1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_CALLNODE_HPP |
26 | #define SHARE_OPTO_CALLNODE_HPP |
27 | |
28 | #include "opto/connode.hpp" |
29 | #include "opto/mulnode.hpp" |
30 | #include "opto/multnode.hpp" |
31 | #include "opto/opcodes.hpp" |
32 | #include "opto/phaseX.hpp" |
33 | #include "opto/replacednodes.hpp" |
34 | #include "opto/type.hpp" |
35 | |
36 | // Portions of code courtesy of Clifford Click |
37 | |
38 | // Optimization - Graph Style |
39 | |
40 | class Chaitin; |
41 | class NamedCounter; |
42 | class MultiNode; |
43 | class SafePointNode; |
44 | class CallNode; |
45 | class CallJavaNode; |
46 | class CallStaticJavaNode; |
47 | class CallDynamicJavaNode; |
48 | class CallRuntimeNode; |
49 | class CallLeafNode; |
50 | class CallLeafNoFPNode; |
51 | class AllocateNode; |
52 | class AllocateArrayNode; |
53 | class BoxLockNode; |
54 | class LockNode; |
55 | class UnlockNode; |
56 | class JVMState; |
57 | class OopMap; |
58 | class State; |
59 | class StartNode; |
60 | class MachCallNode; |
61 | class FastLockNode; |
62 | |
63 | //------------------------------StartNode-------------------------------------- |
64 | // The method start node |
65 | class StartNode : public MultiNode { |
66 | virtual bool cmp( const Node &n ) const; |
67 | virtual uint size_of() const; // Size is bigger |
68 | public: |
69 | const TypeTuple *_domain; |
70 | StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { |
71 | init_class_id(Class_Start); |
72 | init_req(0,this); |
73 | init_req(1,root); |
74 | } |
75 | virtual int Opcode() const; |
76 | virtual bool pinned() const { return true; }; |
77 | virtual const Type *bottom_type() const; |
78 | virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } |
79 | virtual const Type* Value(PhaseGVN* phase) const; |
80 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
81 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; |
82 | virtual const RegMask &in_RegMask(uint) const; |
83 | virtual Node *match( const ProjNode *proj, const Matcher *m ); |
84 | virtual uint ideal_reg() const { return 0; } |
85 | #ifndef PRODUCT |
86 | virtual void dump_spec(outputStream *st) const; |
87 | virtual void dump_compact_spec(outputStream *st) const; |
88 | #endif |
89 | }; |
90 | |
91 | //------------------------------StartOSRNode----------------------------------- |
92 | // The method start node for on stack replacement code |
93 | class StartOSRNode : public StartNode { |
94 | public: |
95 | StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} |
96 | virtual int Opcode() const; |
97 | static const TypeTuple *osr_domain(); |
98 | }; |
99 | |
100 | |
101 | //------------------------------ParmNode--------------------------------------- |
102 | // Incoming parameters |
103 | class ParmNode : public ProjNode { |
104 | static const char * const names[TypeFunc::Parms+1]; |
105 | public: |
106 | ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { |
107 | init_class_id(Class_Parm); |
108 | } |
109 | virtual int Opcode() const; |
110 | virtual bool is_CFG() const { return (_con == TypeFunc::Control); } |
111 | virtual uint ideal_reg() const; |
112 | #ifndef PRODUCT |
113 | virtual void dump_spec(outputStream *st) const; |
114 | virtual void dump_compact_spec(outputStream *st) const; |
115 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
116 | #endif |
117 | }; |
118 | |
119 | |
120 | //------------------------------ReturnNode------------------------------------- |
121 | // Return from subroutine node |
122 | class ReturnNode : public Node { |
123 | public: |
124 | ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr ); |
125 | virtual int Opcode() const; |
126 | virtual bool is_CFG() const { return true; } |
127 | virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash |
128 | virtual bool depends_only_on_test() const { return false; } |
129 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
130 | virtual const Type* Value(PhaseGVN* phase) const; |
131 | virtual uint ideal_reg() const { return NotAMachineReg; } |
132 | virtual uint match_edge(uint idx) const; |
133 | #ifndef PRODUCT |
134 | virtual void dump_req(outputStream *st = tty) const; |
135 | #endif |
136 | }; |
137 | |
138 | |
139 | //------------------------------RethrowNode------------------------------------ |
140 | // Rethrow of exception at call site. Ends a procedure before rethrowing; |
141 | // ends the current basic block like a ReturnNode. Restores registers and |
142 | // unwinds stack. Rethrow happens in the caller's method. |
143 | class RethrowNode : public Node { |
144 | public: |
145 | RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); |
146 | virtual int Opcode() const; |
147 | virtual bool is_CFG() const { return true; } |
148 | virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash |
149 | virtual bool depends_only_on_test() const { return false; } |
150 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
151 | virtual const Type* Value(PhaseGVN* phase) const; |
152 | virtual uint match_edge(uint idx) const; |
153 | virtual uint ideal_reg() const { return NotAMachineReg; } |
154 | #ifndef PRODUCT |
155 | virtual void dump_req(outputStream *st = tty) const; |
156 | #endif |
157 | }; |
158 | |
159 | |
160 | //------------------------------TailCallNode----------------------------------- |
161 | // Pop stack frame and jump indirect |
162 | class TailCallNode : public ReturnNode { |
163 | public: |
164 | TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) |
165 | : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { |
166 | init_req(TypeFunc::Parms, target); |
167 | init_req(TypeFunc::Parms+1, moop); |
168 | } |
169 | |
170 | virtual int Opcode() const; |
171 | virtual uint match_edge(uint idx) const; |
172 | }; |
173 | |
174 | //------------------------------TailJumpNode----------------------------------- |
175 | // Pop stack frame and jump indirect |
176 | class TailJumpNode : public ReturnNode { |
177 | public: |
178 | TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) |
179 | : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { |
180 | init_req(TypeFunc::Parms, target); |
181 | init_req(TypeFunc::Parms+1, ex_oop); |
182 | } |
183 | |
184 | virtual int Opcode() const; |
185 | virtual uint match_edge(uint idx) const; |
186 | }; |
187 | |
188 | //-------------------------------JVMState------------------------------------- |
189 | // A linked list of JVMState nodes captures the whole interpreter state, |
190 | // plus GC roots, for all active calls at some call site in this compilation |
191 | // unit. (If there is no inlining, then the list has exactly one link.) |
192 | // This provides a way to map the optimized program back into the interpreter, |
193 | // or to let the GC mark the stack. |
194 | class JVMState : public ResourceObj { |
195 | friend class VMStructs; |
196 | public: |
197 | typedef enum { |
198 | Reexecute_Undefined = -1, // not defined -- will be translated into false later |
199 | Reexecute_False = 0, // false -- do not reexecute |
200 | Reexecute_True = 1 // true -- reexecute the bytecode |
201 | } ReexecuteState; //Reexecute State |
202 | |
203 | private: |
204 | JVMState* _caller; // List pointer for forming scope chains |
205 | uint _depth; // One more than caller depth, or one. |
206 | uint _locoff; // Offset to locals in input edge mapping |
207 | uint _stkoff; // Offset to stack in input edge mapping |
208 | uint _monoff; // Offset to monitors in input edge mapping |
209 | uint _scloff; // Offset to fields of scalar objs in input edge mapping |
210 | uint _endoff; // Offset to end of input edge mapping |
211 | uint _sp; // Jave Expression Stack Pointer for this state |
212 | int _bci; // Byte Code Index of this JVM point |
213 | ReexecuteState _reexecute; // Whether this bytecode need to be re-executed |
214 | ciMethod* _method; // Method Pointer |
215 | SafePointNode* _map; // Map node associated with this scope |
216 | public: |
217 | friend class Compile; |
218 | friend class PreserveReexecuteState; |
219 | |
220 | // Because JVMState objects live over the entire lifetime of the |
221 | // Compile object, they are allocated into the comp_arena, which |
222 | // does not get resource marked or reset during the compile process |
223 | void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } |
224 | void operator delete( void * ) { } // fast deallocation |
225 | |
226 | // Create a new JVMState, ready for abstract interpretation. |
227 | JVMState(ciMethod* method, JVMState* caller); |
228 | JVMState(int stack_size); // root state; has a null method |
229 | |
230 | // Access functions for the JVM |
231 | // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| |
232 | // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff |
233 | uint locoff() const { return _locoff; } |
234 | uint stkoff() const { return _stkoff; } |
235 | uint argoff() const { return _stkoff + _sp; } |
236 | uint monoff() const { return _monoff; } |
237 | uint scloff() const { return _scloff; } |
238 | uint endoff() const { return _endoff; } |
239 | uint oopoff() const { return debug_end(); } |
240 | |
241 | int loc_size() const { return stkoff() - locoff(); } |
242 | int stk_size() const { return monoff() - stkoff(); } |
243 | int mon_size() const { return scloff() - monoff(); } |
244 | int scl_size() const { return endoff() - scloff(); } |
245 | |
246 | bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } |
247 | bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } |
248 | bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } |
249 | bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } |
250 | |
251 | uint sp() const { return _sp; } |
252 | int bci() const { return _bci; } |
253 | bool should_reexecute() const { return _reexecute==Reexecute_True; } |
254 | bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } |
255 | bool has_method() const { return _method != NULL; } |
256 | ciMethod* method() const { assert(has_method(), "" ); return _method; } |
257 | JVMState* caller() const { return _caller; } |
258 | SafePointNode* map() const { return _map; } |
259 | uint depth() const { return _depth; } |
260 | uint debug_start() const; // returns locoff of root caller |
261 | uint debug_end() const; // returns endoff of self |
262 | uint debug_size() const { |
263 | return loc_size() + sp() + mon_size() + scl_size(); |
264 | } |
265 | uint debug_depth() const; // returns sum of debug_size values at all depths |
266 | |
267 | // Returns the JVM state at the desired depth (1 == root). |
268 | JVMState* of_depth(int d) const; |
269 | |
270 | // Tells if two JVM states have the same call chain (depth, methods, & bcis). |
271 | bool same_calls_as(const JVMState* that) const; |
272 | |
273 | // Monitors (monitors are stored as (boxNode, objNode) pairs |
274 | enum { logMonitorEdges = 1 }; |
275 | int nof_monitors() const { return mon_size() >> logMonitorEdges; } |
276 | int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } |
277 | int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } |
278 | int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } |
279 | bool is_monitor_box(uint off) const { |
280 | assert(is_mon(off), "should be called only for monitor edge" ); |
281 | return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); |
282 | } |
283 | bool is_monitor_use(uint off) const { return (is_mon(off) |
284 | && is_monitor_box(off)) |
285 | || (caller() && caller()->is_monitor_use(off)); } |
286 | |
287 | // Initialization functions for the JVM |
288 | void set_locoff(uint off) { _locoff = off; } |
289 | void set_stkoff(uint off) { _stkoff = off; } |
290 | void set_monoff(uint off) { _monoff = off; } |
291 | void set_scloff(uint off) { _scloff = off; } |
292 | void set_endoff(uint off) { _endoff = off; } |
293 | void set_offsets(uint off) { |
294 | _locoff = _stkoff = _monoff = _scloff = _endoff = off; |
295 | } |
296 | void set_map(SafePointNode *map) { _map = map; } |
297 | void set_sp(uint sp) { _sp = sp; } |
298 | // _reexecute is initialized to "undefined" for a new bci |
299 | void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } |
300 | void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} |
301 | |
302 | // Miscellaneous utility functions |
303 | JVMState* clone_deep(Compile* C) const; // recursively clones caller chain |
304 | JVMState* clone_shallow(Compile* C) const; // retains uncloned caller |
305 | void set_map_deep(SafePointNode *map);// reset map for all callers |
306 | void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. |
307 | int interpreter_frame_size() const; |
308 | |
309 | #ifndef PRODUCT |
310 | void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; |
311 | void dump_spec(outputStream *st) const; |
312 | void dump_on(outputStream* st) const; |
313 | void dump() const { |
314 | dump_on(tty); |
315 | } |
316 | #endif |
317 | }; |
318 | |
319 | //------------------------------SafePointNode---------------------------------- |
320 | // A SafePointNode is a subclass of a MultiNode for convenience (and |
321 | // potential code sharing) only - conceptually it is independent of |
322 | // the Node semantics. |
323 | class SafePointNode : public MultiNode { |
324 | virtual bool cmp( const Node &n ) const; |
325 | virtual uint size_of() const; // Size is bigger |
326 | |
327 | public: |
328 | SafePointNode(uint edges, JVMState* jvms, |
329 | // A plain safepoint advertises no memory effects (NULL): |
330 | const TypePtr* adr_type = NULL) |
331 | : MultiNode( edges ), |
332 | _oop_map(NULL), |
333 | _jvms(jvms), |
334 | _adr_type(adr_type) |
335 | { |
336 | init_class_id(Class_SafePoint); |
337 | } |
338 | |
339 | OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC |
340 | JVMState* const _jvms; // Pointer to list of JVM State objects |
341 | const TypePtr* _adr_type; // What type of memory does this node produce? |
342 | ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() |
343 | |
344 | // Many calls take *all* of memory as input, |
345 | // but some produce a limited subset of that memory as output. |
346 | // The adr_type reports the call's behavior as a store, not a load. |
347 | |
348 | virtual JVMState* jvms() const { return _jvms; } |
349 | void set_jvms(JVMState* s) { |
350 | *(JVMState**)&_jvms = s; // override const attribute in the accessor |
351 | } |
352 | OopMap *oop_map() const { return _oop_map; } |
353 | void set_oop_map(OopMap *om) { _oop_map = om; } |
354 | |
355 | private: |
356 | void verify_input(JVMState* jvms, uint idx) const { |
357 | assert(verify_jvms(jvms), "jvms must match" ); |
358 | Node* n = in(idx); |
359 | assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || |
360 | in(idx + 1)->is_top(), "2nd half of long/double" ); |
361 | } |
362 | |
363 | public: |
364 | // Functionality from old debug nodes which has changed |
365 | Node *local(JVMState* jvms, uint idx) const { |
366 | verify_input(jvms, jvms->locoff() + idx); |
367 | return in(jvms->locoff() + idx); |
368 | } |
369 | Node *stack(JVMState* jvms, uint idx) const { |
370 | verify_input(jvms, jvms->stkoff() + idx); |
371 | return in(jvms->stkoff() + idx); |
372 | } |
373 | Node *argument(JVMState* jvms, uint idx) const { |
374 | verify_input(jvms, jvms->argoff() + idx); |
375 | return in(jvms->argoff() + idx); |
376 | } |
377 | Node *monitor_box(JVMState* jvms, uint idx) const { |
378 | assert(verify_jvms(jvms), "jvms must match" ); |
379 | return in(jvms->monitor_box_offset(idx)); |
380 | } |
381 | Node *monitor_obj(JVMState* jvms, uint idx) const { |
382 | assert(verify_jvms(jvms), "jvms must match" ); |
383 | return in(jvms->monitor_obj_offset(idx)); |
384 | } |
385 | |
386 | void set_local(JVMState* jvms, uint idx, Node *c); |
387 | |
388 | void set_stack(JVMState* jvms, uint idx, Node *c) { |
389 | assert(verify_jvms(jvms), "jvms must match" ); |
390 | set_req(jvms->stkoff() + idx, c); |
391 | } |
392 | void set_argument(JVMState* jvms, uint idx, Node *c) { |
393 | assert(verify_jvms(jvms), "jvms must match" ); |
394 | set_req(jvms->argoff() + idx, c); |
395 | } |
396 | void ensure_stack(JVMState* jvms, uint stk_size) { |
397 | assert(verify_jvms(jvms), "jvms must match" ); |
398 | int grow_by = (int)stk_size - (int)jvms->stk_size(); |
399 | if (grow_by > 0) grow_stack(jvms, grow_by); |
400 | } |
401 | void grow_stack(JVMState* jvms, uint grow_by); |
402 | // Handle monitor stack |
403 | void push_monitor( const FastLockNode *lock ); |
404 | void pop_monitor (); |
405 | Node *peek_monitor_box() const; |
406 | Node *peek_monitor_obj() const; |
407 | |
408 | // Access functions for the JVM |
409 | Node *control () const { return in(TypeFunc::Control ); } |
410 | Node *i_o () const { return in(TypeFunc::I_O ); } |
411 | Node *memory () const { return in(TypeFunc::Memory ); } |
412 | Node *returnadr() const { return in(TypeFunc::ReturnAdr); } |
413 | Node *frameptr () const { return in(TypeFunc::FramePtr ); } |
414 | |
415 | void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } |
416 | void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } |
417 | void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } |
418 | |
419 | MergeMemNode* merged_memory() const { |
420 | return in(TypeFunc::Memory)->as_MergeMem(); |
421 | } |
422 | |
423 | // The parser marks useless maps as dead when it's done with them: |
424 | bool is_killed() { return in(TypeFunc::Control) == NULL; } |
425 | |
426 | // Exception states bubbling out of subgraphs such as inlined calls |
427 | // are recorded here. (There might be more than one, hence the "next".) |
428 | // This feature is used only for safepoints which serve as "maps" |
429 | // for JVM states during parsing, intrinsic expansion, etc. |
430 | SafePointNode* next_exception() const; |
431 | void set_next_exception(SafePointNode* n); |
432 | bool has_exceptions() const { return next_exception() != NULL; } |
433 | |
434 | // Helper methods to operate on replaced nodes |
435 | ReplacedNodes replaced_nodes() const { |
436 | return _replaced_nodes; |
437 | } |
438 | |
439 | void set_replaced_nodes(ReplacedNodes replaced_nodes) { |
440 | _replaced_nodes = replaced_nodes; |
441 | } |
442 | |
443 | void clone_replaced_nodes() { |
444 | _replaced_nodes.clone(); |
445 | } |
446 | void record_replaced_node(Node* initial, Node* improved) { |
447 | _replaced_nodes.record(initial, improved); |
448 | } |
449 | void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { |
450 | _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); |
451 | } |
452 | void delete_replaced_nodes() { |
453 | _replaced_nodes.reset(); |
454 | } |
455 | void apply_replaced_nodes(uint idx) { |
456 | _replaced_nodes.apply(this, idx); |
457 | } |
458 | void merge_replaced_nodes_with(SafePointNode* sfpt) { |
459 | _replaced_nodes.merge_with(sfpt->_replaced_nodes); |
460 | } |
461 | bool has_replaced_nodes() const { |
462 | return !_replaced_nodes.is_empty(); |
463 | } |
464 | |
465 | void disconnect_from_root(PhaseIterGVN *igvn); |
466 | |
467 | // Standard Node stuff |
468 | virtual int Opcode() const; |
469 | virtual bool pinned() const { return true; } |
470 | virtual const Type* Value(PhaseGVN* phase) const; |
471 | virtual const Type *bottom_type() const { return Type::CONTROL; } |
472 | virtual const TypePtr *adr_type() const { return _adr_type; } |
473 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
474 | virtual Node* Identity(PhaseGVN* phase); |
475 | virtual uint ideal_reg() const { return 0; } |
476 | virtual const RegMask &in_RegMask(uint) const; |
477 | virtual const RegMask &out_RegMask() const; |
478 | virtual uint match_edge(uint idx) const; |
479 | |
480 | static bool needs_polling_address_input(); |
481 | |
482 | #ifndef PRODUCT |
483 | virtual void dump_spec(outputStream *st) const; |
484 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
485 | #endif |
486 | }; |
487 | |
488 | //------------------------------SafePointScalarObjectNode---------------------- |
489 | // A SafePointScalarObjectNode represents the state of a scalarized object |
490 | // at a safepoint. |
491 | |
492 | class SafePointScalarObjectNode: public TypeNode { |
493 | uint _first_index; // First input edge relative index of a SafePoint node where |
494 | // states of the scalarized object fields are collected. |
495 | // It is relative to the last (youngest) jvms->_scloff. |
496 | uint _n_fields; // Number of non-static fields of the scalarized object. |
497 | DEBUG_ONLY(AllocateNode* _alloc;) |
498 | |
499 | virtual uint hash() const ; // { return NO_HASH; } |
500 | virtual bool cmp( const Node &n ) const; |
501 | |
502 | uint first_index() const { return _first_index; } |
503 | |
504 | public: |
505 | SafePointScalarObjectNode(const TypeOopPtr* tp, |
506 | #ifdef ASSERT |
507 | AllocateNode* alloc, |
508 | #endif |
509 | uint first_index, uint n_fields); |
510 | virtual int Opcode() const; |
511 | virtual uint ideal_reg() const; |
512 | virtual const RegMask &in_RegMask(uint) const; |
513 | virtual const RegMask &out_RegMask() const; |
514 | virtual uint match_edge(uint idx) const; |
515 | |
516 | uint first_index(JVMState* jvms) const { |
517 | assert(jvms != NULL, "missed JVMS" ); |
518 | return jvms->scloff() + _first_index; |
519 | } |
520 | uint n_fields() const { return _n_fields; } |
521 | |
522 | #ifdef ASSERT |
523 | AllocateNode* alloc() const { return _alloc; } |
524 | #endif |
525 | |
526 | virtual uint size_of() const { return sizeof(*this); } |
527 | |
528 | // Assumes that "this" is an argument to a safepoint node "s", and that |
529 | // "new_call" is being created to correspond to "s". But the difference |
530 | // between the start index of the jvmstates of "new_call" and "s" is |
531 | // "jvms_adj". Produce and return a SafePointScalarObjectNode that |
532 | // corresponds appropriately to "this" in "new_call". Assumes that |
533 | // "sosn_map" is a map, specific to the translation of "s" to "new_call", |
534 | // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. |
535 | SafePointScalarObjectNode* clone(Dict* sosn_map) const; |
536 | |
537 | #ifndef PRODUCT |
538 | virtual void dump_spec(outputStream *st) const; |
539 | #endif |
540 | }; |
541 | |
542 | |
543 | // Simple container for the outgoing projections of a call. Useful |
544 | // for serious surgery on calls. |
545 | class CallProjections : public StackObj { |
546 | public: |
547 | Node* fallthrough_proj; |
548 | Node* fallthrough_catchproj; |
549 | Node* fallthrough_memproj; |
550 | Node* fallthrough_ioproj; |
551 | Node* catchall_catchproj; |
552 | Node* catchall_memproj; |
553 | Node* catchall_ioproj; |
554 | Node* resproj; |
555 | Node* exobj; |
556 | }; |
557 | |
558 | class CallGenerator; |
559 | |
560 | //------------------------------CallNode--------------------------------------- |
561 | // Call nodes now subsume the function of debug nodes at callsites, so they |
562 | // contain the functionality of a full scope chain of debug nodes. |
563 | class CallNode : public SafePointNode { |
564 | friend class VMStructs; |
565 | |
566 | protected: |
567 | bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase); |
568 | |
569 | public: |
570 | const TypeFunc *_tf; // Function type |
571 | address _entry_point; // Address of method being called |
572 | float _cnt; // Estimate of number of times called |
573 | CallGenerator* _generator; // corresponding CallGenerator for some late inline calls |
574 | const char *_name; // Printable name, if _method is NULL |
575 | |
576 | CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type) |
577 | : SafePointNode(tf->domain()->cnt(), NULL, adr_type), |
578 | _tf(tf), |
579 | _entry_point(addr), |
580 | _cnt(COUNT_UNKNOWN), |
581 | _generator(NULL), |
582 | _name(NULL) |
583 | { |
584 | init_class_id(Class_Call); |
585 | } |
586 | |
587 | const TypeFunc* tf() const { return _tf; } |
588 | const address entry_point() const { return _entry_point; } |
589 | const float cnt() const { return _cnt; } |
590 | CallGenerator* generator() const { return _generator; } |
591 | |
592 | void set_tf(const TypeFunc* tf) { _tf = tf; } |
593 | void set_entry_point(address p) { _entry_point = p; } |
594 | void set_cnt(float c) { _cnt = c; } |
595 | void set_generator(CallGenerator* cg) { _generator = cg; } |
596 | |
597 | virtual const Type *bottom_type() const; |
598 | virtual const Type* Value(PhaseGVN* phase) const; |
599 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
600 | virtual Node* Identity(PhaseGVN* phase) { return this; } |
601 | virtual bool cmp( const Node &n ) const; |
602 | virtual uint size_of() const = 0; |
603 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; |
604 | virtual Node *match( const ProjNode *proj, const Matcher *m ); |
605 | virtual uint ideal_reg() const { return NotAMachineReg; } |
606 | // Are we guaranteed that this node is a safepoint? Not true for leaf calls and |
607 | // for some macro nodes whose expansion does not have a safepoint on the fast path. |
608 | virtual bool guaranteed_safepoint() { return true; } |
609 | // For macro nodes, the JVMState gets modified during expansion. If calls |
610 | // use MachConstantBase, it gets modified during matching. So when cloning |
611 | // the node the JVMState must be cloned. Default is not to clone. |
612 | virtual void clone_jvms(Compile* C) { |
613 | if (C->needs_clone_jvms() && jvms() != NULL) { |
614 | set_jvms(jvms()->clone_deep(C)); |
615 | jvms()->set_map_deep(this); |
616 | } |
617 | } |
618 | |
619 | // Returns true if the call may modify n |
620 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase); |
621 | // Does this node have a use of n other than in debug information? |
622 | bool has_non_debug_use(Node *n); |
623 | // Returns the unique CheckCastPP of a call |
624 | // or result projection is there are several CheckCastPP |
625 | // or returns NULL if there is no one. |
626 | Node *result_cast(); |
627 | // Does this node returns pointer? |
628 | bool returns_pointer() const { |
629 | const TypeTuple *r = tf()->range(); |
630 | return (r->cnt() > TypeFunc::Parms && |
631 | r->field_at(TypeFunc::Parms)->isa_ptr()); |
632 | } |
633 | |
634 | // Collect all the interesting edges from a call for use in |
635 | // replacing the call by something else. Used by macro expansion |
636 | // and the late inlining support. |
637 | void (CallProjections* projs, bool separate_io_proj, bool do_asserts = true); |
638 | |
639 | virtual uint match_edge(uint idx) const; |
640 | |
641 | bool is_call_to_arraycopystub() const; |
642 | |
643 | #ifndef PRODUCT |
644 | virtual void dump_req(outputStream *st = tty) const; |
645 | virtual void dump_spec(outputStream *st) const; |
646 | #endif |
647 | }; |
648 | |
649 | |
650 | //------------------------------CallJavaNode----------------------------------- |
651 | // Make a static or dynamic subroutine call node using Java calling |
652 | // convention. (The "Java" calling convention is the compiler's calling |
653 | // convention, as opposed to the interpreter's or that of native C.) |
654 | class CallJavaNode : public CallNode { |
655 | friend class VMStructs; |
656 | protected: |
657 | virtual bool cmp( const Node &n ) const; |
658 | virtual uint size_of() const; // Size is bigger |
659 | |
660 | bool _optimized_virtual; |
661 | bool _method_handle_invoke; |
662 | bool _override_symbolic_info; // Override symbolic call site info from bytecode |
663 | ciMethod* _method; // Method being direct called |
664 | public: |
665 | const int _bci; // Byte Code Index of call byte code |
666 | CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci) |
667 | : CallNode(tf, addr, TypePtr::BOTTOM), |
668 | _optimized_virtual(false), |
669 | _method_handle_invoke(false), |
670 | _override_symbolic_info(false), |
671 | _method(method), _bci(bci) |
672 | { |
673 | init_class_id(Class_CallJava); |
674 | } |
675 | |
676 | virtual int Opcode() const; |
677 | ciMethod* method() const { return _method; } |
678 | void set_method(ciMethod *m) { _method = m; } |
679 | void set_optimized_virtual(bool f) { _optimized_virtual = f; } |
680 | bool is_optimized_virtual() const { return _optimized_virtual; } |
681 | void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } |
682 | bool is_method_handle_invoke() const { return _method_handle_invoke; } |
683 | void set_override_symbolic_info(bool f) { _override_symbolic_info = f; } |
684 | bool override_symbolic_info() const { return _override_symbolic_info; } |
685 | |
686 | DEBUG_ONLY( bool validate_symbolic_info() const; ) |
687 | |
688 | #ifndef PRODUCT |
689 | virtual void dump_spec(outputStream *st) const; |
690 | virtual void dump_compact_spec(outputStream *st) const; |
691 | #endif |
692 | }; |
693 | |
694 | //------------------------------CallStaticJavaNode----------------------------- |
695 | // Make a direct subroutine call using Java calling convention (for static |
696 | // calls and optimized virtual calls, plus calls to wrappers for run-time |
697 | // routines); generates static stub. |
698 | class CallStaticJavaNode : public CallJavaNode { |
699 | virtual bool cmp( const Node &n ) const; |
700 | virtual uint size_of() const; // Size is bigger |
701 | public: |
702 | CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci) |
703 | : CallJavaNode(tf, addr, method, bci) { |
704 | init_class_id(Class_CallStaticJava); |
705 | if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) { |
706 | init_flags(Flag_is_macro); |
707 | C->add_macro_node(this); |
708 | } |
709 | _is_scalar_replaceable = false; |
710 | _is_non_escaping = false; |
711 | } |
712 | CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci, |
713 | const TypePtr* adr_type) |
714 | : CallJavaNode(tf, addr, NULL, bci) { |
715 | init_class_id(Class_CallStaticJava); |
716 | // This node calls a runtime stub, which often has narrow memory effects. |
717 | _adr_type = adr_type; |
718 | _is_scalar_replaceable = false; |
719 | _is_non_escaping = false; |
720 | _name = name; |
721 | } |
722 | |
723 | // Result of Escape Analysis |
724 | bool _is_scalar_replaceable; |
725 | bool _is_non_escaping; |
726 | |
727 | // If this is an uncommon trap, return the request code, else zero. |
728 | int uncommon_trap_request() const; |
729 | static int (const Node* call); |
730 | |
731 | bool is_boxing_method() const { |
732 | return is_macro() && (method() != NULL) && method()->is_boxing_method(); |
733 | } |
734 | // Later inlining modifies the JVMState, so we need to clone it |
735 | // when the call node is cloned (because it is macro node). |
736 | virtual void clone_jvms(Compile* C) { |
737 | if ((jvms() != NULL) && is_boxing_method()) { |
738 | set_jvms(jvms()->clone_deep(C)); |
739 | jvms()->set_map_deep(this); |
740 | } |
741 | } |
742 | |
743 | virtual int Opcode() const; |
744 | #ifndef PRODUCT |
745 | virtual void dump_spec(outputStream *st) const; |
746 | virtual void dump_compact_spec(outputStream *st) const; |
747 | #endif |
748 | }; |
749 | |
750 | //------------------------------CallDynamicJavaNode---------------------------- |
751 | // Make a dispatched call using Java calling convention. |
752 | class CallDynamicJavaNode : public CallJavaNode { |
753 | virtual bool cmp( const Node &n ) const; |
754 | virtual uint size_of() const; // Size is bigger |
755 | public: |
756 | CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) { |
757 | init_class_id(Class_CallDynamicJava); |
758 | } |
759 | |
760 | int _vtable_index; |
761 | virtual int Opcode() const; |
762 | #ifndef PRODUCT |
763 | virtual void dump_spec(outputStream *st) const; |
764 | #endif |
765 | }; |
766 | |
767 | //------------------------------CallRuntimeNode-------------------------------- |
768 | // Make a direct subroutine call node into compiled C++ code. |
769 | class CallRuntimeNode : public CallNode { |
770 | virtual bool cmp( const Node &n ) const; |
771 | virtual uint size_of() const; // Size is bigger |
772 | public: |
773 | CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, |
774 | const TypePtr* adr_type) |
775 | : CallNode(tf, addr, adr_type) |
776 | { |
777 | init_class_id(Class_CallRuntime); |
778 | _name = name; |
779 | } |
780 | |
781 | virtual int Opcode() const; |
782 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; |
783 | |
784 | #ifndef PRODUCT |
785 | virtual void dump_spec(outputStream *st) const; |
786 | #endif |
787 | }; |
788 | |
789 | //------------------------------CallLeafNode----------------------------------- |
790 | // Make a direct subroutine call node into compiled C++ code, without |
791 | // safepoints |
792 | class CallLeafNode : public CallRuntimeNode { |
793 | public: |
794 | CallLeafNode(const TypeFunc* tf, address addr, const char* name, |
795 | const TypePtr* adr_type) |
796 | : CallRuntimeNode(tf, addr, name, adr_type) |
797 | { |
798 | init_class_id(Class_CallLeaf); |
799 | } |
800 | virtual int Opcode() const; |
801 | virtual bool guaranteed_safepoint() { return false; } |
802 | #ifndef PRODUCT |
803 | virtual void dump_spec(outputStream *st) const; |
804 | #endif |
805 | }; |
806 | |
807 | //------------------------------CallLeafNoFPNode------------------------------- |
808 | // CallLeafNode, not using floating point or using it in the same manner as |
809 | // the generated code |
810 | class CallLeafNoFPNode : public CallLeafNode { |
811 | public: |
812 | CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, |
813 | const TypePtr* adr_type) |
814 | : CallLeafNode(tf, addr, name, adr_type) |
815 | { |
816 | } |
817 | virtual int Opcode() const; |
818 | }; |
819 | |
820 | |
821 | //------------------------------Allocate--------------------------------------- |
822 | // High-level memory allocation |
823 | // |
824 | // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will |
825 | // get expanded into a code sequence containing a call. Unlike other CallNodes, |
826 | // they have 2 memory projections and 2 i_o projections (which are distinguished by |
827 | // the _is_io_use flag in the projection.) This is needed when expanding the node in |
828 | // order to differentiate the uses of the projection on the normal control path from |
829 | // those on the exception return path. |
830 | // |
831 | class AllocateNode : public CallNode { |
832 | public: |
833 | enum { |
834 | // Output: |
835 | RawAddress = TypeFunc::Parms, // the newly-allocated raw address |
836 | // Inputs: |
837 | AllocSize = TypeFunc::Parms, // size (in bytes) of the new object |
838 | KlassNode, // type (maybe dynamic) of the obj. |
839 | InitialTest, // slow-path test (may be constant) |
840 | ALength, // array length (or TOP if none) |
841 | ParmLimit |
842 | }; |
843 | |
844 | static const TypeFunc* alloc_type(const Type* t) { |
845 | const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); |
846 | fields[AllocSize] = TypeInt::POS; |
847 | fields[KlassNode] = TypeInstPtr::NOTNULL; |
848 | fields[InitialTest] = TypeInt::BOOL; |
849 | fields[ALength] = t; // length (can be a bad length) |
850 | |
851 | const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); |
852 | |
853 | // create result type (range) |
854 | fields = TypeTuple::fields(1); |
855 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
856 | |
857 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
858 | |
859 | return TypeFunc::make(domain, range); |
860 | } |
861 | |
862 | // Result of Escape Analysis |
863 | bool _is_scalar_replaceable; |
864 | bool _is_non_escaping; |
865 | // True when MemBar for new is redundant with MemBar at initialzer exit |
866 | bool _is_allocation_MemBar_redundant; |
867 | |
868 | virtual uint size_of() const; // Size is bigger |
869 | AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, |
870 | Node *size, Node *klass_node, Node *initial_test); |
871 | // Expansion modifies the JVMState, so we need to clone it |
872 | virtual void clone_jvms(Compile* C) { |
873 | if (jvms() != NULL) { |
874 | set_jvms(jvms()->clone_deep(C)); |
875 | jvms()->set_map_deep(this); |
876 | } |
877 | } |
878 | virtual int Opcode() const; |
879 | virtual uint ideal_reg() const { return Op_RegP; } |
880 | virtual bool guaranteed_safepoint() { return false; } |
881 | |
882 | // allocations do not modify their arguments |
883 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;} |
884 | |
885 | // Pattern-match a possible usage of AllocateNode. |
886 | // Return null if no allocation is recognized. |
887 | // The operand is the pointer produced by the (possible) allocation. |
888 | // It must be a projection of the Allocate or its subsequent CastPP. |
889 | // (Note: This function is defined in file graphKit.cpp, near |
890 | // GraphKit::new_instance/new_array, whose output it recognizes.) |
891 | // The 'ptr' may not have an offset unless the 'offset' argument is given. |
892 | static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase); |
893 | |
894 | // Fancy version which uses AddPNode::Ideal_base_and_offset to strip |
895 | // an offset, which is reported back to the caller. |
896 | // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) |
897 | static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase, |
898 | intptr_t& offset); |
899 | |
900 | // Dig the klass operand out of a (possible) allocation site. |
901 | static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) { |
902 | AllocateNode* allo = Ideal_allocation(ptr, phase); |
903 | return (allo == NULL) ? NULL : allo->in(KlassNode); |
904 | } |
905 | |
906 | // Conservatively small estimate of offset of first non-header byte. |
907 | int () { |
908 | return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : |
909 | instanceOopDesc::base_offset_in_bytes(); |
910 | } |
911 | |
912 | // Return the corresponding initialization barrier (or null if none). |
913 | // Walks out edges to find it... |
914 | // (Note: Both InitializeNode::allocation and AllocateNode::initialization |
915 | // are defined in graphKit.cpp, which sets up the bidirectional relation.) |
916 | InitializeNode* initialization(); |
917 | |
918 | // Convenience for initialization->maybe_set_complete(phase) |
919 | bool maybe_set_complete(PhaseGVN* phase); |
920 | |
921 | // Return true if allocation doesn't escape thread, its escape state |
922 | // needs be noEscape or ArgEscape. InitializeNode._does_not_escape |
923 | // is true when its allocation's escape state is noEscape or |
924 | // ArgEscape. In case allocation's InitializeNode is NULL, check |
925 | // AlllocateNode._is_non_escaping flag. |
926 | // AlllocateNode._is_non_escaping is true when its escape state is |
927 | // noEscape. |
928 | bool does_not_escape_thread() { |
929 | InitializeNode* init = NULL; |
930 | return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape()); |
931 | } |
932 | |
933 | // If object doesn't escape in <.init> method and there is memory barrier |
934 | // inserted at exit of its <.init>, memory barrier for new is not necessary. |
935 | // Inovke this method when MemBar at exit of initializer and post-dominate |
936 | // allocation node. |
937 | void compute_MemBar_redundancy(ciMethod* initializer); |
938 | bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; } |
939 | }; |
940 | |
941 | //------------------------------AllocateArray--------------------------------- |
942 | // |
943 | // High-level array allocation |
944 | // |
945 | class AllocateArrayNode : public AllocateNode { |
946 | public: |
947 | AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, |
948 | Node* size, Node* klass_node, Node* initial_test, |
949 | Node* count_val |
950 | ) |
951 | : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, |
952 | initial_test) |
953 | { |
954 | init_class_id(Class_AllocateArray); |
955 | set_req(AllocateNode::ALength, count_val); |
956 | } |
957 | virtual int Opcode() const; |
958 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
959 | |
960 | // Dig the length operand out of a array allocation site. |
961 | Node* Ideal_length() { |
962 | return in(AllocateNode::ALength); |
963 | } |
964 | |
965 | // Dig the length operand out of a array allocation site and narrow the |
966 | // type with a CastII, if necesssary |
967 | Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true); |
968 | |
969 | // Pattern-match a possible usage of AllocateArrayNode. |
970 | // Return null if no allocation is recognized. |
971 | static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) { |
972 | AllocateNode* allo = Ideal_allocation(ptr, phase); |
973 | return (allo == NULL || !allo->is_AllocateArray()) |
974 | ? NULL : allo->as_AllocateArray(); |
975 | } |
976 | }; |
977 | |
978 | //------------------------------AbstractLockNode----------------------------------- |
979 | class AbstractLockNode: public CallNode { |
980 | private: |
981 | enum { |
982 | Regular = 0, // Normal lock |
983 | NonEscObj, // Lock is used for non escaping object |
984 | Coarsened, // Lock was coarsened |
985 | Nested // Nested lock |
986 | } _kind; |
987 | #ifndef PRODUCT |
988 | NamedCounter* _counter; |
989 | static const char* _kind_names[Nested+1]; |
990 | #endif |
991 | |
992 | protected: |
993 | // helper functions for lock elimination |
994 | // |
995 | |
996 | bool find_matching_unlock(const Node* ctrl, LockNode* lock, |
997 | GrowableArray<AbstractLockNode*> &lock_ops); |
998 | bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, |
999 | GrowableArray<AbstractLockNode*> &lock_ops); |
1000 | bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, |
1001 | GrowableArray<AbstractLockNode*> &lock_ops); |
1002 | LockNode *find_matching_lock(UnlockNode* unlock); |
1003 | |
1004 | // Update the counter to indicate that this lock was eliminated. |
1005 | void set_eliminated_lock_counter() PRODUCT_RETURN; |
1006 | |
1007 | public: |
1008 | AbstractLockNode(const TypeFunc *tf) |
1009 | : CallNode(tf, NULL, TypeRawPtr::BOTTOM), |
1010 | _kind(Regular) |
1011 | { |
1012 | #ifndef PRODUCT |
1013 | _counter = NULL; |
1014 | #endif |
1015 | } |
1016 | virtual int Opcode() const = 0; |
1017 | Node * obj_node() const {return in(TypeFunc::Parms + 0); } |
1018 | Node * box_node() const {return in(TypeFunc::Parms + 1); } |
1019 | Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } |
1020 | void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } |
1021 | |
1022 | const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} |
1023 | |
1024 | virtual uint size_of() const { return sizeof(*this); } |
1025 | |
1026 | bool is_eliminated() const { return (_kind != Regular); } |
1027 | bool is_non_esc_obj() const { return (_kind == NonEscObj); } |
1028 | bool is_coarsened() const { return (_kind == Coarsened); } |
1029 | bool is_nested() const { return (_kind == Nested); } |
1030 | |
1031 | const char * kind_as_string() const; |
1032 | void log_lock_optimization(Compile* c, const char * tag) const; |
1033 | |
1034 | void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } |
1035 | void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } |
1036 | void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } |
1037 | |
1038 | // locking does not modify its arguments |
1039 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;} |
1040 | |
1041 | #ifndef PRODUCT |
1042 | void create_lock_counter(JVMState* s); |
1043 | NamedCounter* counter() const { return _counter; } |
1044 | virtual void dump_spec(outputStream* st) const; |
1045 | virtual void dump_compact_spec(outputStream* st) const; |
1046 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
1047 | #endif |
1048 | }; |
1049 | |
1050 | //------------------------------Lock--------------------------------------- |
1051 | // High-level lock operation |
1052 | // |
1053 | // This is a subclass of CallNode because it is a macro node which gets expanded |
1054 | // into a code sequence containing a call. This node takes 3 "parameters": |
1055 | // 0 - object to lock |
1056 | // 1 - a BoxLockNode |
1057 | // 2 - a FastLockNode |
1058 | // |
1059 | class LockNode : public AbstractLockNode { |
1060 | public: |
1061 | |
1062 | static const TypeFunc *lock_type() { |
1063 | // create input type (domain) |
1064 | const Type **fields = TypeTuple::fields(3); |
1065 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked |
1066 | fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock |
1067 | fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock |
1068 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); |
1069 | |
1070 | // create result type (range) |
1071 | fields = TypeTuple::fields(0); |
1072 | |
1073 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
1074 | |
1075 | return TypeFunc::make(domain,range); |
1076 | } |
1077 | |
1078 | virtual int Opcode() const; |
1079 | virtual uint size_of() const; // Size is bigger |
1080 | LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { |
1081 | init_class_id(Class_Lock); |
1082 | init_flags(Flag_is_macro); |
1083 | C->add_macro_node(this); |
1084 | } |
1085 | virtual bool guaranteed_safepoint() { return false; } |
1086 | |
1087 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
1088 | // Expansion modifies the JVMState, so we need to clone it |
1089 | virtual void clone_jvms(Compile* C) { |
1090 | if (jvms() != NULL) { |
1091 | set_jvms(jvms()->clone_deep(C)); |
1092 | jvms()->set_map_deep(this); |
1093 | } |
1094 | } |
1095 | |
1096 | bool is_nested_lock_region(); // Is this Lock nested? |
1097 | bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? |
1098 | }; |
1099 | |
1100 | //------------------------------Unlock--------------------------------------- |
1101 | // High-level unlock operation |
1102 | class UnlockNode : public AbstractLockNode { |
1103 | private: |
1104 | #ifdef ASSERT |
1105 | JVMState* const _dbg_jvms; // Pointer to list of JVM State objects |
1106 | #endif |
1107 | public: |
1108 | virtual int Opcode() const; |
1109 | virtual uint size_of() const; // Size is bigger |
1110 | UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) |
1111 | #ifdef ASSERT |
1112 | , _dbg_jvms(NULL) |
1113 | #endif |
1114 | { |
1115 | init_class_id(Class_Unlock); |
1116 | init_flags(Flag_is_macro); |
1117 | C->add_macro_node(this); |
1118 | } |
1119 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
1120 | // unlock is never a safepoint |
1121 | virtual bool guaranteed_safepoint() { return false; } |
1122 | #ifdef ASSERT |
1123 | void set_dbg_jvms(JVMState* s) { |
1124 | *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor |
1125 | } |
1126 | JVMState* dbg_jvms() const { return _dbg_jvms; } |
1127 | #else |
1128 | JVMState* dbg_jvms() const { return NULL; } |
1129 | #endif |
1130 | }; |
1131 | #endif // SHARE_OPTO_CALLNODE_HPP |
1132 | |