opcode(); |
180 | if( add2_op == this_op && !con_left ) { |
181 | Node *a22 = add2->in(2); |
182 | const Type *t22 = phase->type( a22 ); |
183 | if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && |
184 | !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) { |
185 | assert(add2->in(1) != this, "dead loop in AddNode::Ideal" ); |
186 | Node *addx = add2->clone(); |
187 | addx->set_req(1, in(1)); |
188 | addx->set_req(2, add2->in(1)); |
189 | addx = phase->transform(addx); |
190 | set_req(1, addx); |
191 | set_req(2, a22); |
192 | progress = this; |
193 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
194 | if (add2->outcnt() == 0 && igvn) { |
195 | // add disconnected. |
196 | igvn->_worklist.push(add2); |
197 | } |
198 | } |
199 | } |
200 | |
201 | return progress; |
202 | } |
203 | |
204 | //------------------------------Value----------------------------------------- |
205 | // An add node sums it's two _in. If one input is an RSD, we must mixin |
206 | // the other input's symbols. |
207 | const Type* AddNode::Value(PhaseGVN* phase) const { |
208 | // Either input is TOP ==> the result is TOP |
209 | const Type *t1 = phase->type( in(1) ); |
210 | const Type *t2 = phase->type( in(2) ); |
211 | if( t1 == Type::TOP ) return Type::TOP; |
212 | if( t2 == Type::TOP ) return Type::TOP; |
213 | |
214 | // Either input is BOTTOM ==> the result is the local BOTTOM |
215 | const Type *bot = bottom_type(); |
216 | if( (t1 == bot) || (t2 == bot) || |
217 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
218 | return bot; |
219 | |
220 | // Check for an addition involving the additive identity |
221 | const Type *tadd = add_of_identity( t1, t2 ); |
222 | if( tadd ) return tadd; |
223 | |
224 | return add_ring(t1,t2); // Local flavor of type addition |
225 | } |
226 | |
227 | //------------------------------add_identity----------------------------------- |
228 | // Check for addition of the identity |
229 | const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
230 | const Type *zero = add_id(); // The additive identity |
231 | if( t1->higher_equal( zero ) ) return t2; |
232 | if( t2->higher_equal( zero ) ) return t1; |
233 | |
234 | return NULL; |
235 | } |
236 | |
237 | |
238 | //============================================================================= |
239 | //------------------------------Idealize--------------------------------------- |
240 | Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
241 | Node* in1 = in(1); |
242 | Node* in2 = in(2); |
243 | int op1 = in1->Opcode(); |
244 | int op2 = in2->Opcode(); |
245 | // Fold (con1-x)+con2 into (con1+con2)-x |
246 | if ( op1 == Op_AddI && op2 == Op_SubI ) { |
247 | // Swap edges to try optimizations below |
248 | in1 = in2; |
249 | in2 = in(1); |
250 | op1 = op2; |
251 | op2 = in2->Opcode(); |
252 | } |
253 | if( op1 == Op_SubI ) { |
254 | const Type *t_sub1 = phase->type( in1->in(1) ); |
255 | const Type *t_2 = phase->type( in2 ); |
256 | if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) |
257 | return new SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); |
258 | // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" |
259 | if( op2 == Op_SubI ) { |
260 | // Check for dead cycle: d = (a-b)+(c-d) |
261 | assert( in1->in(2) != this && in2->in(2) != this, |
262 | "dead loop in AddINode::Ideal" ); |
263 | Node *sub = new SubINode(NULL, NULL); |
264 | sub->init_req(1, phase->transform(new AddINode(in1->in(1), in2->in(1) ) )); |
265 | sub->init_req(2, phase->transform(new AddINode(in1->in(2), in2->in(2) ) )); |
266 | return sub; |
267 | } |
268 | // Convert "(a-b)+(b+c)" into "(a+c)" |
269 | if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) { |
270 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal" ); |
271 | return new AddINode(in1->in(1), in2->in(2)); |
272 | } |
273 | // Convert "(a-b)+(c+b)" into "(a+c)" |
274 | if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) { |
275 | assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal" ); |
276 | return new AddINode(in1->in(1), in2->in(1)); |
277 | } |
278 | // Convert "(a-b)+(b-c)" into "(a-c)" |
279 | if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) { |
280 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal" ); |
281 | return new SubINode(in1->in(1), in2->in(2)); |
282 | } |
283 | // Convert "(a-b)+(c-a)" into "(c-b)" |
284 | if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) { |
285 | assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal" ); |
286 | return new SubINode(in2->in(1), in1->in(2)); |
287 | } |
288 | } |
289 | |
290 | // Convert "x+(0-y)" into "(x-y)" |
291 | if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO ) |
292 | return new SubINode(in1, in2->in(2) ); |
293 | |
294 | // Convert "(0-y)+x" into "(x-y)" |
295 | if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO ) |
296 | return new SubINode( in2, in1->in(2) ); |
297 | |
298 | // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. |
299 | // Helps with array allocation math constant folding |
300 | // See 4790063: |
301 | // Unrestricted transformation is unsafe for some runtime values of 'x' |
302 | // ( x == 0, z == 1, y == -1 ) fails |
303 | // ( x == -5, z == 1, y == 1 ) fails |
304 | // Transform works for small z and small negative y when the addition |
305 | // (x + (y << z)) does not cross zero. |
306 | // Implement support for negative y and (x >= -(y << z)) |
307 | // Have not observed cases where type information exists to support |
308 | // positive y and (x <= -(y << z)) |
309 | if( op1 == Op_URShiftI && op2 == Op_ConI && |
310 | in1->in(2)->Opcode() == Op_ConI ) { |
311 | jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter |
312 | jint y = phase->type( in2 )->is_int()->get_con(); |
313 | |
314 | if( z < 5 && -5 < y && y < 0 ) { |
315 | const Type *t_in11 = phase->type(in1->in(1)); |
316 | if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) { |
317 | Node *a = phase->transform( new AddINode( in1->in(1), phase->intcon(y<<z) ) ); |
318 | return new URShiftINode( a, in1->in(2) ); |
319 | } |
320 | } |
321 | } |
322 | |
323 | return AddNode::Ideal(phase, can_reshape); |
324 | } |
325 | |
326 | |
327 | //------------------------------Identity--------------------------------------- |
328 | // Fold (x-y)+y OR y+(x-y) into x |
329 | Node* AddINode::Identity(PhaseGVN* phase) { |
330 | if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) { |
331 | return in(1)->in(1); |
332 | } |
333 | else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) { |
334 | return in(2)->in(1); |
335 | } |
336 | return AddNode::Identity(phase); |
337 | } |
338 | |
339 | |
340 | //------------------------------add_ring--------------------------------------- |
341 | // Supplied function returns the sum of the inputs. Guaranteed never |
342 | // to be passed a TOP or BOTTOM type, these are filtered out by |
343 | // pre-check. |
344 | const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { |
345 | const TypeInt *r0 = t0->is_int(); // Handy access |
346 | const TypeInt *r1 = t1->is_int(); |
347 | int lo = java_add(r0->_lo, r1->_lo); |
348 | int hi = java_add(r0->_hi, r1->_hi); |
349 | if( !(r0->is_con() && r1->is_con()) ) { |
350 | // Not both constants, compute approximate result |
351 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
352 | lo = min_jint; hi = max_jint; // Underflow on the low side |
353 | } |
354 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
355 | lo = min_jint; hi = max_jint; // Overflow on the high side |
356 | } |
357 | if( lo > hi ) { // Handle overflow |
358 | lo = min_jint; hi = max_jint; |
359 | } |
360 | } else { |
361 | // both constants, compute precise result using 'lo' and 'hi' |
362 | // Semantics define overflow and underflow for integer addition |
363 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
364 | } |
365 | return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
366 | } |
367 | |
368 | |
369 | //============================================================================= |
370 | //------------------------------Idealize--------------------------------------- |
371 | Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
372 | Node* in1 = in(1); |
373 | Node* in2 = in(2); |
374 | int op1 = in1->Opcode(); |
375 | int op2 = in2->Opcode(); |
376 | // Fold (con1-x)+con2 into (con1+con2)-x |
377 | if ( op1 == Op_AddL && op2 == Op_SubL ) { |
378 | // Swap edges to try optimizations below |
379 | in1 = in2; |
380 | in2 = in(1); |
381 | op1 = op2; |
382 | op2 = in2->Opcode(); |
383 | } |
384 | // Fold (con1-x)+con2 into (con1+con2)-x |
385 | if( op1 == Op_SubL ) { |
386 | const Type *t_sub1 = phase->type( in1->in(1) ); |
387 | const Type *t_2 = phase->type( in2 ); |
388 | if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) |
389 | return new SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) ); |
390 | // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" |
391 | if( op2 == Op_SubL ) { |
392 | // Check for dead cycle: d = (a-b)+(c-d) |
393 | assert( in1->in(2) != this && in2->in(2) != this, |
394 | "dead loop in AddLNode::Ideal" ); |
395 | Node *sub = new SubLNode(NULL, NULL); |
396 | sub->init_req(1, phase->transform(new AddLNode(in1->in(1), in2->in(1) ) )); |
397 | sub->init_req(2, phase->transform(new AddLNode(in1->in(2), in2->in(2) ) )); |
398 | return sub; |
399 | } |
400 | // Convert "(a-b)+(b+c)" into "(a+c)" |
401 | if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) { |
402 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal" ); |
403 | return new AddLNode(in1->in(1), in2->in(2)); |
404 | } |
405 | // Convert "(a-b)+(c+b)" into "(a+c)" |
406 | if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) { |
407 | assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal" ); |
408 | return new AddLNode(in1->in(1), in2->in(1)); |
409 | } |
410 | // Convert "(a-b)+(b-c)" into "(a-c)" |
411 | if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) { |
412 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal" ); |
413 | return new SubLNode(in1->in(1), in2->in(2)); |
414 | } |
415 | // Convert "(a-b)+(c-a)" into "(c-b)" |
416 | if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) { |
417 | assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal" ); |
418 | return new SubLNode(in2->in(1), in1->in(2)); |
419 | } |
420 | } |
421 | |
422 | // Convert "x+(0-y)" into "(x-y)" |
423 | if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO ) |
424 | return new SubLNode( in1, in2->in(2) ); |
425 | |
426 | // Convert "(0-y)+x" into "(x-y)" |
427 | if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO ) |
428 | return new SubLNode( in2, in1->in(2) ); |
429 | |
430 | // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)" |
431 | // into "(X<<1)+Y" and let shift-folding happen. |
432 | if( op2 == Op_AddL && |
433 | in2->in(1) == in1 && |
434 | op1 != Op_ConL && |
435 | 0 ) { |
436 | Node *shift = phase->transform(new LShiftLNode(in1,phase->intcon(1))); |
437 | return new AddLNode(shift,in2->in(2)); |
438 | } |
439 | |
440 | return AddNode::Ideal(phase, can_reshape); |
441 | } |
442 | |
443 | |
444 | //------------------------------Identity--------------------------------------- |
445 | // Fold (x-y)+y OR y+(x-y) into x |
446 | Node* AddLNode::Identity(PhaseGVN* phase) { |
447 | if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) { |
448 | return in(1)->in(1); |
449 | } |
450 | else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) { |
451 | return in(2)->in(1); |
452 | } |
453 | return AddNode::Identity(phase); |
454 | } |
455 | |
456 | |
457 | //------------------------------add_ring--------------------------------------- |
458 | // Supplied function returns the sum of the inputs. Guaranteed never |
459 | // to be passed a TOP or BOTTOM type, these are filtered out by |
460 | // pre-check. |
461 | const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { |
462 | const TypeLong *r0 = t0->is_long(); // Handy access |
463 | const TypeLong *r1 = t1->is_long(); |
464 | jlong lo = java_add(r0->_lo, r1->_lo); |
465 | jlong hi = java_add(r0->_hi, r1->_hi); |
466 | if( !(r0->is_con() && r1->is_con()) ) { |
467 | // Not both constants, compute approximate result |
468 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
469 | lo =min_jlong; hi = max_jlong; // Underflow on the low side |
470 | } |
471 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
472 | lo = min_jlong; hi = max_jlong; // Overflow on the high side |
473 | } |
474 | if( lo > hi ) { // Handle overflow |
475 | lo = min_jlong; hi = max_jlong; |
476 | } |
477 | } else { |
478 | // both constants, compute precise result using 'lo' and 'hi' |
479 | // Semantics define overflow and underflow for integer addition |
480 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
481 | } |
482 | return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
483 | } |
484 | |
485 | |
486 | //============================================================================= |
487 | //------------------------------add_of_identity-------------------------------- |
488 | // Check for addition of the identity |
489 | const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
490 | // x ADD 0 should return x unless 'x' is a -zero |
491 | // |
492 | // const Type *zero = add_id(); // The additive identity |
493 | // jfloat f1 = t1->getf(); |
494 | // jfloat f2 = t2->getf(); |
495 | // |
496 | // if( t1->higher_equal( zero ) ) return t2; |
497 | // if( t2->higher_equal( zero ) ) return t1; |
498 | |
499 | return NULL; |
500 | } |
501 | |
502 | //------------------------------add_ring--------------------------------------- |
503 | // Supplied function returns the sum of the inputs. |
504 | // This also type-checks the inputs for sanity. Guaranteed never to |
505 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
506 | const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { |
507 | // We must be adding 2 float constants. |
508 | return TypeF::make( t0->getf() + t1->getf() ); |
509 | } |
510 | |
511 | //------------------------------Ideal------------------------------------------ |
512 | Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
513 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
514 | return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms |
515 | } |
516 | |
517 | // Floating point additions are not associative because of boundary conditions (infinity) |
518 | return commute(this, |
519 | phase->type( in(1) )->singleton(), |
520 | phase->type( in(2) )->singleton() ) ? this : NULL; |
521 | } |
522 | |
523 | |
524 | //============================================================================= |
525 | //------------------------------add_of_identity-------------------------------- |
526 | // Check for addition of the identity |
527 | const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
528 | // x ADD 0 should return x unless 'x' is a -zero |
529 | // |
530 | // const Type *zero = add_id(); // The additive identity |
531 | // jfloat f1 = t1->getf(); |
532 | // jfloat f2 = t2->getf(); |
533 | // |
534 | // if( t1->higher_equal( zero ) ) return t2; |
535 | // if( t2->higher_equal( zero ) ) return t1; |
536 | |
537 | return NULL; |
538 | } |
539 | //------------------------------add_ring--------------------------------------- |
540 | // Supplied function returns the sum of the inputs. |
541 | // This also type-checks the inputs for sanity. Guaranteed never to |
542 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
543 | const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { |
544 | // We must be adding 2 double constants. |
545 | return TypeD::make( t0->getd() + t1->getd() ); |
546 | } |
547 | |
548 | //------------------------------Ideal------------------------------------------ |
549 | Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
550 | if( IdealizedNumerics && !phase->C->method()->is_strict() ) { |
551 | return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms |
552 | } |
553 | |
554 | // Floating point additions are not associative because of boundary conditions (infinity) |
555 | return commute(this, |
556 | phase->type( in(1) )->singleton(), |
557 | phase->type( in(2) )->singleton() ) ? this : NULL; |
558 | } |
559 | |
560 | |
561 | //============================================================================= |
562 | //------------------------------Identity--------------------------------------- |
563 | // If one input is a constant 0, return the other input. |
564 | Node* AddPNode::Identity(PhaseGVN* phase) { |
565 | return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; |
566 | } |
567 | |
568 | //------------------------------Idealize--------------------------------------- |
569 | Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
570 | // Bail out if dead inputs |
571 | if( phase->type( in(Address) ) == Type::TOP ) return NULL; |
572 | |
573 | // If the left input is an add of a constant, flatten the expression tree. |
574 | const Node *n = in(Address); |
575 | if (n->is_AddP() && n->in(Base) == in(Base)) { |
576 | const AddPNode *addp = n->as_AddP(); // Left input is an AddP |
577 | assert( !addp->in(Address)->is_AddP() || |
578 | addp->in(Address)->as_AddP() != addp, |
579 | "dead loop in AddPNode::Ideal" ); |
580 | // Type of left input's right input |
581 | const Type *t = phase->type( addp->in(Offset) ); |
582 | if( t == Type::TOP ) return NULL; |
583 | const TypeX *t12 = t->is_intptr_t(); |
584 | if( t12->is_con() ) { // Left input is an add of a constant? |
585 | // If the right input is a constant, combine constants |
586 | const Type *temp_t2 = phase->type( in(Offset) ); |
587 | if( temp_t2 == Type::TOP ) return NULL; |
588 | const TypeX *t2 = temp_t2->is_intptr_t(); |
589 | Node* address; |
590 | Node* offset; |
591 | if( t2->is_con() ) { |
592 | // The Add of the flattened expression |
593 | address = addp->in(Address); |
594 | offset = phase->MakeConX(t2->get_con() + t12->get_con()); |
595 | } else { |
596 | // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) |
597 | address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); |
598 | offset = addp->in(Offset); |
599 | } |
600 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
601 | if( igvn ) { |
602 | set_req_X(Address,address,igvn); |
603 | set_req_X(Offset,offset,igvn); |
604 | } else { |
605 | set_req(Address,address); |
606 | set_req(Offset,offset); |
607 | } |
608 | return this; |
609 | } |
610 | } |
611 | |
612 | // Raw pointers? |
613 | if( in(Base)->bottom_type() == Type::TOP ) { |
614 | // If this is a NULL+long form (from unsafe accesses), switch to a rawptr. |
615 | if (phase->type(in(Address)) == TypePtr::NULL_PTR) { |
616 | Node* offset = in(Offset); |
617 | return new CastX2PNode(offset); |
618 | } |
619 | } |
620 | |
621 | // If the right is an add of a constant, push the offset down. |
622 | // Convert: (ptr + (offset+con)) into (ptr+offset)+con. |
623 | // The idea is to merge array_base+scaled_index groups together, |
624 | // and only have different constant offsets from the same base. |
625 | const Node *add = in(Offset); |
626 | if( add->Opcode() == Op_AddX && add->in(1) != add ) { |
627 | const Type *t22 = phase->type( add->in(2) ); |
628 | if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? |
629 | set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); |
630 | set_req(Offset, add->in(2)); |
631 | PhaseIterGVN *igvn = phase->is_IterGVN(); |
632 | if (add->outcnt() == 0 && igvn) { |
633 | // add disconnected. |
634 | igvn->_worklist.push((Node*)add); |
635 | } |
636 | return this; // Made progress |
637 | } |
638 | } |
639 | |
640 | return NULL; // No progress |
641 | } |
642 | |
643 | //------------------------------bottom_type------------------------------------ |
644 | // Bottom-type is the pointer-type with unknown offset. |
645 | const Type *AddPNode::bottom_type() const { |
646 | if (in(Address) == NULL) return TypePtr::BOTTOM; |
647 | const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); |
648 | if( !tp ) return Type::TOP; // TOP input means TOP output |
649 | assert( in(Offset)->Opcode() != Op_ConP, "" ); |
650 | const Type *t = in(Offset)->bottom_type(); |
651 | if( t == Type::TOP ) |
652 | return tp->add_offset(Type::OffsetTop); |
653 | const TypeX *tx = t->is_intptr_t(); |
654 | intptr_t txoffset = Type::OffsetBot; |
655 | if (tx->is_con()) { // Left input is an add of a constant? |
656 | txoffset = tx->get_con(); |
657 | } |
658 | return tp->add_offset(txoffset); |
659 | } |
660 | |
661 | //------------------------------Value------------------------------------------ |
662 | const Type* AddPNode::Value(PhaseGVN* phase) const { |
663 | // Either input is TOP ==> the result is TOP |
664 | const Type *t1 = phase->type( in(Address) ); |
665 | const Type *t2 = phase->type( in(Offset) ); |
666 | if( t1 == Type::TOP ) return Type::TOP; |
667 | if( t2 == Type::TOP ) return Type::TOP; |
668 | |
669 | // Left input is a pointer |
670 | const TypePtr *p1 = t1->isa_ptr(); |
671 | // Right input is an int |
672 | const TypeX *p2 = t2->is_intptr_t(); |
673 | // Add 'em |
674 | intptr_t p2offset = Type::OffsetBot; |
675 | if (p2->is_con()) { // Left input is an add of a constant? |
676 | p2offset = p2->get_con(); |
677 | } |
678 | return p1->add_offset(p2offset); |
679 | } |
680 | |
681 | //------------------------Ideal_base_and_offset-------------------------------- |
682 | // Split an oop pointer into a base and offset. |
683 | // (The offset might be Type::OffsetBot in the case of an array.) |
684 | // Return the base, or NULL if failure. |
685 | Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, |
686 | // second return value: |
687 | intptr_t& offset) { |
688 | if (ptr->is_AddP()) { |
689 | Node* base = ptr->in(AddPNode::Base); |
690 | Node* addr = ptr->in(AddPNode::Address); |
691 | Node* offs = ptr->in(AddPNode::Offset); |
692 | if (base == addr || base->is_top()) { |
693 | offset = phase->find_intptr_t_con(offs, Type::OffsetBot); |
694 | if (offset != Type::OffsetBot) { |
695 | return addr; |
696 | } |
697 | } |
698 | } |
699 | offset = Type::OffsetBot; |
700 | return NULL; |
701 | } |
702 | |
703 | //------------------------------unpack_offsets---------------------------------- |
704 | // Collect the AddP offset values into the elements array, giving up |
705 | // if there are more than length. |
706 | int AddPNode::unpack_offsets(Node* elements[], int length) { |
707 | int count = 0; |
708 | Node* addr = this; |
709 | Node* base = addr->in(AddPNode::Base); |
710 | while (addr->is_AddP()) { |
711 | if (addr->in(AddPNode::Base) != base) { |
712 | // give up |
713 | return -1; |
714 | } |
715 | elements[count++] = addr->in(AddPNode::Offset); |
716 | if (count == length) { |
717 | // give up |
718 | return -1; |
719 | } |
720 | addr = addr->in(AddPNode::Address); |
721 | } |
722 | if (addr != base) { |
723 | return -1; |
724 | } |
725 | return count; |
726 | } |
727 | |
728 | //------------------------------match_edge------------------------------------- |
729 | // Do we Match on this edge index or not? Do not match base pointer edge |
730 | uint AddPNode::match_edge(uint idx) const { |
731 | return idx > Base; |
732 | } |
733 | |
734 | //============================================================================= |
735 | //------------------------------Identity--------------------------------------- |
736 | Node* OrINode::Identity(PhaseGVN* phase) { |
737 | // x | x => x |
738 | if (phase->eqv(in(1), in(2))) { |
739 | return in(1); |
740 | } |
741 | |
742 | return AddNode::Identity(phase); |
743 | } |
744 | |
745 | //------------------------------add_ring--------------------------------------- |
746 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
747 | // the logical operations the ring's ADD is really a logical OR function. |
748 | // This also type-checks the inputs for sanity. Guaranteed never to |
749 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
750 | const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { |
751 | const TypeInt *r0 = t0->is_int(); // Handy access |
752 | const TypeInt *r1 = t1->is_int(); |
753 | |
754 | // If both args are bool, can figure out better types |
755 | if ( r0 == TypeInt::BOOL ) { |
756 | if ( r1 == TypeInt::ONE) { |
757 | return TypeInt::ONE; |
758 | } else if ( r1 == TypeInt::BOOL ) { |
759 | return TypeInt::BOOL; |
760 | } |
761 | } else if ( r0 == TypeInt::ONE ) { |
762 | if ( r1 == TypeInt::BOOL ) { |
763 | return TypeInt::ONE; |
764 | } |
765 | } |
766 | |
767 | // If either input is not a constant, just return all integers. |
768 | if( !r0->is_con() || !r1->is_con() ) |
769 | return TypeInt::INT; // Any integer, but still no symbols. |
770 | |
771 | // Otherwise just OR them bits. |
772 | return TypeInt::make( r0->get_con() | r1->get_con() ); |
773 | } |
774 | |
775 | //============================================================================= |
776 | //------------------------------Identity--------------------------------------- |
777 | Node* OrLNode::Identity(PhaseGVN* phase) { |
778 | // x | x => x |
779 | if (phase->eqv(in(1), in(2))) { |
780 | return in(1); |
781 | } |
782 | |
783 | return AddNode::Identity(phase); |
784 | } |
785 | |
786 | //------------------------------add_ring--------------------------------------- |
787 | const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { |
788 | const TypeLong *r0 = t0->is_long(); // Handy access |
789 | const TypeLong *r1 = t1->is_long(); |
790 | |
791 | // If either input is not a constant, just return all integers. |
792 | if( !r0->is_con() || !r1->is_con() ) |
793 | return TypeLong::LONG; // Any integer, but still no symbols. |
794 | |
795 | // Otherwise just OR them bits. |
796 | return TypeLong::make( r0->get_con() | r1->get_con() ); |
797 | } |
798 | |
799 | //============================================================================= |
800 | //------------------------------add_ring--------------------------------------- |
801 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
802 | // the logical operations the ring's ADD is really a logical OR function. |
803 | // This also type-checks the inputs for sanity. Guaranteed never to |
804 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
805 | const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { |
806 | const TypeInt *r0 = t0->is_int(); // Handy access |
807 | const TypeInt *r1 = t1->is_int(); |
808 | |
809 | // Complementing a boolean? |
810 | if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE |
811 | || r1 == TypeInt::BOOL)) |
812 | return TypeInt::BOOL; |
813 | |
814 | if( !r0->is_con() || !r1->is_con() ) // Not constants |
815 | return TypeInt::INT; // Any integer, but still no symbols. |
816 | |
817 | // Otherwise just XOR them bits. |
818 | return TypeInt::make( r0->get_con() ^ r1->get_con() ); |
819 | } |
820 | |
821 | //============================================================================= |
822 | //------------------------------add_ring--------------------------------------- |
823 | const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { |
824 | const TypeLong *r0 = t0->is_long(); // Handy access |
825 | const TypeLong *r1 = t1->is_long(); |
826 | |
827 | // If either input is not a constant, just return all integers. |
828 | if( !r0->is_con() || !r1->is_con() ) |
829 | return TypeLong::LONG; // Any integer, but still no symbols. |
830 | |
831 | // Otherwise just OR them bits. |
832 | return TypeLong::make( r0->get_con() ^ r1->get_con() ); |
833 | } |
834 | |
835 | //============================================================================= |
836 | //------------------------------add_ring--------------------------------------- |
837 | // Supplied function returns the sum of the inputs. |
838 | const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { |
839 | const TypeInt *r0 = t0->is_int(); // Handy access |
840 | const TypeInt *r1 = t1->is_int(); |
841 | |
842 | // Otherwise just MAX them bits. |
843 | return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
844 | } |
845 | |
846 | //============================================================================= |
847 | //------------------------------Idealize--------------------------------------- |
848 | // MINs show up in range-check loop limit calculations. Look for |
849 | // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" |
850 | Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
851 | Node *progress = NULL; |
852 | // Force a right-spline graph |
853 | Node *l = in(1); |
854 | Node *r = in(2); |
855 | // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) ) |
856 | // to force a right-spline graph for the rest of MinINode::Ideal(). |
857 | if( l->Opcode() == Op_MinI ) { |
858 | assert( l != l->in(1), "dead loop in MinINode::Ideal" ); |
859 | r = phase->transform(new MinINode(l->in(2),r)); |
860 | l = l->in(1); |
861 | set_req(1, l); |
862 | set_req(2, r); |
863 | return this; |
864 | } |
865 | |
866 | // Get left input & constant |
867 | Node *x = l; |
868 | int x_off = 0; |
869 | if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant |
870 | x->in(2)->is_Con() ) { |
871 | const Type *t = x->in(2)->bottom_type(); |
872 | if( t == Type::TOP ) return NULL; // No progress |
873 | x_off = t->is_int()->get_con(); |
874 | x = x->in(1); |
875 | } |
876 | |
877 | // Scan a right-spline-tree for MINs |
878 | Node *y = r; |
879 | int y_off = 0; |
880 | // Check final part of MIN tree |
881 | if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant |
882 | y->in(2)->is_Con() ) { |
883 | const Type *t = y->in(2)->bottom_type(); |
884 | if( t == Type::TOP ) return NULL; // No progress |
885 | y_off = t->is_int()->get_con(); |
886 | y = y->in(1); |
887 | } |
888 | if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) { |
889 | swap_edges(1, 2); |
890 | return this; |
891 | } |
892 | |
893 | |
894 | if( r->Opcode() == Op_MinI ) { |
895 | assert( r != r->in(2), "dead loop in MinINode::Ideal" ); |
896 | y = r->in(1); |
897 | // Check final part of MIN tree |
898 | if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant |
899 | y->in(2)->is_Con() ) { |
900 | const Type *t = y->in(2)->bottom_type(); |
901 | if( t == Type::TOP ) return NULL; // No progress |
902 | y_off = t->is_int()->get_con(); |
903 | y = y->in(1); |
904 | } |
905 | |
906 | if( x->_idx > y->_idx ) |
907 | return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2)))); |
908 | |
909 | // See if covers: MIN2(x+c0,MIN2(y+c1,z)) |
910 | if( !phase->eqv(x,y) ) return NULL; |
911 | // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into |
912 | // MIN2(x+c0 or x+c1 which less, z). |
913 | return new MinINode(phase->transform(new AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2)); |
914 | } else { |
915 | // See if covers: MIN2(x+c0,y+c1) |
916 | if( !phase->eqv(x,y) ) return NULL; |
917 | // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less. |
918 | return new AddINode(x,phase->intcon(MIN2(x_off,y_off))); |
919 | } |
920 | |
921 | } |
922 | |
923 | //------------------------------add_ring--------------------------------------- |
924 | // Supplied function returns the sum of the inputs. |
925 | const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { |
926 | const TypeInt *r0 = t0->is_int(); // Handy access |
927 | const TypeInt *r1 = t1->is_int(); |
928 | |
929 | // Otherwise just MIN them bits. |
930 | return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
931 | } |
932 | |
933 | //------------------------------add_ring--------------------------------------- |
934 | const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const { |
935 | const TypeF *r0 = t0->is_float_constant(); |
936 | const TypeF *r1 = t1->is_float_constant(); |
937 | |
938 | if (r0->is_nan()) { |
939 | return r0; |
940 | } |
941 | if (r1->is_nan()) { |
942 | return r1; |
943 | } |
944 | |
945 | float f0 = r0->getf(); |
946 | float f1 = r1->getf(); |
947 | if (f0 != 0.0f || f1 != 0.0f) { |
948 | return f0 < f1 ? r0 : r1; |
949 | } |
950 | |
951 | // handle min of 0.0, -0.0 case. |
952 | return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; |
953 | } |
954 | |
955 | //------------------------------add_ring--------------------------------------- |
956 | const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const { |
957 | const TypeD *r0 = t0->is_double_constant(); |
958 | const TypeD *r1 = t1->is_double_constant(); |
959 | |
960 | if (r0->is_nan()) { |
961 | return r0; |
962 | } |
963 | if (r1->is_nan()) { |
964 | return r1; |
965 | } |
966 | |
967 | double d0 = r0->getd(); |
968 | double d1 = r1->getd(); |
969 | if (d0 != 0.0 || d1 != 0.0) { |
970 | return d0 < d1 ? r0 : r1; |
971 | } |
972 | |
973 | // handle min of 0.0, -0.0 case. |
974 | return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; |
975 | } |
976 | |
977 | //------------------------------add_ring--------------------------------------- |
978 | const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const { |
979 | const TypeF *r0 = t0->is_float_constant(); |
980 | const TypeF *r1 = t1->is_float_constant(); |
981 | |
982 | if (r0->is_nan()) { |
983 | return r0; |
984 | } |
985 | if (r1->is_nan()) { |
986 | return r1; |
987 | } |
988 | |
989 | float f0 = r0->getf(); |
990 | float f1 = r1->getf(); |
991 | if (f0 != 0.0f || f1 != 0.0f) { |
992 | return f0 > f1 ? r0 : r1; |
993 | } |
994 | |
995 | // handle max of 0.0,-0.0 case. |
996 | return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; |
997 | } |
998 | |
999 | //------------------------------add_ring--------------------------------------- |
1000 | const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const { |
1001 | const TypeD *r0 = t0->is_double_constant(); |
1002 | const TypeD *r1 = t1->is_double_constant(); |
1003 | |
1004 | if (r0->is_nan()) { |
1005 | return r0; |
1006 | } |
1007 | if (r1->is_nan()) { |
1008 | return r1; |
1009 | } |
1010 | |
1011 | double d0 = r0->getd(); |
1012 | double d1 = r1->getd(); |
1013 | if (d0 != 0.0 || d1 != 0.0) { |
1014 | return d0 > d1 ? r0 : r1; |
1015 | } |
1016 | |
1017 | // handle max of 0.0, -0.0 case. |
1018 | return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; |
1019 | } |
1020 | |