1 | /* |
2 | * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/barrierSet.hpp" |
27 | #include "gc/shared/c2/barrierSetC2.hpp" |
28 | #include "libadt/vectset.hpp" |
29 | #include "memory/allocation.inline.hpp" |
30 | #include "memory/resourceArea.hpp" |
31 | #include "opto/castnode.hpp" |
32 | #include "opto/cfgnode.hpp" |
33 | #include "opto/connode.hpp" |
34 | #include "opto/loopnode.hpp" |
35 | #include "opto/machnode.hpp" |
36 | #include "opto/matcher.hpp" |
37 | #include "opto/node.hpp" |
38 | #include "opto/opcodes.hpp" |
39 | #include "opto/regmask.hpp" |
40 | #include "opto/rootnode.hpp" |
41 | #include "opto/type.hpp" |
42 | #include "utilities/copy.hpp" |
43 | #include "utilities/macros.hpp" |
44 | |
45 | class RegMask; |
46 | // #include "phase.hpp" |
47 | class PhaseTransform; |
48 | class PhaseGVN; |
49 | |
50 | // Arena we are currently building Nodes in |
51 | const uint Node::NotAMachineReg = 0xffff0000; |
52 | |
53 | #ifndef PRODUCT |
54 | extern int nodes_created; |
55 | #endif |
56 | #ifdef __clang__ |
57 | #pragma clang diagnostic push |
58 | #pragma GCC diagnostic ignored "-Wuninitialized" |
59 | #endif |
60 | |
61 | #ifdef ASSERT |
62 | |
63 | //-------------------------- construct_node------------------------------------ |
64 | // Set a breakpoint here to identify where a particular node index is built. |
65 | void Node::verify_construction() { |
66 | _debug_orig = NULL; |
67 | int old_debug_idx = Compile::debug_idx(); |
68 | int new_debug_idx = old_debug_idx+1; |
69 | if (new_debug_idx > 0) { |
70 | // Arrange that the lowest five decimal digits of _debug_idx |
71 | // will repeat those of _idx. In case this is somehow pathological, |
72 | // we continue to assign negative numbers (!) consecutively. |
73 | const int mod = 100000; |
74 | int bump = (int)(_idx - new_debug_idx) % mod; |
75 | if (bump < 0) bump += mod; |
76 | assert(bump >= 0 && bump < mod, "" ); |
77 | new_debug_idx += bump; |
78 | } |
79 | Compile::set_debug_idx(new_debug_idx); |
80 | set_debug_idx( new_debug_idx ); |
81 | assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX" ); |
82 | assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit" ); |
83 | if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) { |
84 | tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d" , _idx, _debug_idx); |
85 | BREAKPOINT; |
86 | } |
87 | #if OPTO_DU_ITERATOR_ASSERT |
88 | _last_del = NULL; |
89 | _del_tick = 0; |
90 | #endif |
91 | _hash_lock = 0; |
92 | } |
93 | |
94 | |
95 | // #ifdef ASSERT ... |
96 | |
97 | #if OPTO_DU_ITERATOR_ASSERT |
98 | void DUIterator_Common::sample(const Node* node) { |
99 | _vdui = VerifyDUIterators; |
100 | _node = node; |
101 | _outcnt = node->_outcnt; |
102 | _del_tick = node->_del_tick; |
103 | _last = NULL; |
104 | } |
105 | |
106 | void DUIterator_Common::verify(const Node* node, bool at_end_ok) { |
107 | assert(_node == node, "consistent iterator source" ); |
108 | assert(_del_tick == node->_del_tick, "no unexpected deletions allowed" ); |
109 | } |
110 | |
111 | void DUIterator_Common::verify_resync() { |
112 | // Ensure that the loop body has just deleted the last guy produced. |
113 | const Node* node = _node; |
114 | // Ensure that at least one copy of the last-seen edge was deleted. |
115 | // Note: It is OK to delete multiple copies of the last-seen edge. |
116 | // Unfortunately, we have no way to verify that all the deletions delete |
117 | // that same edge. On this point we must use the Honor System. |
118 | assert(node->_del_tick >= _del_tick+1, "must have deleted an edge" ); |
119 | assert(node->_last_del == _last, "must have deleted the edge just produced" ); |
120 | // We liked this deletion, so accept the resulting outcnt and tick. |
121 | _outcnt = node->_outcnt; |
122 | _del_tick = node->_del_tick; |
123 | } |
124 | |
125 | void DUIterator_Common::reset(const DUIterator_Common& that) { |
126 | if (this == &that) return; // ignore assignment to self |
127 | if (!_vdui) { |
128 | // We need to initialize everything, overwriting garbage values. |
129 | _last = that._last; |
130 | _vdui = that._vdui; |
131 | } |
132 | // Note: It is legal (though odd) for an iterator over some node x |
133 | // to be reassigned to iterate over another node y. Some doubly-nested |
134 | // progress loops depend on being able to do this. |
135 | const Node* node = that._node; |
136 | // Re-initialize everything, except _last. |
137 | _node = node; |
138 | _outcnt = node->_outcnt; |
139 | _del_tick = node->_del_tick; |
140 | } |
141 | |
142 | void DUIterator::sample(const Node* node) { |
143 | DUIterator_Common::sample(node); // Initialize the assertion data. |
144 | _refresh_tick = 0; // No refreshes have happened, as yet. |
145 | } |
146 | |
147 | void DUIterator::verify(const Node* node, bool at_end_ok) { |
148 | DUIterator_Common::verify(node, at_end_ok); |
149 | assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range" ); |
150 | } |
151 | |
152 | void DUIterator::verify_increment() { |
153 | if (_refresh_tick & 1) { |
154 | // We have refreshed the index during this loop. |
155 | // Fix up _idx to meet asserts. |
156 | if (_idx > _outcnt) _idx = _outcnt; |
157 | } |
158 | verify(_node, true); |
159 | } |
160 | |
161 | void DUIterator::verify_resync() { |
162 | // Note: We do not assert on _outcnt, because insertions are OK here. |
163 | DUIterator_Common::verify_resync(); |
164 | // Make sure we are still in sync, possibly with no more out-edges: |
165 | verify(_node, true); |
166 | } |
167 | |
168 | void DUIterator::reset(const DUIterator& that) { |
169 | if (this == &that) return; // self assignment is always a no-op |
170 | assert(that._refresh_tick == 0, "assign only the result of Node::outs()" ); |
171 | assert(that._idx == 0, "assign only the result of Node::outs()" ); |
172 | assert(_idx == that._idx, "already assigned _idx" ); |
173 | if (!_vdui) { |
174 | // We need to initialize everything, overwriting garbage values. |
175 | sample(that._node); |
176 | } else { |
177 | DUIterator_Common::reset(that); |
178 | if (_refresh_tick & 1) { |
179 | _refresh_tick++; // Clear the "was refreshed" flag. |
180 | } |
181 | assert(_refresh_tick < 2*100000, "DU iteration must converge quickly" ); |
182 | } |
183 | } |
184 | |
185 | void DUIterator::refresh() { |
186 | DUIterator_Common::sample(_node); // Re-fetch assertion data. |
187 | _refresh_tick |= 1; // Set the "was refreshed" flag. |
188 | } |
189 | |
190 | void DUIterator::verify_finish() { |
191 | // If the loop has killed the node, do not require it to re-run. |
192 | if (_node->_outcnt == 0) _refresh_tick &= ~1; |
193 | // If this assert triggers, it means that a loop used refresh_out_pos |
194 | // to re-synch an iteration index, but the loop did not correctly |
195 | // re-run itself, using a "while (progress)" construct. |
196 | // This iterator enforces the rule that you must keep trying the loop |
197 | // until it "runs clean" without any need for refreshing. |
198 | assert(!(_refresh_tick & 1), "the loop must run once with no refreshing" ); |
199 | } |
200 | |
201 | |
202 | void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { |
203 | DUIterator_Common::verify(node, at_end_ok); |
204 | Node** out = node->_out; |
205 | uint cnt = node->_outcnt; |
206 | assert(cnt == _outcnt, "no insertions allowed" ); |
207 | assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range" ); |
208 | // This last check is carefully designed to work for NO_OUT_ARRAY. |
209 | } |
210 | |
211 | void DUIterator_Fast::verify_limit() { |
212 | const Node* node = _node; |
213 | verify(node, true); |
214 | assert(_outp == node->_out + node->_outcnt, "limit still correct" ); |
215 | } |
216 | |
217 | void DUIterator_Fast::verify_resync() { |
218 | const Node* node = _node; |
219 | if (_outp == node->_out + _outcnt) { |
220 | // Note that the limit imax, not the pointer i, gets updated with the |
221 | // exact count of deletions. (For the pointer it's always "--i".) |
222 | assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)" ); |
223 | // This is a limit pointer, with a name like "imax". |
224 | // Fudge the _last field so that the common assert will be happy. |
225 | _last = (Node*) node->_last_del; |
226 | DUIterator_Common::verify_resync(); |
227 | } else { |
228 | assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)" ); |
229 | // A normal internal pointer. |
230 | DUIterator_Common::verify_resync(); |
231 | // Make sure we are still in sync, possibly with no more out-edges: |
232 | verify(node, true); |
233 | } |
234 | } |
235 | |
236 | void DUIterator_Fast::verify_relimit(uint n) { |
237 | const Node* node = _node; |
238 | assert((int)n > 0, "use imax -= n only with a positive count" ); |
239 | // This must be a limit pointer, with a name like "imax". |
240 | assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)" ); |
241 | // The reported number of deletions must match what the node saw. |
242 | assert(node->_del_tick == _del_tick + n, "must have deleted n edges" ); |
243 | // Fudge the _last field so that the common assert will be happy. |
244 | _last = (Node*) node->_last_del; |
245 | DUIterator_Common::verify_resync(); |
246 | } |
247 | |
248 | void DUIterator_Fast::reset(const DUIterator_Fast& that) { |
249 | assert(_outp == that._outp, "already assigned _outp" ); |
250 | DUIterator_Common::reset(that); |
251 | } |
252 | |
253 | void DUIterator_Last::verify(const Node* node, bool at_end_ok) { |
254 | // at_end_ok means the _outp is allowed to underflow by 1 |
255 | _outp += at_end_ok; |
256 | DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. |
257 | _outp -= at_end_ok; |
258 | assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes" ); |
259 | } |
260 | |
261 | void DUIterator_Last::verify_limit() { |
262 | // Do not require the limit address to be resynched. |
263 | //verify(node, true); |
264 | assert(_outp == _node->_out, "limit still correct" ); |
265 | } |
266 | |
267 | void DUIterator_Last::verify_step(uint num_edges) { |
268 | assert((int)num_edges > 0, "need non-zero edge count for loop progress" ); |
269 | _outcnt -= num_edges; |
270 | _del_tick += num_edges; |
271 | // Make sure we are still in sync, possibly with no more out-edges: |
272 | const Node* node = _node; |
273 | verify(node, true); |
274 | assert(node->_last_del == _last, "must have deleted the edge just produced" ); |
275 | } |
276 | |
277 | #endif //OPTO_DU_ITERATOR_ASSERT |
278 | |
279 | |
280 | #endif //ASSERT |
281 | |
282 | |
283 | // This constant used to initialize _out may be any non-null value. |
284 | // The value NULL is reserved for the top node only. |
285 | #define NO_OUT_ARRAY ((Node**)-1) |
286 | |
287 | // Out-of-line code from node constructors. |
288 | // Executed only when extra debug info. is being passed around. |
289 | static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { |
290 | C->set_node_notes_at(idx, nn); |
291 | } |
292 | |
293 | // Shared initialization code. |
294 | inline int Node::Init(int req) { |
295 | Compile* C = Compile::current(); |
296 | int idx = C->next_unique(); |
297 | |
298 | // Allocate memory for the necessary number of edges. |
299 | if (req > 0) { |
300 | // Allocate space for _in array to have double alignment. |
301 | _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*)))); |
302 | } |
303 | // If there are default notes floating around, capture them: |
304 | Node_Notes* nn = C->default_node_notes(); |
305 | if (nn != NULL) init_node_notes(C, idx, nn); |
306 | |
307 | // Note: At this point, C is dead, |
308 | // and we begin to initialize the new Node. |
309 | |
310 | _cnt = _max = req; |
311 | _outcnt = _outmax = 0; |
312 | _class_id = Class_Node; |
313 | _flags = 0; |
314 | _out = NO_OUT_ARRAY; |
315 | return idx; |
316 | } |
317 | |
318 | //------------------------------Node------------------------------------------- |
319 | // Create a Node, with a given number of required edges. |
320 | Node::Node(uint req) |
321 | : _idx(Init(req)) |
322 | #ifdef ASSERT |
323 | , _parse_idx(_idx) |
324 | #endif |
325 | { |
326 | assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); |
327 | debug_only( verify_construction() ); |
328 | NOT_PRODUCT(nodes_created++); |
329 | if (req == 0) { |
330 | _in = NULL; |
331 | } else { |
332 | Node** to = _in; |
333 | for(uint i = 0; i < req; i++) { |
334 | to[i] = NULL; |
335 | } |
336 | } |
337 | } |
338 | |
339 | //------------------------------Node------------------------------------------- |
340 | Node::Node(Node *n0) |
341 | : _idx(Init(1)) |
342 | #ifdef ASSERT |
343 | , _parse_idx(_idx) |
344 | #endif |
345 | { |
346 | debug_only( verify_construction() ); |
347 | NOT_PRODUCT(nodes_created++); |
348 | assert( is_not_dead(n0), "can not use dead node" ); |
349 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
350 | } |
351 | |
352 | //------------------------------Node------------------------------------------- |
353 | Node::Node(Node *n0, Node *n1) |
354 | : _idx(Init(2)) |
355 | #ifdef ASSERT |
356 | , _parse_idx(_idx) |
357 | #endif |
358 | { |
359 | debug_only( verify_construction() ); |
360 | NOT_PRODUCT(nodes_created++); |
361 | assert( is_not_dead(n0), "can not use dead node" ); |
362 | assert( is_not_dead(n1), "can not use dead node" ); |
363 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
364 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
365 | } |
366 | |
367 | //------------------------------Node------------------------------------------- |
368 | Node::Node(Node *n0, Node *n1, Node *n2) |
369 | : _idx(Init(3)) |
370 | #ifdef ASSERT |
371 | , _parse_idx(_idx) |
372 | #endif |
373 | { |
374 | debug_only( verify_construction() ); |
375 | NOT_PRODUCT(nodes_created++); |
376 | assert( is_not_dead(n0), "can not use dead node" ); |
377 | assert( is_not_dead(n1), "can not use dead node" ); |
378 | assert( is_not_dead(n2), "can not use dead node" ); |
379 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
380 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
381 | _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); |
382 | } |
383 | |
384 | //------------------------------Node------------------------------------------- |
385 | Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) |
386 | : _idx(Init(4)) |
387 | #ifdef ASSERT |
388 | , _parse_idx(_idx) |
389 | #endif |
390 | { |
391 | debug_only( verify_construction() ); |
392 | NOT_PRODUCT(nodes_created++); |
393 | assert( is_not_dead(n0), "can not use dead node" ); |
394 | assert( is_not_dead(n1), "can not use dead node" ); |
395 | assert( is_not_dead(n2), "can not use dead node" ); |
396 | assert( is_not_dead(n3), "can not use dead node" ); |
397 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
398 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
399 | _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); |
400 | _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); |
401 | } |
402 | |
403 | //------------------------------Node------------------------------------------- |
404 | Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) |
405 | : _idx(Init(5)) |
406 | #ifdef ASSERT |
407 | , _parse_idx(_idx) |
408 | #endif |
409 | { |
410 | debug_only( verify_construction() ); |
411 | NOT_PRODUCT(nodes_created++); |
412 | assert( is_not_dead(n0), "can not use dead node" ); |
413 | assert( is_not_dead(n1), "can not use dead node" ); |
414 | assert( is_not_dead(n2), "can not use dead node" ); |
415 | assert( is_not_dead(n3), "can not use dead node" ); |
416 | assert( is_not_dead(n4), "can not use dead node" ); |
417 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
418 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
419 | _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); |
420 | _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); |
421 | _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); |
422 | } |
423 | |
424 | //------------------------------Node------------------------------------------- |
425 | Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, |
426 | Node *n4, Node *n5) |
427 | : _idx(Init(6)) |
428 | #ifdef ASSERT |
429 | , _parse_idx(_idx) |
430 | #endif |
431 | { |
432 | debug_only( verify_construction() ); |
433 | NOT_PRODUCT(nodes_created++); |
434 | assert( is_not_dead(n0), "can not use dead node" ); |
435 | assert( is_not_dead(n1), "can not use dead node" ); |
436 | assert( is_not_dead(n2), "can not use dead node" ); |
437 | assert( is_not_dead(n3), "can not use dead node" ); |
438 | assert( is_not_dead(n4), "can not use dead node" ); |
439 | assert( is_not_dead(n5), "can not use dead node" ); |
440 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
441 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
442 | _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); |
443 | _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); |
444 | _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); |
445 | _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); |
446 | } |
447 | |
448 | //------------------------------Node------------------------------------------- |
449 | Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, |
450 | Node *n4, Node *n5, Node *n6) |
451 | : _idx(Init(7)) |
452 | #ifdef ASSERT |
453 | , _parse_idx(_idx) |
454 | #endif |
455 | { |
456 | debug_only( verify_construction() ); |
457 | NOT_PRODUCT(nodes_created++); |
458 | assert( is_not_dead(n0), "can not use dead node" ); |
459 | assert( is_not_dead(n1), "can not use dead node" ); |
460 | assert( is_not_dead(n2), "can not use dead node" ); |
461 | assert( is_not_dead(n3), "can not use dead node" ); |
462 | assert( is_not_dead(n4), "can not use dead node" ); |
463 | assert( is_not_dead(n5), "can not use dead node" ); |
464 | assert( is_not_dead(n6), "can not use dead node" ); |
465 | _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); |
466 | _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); |
467 | _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); |
468 | _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); |
469 | _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); |
470 | _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); |
471 | _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this); |
472 | } |
473 | |
474 | #ifdef __clang__ |
475 | #pragma clang diagnostic pop |
476 | #endif |
477 | |
478 | |
479 | //------------------------------clone------------------------------------------ |
480 | // Clone a Node. |
481 | Node *Node::clone() const { |
482 | Compile* C = Compile::current(); |
483 | uint s = size_of(); // Size of inherited Node |
484 | Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*)); |
485 | Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); |
486 | // Set the new input pointer array |
487 | n->_in = (Node**)(((char*)n)+s); |
488 | // Cannot share the old output pointer array, so kill it |
489 | n->_out = NO_OUT_ARRAY; |
490 | // And reset the counters to 0 |
491 | n->_outcnt = 0; |
492 | n->_outmax = 0; |
493 | // Unlock this guy, since he is not in any hash table. |
494 | debug_only(n->_hash_lock = 0); |
495 | // Walk the old node's input list to duplicate its edges |
496 | uint i; |
497 | for( i = 0; i < len(); i++ ) { |
498 | Node *x = in(i); |
499 | n->_in[i] = x; |
500 | if (x != NULL) x->add_out(n); |
501 | } |
502 | if (is_macro()) |
503 | C->add_macro_node(n); |
504 | if (is_expensive()) |
505 | C->add_expensive_node(n); |
506 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
507 | bs->register_potential_barrier_node(n); |
508 | // If the cloned node is a range check dependent CastII, add it to the list. |
509 | CastIINode* cast = n->isa_CastII(); |
510 | if (cast != NULL && cast->has_range_check()) { |
511 | C->add_range_check_cast(cast); |
512 | } |
513 | if (n->Opcode() == Op_Opaque4) { |
514 | C->add_opaque4_node(n); |
515 | } |
516 | |
517 | n->set_idx(C->next_unique()); // Get new unique index as well |
518 | debug_only( n->verify_construction() ); |
519 | NOT_PRODUCT(nodes_created++); |
520 | // Do not patch over the debug_idx of a clone, because it makes it |
521 | // impossible to break on the clone's moment of creation. |
522 | //debug_only( n->set_debug_idx( debug_idx() ) ); |
523 | |
524 | C->copy_node_notes_to(n, (Node*) this); |
525 | |
526 | // MachNode clone |
527 | uint nopnds; |
528 | if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { |
529 | MachNode *mach = n->as_Mach(); |
530 | MachNode *mthis = this->as_Mach(); |
531 | // Get address of _opnd_array. |
532 | // It should be the same offset since it is the clone of this node. |
533 | MachOper **from = mthis->_opnds; |
534 | MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + |
535 | pointer_delta((const void*)from, |
536 | (const void*)(&mthis->_opnds), 1)); |
537 | mach->_opnds = to; |
538 | for ( uint i = 0; i < nopnds; ++i ) { |
539 | to[i] = from[i]->clone(); |
540 | } |
541 | } |
542 | // cloning CallNode may need to clone JVMState |
543 | if (n->is_Call()) { |
544 | n->as_Call()->clone_jvms(C); |
545 | } |
546 | if (n->is_SafePoint()) { |
547 | n->as_SafePoint()->clone_replaced_nodes(); |
548 | } |
549 | if (n->is_Load()) { |
550 | n->as_Load()->copy_barrier_info(this); |
551 | } |
552 | return n; // Return the clone |
553 | } |
554 | |
555 | //---------------------------setup_is_top-------------------------------------- |
556 | // Call this when changing the top node, to reassert the invariants |
557 | // required by Node::is_top. See Compile::set_cached_top_node. |
558 | void Node::setup_is_top() { |
559 | if (this == (Node*)Compile::current()->top()) { |
560 | // This node has just become top. Kill its out array. |
561 | _outcnt = _outmax = 0; |
562 | _out = NULL; // marker value for top |
563 | assert(is_top(), "must be top" ); |
564 | } else { |
565 | if (_out == NULL) _out = NO_OUT_ARRAY; |
566 | assert(!is_top(), "must not be top" ); |
567 | } |
568 | } |
569 | |
570 | //------------------------------~Node------------------------------------------ |
571 | // Fancy destructor; eagerly attempt to reclaim Node numberings and storage |
572 | void Node::destruct() { |
573 | // Eagerly reclaim unique Node numberings |
574 | Compile* compile = Compile::current(); |
575 | if ((uint)_idx+1 == compile->unique()) { |
576 | compile->set_unique(compile->unique()-1); |
577 | } |
578 | // Clear debug info: |
579 | Node_Notes* nn = compile->node_notes_at(_idx); |
580 | if (nn != NULL) nn->clear(); |
581 | // Walk the input array, freeing the corresponding output edges |
582 | _cnt = _max; // forget req/prec distinction |
583 | uint i; |
584 | for( i = 0; i < _max; i++ ) { |
585 | set_req(i, NULL); |
586 | //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); |
587 | } |
588 | assert(outcnt() == 0, "deleting a node must not leave a dangling use" ); |
589 | // See if the input array was allocated just prior to the object |
590 | int edge_size = _max*sizeof(void*); |
591 | int out_edge_size = _outmax*sizeof(void*); |
592 | char *edge_end = ((char*)_in) + edge_size; |
593 | char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out); |
594 | int node_size = size_of(); |
595 | |
596 | // Free the output edge array |
597 | if (out_edge_size > 0) { |
598 | compile->node_arena()->Afree(out_array, out_edge_size); |
599 | } |
600 | |
601 | // Free the input edge array and the node itself |
602 | if( edge_end == (char*)this ) { |
603 | // It was; free the input array and object all in one hit |
604 | #ifndef ASSERT |
605 | compile->node_arena()->Afree(_in,edge_size+node_size); |
606 | #endif |
607 | } else { |
608 | // Free just the input array |
609 | compile->node_arena()->Afree(_in,edge_size); |
610 | |
611 | // Free just the object |
612 | #ifndef ASSERT |
613 | compile->node_arena()->Afree(this,node_size); |
614 | #endif |
615 | } |
616 | if (is_macro()) { |
617 | compile->remove_macro_node(this); |
618 | } |
619 | if (is_expensive()) { |
620 | compile->remove_expensive_node(this); |
621 | } |
622 | CastIINode* cast = isa_CastII(); |
623 | if (cast != NULL && cast->has_range_check()) { |
624 | compile->remove_range_check_cast(cast); |
625 | } |
626 | if (Opcode() == Op_Opaque4) { |
627 | compile->remove_opaque4_node(this); |
628 | } |
629 | |
630 | if (is_SafePoint()) { |
631 | as_SafePoint()->delete_replaced_nodes(); |
632 | } |
633 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
634 | bs->unregister_potential_barrier_node(this); |
635 | #ifdef ASSERT |
636 | // We will not actually delete the storage, but we'll make the node unusable. |
637 | *(address*)this = badAddress; // smash the C++ vtbl, probably |
638 | _in = _out = (Node**) badAddress; |
639 | _max = _cnt = _outmax = _outcnt = 0; |
640 | compile->remove_modified_node(this); |
641 | #endif |
642 | } |
643 | |
644 | //------------------------------grow------------------------------------------- |
645 | // Grow the input array, making space for more edges |
646 | void Node::grow( uint len ) { |
647 | Arena* arena = Compile::current()->node_arena(); |
648 | uint new_max = _max; |
649 | if( new_max == 0 ) { |
650 | _max = 4; |
651 | _in = (Node**)arena->Amalloc(4*sizeof(Node*)); |
652 | Node** to = _in; |
653 | to[0] = NULL; |
654 | to[1] = NULL; |
655 | to[2] = NULL; |
656 | to[3] = NULL; |
657 | return; |
658 | } |
659 | while( new_max <= len ) new_max <<= 1; // Find next power-of-2 |
660 | // Trimming to limit allows a uint8 to handle up to 255 edges. |
661 | // Previously I was using only powers-of-2 which peaked at 128 edges. |
662 | //if( new_max >= limit ) new_max = limit-1; |
663 | _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); |
664 | Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space |
665 | _max = new_max; // Record new max length |
666 | // This assertion makes sure that Node::_max is wide enough to |
667 | // represent the numerical value of new_max. |
668 | assert(_max == new_max && _max > len, "int width of _max is too small" ); |
669 | } |
670 | |
671 | //-----------------------------out_grow---------------------------------------- |
672 | // Grow the input array, making space for more edges |
673 | void Node::out_grow( uint len ) { |
674 | assert(!is_top(), "cannot grow a top node's out array" ); |
675 | Arena* arena = Compile::current()->node_arena(); |
676 | uint new_max = _outmax; |
677 | if( new_max == 0 ) { |
678 | _outmax = 4; |
679 | _out = (Node **)arena->Amalloc(4*sizeof(Node*)); |
680 | return; |
681 | } |
682 | while( new_max <= len ) new_max <<= 1; // Find next power-of-2 |
683 | // Trimming to limit allows a uint8 to handle up to 255 edges. |
684 | // Previously I was using only powers-of-2 which peaked at 128 edges. |
685 | //if( new_max >= limit ) new_max = limit-1; |
686 | assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value" ); |
687 | _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); |
688 | //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space |
689 | _outmax = new_max; // Record new max length |
690 | // This assertion makes sure that Node::_max is wide enough to |
691 | // represent the numerical value of new_max. |
692 | assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small" ); |
693 | } |
694 | |
695 | #ifdef ASSERT |
696 | //------------------------------is_dead---------------------------------------- |
697 | bool Node::is_dead() const { |
698 | // Mach and pinch point nodes may look like dead. |
699 | if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) |
700 | return false; |
701 | for( uint i = 0; i < _max; i++ ) |
702 | if( _in[i] != NULL ) |
703 | return false; |
704 | dump(); |
705 | return true; |
706 | } |
707 | #endif |
708 | |
709 | |
710 | //------------------------------is_unreachable--------------------------------- |
711 | bool Node::is_unreachable(PhaseIterGVN &igvn) const { |
712 | assert(!is_Mach(), "doesn't work with MachNodes" ); |
713 | return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top()); |
714 | } |
715 | |
716 | //------------------------------add_req---------------------------------------- |
717 | // Add a new required input at the end |
718 | void Node::add_req( Node *n ) { |
719 | assert( is_not_dead(n), "can not use dead node" ); |
720 | |
721 | // Look to see if I can move precedence down one without reallocating |
722 | if( (_cnt >= _max) || (in(_max-1) != NULL) ) |
723 | grow( _max+1 ); |
724 | |
725 | // Find a precedence edge to move |
726 | if( in(_cnt) != NULL ) { // Next precedence edge is busy? |
727 | uint i; |
728 | for( i=_cnt; i<_max; i++ ) |
729 | if( in(i) == NULL ) // Find the NULL at end of prec edge list |
730 | break; // There must be one, since we grew the array |
731 | _in[i] = in(_cnt); // Move prec over, making space for req edge |
732 | } |
733 | _in[_cnt++] = n; // Stuff over old prec edge |
734 | if (n != NULL) n->add_out((Node *)this); |
735 | } |
736 | |
737 | //---------------------------add_req_batch------------------------------------- |
738 | // Add a new required input at the end |
739 | void Node::add_req_batch( Node *n, uint m ) { |
740 | assert( is_not_dead(n), "can not use dead node" ); |
741 | // check various edge cases |
742 | if ((int)m <= 1) { |
743 | assert((int)m >= 0, "oob" ); |
744 | if (m != 0) add_req(n); |
745 | return; |
746 | } |
747 | |
748 | // Look to see if I can move precedence down one without reallocating |
749 | if( (_cnt+m) > _max || _in[_max-m] ) |
750 | grow( _max+m ); |
751 | |
752 | // Find a precedence edge to move |
753 | if( _in[_cnt] != NULL ) { // Next precedence edge is busy? |
754 | uint i; |
755 | for( i=_cnt; i<_max; i++ ) |
756 | if( _in[i] == NULL ) // Find the NULL at end of prec edge list |
757 | break; // There must be one, since we grew the array |
758 | // Slide all the precs over by m positions (assume #prec << m). |
759 | Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); |
760 | } |
761 | |
762 | // Stuff over the old prec edges |
763 | for(uint i=0; i<m; i++ ) { |
764 | _in[_cnt++] = n; |
765 | } |
766 | |
767 | // Insert multiple out edges on the node. |
768 | if (n != NULL && !n->is_top()) { |
769 | for(uint i=0; i<m; i++ ) { |
770 | n->add_out((Node *)this); |
771 | } |
772 | } |
773 | } |
774 | |
775 | //------------------------------del_req---------------------------------------- |
776 | // Delete the required edge and compact the edge array |
777 | void Node::del_req( uint idx ) { |
778 | assert( idx < _cnt, "oob" ); |
779 | assert( !VerifyHashTableKeys || _hash_lock == 0, |
780 | "remove node from hash table before modifying it" ); |
781 | // First remove corresponding def-use edge |
782 | Node *n = in(idx); |
783 | if (n != NULL) n->del_out((Node *)this); |
784 | _in[idx] = in(--_cnt); // Compact the array |
785 | // Avoid spec violation: Gap in prec edges. |
786 | close_prec_gap_at(_cnt); |
787 | Compile::current()->record_modified_node(this); |
788 | } |
789 | |
790 | //------------------------------del_req_ordered-------------------------------- |
791 | // Delete the required edge and compact the edge array with preserved order |
792 | void Node::del_req_ordered( uint idx ) { |
793 | assert( idx < _cnt, "oob" ); |
794 | assert( !VerifyHashTableKeys || _hash_lock == 0, |
795 | "remove node from hash table before modifying it" ); |
796 | // First remove corresponding def-use edge |
797 | Node *n = in(idx); |
798 | if (n != NULL) n->del_out((Node *)this); |
799 | if (idx < --_cnt) { // Not last edge ? |
800 | Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); |
801 | } |
802 | // Avoid spec violation: Gap in prec edges. |
803 | close_prec_gap_at(_cnt); |
804 | Compile::current()->record_modified_node(this); |
805 | } |
806 | |
807 | //------------------------------ins_req---------------------------------------- |
808 | // Insert a new required input at the end |
809 | void Node::ins_req( uint idx, Node *n ) { |
810 | assert( is_not_dead(n), "can not use dead node" ); |
811 | add_req(NULL); // Make space |
812 | assert( idx < _max, "Must have allocated enough space" ); |
813 | // Slide over |
814 | if(_cnt-idx-1 > 0) { |
815 | Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); |
816 | } |
817 | _in[idx] = n; // Stuff over old required edge |
818 | if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge |
819 | } |
820 | |
821 | //-----------------------------find_edge--------------------------------------- |
822 | int Node::find_edge(Node* n) { |
823 | for (uint i = 0; i < len(); i++) { |
824 | if (_in[i] == n) return i; |
825 | } |
826 | return -1; |
827 | } |
828 | |
829 | //----------------------------replace_edge------------------------------------- |
830 | int Node::replace_edge(Node* old, Node* neww) { |
831 | if (old == neww) return 0; // nothing to do |
832 | uint nrep = 0; |
833 | for (uint i = 0; i < len(); i++) { |
834 | if (in(i) == old) { |
835 | if (i < req()) { |
836 | set_req(i, neww); |
837 | } else { |
838 | assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)" , _idx, neww->_idx); |
839 | set_prec(i, neww); |
840 | } |
841 | nrep++; |
842 | } |
843 | } |
844 | return nrep; |
845 | } |
846 | |
847 | /** |
848 | * Replace input edges in the range pointing to 'old' node. |
849 | */ |
850 | int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) { |
851 | if (old == neww) return 0; // nothing to do |
852 | uint nrep = 0; |
853 | for (int i = start; i < end; i++) { |
854 | if (in(i) == old) { |
855 | set_req(i, neww); |
856 | nrep++; |
857 | } |
858 | } |
859 | return nrep; |
860 | } |
861 | |
862 | //-------------------------disconnect_inputs----------------------------------- |
863 | // NULL out all inputs to eliminate incoming Def-Use edges. |
864 | // Return the number of edges between 'n' and 'this' |
865 | int Node::disconnect_inputs(Node *n, Compile* C) { |
866 | int edges_to_n = 0; |
867 | |
868 | uint cnt = req(); |
869 | for( uint i = 0; i < cnt; ++i ) { |
870 | if( in(i) == 0 ) continue; |
871 | if( in(i) == n ) ++edges_to_n; |
872 | set_req(i, NULL); |
873 | } |
874 | // Remove precedence edges if any exist |
875 | // Note: Safepoints may have precedence edges, even during parsing |
876 | if( (req() != len()) && (in(req()) != NULL) ) { |
877 | uint max = len(); |
878 | for( uint i = 0; i < max; ++i ) { |
879 | if( in(i) == 0 ) continue; |
880 | if( in(i) == n ) ++edges_to_n; |
881 | set_prec(i, NULL); |
882 | } |
883 | } |
884 | |
885 | // Node::destruct requires all out edges be deleted first |
886 | // debug_only(destruct();) // no reuse benefit expected |
887 | if (edges_to_n == 0) { |
888 | C->record_dead_node(_idx); |
889 | } |
890 | return edges_to_n; |
891 | } |
892 | |
893 | //-----------------------------uncast--------------------------------------- |
894 | // %%% Temporary, until we sort out CheckCastPP vs. CastPP. |
895 | // Strip away casting. (It is depth-limited.) |
896 | // Optionally, keep casts with dependencies. |
897 | Node* Node::uncast(bool keep_deps) const { |
898 | // Should be inline: |
899 | //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; |
900 | if (is_ConstraintCast()) { |
901 | return uncast_helper(this, keep_deps); |
902 | } else { |
903 | return (Node*) this; |
904 | } |
905 | } |
906 | |
907 | // Find out of current node that matches opcode. |
908 | Node* Node::find_out_with(int opcode) { |
909 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { |
910 | Node* use = fast_out(i); |
911 | if (use->Opcode() == opcode) { |
912 | return use; |
913 | } |
914 | } |
915 | return NULL; |
916 | } |
917 | |
918 | // Return true if the current node has an out that matches opcode. |
919 | bool Node::has_out_with(int opcode) { |
920 | return (find_out_with(opcode) != NULL); |
921 | } |
922 | |
923 | // Return true if the current node has an out that matches any of the opcodes. |
924 | bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) { |
925 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { |
926 | int opcode = fast_out(i)->Opcode(); |
927 | if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) { |
928 | return true; |
929 | } |
930 | } |
931 | return false; |
932 | } |
933 | |
934 | |
935 | //---------------------------uncast_helper------------------------------------- |
936 | Node* Node::uncast_helper(const Node* p, bool keep_deps) { |
937 | #ifdef ASSERT |
938 | uint depth_count = 0; |
939 | const Node* orig_p = p; |
940 | #endif |
941 | |
942 | while (true) { |
943 | #ifdef ASSERT |
944 | if (depth_count >= K) { |
945 | orig_p->dump(4); |
946 | if (p != orig_p) |
947 | p->dump(1); |
948 | } |
949 | assert(depth_count++ < K, "infinite loop in Node::uncast_helper" ); |
950 | #endif |
951 | if (p == NULL || p->req() != 2) { |
952 | break; |
953 | } else if (p->is_ConstraintCast()) { |
954 | if (keep_deps && p->as_ConstraintCast()->carry_dependency()) { |
955 | break; // stop at casts with dependencies |
956 | } |
957 | p = p->in(1); |
958 | } else { |
959 | break; |
960 | } |
961 | } |
962 | return (Node*) p; |
963 | } |
964 | |
965 | //------------------------------add_prec--------------------------------------- |
966 | // Add a new precedence input. Precedence inputs are unordered, with |
967 | // duplicates removed and NULLs packed down at the end. |
968 | void Node::add_prec( Node *n ) { |
969 | assert( is_not_dead(n), "can not use dead node" ); |
970 | |
971 | // Check for NULL at end |
972 | if( _cnt >= _max || in(_max-1) ) |
973 | grow( _max+1 ); |
974 | |
975 | // Find a precedence edge to move |
976 | uint i = _cnt; |
977 | while( in(i) != NULL ) { |
978 | if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. |
979 | i++; |
980 | } |
981 | _in[i] = n; // Stuff prec edge over NULL |
982 | if ( n != NULL) n->add_out((Node *)this); // Add mirror edge |
983 | |
984 | #ifdef ASSERT |
985 | while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)" , _idx); } |
986 | #endif |
987 | } |
988 | |
989 | //------------------------------rm_prec---------------------------------------- |
990 | // Remove a precedence input. Precedence inputs are unordered, with |
991 | // duplicates removed and NULLs packed down at the end. |
992 | void Node::rm_prec( uint j ) { |
993 | assert(j < _max, "oob: i=%d, _max=%d" , j, _max); |
994 | assert(j >= _cnt, "not a precedence edge" ); |
995 | if (_in[j] == NULL) return; // Avoid spec violation: Gap in prec edges. |
996 | _in[j]->del_out((Node *)this); |
997 | close_prec_gap_at(j); |
998 | } |
999 | |
1000 | //------------------------------size_of---------------------------------------- |
1001 | uint Node::size_of() const { return sizeof(*this); } |
1002 | |
1003 | //------------------------------ideal_reg-------------------------------------- |
1004 | uint Node::ideal_reg() const { return 0; } |
1005 | |
1006 | //------------------------------jvms------------------------------------------- |
1007 | JVMState* Node::jvms() const { return NULL; } |
1008 | |
1009 | #ifdef ASSERT |
1010 | //------------------------------jvms------------------------------------------- |
1011 | bool Node::verify_jvms(const JVMState* using_jvms) const { |
1012 | for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { |
1013 | if (jvms == using_jvms) return true; |
1014 | } |
1015 | return false; |
1016 | } |
1017 | |
1018 | //------------------------------init_NodeProperty------------------------------ |
1019 | void Node::init_NodeProperty() { |
1020 | assert(_max_classes <= max_jushort, "too many NodeProperty classes" ); |
1021 | assert(_max_flags <= max_jushort, "too many NodeProperty flags" ); |
1022 | } |
1023 | #endif |
1024 | |
1025 | //------------------------------format----------------------------------------- |
1026 | // Print as assembly |
1027 | void Node::format( PhaseRegAlloc *, outputStream *st ) const {} |
1028 | //------------------------------emit------------------------------------------- |
1029 | // Emit bytes starting at parameter 'ptr'. |
1030 | void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {} |
1031 | //------------------------------size------------------------------------------- |
1032 | // Size of instruction in bytes |
1033 | uint Node::size(PhaseRegAlloc *ra_) const { return 0; } |
1034 | |
1035 | //------------------------------CFG Construction------------------------------- |
1036 | // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, |
1037 | // Goto and Return. |
1038 | const Node *Node::is_block_proj() const { return 0; } |
1039 | |
1040 | // Minimum guaranteed type |
1041 | const Type *Node::bottom_type() const { return Type::BOTTOM; } |
1042 | |
1043 | |
1044 | //------------------------------raise_bottom_type------------------------------ |
1045 | // Get the worst-case Type output for this Node. |
1046 | void Node::raise_bottom_type(const Type* new_type) { |
1047 | if (is_Type()) { |
1048 | TypeNode *n = this->as_Type(); |
1049 | if (VerifyAliases) { |
1050 | assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type" ); |
1051 | } |
1052 | n->set_type(new_type); |
1053 | } else if (is_Load()) { |
1054 | LoadNode *n = this->as_Load(); |
1055 | if (VerifyAliases) { |
1056 | assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type" ); |
1057 | } |
1058 | n->set_type(new_type); |
1059 | } |
1060 | } |
1061 | |
1062 | //------------------------------Identity--------------------------------------- |
1063 | // Return a node that the given node is equivalent to. |
1064 | Node* Node::Identity(PhaseGVN* phase) { |
1065 | return this; // Default to no identities |
1066 | } |
1067 | |
1068 | //------------------------------Value------------------------------------------ |
1069 | // Compute a new Type for a node using the Type of the inputs. |
1070 | const Type* Node::Value(PhaseGVN* phase) const { |
1071 | return bottom_type(); // Default to worst-case Type |
1072 | } |
1073 | |
1074 | //------------------------------Ideal------------------------------------------ |
1075 | // |
1076 | // 'Idealize' the graph rooted at this Node. |
1077 | // |
1078 | // In order to be efficient and flexible there are some subtle invariants |
1079 | // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks |
1080 | // these invariants, although its too slow to have on by default. If you are |
1081 | // hacking an Ideal call, be sure to test with +VerifyIterativeGVN! |
1082 | // |
1083 | // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' |
1084 | // pointer. If ANY change is made, it must return the root of the reshaped |
1085 | // graph - even if the root is the same Node. Example: swapping the inputs |
1086 | // to an AddINode gives the same answer and same root, but you still have to |
1087 | // return the 'this' pointer instead of NULL. |
1088 | // |
1089 | // You cannot return an OLD Node, except for the 'this' pointer. Use the |
1090 | // Identity call to return an old Node; basically if Identity can find |
1091 | // another Node have the Ideal call make no change and return NULL. |
1092 | // Example: AddINode::Ideal must check for add of zero; in this case it |
1093 | // returns NULL instead of doing any graph reshaping. |
1094 | // |
1095 | // You cannot modify any old Nodes except for the 'this' pointer. Due to |
1096 | // sharing there may be other users of the old Nodes relying on their current |
1097 | // semantics. Modifying them will break the other users. |
1098 | // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for |
1099 | // "X+3" unchanged in case it is shared. |
1100 | // |
1101 | // If you modify the 'this' pointer's inputs, you should use |
1102 | // 'set_req'. If you are making a new Node (either as the new root or |
1103 | // some new internal piece) you may use 'init_req' to set the initial |
1104 | // value. You can make a new Node with either 'new' or 'clone'. In |
1105 | // either case, def-use info is correctly maintained. |
1106 | // |
1107 | // Example: reshape "(X+3)+4" into "X+7": |
1108 | // set_req(1, in(1)->in(1)); |
1109 | // set_req(2, phase->intcon(7)); |
1110 | // return this; |
1111 | // Example: reshape "X*4" into "X<<2" |
1112 | // return new LShiftINode(in(1), phase->intcon(2)); |
1113 | // |
1114 | // You must call 'phase->transform(X)' on any new Nodes X you make, except |
1115 | // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". |
1116 | // Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5))); |
1117 | // return new AddINode(shift, in(1)); |
1118 | // |
1119 | // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. |
1120 | // These forms are faster than 'phase->transform(new ConNode())' and Do |
1121 | // The Right Thing with def-use info. |
1122 | // |
1123 | // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped |
1124 | // graph uses the 'this' Node it must be the root. If you want a Node with |
1125 | // the same Opcode as the 'this' pointer use 'clone'. |
1126 | // |
1127 | Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { |
1128 | return NULL; // Default to being Ideal already |
1129 | } |
1130 | |
1131 | // Some nodes have specific Ideal subgraph transformations only if they are |
1132 | // unique users of specific nodes. Such nodes should be put on IGVN worklist |
1133 | // for the transformations to happen. |
1134 | bool Node::has_special_unique_user() const { |
1135 | assert(outcnt() == 1, "match only for unique out" ); |
1136 | Node* n = unique_out(); |
1137 | int op = Opcode(); |
1138 | if (this->is_Store()) { |
1139 | // Condition for back-to-back stores folding. |
1140 | return n->Opcode() == op && n->in(MemNode::Memory) == this; |
1141 | } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) { |
1142 | // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input |
1143 | return n->Opcode() == Op_MemBarAcquire; |
1144 | } else if (op == Op_AddL) { |
1145 | // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) |
1146 | return n->Opcode() == Op_ConvL2I && n->in(1) == this; |
1147 | } else if (op == Op_SubI || op == Op_SubL) { |
1148 | // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) |
1149 | return n->Opcode() == op && n->in(2) == this; |
1150 | } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) { |
1151 | // See IfProjNode::Identity() |
1152 | return true; |
1153 | } else { |
1154 | return BarrierSet::barrier_set()->barrier_set_c2()->has_special_unique_user(this); |
1155 | } |
1156 | }; |
1157 | |
1158 | //--------------------------find_exact_control--------------------------------- |
1159 | // Skip Proj and CatchProj nodes chains. Check for Null and Top. |
1160 | Node* Node::find_exact_control(Node* ctrl) { |
1161 | if (ctrl == NULL && this->is_Region()) |
1162 | ctrl = this->as_Region()->is_copy(); |
1163 | |
1164 | if (ctrl != NULL && ctrl->is_CatchProj()) { |
1165 | if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) |
1166 | ctrl = ctrl->in(0); |
1167 | if (ctrl != NULL && !ctrl->is_top()) |
1168 | ctrl = ctrl->in(0); |
1169 | } |
1170 | |
1171 | if (ctrl != NULL && ctrl->is_Proj()) |
1172 | ctrl = ctrl->in(0); |
1173 | |
1174 | return ctrl; |
1175 | } |
1176 | |
1177 | //--------------------------dominates------------------------------------------ |
1178 | // Helper function for MemNode::all_controls_dominate(). |
1179 | // Check if 'this' control node dominates or equal to 'sub' control node. |
1180 | // We already know that if any path back to Root or Start reaches 'this', |
1181 | // then all paths so, so this is a simple search for one example, |
1182 | // not an exhaustive search for a counterexample. |
1183 | bool Node::dominates(Node* sub, Node_List &nlist) { |
1184 | assert(this->is_CFG(), "expecting control" ); |
1185 | assert(sub != NULL && sub->is_CFG(), "expecting control" ); |
1186 | |
1187 | // detect dead cycle without regions |
1188 | int iterations_without_region_limit = DominatorSearchLimit; |
1189 | |
1190 | Node* orig_sub = sub; |
1191 | Node* dom = this; |
1192 | bool met_dom = false; |
1193 | nlist.clear(); |
1194 | |
1195 | // Walk 'sub' backward up the chain to 'dom', watching for regions. |
1196 | // After seeing 'dom', continue up to Root or Start. |
1197 | // If we hit a region (backward split point), it may be a loop head. |
1198 | // Keep going through one of the region's inputs. If we reach the |
1199 | // same region again, go through a different input. Eventually we |
1200 | // will either exit through the loop head, or give up. |
1201 | // (If we get confused, break out and return a conservative 'false'.) |
1202 | while (sub != NULL) { |
1203 | if (sub->is_top()) break; // Conservative answer for dead code. |
1204 | if (sub == dom) { |
1205 | if (nlist.size() == 0) { |
1206 | // No Region nodes except loops were visited before and the EntryControl |
1207 | // path was taken for loops: it did not walk in a cycle. |
1208 | return true; |
1209 | } else if (met_dom) { |
1210 | break; // already met before: walk in a cycle |
1211 | } else { |
1212 | // Region nodes were visited. Continue walk up to Start or Root |
1213 | // to make sure that it did not walk in a cycle. |
1214 | met_dom = true; // first time meet |
1215 | iterations_without_region_limit = DominatorSearchLimit; // Reset |
1216 | } |
1217 | } |
1218 | if (sub->is_Start() || sub->is_Root()) { |
1219 | // Success if we met 'dom' along a path to Start or Root. |
1220 | // We assume there are no alternative paths that avoid 'dom'. |
1221 | // (This assumption is up to the caller to ensure!) |
1222 | return met_dom; |
1223 | } |
1224 | Node* up = sub->in(0); |
1225 | // Normalize simple pass-through regions and projections: |
1226 | up = sub->find_exact_control(up); |
1227 | // If sub == up, we found a self-loop. Try to push past it. |
1228 | if (sub == up && sub->is_Loop()) { |
1229 | // Take loop entry path on the way up to 'dom'. |
1230 | up = sub->in(1); // in(LoopNode::EntryControl); |
1231 | } else if (sub == up && sub->is_Region() && sub->req() != 3) { |
1232 | // Always take in(1) path on the way up to 'dom' for clone regions |
1233 | // (with only one input) or regions which merge > 2 paths |
1234 | // (usually used to merge fast/slow paths). |
1235 | up = sub->in(1); |
1236 | } else if (sub == up && sub->is_Region()) { |
1237 | // Try both paths for Regions with 2 input paths (it may be a loop head). |
1238 | // It could give conservative 'false' answer without information |
1239 | // which region's input is the entry path. |
1240 | iterations_without_region_limit = DominatorSearchLimit; // Reset |
1241 | |
1242 | bool region_was_visited_before = false; |
1243 | // Was this Region node visited before? |
1244 | // If so, we have reached it because we accidentally took a |
1245 | // loop-back edge from 'sub' back into the body of the loop, |
1246 | // and worked our way up again to the loop header 'sub'. |
1247 | // So, take the first unexplored path on the way up to 'dom'. |
1248 | for (int j = nlist.size() - 1; j >= 0; j--) { |
1249 | intptr_t ni = (intptr_t)nlist.at(j); |
1250 | Node* visited = (Node*)(ni & ~1); |
1251 | bool visited_twice_already = ((ni & 1) != 0); |
1252 | if (visited == sub) { |
1253 | if (visited_twice_already) { |
1254 | // Visited 2 paths, but still stuck in loop body. Give up. |
1255 | return false; |
1256 | } |
1257 | // The Region node was visited before only once. |
1258 | // (We will repush with the low bit set, below.) |
1259 | nlist.remove(j); |
1260 | // We will find a new edge and re-insert. |
1261 | region_was_visited_before = true; |
1262 | break; |
1263 | } |
1264 | } |
1265 | |
1266 | // Find an incoming edge which has not been seen yet; walk through it. |
1267 | assert(up == sub, "" ); |
1268 | uint skip = region_was_visited_before ? 1 : 0; |
1269 | for (uint i = 1; i < sub->req(); i++) { |
1270 | Node* in = sub->in(i); |
1271 | if (in != NULL && !in->is_top() && in != sub) { |
1272 | if (skip == 0) { |
1273 | up = in; |
1274 | break; |
1275 | } |
1276 | --skip; // skip this nontrivial input |
1277 | } |
1278 | } |
1279 | |
1280 | // Set 0 bit to indicate that both paths were taken. |
1281 | nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); |
1282 | } |
1283 | |
1284 | if (up == sub) { |
1285 | break; // some kind of tight cycle |
1286 | } |
1287 | if (up == orig_sub && met_dom) { |
1288 | // returned back after visiting 'dom' |
1289 | break; // some kind of cycle |
1290 | } |
1291 | if (--iterations_without_region_limit < 0) { |
1292 | break; // dead cycle |
1293 | } |
1294 | sub = up; |
1295 | } |
1296 | |
1297 | // Did not meet Root or Start node in pred. chain. |
1298 | // Conservative answer for dead code. |
1299 | return false; |
1300 | } |
1301 | |
1302 | //------------------------------remove_dead_region----------------------------- |
1303 | // This control node is dead. Follow the subgraph below it making everything |
1304 | // using it dead as well. This will happen normally via the usual IterGVN |
1305 | // worklist but this call is more efficient. Do not update use-def info |
1306 | // inside the dead region, just at the borders. |
1307 | static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { |
1308 | // Con's are a popular node to re-hit in the hash table again. |
1309 | if( dead->is_Con() ) return; |
1310 | |
1311 | // Can't put ResourceMark here since igvn->_worklist uses the same arena |
1312 | // for verify pass with +VerifyOpto and we add/remove elements in it here. |
1313 | Node_List nstack(Thread::current()->resource_area()); |
1314 | |
1315 | Node *top = igvn->C->top(); |
1316 | nstack.push(dead); |
1317 | bool has_irreducible_loop = igvn->C->has_irreducible_loop(); |
1318 | |
1319 | while (nstack.size() > 0) { |
1320 | dead = nstack.pop(); |
1321 | if (dead->Opcode() == Op_SafePoint) { |
1322 | dead->as_SafePoint()->disconnect_from_root(igvn); |
1323 | } |
1324 | if (dead->outcnt() > 0) { |
1325 | // Keep dead node on stack until all uses are processed. |
1326 | nstack.push(dead); |
1327 | // For all Users of the Dead... ;-) |
1328 | for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { |
1329 | Node* use = dead->last_out(k); |
1330 | igvn->hash_delete(use); // Yank from hash table prior to mod |
1331 | if (use->in(0) == dead) { // Found another dead node |
1332 | assert (!use->is_Con(), "Control for Con node should be Root node." ); |
1333 | use->set_req(0, top); // Cut dead edge to prevent processing |
1334 | nstack.push(use); // the dead node again. |
1335 | } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop |
1336 | use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) |
1337 | use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead |
1338 | use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing |
1339 | use->set_req(0, top); // Cut self edge |
1340 | nstack.push(use); |
1341 | } else { // Else found a not-dead user |
1342 | // Dead if all inputs are top or null |
1343 | bool dead_use = !use->is_Root(); // Keep empty graph alive |
1344 | for (uint j = 1; j < use->req(); j++) { |
1345 | Node* in = use->in(j); |
1346 | if (in == dead) { // Turn all dead inputs into TOP |
1347 | use->set_req(j, top); |
1348 | } else if (in != NULL && !in->is_top()) { |
1349 | dead_use = false; |
1350 | } |
1351 | } |
1352 | if (dead_use) { |
1353 | if (use->is_Region()) { |
1354 | use->set_req(0, top); // Cut self edge |
1355 | } |
1356 | nstack.push(use); |
1357 | } else { |
1358 | igvn->_worklist.push(use); |
1359 | } |
1360 | } |
1361 | // Refresh the iterator, since any number of kills might have happened. |
1362 | k = dead->last_outs(kmin); |
1363 | } |
1364 | } else { // (dead->outcnt() == 0) |
1365 | // Done with outputs. |
1366 | igvn->hash_delete(dead); |
1367 | igvn->_worklist.remove(dead); |
1368 | igvn->C->remove_modified_node(dead); |
1369 | igvn->set_type(dead, Type::TOP); |
1370 | if (dead->is_macro()) { |
1371 | igvn->C->remove_macro_node(dead); |
1372 | } |
1373 | if (dead->is_expensive()) { |
1374 | igvn->C->remove_expensive_node(dead); |
1375 | } |
1376 | CastIINode* cast = dead->isa_CastII(); |
1377 | if (cast != NULL && cast->has_range_check()) { |
1378 | igvn->C->remove_range_check_cast(cast); |
1379 | } |
1380 | if (dead->Opcode() == Op_Opaque4) { |
1381 | igvn->C->remove_opaque4_node(dead); |
1382 | } |
1383 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1384 | bs->unregister_potential_barrier_node(dead); |
1385 | igvn->C->record_dead_node(dead->_idx); |
1386 | // Kill all inputs to the dead guy |
1387 | for (uint i=0; i < dead->req(); i++) { |
1388 | Node *n = dead->in(i); // Get input to dead guy |
1389 | if (n != NULL && !n->is_top()) { // Input is valid? |
1390 | dead->set_req(i, top); // Smash input away |
1391 | if (n->outcnt() == 0) { // Input also goes dead? |
1392 | if (!n->is_Con()) |
1393 | nstack.push(n); // Clear it out as well |
1394 | } else if (n->outcnt() == 1 && |
1395 | n->has_special_unique_user()) { |
1396 | igvn->add_users_to_worklist( n ); |
1397 | } else if (n->outcnt() <= 2 && n->is_Store()) { |
1398 | // Push store's uses on worklist to enable folding optimization for |
1399 | // store/store and store/load to the same address. |
1400 | // The restriction (outcnt() <= 2) is the same as in set_req_X() |
1401 | // and remove_globally_dead_node(). |
1402 | igvn->add_users_to_worklist( n ); |
1403 | } else { |
1404 | BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n); |
1405 | } |
1406 | } |
1407 | } |
1408 | } // (dead->outcnt() == 0) |
1409 | } // while (nstack.size() > 0) for outputs |
1410 | return; |
1411 | } |
1412 | |
1413 | //------------------------------remove_dead_region----------------------------- |
1414 | bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { |
1415 | Node *n = in(0); |
1416 | if( !n ) return false; |
1417 | // Lost control into this guy? I.e., it became unreachable? |
1418 | // Aggressively kill all unreachable code. |
1419 | if (can_reshape && n->is_top()) { |
1420 | kill_dead_code(this, phase->is_IterGVN()); |
1421 | return false; // Node is dead. |
1422 | } |
1423 | |
1424 | if( n->is_Region() && n->as_Region()->is_copy() ) { |
1425 | Node *m = n->nonnull_req(); |
1426 | set_req(0, m); |
1427 | return true; |
1428 | } |
1429 | return false; |
1430 | } |
1431 | |
1432 | //------------------------------hash------------------------------------------- |
1433 | // Hash function over Nodes. |
1434 | uint Node::hash() const { |
1435 | uint sum = 0; |
1436 | for( uint i=0; i<_cnt; i++ ) // Add in all inputs |
1437 | sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs |
1438 | return (sum>>2) + _cnt + Opcode(); |
1439 | } |
1440 | |
1441 | //------------------------------cmp-------------------------------------------- |
1442 | // Compare special parts of simple Nodes |
1443 | bool Node::cmp( const Node &n ) const { |
1444 | return true; // Must be same |
1445 | } |
1446 | |
1447 | //------------------------------rematerialize----------------------------------- |
1448 | // Should we clone rather than spill this instruction? |
1449 | bool Node::rematerialize() const { |
1450 | if ( is_Mach() ) |
1451 | return this->as_Mach()->rematerialize(); |
1452 | else |
1453 | return (_flags & Flag_rematerialize) != 0; |
1454 | } |
1455 | |
1456 | //------------------------------needs_anti_dependence_check--------------------- |
1457 | // Nodes which use memory without consuming it, hence need antidependences. |
1458 | bool Node::needs_anti_dependence_check() const { |
1459 | if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) { |
1460 | return false; |
1461 | } |
1462 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
1463 | if (!bs->needs_anti_dependence_check(this)) { |
1464 | return false; |
1465 | } |
1466 | return in(1)->bottom_type()->has_memory(); |
1467 | } |
1468 | |
1469 | // Get an integer constant from a ConNode (or CastIINode). |
1470 | // Return a default value if there is no apparent constant here. |
1471 | const TypeInt* Node::find_int_type() const { |
1472 | if (this->is_Type()) { |
1473 | return this->as_Type()->type()->isa_int(); |
1474 | } else if (this->is_Con()) { |
1475 | assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode" ); |
1476 | return this->bottom_type()->isa_int(); |
1477 | } |
1478 | return NULL; |
1479 | } |
1480 | |
1481 | // Get a pointer constant from a ConstNode. |
1482 | // Returns the constant if it is a pointer ConstNode |
1483 | intptr_t Node::get_ptr() const { |
1484 | assert( Opcode() == Op_ConP, "" ); |
1485 | return ((ConPNode*)this)->type()->is_ptr()->get_con(); |
1486 | } |
1487 | |
1488 | // Get a narrow oop constant from a ConNNode. |
1489 | intptr_t Node::get_narrowcon() const { |
1490 | assert( Opcode() == Op_ConN, "" ); |
1491 | return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); |
1492 | } |
1493 | |
1494 | // Get a long constant from a ConNode. |
1495 | // Return a default value if there is no apparent constant here. |
1496 | const TypeLong* Node::find_long_type() const { |
1497 | if (this->is_Type()) { |
1498 | return this->as_Type()->type()->isa_long(); |
1499 | } else if (this->is_Con()) { |
1500 | assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode" ); |
1501 | return this->bottom_type()->isa_long(); |
1502 | } |
1503 | return NULL; |
1504 | } |
1505 | |
1506 | |
1507 | /** |
1508 | * Return a ptr type for nodes which should have it. |
1509 | */ |
1510 | const TypePtr* Node::get_ptr_type() const { |
1511 | const TypePtr* tp = this->bottom_type()->make_ptr(); |
1512 | #ifdef ASSERT |
1513 | if (tp == NULL) { |
1514 | this->dump(1); |
1515 | assert((tp != NULL), "unexpected node type" ); |
1516 | } |
1517 | #endif |
1518 | return tp; |
1519 | } |
1520 | |
1521 | // Get a double constant from a ConstNode. |
1522 | // Returns the constant if it is a double ConstNode |
1523 | jdouble Node::getd() const { |
1524 | assert( Opcode() == Op_ConD, "" ); |
1525 | return ((ConDNode*)this)->type()->is_double_constant()->getd(); |
1526 | } |
1527 | |
1528 | // Get a float constant from a ConstNode. |
1529 | // Returns the constant if it is a float ConstNode |
1530 | jfloat Node::getf() const { |
1531 | assert( Opcode() == Op_ConF, "" ); |
1532 | return ((ConFNode*)this)->type()->is_float_constant()->getf(); |
1533 | } |
1534 | |
1535 | #ifndef PRODUCT |
1536 | |
1537 | //------------------------------find------------------------------------------ |
1538 | // Find a neighbor of this Node with the given _idx |
1539 | // If idx is negative, find its absolute value, following both _in and _out. |
1540 | static void find_recur(Compile* C, Node* &result, Node *n, int idx, bool only_ctrl, |
1541 | VectorSet* old_space, VectorSet* new_space ) { |
1542 | int node_idx = (idx >= 0) ? idx : -idx; |
1543 | if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc. |
1544 | // Contained in new_space or old_space? Check old_arena first since it's mostly empty. |
1545 | VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space; |
1546 | if( v->test(n->_idx) ) return; |
1547 | if( (int)n->_idx == node_idx |
1548 | debug_only(|| n->debug_idx() == node_idx) ) { |
1549 | if (result != NULL) |
1550 | tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n" , |
1551 | (uintptr_t)result, (uintptr_t)n, node_idx); |
1552 | result = n; |
1553 | } |
1554 | v->set(n->_idx); |
1555 | for( uint i=0; i<n->len(); i++ ) { |
1556 | if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue; |
1557 | find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space ); |
1558 | } |
1559 | // Search along forward edges also: |
1560 | if (idx < 0 && !only_ctrl) { |
1561 | for( uint j=0; j<n->outcnt(); j++ ) { |
1562 | find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space ); |
1563 | } |
1564 | } |
1565 | #ifdef ASSERT |
1566 | // Search along debug_orig edges last, checking for cycles |
1567 | Node* orig = n->debug_orig(); |
1568 | if (orig != NULL) { |
1569 | do { |
1570 | if (NotANode(orig)) break; |
1571 | find_recur(C, result, orig, idx, only_ctrl, old_space, new_space ); |
1572 | orig = orig->debug_orig(); |
1573 | } while (orig != NULL && orig != n->debug_orig()); |
1574 | } |
1575 | #endif //ASSERT |
1576 | } |
1577 | |
1578 | // call this from debugger: |
1579 | Node* find_node(Node* n, int idx) { |
1580 | return n->find(idx); |
1581 | } |
1582 | |
1583 | //------------------------------find------------------------------------------- |
1584 | Node* Node::find(int idx) const { |
1585 | ResourceArea *area = Thread::current()->resource_area(); |
1586 | VectorSet old_space(area), new_space(area); |
1587 | Node* result = NULL; |
1588 | find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space ); |
1589 | return result; |
1590 | } |
1591 | |
1592 | //------------------------------find_ctrl-------------------------------------- |
1593 | // Find an ancestor to this node in the control history with given _idx |
1594 | Node* Node::find_ctrl(int idx) const { |
1595 | ResourceArea *area = Thread::current()->resource_area(); |
1596 | VectorSet old_space(area), new_space(area); |
1597 | Node* result = NULL; |
1598 | find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space ); |
1599 | return result; |
1600 | } |
1601 | #endif |
1602 | |
1603 | |
1604 | |
1605 | #ifndef PRODUCT |
1606 | |
1607 | // -----------------------------Name------------------------------------------- |
1608 | extern const char *NodeClassNames[]; |
1609 | const char *Node::Name() const { return NodeClassNames[Opcode()]; } |
1610 | |
1611 | static bool is_disconnected(const Node* n) { |
1612 | for (uint i = 0; i < n->req(); i++) { |
1613 | if (n->in(i) != NULL) return false; |
1614 | } |
1615 | return true; |
1616 | } |
1617 | |
1618 | #ifdef ASSERT |
1619 | static void dump_orig(Node* orig, outputStream *st) { |
1620 | Compile* C = Compile::current(); |
1621 | if (NotANode(orig)) orig = NULL; |
1622 | if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; |
1623 | if (orig == NULL) return; |
1624 | st->print(" !orig=" ); |
1625 | Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops |
1626 | if (NotANode(fast)) fast = NULL; |
1627 | while (orig != NULL) { |
1628 | bool discon = is_disconnected(orig); // if discon, print [123] else 123 |
1629 | if (discon) st->print("[" ); |
1630 | if (!Compile::current()->node_arena()->contains(orig)) |
1631 | st->print("o" ); |
1632 | st->print("%d" , orig->_idx); |
1633 | if (discon) st->print("]" ); |
1634 | orig = orig->debug_orig(); |
1635 | if (NotANode(orig)) orig = NULL; |
1636 | if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; |
1637 | if (orig != NULL) st->print("," ); |
1638 | if (fast != NULL) { |
1639 | // Step fast twice for each single step of orig: |
1640 | fast = fast->debug_orig(); |
1641 | if (NotANode(fast)) fast = NULL; |
1642 | if (fast != NULL && fast != orig) { |
1643 | fast = fast->debug_orig(); |
1644 | if (NotANode(fast)) fast = NULL; |
1645 | } |
1646 | if (fast == orig) { |
1647 | st->print("..." ); |
1648 | break; |
1649 | } |
1650 | } |
1651 | } |
1652 | } |
1653 | |
1654 | void Node::set_debug_orig(Node* orig) { |
1655 | _debug_orig = orig; |
1656 | if (BreakAtNode == 0) return; |
1657 | if (NotANode(orig)) orig = NULL; |
1658 | int trip = 10; |
1659 | while (orig != NULL) { |
1660 | if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) { |
1661 | tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d" , |
1662 | this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); |
1663 | BREAKPOINT; |
1664 | } |
1665 | orig = orig->debug_orig(); |
1666 | if (NotANode(orig)) orig = NULL; |
1667 | if (trip-- <= 0) break; |
1668 | } |
1669 | } |
1670 | #endif //ASSERT |
1671 | |
1672 | //------------------------------dump------------------------------------------ |
1673 | // Dump a Node |
1674 | void Node::dump(const char* suffix, bool mark, outputStream *st) const { |
1675 | Compile* C = Compile::current(); |
1676 | bool is_new = C->node_arena()->contains(this); |
1677 | C->_in_dump_cnt++; |
1678 | st->print("%c%d%s\t%s\t=== " , is_new ? ' ' : 'o', _idx, mark ? " >" : "" , Name()); |
1679 | |
1680 | // Dump the required and precedence inputs |
1681 | dump_req(st); |
1682 | dump_prec(st); |
1683 | // Dump the outputs |
1684 | dump_out(st); |
1685 | |
1686 | if (is_disconnected(this)) { |
1687 | #ifdef ASSERT |
1688 | st->print(" [%d]" ,debug_idx()); |
1689 | dump_orig(debug_orig(), st); |
1690 | #endif |
1691 | st->cr(); |
1692 | C->_in_dump_cnt--; |
1693 | return; // don't process dead nodes |
1694 | } |
1695 | |
1696 | if (C->clone_map().value(_idx) != 0) { |
1697 | C->clone_map().dump(_idx); |
1698 | } |
1699 | // Dump node-specific info |
1700 | dump_spec(st); |
1701 | #ifdef ASSERT |
1702 | // Dump the non-reset _debug_idx |
1703 | if (Verbose && WizardMode) { |
1704 | st->print(" [%d]" ,debug_idx()); |
1705 | } |
1706 | #endif |
1707 | |
1708 | const Type *t = bottom_type(); |
1709 | |
1710 | if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) { |
1711 | const TypeInstPtr *toop = t->isa_instptr(); |
1712 | const TypeKlassPtr *tkls = t->isa_klassptr(); |
1713 | ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL ); |
1714 | if (klass && klass->is_loaded() && klass->is_interface()) { |
1715 | st->print(" Interface:" ); |
1716 | } else if (toop) { |
1717 | st->print(" Oop:" ); |
1718 | } else if (tkls) { |
1719 | st->print(" Klass:" ); |
1720 | } |
1721 | t->dump_on(st); |
1722 | } else if (t == Type::MEMORY) { |
1723 | st->print(" Memory:" ); |
1724 | MemNode::dump_adr_type(this, adr_type(), st); |
1725 | } else if (Verbose || WizardMode) { |
1726 | st->print(" Type:" ); |
1727 | if (t) { |
1728 | t->dump_on(st); |
1729 | } else { |
1730 | st->print("no type" ); |
1731 | } |
1732 | } else if (t->isa_vect() && this->is_MachSpillCopy()) { |
1733 | // Dump MachSpillcopy vector type. |
1734 | t->dump_on(st); |
1735 | } |
1736 | if (is_new) { |
1737 | debug_only(dump_orig(debug_orig(), st)); |
1738 | Node_Notes* nn = C->node_notes_at(_idx); |
1739 | if (nn != NULL && !nn->is_clear()) { |
1740 | if (nn->jvms() != NULL) { |
1741 | st->print(" !jvms:" ); |
1742 | nn->jvms()->dump_spec(st); |
1743 | } |
1744 | } |
1745 | } |
1746 | if (suffix) st->print("%s" , suffix); |
1747 | C->_in_dump_cnt--; |
1748 | } |
1749 | |
1750 | //------------------------------dump_req-------------------------------------- |
1751 | void Node::dump_req(outputStream *st) const { |
1752 | // Dump the required input edges |
1753 | for (uint i = 0; i < req(); i++) { // For all required inputs |
1754 | Node* d = in(i); |
1755 | if (d == NULL) { |
1756 | st->print("_ " ); |
1757 | } else if (NotANode(d)) { |
1758 | st->print("NotANode " ); // uninitialized, sentinel, garbage, etc. |
1759 | } else { |
1760 | st->print("%c%d " , Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx); |
1761 | } |
1762 | } |
1763 | } |
1764 | |
1765 | |
1766 | //------------------------------dump_prec------------------------------------- |
1767 | void Node::dump_prec(outputStream *st) const { |
1768 | // Dump the precedence edges |
1769 | int any_prec = 0; |
1770 | for (uint i = req(); i < len(); i++) { // For all precedence inputs |
1771 | Node* p = in(i); |
1772 | if (p != NULL) { |
1773 | if (!any_prec++) st->print(" |" ); |
1774 | if (NotANode(p)) { st->print("NotANode " ); continue; } |
1775 | st->print("%c%d " , Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); |
1776 | } |
1777 | } |
1778 | } |
1779 | |
1780 | //------------------------------dump_out-------------------------------------- |
1781 | void Node::dump_out(outputStream *st) const { |
1782 | // Delimit the output edges |
1783 | st->print(" [[" ); |
1784 | // Dump the output edges |
1785 | for (uint i = 0; i < _outcnt; i++) { // For all outputs |
1786 | Node* u = _out[i]; |
1787 | if (u == NULL) { |
1788 | st->print("_ " ); |
1789 | } else if (NotANode(u)) { |
1790 | st->print("NotANode " ); |
1791 | } else { |
1792 | st->print("%c%d " , Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx); |
1793 | } |
1794 | } |
1795 | st->print("]] " ); |
1796 | } |
1797 | |
1798 | //----------------------------collect_nodes_i---------------------------------- |
1799 | // Collects nodes from an Ideal graph, starting from a given start node and |
1800 | // moving in a given direction until a certain depth (distance from the start |
1801 | // node) is reached. Duplicates are ignored. |
1802 | // Arguments: |
1803 | // nstack: the nodes are collected into this array. |
1804 | // start: the node at which to start collecting. |
1805 | // direction: if this is a positive number, collect input nodes; if it is |
1806 | // a negative number, collect output nodes. |
1807 | // depth: collect nodes up to this distance from the start node. |
1808 | // include_start: whether to include the start node in the result collection. |
1809 | // only_ctrl: whether to regard control edges only during traversal. |
1810 | // only_data: whether to regard data edges only during traversal. |
1811 | static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) { |
1812 | Node* s = (Node*) start; // remove const |
1813 | nstack->append(s); |
1814 | int begin = 0; |
1815 | int end = 0; |
1816 | for(uint i = 0; i < depth; i++) { |
1817 | end = nstack->length(); |
1818 | for(int j = begin; j < end; j++) { |
1819 | Node* tp = nstack->at(j); |
1820 | uint limit = direction > 0 ? tp->len() : tp->outcnt(); |
1821 | for(uint k = 0; k < limit; k++) { |
1822 | Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k); |
1823 | |
1824 | if (NotANode(n)) continue; |
1825 | // do not recurse through top or the root (would reach unrelated stuff) |
1826 | if (n->is_Root() || n->is_top()) continue; |
1827 | if (only_ctrl && !n->is_CFG()) continue; |
1828 | if (only_data && n->is_CFG()) continue; |
1829 | |
1830 | bool on_stack = nstack->contains(n); |
1831 | if (!on_stack) { |
1832 | nstack->append(n); |
1833 | } |
1834 | } |
1835 | } |
1836 | begin = end; |
1837 | } |
1838 | if (!include_start) { |
1839 | nstack->remove(s); |
1840 | } |
1841 | } |
1842 | |
1843 | //------------------------------dump_nodes------------------------------------- |
1844 | static void dump_nodes(const Node* start, int d, bool only_ctrl) { |
1845 | if (NotANode(start)) return; |
1846 | |
1847 | GrowableArray <Node *> nstack(Compile::current()->live_nodes()); |
1848 | collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false); |
1849 | |
1850 | int end = nstack.length(); |
1851 | if (d > 0) { |
1852 | for(int j = end-1; j >= 0; j--) { |
1853 | nstack.at(j)->dump(); |
1854 | } |
1855 | } else { |
1856 | for(int j = 0; j < end; j++) { |
1857 | nstack.at(j)->dump(); |
1858 | } |
1859 | } |
1860 | } |
1861 | |
1862 | //------------------------------dump------------------------------------------- |
1863 | void Node::dump(int d) const { |
1864 | dump_nodes(this, d, false); |
1865 | } |
1866 | |
1867 | //------------------------------dump_ctrl-------------------------------------- |
1868 | // Dump a Node's control history to depth |
1869 | void Node::dump_ctrl(int d) const { |
1870 | dump_nodes(this, d, true); |
1871 | } |
1872 | |
1873 | //-----------------------------dump_compact------------------------------------ |
1874 | void Node::dump_comp() const { |
1875 | this->dump_comp("\n" ); |
1876 | } |
1877 | |
1878 | //-----------------------------dump_compact------------------------------------ |
1879 | // Dump a Node in compact representation, i.e., just print its name and index. |
1880 | // Nodes can specify additional specifics to print in compact representation by |
1881 | // implementing dump_compact_spec. |
1882 | void Node::dump_comp(const char* suffix, outputStream *st) const { |
1883 | Compile* C = Compile::current(); |
1884 | C->_in_dump_cnt++; |
1885 | st->print("%s(%d)" , Name(), _idx); |
1886 | this->dump_compact_spec(st); |
1887 | if (suffix) { |
1888 | st->print("%s" , suffix); |
1889 | } |
1890 | C->_in_dump_cnt--; |
1891 | } |
1892 | |
1893 | //----------------------------dump_related------------------------------------- |
1894 | // Dump a Node's related nodes - the notion of "related" depends on the Node at |
1895 | // hand and is determined by the implementation of the virtual method rel. |
1896 | void Node::dump_related() const { |
1897 | Compile* C = Compile::current(); |
1898 | GrowableArray <Node *> in_rel(C->unique()); |
1899 | GrowableArray <Node *> out_rel(C->unique()); |
1900 | this->related(&in_rel, &out_rel, false); |
1901 | for (int i = in_rel.length() - 1; i >= 0; i--) { |
1902 | in_rel.at(i)->dump(); |
1903 | } |
1904 | this->dump("\n" , true); |
1905 | for (int i = 0; i < out_rel.length(); i++) { |
1906 | out_rel.at(i)->dump(); |
1907 | } |
1908 | } |
1909 | |
1910 | //----------------------------dump_related------------------------------------- |
1911 | // Dump a Node's related nodes up to a given depth (distance from the start |
1912 | // node). |
1913 | // Arguments: |
1914 | // d_in: depth for input nodes. |
1915 | // d_out: depth for output nodes (note: this also is a positive number). |
1916 | void Node::dump_related(uint d_in, uint d_out) const { |
1917 | Compile* C = Compile::current(); |
1918 | GrowableArray <Node *> in_rel(C->unique()); |
1919 | GrowableArray <Node *> out_rel(C->unique()); |
1920 | |
1921 | // call collect_nodes_i directly |
1922 | collect_nodes_i(&in_rel, this, 1, d_in, false, false, false); |
1923 | collect_nodes_i(&out_rel, this, -1, d_out, false, false, false); |
1924 | |
1925 | for (int i = in_rel.length() - 1; i >= 0; i--) { |
1926 | in_rel.at(i)->dump(); |
1927 | } |
1928 | this->dump("\n" , true); |
1929 | for (int i = 0; i < out_rel.length(); i++) { |
1930 | out_rel.at(i)->dump(); |
1931 | } |
1932 | } |
1933 | |
1934 | //------------------------dump_related_compact--------------------------------- |
1935 | // Dump a Node's related nodes in compact representation. The notion of |
1936 | // "related" depends on the Node at hand and is determined by the implementation |
1937 | // of the virtual method rel. |
1938 | void Node::dump_related_compact() const { |
1939 | Compile* C = Compile::current(); |
1940 | GrowableArray <Node *> in_rel(C->unique()); |
1941 | GrowableArray <Node *> out_rel(C->unique()); |
1942 | this->related(&in_rel, &out_rel, true); |
1943 | int n_in = in_rel.length(); |
1944 | int n_out = out_rel.length(); |
1945 | |
1946 | this->dump_comp(n_in == 0 ? "\n" : " " ); |
1947 | for (int i = 0; i < n_in; i++) { |
1948 | in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : " " ); |
1949 | } |
1950 | for (int i = 0; i < n_out; i++) { |
1951 | out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : " " ); |
1952 | } |
1953 | } |
1954 | |
1955 | //------------------------------related---------------------------------------- |
1956 | // Collect a Node's related nodes. The default behaviour just collects the |
1957 | // inputs and outputs at depth 1, including both control and data flow edges, |
1958 | // regardless of whether the presentation is compact or not. For data nodes, |
1959 | // the default is to collect all data inputs (till level 1 if compact), and |
1960 | // outputs till level 1. |
1961 | void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { |
1962 | if (this->is_CFG()) { |
1963 | collect_nodes_i(in_rel, this, 1, 1, false, false, false); |
1964 | collect_nodes_i(out_rel, this, -1, 1, false, false, false); |
1965 | } else { |
1966 | if (compact) { |
1967 | this->collect_nodes(in_rel, 1, false, true); |
1968 | } else { |
1969 | this->collect_nodes_in_all_data(in_rel, false); |
1970 | } |
1971 | this->collect_nodes(out_rel, -1, false, false); |
1972 | } |
1973 | } |
1974 | |
1975 | //---------------------------collect_nodes------------------------------------- |
1976 | // An entry point to the low-level node collection facility, to start from a |
1977 | // given node in the graph. The start node is by default not included in the |
1978 | // result. |
1979 | // Arguments: |
1980 | // ns: collect the nodes into this data structure. |
1981 | // d: the depth (distance from start node) to which nodes should be |
1982 | // collected. A value >0 indicates input nodes, a value <0, output |
1983 | // nodes. |
1984 | // ctrl: include only control nodes. |
1985 | // data: include only data nodes. |
1986 | void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const { |
1987 | if (ctrl && data) { |
1988 | // ignore nonsensical combination |
1989 | return; |
1990 | } |
1991 | collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data); |
1992 | } |
1993 | |
1994 | //--------------------------collect_nodes_in----------------------------------- |
1995 | static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) { |
1996 | // The maximum depth is determined using a BFS that visits all primary (data |
1997 | // or control) inputs and increments the depth at each level. |
1998 | uint d_in = 0; |
1999 | GrowableArray<Node*> nodes(Compile::current()->unique()); |
2000 | nodes.push(start); |
2001 | int nodes_at_current_level = 1; |
2002 | int n_idx = 0; |
2003 | while (nodes_at_current_level > 0) { |
2004 | // Add all primary inputs reachable from the current level to the list, and |
2005 | // increase the depth if there were any. |
2006 | int nodes_at_next_level = 0; |
2007 | bool nodes_added = false; |
2008 | while (nodes_at_current_level > 0) { |
2009 | nodes_at_current_level--; |
2010 | Node* current = nodes.at(n_idx++); |
2011 | for (uint i = 0; i < current->len(); i++) { |
2012 | Node* n = current->in(i); |
2013 | if (NotANode(n)) { |
2014 | continue; |
2015 | } |
2016 | if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) { |
2017 | continue; |
2018 | } |
2019 | if (!nodes.contains(n)) { |
2020 | nodes.push(n); |
2021 | nodes_added = true; |
2022 | nodes_at_next_level++; |
2023 | } |
2024 | } |
2025 | } |
2026 | if (nodes_added) { |
2027 | d_in++; |
2028 | } |
2029 | nodes_at_current_level = nodes_at_next_level; |
2030 | } |
2031 | start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data); |
2032 | if (collect_secondary) { |
2033 | // Now, iterate over the secondary nodes in ns and add the respective |
2034 | // boundary reachable from them. |
2035 | GrowableArray<Node*> sns(Compile::current()->unique()); |
2036 | for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) { |
2037 | Node* n = *it; |
2038 | n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data); |
2039 | for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) { |
2040 | ns->append_if_missing(*d); |
2041 | } |
2042 | sns.clear(); |
2043 | } |
2044 | } |
2045 | } |
2046 | |
2047 | //---------------------collect_nodes_in_all_data------------------------------- |
2048 | // Collect the entire data input graph. Include the control boundary if |
2049 | // requested. |
2050 | // Arguments: |
2051 | // ns: collect the nodes into this data structure. |
2052 | // ctrl: if true, include the control boundary. |
2053 | void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const { |
2054 | collect_nodes_in((Node*) this, ns, true, ctrl); |
2055 | } |
2056 | |
2057 | //--------------------------collect_nodes_in_all_ctrl-------------------------- |
2058 | // Collect the entire control input graph. Include the data boundary if |
2059 | // requested. |
2060 | // ns: collect the nodes into this data structure. |
2061 | // data: if true, include the control boundary. |
2062 | void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const { |
2063 | collect_nodes_in((Node*) this, ns, false, data); |
2064 | } |
2065 | |
2066 | //------------------collect_nodes_out_all_ctrl_boundary------------------------ |
2067 | // Collect the entire output graph until hitting control node boundaries, and |
2068 | // include those. |
2069 | void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const { |
2070 | // Perform a BFS and stop at control nodes. |
2071 | GrowableArray<Node*> nodes(Compile::current()->unique()); |
2072 | nodes.push((Node*) this); |
2073 | while (nodes.length() > 0) { |
2074 | Node* current = nodes.pop(); |
2075 | if (NotANode(current)) { |
2076 | continue; |
2077 | } |
2078 | ns->append_if_missing(current); |
2079 | if (!current->is_CFG()) { |
2080 | for (DUIterator i = current->outs(); current->has_out(i); i++) { |
2081 | nodes.push(current->out(i)); |
2082 | } |
2083 | } |
2084 | } |
2085 | ns->remove((Node*) this); |
2086 | } |
2087 | |
2088 | // VERIFICATION CODE |
2089 | // For each input edge to a node (ie - for each Use-Def edge), verify that |
2090 | // there is a corresponding Def-Use edge. |
2091 | //------------------------------verify_edges----------------------------------- |
2092 | void Node::verify_edges(Unique_Node_List &visited) { |
2093 | uint i, j, idx; |
2094 | int cnt; |
2095 | Node *n; |
2096 | |
2097 | // Recursive termination test |
2098 | if (visited.member(this)) return; |
2099 | visited.push(this); |
2100 | |
2101 | // Walk over all input edges, checking for correspondence |
2102 | for( i = 0; i < len(); i++ ) { |
2103 | n = in(i); |
2104 | if (n != NULL && !n->is_top()) { |
2105 | // Count instances of (Node *)this |
2106 | cnt = 0; |
2107 | for (idx = 0; idx < n->_outcnt; idx++ ) { |
2108 | if (n->_out[idx] == (Node *)this) cnt++; |
2109 | } |
2110 | assert( cnt > 0,"Failed to find Def-Use edge." ); |
2111 | // Check for duplicate edges |
2112 | // walk the input array downcounting the input edges to n |
2113 | for( j = 0; j < len(); j++ ) { |
2114 | if( in(j) == n ) cnt--; |
2115 | } |
2116 | assert( cnt == 0,"Mismatched edge count." ); |
2117 | } else if (n == NULL) { |
2118 | assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges" ); |
2119 | } else { |
2120 | assert(n->is_top(), "sanity" ); |
2121 | // Nothing to check. |
2122 | } |
2123 | } |
2124 | // Recursive walk over all input edges |
2125 | for( i = 0; i < len(); i++ ) { |
2126 | n = in(i); |
2127 | if( n != NULL ) |
2128 | in(i)->verify_edges(visited); |
2129 | } |
2130 | } |
2131 | |
2132 | //------------------------------verify_recur----------------------------------- |
2133 | static const Node *unique_top = NULL; |
2134 | |
2135 | void Node::verify_recur(const Node *n, int verify_depth, |
2136 | VectorSet &old_space, VectorSet &new_space) { |
2137 | if ( verify_depth == 0 ) return; |
2138 | if (verify_depth > 0) --verify_depth; |
2139 | |
2140 | Compile* C = Compile::current(); |
2141 | |
2142 | // Contained in new_space or old_space? |
2143 | VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space; |
2144 | // Check for visited in the proper space. Numberings are not unique |
2145 | // across spaces so we need a separate VectorSet for each space. |
2146 | if( v->test_set(n->_idx) ) return; |
2147 | |
2148 | if (n->is_Con() && n->bottom_type() == Type::TOP) { |
2149 | if (C->cached_top_node() == NULL) |
2150 | C->set_cached_top_node((Node*)n); |
2151 | assert(C->cached_top_node() == n, "TOP node must be unique" ); |
2152 | } |
2153 | |
2154 | for( uint i = 0; i < n->len(); i++ ) { |
2155 | Node *x = n->in(i); |
2156 | if (!x || x->is_top()) continue; |
2157 | |
2158 | // Verify my input has a def-use edge to me |
2159 | if (true /*VerifyDefUse*/) { |
2160 | // Count use-def edges from n to x |
2161 | int cnt = 0; |
2162 | for( uint j = 0; j < n->len(); j++ ) |
2163 | if( n->in(j) == x ) |
2164 | cnt++; |
2165 | // Count def-use edges from x to n |
2166 | uint max = x->_outcnt; |
2167 | for( uint k = 0; k < max; k++ ) |
2168 | if (x->_out[k] == n) |
2169 | cnt--; |
2170 | assert( cnt == 0, "mismatched def-use edge counts" ); |
2171 | } |
2172 | |
2173 | verify_recur(x, verify_depth, old_space, new_space); |
2174 | } |
2175 | |
2176 | } |
2177 | |
2178 | //------------------------------verify----------------------------------------- |
2179 | // Check Def-Use info for my subgraph |
2180 | void Node::verify() const { |
2181 | Compile* C = Compile::current(); |
2182 | Node* old_top = C->cached_top_node(); |
2183 | ResourceMark rm; |
2184 | ResourceArea *area = Thread::current()->resource_area(); |
2185 | VectorSet old_space(area), new_space(area); |
2186 | verify_recur(this, -1, old_space, new_space); |
2187 | C->set_cached_top_node(old_top); |
2188 | } |
2189 | #endif |
2190 | |
2191 | |
2192 | //------------------------------walk------------------------------------------- |
2193 | // Graph walk, with both pre-order and post-order functions |
2194 | void Node::walk(NFunc pre, NFunc post, void *env) { |
2195 | VectorSet visited(Thread::current()->resource_area()); // Setup for local walk |
2196 | walk_(pre, post, env, visited); |
2197 | } |
2198 | |
2199 | void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) { |
2200 | if( visited.test_set(_idx) ) return; |
2201 | pre(*this,env); // Call the pre-order walk function |
2202 | for( uint i=0; i<_max; i++ ) |
2203 | if( in(i) ) // Input exists and is not walked? |
2204 | in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions |
2205 | post(*this,env); // Call the post-order walk function |
2206 | } |
2207 | |
2208 | void Node::nop(Node &, void*) {} |
2209 | |
2210 | //------------------------------Registers-------------------------------------- |
2211 | // Do we Match on this edge index or not? Generally false for Control |
2212 | // and true for everything else. Weird for calls & returns. |
2213 | uint Node::match_edge(uint idx) const { |
2214 | return idx; // True for other than index 0 (control) |
2215 | } |
2216 | |
2217 | static RegMask _not_used_at_all; |
2218 | // Register classes are defined for specific machines |
2219 | const RegMask &Node::out_RegMask() const { |
2220 | ShouldNotCallThis(); |
2221 | return _not_used_at_all; |
2222 | } |
2223 | |
2224 | const RegMask &Node::in_RegMask(uint) const { |
2225 | ShouldNotCallThis(); |
2226 | return _not_used_at_all; |
2227 | } |
2228 | |
2229 | //============================================================================= |
2230 | //----------------------------------------------------------------------------- |
2231 | void Node_Array::reset( Arena *new_arena ) { |
2232 | _a->Afree(_nodes,_max*sizeof(Node*)); |
2233 | _max = 0; |
2234 | _nodes = NULL; |
2235 | _a = new_arena; |
2236 | } |
2237 | |
2238 | //------------------------------clear------------------------------------------ |
2239 | // Clear all entries in _nodes to NULL but keep storage |
2240 | void Node_Array::clear() { |
2241 | Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) ); |
2242 | } |
2243 | |
2244 | //----------------------------------------------------------------------------- |
2245 | void Node_Array::grow( uint i ) { |
2246 | if( !_max ) { |
2247 | _max = 1; |
2248 | _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) ); |
2249 | _nodes[0] = NULL; |
2250 | } |
2251 | uint old = _max; |
2252 | while( i >= _max ) _max <<= 1; // Double to fit |
2253 | _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); |
2254 | Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); |
2255 | } |
2256 | |
2257 | //----------------------------------------------------------------------------- |
2258 | void Node_Array::insert( uint i, Node *n ) { |
2259 | if( _nodes[_max-1] ) grow(_max); // Get more space if full |
2260 | Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*))); |
2261 | _nodes[i] = n; |
2262 | } |
2263 | |
2264 | //----------------------------------------------------------------------------- |
2265 | void Node_Array::remove( uint i ) { |
2266 | Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*))); |
2267 | _nodes[_max-1] = NULL; |
2268 | } |
2269 | |
2270 | //----------------------------------------------------------------------------- |
2271 | void Node_Array::sort( C_sort_func_t func) { |
2272 | qsort( _nodes, _max, sizeof( Node* ), func ); |
2273 | } |
2274 | |
2275 | //----------------------------------------------------------------------------- |
2276 | void Node_Array::dump() const { |
2277 | #ifndef PRODUCT |
2278 | for( uint i = 0; i < _max; i++ ) { |
2279 | Node *nn = _nodes[i]; |
2280 | if( nn != NULL ) { |
2281 | tty->print("%5d--> " ,i); nn->dump(); |
2282 | } |
2283 | } |
2284 | #endif |
2285 | } |
2286 | |
2287 | //--------------------------is_iteratively_computed------------------------------ |
2288 | // Operation appears to be iteratively computed (such as an induction variable) |
2289 | // It is possible for this operation to return false for a loop-varying |
2290 | // value, if it appears (by local graph inspection) to be computed by a simple conditional. |
2291 | bool Node::is_iteratively_computed() { |
2292 | if (ideal_reg()) { // does operation have a result register? |
2293 | for (uint i = 1; i < req(); i++) { |
2294 | Node* n = in(i); |
2295 | if (n != NULL && n->is_Phi()) { |
2296 | for (uint j = 1; j < n->req(); j++) { |
2297 | if (n->in(j) == this) { |
2298 | return true; |
2299 | } |
2300 | } |
2301 | } |
2302 | } |
2303 | } |
2304 | return false; |
2305 | } |
2306 | |
2307 | //--------------------------find_similar------------------------------ |
2308 | // Return a node with opcode "opc" and same inputs as "this" if one can |
2309 | // be found; Otherwise return NULL; |
2310 | Node* Node::find_similar(int opc) { |
2311 | if (req() >= 2) { |
2312 | Node* def = in(1); |
2313 | if (def && def->outcnt() >= 2) { |
2314 | for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { |
2315 | Node* use = def->fast_out(i); |
2316 | if (use != this && |
2317 | use->Opcode() == opc && |
2318 | use->req() == req()) { |
2319 | uint j; |
2320 | for (j = 0; j < use->req(); j++) { |
2321 | if (use->in(j) != in(j)) { |
2322 | break; |
2323 | } |
2324 | } |
2325 | if (j == use->req()) { |
2326 | return use; |
2327 | } |
2328 | } |
2329 | } |
2330 | } |
2331 | } |
2332 | return NULL; |
2333 | } |
2334 | |
2335 | |
2336 | //--------------------------unique_ctrl_out------------------------------ |
2337 | // Return the unique control out if only one. Null if none or more than one. |
2338 | Node* Node::unique_ctrl_out() const { |
2339 | Node* found = NULL; |
2340 | for (uint i = 0; i < outcnt(); i++) { |
2341 | Node* use = raw_out(i); |
2342 | if (use->is_CFG() && use != this) { |
2343 | if (found != NULL) return NULL; |
2344 | found = use; |
2345 | } |
2346 | } |
2347 | return found; |
2348 | } |
2349 | |
2350 | void Node::ensure_control_or_add_prec(Node* c) { |
2351 | if (in(0) == NULL) { |
2352 | set_req(0, c); |
2353 | } else if (in(0) != c) { |
2354 | add_prec(c); |
2355 | } |
2356 | } |
2357 | |
2358 | //============================================================================= |
2359 | //------------------------------yank------------------------------------------- |
2360 | // Find and remove |
2361 | void Node_List::yank( Node *n ) { |
2362 | uint i; |
2363 | for( i = 0; i < _cnt; i++ ) |
2364 | if( _nodes[i] == n ) |
2365 | break; |
2366 | |
2367 | if( i < _cnt ) |
2368 | _nodes[i] = _nodes[--_cnt]; |
2369 | } |
2370 | |
2371 | //------------------------------dump------------------------------------------- |
2372 | void Node_List::dump() const { |
2373 | #ifndef PRODUCT |
2374 | for( uint i = 0; i < _cnt; i++ ) |
2375 | if( _nodes[i] ) { |
2376 | tty->print("%5d--> " ,i); |
2377 | _nodes[i]->dump(); |
2378 | } |
2379 | #endif |
2380 | } |
2381 | |
2382 | void Node_List::dump_simple() const { |
2383 | #ifndef PRODUCT |
2384 | for( uint i = 0; i < _cnt; i++ ) |
2385 | if( _nodes[i] ) { |
2386 | tty->print(" %d" , _nodes[i]->_idx); |
2387 | } else { |
2388 | tty->print(" NULL" ); |
2389 | } |
2390 | #endif |
2391 | } |
2392 | |
2393 | //============================================================================= |
2394 | //------------------------------remove----------------------------------------- |
2395 | void Unique_Node_List::remove( Node *n ) { |
2396 | if( _in_worklist[n->_idx] ) { |
2397 | for( uint i = 0; i < size(); i++ ) |
2398 | if( _nodes[i] == n ) { |
2399 | map(i,Node_List::pop()); |
2400 | _in_worklist >>= n->_idx; |
2401 | return; |
2402 | } |
2403 | ShouldNotReachHere(); |
2404 | } |
2405 | } |
2406 | |
2407 | //-----------------------remove_useless_nodes---------------------------------- |
2408 | // Remove useless nodes from worklist |
2409 | void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { |
2410 | |
2411 | for( uint i = 0; i < size(); ++i ) { |
2412 | Node *n = at(i); |
2413 | assert( n != NULL, "Did not expect null entries in worklist" ); |
2414 | if( ! useful.test(n->_idx) ) { |
2415 | _in_worklist >>= n->_idx; |
2416 | map(i,Node_List::pop()); |
2417 | // Node *replacement = Node_List::pop(); |
2418 | // if( i != size() ) { // Check if removing last entry |
2419 | // _nodes[i] = replacement; |
2420 | // } |
2421 | --i; // Visit popped node |
2422 | // If it was last entry, loop terminates since size() was also reduced |
2423 | } |
2424 | } |
2425 | } |
2426 | |
2427 | //============================================================================= |
2428 | void Node_Stack::grow() { |
2429 | size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top |
2430 | size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); |
2431 | size_t max = old_max << 1; // max * 2 |
2432 | _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); |
2433 | _inode_max = _inodes + max; |
2434 | _inode_top = _inodes + old_top; // restore _top |
2435 | } |
2436 | |
2437 | // Node_Stack is used to map nodes. |
2438 | Node* Node_Stack::find(uint idx) const { |
2439 | uint sz = size(); |
2440 | for (uint i=0; i < sz; i++) { |
2441 | if (idx == index_at(i) ) |
2442 | return node_at(i); |
2443 | } |
2444 | return NULL; |
2445 | } |
2446 | |
2447 | //============================================================================= |
2448 | uint TypeNode::size_of() const { return sizeof(*this); } |
2449 | #ifndef PRODUCT |
2450 | void TypeNode::dump_spec(outputStream *st) const { |
2451 | if( !Verbose && !WizardMode ) { |
2452 | // standard dump does this in Verbose and WizardMode |
2453 | st->print(" #" ); _type->dump_on(st); |
2454 | } |
2455 | } |
2456 | |
2457 | void TypeNode::dump_compact_spec(outputStream *st) const { |
2458 | st->print("#" ); |
2459 | _type->dump_on(st); |
2460 | } |
2461 | #endif |
2462 | uint TypeNode::hash() const { |
2463 | return Node::hash() + _type->hash(); |
2464 | } |
2465 | bool TypeNode::cmp( const Node &n ) const |
2466 | { return !Type::cmp( _type, ((TypeNode&)n)._type ); } |
2467 | const Type *TypeNode::bottom_type() const { return _type; } |
2468 | const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; } |
2469 | |
2470 | //------------------------------ideal_reg-------------------------------------- |
2471 | uint TypeNode::ideal_reg() const { |
2472 | return _type->ideal_reg(); |
2473 | } |
2474 | |