| 1 | /* |
| 2 | * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "opto/addnode.hpp" |
| 27 | #include "opto/castnode.hpp" |
| 28 | #include "opto/convertnode.hpp" |
| 29 | #include "opto/matcher.hpp" |
| 30 | #include "opto/phaseX.hpp" |
| 31 | #include "opto/subnode.hpp" |
| 32 | #include "runtime/sharedRuntime.hpp" |
| 33 | |
| 34 | //============================================================================= |
| 35 | //------------------------------Identity--------------------------------------- |
| 36 | Node* Conv2BNode::Identity(PhaseGVN* phase) { |
| 37 | const Type *t = phase->type( in(1) ); |
| 38 | if( t == Type::TOP ) return in(1); |
| 39 | if( t == TypeInt::ZERO ) return in(1); |
| 40 | if( t == TypeInt::ONE ) return in(1); |
| 41 | if( t == TypeInt::BOOL ) return in(1); |
| 42 | return this; |
| 43 | } |
| 44 | |
| 45 | //------------------------------Value------------------------------------------ |
| 46 | const Type* Conv2BNode::Value(PhaseGVN* phase) const { |
| 47 | const Type *t = phase->type( in(1) ); |
| 48 | if( t == Type::TOP ) return Type::TOP; |
| 49 | if( t == TypeInt::ZERO ) return TypeInt::ZERO; |
| 50 | if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO; |
| 51 | const TypePtr *tp = t->isa_ptr(); |
| 52 | if( tp != NULL ) { |
| 53 | if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP; |
| 54 | if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE; |
| 55 | if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE; |
| 56 | return TypeInt::BOOL; |
| 57 | } |
| 58 | if (t->base() != Type::Int) return TypeInt::BOOL; |
| 59 | const TypeInt *ti = t->is_int(); |
| 60 | if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE; |
| 61 | return TypeInt::BOOL; |
| 62 | } |
| 63 | |
| 64 | |
| 65 | // The conversions operations are all Alpha sorted. Please keep it that way! |
| 66 | //============================================================================= |
| 67 | //------------------------------Value------------------------------------------ |
| 68 | const Type* ConvD2FNode::Value(PhaseGVN* phase) const { |
| 69 | const Type *t = phase->type( in(1) ); |
| 70 | if( t == Type::TOP ) return Type::TOP; |
| 71 | if( t == Type::DOUBLE ) return Type::FLOAT; |
| 72 | const TypeD *td = t->is_double_constant(); |
| 73 | return TypeF::make( (float)td->getd() ); |
| 74 | } |
| 75 | |
| 76 | //------------------------------Ideal------------------------------------------ |
| 77 | // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float. |
| 78 | Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 79 | if ( in(1)->Opcode() == Op_SqrtD ) { |
| 80 | Node* sqrtd = in(1); |
| 81 | if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) { |
| 82 | if ( Matcher::match_rule_supported(Op_SqrtF) ) { |
| 83 | Node* convf2d = sqrtd->in(1); |
| 84 | return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1)); |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | return NULL; |
| 89 | } |
| 90 | |
| 91 | //------------------------------Identity--------------------------------------- |
| 92 | // Float's can be converted to doubles with no loss of bits. Hence |
| 93 | // converting a float to a double and back to a float is a NOP. |
| 94 | Node* ConvD2FNode::Identity(PhaseGVN* phase) { |
| 95 | return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this; |
| 96 | } |
| 97 | |
| 98 | //============================================================================= |
| 99 | //------------------------------Value------------------------------------------ |
| 100 | const Type* ConvD2INode::Value(PhaseGVN* phase) const { |
| 101 | const Type *t = phase->type( in(1) ); |
| 102 | if( t == Type::TOP ) return Type::TOP; |
| 103 | if( t == Type::DOUBLE ) return TypeInt::INT; |
| 104 | const TypeD *td = t->is_double_constant(); |
| 105 | return TypeInt::make( SharedRuntime::d2i( td->getd() ) ); |
| 106 | } |
| 107 | |
| 108 | //------------------------------Ideal------------------------------------------ |
| 109 | // If converting to an int type, skip any rounding nodes |
| 110 | Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 111 | if( in(1)->Opcode() == Op_RoundDouble ) |
| 112 | set_req(1,in(1)->in(1)); |
| 113 | return NULL; |
| 114 | } |
| 115 | |
| 116 | //------------------------------Identity--------------------------------------- |
| 117 | // Int's can be converted to doubles with no loss of bits. Hence |
| 118 | // converting an integer to a double and back to an integer is a NOP. |
| 119 | Node* ConvD2INode::Identity(PhaseGVN* phase) { |
| 120 | return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this; |
| 121 | } |
| 122 | |
| 123 | //============================================================================= |
| 124 | //------------------------------Value------------------------------------------ |
| 125 | const Type* ConvD2LNode::Value(PhaseGVN* phase) const { |
| 126 | const Type *t = phase->type( in(1) ); |
| 127 | if( t == Type::TOP ) return Type::TOP; |
| 128 | if( t == Type::DOUBLE ) return TypeLong::LONG; |
| 129 | const TypeD *td = t->is_double_constant(); |
| 130 | return TypeLong::make( SharedRuntime::d2l( td->getd() ) ); |
| 131 | } |
| 132 | |
| 133 | //------------------------------Identity--------------------------------------- |
| 134 | Node* ConvD2LNode::Identity(PhaseGVN* phase) { |
| 135 | // Remove ConvD2L->ConvL2D->ConvD2L sequences. |
| 136 | if( in(1) ->Opcode() == Op_ConvL2D && |
| 137 | in(1)->in(1)->Opcode() == Op_ConvD2L ) |
| 138 | return in(1)->in(1); |
| 139 | return this; |
| 140 | } |
| 141 | |
| 142 | //------------------------------Ideal------------------------------------------ |
| 143 | // If converting to an int type, skip any rounding nodes |
| 144 | Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 145 | if( in(1)->Opcode() == Op_RoundDouble ) |
| 146 | set_req(1,in(1)->in(1)); |
| 147 | return NULL; |
| 148 | } |
| 149 | |
| 150 | //============================================================================= |
| 151 | //------------------------------Value------------------------------------------ |
| 152 | const Type* ConvF2DNode::Value(PhaseGVN* phase) const { |
| 153 | const Type *t = phase->type( in(1) ); |
| 154 | if( t == Type::TOP ) return Type::TOP; |
| 155 | if( t == Type::FLOAT ) return Type::DOUBLE; |
| 156 | const TypeF *tf = t->is_float_constant(); |
| 157 | return TypeD::make( (double)tf->getf() ); |
| 158 | } |
| 159 | |
| 160 | //============================================================================= |
| 161 | //------------------------------Value------------------------------------------ |
| 162 | const Type* ConvF2INode::Value(PhaseGVN* phase) const { |
| 163 | const Type *t = phase->type( in(1) ); |
| 164 | if( t == Type::TOP ) return Type::TOP; |
| 165 | if( t == Type::FLOAT ) return TypeInt::INT; |
| 166 | const TypeF *tf = t->is_float_constant(); |
| 167 | return TypeInt::make( SharedRuntime::f2i( tf->getf() ) ); |
| 168 | } |
| 169 | |
| 170 | //------------------------------Identity--------------------------------------- |
| 171 | Node* ConvF2INode::Identity(PhaseGVN* phase) { |
| 172 | // Remove ConvF2I->ConvI2F->ConvF2I sequences. |
| 173 | if( in(1) ->Opcode() == Op_ConvI2F && |
| 174 | in(1)->in(1)->Opcode() == Op_ConvF2I ) |
| 175 | return in(1)->in(1); |
| 176 | return this; |
| 177 | } |
| 178 | |
| 179 | //------------------------------Ideal------------------------------------------ |
| 180 | // If converting to an int type, skip any rounding nodes |
| 181 | Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 182 | if( in(1)->Opcode() == Op_RoundFloat ) |
| 183 | set_req(1,in(1)->in(1)); |
| 184 | return NULL; |
| 185 | } |
| 186 | |
| 187 | //============================================================================= |
| 188 | //------------------------------Value------------------------------------------ |
| 189 | const Type* ConvF2LNode::Value(PhaseGVN* phase) const { |
| 190 | const Type *t = phase->type( in(1) ); |
| 191 | if( t == Type::TOP ) return Type::TOP; |
| 192 | if( t == Type::FLOAT ) return TypeLong::LONG; |
| 193 | const TypeF *tf = t->is_float_constant(); |
| 194 | return TypeLong::make( SharedRuntime::f2l( tf->getf() ) ); |
| 195 | } |
| 196 | |
| 197 | //------------------------------Identity--------------------------------------- |
| 198 | Node* ConvF2LNode::Identity(PhaseGVN* phase) { |
| 199 | // Remove ConvF2L->ConvL2F->ConvF2L sequences. |
| 200 | if( in(1) ->Opcode() == Op_ConvL2F && |
| 201 | in(1)->in(1)->Opcode() == Op_ConvF2L ) |
| 202 | return in(1)->in(1); |
| 203 | return this; |
| 204 | } |
| 205 | |
| 206 | //------------------------------Ideal------------------------------------------ |
| 207 | // If converting to an int type, skip any rounding nodes |
| 208 | Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 209 | if( in(1)->Opcode() == Op_RoundFloat ) |
| 210 | set_req(1,in(1)->in(1)); |
| 211 | return NULL; |
| 212 | } |
| 213 | |
| 214 | //============================================================================= |
| 215 | //------------------------------Value------------------------------------------ |
| 216 | const Type* ConvI2DNode::Value(PhaseGVN* phase) const { |
| 217 | const Type *t = phase->type( in(1) ); |
| 218 | if( t == Type::TOP ) return Type::TOP; |
| 219 | const TypeInt *ti = t->is_int(); |
| 220 | if( ti->is_con() ) return TypeD::make( (double)ti->get_con() ); |
| 221 | return bottom_type(); |
| 222 | } |
| 223 | |
| 224 | //============================================================================= |
| 225 | //------------------------------Value------------------------------------------ |
| 226 | const Type* ConvI2FNode::Value(PhaseGVN* phase) const { |
| 227 | const Type *t = phase->type( in(1) ); |
| 228 | if( t == Type::TOP ) return Type::TOP; |
| 229 | const TypeInt *ti = t->is_int(); |
| 230 | if( ti->is_con() ) return TypeF::make( (float)ti->get_con() ); |
| 231 | return bottom_type(); |
| 232 | } |
| 233 | |
| 234 | //------------------------------Identity--------------------------------------- |
| 235 | Node* ConvI2FNode::Identity(PhaseGVN* phase) { |
| 236 | // Remove ConvI2F->ConvF2I->ConvI2F sequences. |
| 237 | if( in(1) ->Opcode() == Op_ConvF2I && |
| 238 | in(1)->in(1)->Opcode() == Op_ConvI2F ) |
| 239 | return in(1)->in(1); |
| 240 | return this; |
| 241 | } |
| 242 | |
| 243 | //============================================================================= |
| 244 | //------------------------------Value------------------------------------------ |
| 245 | const Type* ConvI2LNode::Value(PhaseGVN* phase) const { |
| 246 | const Type *t = phase->type( in(1) ); |
| 247 | if( t == Type::TOP ) return Type::TOP; |
| 248 | const TypeInt *ti = t->is_int(); |
| 249 | const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen); |
| 250 | // Join my declared type against my incoming type. |
| 251 | tl = tl->filter(_type); |
| 252 | return tl; |
| 253 | } |
| 254 | |
| 255 | #ifdef _LP64 |
| 256 | static inline bool long_ranges_overlap(jlong lo1, jlong hi1, |
| 257 | jlong lo2, jlong hi2) { |
| 258 | // Two ranges overlap iff one range's low point falls in the other range. |
| 259 | return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1); |
| 260 | } |
| 261 | #endif |
| 262 | |
| 263 | //------------------------------Ideal------------------------------------------ |
| 264 | Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 265 | const TypeLong* this_type = this->type()->is_long(); |
| 266 | Node* this_changed = NULL; |
| 267 | |
| 268 | // If _major_progress, then more loop optimizations follow. Do NOT |
| 269 | // remove this node's type assertion until no more loop ops can happen. |
| 270 | // The progress bit is set in the major loop optimizations THEN comes the |
| 271 | // call to IterGVN and any chance of hitting this code. Cf. Opaque1Node. |
| 272 | if (can_reshape && !phase->C->major_progress()) { |
| 273 | const TypeInt* in_type = phase->type(in(1))->isa_int(); |
| 274 | if (in_type != NULL && this_type != NULL && |
| 275 | (in_type->_lo != this_type->_lo || |
| 276 | in_type->_hi != this_type->_hi)) { |
| 277 | // Although this WORSENS the type, it increases GVN opportunities, |
| 278 | // because I2L nodes with the same input will common up, regardless |
| 279 | // of slightly differing type assertions. Such slight differences |
| 280 | // arise routinely as a result of loop unrolling, so this is a |
| 281 | // post-unrolling graph cleanup. Choose a type which depends only |
| 282 | // on my input. (Exception: Keep a range assertion of >=0 or <0.) |
| 283 | jlong lo1 = this_type->_lo; |
| 284 | jlong hi1 = this_type->_hi; |
| 285 | int w1 = this_type->_widen; |
| 286 | if (lo1 != (jint)lo1 || |
| 287 | hi1 != (jint)hi1 || |
| 288 | lo1 > hi1) { |
| 289 | // Overflow leads to wraparound, wraparound leads to range saturation. |
| 290 | lo1 = min_jint; hi1 = max_jint; |
| 291 | } else if (lo1 >= 0) { |
| 292 | // Keep a range assertion of >=0. |
| 293 | lo1 = 0; hi1 = max_jint; |
| 294 | } else if (hi1 < 0) { |
| 295 | // Keep a range assertion of <0. |
| 296 | lo1 = min_jint; hi1 = -1; |
| 297 | } else { |
| 298 | lo1 = min_jint; hi1 = max_jint; |
| 299 | } |
| 300 | const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1), |
| 301 | MIN2((jlong)in_type->_hi, hi1), |
| 302 | MAX2((int)in_type->_widen, w1)); |
| 303 | if (wtype != type()) { |
| 304 | set_type(wtype); |
| 305 | // Note: this_type still has old type value, for the logic below. |
| 306 | this_changed = this; |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | #ifdef _LP64 |
| 312 | // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) |
| 313 | // but only if x and y have subranges that cannot cause 32-bit overflow, |
| 314 | // under the assumption that x+y is in my own subrange this->type(). |
| 315 | |
| 316 | // This assumption is based on a constraint (i.e., type assertion) |
| 317 | // established in Parse::array_addressing or perhaps elsewhere. |
| 318 | // This constraint has been adjoined to the "natural" type of |
| 319 | // the incoming argument in(0). We know (because of runtime |
| 320 | // checks) - that the result value I2L(x+y) is in the joined range. |
| 321 | // Hence we can restrict the incoming terms (x, y) to values such |
| 322 | // that their sum also lands in that range. |
| 323 | |
| 324 | // This optimization is useful only on 64-bit systems, where we hope |
| 325 | // the addition will end up subsumed in an addressing mode. |
| 326 | // It is necessary to do this when optimizing an unrolled array |
| 327 | // copy loop such as x[i++] = y[i++]. |
| 328 | |
| 329 | // On 32-bit systems, it's better to perform as much 32-bit math as |
| 330 | // possible before the I2L conversion, because 32-bit math is cheaper. |
| 331 | // There's no common reason to "leak" a constant offset through the I2L. |
| 332 | // Addressing arithmetic will not absorb it as part of a 64-bit AddL. |
| 333 | |
| 334 | Node* z = in(1); |
| 335 | int op = z->Opcode(); |
| 336 | if (op == Op_AddI || op == Op_SubI) { |
| 337 | Node* x = z->in(1); |
| 338 | Node* y = z->in(2); |
| 339 | assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal" ); |
| 340 | if (phase->type(x) == Type::TOP) return this_changed; |
| 341 | if (phase->type(y) == Type::TOP) return this_changed; |
| 342 | const TypeInt* tx = phase->type(x)->is_int(); |
| 343 | const TypeInt* ty = phase->type(y)->is_int(); |
| 344 | const TypeLong* tz = this_type; |
| 345 | jlong xlo = tx->_lo; |
| 346 | jlong xhi = tx->_hi; |
| 347 | jlong ylo = ty->_lo; |
| 348 | jlong yhi = ty->_hi; |
| 349 | jlong zlo = tz->_lo; |
| 350 | jlong zhi = tz->_hi; |
| 351 | jlong vbit = CONST64(1) << BitsPerInt; |
| 352 | int widen = MAX2(tx->_widen, ty->_widen); |
| 353 | if (op == Op_SubI) { |
| 354 | jlong ylo0 = ylo; |
| 355 | ylo = -yhi; |
| 356 | yhi = -ylo0; |
| 357 | } |
| 358 | // See if x+y can cause positive overflow into z+2**32 |
| 359 | if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) { |
| 360 | return this_changed; |
| 361 | } |
| 362 | // See if x+y can cause negative overflow into z-2**32 |
| 363 | if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) { |
| 364 | return this_changed; |
| 365 | } |
| 366 | // Now it's always safe to assume x+y does not overflow. |
| 367 | // This is true even if some pairs x,y might cause overflow, as long |
| 368 | // as that overflow value cannot fall into [zlo,zhi]. |
| 369 | |
| 370 | // Confident that the arithmetic is "as if infinite precision", |
| 371 | // we can now use z's range to put constraints on those of x and y. |
| 372 | // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a |
| 373 | // more "restricted" range by intersecting [xlo,xhi] with the |
| 374 | // range obtained by subtracting y's range from the asserted range |
| 375 | // of the I2L conversion. Here's the interval arithmetic algebra: |
| 376 | // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo] |
| 377 | // => x in [zlo-yhi, zhi-ylo] |
| 378 | // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi] |
| 379 | // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo] |
| 380 | jlong rxlo = MAX2(xlo, zlo - yhi); |
| 381 | jlong rxhi = MIN2(xhi, zhi - ylo); |
| 382 | // And similarly, x changing place with y: |
| 383 | jlong rylo = MAX2(ylo, zlo - xhi); |
| 384 | jlong ryhi = MIN2(yhi, zhi - xlo); |
| 385 | if (rxlo > rxhi || rylo > ryhi) { |
| 386 | return this_changed; // x or y is dying; don't mess w/ it |
| 387 | } |
| 388 | if (op == Op_SubI) { |
| 389 | jlong rylo0 = rylo; |
| 390 | rylo = -ryhi; |
| 391 | ryhi = -rylo0; |
| 392 | } |
| 393 | assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow" ); |
| 394 | assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow" ); |
| 395 | Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL); |
| 396 | Node *hook = new Node(1); |
| 397 | hook->init_req(0, cx); // Add a use to cx to prevent him from dying |
| 398 | Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL); |
| 399 | hook->del_req(0); // Just yank bogus edge |
| 400 | hook->destruct(); |
| 401 | switch (op) { |
| 402 | case Op_AddI: return new AddLNode(cx, cy); |
| 403 | case Op_SubI: return new SubLNode(cx, cy); |
| 404 | default: ShouldNotReachHere(); |
| 405 | } |
| 406 | } |
| 407 | #endif //_LP64 |
| 408 | |
| 409 | return this_changed; |
| 410 | } |
| 411 | |
| 412 | //============================================================================= |
| 413 | //------------------------------Value------------------------------------------ |
| 414 | const Type* ConvL2DNode::Value(PhaseGVN* phase) const { |
| 415 | const Type *t = phase->type( in(1) ); |
| 416 | if( t == Type::TOP ) return Type::TOP; |
| 417 | const TypeLong *tl = t->is_long(); |
| 418 | if( tl->is_con() ) return TypeD::make( (double)tl->get_con() ); |
| 419 | return bottom_type(); |
| 420 | } |
| 421 | |
| 422 | //============================================================================= |
| 423 | //------------------------------Value------------------------------------------ |
| 424 | const Type* ConvL2FNode::Value(PhaseGVN* phase) const { |
| 425 | const Type *t = phase->type( in(1) ); |
| 426 | if( t == Type::TOP ) return Type::TOP; |
| 427 | const TypeLong *tl = t->is_long(); |
| 428 | if( tl->is_con() ) return TypeF::make( (float)tl->get_con() ); |
| 429 | return bottom_type(); |
| 430 | } |
| 431 | |
| 432 | //============================================================================= |
| 433 | //----------------------------Identity----------------------------------------- |
| 434 | Node* ConvL2INode::Identity(PhaseGVN* phase) { |
| 435 | // Convert L2I(I2L(x)) => x |
| 436 | if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1); |
| 437 | return this; |
| 438 | } |
| 439 | |
| 440 | //------------------------------Value------------------------------------------ |
| 441 | const Type* ConvL2INode::Value(PhaseGVN* phase) const { |
| 442 | const Type *t = phase->type( in(1) ); |
| 443 | if( t == Type::TOP ) return Type::TOP; |
| 444 | const TypeLong *tl = t->is_long(); |
| 445 | if (tl->is_con()) |
| 446 | // Easy case. |
| 447 | return TypeInt::make((jint)tl->get_con()); |
| 448 | return bottom_type(); |
| 449 | } |
| 450 | |
| 451 | //------------------------------Ideal------------------------------------------ |
| 452 | // Return a node which is more "ideal" than the current node. |
| 453 | // Blow off prior masking to int |
| 454 | Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 455 | Node *andl = in(1); |
| 456 | uint andl_op = andl->Opcode(); |
| 457 | if( andl_op == Op_AndL ) { |
| 458 | // Blow off prior masking to int |
| 459 | if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) { |
| 460 | set_req(1,andl->in(1)); |
| 461 | return this; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) |
| 466 | // This replaces an 'AddL' with an 'AddI'. |
| 467 | if( andl_op == Op_AddL ) { |
| 468 | // Don't do this for nodes which have more than one user since |
| 469 | // we'll end up computing the long add anyway. |
| 470 | if (andl->outcnt() > 1) return NULL; |
| 471 | |
| 472 | Node* x = andl->in(1); |
| 473 | Node* y = andl->in(2); |
| 474 | assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" ); |
| 475 | if (phase->type(x) == Type::TOP) return NULL; |
| 476 | if (phase->type(y) == Type::TOP) return NULL; |
| 477 | Node *add1 = phase->transform(new ConvL2INode(x)); |
| 478 | Node *add2 = phase->transform(new ConvL2INode(y)); |
| 479 | return new AddINode(add1,add2); |
| 480 | } |
| 481 | |
| 482 | // Disable optimization: LoadL->ConvL2I ==> LoadI. |
| 483 | // It causes problems (sizes of Load and Store nodes do not match) |
| 484 | // in objects initialization code and Escape Analysis. |
| 485 | return NULL; |
| 486 | } |
| 487 | |
| 488 | |
| 489 | |
| 490 | //============================================================================= |
| 491 | //------------------------------Identity--------------------------------------- |
| 492 | // Remove redundant roundings |
| 493 | Node* RoundFloatNode::Identity(PhaseGVN* phase) { |
| 494 | assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel" ); |
| 495 | // Do not round constants |
| 496 | if (phase->type(in(1))->base() == Type::FloatCon) return in(1); |
| 497 | int op = in(1)->Opcode(); |
| 498 | // Redundant rounding |
| 499 | if( op == Op_RoundFloat ) return in(1); |
| 500 | // Already rounded |
| 501 | if( op == Op_Parm ) return in(1); |
| 502 | if( op == Op_LoadF ) return in(1); |
| 503 | return this; |
| 504 | } |
| 505 | |
| 506 | //------------------------------Value------------------------------------------ |
| 507 | const Type* RoundFloatNode::Value(PhaseGVN* phase) const { |
| 508 | return phase->type( in(1) ); |
| 509 | } |
| 510 | |
| 511 | //============================================================================= |
| 512 | //------------------------------Identity--------------------------------------- |
| 513 | // Remove redundant roundings. Incoming arguments are already rounded. |
| 514 | Node* RoundDoubleNode::Identity(PhaseGVN* phase) { |
| 515 | assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel" ); |
| 516 | // Do not round constants |
| 517 | if (phase->type(in(1))->base() == Type::DoubleCon) return in(1); |
| 518 | int op = in(1)->Opcode(); |
| 519 | // Redundant rounding |
| 520 | if( op == Op_RoundDouble ) return in(1); |
| 521 | // Already rounded |
| 522 | if( op == Op_Parm ) return in(1); |
| 523 | if( op == Op_LoadD ) return in(1); |
| 524 | if( op == Op_ConvF2D ) return in(1); |
| 525 | if( op == Op_ConvI2D ) return in(1); |
| 526 | return this; |
| 527 | } |
| 528 | |
| 529 | //------------------------------Value------------------------------------------ |
| 530 | const Type* RoundDoubleNode::Value(PhaseGVN* phase) const { |
| 531 | return phase->type( in(1) ); |
| 532 | } |
| 533 | |
| 534 | |
| 535 | |