1 | /* |
2 | * Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "opto/addnode.hpp" |
27 | #include "opto/castnode.hpp" |
28 | #include "opto/convertnode.hpp" |
29 | #include "opto/matcher.hpp" |
30 | #include "opto/phaseX.hpp" |
31 | #include "opto/subnode.hpp" |
32 | #include "runtime/sharedRuntime.hpp" |
33 | |
34 | //============================================================================= |
35 | //------------------------------Identity--------------------------------------- |
36 | Node* Conv2BNode::Identity(PhaseGVN* phase) { |
37 | const Type *t = phase->type( in(1) ); |
38 | if( t == Type::TOP ) return in(1); |
39 | if( t == TypeInt::ZERO ) return in(1); |
40 | if( t == TypeInt::ONE ) return in(1); |
41 | if( t == TypeInt::BOOL ) return in(1); |
42 | return this; |
43 | } |
44 | |
45 | //------------------------------Value------------------------------------------ |
46 | const Type* Conv2BNode::Value(PhaseGVN* phase) const { |
47 | const Type *t = phase->type( in(1) ); |
48 | if( t == Type::TOP ) return Type::TOP; |
49 | if( t == TypeInt::ZERO ) return TypeInt::ZERO; |
50 | if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO; |
51 | const TypePtr *tp = t->isa_ptr(); |
52 | if( tp != NULL ) { |
53 | if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP; |
54 | if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE; |
55 | if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE; |
56 | return TypeInt::BOOL; |
57 | } |
58 | if (t->base() != Type::Int) return TypeInt::BOOL; |
59 | const TypeInt *ti = t->is_int(); |
60 | if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE; |
61 | return TypeInt::BOOL; |
62 | } |
63 | |
64 | |
65 | // The conversions operations are all Alpha sorted. Please keep it that way! |
66 | //============================================================================= |
67 | //------------------------------Value------------------------------------------ |
68 | const Type* ConvD2FNode::Value(PhaseGVN* phase) const { |
69 | const Type *t = phase->type( in(1) ); |
70 | if( t == Type::TOP ) return Type::TOP; |
71 | if( t == Type::DOUBLE ) return Type::FLOAT; |
72 | const TypeD *td = t->is_double_constant(); |
73 | return TypeF::make( (float)td->getd() ); |
74 | } |
75 | |
76 | //------------------------------Ideal------------------------------------------ |
77 | // If we see pattern ConvF2D SomeDoubleOp ConvD2F, do operation as float. |
78 | Node *ConvD2FNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
79 | if ( in(1)->Opcode() == Op_SqrtD ) { |
80 | Node* sqrtd = in(1); |
81 | if ( sqrtd->in(1)->Opcode() == Op_ConvF2D ) { |
82 | if ( Matcher::match_rule_supported(Op_SqrtF) ) { |
83 | Node* convf2d = sqrtd->in(1); |
84 | return new SqrtFNode(phase->C, sqrtd->in(0), convf2d->in(1)); |
85 | } |
86 | } |
87 | } |
88 | return NULL; |
89 | } |
90 | |
91 | //------------------------------Identity--------------------------------------- |
92 | // Float's can be converted to doubles with no loss of bits. Hence |
93 | // converting a float to a double and back to a float is a NOP. |
94 | Node* ConvD2FNode::Identity(PhaseGVN* phase) { |
95 | return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this; |
96 | } |
97 | |
98 | //============================================================================= |
99 | //------------------------------Value------------------------------------------ |
100 | const Type* ConvD2INode::Value(PhaseGVN* phase) const { |
101 | const Type *t = phase->type( in(1) ); |
102 | if( t == Type::TOP ) return Type::TOP; |
103 | if( t == Type::DOUBLE ) return TypeInt::INT; |
104 | const TypeD *td = t->is_double_constant(); |
105 | return TypeInt::make( SharedRuntime::d2i( td->getd() ) ); |
106 | } |
107 | |
108 | //------------------------------Ideal------------------------------------------ |
109 | // If converting to an int type, skip any rounding nodes |
110 | Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
111 | if( in(1)->Opcode() == Op_RoundDouble ) |
112 | set_req(1,in(1)->in(1)); |
113 | return NULL; |
114 | } |
115 | |
116 | //------------------------------Identity--------------------------------------- |
117 | // Int's can be converted to doubles with no loss of bits. Hence |
118 | // converting an integer to a double and back to an integer is a NOP. |
119 | Node* ConvD2INode::Identity(PhaseGVN* phase) { |
120 | return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this; |
121 | } |
122 | |
123 | //============================================================================= |
124 | //------------------------------Value------------------------------------------ |
125 | const Type* ConvD2LNode::Value(PhaseGVN* phase) const { |
126 | const Type *t = phase->type( in(1) ); |
127 | if( t == Type::TOP ) return Type::TOP; |
128 | if( t == Type::DOUBLE ) return TypeLong::LONG; |
129 | const TypeD *td = t->is_double_constant(); |
130 | return TypeLong::make( SharedRuntime::d2l( td->getd() ) ); |
131 | } |
132 | |
133 | //------------------------------Identity--------------------------------------- |
134 | Node* ConvD2LNode::Identity(PhaseGVN* phase) { |
135 | // Remove ConvD2L->ConvL2D->ConvD2L sequences. |
136 | if( in(1) ->Opcode() == Op_ConvL2D && |
137 | in(1)->in(1)->Opcode() == Op_ConvD2L ) |
138 | return in(1)->in(1); |
139 | return this; |
140 | } |
141 | |
142 | //------------------------------Ideal------------------------------------------ |
143 | // If converting to an int type, skip any rounding nodes |
144 | Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
145 | if( in(1)->Opcode() == Op_RoundDouble ) |
146 | set_req(1,in(1)->in(1)); |
147 | return NULL; |
148 | } |
149 | |
150 | //============================================================================= |
151 | //------------------------------Value------------------------------------------ |
152 | const Type* ConvF2DNode::Value(PhaseGVN* phase) const { |
153 | const Type *t = phase->type( in(1) ); |
154 | if( t == Type::TOP ) return Type::TOP; |
155 | if( t == Type::FLOAT ) return Type::DOUBLE; |
156 | const TypeF *tf = t->is_float_constant(); |
157 | return TypeD::make( (double)tf->getf() ); |
158 | } |
159 | |
160 | //============================================================================= |
161 | //------------------------------Value------------------------------------------ |
162 | const Type* ConvF2INode::Value(PhaseGVN* phase) const { |
163 | const Type *t = phase->type( in(1) ); |
164 | if( t == Type::TOP ) return Type::TOP; |
165 | if( t == Type::FLOAT ) return TypeInt::INT; |
166 | const TypeF *tf = t->is_float_constant(); |
167 | return TypeInt::make( SharedRuntime::f2i( tf->getf() ) ); |
168 | } |
169 | |
170 | //------------------------------Identity--------------------------------------- |
171 | Node* ConvF2INode::Identity(PhaseGVN* phase) { |
172 | // Remove ConvF2I->ConvI2F->ConvF2I sequences. |
173 | if( in(1) ->Opcode() == Op_ConvI2F && |
174 | in(1)->in(1)->Opcode() == Op_ConvF2I ) |
175 | return in(1)->in(1); |
176 | return this; |
177 | } |
178 | |
179 | //------------------------------Ideal------------------------------------------ |
180 | // If converting to an int type, skip any rounding nodes |
181 | Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
182 | if( in(1)->Opcode() == Op_RoundFloat ) |
183 | set_req(1,in(1)->in(1)); |
184 | return NULL; |
185 | } |
186 | |
187 | //============================================================================= |
188 | //------------------------------Value------------------------------------------ |
189 | const Type* ConvF2LNode::Value(PhaseGVN* phase) const { |
190 | const Type *t = phase->type( in(1) ); |
191 | if( t == Type::TOP ) return Type::TOP; |
192 | if( t == Type::FLOAT ) return TypeLong::LONG; |
193 | const TypeF *tf = t->is_float_constant(); |
194 | return TypeLong::make( SharedRuntime::f2l( tf->getf() ) ); |
195 | } |
196 | |
197 | //------------------------------Identity--------------------------------------- |
198 | Node* ConvF2LNode::Identity(PhaseGVN* phase) { |
199 | // Remove ConvF2L->ConvL2F->ConvF2L sequences. |
200 | if( in(1) ->Opcode() == Op_ConvL2F && |
201 | in(1)->in(1)->Opcode() == Op_ConvF2L ) |
202 | return in(1)->in(1); |
203 | return this; |
204 | } |
205 | |
206 | //------------------------------Ideal------------------------------------------ |
207 | // If converting to an int type, skip any rounding nodes |
208 | Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
209 | if( in(1)->Opcode() == Op_RoundFloat ) |
210 | set_req(1,in(1)->in(1)); |
211 | return NULL; |
212 | } |
213 | |
214 | //============================================================================= |
215 | //------------------------------Value------------------------------------------ |
216 | const Type* ConvI2DNode::Value(PhaseGVN* phase) const { |
217 | const Type *t = phase->type( in(1) ); |
218 | if( t == Type::TOP ) return Type::TOP; |
219 | const TypeInt *ti = t->is_int(); |
220 | if( ti->is_con() ) return TypeD::make( (double)ti->get_con() ); |
221 | return bottom_type(); |
222 | } |
223 | |
224 | //============================================================================= |
225 | //------------------------------Value------------------------------------------ |
226 | const Type* ConvI2FNode::Value(PhaseGVN* phase) const { |
227 | const Type *t = phase->type( in(1) ); |
228 | if( t == Type::TOP ) return Type::TOP; |
229 | const TypeInt *ti = t->is_int(); |
230 | if( ti->is_con() ) return TypeF::make( (float)ti->get_con() ); |
231 | return bottom_type(); |
232 | } |
233 | |
234 | //------------------------------Identity--------------------------------------- |
235 | Node* ConvI2FNode::Identity(PhaseGVN* phase) { |
236 | // Remove ConvI2F->ConvF2I->ConvI2F sequences. |
237 | if( in(1) ->Opcode() == Op_ConvF2I && |
238 | in(1)->in(1)->Opcode() == Op_ConvI2F ) |
239 | return in(1)->in(1); |
240 | return this; |
241 | } |
242 | |
243 | //============================================================================= |
244 | //------------------------------Value------------------------------------------ |
245 | const Type* ConvI2LNode::Value(PhaseGVN* phase) const { |
246 | const Type *t = phase->type( in(1) ); |
247 | if( t == Type::TOP ) return Type::TOP; |
248 | const TypeInt *ti = t->is_int(); |
249 | const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen); |
250 | // Join my declared type against my incoming type. |
251 | tl = tl->filter(_type); |
252 | return tl; |
253 | } |
254 | |
255 | #ifdef _LP64 |
256 | static inline bool long_ranges_overlap(jlong lo1, jlong hi1, |
257 | jlong lo2, jlong hi2) { |
258 | // Two ranges overlap iff one range's low point falls in the other range. |
259 | return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1); |
260 | } |
261 | #endif |
262 | |
263 | //------------------------------Ideal------------------------------------------ |
264 | Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
265 | const TypeLong* this_type = this->type()->is_long(); |
266 | Node* this_changed = NULL; |
267 | |
268 | // If _major_progress, then more loop optimizations follow. Do NOT |
269 | // remove this node's type assertion until no more loop ops can happen. |
270 | // The progress bit is set in the major loop optimizations THEN comes the |
271 | // call to IterGVN and any chance of hitting this code. Cf. Opaque1Node. |
272 | if (can_reshape && !phase->C->major_progress()) { |
273 | const TypeInt* in_type = phase->type(in(1))->isa_int(); |
274 | if (in_type != NULL && this_type != NULL && |
275 | (in_type->_lo != this_type->_lo || |
276 | in_type->_hi != this_type->_hi)) { |
277 | // Although this WORSENS the type, it increases GVN opportunities, |
278 | // because I2L nodes with the same input will common up, regardless |
279 | // of slightly differing type assertions. Such slight differences |
280 | // arise routinely as a result of loop unrolling, so this is a |
281 | // post-unrolling graph cleanup. Choose a type which depends only |
282 | // on my input. (Exception: Keep a range assertion of >=0 or <0.) |
283 | jlong lo1 = this_type->_lo; |
284 | jlong hi1 = this_type->_hi; |
285 | int w1 = this_type->_widen; |
286 | if (lo1 != (jint)lo1 || |
287 | hi1 != (jint)hi1 || |
288 | lo1 > hi1) { |
289 | // Overflow leads to wraparound, wraparound leads to range saturation. |
290 | lo1 = min_jint; hi1 = max_jint; |
291 | } else if (lo1 >= 0) { |
292 | // Keep a range assertion of >=0. |
293 | lo1 = 0; hi1 = max_jint; |
294 | } else if (hi1 < 0) { |
295 | // Keep a range assertion of <0. |
296 | lo1 = min_jint; hi1 = -1; |
297 | } else { |
298 | lo1 = min_jint; hi1 = max_jint; |
299 | } |
300 | const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1), |
301 | MIN2((jlong)in_type->_hi, hi1), |
302 | MAX2((int)in_type->_widen, w1)); |
303 | if (wtype != type()) { |
304 | set_type(wtype); |
305 | // Note: this_type still has old type value, for the logic below. |
306 | this_changed = this; |
307 | } |
308 | } |
309 | } |
310 | |
311 | #ifdef _LP64 |
312 | // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) |
313 | // but only if x and y have subranges that cannot cause 32-bit overflow, |
314 | // under the assumption that x+y is in my own subrange this->type(). |
315 | |
316 | // This assumption is based on a constraint (i.e., type assertion) |
317 | // established in Parse::array_addressing or perhaps elsewhere. |
318 | // This constraint has been adjoined to the "natural" type of |
319 | // the incoming argument in(0). We know (because of runtime |
320 | // checks) - that the result value I2L(x+y) is in the joined range. |
321 | // Hence we can restrict the incoming terms (x, y) to values such |
322 | // that their sum also lands in that range. |
323 | |
324 | // This optimization is useful only on 64-bit systems, where we hope |
325 | // the addition will end up subsumed in an addressing mode. |
326 | // It is necessary to do this when optimizing an unrolled array |
327 | // copy loop such as x[i++] = y[i++]. |
328 | |
329 | // On 32-bit systems, it's better to perform as much 32-bit math as |
330 | // possible before the I2L conversion, because 32-bit math is cheaper. |
331 | // There's no common reason to "leak" a constant offset through the I2L. |
332 | // Addressing arithmetic will not absorb it as part of a 64-bit AddL. |
333 | |
334 | Node* z = in(1); |
335 | int op = z->Opcode(); |
336 | if (op == Op_AddI || op == Op_SubI) { |
337 | Node* x = z->in(1); |
338 | Node* y = z->in(2); |
339 | assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal" ); |
340 | if (phase->type(x) == Type::TOP) return this_changed; |
341 | if (phase->type(y) == Type::TOP) return this_changed; |
342 | const TypeInt* tx = phase->type(x)->is_int(); |
343 | const TypeInt* ty = phase->type(y)->is_int(); |
344 | const TypeLong* tz = this_type; |
345 | jlong xlo = tx->_lo; |
346 | jlong xhi = tx->_hi; |
347 | jlong ylo = ty->_lo; |
348 | jlong yhi = ty->_hi; |
349 | jlong zlo = tz->_lo; |
350 | jlong zhi = tz->_hi; |
351 | jlong vbit = CONST64(1) << BitsPerInt; |
352 | int widen = MAX2(tx->_widen, ty->_widen); |
353 | if (op == Op_SubI) { |
354 | jlong ylo0 = ylo; |
355 | ylo = -yhi; |
356 | yhi = -ylo0; |
357 | } |
358 | // See if x+y can cause positive overflow into z+2**32 |
359 | if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) { |
360 | return this_changed; |
361 | } |
362 | // See if x+y can cause negative overflow into z-2**32 |
363 | if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) { |
364 | return this_changed; |
365 | } |
366 | // Now it's always safe to assume x+y does not overflow. |
367 | // This is true even if some pairs x,y might cause overflow, as long |
368 | // as that overflow value cannot fall into [zlo,zhi]. |
369 | |
370 | // Confident that the arithmetic is "as if infinite precision", |
371 | // we can now use z's range to put constraints on those of x and y. |
372 | // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a |
373 | // more "restricted" range by intersecting [xlo,xhi] with the |
374 | // range obtained by subtracting y's range from the asserted range |
375 | // of the I2L conversion. Here's the interval arithmetic algebra: |
376 | // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo] |
377 | // => x in [zlo-yhi, zhi-ylo] |
378 | // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi] |
379 | // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo] |
380 | jlong rxlo = MAX2(xlo, zlo - yhi); |
381 | jlong rxhi = MIN2(xhi, zhi - ylo); |
382 | // And similarly, x changing place with y: |
383 | jlong rylo = MAX2(ylo, zlo - xhi); |
384 | jlong ryhi = MIN2(yhi, zhi - xlo); |
385 | if (rxlo > rxhi || rylo > ryhi) { |
386 | return this_changed; // x or y is dying; don't mess w/ it |
387 | } |
388 | if (op == Op_SubI) { |
389 | jlong rylo0 = rylo; |
390 | rylo = -ryhi; |
391 | ryhi = -rylo0; |
392 | } |
393 | assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow" ); |
394 | assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow" ); |
395 | Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL); |
396 | Node *hook = new Node(1); |
397 | hook->init_req(0, cx); // Add a use to cx to prevent him from dying |
398 | Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL); |
399 | hook->del_req(0); // Just yank bogus edge |
400 | hook->destruct(); |
401 | switch (op) { |
402 | case Op_AddI: return new AddLNode(cx, cy); |
403 | case Op_SubI: return new SubLNode(cx, cy); |
404 | default: ShouldNotReachHere(); |
405 | } |
406 | } |
407 | #endif //_LP64 |
408 | |
409 | return this_changed; |
410 | } |
411 | |
412 | //============================================================================= |
413 | //------------------------------Value------------------------------------------ |
414 | const Type* ConvL2DNode::Value(PhaseGVN* phase) const { |
415 | const Type *t = phase->type( in(1) ); |
416 | if( t == Type::TOP ) return Type::TOP; |
417 | const TypeLong *tl = t->is_long(); |
418 | if( tl->is_con() ) return TypeD::make( (double)tl->get_con() ); |
419 | return bottom_type(); |
420 | } |
421 | |
422 | //============================================================================= |
423 | //------------------------------Value------------------------------------------ |
424 | const Type* ConvL2FNode::Value(PhaseGVN* phase) const { |
425 | const Type *t = phase->type( in(1) ); |
426 | if( t == Type::TOP ) return Type::TOP; |
427 | const TypeLong *tl = t->is_long(); |
428 | if( tl->is_con() ) return TypeF::make( (float)tl->get_con() ); |
429 | return bottom_type(); |
430 | } |
431 | |
432 | //============================================================================= |
433 | //----------------------------Identity----------------------------------------- |
434 | Node* ConvL2INode::Identity(PhaseGVN* phase) { |
435 | // Convert L2I(I2L(x)) => x |
436 | if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1); |
437 | return this; |
438 | } |
439 | |
440 | //------------------------------Value------------------------------------------ |
441 | const Type* ConvL2INode::Value(PhaseGVN* phase) const { |
442 | const Type *t = phase->type( in(1) ); |
443 | if( t == Type::TOP ) return Type::TOP; |
444 | const TypeLong *tl = t->is_long(); |
445 | if (tl->is_con()) |
446 | // Easy case. |
447 | return TypeInt::make((jint)tl->get_con()); |
448 | return bottom_type(); |
449 | } |
450 | |
451 | //------------------------------Ideal------------------------------------------ |
452 | // Return a node which is more "ideal" than the current node. |
453 | // Blow off prior masking to int |
454 | Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
455 | Node *andl = in(1); |
456 | uint andl_op = andl->Opcode(); |
457 | if( andl_op == Op_AndL ) { |
458 | // Blow off prior masking to int |
459 | if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) { |
460 | set_req(1,andl->in(1)); |
461 | return this; |
462 | } |
463 | } |
464 | |
465 | // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) |
466 | // This replaces an 'AddL' with an 'AddI'. |
467 | if( andl_op == Op_AddL ) { |
468 | // Don't do this for nodes which have more than one user since |
469 | // we'll end up computing the long add anyway. |
470 | if (andl->outcnt() > 1) return NULL; |
471 | |
472 | Node* x = andl->in(1); |
473 | Node* y = andl->in(2); |
474 | assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" ); |
475 | if (phase->type(x) == Type::TOP) return NULL; |
476 | if (phase->type(y) == Type::TOP) return NULL; |
477 | Node *add1 = phase->transform(new ConvL2INode(x)); |
478 | Node *add2 = phase->transform(new ConvL2INode(y)); |
479 | return new AddINode(add1,add2); |
480 | } |
481 | |
482 | // Disable optimization: LoadL->ConvL2I ==> LoadI. |
483 | // It causes problems (sizes of Load and Store nodes do not match) |
484 | // in objects initialization code and Escape Analysis. |
485 | return NULL; |
486 | } |
487 | |
488 | |
489 | |
490 | //============================================================================= |
491 | //------------------------------Identity--------------------------------------- |
492 | // Remove redundant roundings |
493 | Node* RoundFloatNode::Identity(PhaseGVN* phase) { |
494 | assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel" ); |
495 | // Do not round constants |
496 | if (phase->type(in(1))->base() == Type::FloatCon) return in(1); |
497 | int op = in(1)->Opcode(); |
498 | // Redundant rounding |
499 | if( op == Op_RoundFloat ) return in(1); |
500 | // Already rounded |
501 | if( op == Op_Parm ) return in(1); |
502 | if( op == Op_LoadF ) return in(1); |
503 | return this; |
504 | } |
505 | |
506 | //------------------------------Value------------------------------------------ |
507 | const Type* RoundFloatNode::Value(PhaseGVN* phase) const { |
508 | return phase->type( in(1) ); |
509 | } |
510 | |
511 | //============================================================================= |
512 | //------------------------------Identity--------------------------------------- |
513 | // Remove redundant roundings. Incoming arguments are already rounded. |
514 | Node* RoundDoubleNode::Identity(PhaseGVN* phase) { |
515 | assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel" ); |
516 | // Do not round constants |
517 | if (phase->type(in(1))->base() == Type::DoubleCon) return in(1); |
518 | int op = in(1)->Opcode(); |
519 | // Redundant rounding |
520 | if( op == Op_RoundDouble ) return in(1); |
521 | // Already rounded |
522 | if( op == Op_Parm ) return in(1); |
523 | if( op == Op_LoadD ) return in(1); |
524 | if( op == Op_ConvF2D ) return in(1); |
525 | if( op == Op_ConvI2D ) return in(1); |
526 | return this; |
527 | } |
528 | |
529 | //------------------------------Value------------------------------------------ |
530 | const Type* RoundDoubleNode::Value(PhaseGVN* phase) const { |
531 | return phase->type( in(1) ); |
532 | } |
533 | |
534 | |
535 | |