1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_MEMNODE_HPP
26#define SHARE_OPTO_MEMNODE_HPP
27
28#include "opto/multnode.hpp"
29#include "opto/node.hpp"
30#include "opto/opcodes.hpp"
31#include "opto/type.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35class MultiNode;
36class PhaseCCP;
37class PhaseTransform;
38
39//------------------------------MemNode----------------------------------------
40// Load or Store, possibly throwing a NULL pointer exception
41class MemNode : public Node {
42private:
43 bool _unaligned_access; // Unaligned access from unsafe
44 bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
45 bool _unsafe_access; // Access of unsafe origin.
46protected:
47#ifdef ASSERT
48 const TypePtr* _adr_type; // What kind of memory is being addressed?
49#endif
50 virtual uint size_of() const;
51public:
52 enum { Control, // When is it safe to do this load?
53 Memory, // Chunk of memory is being loaded from
54 Address, // Actually address, derived from base
55 ValueIn, // Value to store
56 OopStore // Preceeding oop store, only in StoreCM
57 };
58 typedef enum { unordered = 0,
59 acquire, // Load has to acquire or be succeeded by MemBarAcquire.
60 release, // Store has to release or be preceded by MemBarRelease.
61 seqcst, // LoadStore has to have both acquire and release semantics.
62 unset // The memory ordering is not set (used for testing)
63 } MemOrd;
64protected:
65 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
66 : Node(c0,c1,c2 ), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
67 init_class_id(Class_Mem);
68 debug_only(_adr_type=at; adr_type();)
69 }
70 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
71 : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
72 init_class_id(Class_Mem);
73 debug_only(_adr_type=at; adr_type();)
74 }
75 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
76 : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false), _unsafe_access(false) {
77 init_class_id(Class_Mem);
78 debug_only(_adr_type=at; adr_type();)
79 }
80
81 virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
82 static bool check_if_adr_maybe_raw(Node* adr);
83
84public:
85 // Helpers for the optimizer. Documented in memnode.cpp.
86 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
87 Node* p2, AllocateNode* a2,
88 PhaseTransform* phase);
89 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
90
91 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
92 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
93 // This one should probably be a phase-specific function:
94 static bool all_controls_dominate(Node* dom, Node* sub);
95
96 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
97
98 // Shared code for Ideal methods:
99 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
100
101 // Helper function for adr_type() implementations.
102 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
103
104 // Raw access function, to allow copying of adr_type efficiently in
105 // product builds and retain the debug info for debug builds.
106 const TypePtr *raw_adr_type() const {
107#ifdef ASSERT
108 return _adr_type;
109#else
110 return 0;
111#endif
112 }
113
114 // Map a load or store opcode to its corresponding store opcode.
115 // (Return -1 if unknown.)
116 virtual int store_Opcode() const { return -1; }
117
118 // What is the type of the value in memory? (T_VOID mean "unspecified".)
119 virtual BasicType memory_type() const = 0;
120 virtual int memory_size() const {
121#ifdef ASSERT
122 return type2aelembytes(memory_type(), true);
123#else
124 return type2aelembytes(memory_type());
125#endif
126 }
127
128 // Search through memory states which precede this node (load or store).
129 // Look for an exact match for the address, with no intervening
130 // aliased stores.
131 Node* find_previous_store(PhaseTransform* phase);
132
133 // Can this node (load or store) accurately see a stored value in
134 // the given memory state? (The state may or may not be in(Memory).)
135 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
136
137 void set_unaligned_access() { _unaligned_access = true; }
138 bool is_unaligned_access() const { return _unaligned_access; }
139 void set_mismatched_access() { _mismatched_access = true; }
140 bool is_mismatched_access() const { return _mismatched_access; }
141 void set_unsafe_access() { _unsafe_access = true; }
142 bool is_unsafe_access() const { return _unsafe_access; }
143
144#ifndef PRODUCT
145 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
146 virtual void dump_spec(outputStream *st) const;
147#endif
148};
149
150//------------------------------LoadNode---------------------------------------
151// Load value; requires Memory and Address
152class LoadNode : public MemNode {
153public:
154 // Some loads (from unsafe) should be pinned: they don't depend only
155 // on the dominating test. The field _control_dependency below records
156 // whether that node depends only on the dominating test.
157 // Methods used to build LoadNodes pass an argument of type enum
158 // ControlDependency instead of a boolean because those methods
159 // typically have multiple boolean parameters with default values:
160 // passing the wrong boolean to one of these parameters by mistake
161 // goes easily unnoticed. Using an enum, the compiler can check that
162 // the type of a value and the type of the parameter match.
163 enum ControlDependency {
164 Pinned,
165 DependsOnlyOnTest
166 };
167
168private:
169 // LoadNode::hash() doesn't take the _control_dependency field
170 // into account: If the graph already has a non-pinned LoadNode and
171 // we add a pinned LoadNode with the same inputs, it's safe for GVN
172 // to replace the pinned LoadNode with the non-pinned LoadNode,
173 // otherwise it wouldn't be safe to have a non pinned LoadNode with
174 // those inputs in the first place. If the graph already has a
175 // pinned LoadNode and we add a non pinned LoadNode with the same
176 // inputs, it's safe (but suboptimal) for GVN to replace the
177 // non-pinned LoadNode by the pinned LoadNode.
178 ControlDependency _control_dependency;
179
180 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
181 // loads that can be reordered, and such requiring acquire semantics to
182 // adhere to the Java specification. The required behaviour is stored in
183 // this field.
184 const MemOrd _mo;
185
186 uint _barrier; // Bit field with barrier information
187
188protected:
189 virtual bool cmp(const Node &n) const;
190 virtual uint size_of() const; // Size is bigger
191 // Should LoadNode::Ideal() attempt to remove control edges?
192 virtual bool can_remove_control() const;
193 const Type* const _type; // What kind of value is loaded?
194
195 virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
196public:
197
198 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
199 : MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _barrier(0), _type(rt) {
200 init_class_id(Class_Load);
201 }
202 inline bool is_unordered() const { return !is_acquire(); }
203 inline bool is_acquire() const {
204 assert(_mo == unordered || _mo == acquire, "unexpected");
205 return _mo == acquire;
206 }
207 inline bool is_unsigned() const {
208 int lop = Opcode();
209 return (lop == Op_LoadUB) || (lop == Op_LoadUS);
210 }
211
212 // Polymorphic factory method:
213 static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
214 const TypePtr* at, const Type *rt, BasicType bt,
215 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
216 bool unaligned = false, bool mismatched = false, bool unsafe = false);
217
218 virtual uint hash() const; // Check the type
219
220 // Handle algebraic identities here. If we have an identity, return the Node
221 // we are equivalent to. We look for Load of a Store.
222 virtual Node* Identity(PhaseGVN* phase);
223
224 // If the load is from Field memory and the pointer is non-null, it might be possible to
225 // zero out the control input.
226 // If the offset is constant and the base is an object allocation,
227 // try to hook me up to the exact initializing store.
228 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
229
230 // Split instance field load through Phi.
231 Node* split_through_phi(PhaseGVN *phase);
232
233 // Recover original value from boxed values
234 Node *eliminate_autobox(PhaseGVN *phase);
235
236 // Compute a new Type for this node. Basically we just do the pre-check,
237 // then call the virtual add() to set the type.
238 virtual const Type* Value(PhaseGVN* phase) const;
239
240 // Common methods for LoadKlass and LoadNKlass nodes.
241 const Type* klass_value_common(PhaseGVN* phase) const;
242 Node* klass_identity_common(PhaseGVN* phase);
243
244 virtual uint ideal_reg() const;
245 virtual const Type *bottom_type() const;
246 // Following method is copied from TypeNode:
247 void set_type(const Type* t) {
248 assert(t != NULL, "sanity");
249 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
250 *(const Type**)&_type = t; // cast away const-ness
251 // If this node is in the hash table, make sure it doesn't need a rehash.
252 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
253 }
254 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
255
256 // Do not match memory edge
257 virtual uint match_edge(uint idx) const;
258
259 // Map a load opcode to its corresponding store opcode.
260 virtual int store_Opcode() const = 0;
261
262 // Check if the load's memory input is a Phi node with the same control.
263 bool is_instance_field_load_with_local_phi(Node* ctrl);
264
265 Node* convert_to_unsigned_load(PhaseGVN& gvn);
266 Node* convert_to_signed_load(PhaseGVN& gvn);
267
268 void copy_barrier_info(const Node* src) { _barrier = src->as_Load()->_barrier; }
269 uint barrier_data() { return _barrier; }
270 void set_barrier_data(uint barrier_data) { _barrier |= barrier_data; }
271
272#ifndef PRODUCT
273 virtual void dump_spec(outputStream *st) const;
274#endif
275#ifdef ASSERT
276 // Helper function to allow a raw load without control edge for some cases
277 static bool is_immutable_value(Node* adr);
278#endif
279protected:
280 const Type* load_array_final_field(const TypeKlassPtr *tkls,
281 ciKlass* klass) const;
282
283 Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const;
284
285 // depends_only_on_test is almost always true, and needs to be almost always
286 // true to enable key hoisting & commoning optimizations. However, for the
287 // special case of RawPtr loads from TLS top & end, and other loads performed by
288 // GC barriers, the control edge carries the dependence preventing hoisting past
289 // a Safepoint instead of the memory edge. (An unfortunate consequence of having
290 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
291 // which produce results (new raw memory state) inside of loops preventing all
292 // manner of other optimizations). Basically, it's ugly but so is the alternative.
293 // See comment in macro.cpp, around line 125 expand_allocate_common().
294 virtual bool depends_only_on_test() const {
295 return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest;
296 }
297};
298
299//------------------------------LoadBNode--------------------------------------
300// Load a byte (8bits signed) from memory
301class LoadBNode : public LoadNode {
302public:
303 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
304 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
305 virtual int Opcode() const;
306 virtual uint ideal_reg() const { return Op_RegI; }
307 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
308 virtual const Type* Value(PhaseGVN* phase) const;
309 virtual int store_Opcode() const { return Op_StoreB; }
310 virtual BasicType memory_type() const { return T_BYTE; }
311};
312
313//------------------------------LoadUBNode-------------------------------------
314// Load a unsigned byte (8bits unsigned) from memory
315class LoadUBNode : public LoadNode {
316public:
317 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
318 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
319 virtual int Opcode() const;
320 virtual uint ideal_reg() const { return Op_RegI; }
321 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
322 virtual const Type* Value(PhaseGVN* phase) const;
323 virtual int store_Opcode() const { return Op_StoreB; }
324 virtual BasicType memory_type() const { return T_BYTE; }
325};
326
327//------------------------------LoadUSNode-------------------------------------
328// Load an unsigned short/char (16bits unsigned) from memory
329class LoadUSNode : public LoadNode {
330public:
331 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
332 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
333 virtual int Opcode() const;
334 virtual uint ideal_reg() const { return Op_RegI; }
335 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
336 virtual const Type* Value(PhaseGVN* phase) const;
337 virtual int store_Opcode() const { return Op_StoreC; }
338 virtual BasicType memory_type() const { return T_CHAR; }
339};
340
341//------------------------------LoadSNode--------------------------------------
342// Load a short (16bits signed) from memory
343class LoadSNode : public LoadNode {
344public:
345 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
346 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
347 virtual int Opcode() const;
348 virtual uint ideal_reg() const { return Op_RegI; }
349 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
350 virtual const Type* Value(PhaseGVN* phase) const;
351 virtual int store_Opcode() const { return Op_StoreC; }
352 virtual BasicType memory_type() const { return T_SHORT; }
353};
354
355//------------------------------LoadINode--------------------------------------
356// Load an integer from memory
357class LoadINode : public LoadNode {
358public:
359 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
360 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
361 virtual int Opcode() const;
362 virtual uint ideal_reg() const { return Op_RegI; }
363 virtual int store_Opcode() const { return Op_StoreI; }
364 virtual BasicType memory_type() const { return T_INT; }
365};
366
367//------------------------------LoadRangeNode----------------------------------
368// Load an array length from the array
369class LoadRangeNode : public LoadINode {
370public:
371 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
372 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
373 virtual int Opcode() const;
374 virtual const Type* Value(PhaseGVN* phase) const;
375 virtual Node* Identity(PhaseGVN* phase);
376 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
377};
378
379//------------------------------LoadLNode--------------------------------------
380// Load a long from memory
381class LoadLNode : public LoadNode {
382 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
383 virtual bool cmp( const Node &n ) const {
384 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
385 && LoadNode::cmp(n);
386 }
387 virtual uint size_of() const { return sizeof(*this); }
388 const bool _require_atomic_access; // is piecewise load forbidden?
389
390public:
391 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
392 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
393 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
394 virtual int Opcode() const;
395 virtual uint ideal_reg() const { return Op_RegL; }
396 virtual int store_Opcode() const { return Op_StoreL; }
397 virtual BasicType memory_type() const { return T_LONG; }
398 bool require_atomic_access() const { return _require_atomic_access; }
399 static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
400 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
401 bool unaligned = false, bool mismatched = false, bool unsafe = false);
402#ifndef PRODUCT
403 virtual void dump_spec(outputStream *st) const {
404 LoadNode::dump_spec(st);
405 if (_require_atomic_access) st->print(" Atomic!");
406 }
407#endif
408};
409
410//------------------------------LoadL_unalignedNode----------------------------
411// Load a long from unaligned memory
412class LoadL_unalignedNode : public LoadLNode {
413public:
414 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
415 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
416 virtual int Opcode() const;
417};
418
419//------------------------------LoadFNode--------------------------------------
420// Load a float (64 bits) from memory
421class LoadFNode : public LoadNode {
422public:
423 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
424 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
425 virtual int Opcode() const;
426 virtual uint ideal_reg() const { return Op_RegF; }
427 virtual int store_Opcode() const { return Op_StoreF; }
428 virtual BasicType memory_type() const { return T_FLOAT; }
429};
430
431//------------------------------LoadDNode--------------------------------------
432// Load a double (64 bits) from memory
433class LoadDNode : public LoadNode {
434 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
435 virtual bool cmp( const Node &n ) const {
436 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
437 && LoadNode::cmp(n);
438 }
439 virtual uint size_of() const { return sizeof(*this); }
440 const bool _require_atomic_access; // is piecewise load forbidden?
441
442public:
443 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
444 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
445 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
446 virtual int Opcode() const;
447 virtual uint ideal_reg() const { return Op_RegD; }
448 virtual int store_Opcode() const { return Op_StoreD; }
449 virtual BasicType memory_type() const { return T_DOUBLE; }
450 bool require_atomic_access() const { return _require_atomic_access; }
451 static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
452 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
453 bool unaligned = false, bool mismatched = false, bool unsafe = false);
454#ifndef PRODUCT
455 virtual void dump_spec(outputStream *st) const {
456 LoadNode::dump_spec(st);
457 if (_require_atomic_access) st->print(" Atomic!");
458 }
459#endif
460};
461
462//------------------------------LoadD_unalignedNode----------------------------
463// Load a double from unaligned memory
464class LoadD_unalignedNode : public LoadDNode {
465public:
466 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
467 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
468 virtual int Opcode() const;
469};
470
471//------------------------------LoadPNode--------------------------------------
472// Load a pointer from memory (either object or array)
473class LoadPNode : public LoadNode {
474public:
475 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
476 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
477 virtual int Opcode() const;
478 virtual uint ideal_reg() const { return Op_RegP; }
479 virtual int store_Opcode() const { return Op_StoreP; }
480 virtual BasicType memory_type() const { return T_ADDRESS; }
481};
482
483
484//------------------------------LoadNNode--------------------------------------
485// Load a narrow oop from memory (either object or array)
486class LoadNNode : public LoadNode {
487public:
488 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
489 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
490 virtual int Opcode() const;
491 virtual uint ideal_reg() const { return Op_RegN; }
492 virtual int store_Opcode() const { return Op_StoreN; }
493 virtual BasicType memory_type() const { return T_NARROWOOP; }
494};
495
496//------------------------------LoadKlassNode----------------------------------
497// Load a Klass from an object
498class LoadKlassNode : public LoadPNode {
499protected:
500 // In most cases, LoadKlassNode does not have the control input set. If the control
501 // input is set, it must not be removed (by LoadNode::Ideal()).
502 virtual bool can_remove_control() const;
503public:
504 LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
505 : LoadPNode(c, mem, adr, at, tk, mo) {}
506 virtual int Opcode() const;
507 virtual const Type* Value(PhaseGVN* phase) const;
508 virtual Node* Identity(PhaseGVN* phase);
509 virtual bool depends_only_on_test() const { return true; }
510
511 // Polymorphic factory method:
512 static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
513 const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
514};
515
516//------------------------------LoadNKlassNode---------------------------------
517// Load a narrow Klass from an object.
518class LoadNKlassNode : public LoadNNode {
519public:
520 LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
521 : LoadNNode(c, mem, adr, at, tk, mo) {}
522 virtual int Opcode() const;
523 virtual uint ideal_reg() const { return Op_RegN; }
524 virtual int store_Opcode() const { return Op_StoreNKlass; }
525 virtual BasicType memory_type() const { return T_NARROWKLASS; }
526
527 virtual const Type* Value(PhaseGVN* phase) const;
528 virtual Node* Identity(PhaseGVN* phase);
529 virtual bool depends_only_on_test() const { return true; }
530};
531
532
533//------------------------------StoreNode--------------------------------------
534// Store value; requires Store, Address and Value
535class StoreNode : public MemNode {
536private:
537 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
538 // stores that can be reordered, and such requiring release semantics to
539 // adhere to the Java specification. The required behaviour is stored in
540 // this field.
541 const MemOrd _mo;
542 // Needed for proper cloning.
543 virtual uint size_of() const { return sizeof(*this); }
544protected:
545 virtual bool cmp( const Node &n ) const;
546 virtual bool depends_only_on_test() const { return false; }
547
548 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
549 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
550
551public:
552 // We must ensure that stores of object references will be visible
553 // only after the object's initialization. So the callers of this
554 // procedure must indicate that the store requires `release'
555 // semantics, if the stored value is an object reference that might
556 // point to a new object and may become externally visible.
557 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
558 : MemNode(c, mem, adr, at, val), _mo(mo) {
559 init_class_id(Class_Store);
560 }
561 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
562 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
563 init_class_id(Class_Store);
564 }
565
566 inline bool is_unordered() const { return !is_release(); }
567 inline bool is_release() const {
568 assert((_mo == unordered || _mo == release), "unexpected");
569 return _mo == release;
570 }
571
572 // Conservatively release stores of object references in order to
573 // ensure visibility of object initialization.
574 static inline MemOrd release_if_reference(const BasicType t) {
575#ifdef AARCH64
576 // AArch64 doesn't need a release store here because object
577 // initialization contains the necessary barriers.
578 return unordered;
579#else
580 const MemOrd mo = (t == T_ARRAY ||
581 t == T_ADDRESS || // Might be the address of an object reference (`boxing').
582 t == T_OBJECT) ? release : unordered;
583 return mo;
584#endif
585 }
586
587 // Polymorphic factory method
588 //
589 // We must ensure that stores of object references will be visible
590 // only after the object's initialization. So the callers of this
591 // procedure must indicate that the store requires `release'
592 // semantics, if the stored value is an object reference that might
593 // point to a new object and may become externally visible.
594 static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
595 const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
596
597 virtual uint hash() const; // Check the type
598
599 // If the store is to Field memory and the pointer is non-null, we can
600 // zero out the control input.
601 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
602
603 // Compute a new Type for this node. Basically we just do the pre-check,
604 // then call the virtual add() to set the type.
605 virtual const Type* Value(PhaseGVN* phase) const;
606
607 // Check for identity function on memory (Load then Store at same address)
608 virtual Node* Identity(PhaseGVN* phase);
609
610 // Do not match memory edge
611 virtual uint match_edge(uint idx) const;
612
613 virtual const Type *bottom_type() const; // returns Type::MEMORY
614
615 // Map a store opcode to its corresponding own opcode, trivially.
616 virtual int store_Opcode() const { return Opcode(); }
617
618 // have all possible loads of the value stored been optimized away?
619 bool value_never_loaded(PhaseTransform *phase) const;
620
621 MemBarNode* trailing_membar() const;
622};
623
624//------------------------------StoreBNode-------------------------------------
625// Store byte to memory
626class StoreBNode : public StoreNode {
627public:
628 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
629 : StoreNode(c, mem, adr, at, val, mo) {}
630 virtual int Opcode() const;
631 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
632 virtual BasicType memory_type() const { return T_BYTE; }
633};
634
635//------------------------------StoreCNode-------------------------------------
636// Store char/short to memory
637class StoreCNode : public StoreNode {
638public:
639 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
640 : StoreNode(c, mem, adr, at, val, mo) {}
641 virtual int Opcode() const;
642 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
643 virtual BasicType memory_type() const { return T_CHAR; }
644};
645
646//------------------------------StoreINode-------------------------------------
647// Store int to memory
648class StoreINode : public StoreNode {
649public:
650 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
651 : StoreNode(c, mem, adr, at, val, mo) {}
652 virtual int Opcode() const;
653 virtual BasicType memory_type() const { return T_INT; }
654};
655
656//------------------------------StoreLNode-------------------------------------
657// Store long to memory
658class StoreLNode : public StoreNode {
659 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
660 virtual bool cmp( const Node &n ) const {
661 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
662 && StoreNode::cmp(n);
663 }
664 virtual uint size_of() const { return sizeof(*this); }
665 const bool _require_atomic_access; // is piecewise store forbidden?
666
667public:
668 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
669 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
670 virtual int Opcode() const;
671 virtual BasicType memory_type() const { return T_LONG; }
672 bool require_atomic_access() const { return _require_atomic_access; }
673 static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
674#ifndef PRODUCT
675 virtual void dump_spec(outputStream *st) const {
676 StoreNode::dump_spec(st);
677 if (_require_atomic_access) st->print(" Atomic!");
678 }
679#endif
680};
681
682//------------------------------StoreFNode-------------------------------------
683// Store float to memory
684class StoreFNode : public StoreNode {
685public:
686 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
687 : StoreNode(c, mem, adr, at, val, mo) {}
688 virtual int Opcode() const;
689 virtual BasicType memory_type() const { return T_FLOAT; }
690};
691
692//------------------------------StoreDNode-------------------------------------
693// Store double to memory
694class StoreDNode : public StoreNode {
695 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
696 virtual bool cmp( const Node &n ) const {
697 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
698 && StoreNode::cmp(n);
699 }
700 virtual uint size_of() const { return sizeof(*this); }
701 const bool _require_atomic_access; // is piecewise store forbidden?
702public:
703 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
704 MemOrd mo, bool require_atomic_access = false)
705 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
706 virtual int Opcode() const;
707 virtual BasicType memory_type() const { return T_DOUBLE; }
708 bool require_atomic_access() const { return _require_atomic_access; }
709 static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
710#ifndef PRODUCT
711 virtual void dump_spec(outputStream *st) const {
712 StoreNode::dump_spec(st);
713 if (_require_atomic_access) st->print(" Atomic!");
714 }
715#endif
716
717};
718
719//------------------------------StorePNode-------------------------------------
720// Store pointer to memory
721class StorePNode : public StoreNode {
722public:
723 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
724 : StoreNode(c, mem, adr, at, val, mo) {}
725 virtual int Opcode() const;
726 virtual BasicType memory_type() const { return T_ADDRESS; }
727};
728
729//------------------------------StoreNNode-------------------------------------
730// Store narrow oop to memory
731class StoreNNode : public StoreNode {
732public:
733 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
734 : StoreNode(c, mem, adr, at, val, mo) {}
735 virtual int Opcode() const;
736 virtual BasicType memory_type() const { return T_NARROWOOP; }
737};
738
739//------------------------------StoreNKlassNode--------------------------------------
740// Store narrow klass to memory
741class StoreNKlassNode : public StoreNNode {
742public:
743 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
744 : StoreNNode(c, mem, adr, at, val, mo) {}
745 virtual int Opcode() const;
746 virtual BasicType memory_type() const { return T_NARROWKLASS; }
747};
748
749//------------------------------StoreCMNode-----------------------------------
750// Store card-mark byte to memory for CM
751// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
752// Preceeding equivalent StoreCMs may be eliminated.
753class StoreCMNode : public StoreNode {
754 private:
755 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
756 virtual bool cmp( const Node &n ) const {
757 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
758 && StoreNode::cmp(n);
759 }
760 virtual uint size_of() const { return sizeof(*this); }
761 int _oop_alias_idx; // The alias_idx of OopStore
762
763public:
764 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
765 StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
766 _oop_alias_idx(oop_alias_idx) {
767 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
768 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
769 "bad oop alias idx");
770 }
771 virtual int Opcode() const;
772 virtual Node* Identity(PhaseGVN* phase);
773 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
774 virtual const Type* Value(PhaseGVN* phase) const;
775 virtual BasicType memory_type() const { return T_VOID; } // unspecific
776 int oop_alias_idx() const { return _oop_alias_idx; }
777};
778
779//------------------------------LoadPLockedNode---------------------------------
780// Load-locked a pointer from memory (either object or array).
781// On Sparc & Intel this is implemented as a normal pointer load.
782// On PowerPC and friends it's a real load-locked.
783class LoadPLockedNode : public LoadPNode {
784public:
785 LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
786 : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
787 virtual int Opcode() const;
788 virtual int store_Opcode() const { return Op_StorePConditional; }
789 virtual bool depends_only_on_test() const { return true; }
790};
791
792//------------------------------SCMemProjNode---------------------------------------
793// This class defines a projection of the memory state of a store conditional node.
794// These nodes return a value, but also update memory.
795class SCMemProjNode : public ProjNode {
796public:
797 enum {SCMEMPROJCON = (uint)-2};
798 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
799 virtual int Opcode() const;
800 virtual bool is_CFG() const { return false; }
801 virtual const Type *bottom_type() const {return Type::MEMORY;}
802 virtual const TypePtr *adr_type() const {
803 Node* ctrl = in(0);
804 if (ctrl == NULL) return NULL; // node is dead
805 return ctrl->in(MemNode::Memory)->adr_type();
806 }
807 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
808 virtual const Type* Value(PhaseGVN* phase) const;
809#ifndef PRODUCT
810 virtual void dump_spec(outputStream *st) const {};
811#endif
812};
813
814//------------------------------LoadStoreNode---------------------------
815// Note: is_Mem() method returns 'true' for this class.
816class LoadStoreNode : public Node {
817private:
818 const Type* const _type; // What kind of value is loaded?
819 const TypePtr* _adr_type; // What kind of memory is being addressed?
820 bool _has_barrier;
821 virtual uint size_of() const; // Size is bigger
822public:
823 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
824 virtual bool depends_only_on_test() const { return false; }
825 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
826
827 virtual const Type *bottom_type() const { return _type; }
828 virtual uint ideal_reg() const;
829 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
830
831 bool result_not_used() const;
832 MemBarNode* trailing_membar() const;
833 void set_has_barrier() { _has_barrier = true; };
834 bool has_barrier() const { return _has_barrier; };
835};
836
837class LoadStoreConditionalNode : public LoadStoreNode {
838public:
839 enum {
840 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
841 };
842 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
843};
844
845//------------------------------StorePConditionalNode---------------------------
846// Conditionally store pointer to memory, if no change since prior
847// load-locked. Sets flags for success or failure of the store.
848class StorePConditionalNode : public LoadStoreConditionalNode {
849public:
850 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
851 virtual int Opcode() const;
852 // Produces flags
853 virtual uint ideal_reg() const { return Op_RegFlags; }
854};
855
856//------------------------------StoreIConditionalNode---------------------------
857// Conditionally store int to memory, if no change since prior
858// load-locked. Sets flags for success or failure of the store.
859class StoreIConditionalNode : public LoadStoreConditionalNode {
860public:
861 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
862 virtual int Opcode() const;
863 // Produces flags
864 virtual uint ideal_reg() const { return Op_RegFlags; }
865};
866
867//------------------------------StoreLConditionalNode---------------------------
868// Conditionally store long to memory, if no change since prior
869// load-locked. Sets flags for success or failure of the store.
870class StoreLConditionalNode : public LoadStoreConditionalNode {
871public:
872 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
873 virtual int Opcode() const;
874 // Produces flags
875 virtual uint ideal_reg() const { return Op_RegFlags; }
876};
877
878class CompareAndSwapNode : public LoadStoreConditionalNode {
879private:
880 const MemNode::MemOrd _mem_ord;
881public:
882 CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
883 MemNode::MemOrd order() const {
884 return _mem_ord;
885 }
886};
887
888class CompareAndExchangeNode : public LoadStoreNode {
889private:
890 const MemNode::MemOrd _mem_ord;
891public:
892 enum {
893 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
894 };
895 CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
896 LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
897 init_req(ExpectedIn, ex );
898 }
899
900 MemNode::MemOrd order() const {
901 return _mem_ord;
902 }
903};
904
905//------------------------------CompareAndSwapBNode---------------------------
906class CompareAndSwapBNode : public CompareAndSwapNode {
907public:
908 CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
909 virtual int Opcode() const;
910};
911
912//------------------------------CompareAndSwapSNode---------------------------
913class CompareAndSwapSNode : public CompareAndSwapNode {
914public:
915 CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
916 virtual int Opcode() const;
917};
918
919//------------------------------CompareAndSwapINode---------------------------
920class CompareAndSwapINode : public CompareAndSwapNode {
921public:
922 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
923 virtual int Opcode() const;
924};
925
926//------------------------------CompareAndSwapLNode---------------------------
927class CompareAndSwapLNode : public CompareAndSwapNode {
928public:
929 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
930 virtual int Opcode() const;
931};
932
933//------------------------------CompareAndSwapPNode---------------------------
934class CompareAndSwapPNode : public CompareAndSwapNode {
935public:
936 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
937 virtual int Opcode() const;
938};
939
940//------------------------------CompareAndSwapNNode---------------------------
941class CompareAndSwapNNode : public CompareAndSwapNode {
942public:
943 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
944 virtual int Opcode() const;
945};
946
947//------------------------------WeakCompareAndSwapBNode---------------------------
948class WeakCompareAndSwapBNode : public CompareAndSwapNode {
949public:
950 WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
951 virtual int Opcode() const;
952};
953
954//------------------------------WeakCompareAndSwapSNode---------------------------
955class WeakCompareAndSwapSNode : public CompareAndSwapNode {
956public:
957 WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
958 virtual int Opcode() const;
959};
960
961//------------------------------WeakCompareAndSwapINode---------------------------
962class WeakCompareAndSwapINode : public CompareAndSwapNode {
963public:
964 WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
965 virtual int Opcode() const;
966};
967
968//------------------------------WeakCompareAndSwapLNode---------------------------
969class WeakCompareAndSwapLNode : public CompareAndSwapNode {
970public:
971 WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
972 virtual int Opcode() const;
973};
974
975//------------------------------WeakCompareAndSwapPNode---------------------------
976class WeakCompareAndSwapPNode : public CompareAndSwapNode {
977public:
978 WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
979 virtual int Opcode() const;
980};
981
982//------------------------------WeakCompareAndSwapNNode---------------------------
983class WeakCompareAndSwapNNode : public CompareAndSwapNode {
984public:
985 WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
986 virtual int Opcode() const;
987};
988
989//------------------------------CompareAndExchangeBNode---------------------------
990class CompareAndExchangeBNode : public CompareAndExchangeNode {
991public:
992 CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { }
993 virtual int Opcode() const;
994};
995
996
997//------------------------------CompareAndExchangeSNode---------------------------
998class CompareAndExchangeSNode : public CompareAndExchangeNode {
999public:
1000 CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { }
1001 virtual int Opcode() const;
1002};
1003
1004//------------------------------CompareAndExchangeLNode---------------------------
1005class CompareAndExchangeLNode : public CompareAndExchangeNode {
1006public:
1007 CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
1008 virtual int Opcode() const;
1009};
1010
1011
1012//------------------------------CompareAndExchangeINode---------------------------
1013class CompareAndExchangeINode : public CompareAndExchangeNode {
1014public:
1015 CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
1016 virtual int Opcode() const;
1017};
1018
1019
1020//------------------------------CompareAndExchangePNode---------------------------
1021class CompareAndExchangePNode : public CompareAndExchangeNode {
1022public:
1023 CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1024 virtual int Opcode() const;
1025};
1026
1027//------------------------------CompareAndExchangeNNode---------------------------
1028class CompareAndExchangeNNode : public CompareAndExchangeNode {
1029public:
1030 CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
1031 virtual int Opcode() const;
1032};
1033
1034//------------------------------GetAndAddBNode---------------------------
1035class GetAndAddBNode : public LoadStoreNode {
1036public:
1037 GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1038 virtual int Opcode() const;
1039};
1040
1041//------------------------------GetAndAddSNode---------------------------
1042class GetAndAddSNode : public LoadStoreNode {
1043public:
1044 GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1045 virtual int Opcode() const;
1046};
1047
1048//------------------------------GetAndAddINode---------------------------
1049class GetAndAddINode : public LoadStoreNode {
1050public:
1051 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1052 virtual int Opcode() const;
1053};
1054
1055//------------------------------GetAndAddLNode---------------------------
1056class GetAndAddLNode : public LoadStoreNode {
1057public:
1058 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1059 virtual int Opcode() const;
1060};
1061
1062//------------------------------GetAndSetBNode---------------------------
1063class GetAndSetBNode : public LoadStoreNode {
1064public:
1065 GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
1066 virtual int Opcode() const;
1067};
1068
1069//------------------------------GetAndSetSNode---------------------------
1070class GetAndSetSNode : public LoadStoreNode {
1071public:
1072 GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
1073 virtual int Opcode() const;
1074};
1075
1076//------------------------------GetAndSetINode---------------------------
1077class GetAndSetINode : public LoadStoreNode {
1078public:
1079 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
1080 virtual int Opcode() const;
1081};
1082
1083//------------------------------GetAndSetLNode---------------------------
1084class GetAndSetLNode : public LoadStoreNode {
1085public:
1086 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1087 virtual int Opcode() const;
1088};
1089
1090//------------------------------GetAndSetPNode---------------------------
1091class GetAndSetPNode : public LoadStoreNode {
1092public:
1093 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1094 virtual int Opcode() const;
1095};
1096
1097//------------------------------GetAndSetNNode---------------------------
1098class GetAndSetNNode : public LoadStoreNode {
1099public:
1100 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1101 virtual int Opcode() const;
1102};
1103
1104//------------------------------ClearArray-------------------------------------
1105class ClearArrayNode: public Node {
1106private:
1107 bool _is_large;
1108public:
1109 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, bool is_large)
1110 : Node(ctrl,arymem,word_cnt,base), _is_large(is_large) {
1111 init_class_id(Class_ClearArray);
1112 }
1113 virtual int Opcode() const;
1114 virtual const Type *bottom_type() const { return Type::MEMORY; }
1115 // ClearArray modifies array elements, and so affects only the
1116 // array memory addressed by the bottom_type of its base address.
1117 virtual const class TypePtr *adr_type() const;
1118 virtual Node* Identity(PhaseGVN* phase);
1119 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1120 virtual uint match_edge(uint idx) const;
1121 bool is_large() const { return _is_large; }
1122
1123 // Clear the given area of an object or array.
1124 // The start offset must always be aligned mod BytesPerInt.
1125 // The end offset must always be aligned mod BytesPerLong.
1126 // Return the new memory.
1127 static Node* clear_memory(Node* control, Node* mem, Node* dest,
1128 intptr_t start_offset,
1129 intptr_t end_offset,
1130 PhaseGVN* phase);
1131 static Node* clear_memory(Node* control, Node* mem, Node* dest,
1132 intptr_t start_offset,
1133 Node* end_offset,
1134 PhaseGVN* phase);
1135 static Node* clear_memory(Node* control, Node* mem, Node* dest,
1136 Node* start_offset,
1137 Node* end_offset,
1138 PhaseGVN* phase);
1139 // Return allocation input memory edge if it is different instance
1140 // or itself if it is the one we are looking for.
1141 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
1142};
1143
1144//------------------------------MemBar-----------------------------------------
1145// There are different flavors of Memory Barriers to match the Java Memory
1146// Model. Monitor-enter and volatile-load act as Aquires: no following ref
1147// can be moved to before them. We insert a MemBar-Acquire after a FastLock or
1148// volatile-load. Monitor-exit and volatile-store act as Release: no
1149// preceding ref can be moved to after them. We insert a MemBar-Release
1150// before a FastUnlock or volatile-store. All volatiles need to be
1151// serialized, so we follow all volatile-stores with a MemBar-Volatile to
1152// separate it from any following volatile-load.
1153class MemBarNode: public MultiNode {
1154 virtual uint hash() const ; // { return NO_HASH; }
1155 virtual bool cmp( const Node &n ) const ; // Always fail, except on self
1156
1157 virtual uint size_of() const { return sizeof(*this); }
1158 // Memory type this node is serializing. Usually either rawptr or bottom.
1159 const TypePtr* _adr_type;
1160
1161 // How is this membar related to a nearby memory access?
1162 enum {
1163 Standalone,
1164 TrailingLoad,
1165 TrailingStore,
1166 LeadingStore,
1167 TrailingLoadStore,
1168 LeadingLoadStore
1169 } _kind;
1170
1171#ifdef ASSERT
1172 uint _pair_idx;
1173#endif
1174
1175public:
1176 enum {
1177 Precedent = TypeFunc::Parms // optional edge to force precedence
1178 };
1179 MemBarNode(Compile* C, int alias_idx, Node* precedent);
1180 virtual int Opcode() const = 0;
1181 virtual const class TypePtr *adr_type() const { return _adr_type; }
1182 virtual const Type* Value(PhaseGVN* phase) const;
1183 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1184 virtual uint match_edge(uint idx) const { return 0; }
1185 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1186 virtual Node *match( const ProjNode *proj, const Matcher *m );
1187 // Factory method. Builds a wide or narrow membar.
1188 // Optional 'precedent' becomes an extra edge if not null.
1189 static MemBarNode* make(Compile* C, int opcode,
1190 int alias_idx = Compile::AliasIdxBot,
1191 Node* precedent = NULL);
1192
1193 MemBarNode* trailing_membar() const;
1194 MemBarNode* leading_membar() const;
1195
1196 void set_trailing_load() { _kind = TrailingLoad; }
1197 bool trailing_load() const { return _kind == TrailingLoad; }
1198 bool trailing_store() const { return _kind == TrailingStore; }
1199 bool leading_store() const { return _kind == LeadingStore; }
1200 bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1201 bool leading_load_store() const { return _kind == LeadingLoadStore; }
1202 bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1203 bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1204 bool standalone() const { return _kind == Standalone; }
1205
1206 static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1207 static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1208
1209 void remove(PhaseIterGVN *igvn);
1210};
1211
1212// "Acquire" - no following ref can move before (but earlier refs can
1213// follow, like an early Load stalled in cache). Requires multi-cpu
1214// visibility. Inserted after a volatile load.
1215class MemBarAcquireNode: public MemBarNode {
1216public:
1217 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1218 : MemBarNode(C, alias_idx, precedent) {}
1219 virtual int Opcode() const;
1220};
1221
1222// "Acquire" - no following ref can move before (but earlier refs can
1223// follow, like an early Load stalled in cache). Requires multi-cpu
1224// visibility. Inserted independ of any load, as required
1225// for intrinsic Unsafe.loadFence().
1226class LoadFenceNode: public MemBarNode {
1227public:
1228 LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1229 : MemBarNode(C, alias_idx, precedent) {}
1230 virtual int Opcode() const;
1231};
1232
1233// "Release" - no earlier ref can move after (but later refs can move
1234// up, like a speculative pipelined cache-hitting Load). Requires
1235// multi-cpu visibility. Inserted before a volatile store.
1236class MemBarReleaseNode: public MemBarNode {
1237public:
1238 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1239 : MemBarNode(C, alias_idx, precedent) {}
1240 virtual int Opcode() const;
1241};
1242
1243// "Release" - no earlier ref can move after (but later refs can move
1244// up, like a speculative pipelined cache-hitting Load). Requires
1245// multi-cpu visibility. Inserted independent of any store, as required
1246// for intrinsic Unsafe.storeFence().
1247class StoreFenceNode: public MemBarNode {
1248public:
1249 StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1250 : MemBarNode(C, alias_idx, precedent) {}
1251 virtual int Opcode() const;
1252};
1253
1254// "Acquire" - no following ref can move before (but earlier refs can
1255// follow, like an early Load stalled in cache). Requires multi-cpu
1256// visibility. Inserted after a FastLock.
1257class MemBarAcquireLockNode: public MemBarNode {
1258public:
1259 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1260 : MemBarNode(C, alias_idx, precedent) {}
1261 virtual int Opcode() const;
1262};
1263
1264// "Release" - no earlier ref can move after (but later refs can move
1265// up, like a speculative pipelined cache-hitting Load). Requires
1266// multi-cpu visibility. Inserted before a FastUnLock.
1267class MemBarReleaseLockNode: public MemBarNode {
1268public:
1269 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1270 : MemBarNode(C, alias_idx, precedent) {}
1271 virtual int Opcode() const;
1272};
1273
1274class MemBarStoreStoreNode: public MemBarNode {
1275public:
1276 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1277 : MemBarNode(C, alias_idx, precedent) {
1278 init_class_id(Class_MemBarStoreStore);
1279 }
1280 virtual int Opcode() const;
1281};
1282
1283// Ordering between a volatile store and a following volatile load.
1284// Requires multi-CPU visibility?
1285class MemBarVolatileNode: public MemBarNode {
1286public:
1287 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1288 : MemBarNode(C, alias_idx, precedent) {}
1289 virtual int Opcode() const;
1290};
1291
1292// Ordering within the same CPU. Used to order unsafe memory references
1293// inside the compiler when we lack alias info. Not needed "outside" the
1294// compiler because the CPU does all the ordering for us.
1295class MemBarCPUOrderNode: public MemBarNode {
1296public:
1297 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1298 : MemBarNode(C, alias_idx, precedent) {}
1299 virtual int Opcode() const;
1300 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1301};
1302
1303class OnSpinWaitNode: public MemBarNode {
1304public:
1305 OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent)
1306 : MemBarNode(C, alias_idx, precedent) {}
1307 virtual int Opcode() const;
1308};
1309
1310// Isolation of object setup after an AllocateNode and before next safepoint.
1311// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1312class InitializeNode: public MemBarNode {
1313 friend class AllocateNode;
1314
1315 enum {
1316 Incomplete = 0,
1317 Complete = 1,
1318 WithArraycopy = 2
1319 };
1320 int _is_complete;
1321
1322 bool _does_not_escape;
1323
1324public:
1325 enum {
1326 Control = TypeFunc::Control,
1327 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
1328 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
1329 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
1330 };
1331
1332 InitializeNode(Compile* C, int adr_type, Node* rawoop);
1333 virtual int Opcode() const;
1334 virtual uint size_of() const { return sizeof(*this); }
1335 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1336 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
1337
1338 // Manage incoming memory edges via a MergeMem on in(Memory):
1339 Node* memory(uint alias_idx);
1340
1341 // The raw memory edge coming directly from the Allocation.
1342 // The contents of this memory are *always* all-zero-bits.
1343 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1344
1345 // Return the corresponding allocation for this initialization (or null if none).
1346 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1347 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1348 AllocateNode* allocation();
1349
1350 // Anything other than zeroing in this init?
1351 bool is_non_zero();
1352
1353 // An InitializeNode must completed before macro expansion is done.
1354 // Completion requires that the AllocateNode must be followed by
1355 // initialization of the new memory to zero, then to any initializers.
1356 bool is_complete() { return _is_complete != Incomplete; }
1357 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1358
1359 // Mark complete. (Must not yet be complete.)
1360 void set_complete(PhaseGVN* phase);
1361 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1362
1363 bool does_not_escape() { return _does_not_escape; }
1364 void set_does_not_escape() { _does_not_escape = true; }
1365
1366#ifdef ASSERT
1367 // ensure all non-degenerate stores are ordered and non-overlapping
1368 bool stores_are_sane(PhaseTransform* phase);
1369#endif //ASSERT
1370
1371 // See if this store can be captured; return offset where it initializes.
1372 // Return 0 if the store cannot be moved (any sort of problem).
1373 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1374
1375 // Capture another store; reformat it to write my internal raw memory.
1376 // Return the captured copy, else NULL if there is some sort of problem.
1377 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1378
1379 // Find captured store which corresponds to the range [start..start+size).
1380 // Return my own memory projection (meaning the initial zero bits)
1381 // if there is no such store. Return NULL if there is a problem.
1382 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1383
1384 // Called when the associated AllocateNode is expanded into CFG.
1385 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1386 intptr_t header_size, Node* size_in_bytes,
1387 PhaseGVN* phase);
1388
1389 private:
1390 void remove_extra_zeroes();
1391
1392 // Find out where a captured store should be placed (or already is placed).
1393 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1394 PhaseTransform* phase);
1395
1396 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1397
1398 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1399
1400 bool detect_init_independence(Node* n, int& count);
1401
1402 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1403 PhaseGVN* phase);
1404
1405 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1406};
1407
1408//------------------------------MergeMem---------------------------------------
1409// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1410class MergeMemNode: public Node {
1411 virtual uint hash() const ; // { return NO_HASH; }
1412 virtual bool cmp( const Node &n ) const ; // Always fail, except on self
1413 friend class MergeMemStream;
1414 MergeMemNode(Node* def); // clients use MergeMemNode::make
1415
1416public:
1417 // If the input is a whole memory state, clone it with all its slices intact.
1418 // Otherwise, make a new memory state with just that base memory input.
1419 // In either case, the result is a newly created MergeMem.
1420 static MergeMemNode* make(Node* base_memory);
1421
1422 virtual int Opcode() const;
1423 virtual Node* Identity(PhaseGVN* phase);
1424 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1425 virtual uint ideal_reg() const { return NotAMachineReg; }
1426 virtual uint match_edge(uint idx) const { return 0; }
1427 virtual const RegMask &out_RegMask() const;
1428 virtual const Type *bottom_type() const { return Type::MEMORY; }
1429 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1430 // sparse accessors
1431 // Fetch the previously stored "set_memory_at", or else the base memory.
1432 // (Caller should clone it if it is a phi-nest.)
1433 Node* memory_at(uint alias_idx) const;
1434 // set the memory, regardless of its previous value
1435 void set_memory_at(uint alias_idx, Node* n);
1436 // the "base" is the memory that provides the non-finite support
1437 Node* base_memory() const { return in(Compile::AliasIdxBot); }
1438 // warning: setting the base can implicitly set any of the other slices too
1439 void set_base_memory(Node* def);
1440 // sentinel value which denotes a copy of the base memory:
1441 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
1442 static Node* make_empty_memory(); // where the sentinel comes from
1443 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1444 // hook for the iterator, to perform any necessary setup
1445 void iteration_setup(const MergeMemNode* other = NULL);
1446 // push sentinels until I am at least as long as the other (semantic no-op)
1447 void grow_to_match(const MergeMemNode* other);
1448 bool verify_sparse() const PRODUCT_RETURN0;
1449#ifndef PRODUCT
1450 virtual void dump_spec(outputStream *st) const;
1451#endif
1452};
1453
1454class MergeMemStream : public StackObj {
1455 private:
1456 MergeMemNode* _mm;
1457 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
1458 Node* _mm_base; // loop-invariant base memory of _mm
1459 int _idx;
1460 int _cnt;
1461 Node* _mem;
1462 Node* _mem2;
1463 int _cnt2;
1464
1465 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1466 // subsume_node will break sparseness at times, whenever a memory slice
1467 // folds down to a copy of the base ("fat") memory. In such a case,
1468 // the raw edge will update to base, although it should be top.
1469 // This iterator will recognize either top or base_memory as an
1470 // "empty" slice. See is_empty, is_empty2, and next below.
1471 //
1472 // The sparseness property is repaired in MergeMemNode::Ideal.
1473 // As long as access to a MergeMem goes through this iterator
1474 // or the memory_at accessor, flaws in the sparseness will
1475 // never be observed.
1476 //
1477 // Also, iteration_setup repairs sparseness.
1478 assert(mm->verify_sparse(), "please, no dups of base");
1479 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1480
1481 _mm = mm;
1482 _mm_base = mm->base_memory();
1483 _mm2 = mm2;
1484 _cnt = mm->req();
1485 _idx = Compile::AliasIdxBot-1; // start at the base memory
1486 _mem = NULL;
1487 _mem2 = NULL;
1488 }
1489
1490#ifdef ASSERT
1491 Node* check_memory() const {
1492 if (at_base_memory())
1493 return _mm->base_memory();
1494 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1495 return _mm->memory_at(_idx);
1496 else
1497 return _mm_base;
1498 }
1499 Node* check_memory2() const {
1500 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1501 }
1502#endif
1503
1504 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1505 void assert_synch() const {
1506 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1507 "no side-effects except through the stream");
1508 }
1509
1510 public:
1511
1512 // expected usages:
1513 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1514 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1515
1516 // iterate over one merge
1517 MergeMemStream(MergeMemNode* mm) {
1518 mm->iteration_setup();
1519 init(mm);
1520 debug_only(_cnt2 = 999);
1521 }
1522 // iterate in parallel over two merges
1523 // only iterates through non-empty elements of mm2
1524 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1525 assert(mm2, "second argument must be a MergeMem also");
1526 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
1527 mm->iteration_setup(mm2);
1528 init(mm, mm2);
1529 _cnt2 = mm2->req();
1530 }
1531#ifdef ASSERT
1532 ~MergeMemStream() {
1533 assert_synch();
1534 }
1535#endif
1536
1537 MergeMemNode* all_memory() const {
1538 return _mm;
1539 }
1540 Node* base_memory() const {
1541 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1542 return _mm_base;
1543 }
1544 const MergeMemNode* all_memory2() const {
1545 assert(_mm2 != NULL, "");
1546 return _mm2;
1547 }
1548 bool at_base_memory() const {
1549 return _idx == Compile::AliasIdxBot;
1550 }
1551 int alias_idx() const {
1552 assert(_mem, "must call next 1st");
1553 return _idx;
1554 }
1555
1556 const TypePtr* adr_type() const {
1557 return Compile::current()->get_adr_type(alias_idx());
1558 }
1559
1560 const TypePtr* adr_type(Compile* C) const {
1561 return C->get_adr_type(alias_idx());
1562 }
1563 bool is_empty() const {
1564 assert(_mem, "must call next 1st");
1565 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1566 return _mem->is_top();
1567 }
1568 bool is_empty2() const {
1569 assert(_mem2, "must call next 1st");
1570 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1571 return _mem2->is_top();
1572 }
1573 Node* memory() const {
1574 assert(!is_empty(), "must not be empty");
1575 assert_synch();
1576 return _mem;
1577 }
1578 // get the current memory, regardless of empty or non-empty status
1579 Node* force_memory() const {
1580 assert(!is_empty() || !at_base_memory(), "");
1581 // Use _mm_base to defend against updates to _mem->base_memory().
1582 Node *mem = _mem->is_top() ? _mm_base : _mem;
1583 assert(mem == check_memory(), "");
1584 return mem;
1585 }
1586 Node* memory2() const {
1587 assert(_mem2 == check_memory2(), "");
1588 return _mem2;
1589 }
1590 void set_memory(Node* mem) {
1591 if (at_base_memory()) {
1592 // Note that this does not change the invariant _mm_base.
1593 _mm->set_base_memory(mem);
1594 } else {
1595 _mm->set_memory_at(_idx, mem);
1596 }
1597 _mem = mem;
1598 assert_synch();
1599 }
1600
1601 // Recover from a side effect to the MergeMemNode.
1602 void set_memory() {
1603 _mem = _mm->in(_idx);
1604 }
1605
1606 bool next() { return next(false); }
1607 bool next2() { return next(true); }
1608
1609 bool next_non_empty() { return next_non_empty(false); }
1610 bool next_non_empty2() { return next_non_empty(true); }
1611 // next_non_empty2 can yield states where is_empty() is true
1612
1613 private:
1614 // find the next item, which might be empty
1615 bool next(bool have_mm2) {
1616 assert((_mm2 != NULL) == have_mm2, "use other next");
1617 assert_synch();
1618 if (++_idx < _cnt) {
1619 // Note: This iterator allows _mm to be non-sparse.
1620 // It behaves the same whether _mem is top or base_memory.
1621 _mem = _mm->in(_idx);
1622 if (have_mm2)
1623 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1624 return true;
1625 }
1626 return false;
1627 }
1628
1629 // find the next non-empty item
1630 bool next_non_empty(bool have_mm2) {
1631 while (next(have_mm2)) {
1632 if (!is_empty()) {
1633 // make sure _mem2 is filled in sensibly
1634 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
1635 return true;
1636 } else if (have_mm2 && !is_empty2()) {
1637 return true; // is_empty() == true
1638 }
1639 }
1640 return false;
1641 }
1642};
1643
1644//------------------------------Prefetch---------------------------------------
1645
1646// Allocation prefetch which may fault, TLAB size have to be adjusted.
1647class PrefetchAllocationNode : public Node {
1648public:
1649 PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1650 virtual int Opcode() const;
1651 virtual uint ideal_reg() const { return NotAMachineReg; }
1652 virtual uint match_edge(uint idx) const { return idx==2; }
1653 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1654};
1655
1656#endif // SHARE_OPTO_MEMNODE_HPP
1657