| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OPTO_CALLNODE_HPP |
| 26 | #define SHARE_OPTO_CALLNODE_HPP |
| 27 | |
| 28 | #include "opto/connode.hpp" |
| 29 | #include "opto/mulnode.hpp" |
| 30 | #include "opto/multnode.hpp" |
| 31 | #include "opto/opcodes.hpp" |
| 32 | #include "opto/phaseX.hpp" |
| 33 | #include "opto/replacednodes.hpp" |
| 34 | #include "opto/type.hpp" |
| 35 | |
| 36 | // Portions of code courtesy of Clifford Click |
| 37 | |
| 38 | // Optimization - Graph Style |
| 39 | |
| 40 | class Chaitin; |
| 41 | class NamedCounter; |
| 42 | class MultiNode; |
| 43 | class SafePointNode; |
| 44 | class CallNode; |
| 45 | class CallJavaNode; |
| 46 | class CallStaticJavaNode; |
| 47 | class CallDynamicJavaNode; |
| 48 | class CallRuntimeNode; |
| 49 | class CallLeafNode; |
| 50 | class CallLeafNoFPNode; |
| 51 | class AllocateNode; |
| 52 | class AllocateArrayNode; |
| 53 | class BoxLockNode; |
| 54 | class LockNode; |
| 55 | class UnlockNode; |
| 56 | class JVMState; |
| 57 | class OopMap; |
| 58 | class State; |
| 59 | class StartNode; |
| 60 | class MachCallNode; |
| 61 | class FastLockNode; |
| 62 | |
| 63 | //------------------------------StartNode-------------------------------------- |
| 64 | // The method start node |
| 65 | class StartNode : public MultiNode { |
| 66 | virtual bool cmp( const Node &n ) const; |
| 67 | virtual uint size_of() const; // Size is bigger |
| 68 | public: |
| 69 | const TypeTuple *_domain; |
| 70 | StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { |
| 71 | init_class_id(Class_Start); |
| 72 | init_req(0,this); |
| 73 | init_req(1,root); |
| 74 | } |
| 75 | virtual int Opcode() const; |
| 76 | virtual bool pinned() const { return true; }; |
| 77 | virtual const Type *bottom_type() const; |
| 78 | virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } |
| 79 | virtual const Type* Value(PhaseGVN* phase) const; |
| 80 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 81 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; |
| 82 | virtual const RegMask &in_RegMask(uint) const; |
| 83 | virtual Node *match( const ProjNode *proj, const Matcher *m ); |
| 84 | virtual uint ideal_reg() const { return 0; } |
| 85 | #ifndef PRODUCT |
| 86 | virtual void dump_spec(outputStream *st) const; |
| 87 | virtual void dump_compact_spec(outputStream *st) const; |
| 88 | #endif |
| 89 | }; |
| 90 | |
| 91 | //------------------------------StartOSRNode----------------------------------- |
| 92 | // The method start node for on stack replacement code |
| 93 | class StartOSRNode : public StartNode { |
| 94 | public: |
| 95 | StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} |
| 96 | virtual int Opcode() const; |
| 97 | static const TypeTuple *osr_domain(); |
| 98 | }; |
| 99 | |
| 100 | |
| 101 | //------------------------------ParmNode--------------------------------------- |
| 102 | // Incoming parameters |
| 103 | class ParmNode : public ProjNode { |
| 104 | static const char * const names[TypeFunc::Parms+1]; |
| 105 | public: |
| 106 | ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { |
| 107 | init_class_id(Class_Parm); |
| 108 | } |
| 109 | virtual int Opcode() const; |
| 110 | virtual bool is_CFG() const { return (_con == TypeFunc::Control); } |
| 111 | virtual uint ideal_reg() const; |
| 112 | #ifndef PRODUCT |
| 113 | virtual void dump_spec(outputStream *st) const; |
| 114 | virtual void dump_compact_spec(outputStream *st) const; |
| 115 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
| 116 | #endif |
| 117 | }; |
| 118 | |
| 119 | |
| 120 | //------------------------------ReturnNode------------------------------------- |
| 121 | // Return from subroutine node |
| 122 | class ReturnNode : public Node { |
| 123 | public: |
| 124 | ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr ); |
| 125 | virtual int Opcode() const; |
| 126 | virtual bool is_CFG() const { return true; } |
| 127 | virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash |
| 128 | virtual bool depends_only_on_test() const { return false; } |
| 129 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 130 | virtual const Type* Value(PhaseGVN* phase) const; |
| 131 | virtual uint ideal_reg() const { return NotAMachineReg; } |
| 132 | virtual uint match_edge(uint idx) const; |
| 133 | #ifndef PRODUCT |
| 134 | virtual void dump_req(outputStream *st = tty) const; |
| 135 | #endif |
| 136 | }; |
| 137 | |
| 138 | |
| 139 | //------------------------------RethrowNode------------------------------------ |
| 140 | // Rethrow of exception at call site. Ends a procedure before rethrowing; |
| 141 | // ends the current basic block like a ReturnNode. Restores registers and |
| 142 | // unwinds stack. Rethrow happens in the caller's method. |
| 143 | class RethrowNode : public Node { |
| 144 | public: |
| 145 | RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); |
| 146 | virtual int Opcode() const; |
| 147 | virtual bool is_CFG() const { return true; } |
| 148 | virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash |
| 149 | virtual bool depends_only_on_test() const { return false; } |
| 150 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 151 | virtual const Type* Value(PhaseGVN* phase) const; |
| 152 | virtual uint match_edge(uint idx) const; |
| 153 | virtual uint ideal_reg() const { return NotAMachineReg; } |
| 154 | #ifndef PRODUCT |
| 155 | virtual void dump_req(outputStream *st = tty) const; |
| 156 | #endif |
| 157 | }; |
| 158 | |
| 159 | |
| 160 | //------------------------------TailCallNode----------------------------------- |
| 161 | // Pop stack frame and jump indirect |
| 162 | class TailCallNode : public ReturnNode { |
| 163 | public: |
| 164 | TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) |
| 165 | : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { |
| 166 | init_req(TypeFunc::Parms, target); |
| 167 | init_req(TypeFunc::Parms+1, moop); |
| 168 | } |
| 169 | |
| 170 | virtual int Opcode() const; |
| 171 | virtual uint match_edge(uint idx) const; |
| 172 | }; |
| 173 | |
| 174 | //------------------------------TailJumpNode----------------------------------- |
| 175 | // Pop stack frame and jump indirect |
| 176 | class TailJumpNode : public ReturnNode { |
| 177 | public: |
| 178 | TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) |
| 179 | : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { |
| 180 | init_req(TypeFunc::Parms, target); |
| 181 | init_req(TypeFunc::Parms+1, ex_oop); |
| 182 | } |
| 183 | |
| 184 | virtual int Opcode() const; |
| 185 | virtual uint match_edge(uint idx) const; |
| 186 | }; |
| 187 | |
| 188 | //-------------------------------JVMState------------------------------------- |
| 189 | // A linked list of JVMState nodes captures the whole interpreter state, |
| 190 | // plus GC roots, for all active calls at some call site in this compilation |
| 191 | // unit. (If there is no inlining, then the list has exactly one link.) |
| 192 | // This provides a way to map the optimized program back into the interpreter, |
| 193 | // or to let the GC mark the stack. |
| 194 | class JVMState : public ResourceObj { |
| 195 | friend class VMStructs; |
| 196 | public: |
| 197 | typedef enum { |
| 198 | Reexecute_Undefined = -1, // not defined -- will be translated into false later |
| 199 | Reexecute_False = 0, // false -- do not reexecute |
| 200 | Reexecute_True = 1 // true -- reexecute the bytecode |
| 201 | } ReexecuteState; //Reexecute State |
| 202 | |
| 203 | private: |
| 204 | JVMState* _caller; // List pointer for forming scope chains |
| 205 | uint _depth; // One more than caller depth, or one. |
| 206 | uint _locoff; // Offset to locals in input edge mapping |
| 207 | uint _stkoff; // Offset to stack in input edge mapping |
| 208 | uint _monoff; // Offset to monitors in input edge mapping |
| 209 | uint _scloff; // Offset to fields of scalar objs in input edge mapping |
| 210 | uint _endoff; // Offset to end of input edge mapping |
| 211 | uint _sp; // Jave Expression Stack Pointer for this state |
| 212 | int _bci; // Byte Code Index of this JVM point |
| 213 | ReexecuteState _reexecute; // Whether this bytecode need to be re-executed |
| 214 | ciMethod* _method; // Method Pointer |
| 215 | SafePointNode* _map; // Map node associated with this scope |
| 216 | public: |
| 217 | friend class Compile; |
| 218 | friend class PreserveReexecuteState; |
| 219 | |
| 220 | // Because JVMState objects live over the entire lifetime of the |
| 221 | // Compile object, they are allocated into the comp_arena, which |
| 222 | // does not get resource marked or reset during the compile process |
| 223 | void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } |
| 224 | void operator delete( void * ) { } // fast deallocation |
| 225 | |
| 226 | // Create a new JVMState, ready for abstract interpretation. |
| 227 | JVMState(ciMethod* method, JVMState* caller); |
| 228 | JVMState(int stack_size); // root state; has a null method |
| 229 | |
| 230 | // Access functions for the JVM |
| 231 | // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| |
| 232 | // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff |
| 233 | uint locoff() const { return _locoff; } |
| 234 | uint stkoff() const { return _stkoff; } |
| 235 | uint argoff() const { return _stkoff + _sp; } |
| 236 | uint monoff() const { return _monoff; } |
| 237 | uint scloff() const { return _scloff; } |
| 238 | uint endoff() const { return _endoff; } |
| 239 | uint oopoff() const { return debug_end(); } |
| 240 | |
| 241 | int loc_size() const { return stkoff() - locoff(); } |
| 242 | int stk_size() const { return monoff() - stkoff(); } |
| 243 | int mon_size() const { return scloff() - monoff(); } |
| 244 | int scl_size() const { return endoff() - scloff(); } |
| 245 | |
| 246 | bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } |
| 247 | bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } |
| 248 | bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } |
| 249 | bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } |
| 250 | |
| 251 | uint sp() const { return _sp; } |
| 252 | int bci() const { return _bci; } |
| 253 | bool should_reexecute() const { return _reexecute==Reexecute_True; } |
| 254 | bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } |
| 255 | bool has_method() const { return _method != NULL; } |
| 256 | ciMethod* method() const { assert(has_method(), "" ); return _method; } |
| 257 | JVMState* caller() const { return _caller; } |
| 258 | SafePointNode* map() const { return _map; } |
| 259 | uint depth() const { return _depth; } |
| 260 | uint debug_start() const; // returns locoff of root caller |
| 261 | uint debug_end() const; // returns endoff of self |
| 262 | uint debug_size() const { |
| 263 | return loc_size() + sp() + mon_size() + scl_size(); |
| 264 | } |
| 265 | uint debug_depth() const; // returns sum of debug_size values at all depths |
| 266 | |
| 267 | // Returns the JVM state at the desired depth (1 == root). |
| 268 | JVMState* of_depth(int d) const; |
| 269 | |
| 270 | // Tells if two JVM states have the same call chain (depth, methods, & bcis). |
| 271 | bool same_calls_as(const JVMState* that) const; |
| 272 | |
| 273 | // Monitors (monitors are stored as (boxNode, objNode) pairs |
| 274 | enum { logMonitorEdges = 1 }; |
| 275 | int nof_monitors() const { return mon_size() >> logMonitorEdges; } |
| 276 | int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } |
| 277 | int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } |
| 278 | int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } |
| 279 | bool is_monitor_box(uint off) const { |
| 280 | assert(is_mon(off), "should be called only for monitor edge" ); |
| 281 | return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); |
| 282 | } |
| 283 | bool is_monitor_use(uint off) const { return (is_mon(off) |
| 284 | && is_monitor_box(off)) |
| 285 | || (caller() && caller()->is_monitor_use(off)); } |
| 286 | |
| 287 | // Initialization functions for the JVM |
| 288 | void set_locoff(uint off) { _locoff = off; } |
| 289 | void set_stkoff(uint off) { _stkoff = off; } |
| 290 | void set_monoff(uint off) { _monoff = off; } |
| 291 | void set_scloff(uint off) { _scloff = off; } |
| 292 | void set_endoff(uint off) { _endoff = off; } |
| 293 | void set_offsets(uint off) { |
| 294 | _locoff = _stkoff = _monoff = _scloff = _endoff = off; |
| 295 | } |
| 296 | void set_map(SafePointNode *map) { _map = map; } |
| 297 | void set_sp(uint sp) { _sp = sp; } |
| 298 | // _reexecute is initialized to "undefined" for a new bci |
| 299 | void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } |
| 300 | void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} |
| 301 | |
| 302 | // Miscellaneous utility functions |
| 303 | JVMState* clone_deep(Compile* C) const; // recursively clones caller chain |
| 304 | JVMState* clone_shallow(Compile* C) const; // retains uncloned caller |
| 305 | void set_map_deep(SafePointNode *map);// reset map for all callers |
| 306 | void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. |
| 307 | int interpreter_frame_size() const; |
| 308 | |
| 309 | #ifndef PRODUCT |
| 310 | void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; |
| 311 | void dump_spec(outputStream *st) const; |
| 312 | void dump_on(outputStream* st) const; |
| 313 | void dump() const { |
| 314 | dump_on(tty); |
| 315 | } |
| 316 | #endif |
| 317 | }; |
| 318 | |
| 319 | //------------------------------SafePointNode---------------------------------- |
| 320 | // A SafePointNode is a subclass of a MultiNode for convenience (and |
| 321 | // potential code sharing) only - conceptually it is independent of |
| 322 | // the Node semantics. |
| 323 | class SafePointNode : public MultiNode { |
| 324 | virtual bool cmp( const Node &n ) const; |
| 325 | virtual uint size_of() const; // Size is bigger |
| 326 | |
| 327 | public: |
| 328 | SafePointNode(uint edges, JVMState* jvms, |
| 329 | // A plain safepoint advertises no memory effects (NULL): |
| 330 | const TypePtr* adr_type = NULL) |
| 331 | : MultiNode( edges ), |
| 332 | _oop_map(NULL), |
| 333 | _jvms(jvms), |
| 334 | _adr_type(adr_type) |
| 335 | { |
| 336 | init_class_id(Class_SafePoint); |
| 337 | } |
| 338 | |
| 339 | OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC |
| 340 | JVMState* const _jvms; // Pointer to list of JVM State objects |
| 341 | const TypePtr* _adr_type; // What type of memory does this node produce? |
| 342 | ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() |
| 343 | |
| 344 | // Many calls take *all* of memory as input, |
| 345 | // but some produce a limited subset of that memory as output. |
| 346 | // The adr_type reports the call's behavior as a store, not a load. |
| 347 | |
| 348 | virtual JVMState* jvms() const { return _jvms; } |
| 349 | void set_jvms(JVMState* s) { |
| 350 | *(JVMState**)&_jvms = s; // override const attribute in the accessor |
| 351 | } |
| 352 | OopMap *oop_map() const { return _oop_map; } |
| 353 | void set_oop_map(OopMap *om) { _oop_map = om; } |
| 354 | |
| 355 | private: |
| 356 | void verify_input(JVMState* jvms, uint idx) const { |
| 357 | assert(verify_jvms(jvms), "jvms must match" ); |
| 358 | Node* n = in(idx); |
| 359 | assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || |
| 360 | in(idx + 1)->is_top(), "2nd half of long/double" ); |
| 361 | } |
| 362 | |
| 363 | public: |
| 364 | // Functionality from old debug nodes which has changed |
| 365 | Node *local(JVMState* jvms, uint idx) const { |
| 366 | verify_input(jvms, jvms->locoff() + idx); |
| 367 | return in(jvms->locoff() + idx); |
| 368 | } |
| 369 | Node *stack(JVMState* jvms, uint idx) const { |
| 370 | verify_input(jvms, jvms->stkoff() + idx); |
| 371 | return in(jvms->stkoff() + idx); |
| 372 | } |
| 373 | Node *argument(JVMState* jvms, uint idx) const { |
| 374 | verify_input(jvms, jvms->argoff() + idx); |
| 375 | return in(jvms->argoff() + idx); |
| 376 | } |
| 377 | Node *monitor_box(JVMState* jvms, uint idx) const { |
| 378 | assert(verify_jvms(jvms), "jvms must match" ); |
| 379 | return in(jvms->monitor_box_offset(idx)); |
| 380 | } |
| 381 | Node *monitor_obj(JVMState* jvms, uint idx) const { |
| 382 | assert(verify_jvms(jvms), "jvms must match" ); |
| 383 | return in(jvms->monitor_obj_offset(idx)); |
| 384 | } |
| 385 | |
| 386 | void set_local(JVMState* jvms, uint idx, Node *c); |
| 387 | |
| 388 | void set_stack(JVMState* jvms, uint idx, Node *c) { |
| 389 | assert(verify_jvms(jvms), "jvms must match" ); |
| 390 | set_req(jvms->stkoff() + idx, c); |
| 391 | } |
| 392 | void set_argument(JVMState* jvms, uint idx, Node *c) { |
| 393 | assert(verify_jvms(jvms), "jvms must match" ); |
| 394 | set_req(jvms->argoff() + idx, c); |
| 395 | } |
| 396 | void ensure_stack(JVMState* jvms, uint stk_size) { |
| 397 | assert(verify_jvms(jvms), "jvms must match" ); |
| 398 | int grow_by = (int)stk_size - (int)jvms->stk_size(); |
| 399 | if (grow_by > 0) grow_stack(jvms, grow_by); |
| 400 | } |
| 401 | void grow_stack(JVMState* jvms, uint grow_by); |
| 402 | // Handle monitor stack |
| 403 | void push_monitor( const FastLockNode *lock ); |
| 404 | void pop_monitor (); |
| 405 | Node *peek_monitor_box() const; |
| 406 | Node *peek_monitor_obj() const; |
| 407 | |
| 408 | // Access functions for the JVM |
| 409 | Node *control () const { return in(TypeFunc::Control ); } |
| 410 | Node *i_o () const { return in(TypeFunc::I_O ); } |
| 411 | Node *memory () const { return in(TypeFunc::Memory ); } |
| 412 | Node *returnadr() const { return in(TypeFunc::ReturnAdr); } |
| 413 | Node *frameptr () const { return in(TypeFunc::FramePtr ); } |
| 414 | |
| 415 | void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } |
| 416 | void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } |
| 417 | void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } |
| 418 | |
| 419 | MergeMemNode* merged_memory() const { |
| 420 | return in(TypeFunc::Memory)->as_MergeMem(); |
| 421 | } |
| 422 | |
| 423 | // The parser marks useless maps as dead when it's done with them: |
| 424 | bool is_killed() { return in(TypeFunc::Control) == NULL; } |
| 425 | |
| 426 | // Exception states bubbling out of subgraphs such as inlined calls |
| 427 | // are recorded here. (There might be more than one, hence the "next".) |
| 428 | // This feature is used only for safepoints which serve as "maps" |
| 429 | // for JVM states during parsing, intrinsic expansion, etc. |
| 430 | SafePointNode* next_exception() const; |
| 431 | void set_next_exception(SafePointNode* n); |
| 432 | bool has_exceptions() const { return next_exception() != NULL; } |
| 433 | |
| 434 | // Helper methods to operate on replaced nodes |
| 435 | ReplacedNodes replaced_nodes() const { |
| 436 | return _replaced_nodes; |
| 437 | } |
| 438 | |
| 439 | void set_replaced_nodes(ReplacedNodes replaced_nodes) { |
| 440 | _replaced_nodes = replaced_nodes; |
| 441 | } |
| 442 | |
| 443 | void clone_replaced_nodes() { |
| 444 | _replaced_nodes.clone(); |
| 445 | } |
| 446 | void record_replaced_node(Node* initial, Node* improved) { |
| 447 | _replaced_nodes.record(initial, improved); |
| 448 | } |
| 449 | void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { |
| 450 | _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); |
| 451 | } |
| 452 | void delete_replaced_nodes() { |
| 453 | _replaced_nodes.reset(); |
| 454 | } |
| 455 | void apply_replaced_nodes(uint idx) { |
| 456 | _replaced_nodes.apply(this, idx); |
| 457 | } |
| 458 | void merge_replaced_nodes_with(SafePointNode* sfpt) { |
| 459 | _replaced_nodes.merge_with(sfpt->_replaced_nodes); |
| 460 | } |
| 461 | bool has_replaced_nodes() const { |
| 462 | return !_replaced_nodes.is_empty(); |
| 463 | } |
| 464 | |
| 465 | void disconnect_from_root(PhaseIterGVN *igvn); |
| 466 | |
| 467 | // Standard Node stuff |
| 468 | virtual int Opcode() const; |
| 469 | virtual bool pinned() const { return true; } |
| 470 | virtual const Type* Value(PhaseGVN* phase) const; |
| 471 | virtual const Type *bottom_type() const { return Type::CONTROL; } |
| 472 | virtual const TypePtr *adr_type() const { return _adr_type; } |
| 473 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 474 | virtual Node* Identity(PhaseGVN* phase); |
| 475 | virtual uint ideal_reg() const { return 0; } |
| 476 | virtual const RegMask &in_RegMask(uint) const; |
| 477 | virtual const RegMask &out_RegMask() const; |
| 478 | virtual uint match_edge(uint idx) const; |
| 479 | |
| 480 | static bool needs_polling_address_input(); |
| 481 | |
| 482 | #ifndef PRODUCT |
| 483 | virtual void dump_spec(outputStream *st) const; |
| 484 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
| 485 | #endif |
| 486 | }; |
| 487 | |
| 488 | //------------------------------SafePointScalarObjectNode---------------------- |
| 489 | // A SafePointScalarObjectNode represents the state of a scalarized object |
| 490 | // at a safepoint. |
| 491 | |
| 492 | class SafePointScalarObjectNode: public TypeNode { |
| 493 | uint _first_index; // First input edge relative index of a SafePoint node where |
| 494 | // states of the scalarized object fields are collected. |
| 495 | // It is relative to the last (youngest) jvms->_scloff. |
| 496 | uint _n_fields; // Number of non-static fields of the scalarized object. |
| 497 | DEBUG_ONLY(AllocateNode* _alloc;) |
| 498 | |
| 499 | virtual uint hash() const ; // { return NO_HASH; } |
| 500 | virtual bool cmp( const Node &n ) const; |
| 501 | |
| 502 | uint first_index() const { return _first_index; } |
| 503 | |
| 504 | public: |
| 505 | SafePointScalarObjectNode(const TypeOopPtr* tp, |
| 506 | #ifdef ASSERT |
| 507 | AllocateNode* alloc, |
| 508 | #endif |
| 509 | uint first_index, uint n_fields); |
| 510 | virtual int Opcode() const; |
| 511 | virtual uint ideal_reg() const; |
| 512 | virtual const RegMask &in_RegMask(uint) const; |
| 513 | virtual const RegMask &out_RegMask() const; |
| 514 | virtual uint match_edge(uint idx) const; |
| 515 | |
| 516 | uint first_index(JVMState* jvms) const { |
| 517 | assert(jvms != NULL, "missed JVMS" ); |
| 518 | return jvms->scloff() + _first_index; |
| 519 | } |
| 520 | uint n_fields() const { return _n_fields; } |
| 521 | |
| 522 | #ifdef ASSERT |
| 523 | AllocateNode* alloc() const { return _alloc; } |
| 524 | #endif |
| 525 | |
| 526 | virtual uint size_of() const { return sizeof(*this); } |
| 527 | |
| 528 | // Assumes that "this" is an argument to a safepoint node "s", and that |
| 529 | // "new_call" is being created to correspond to "s". But the difference |
| 530 | // between the start index of the jvmstates of "new_call" and "s" is |
| 531 | // "jvms_adj". Produce and return a SafePointScalarObjectNode that |
| 532 | // corresponds appropriately to "this" in "new_call". Assumes that |
| 533 | // "sosn_map" is a map, specific to the translation of "s" to "new_call", |
| 534 | // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. |
| 535 | SafePointScalarObjectNode* clone(Dict* sosn_map) const; |
| 536 | |
| 537 | #ifndef PRODUCT |
| 538 | virtual void dump_spec(outputStream *st) const; |
| 539 | #endif |
| 540 | }; |
| 541 | |
| 542 | |
| 543 | // Simple container for the outgoing projections of a call. Useful |
| 544 | // for serious surgery on calls. |
| 545 | class CallProjections : public StackObj { |
| 546 | public: |
| 547 | Node* fallthrough_proj; |
| 548 | Node* fallthrough_catchproj; |
| 549 | Node* fallthrough_memproj; |
| 550 | Node* fallthrough_ioproj; |
| 551 | Node* catchall_catchproj; |
| 552 | Node* catchall_memproj; |
| 553 | Node* catchall_ioproj; |
| 554 | Node* resproj; |
| 555 | Node* exobj; |
| 556 | }; |
| 557 | |
| 558 | class CallGenerator; |
| 559 | |
| 560 | //------------------------------CallNode--------------------------------------- |
| 561 | // Call nodes now subsume the function of debug nodes at callsites, so they |
| 562 | // contain the functionality of a full scope chain of debug nodes. |
| 563 | class CallNode : public SafePointNode { |
| 564 | friend class VMStructs; |
| 565 | |
| 566 | protected: |
| 567 | bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase); |
| 568 | |
| 569 | public: |
| 570 | const TypeFunc *_tf; // Function type |
| 571 | address _entry_point; // Address of method being called |
| 572 | float _cnt; // Estimate of number of times called |
| 573 | CallGenerator* _generator; // corresponding CallGenerator for some late inline calls |
| 574 | const char *_name; // Printable name, if _method is NULL |
| 575 | |
| 576 | CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type) |
| 577 | : SafePointNode(tf->domain()->cnt(), NULL, adr_type), |
| 578 | _tf(tf), |
| 579 | _entry_point(addr), |
| 580 | _cnt(COUNT_UNKNOWN), |
| 581 | _generator(NULL), |
| 582 | _name(NULL) |
| 583 | { |
| 584 | init_class_id(Class_Call); |
| 585 | } |
| 586 | |
| 587 | const TypeFunc* tf() const { return _tf; } |
| 588 | const address entry_point() const { return _entry_point; } |
| 589 | const float cnt() const { return _cnt; } |
| 590 | CallGenerator* generator() const { return _generator; } |
| 591 | |
| 592 | void set_tf(const TypeFunc* tf) { _tf = tf; } |
| 593 | void set_entry_point(address p) { _entry_point = p; } |
| 594 | void set_cnt(float c) { _cnt = c; } |
| 595 | void set_generator(CallGenerator* cg) { _generator = cg; } |
| 596 | |
| 597 | virtual const Type *bottom_type() const; |
| 598 | virtual const Type* Value(PhaseGVN* phase) const; |
| 599 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 600 | virtual Node* Identity(PhaseGVN* phase) { return this; } |
| 601 | virtual bool cmp( const Node &n ) const; |
| 602 | virtual uint size_of() const = 0; |
| 603 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; |
| 604 | virtual Node *match( const ProjNode *proj, const Matcher *m ); |
| 605 | virtual uint ideal_reg() const { return NotAMachineReg; } |
| 606 | // Are we guaranteed that this node is a safepoint? Not true for leaf calls and |
| 607 | // for some macro nodes whose expansion does not have a safepoint on the fast path. |
| 608 | virtual bool guaranteed_safepoint() { return true; } |
| 609 | // For macro nodes, the JVMState gets modified during expansion. If calls |
| 610 | // use MachConstantBase, it gets modified during matching. So when cloning |
| 611 | // the node the JVMState must be cloned. Default is not to clone. |
| 612 | virtual void clone_jvms(Compile* C) { |
| 613 | if (C->needs_clone_jvms() && jvms() != NULL) { |
| 614 | set_jvms(jvms()->clone_deep(C)); |
| 615 | jvms()->set_map_deep(this); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | // Returns true if the call may modify n |
| 620 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase); |
| 621 | // Does this node have a use of n other than in debug information? |
| 622 | bool has_non_debug_use(Node *n); |
| 623 | // Returns the unique CheckCastPP of a call |
| 624 | // or result projection is there are several CheckCastPP |
| 625 | // or returns NULL if there is no one. |
| 626 | Node *result_cast(); |
| 627 | // Does this node returns pointer? |
| 628 | bool returns_pointer() const { |
| 629 | const TypeTuple *r = tf()->range(); |
| 630 | return (r->cnt() > TypeFunc::Parms && |
| 631 | r->field_at(TypeFunc::Parms)->isa_ptr()); |
| 632 | } |
| 633 | |
| 634 | // Collect all the interesting edges from a call for use in |
| 635 | // replacing the call by something else. Used by macro expansion |
| 636 | // and the late inlining support. |
| 637 | void (CallProjections* projs, bool separate_io_proj, bool do_asserts = true); |
| 638 | |
| 639 | virtual uint match_edge(uint idx) const; |
| 640 | |
| 641 | bool is_call_to_arraycopystub() const; |
| 642 | |
| 643 | #ifndef PRODUCT |
| 644 | virtual void dump_req(outputStream *st = tty) const; |
| 645 | virtual void dump_spec(outputStream *st) const; |
| 646 | #endif |
| 647 | }; |
| 648 | |
| 649 | |
| 650 | //------------------------------CallJavaNode----------------------------------- |
| 651 | // Make a static or dynamic subroutine call node using Java calling |
| 652 | // convention. (The "Java" calling convention is the compiler's calling |
| 653 | // convention, as opposed to the interpreter's or that of native C.) |
| 654 | class CallJavaNode : public CallNode { |
| 655 | friend class VMStructs; |
| 656 | protected: |
| 657 | virtual bool cmp( const Node &n ) const; |
| 658 | virtual uint size_of() const; // Size is bigger |
| 659 | |
| 660 | bool _optimized_virtual; |
| 661 | bool _method_handle_invoke; |
| 662 | bool _override_symbolic_info; // Override symbolic call site info from bytecode |
| 663 | ciMethod* _method; // Method being direct called |
| 664 | public: |
| 665 | const int _bci; // Byte Code Index of call byte code |
| 666 | CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci) |
| 667 | : CallNode(tf, addr, TypePtr::BOTTOM), |
| 668 | _optimized_virtual(false), |
| 669 | _method_handle_invoke(false), |
| 670 | _override_symbolic_info(false), |
| 671 | _method(method), _bci(bci) |
| 672 | { |
| 673 | init_class_id(Class_CallJava); |
| 674 | } |
| 675 | |
| 676 | virtual int Opcode() const; |
| 677 | ciMethod* method() const { return _method; } |
| 678 | void set_method(ciMethod *m) { _method = m; } |
| 679 | void set_optimized_virtual(bool f) { _optimized_virtual = f; } |
| 680 | bool is_optimized_virtual() const { return _optimized_virtual; } |
| 681 | void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } |
| 682 | bool is_method_handle_invoke() const { return _method_handle_invoke; } |
| 683 | void set_override_symbolic_info(bool f) { _override_symbolic_info = f; } |
| 684 | bool override_symbolic_info() const { return _override_symbolic_info; } |
| 685 | |
| 686 | DEBUG_ONLY( bool validate_symbolic_info() const; ) |
| 687 | |
| 688 | #ifndef PRODUCT |
| 689 | virtual void dump_spec(outputStream *st) const; |
| 690 | virtual void dump_compact_spec(outputStream *st) const; |
| 691 | #endif |
| 692 | }; |
| 693 | |
| 694 | //------------------------------CallStaticJavaNode----------------------------- |
| 695 | // Make a direct subroutine call using Java calling convention (for static |
| 696 | // calls and optimized virtual calls, plus calls to wrappers for run-time |
| 697 | // routines); generates static stub. |
| 698 | class CallStaticJavaNode : public CallJavaNode { |
| 699 | virtual bool cmp( const Node &n ) const; |
| 700 | virtual uint size_of() const; // Size is bigger |
| 701 | public: |
| 702 | CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci) |
| 703 | : CallJavaNode(tf, addr, method, bci) { |
| 704 | init_class_id(Class_CallStaticJava); |
| 705 | if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) { |
| 706 | init_flags(Flag_is_macro); |
| 707 | C->add_macro_node(this); |
| 708 | } |
| 709 | _is_scalar_replaceable = false; |
| 710 | _is_non_escaping = false; |
| 711 | } |
| 712 | CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci, |
| 713 | const TypePtr* adr_type) |
| 714 | : CallJavaNode(tf, addr, NULL, bci) { |
| 715 | init_class_id(Class_CallStaticJava); |
| 716 | // This node calls a runtime stub, which often has narrow memory effects. |
| 717 | _adr_type = adr_type; |
| 718 | _is_scalar_replaceable = false; |
| 719 | _is_non_escaping = false; |
| 720 | _name = name; |
| 721 | } |
| 722 | |
| 723 | // Result of Escape Analysis |
| 724 | bool _is_scalar_replaceable; |
| 725 | bool _is_non_escaping; |
| 726 | |
| 727 | // If this is an uncommon trap, return the request code, else zero. |
| 728 | int uncommon_trap_request() const; |
| 729 | static int (const Node* call); |
| 730 | |
| 731 | bool is_boxing_method() const { |
| 732 | return is_macro() && (method() != NULL) && method()->is_boxing_method(); |
| 733 | } |
| 734 | // Later inlining modifies the JVMState, so we need to clone it |
| 735 | // when the call node is cloned (because it is macro node). |
| 736 | virtual void clone_jvms(Compile* C) { |
| 737 | if ((jvms() != NULL) && is_boxing_method()) { |
| 738 | set_jvms(jvms()->clone_deep(C)); |
| 739 | jvms()->set_map_deep(this); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | virtual int Opcode() const; |
| 744 | #ifndef PRODUCT |
| 745 | virtual void dump_spec(outputStream *st) const; |
| 746 | virtual void dump_compact_spec(outputStream *st) const; |
| 747 | #endif |
| 748 | }; |
| 749 | |
| 750 | //------------------------------CallDynamicJavaNode---------------------------- |
| 751 | // Make a dispatched call using Java calling convention. |
| 752 | class CallDynamicJavaNode : public CallJavaNode { |
| 753 | virtual bool cmp( const Node &n ) const; |
| 754 | virtual uint size_of() const; // Size is bigger |
| 755 | public: |
| 756 | CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) { |
| 757 | init_class_id(Class_CallDynamicJava); |
| 758 | } |
| 759 | |
| 760 | int _vtable_index; |
| 761 | virtual int Opcode() const; |
| 762 | #ifndef PRODUCT |
| 763 | virtual void dump_spec(outputStream *st) const; |
| 764 | #endif |
| 765 | }; |
| 766 | |
| 767 | //------------------------------CallRuntimeNode-------------------------------- |
| 768 | // Make a direct subroutine call node into compiled C++ code. |
| 769 | class CallRuntimeNode : public CallNode { |
| 770 | virtual bool cmp( const Node &n ) const; |
| 771 | virtual uint size_of() const; // Size is bigger |
| 772 | public: |
| 773 | CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, |
| 774 | const TypePtr* adr_type) |
| 775 | : CallNode(tf, addr, adr_type) |
| 776 | { |
| 777 | init_class_id(Class_CallRuntime); |
| 778 | _name = name; |
| 779 | } |
| 780 | |
| 781 | virtual int Opcode() const; |
| 782 | virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; |
| 783 | |
| 784 | #ifndef PRODUCT |
| 785 | virtual void dump_spec(outputStream *st) const; |
| 786 | #endif |
| 787 | }; |
| 788 | |
| 789 | //------------------------------CallLeafNode----------------------------------- |
| 790 | // Make a direct subroutine call node into compiled C++ code, without |
| 791 | // safepoints |
| 792 | class CallLeafNode : public CallRuntimeNode { |
| 793 | public: |
| 794 | CallLeafNode(const TypeFunc* tf, address addr, const char* name, |
| 795 | const TypePtr* adr_type) |
| 796 | : CallRuntimeNode(tf, addr, name, adr_type) |
| 797 | { |
| 798 | init_class_id(Class_CallLeaf); |
| 799 | } |
| 800 | virtual int Opcode() const; |
| 801 | virtual bool guaranteed_safepoint() { return false; } |
| 802 | #ifndef PRODUCT |
| 803 | virtual void dump_spec(outputStream *st) const; |
| 804 | #endif |
| 805 | }; |
| 806 | |
| 807 | //------------------------------CallLeafNoFPNode------------------------------- |
| 808 | // CallLeafNode, not using floating point or using it in the same manner as |
| 809 | // the generated code |
| 810 | class CallLeafNoFPNode : public CallLeafNode { |
| 811 | public: |
| 812 | CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, |
| 813 | const TypePtr* adr_type) |
| 814 | : CallLeafNode(tf, addr, name, adr_type) |
| 815 | { |
| 816 | } |
| 817 | virtual int Opcode() const; |
| 818 | }; |
| 819 | |
| 820 | |
| 821 | //------------------------------Allocate--------------------------------------- |
| 822 | // High-level memory allocation |
| 823 | // |
| 824 | // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will |
| 825 | // get expanded into a code sequence containing a call. Unlike other CallNodes, |
| 826 | // they have 2 memory projections and 2 i_o projections (which are distinguished by |
| 827 | // the _is_io_use flag in the projection.) This is needed when expanding the node in |
| 828 | // order to differentiate the uses of the projection on the normal control path from |
| 829 | // those on the exception return path. |
| 830 | // |
| 831 | class AllocateNode : public CallNode { |
| 832 | public: |
| 833 | enum { |
| 834 | // Output: |
| 835 | RawAddress = TypeFunc::Parms, // the newly-allocated raw address |
| 836 | // Inputs: |
| 837 | AllocSize = TypeFunc::Parms, // size (in bytes) of the new object |
| 838 | KlassNode, // type (maybe dynamic) of the obj. |
| 839 | InitialTest, // slow-path test (may be constant) |
| 840 | ALength, // array length (or TOP if none) |
| 841 | ParmLimit |
| 842 | }; |
| 843 | |
| 844 | static const TypeFunc* alloc_type(const Type* t) { |
| 845 | const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); |
| 846 | fields[AllocSize] = TypeInt::POS; |
| 847 | fields[KlassNode] = TypeInstPtr::NOTNULL; |
| 848 | fields[InitialTest] = TypeInt::BOOL; |
| 849 | fields[ALength] = t; // length (can be a bad length) |
| 850 | |
| 851 | const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); |
| 852 | |
| 853 | // create result type (range) |
| 854 | fields = TypeTuple::fields(1); |
| 855 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
| 856 | |
| 857 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
| 858 | |
| 859 | return TypeFunc::make(domain, range); |
| 860 | } |
| 861 | |
| 862 | // Result of Escape Analysis |
| 863 | bool _is_scalar_replaceable; |
| 864 | bool _is_non_escaping; |
| 865 | // True when MemBar for new is redundant with MemBar at initialzer exit |
| 866 | bool _is_allocation_MemBar_redundant; |
| 867 | |
| 868 | virtual uint size_of() const; // Size is bigger |
| 869 | AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, |
| 870 | Node *size, Node *klass_node, Node *initial_test); |
| 871 | // Expansion modifies the JVMState, so we need to clone it |
| 872 | virtual void clone_jvms(Compile* C) { |
| 873 | if (jvms() != NULL) { |
| 874 | set_jvms(jvms()->clone_deep(C)); |
| 875 | jvms()->set_map_deep(this); |
| 876 | } |
| 877 | } |
| 878 | virtual int Opcode() const; |
| 879 | virtual uint ideal_reg() const { return Op_RegP; } |
| 880 | virtual bool guaranteed_safepoint() { return false; } |
| 881 | |
| 882 | // allocations do not modify their arguments |
| 883 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;} |
| 884 | |
| 885 | // Pattern-match a possible usage of AllocateNode. |
| 886 | // Return null if no allocation is recognized. |
| 887 | // The operand is the pointer produced by the (possible) allocation. |
| 888 | // It must be a projection of the Allocate or its subsequent CastPP. |
| 889 | // (Note: This function is defined in file graphKit.cpp, near |
| 890 | // GraphKit::new_instance/new_array, whose output it recognizes.) |
| 891 | // The 'ptr' may not have an offset unless the 'offset' argument is given. |
| 892 | static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase); |
| 893 | |
| 894 | // Fancy version which uses AddPNode::Ideal_base_and_offset to strip |
| 895 | // an offset, which is reported back to the caller. |
| 896 | // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) |
| 897 | static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase, |
| 898 | intptr_t& offset); |
| 899 | |
| 900 | // Dig the klass operand out of a (possible) allocation site. |
| 901 | static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) { |
| 902 | AllocateNode* allo = Ideal_allocation(ptr, phase); |
| 903 | return (allo == NULL) ? NULL : allo->in(KlassNode); |
| 904 | } |
| 905 | |
| 906 | // Conservatively small estimate of offset of first non-header byte. |
| 907 | int () { |
| 908 | return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : |
| 909 | instanceOopDesc::base_offset_in_bytes(); |
| 910 | } |
| 911 | |
| 912 | // Return the corresponding initialization barrier (or null if none). |
| 913 | // Walks out edges to find it... |
| 914 | // (Note: Both InitializeNode::allocation and AllocateNode::initialization |
| 915 | // are defined in graphKit.cpp, which sets up the bidirectional relation.) |
| 916 | InitializeNode* initialization(); |
| 917 | |
| 918 | // Convenience for initialization->maybe_set_complete(phase) |
| 919 | bool maybe_set_complete(PhaseGVN* phase); |
| 920 | |
| 921 | // Return true if allocation doesn't escape thread, its escape state |
| 922 | // needs be noEscape or ArgEscape. InitializeNode._does_not_escape |
| 923 | // is true when its allocation's escape state is noEscape or |
| 924 | // ArgEscape. In case allocation's InitializeNode is NULL, check |
| 925 | // AlllocateNode._is_non_escaping flag. |
| 926 | // AlllocateNode._is_non_escaping is true when its escape state is |
| 927 | // noEscape. |
| 928 | bool does_not_escape_thread() { |
| 929 | InitializeNode* init = NULL; |
| 930 | return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape()); |
| 931 | } |
| 932 | |
| 933 | // If object doesn't escape in <.init> method and there is memory barrier |
| 934 | // inserted at exit of its <.init>, memory barrier for new is not necessary. |
| 935 | // Inovke this method when MemBar at exit of initializer and post-dominate |
| 936 | // allocation node. |
| 937 | void compute_MemBar_redundancy(ciMethod* initializer); |
| 938 | bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; } |
| 939 | }; |
| 940 | |
| 941 | //------------------------------AllocateArray--------------------------------- |
| 942 | // |
| 943 | // High-level array allocation |
| 944 | // |
| 945 | class AllocateArrayNode : public AllocateNode { |
| 946 | public: |
| 947 | AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, |
| 948 | Node* size, Node* klass_node, Node* initial_test, |
| 949 | Node* count_val |
| 950 | ) |
| 951 | : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, |
| 952 | initial_test) |
| 953 | { |
| 954 | init_class_id(Class_AllocateArray); |
| 955 | set_req(AllocateNode::ALength, count_val); |
| 956 | } |
| 957 | virtual int Opcode() const; |
| 958 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 959 | |
| 960 | // Dig the length operand out of a array allocation site. |
| 961 | Node* Ideal_length() { |
| 962 | return in(AllocateNode::ALength); |
| 963 | } |
| 964 | |
| 965 | // Dig the length operand out of a array allocation site and narrow the |
| 966 | // type with a CastII, if necesssary |
| 967 | Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true); |
| 968 | |
| 969 | // Pattern-match a possible usage of AllocateArrayNode. |
| 970 | // Return null if no allocation is recognized. |
| 971 | static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) { |
| 972 | AllocateNode* allo = Ideal_allocation(ptr, phase); |
| 973 | return (allo == NULL || !allo->is_AllocateArray()) |
| 974 | ? NULL : allo->as_AllocateArray(); |
| 975 | } |
| 976 | }; |
| 977 | |
| 978 | //------------------------------AbstractLockNode----------------------------------- |
| 979 | class AbstractLockNode: public CallNode { |
| 980 | private: |
| 981 | enum { |
| 982 | Regular = 0, // Normal lock |
| 983 | NonEscObj, // Lock is used for non escaping object |
| 984 | Coarsened, // Lock was coarsened |
| 985 | Nested // Nested lock |
| 986 | } _kind; |
| 987 | #ifndef PRODUCT |
| 988 | NamedCounter* _counter; |
| 989 | static const char* _kind_names[Nested+1]; |
| 990 | #endif |
| 991 | |
| 992 | protected: |
| 993 | // helper functions for lock elimination |
| 994 | // |
| 995 | |
| 996 | bool find_matching_unlock(const Node* ctrl, LockNode* lock, |
| 997 | GrowableArray<AbstractLockNode*> &lock_ops); |
| 998 | bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, |
| 999 | GrowableArray<AbstractLockNode*> &lock_ops); |
| 1000 | bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, |
| 1001 | GrowableArray<AbstractLockNode*> &lock_ops); |
| 1002 | LockNode *find_matching_lock(UnlockNode* unlock); |
| 1003 | |
| 1004 | // Update the counter to indicate that this lock was eliminated. |
| 1005 | void set_eliminated_lock_counter() PRODUCT_RETURN; |
| 1006 | |
| 1007 | public: |
| 1008 | AbstractLockNode(const TypeFunc *tf) |
| 1009 | : CallNode(tf, NULL, TypeRawPtr::BOTTOM), |
| 1010 | _kind(Regular) |
| 1011 | { |
| 1012 | #ifndef PRODUCT |
| 1013 | _counter = NULL; |
| 1014 | #endif |
| 1015 | } |
| 1016 | virtual int Opcode() const = 0; |
| 1017 | Node * obj_node() const {return in(TypeFunc::Parms + 0); } |
| 1018 | Node * box_node() const {return in(TypeFunc::Parms + 1); } |
| 1019 | Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } |
| 1020 | void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } |
| 1021 | |
| 1022 | const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} |
| 1023 | |
| 1024 | virtual uint size_of() const { return sizeof(*this); } |
| 1025 | |
| 1026 | bool is_eliminated() const { return (_kind != Regular); } |
| 1027 | bool is_non_esc_obj() const { return (_kind == NonEscObj); } |
| 1028 | bool is_coarsened() const { return (_kind == Coarsened); } |
| 1029 | bool is_nested() const { return (_kind == Nested); } |
| 1030 | |
| 1031 | const char * kind_as_string() const; |
| 1032 | void log_lock_optimization(Compile* c, const char * tag) const; |
| 1033 | |
| 1034 | void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } |
| 1035 | void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } |
| 1036 | void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } |
| 1037 | |
| 1038 | // locking does not modify its arguments |
| 1039 | virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;} |
| 1040 | |
| 1041 | #ifndef PRODUCT |
| 1042 | void create_lock_counter(JVMState* s); |
| 1043 | NamedCounter* counter() const { return _counter; } |
| 1044 | virtual void dump_spec(outputStream* st) const; |
| 1045 | virtual void dump_compact_spec(outputStream* st) const; |
| 1046 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
| 1047 | #endif |
| 1048 | }; |
| 1049 | |
| 1050 | //------------------------------Lock--------------------------------------- |
| 1051 | // High-level lock operation |
| 1052 | // |
| 1053 | // This is a subclass of CallNode because it is a macro node which gets expanded |
| 1054 | // into a code sequence containing a call. This node takes 3 "parameters": |
| 1055 | // 0 - object to lock |
| 1056 | // 1 - a BoxLockNode |
| 1057 | // 2 - a FastLockNode |
| 1058 | // |
| 1059 | class LockNode : public AbstractLockNode { |
| 1060 | public: |
| 1061 | |
| 1062 | static const TypeFunc *lock_type() { |
| 1063 | // create input type (domain) |
| 1064 | const Type **fields = TypeTuple::fields(3); |
| 1065 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked |
| 1066 | fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock |
| 1067 | fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock |
| 1068 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); |
| 1069 | |
| 1070 | // create result type (range) |
| 1071 | fields = TypeTuple::fields(0); |
| 1072 | |
| 1073 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
| 1074 | |
| 1075 | return TypeFunc::make(domain,range); |
| 1076 | } |
| 1077 | |
| 1078 | virtual int Opcode() const; |
| 1079 | virtual uint size_of() const; // Size is bigger |
| 1080 | LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { |
| 1081 | init_class_id(Class_Lock); |
| 1082 | init_flags(Flag_is_macro); |
| 1083 | C->add_macro_node(this); |
| 1084 | } |
| 1085 | virtual bool guaranteed_safepoint() { return false; } |
| 1086 | |
| 1087 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 1088 | // Expansion modifies the JVMState, so we need to clone it |
| 1089 | virtual void clone_jvms(Compile* C) { |
| 1090 | if (jvms() != NULL) { |
| 1091 | set_jvms(jvms()->clone_deep(C)); |
| 1092 | jvms()->set_map_deep(this); |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | bool is_nested_lock_region(); // Is this Lock nested? |
| 1097 | bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? |
| 1098 | }; |
| 1099 | |
| 1100 | //------------------------------Unlock--------------------------------------- |
| 1101 | // High-level unlock operation |
| 1102 | class UnlockNode : public AbstractLockNode { |
| 1103 | private: |
| 1104 | #ifdef ASSERT |
| 1105 | JVMState* const _dbg_jvms; // Pointer to list of JVM State objects |
| 1106 | #endif |
| 1107 | public: |
| 1108 | virtual int Opcode() const; |
| 1109 | virtual uint size_of() const; // Size is bigger |
| 1110 | UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) |
| 1111 | #ifdef ASSERT |
| 1112 | , _dbg_jvms(NULL) |
| 1113 | #endif |
| 1114 | { |
| 1115 | init_class_id(Class_Unlock); |
| 1116 | init_flags(Flag_is_macro); |
| 1117 | C->add_macro_node(this); |
| 1118 | } |
| 1119 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 1120 | // unlock is never a safepoint |
| 1121 | virtual bool guaranteed_safepoint() { return false; } |
| 1122 | #ifdef ASSERT |
| 1123 | void set_dbg_jvms(JVMState* s) { |
| 1124 | *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor |
| 1125 | } |
| 1126 | JVMState* dbg_jvms() const { return _dbg_jvms; } |
| 1127 | #else |
| 1128 | JVMState* dbg_jvms() const { return NULL; } |
| 1129 | #endif |
| 1130 | }; |
| 1131 | #endif // SHARE_OPTO_CALLNODE_HPP |
| 1132 | |