| 1 | /* | 
|---|
| 2 | * Copyright 2006 The Android Open Source Project | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "include/core/SkMatrix.h" | 
|---|
| 9 |  | 
|---|
| 10 | #include "include/core/SkPaint.h" | 
|---|
| 11 | #include "include/core/SkPoint3.h" | 
|---|
| 12 | #include "include/core/SkRSXform.h" | 
|---|
| 13 | #include "include/core/SkString.h" | 
|---|
| 14 | #include "include/private/SkFloatBits.h" | 
|---|
| 15 | #include "include/private/SkNx.h" | 
|---|
| 16 | #include "include/private/SkTo.h" | 
|---|
| 17 | #include "src/core/SkMathPriv.h" | 
|---|
| 18 | #include "src/core/SkMatrixPriv.h" | 
|---|
| 19 | #include "src/core/SkPathPriv.h" | 
|---|
| 20 |  | 
|---|
| 21 | #include <cstddef> | 
|---|
| 22 | #include <utility> | 
|---|
| 23 |  | 
|---|
| 24 | void SkMatrix::doNormalizePerspective() { | 
|---|
| 25 | // If the bottom row of the matrix is [0, 0, not_one], we will treat the matrix as if it | 
|---|
| 26 | // is in perspective, even though it stills behaves like its affine. If we divide everything | 
|---|
| 27 | // by the not_one value, then it will behave the same, but will be treated as affine, | 
|---|
| 28 | // and therefore faster (e.g. clients can forward-difference calculations). | 
|---|
| 29 | // | 
|---|
| 30 | if (0 == fMat[SkMatrix::kMPersp0] && 0 == fMat[SkMatrix::kMPersp1]) { | 
|---|
| 31 | SkScalar p2 = fMat[SkMatrix::kMPersp2]; | 
|---|
| 32 | if (p2 != 0 && p2 != 1) { | 
|---|
| 33 | double inv = 1.0 / p2; | 
|---|
| 34 | for (int i = 0; i < 6; ++i) { | 
|---|
| 35 | fMat[i] = SkDoubleToScalar(fMat[i] * inv); | 
|---|
| 36 | } | 
|---|
| 37 | fMat[SkMatrix::kMPersp2] = 1; | 
|---|
| 38 | } | 
|---|
| 39 | this->setTypeMask(kUnknown_Mask); | 
|---|
| 40 | } | 
|---|
| 41 | } | 
|---|
| 42 |  | 
|---|
| 43 | // In a few places, we performed the following | 
|---|
| 44 | //      a * b + c * d + e | 
|---|
| 45 | // as | 
|---|
| 46 | //      a * b + (c * d + e) | 
|---|
| 47 | // | 
|---|
| 48 | // sdot and scross are indended to capture these compound operations into a | 
|---|
| 49 | // function, with an eye toward considering upscaling the intermediates to | 
|---|
| 50 | // doubles for more precision (as we do in concat and invert). | 
|---|
| 51 | // | 
|---|
| 52 | // However, these few lines that performed the last add before the "dot", cause | 
|---|
| 53 | // tiny image differences, so we guard that change until we see the impact on | 
|---|
| 54 | // chrome's layouttests. | 
|---|
| 55 | // | 
|---|
| 56 | #define SK_LEGACY_MATRIX_MATH_ORDER | 
|---|
| 57 |  | 
|---|
| 58 | /*      [scale-x    skew-x      trans-x]   [X]   [X'] | 
|---|
| 59 | [skew-y     scale-y     trans-y] * [Y] = [Y'] | 
|---|
| 60 | [persp-0    persp-1     persp-2]   [1]   [1 ] | 
|---|
| 61 | */ | 
|---|
| 62 |  | 
|---|
| 63 | SkMatrix& SkMatrix::reset() { *this = SkMatrix(); return *this; } | 
|---|
| 64 |  | 
|---|
| 65 | SkMatrix& SkMatrix::set9(const SkScalar buffer[]) { | 
|---|
| 66 | memcpy(fMat, buffer, 9 * sizeof(SkScalar)); | 
|---|
| 67 | this->setTypeMask(kUnknown_Mask); | 
|---|
| 68 | return *this; | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | SkMatrix& SkMatrix::setAffine(const SkScalar buffer[]) { | 
|---|
| 72 | fMat[kMScaleX] = buffer[kAScaleX]; | 
|---|
| 73 | fMat[kMSkewX]  = buffer[kASkewX]; | 
|---|
| 74 | fMat[kMTransX] = buffer[kATransX]; | 
|---|
| 75 | fMat[kMSkewY]  = buffer[kASkewY]; | 
|---|
| 76 | fMat[kMScaleY] = buffer[kAScaleY]; | 
|---|
| 77 | fMat[kMTransY] = buffer[kATransY]; | 
|---|
| 78 | fMat[kMPersp0] = 0; | 
|---|
| 79 | fMat[kMPersp1] = 0; | 
|---|
| 80 | fMat[kMPersp2] = 1; | 
|---|
| 81 | this->setTypeMask(kUnknown_Mask); | 
|---|
| 82 | return *this; | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | // this guy aligns with the masks, so we can compute a mask from a varaible 0/1 | 
|---|
| 86 | enum { | 
|---|
| 87 | kTranslate_Shift, | 
|---|
| 88 | kScale_Shift, | 
|---|
| 89 | kAffine_Shift, | 
|---|
| 90 | kPerspective_Shift, | 
|---|
| 91 | kRectStaysRect_Shift | 
|---|
| 92 | }; | 
|---|
| 93 |  | 
|---|
| 94 | static const int32_t kScalar1Int = 0x3f800000; | 
|---|
| 95 |  | 
|---|
| 96 | uint8_t SkMatrix::computePerspectiveTypeMask() const { | 
|---|
| 97 | // Benchmarking suggests that replacing this set of SkScalarAs2sCompliment | 
|---|
| 98 | // is a win, but replacing those below is not. We don't yet understand | 
|---|
| 99 | // that result. | 
|---|
| 100 | if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { | 
|---|
| 101 | // If this is a perspective transform, we return true for all other | 
|---|
| 102 | // transform flags - this does not disable any optimizations, respects | 
|---|
| 103 | // the rule that the type mask must be conservative, and speeds up | 
|---|
| 104 | // type mask computation. | 
|---|
| 105 | return SkToU8(kORableMasks); | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | return SkToU8(kOnlyPerspectiveValid_Mask | kUnknown_Mask); | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | uint8_t SkMatrix::computeTypeMask() const { | 
|---|
| 112 | unsigned mask = 0; | 
|---|
| 113 |  | 
|---|
| 114 | if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) { | 
|---|
| 115 | // Once it is determined that that this is a perspective transform, | 
|---|
| 116 | // all other flags are moot as far as optimizations are concerned. | 
|---|
| 117 | return SkToU8(kORableMasks); | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | if (fMat[kMTransX] != 0 || fMat[kMTransY] != 0) { | 
|---|
| 121 | mask |= kTranslate_Mask; | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | int m00 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleX]); | 
|---|
| 125 | int m01 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewX]); | 
|---|
| 126 | int m10 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewY]); | 
|---|
| 127 | int m11 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleY]); | 
|---|
| 128 |  | 
|---|
| 129 | if (m01 | m10) { | 
|---|
| 130 | // The skew components may be scale-inducing, unless we are dealing | 
|---|
| 131 | // with a pure rotation.  Testing for a pure rotation is expensive, | 
|---|
| 132 | // so we opt for being conservative by always setting the scale bit. | 
|---|
| 133 | // along with affine. | 
|---|
| 134 | // By doing this, we are also ensuring that matrices have the same | 
|---|
| 135 | // type masks as their inverses. | 
|---|
| 136 | mask |= kAffine_Mask | kScale_Mask; | 
|---|
| 137 |  | 
|---|
| 138 | // For rectStaysRect, in the affine case, we only need check that | 
|---|
| 139 | // the primary diagonal is all zeros and that the secondary diagonal | 
|---|
| 140 | // is all non-zero. | 
|---|
| 141 |  | 
|---|
| 142 | // map non-zero to 1 | 
|---|
| 143 | m01 = m01 != 0; | 
|---|
| 144 | m10 = m10 != 0; | 
|---|
| 145 |  | 
|---|
| 146 | int dp0 = 0 == (m00 | m11) ;  // true if both are 0 | 
|---|
| 147 | int ds1 = m01 & m10;        // true if both are 1 | 
|---|
| 148 |  | 
|---|
| 149 | mask |= (dp0 & ds1) << kRectStaysRect_Shift; | 
|---|
| 150 | } else { | 
|---|
| 151 | // Only test for scale explicitly if not affine, since affine sets the | 
|---|
| 152 | // scale bit. | 
|---|
| 153 | if ((m00 ^ kScalar1Int) | (m11 ^ kScalar1Int)) { | 
|---|
| 154 | mask |= kScale_Mask; | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | // Not affine, therefore we already know secondary diagonal is | 
|---|
| 158 | // all zeros, so we just need to check that primary diagonal is | 
|---|
| 159 | // all non-zero. | 
|---|
| 160 |  | 
|---|
| 161 | // map non-zero to 1 | 
|---|
| 162 | m00 = m00 != 0; | 
|---|
| 163 | m11 = m11 != 0; | 
|---|
| 164 |  | 
|---|
| 165 | // record if the (p)rimary diagonal is all non-zero | 
|---|
| 166 | mask |= (m00 & m11) << kRectStaysRect_Shift; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | return SkToU8(mask); | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 173 |  | 
|---|
| 174 | bool operator==(const SkMatrix& a, const SkMatrix& b) { | 
|---|
| 175 | const SkScalar* SK_RESTRICT ma = a.fMat; | 
|---|
| 176 | const SkScalar* SK_RESTRICT mb = b.fMat; | 
|---|
| 177 |  | 
|---|
| 178 | return  ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] && | 
|---|
| 179 | ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] && | 
|---|
| 180 | ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8]; | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 184 |  | 
|---|
| 185 | // helper function to determine if upper-left 2x2 of matrix is degenerate | 
|---|
| 186 | static inline bool is_degenerate_2x2(SkScalar scaleX, SkScalar skewX, | 
|---|
| 187 | SkScalar skewY,  SkScalar scaleY) { | 
|---|
| 188 | SkScalar perp_dot = scaleX*scaleY - skewX*skewY; | 
|---|
| 189 | return SkScalarNearlyZero(perp_dot, SK_ScalarNearlyZero*SK_ScalarNearlyZero); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 193 |  | 
|---|
| 194 | bool SkMatrix::isSimilarity(SkScalar tol) const { | 
|---|
| 195 | // if identity or translate matrix | 
|---|
| 196 | TypeMask mask = this->getType(); | 
|---|
| 197 | if (mask <= kTranslate_Mask) { | 
|---|
| 198 | return true; | 
|---|
| 199 | } | 
|---|
| 200 | if (mask & kPerspective_Mask) { | 
|---|
| 201 | return false; | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | SkScalar mx = fMat[kMScaleX]; | 
|---|
| 205 | SkScalar my = fMat[kMScaleY]; | 
|---|
| 206 | // if no skew, can just compare scale factors | 
|---|
| 207 | if (!(mask & kAffine_Mask)) { | 
|---|
| 208 | return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), SkScalarAbs(my)); | 
|---|
| 209 | } | 
|---|
| 210 | SkScalar sx = fMat[kMSkewX]; | 
|---|
| 211 | SkScalar sy = fMat[kMSkewY]; | 
|---|
| 212 |  | 
|---|
| 213 | if (is_degenerate_2x2(mx, sx, sy, my)) { | 
|---|
| 214 | return false; | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | // upper 2x2 is rotation/reflection + uniform scale if basis vectors | 
|---|
| 218 | // are 90 degree rotations of each other | 
|---|
| 219 | return (SkScalarNearlyEqual(mx, my, tol) && SkScalarNearlyEqual(sx, -sy, tol)) | 
|---|
| 220 | || (SkScalarNearlyEqual(mx, -my, tol) && SkScalarNearlyEqual(sx, sy, tol)); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | bool SkMatrix::preservesRightAngles(SkScalar tol) const { | 
|---|
| 224 | TypeMask mask = this->getType(); | 
|---|
| 225 |  | 
|---|
| 226 | if (mask <= kTranslate_Mask) { | 
|---|
| 227 | // identity, translate and/or scale | 
|---|
| 228 | return true; | 
|---|
| 229 | } | 
|---|
| 230 | if (mask & kPerspective_Mask) { | 
|---|
| 231 | return false; | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | SkASSERT(mask & (kAffine_Mask | kScale_Mask)); | 
|---|
| 235 |  | 
|---|
| 236 | SkScalar mx = fMat[kMScaleX]; | 
|---|
| 237 | SkScalar my = fMat[kMScaleY]; | 
|---|
| 238 | SkScalar sx = fMat[kMSkewX]; | 
|---|
| 239 | SkScalar sy = fMat[kMSkewY]; | 
|---|
| 240 |  | 
|---|
| 241 | if (is_degenerate_2x2(mx, sx, sy, my)) { | 
|---|
| 242 | return false; | 
|---|
| 243 | } | 
|---|
| 244 |  | 
|---|
| 245 | // upper 2x2 is scale + rotation/reflection if basis vectors are orthogonal | 
|---|
| 246 | SkVector vec[2]; | 
|---|
| 247 | vec[0].set(mx, sy); | 
|---|
| 248 | vec[1].set(sx, my); | 
|---|
| 249 |  | 
|---|
| 250 | return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 254 |  | 
|---|
| 255 | static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { | 
|---|
| 256 | return a * b + c * d; | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | static inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d, | 
|---|
| 260 | SkScalar e, SkScalar f) { | 
|---|
| 261 | return a * b + c * d + e * f; | 
|---|
| 262 | } | 
|---|
| 263 |  | 
|---|
| 264 | static inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { | 
|---|
| 265 | return a * b - c * d; | 
|---|
| 266 | } | 
|---|
| 267 |  | 
|---|
| 268 | SkMatrix& SkMatrix::setTranslate(SkScalar dx, SkScalar dy) { | 
|---|
| 269 | *this = SkMatrix(1, 0, dx, | 
|---|
| 270 | 0, 1, dy, | 
|---|
| 271 | 0, 0, 1, | 
|---|
| 272 | (dx != 0 || dy != 0) ? kTranslate_Mask | kRectStaysRect_Mask | 
|---|
| 273 | : kIdentity_Mask  | kRectStaysRect_Mask); | 
|---|
| 274 | return *this; | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 | SkMatrix& SkMatrix::preTranslate(SkScalar dx, SkScalar dy) { | 
|---|
| 278 | const unsigned mask = this->getType(); | 
|---|
| 279 |  | 
|---|
| 280 | if (mask <= kTranslate_Mask) { | 
|---|
| 281 | fMat[kMTransX] += dx; | 
|---|
| 282 | fMat[kMTransY] += dy; | 
|---|
| 283 | } else if (mask & kPerspective_Mask) { | 
|---|
| 284 | SkMatrix    m; | 
|---|
| 285 | m.setTranslate(dx, dy); | 
|---|
| 286 | return this->preConcat(m); | 
|---|
| 287 | } else { | 
|---|
| 288 | fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy); | 
|---|
| 289 | fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy); | 
|---|
| 290 | } | 
|---|
| 291 | this->updateTranslateMask(); | 
|---|
| 292 | return *this; | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | SkMatrix& SkMatrix::postTranslate(SkScalar dx, SkScalar dy) { | 
|---|
| 296 | if (this->hasPerspective()) { | 
|---|
| 297 | SkMatrix    m; | 
|---|
| 298 | m.setTranslate(dx, dy); | 
|---|
| 299 | this->postConcat(m); | 
|---|
| 300 | } else { | 
|---|
| 301 | fMat[kMTransX] += dx; | 
|---|
| 302 | fMat[kMTransY] += dy; | 
|---|
| 303 | this->updateTranslateMask(); | 
|---|
| 304 | } | 
|---|
| 305 | return *this; | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 309 |  | 
|---|
| 310 | SkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 311 | if (1 == sx && 1 == sy) { | 
|---|
| 312 | this->reset(); | 
|---|
| 313 | } else { | 
|---|
| 314 | this->setScaleTranslate(sx, sy, px - sx * px, py - sy * py); | 
|---|
| 315 | } | 
|---|
| 316 | return *this; | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | SkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy) { | 
|---|
| 320 | *this = SkMatrix(sx, 0,  0, | 
|---|
| 321 | 0,  sy, 0, | 
|---|
| 322 | 0,  0,  1, | 
|---|
| 323 | (sx == 1 && sy == 1) ? kIdentity_Mask | kRectStaysRect_Mask | 
|---|
| 324 | : kScale_Mask    | kRectStaysRect_Mask); | 
|---|
| 325 | return *this; | 
|---|
| 326 | } | 
|---|
| 327 |  | 
|---|
| 328 | SkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 329 | if (1 == sx && 1 == sy) { | 
|---|
| 330 | return *this; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | SkMatrix    m; | 
|---|
| 334 | m.setScale(sx, sy, px, py); | 
|---|
| 335 | return this->preConcat(m); | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | SkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy) { | 
|---|
| 339 | if (1 == sx && 1 == sy) { | 
|---|
| 340 | return *this; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | // the assumption is that these multiplies are very cheap, and that | 
|---|
| 344 | // a full concat and/or just computing the matrix type is more expensive. | 
|---|
| 345 | // Also, the fixed-point case checks for overflow, but the float doesn't, | 
|---|
| 346 | // so we can get away with these blind multiplies. | 
|---|
| 347 |  | 
|---|
| 348 | fMat[kMScaleX] *= sx; | 
|---|
| 349 | fMat[kMSkewY]  *= sx; | 
|---|
| 350 | fMat[kMPersp0] *= sx; | 
|---|
| 351 |  | 
|---|
| 352 | fMat[kMSkewX]  *= sy; | 
|---|
| 353 | fMat[kMScaleY] *= sy; | 
|---|
| 354 | fMat[kMPersp1] *= sy; | 
|---|
| 355 |  | 
|---|
| 356 | // Attempt to simplify our type when applying an inverse scale. | 
|---|
| 357 | // TODO: The persp/affine preconditions are in place to keep the mask consistent with | 
|---|
| 358 | //       what computeTypeMask() would produce (persp/skew always implies kScale). | 
|---|
| 359 | //       We should investigate whether these flag dependencies are truly needed. | 
|---|
| 360 | if (fMat[kMScaleX] == 1 && fMat[kMScaleY] == 1 | 
|---|
| 361 | && !(fTypeMask & (kPerspective_Mask | kAffine_Mask))) { | 
|---|
| 362 | this->clearTypeMask(kScale_Mask); | 
|---|
| 363 | } else { | 
|---|
| 364 | this->orTypeMask(kScale_Mask); | 
|---|
| 365 | } | 
|---|
| 366 | return *this; | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | SkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 370 | if (1 == sx && 1 == sy) { | 
|---|
| 371 | return *this; | 
|---|
| 372 | } | 
|---|
| 373 | SkMatrix    m; | 
|---|
| 374 | m.setScale(sx, sy, px, py); | 
|---|
| 375 | return this->postConcat(m); | 
|---|
| 376 | } | 
|---|
| 377 |  | 
|---|
| 378 | SkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy) { | 
|---|
| 379 | if (1 == sx && 1 == sy) { | 
|---|
| 380 | return *this; | 
|---|
| 381 | } | 
|---|
| 382 | SkMatrix    m; | 
|---|
| 383 | m.setScale(sx, sy); | 
|---|
| 384 | return this->postConcat(m); | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | // this guy perhaps can go away, if we have a fract/high-precision way to | 
|---|
| 388 | // scale matrices | 
|---|
| 389 | bool SkMatrix::postIDiv(int divx, int divy) { | 
|---|
| 390 | if (divx == 0 || divy == 0) { | 
|---|
| 391 | return false; | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | const float invX = 1.f / divx; | 
|---|
| 395 | const float invY = 1.f / divy; | 
|---|
| 396 |  | 
|---|
| 397 | fMat[kMScaleX] *= invX; | 
|---|
| 398 | fMat[kMSkewX]  *= invX; | 
|---|
| 399 | fMat[kMTransX] *= invX; | 
|---|
| 400 |  | 
|---|
| 401 | fMat[kMScaleY] *= invY; | 
|---|
| 402 | fMat[kMSkewY]  *= invY; | 
|---|
| 403 | fMat[kMTransY] *= invY; | 
|---|
| 404 |  | 
|---|
| 405 | this->setTypeMask(kUnknown_Mask); | 
|---|
| 406 | return true; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | //////////////////////////////////////////////////////////////////////////////////// | 
|---|
| 410 |  | 
|---|
| 411 | SkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV, SkScalar px, SkScalar py) { | 
|---|
| 412 | const SkScalar oneMinusCosV = 1 - cosV; | 
|---|
| 413 |  | 
|---|
| 414 | fMat[kMScaleX]  = cosV; | 
|---|
| 415 | fMat[kMSkewX]   = -sinV; | 
|---|
| 416 | fMat[kMTransX]  = sdot(sinV, py, oneMinusCosV, px); | 
|---|
| 417 |  | 
|---|
| 418 | fMat[kMSkewY]   = sinV; | 
|---|
| 419 | fMat[kMScaleY]  = cosV; | 
|---|
| 420 | fMat[kMTransY]  = sdot(-sinV, px, oneMinusCosV, py); | 
|---|
| 421 |  | 
|---|
| 422 | fMat[kMPersp0] = fMat[kMPersp1] = 0; | 
|---|
| 423 | fMat[kMPersp2] = 1; | 
|---|
| 424 |  | 
|---|
| 425 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 426 | return *this; | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | SkMatrix& SkMatrix::setRSXform(const SkRSXform& xform) { | 
|---|
| 430 | fMat[kMScaleX]  = xform.fSCos; | 
|---|
| 431 | fMat[kMSkewX]   = -xform.fSSin; | 
|---|
| 432 | fMat[kMTransX]  = xform.fTx; | 
|---|
| 433 |  | 
|---|
| 434 | fMat[kMSkewY]   = xform.fSSin; | 
|---|
| 435 | fMat[kMScaleY]  = xform.fSCos; | 
|---|
| 436 | fMat[kMTransY]  = xform.fTy; | 
|---|
| 437 |  | 
|---|
| 438 | fMat[kMPersp0] = fMat[kMPersp1] = 0; | 
|---|
| 439 | fMat[kMPersp2] = 1; | 
|---|
| 440 |  | 
|---|
| 441 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 442 | return *this; | 
|---|
| 443 | } | 
|---|
| 444 |  | 
|---|
| 445 | SkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) { | 
|---|
| 446 | fMat[kMScaleX]  = cosV; | 
|---|
| 447 | fMat[kMSkewX]   = -sinV; | 
|---|
| 448 | fMat[kMTransX]  = 0; | 
|---|
| 449 |  | 
|---|
| 450 | fMat[kMSkewY]   = sinV; | 
|---|
| 451 | fMat[kMScaleY]  = cosV; | 
|---|
| 452 | fMat[kMTransY]  = 0; | 
|---|
| 453 |  | 
|---|
| 454 | fMat[kMPersp0] = fMat[kMPersp1] = 0; | 
|---|
| 455 | fMat[kMPersp2] = 1; | 
|---|
| 456 |  | 
|---|
| 457 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 458 | return *this; | 
|---|
| 459 | } | 
|---|
| 460 |  | 
|---|
| 461 | SkMatrix& SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) { | 
|---|
| 462 | SkScalar rad = SkDegreesToRadians(degrees); | 
|---|
| 463 | return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad), px, py); | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | SkMatrix& SkMatrix::setRotate(SkScalar degrees) { | 
|---|
| 467 | SkScalar rad = SkDegreesToRadians(degrees); | 
|---|
| 468 | return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad)); | 
|---|
| 469 | } | 
|---|
| 470 |  | 
|---|
| 471 | SkMatrix& SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) { | 
|---|
| 472 | SkMatrix    m; | 
|---|
| 473 | m.setRotate(degrees, px, py); | 
|---|
| 474 | return this->preConcat(m); | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | SkMatrix& SkMatrix::preRotate(SkScalar degrees) { | 
|---|
| 478 | SkMatrix    m; | 
|---|
| 479 | m.setRotate(degrees); | 
|---|
| 480 | return this->preConcat(m); | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | SkMatrix& SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) { | 
|---|
| 484 | SkMatrix    m; | 
|---|
| 485 | m.setRotate(degrees, px, py); | 
|---|
| 486 | return this->postConcat(m); | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | SkMatrix& SkMatrix::postRotate(SkScalar degrees) { | 
|---|
| 490 | SkMatrix    m; | 
|---|
| 491 | m.setRotate(degrees); | 
|---|
| 492 | return this->postConcat(m); | 
|---|
| 493 | } | 
|---|
| 494 |  | 
|---|
| 495 | //////////////////////////////////////////////////////////////////////////////////// | 
|---|
| 496 |  | 
|---|
| 497 | SkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 498 | *this = SkMatrix(1,  sx, -sx * py, | 
|---|
| 499 | sy, 1,  -sy * px, | 
|---|
| 500 | 0,  0,  1, | 
|---|
| 501 | kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 502 | return *this; | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | SkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy) { | 
|---|
| 506 | fMat[kMScaleX]  = 1; | 
|---|
| 507 | fMat[kMSkewX]   = sx; | 
|---|
| 508 | fMat[kMTransX]  = 0; | 
|---|
| 509 |  | 
|---|
| 510 | fMat[kMSkewY]   = sy; | 
|---|
| 511 | fMat[kMScaleY]  = 1; | 
|---|
| 512 | fMat[kMTransY]  = 0; | 
|---|
| 513 |  | 
|---|
| 514 | fMat[kMPersp0] = fMat[kMPersp1] = 0; | 
|---|
| 515 | fMat[kMPersp2] = 1; | 
|---|
| 516 |  | 
|---|
| 517 | this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 518 | return *this; | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 | SkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 522 | SkMatrix    m; | 
|---|
| 523 | m.setSkew(sx, sy, px, py); | 
|---|
| 524 | return this->preConcat(m); | 
|---|
| 525 | } | 
|---|
| 526 |  | 
|---|
| 527 | SkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy) { | 
|---|
| 528 | SkMatrix    m; | 
|---|
| 529 | m.setSkew(sx, sy); | 
|---|
| 530 | return this->preConcat(m); | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | SkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) { | 
|---|
| 534 | SkMatrix    m; | 
|---|
| 535 | m.setSkew(sx, sy, px, py); | 
|---|
| 536 | return this->postConcat(m); | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 | SkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy) { | 
|---|
| 540 | SkMatrix    m; | 
|---|
| 541 | m.setSkew(sx, sy); | 
|---|
| 542 | return this->postConcat(m); | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 546 |  | 
|---|
| 547 | bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit align) { | 
|---|
| 548 | if (src.isEmpty()) { | 
|---|
| 549 | this->reset(); | 
|---|
| 550 | return false; | 
|---|
| 551 | } | 
|---|
| 552 |  | 
|---|
| 553 | if (dst.isEmpty()) { | 
|---|
| 554 | sk_bzero(fMat, 8 * sizeof(SkScalar)); | 
|---|
| 555 | fMat[kMPersp2] = 1; | 
|---|
| 556 | this->setTypeMask(kScale_Mask | kRectStaysRect_Mask); | 
|---|
| 557 | } else { | 
|---|
| 558 | SkScalar    tx, sx = dst.width() / src.width(); | 
|---|
| 559 | SkScalar    ty, sy = dst.height() / src.height(); | 
|---|
| 560 | bool        xLarger = false; | 
|---|
| 561 |  | 
|---|
| 562 | if (align != kFill_ScaleToFit) { | 
|---|
| 563 | if (sx > sy) { | 
|---|
| 564 | xLarger = true; | 
|---|
| 565 | sx = sy; | 
|---|
| 566 | } else { | 
|---|
| 567 | sy = sx; | 
|---|
| 568 | } | 
|---|
| 569 | } | 
|---|
| 570 |  | 
|---|
| 571 | tx = dst.fLeft - src.fLeft * sx; | 
|---|
| 572 | ty = dst.fTop - src.fTop * sy; | 
|---|
| 573 | if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) { | 
|---|
| 574 | SkScalar diff; | 
|---|
| 575 |  | 
|---|
| 576 | if (xLarger) { | 
|---|
| 577 | diff = dst.width() - src.width() * sy; | 
|---|
| 578 | } else { | 
|---|
| 579 | diff = dst.height() - src.height() * sy; | 
|---|
| 580 | } | 
|---|
| 581 |  | 
|---|
| 582 | if (align == kCenter_ScaleToFit) { | 
|---|
| 583 | diff = SkScalarHalf(diff); | 
|---|
| 584 | } | 
|---|
| 585 |  | 
|---|
| 586 | if (xLarger) { | 
|---|
| 587 | tx += diff; | 
|---|
| 588 | } else { | 
|---|
| 589 | ty += diff; | 
|---|
| 590 | } | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | this->setScaleTranslate(sx, sy, tx, ty); | 
|---|
| 594 | } | 
|---|
| 595 | return true; | 
|---|
| 596 | } | 
|---|
| 597 |  | 
|---|
| 598 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 599 |  | 
|---|
| 600 | static inline float muladdmul(float a, float b, float c, float d) { | 
|---|
| 601 | return sk_double_to_float((double)a * b + (double)c * d); | 
|---|
| 602 | } | 
|---|
| 603 |  | 
|---|
| 604 | static inline float rowcol3(const float row[], const float col[]) { | 
|---|
| 605 | return row[0] * col[0] + row[1] * col[3] + row[2] * col[6]; | 
|---|
| 606 | } | 
|---|
| 607 |  | 
|---|
| 608 | static bool only_scale_and_translate(unsigned mask) { | 
|---|
| 609 | return 0 == (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)); | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 | SkMatrix& SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) { | 
|---|
| 613 | TypeMask aType = a.getType(); | 
|---|
| 614 | TypeMask bType = b.getType(); | 
|---|
| 615 |  | 
|---|
| 616 | if (a.isTriviallyIdentity()) { | 
|---|
| 617 | *this = b; | 
|---|
| 618 | } else if (b.isTriviallyIdentity()) { | 
|---|
| 619 | *this = a; | 
|---|
| 620 | } else if (only_scale_and_translate(aType | bType)) { | 
|---|
| 621 | this->setScaleTranslate(a.fMat[kMScaleX] * b.fMat[kMScaleX], | 
|---|
| 622 | a.fMat[kMScaleY] * b.fMat[kMScaleY], | 
|---|
| 623 | a.fMat[kMScaleX] * b.fMat[kMTransX] + a.fMat[kMTransX], | 
|---|
| 624 | a.fMat[kMScaleY] * b.fMat[kMTransY] + a.fMat[kMTransY]); | 
|---|
| 625 | } else { | 
|---|
| 626 | SkMatrix tmp; | 
|---|
| 627 |  | 
|---|
| 628 | if ((aType | bType) & kPerspective_Mask) { | 
|---|
| 629 | tmp.fMat[kMScaleX] = rowcol3(&a.fMat[0], &b.fMat[0]); | 
|---|
| 630 | tmp.fMat[kMSkewX]  = rowcol3(&a.fMat[0], &b.fMat[1]); | 
|---|
| 631 | tmp.fMat[kMTransX] = rowcol3(&a.fMat[0], &b.fMat[2]); | 
|---|
| 632 | tmp.fMat[kMSkewY]  = rowcol3(&a.fMat[3], &b.fMat[0]); | 
|---|
| 633 | tmp.fMat[kMScaleY] = rowcol3(&a.fMat[3], &b.fMat[1]); | 
|---|
| 634 | tmp.fMat[kMTransY] = rowcol3(&a.fMat[3], &b.fMat[2]); | 
|---|
| 635 | tmp.fMat[kMPersp0] = rowcol3(&a.fMat[6], &b.fMat[0]); | 
|---|
| 636 | tmp.fMat[kMPersp1] = rowcol3(&a.fMat[6], &b.fMat[1]); | 
|---|
| 637 | tmp.fMat[kMPersp2] = rowcol3(&a.fMat[6], &b.fMat[2]); | 
|---|
| 638 |  | 
|---|
| 639 | tmp.setTypeMask(kUnknown_Mask); | 
|---|
| 640 | } else { | 
|---|
| 641 | tmp.fMat[kMScaleX] = muladdmul(a.fMat[kMScaleX], | 
|---|
| 642 | b.fMat[kMScaleX], | 
|---|
| 643 | a.fMat[kMSkewX], | 
|---|
| 644 | b.fMat[kMSkewY]); | 
|---|
| 645 |  | 
|---|
| 646 | tmp.fMat[kMSkewX]  = muladdmul(a.fMat[kMScaleX], | 
|---|
| 647 | b.fMat[kMSkewX], | 
|---|
| 648 | a.fMat[kMSkewX], | 
|---|
| 649 | b.fMat[kMScaleY]); | 
|---|
| 650 |  | 
|---|
| 651 | tmp.fMat[kMTransX] = muladdmul(a.fMat[kMScaleX], | 
|---|
| 652 | b.fMat[kMTransX], | 
|---|
| 653 | a.fMat[kMSkewX], | 
|---|
| 654 | b.fMat[kMTransY]) + a.fMat[kMTransX]; | 
|---|
| 655 |  | 
|---|
| 656 | tmp.fMat[kMSkewY]  = muladdmul(a.fMat[kMSkewY], | 
|---|
| 657 | b.fMat[kMScaleX], | 
|---|
| 658 | a.fMat[kMScaleY], | 
|---|
| 659 | b.fMat[kMSkewY]); | 
|---|
| 660 |  | 
|---|
| 661 | tmp.fMat[kMScaleY] = muladdmul(a.fMat[kMSkewY], | 
|---|
| 662 | b.fMat[kMSkewX], | 
|---|
| 663 | a.fMat[kMScaleY], | 
|---|
| 664 | b.fMat[kMScaleY]); | 
|---|
| 665 |  | 
|---|
| 666 | tmp.fMat[kMTransY] = muladdmul(a.fMat[kMSkewY], | 
|---|
| 667 | b.fMat[kMTransX], | 
|---|
| 668 | a.fMat[kMScaleY], | 
|---|
| 669 | b.fMat[kMTransY]) + a.fMat[kMTransY]; | 
|---|
| 670 |  | 
|---|
| 671 | tmp.fMat[kMPersp0] = 0; | 
|---|
| 672 | tmp.fMat[kMPersp1] = 0; | 
|---|
| 673 | tmp.fMat[kMPersp2] = 1; | 
|---|
| 674 | //SkDebugf("Concat mat non-persp type: %d\n", tmp.getType()); | 
|---|
| 675 | //SkASSERT(!(tmp.getType() & kPerspective_Mask)); | 
|---|
| 676 | tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); | 
|---|
| 677 | } | 
|---|
| 678 | *this = tmp; | 
|---|
| 679 | } | 
|---|
| 680 | return *this; | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | SkMatrix& SkMatrix::preConcat(const SkMatrix& mat) { | 
|---|
| 684 | // check for identity first, so we don't do a needless copy of ourselves | 
|---|
| 685 | // to ourselves inside setConcat() | 
|---|
| 686 | if(!mat.isIdentity()) { | 
|---|
| 687 | this->setConcat(*this, mat); | 
|---|
| 688 | } | 
|---|
| 689 | return *this; | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | SkMatrix& SkMatrix::postConcat(const SkMatrix& mat) { | 
|---|
| 693 | // check for identity first, so we don't do a needless copy of ourselves | 
|---|
| 694 | // to ourselves inside setConcat() | 
|---|
| 695 | if (!mat.isIdentity()) { | 
|---|
| 696 | this->setConcat(mat, *this); | 
|---|
| 697 | } | 
|---|
| 698 | return *this; | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 702 |  | 
|---|
| 703 | /*  Matrix inversion is very expensive, but also the place where keeping | 
|---|
| 704 | precision may be most important (here and matrix concat). Hence to avoid | 
|---|
| 705 | bitmap blitting artifacts when walking the inverse, we use doubles for | 
|---|
| 706 | the intermediate math, even though we know that is more expensive. | 
|---|
| 707 | */ | 
|---|
| 708 |  | 
|---|
| 709 | static inline SkScalar scross_dscale(SkScalar a, SkScalar b, | 
|---|
| 710 | SkScalar c, SkScalar d, double scale) { | 
|---|
| 711 | return SkDoubleToScalar(scross(a, b, c, d) * scale); | 
|---|
| 712 | } | 
|---|
| 713 |  | 
|---|
| 714 | static inline double dcross(double a, double b, double c, double d) { | 
|---|
| 715 | return a * b - c * d; | 
|---|
| 716 | } | 
|---|
| 717 |  | 
|---|
| 718 | static inline SkScalar dcross_dscale(double a, double b, | 
|---|
| 719 | double c, double d, double scale) { | 
|---|
| 720 | return SkDoubleToScalar(dcross(a, b, c, d) * scale); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | static double sk_inv_determinant(const float mat[9], int isPerspective) { | 
|---|
| 724 | double det; | 
|---|
| 725 |  | 
|---|
| 726 | if (isPerspective) { | 
|---|
| 727 | det = mat[SkMatrix::kMScaleX] * | 
|---|
| 728 | dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], | 
|---|
| 729 | mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]) | 
|---|
| 730 | + | 
|---|
| 731 | mat[SkMatrix::kMSkewX]  * | 
|---|
| 732 | dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], | 
|---|
| 733 | mat[SkMatrix::kMSkewY],  mat[SkMatrix::kMPersp2]) | 
|---|
| 734 | + | 
|---|
| 735 | mat[SkMatrix::kMTransX] * | 
|---|
| 736 | dcross(mat[SkMatrix::kMSkewY],  mat[SkMatrix::kMPersp1], | 
|---|
| 737 | mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]); | 
|---|
| 738 | } else { | 
|---|
| 739 | det = dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY], | 
|---|
| 740 | mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]); | 
|---|
| 741 | } | 
|---|
| 742 |  | 
|---|
| 743 | // Since the determinant is on the order of the cube of the matrix members, | 
|---|
| 744 | // compare to the cube of the default nearly-zero constant (although an | 
|---|
| 745 | // estimate of the condition number would be better if it wasn't so expensive). | 
|---|
| 746 | if (SkScalarNearlyZero(sk_double_to_float(det), | 
|---|
| 747 | SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { | 
|---|
| 748 | return 0; | 
|---|
| 749 | } | 
|---|
| 750 | return 1.0 / det; | 
|---|
| 751 | } | 
|---|
| 752 |  | 
|---|
| 753 | void SkMatrix::SetAffineIdentity(SkScalar affine[6]) { | 
|---|
| 754 | affine[kAScaleX] = 1; | 
|---|
| 755 | affine[kASkewY] = 0; | 
|---|
| 756 | affine[kASkewX] = 0; | 
|---|
| 757 | affine[kAScaleY] = 1; | 
|---|
| 758 | affine[kATransX] = 0; | 
|---|
| 759 | affine[kATransY] = 0; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | bool SkMatrix::asAffine(SkScalar affine[6]) const { | 
|---|
| 763 | if (this->hasPerspective()) { | 
|---|
| 764 | return false; | 
|---|
| 765 | } | 
|---|
| 766 | if (affine) { | 
|---|
| 767 | affine[kAScaleX] = this->fMat[kMScaleX]; | 
|---|
| 768 | affine[kASkewY] = this->fMat[kMSkewY]; | 
|---|
| 769 | affine[kASkewX] = this->fMat[kMSkewX]; | 
|---|
| 770 | affine[kAScaleY] = this->fMat[kMScaleY]; | 
|---|
| 771 | affine[kATransX] = this->fMat[kMTransX]; | 
|---|
| 772 | affine[kATransY] = this->fMat[kMTransY]; | 
|---|
| 773 | } | 
|---|
| 774 | return true; | 
|---|
| 775 | } | 
|---|
| 776 |  | 
|---|
| 777 | void SkMatrix::mapPoints(SkPoint dst[], const SkPoint src[], int count) const { | 
|---|
| 778 | SkASSERT((dst && src && count > 0) || 0 == count); | 
|---|
| 779 | // no partial overlap | 
|---|
| 780 | SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]); | 
|---|
| 781 | this->getMapPtsProc()(*this, dst, src, count); | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 | void SkMatrix::mapXY(SkScalar x, SkScalar y, SkPoint* result) const { | 
|---|
| 785 | SkASSERT(result); | 
|---|
| 786 | this->getMapXYProc()(*this, x, y, result); | 
|---|
| 787 | } | 
|---|
| 788 |  | 
|---|
| 789 | void SkMatrix::ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp) { | 
|---|
| 790 | SkASSERT(src != dst); | 
|---|
| 791 | SkASSERT(src && dst); | 
|---|
| 792 |  | 
|---|
| 793 | if (isPersp) { | 
|---|
| 794 | dst[kMScaleX] = scross_dscale(src[kMScaleY], src[kMPersp2], src[kMTransY], src[kMPersp1], invDet); | 
|---|
| 795 | dst[kMSkewX]  = scross_dscale(src[kMTransX], src[kMPersp1], src[kMSkewX],  src[kMPersp2], invDet); | 
|---|
| 796 | dst[kMTransX] = scross_dscale(src[kMSkewX],  src[kMTransY], src[kMTransX], src[kMScaleY], invDet); | 
|---|
| 797 |  | 
|---|
| 798 | dst[kMSkewY]  = scross_dscale(src[kMTransY], src[kMPersp0], src[kMSkewY],  src[kMPersp2], invDet); | 
|---|
| 799 | dst[kMScaleY] = scross_dscale(src[kMScaleX], src[kMPersp2], src[kMTransX], src[kMPersp0], invDet); | 
|---|
| 800 | dst[kMTransY] = scross_dscale(src[kMTransX], src[kMSkewY],  src[kMScaleX], src[kMTransY], invDet); | 
|---|
| 801 |  | 
|---|
| 802 | dst[kMPersp0] = scross_dscale(src[kMSkewY],  src[kMPersp1], src[kMScaleY], src[kMPersp0], invDet); | 
|---|
| 803 | dst[kMPersp1] = scross_dscale(src[kMSkewX],  src[kMPersp0], src[kMScaleX], src[kMPersp1], invDet); | 
|---|
| 804 | dst[kMPersp2] = scross_dscale(src[kMScaleX], src[kMScaleY], src[kMSkewX],  src[kMSkewY],  invDet); | 
|---|
| 805 | } else {   // not perspective | 
|---|
| 806 | dst[kMScaleX] = SkDoubleToScalar(src[kMScaleY] * invDet); | 
|---|
| 807 | dst[kMSkewX]  = SkDoubleToScalar(-src[kMSkewX] * invDet); | 
|---|
| 808 | dst[kMTransX] = dcross_dscale(src[kMSkewX], src[kMTransY], src[kMScaleY], src[kMTransX], invDet); | 
|---|
| 809 |  | 
|---|
| 810 | dst[kMSkewY]  = SkDoubleToScalar(-src[kMSkewY] * invDet); | 
|---|
| 811 | dst[kMScaleY] = SkDoubleToScalar(src[kMScaleX] * invDet); | 
|---|
| 812 | dst[kMTransY] = dcross_dscale(src[kMSkewY], src[kMTransX], src[kMScaleX], src[kMTransY], invDet); | 
|---|
| 813 |  | 
|---|
| 814 | dst[kMPersp0] = 0; | 
|---|
| 815 | dst[kMPersp1] = 0; | 
|---|
| 816 | dst[kMPersp2] = 1; | 
|---|
| 817 | } | 
|---|
| 818 | } | 
|---|
| 819 |  | 
|---|
| 820 | bool SkMatrix::invertNonIdentity(SkMatrix* inv) const { | 
|---|
| 821 | SkASSERT(!this->isIdentity()); | 
|---|
| 822 |  | 
|---|
| 823 | TypeMask mask = this->getType(); | 
|---|
| 824 |  | 
|---|
| 825 | if (0 == (mask & ~(kScale_Mask | kTranslate_Mask))) { | 
|---|
| 826 | bool invertible = true; | 
|---|
| 827 | if (inv) { | 
|---|
| 828 | if (mask & kScale_Mask) { | 
|---|
| 829 | SkScalar invX = fMat[kMScaleX]; | 
|---|
| 830 | SkScalar invY = fMat[kMScaleY]; | 
|---|
| 831 | if (0 == invX || 0 == invY) { | 
|---|
| 832 | return false; | 
|---|
| 833 | } | 
|---|
| 834 | invX = SkScalarInvert(invX); | 
|---|
| 835 | invY = SkScalarInvert(invY); | 
|---|
| 836 |  | 
|---|
| 837 | // Must be careful when writing to inv, since it may be the | 
|---|
| 838 | // same memory as this. | 
|---|
| 839 |  | 
|---|
| 840 | inv->fMat[kMSkewX] = inv->fMat[kMSkewY] = | 
|---|
| 841 | inv->fMat[kMPersp0] = inv->fMat[kMPersp1] = 0; | 
|---|
| 842 |  | 
|---|
| 843 | inv->fMat[kMScaleX] = invX; | 
|---|
| 844 | inv->fMat[kMScaleY] = invY; | 
|---|
| 845 | inv->fMat[kMPersp2] = 1; | 
|---|
| 846 | inv->fMat[kMTransX] = -fMat[kMTransX] * invX; | 
|---|
| 847 | inv->fMat[kMTransY] = -fMat[kMTransY] * invY; | 
|---|
| 848 |  | 
|---|
| 849 | inv->setTypeMask(mask | kRectStaysRect_Mask); | 
|---|
| 850 | } else { | 
|---|
| 851 | // translate only | 
|---|
| 852 | inv->setTranslate(-fMat[kMTransX], -fMat[kMTransY]); | 
|---|
| 853 | } | 
|---|
| 854 | } else {    // inv is nullptr, just check if we're invertible | 
|---|
| 855 | if (!fMat[kMScaleX] || !fMat[kMScaleY]) { | 
|---|
| 856 | invertible = false; | 
|---|
| 857 | } | 
|---|
| 858 | } | 
|---|
| 859 | return invertible; | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 | int    isPersp = mask & kPerspective_Mask; | 
|---|
| 863 | double invDet = sk_inv_determinant(fMat, isPersp); | 
|---|
| 864 |  | 
|---|
| 865 | if (invDet == 0) { // underflow | 
|---|
| 866 | return false; | 
|---|
| 867 | } | 
|---|
| 868 |  | 
|---|
| 869 | bool applyingInPlace = (inv == this); | 
|---|
| 870 |  | 
|---|
| 871 | SkMatrix* tmp = inv; | 
|---|
| 872 |  | 
|---|
| 873 | SkMatrix storage; | 
|---|
| 874 | if (applyingInPlace || nullptr == tmp) { | 
|---|
| 875 | tmp = &storage;     // we either need to avoid trampling memory or have no memory | 
|---|
| 876 | } | 
|---|
| 877 |  | 
|---|
| 878 | ComputeInv(tmp->fMat, fMat, invDet, isPersp); | 
|---|
| 879 | if (!tmp->isFinite()) { | 
|---|
| 880 | return false; | 
|---|
| 881 | } | 
|---|
| 882 |  | 
|---|
| 883 | tmp->setTypeMask(fTypeMask); | 
|---|
| 884 |  | 
|---|
| 885 | if (applyingInPlace) { | 
|---|
| 886 | *inv = storage; // need to copy answer back | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | return true; | 
|---|
| 890 | } | 
|---|
| 891 |  | 
|---|
| 892 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 893 |  | 
|---|
| 894 | void SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { | 
|---|
| 895 | SkASSERT(m.getType() == 0); | 
|---|
| 896 |  | 
|---|
| 897 | if (dst != src && count > 0) { | 
|---|
| 898 | memcpy(dst, src, count * sizeof(SkPoint)); | 
|---|
| 899 | } | 
|---|
| 900 | } | 
|---|
| 901 |  | 
|---|
| 902 | void SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { | 
|---|
| 903 | SkASSERT(m.getType() <= SkMatrix::kTranslate_Mask); | 
|---|
| 904 | if (count > 0) { | 
|---|
| 905 | SkScalar tx = m.getTranslateX(); | 
|---|
| 906 | SkScalar ty = m.getTranslateY(); | 
|---|
| 907 | if (count & 1) { | 
|---|
| 908 | dst->fX = src->fX + tx; | 
|---|
| 909 | dst->fY = src->fY + ty; | 
|---|
| 910 | src += 1; | 
|---|
| 911 | dst += 1; | 
|---|
| 912 | } | 
|---|
| 913 | Sk4s trans4(tx, ty, tx, ty); | 
|---|
| 914 | count >>= 1; | 
|---|
| 915 | if (count & 1) { | 
|---|
| 916 | (Sk4s::Load(src) + trans4).store(dst); | 
|---|
| 917 | src += 2; | 
|---|
| 918 | dst += 2; | 
|---|
| 919 | } | 
|---|
| 920 | count >>= 1; | 
|---|
| 921 | for (int i = 0; i < count; ++i) { | 
|---|
| 922 | (Sk4s::Load(src+0) + trans4).store(dst+0); | 
|---|
| 923 | (Sk4s::Load(src+2) + trans4).store(dst+2); | 
|---|
| 924 | src += 4; | 
|---|
| 925 | dst += 4; | 
|---|
| 926 | } | 
|---|
| 927 | } | 
|---|
| 928 | } | 
|---|
| 929 |  | 
|---|
| 930 | void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { | 
|---|
| 931 | SkASSERT(m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)); | 
|---|
| 932 | if (count > 0) { | 
|---|
| 933 | SkScalar tx = m.getTranslateX(); | 
|---|
| 934 | SkScalar ty = m.getTranslateY(); | 
|---|
| 935 | SkScalar sx = m.getScaleX(); | 
|---|
| 936 | SkScalar sy = m.getScaleY(); | 
|---|
| 937 | if (count & 1) { | 
|---|
| 938 | dst->fX = src->fX * sx + tx; | 
|---|
| 939 | dst->fY = src->fY * sy + ty; | 
|---|
| 940 | src += 1; | 
|---|
| 941 | dst += 1; | 
|---|
| 942 | } | 
|---|
| 943 | Sk4s trans4(tx, ty, tx, ty); | 
|---|
| 944 | Sk4s scale4(sx, sy, sx, sy); | 
|---|
| 945 | count >>= 1; | 
|---|
| 946 | if (count & 1) { | 
|---|
| 947 | (Sk4s::Load(src) * scale4 + trans4).store(dst); | 
|---|
| 948 | src += 2; | 
|---|
| 949 | dst += 2; | 
|---|
| 950 | } | 
|---|
| 951 | count >>= 1; | 
|---|
| 952 | for (int i = 0; i < count; ++i) { | 
|---|
| 953 | (Sk4s::Load(src+0) * scale4 + trans4).store(dst+0); | 
|---|
| 954 | (Sk4s::Load(src+2) * scale4 + trans4).store(dst+2); | 
|---|
| 955 | src += 4; | 
|---|
| 956 | dst += 4; | 
|---|
| 957 | } | 
|---|
| 958 | } | 
|---|
| 959 | } | 
|---|
| 960 |  | 
|---|
| 961 | void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[], | 
|---|
| 962 | const SkPoint src[], int count) { | 
|---|
| 963 | SkASSERT(m.hasPerspective()); | 
|---|
| 964 |  | 
|---|
| 965 | if (count > 0) { | 
|---|
| 966 | do { | 
|---|
| 967 | SkScalar sy = src->fY; | 
|---|
| 968 | SkScalar sx = src->fX; | 
|---|
| 969 | src += 1; | 
|---|
| 970 |  | 
|---|
| 971 | SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX]; | 
|---|
| 972 | SkScalar y = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; | 
|---|
| 973 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER | 
|---|
| 974 | SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]); | 
|---|
| 975 | #else | 
|---|
| 976 | SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; | 
|---|
| 977 | #endif | 
|---|
| 978 | if (z) { | 
|---|
| 979 | z = 1 / z; | 
|---|
| 980 | } | 
|---|
| 981 |  | 
|---|
| 982 | dst->fY = y * z; | 
|---|
| 983 | dst->fX = x * z; | 
|---|
| 984 | dst += 1; | 
|---|
| 985 | } while (--count); | 
|---|
| 986 | } | 
|---|
| 987 | } | 
|---|
| 988 |  | 
|---|
| 989 | void SkMatrix::Affine_vpts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) { | 
|---|
| 990 | SkASSERT(m.getType() != SkMatrix::kPerspective_Mask); | 
|---|
| 991 | if (count > 0) { | 
|---|
| 992 | SkScalar tx = m.getTranslateX(); | 
|---|
| 993 | SkScalar ty = m.getTranslateY(); | 
|---|
| 994 | SkScalar sx = m.getScaleX(); | 
|---|
| 995 | SkScalar sy = m.getScaleY(); | 
|---|
| 996 | SkScalar kx = m.getSkewX(); | 
|---|
| 997 | SkScalar ky = m.getSkewY(); | 
|---|
| 998 | if (count & 1) { | 
|---|
| 999 | dst->set(src->fX * sx + src->fY * kx + tx, | 
|---|
| 1000 | src->fX * ky + src->fY * sy + ty); | 
|---|
| 1001 | src += 1; | 
|---|
| 1002 | dst += 1; | 
|---|
| 1003 | } | 
|---|
| 1004 | Sk4s trans4(tx, ty, tx, ty); | 
|---|
| 1005 | Sk4s scale4(sx, sy, sx, sy); | 
|---|
| 1006 | Sk4s  skew4(kx, ky, kx, ky);    // applied to swizzle of src4 | 
|---|
| 1007 | count >>= 1; | 
|---|
| 1008 | for (int i = 0; i < count; ++i) { | 
|---|
| 1009 | Sk4s src4 = Sk4s::Load(src); | 
|---|
| 1010 | Sk4s swz4 = SkNx_shuffle<1,0,3,2>(src4);  // y0 x0, y1 x1 | 
|---|
| 1011 | (src4 * scale4 + swz4 * skew4 + trans4).store(dst); | 
|---|
| 1012 | src += 2; | 
|---|
| 1013 | dst += 2; | 
|---|
| 1014 | } | 
|---|
| 1015 | } | 
|---|
| 1016 | } | 
|---|
| 1017 |  | 
|---|
| 1018 | const SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = { | 
|---|
| 1019 | SkMatrix::Identity_pts, SkMatrix::Trans_pts, | 
|---|
| 1020 | SkMatrix::Scale_pts,    SkMatrix::Scale_pts, | 
|---|
| 1021 | SkMatrix::Affine_vpts,  SkMatrix::Affine_vpts, | 
|---|
| 1022 | SkMatrix::Affine_vpts,  SkMatrix::Affine_vpts, | 
|---|
| 1023 | // repeat the persp proc 8 times | 
|---|
| 1024 | SkMatrix::Persp_pts,    SkMatrix::Persp_pts, | 
|---|
| 1025 | SkMatrix::Persp_pts,    SkMatrix::Persp_pts, | 
|---|
| 1026 | SkMatrix::Persp_pts,    SkMatrix::Persp_pts, | 
|---|
| 1027 | SkMatrix::Persp_pts,    SkMatrix::Persp_pts | 
|---|
| 1028 | }; | 
|---|
| 1029 |  | 
|---|
| 1030 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1031 |  | 
|---|
| 1032 | void SkMatrixPriv::MapHomogeneousPointsWithStride(const SkMatrix& mx, SkPoint3 dst[], | 
|---|
| 1033 | size_t dstStride, const SkPoint3 src[], | 
|---|
| 1034 | size_t srcStride, int count) { | 
|---|
| 1035 | SkASSERT((dst && src && count > 0) || 0 == count); | 
|---|
| 1036 | // no partial overlap | 
|---|
| 1037 | SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]); | 
|---|
| 1038 |  | 
|---|
| 1039 | if (count > 0) { | 
|---|
| 1040 | if (mx.isIdentity()) { | 
|---|
| 1041 | if (src != dst) { | 
|---|
| 1042 | if (srcStride == sizeof(SkPoint3) && dstStride == sizeof(SkPoint3)) { | 
|---|
| 1043 | memcpy(dst, src, count * sizeof(SkPoint3)); | 
|---|
| 1044 | } else { | 
|---|
| 1045 | for (int i = 0; i < count; ++i) { | 
|---|
| 1046 | *dst = *src; | 
|---|
| 1047 | dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride); | 
|---|
| 1048 | src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) + | 
|---|
| 1049 | srcStride); | 
|---|
| 1050 | } | 
|---|
| 1051 | } | 
|---|
| 1052 | } | 
|---|
| 1053 | return; | 
|---|
| 1054 | } | 
|---|
| 1055 | do { | 
|---|
| 1056 | SkScalar sx = src->fX; | 
|---|
| 1057 | SkScalar sy = src->fY; | 
|---|
| 1058 | SkScalar sw = src->fZ; | 
|---|
| 1059 | src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) + srcStride); | 
|---|
| 1060 | const SkScalar* mat = mx.fMat; | 
|---|
| 1061 | typedef SkMatrix M; | 
|---|
| 1062 | SkScalar x = sdot(sx, mat[M::kMScaleX], sy, mat[M::kMSkewX],  sw, mat[M::kMTransX]); | 
|---|
| 1063 | SkScalar y = sdot(sx, mat[M::kMSkewY],  sy, mat[M::kMScaleY], sw, mat[M::kMTransY]); | 
|---|
| 1064 | SkScalar w = sdot(sx, mat[M::kMPersp0], sy, mat[M::kMPersp1], sw, mat[M::kMPersp2]); | 
|---|
| 1065 |  | 
|---|
| 1066 | dst->set(x, y, w); | 
|---|
| 1067 | dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride); | 
|---|
| 1068 | } while (--count); | 
|---|
| 1069 | } | 
|---|
| 1070 | } | 
|---|
| 1071 |  | 
|---|
| 1072 | void SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const { | 
|---|
| 1073 | SkMatrixPriv::MapHomogeneousPointsWithStride(*this, dst, sizeof(SkPoint3), src, | 
|---|
| 1074 | sizeof(SkPoint3), count); | 
|---|
| 1075 | } | 
|---|
| 1076 |  | 
|---|
| 1077 | void SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const { | 
|---|
| 1078 | if (this->isIdentity()) { | 
|---|
| 1079 | for (int i = 0; i < count; ++i) { | 
|---|
| 1080 | dst[i] = { src[i].fX, src[i].fY, 1 }; | 
|---|
| 1081 | } | 
|---|
| 1082 | } else if (this->hasPerspective()) { | 
|---|
| 1083 | for (int i = 0; i < count; ++i) { | 
|---|
| 1084 | dst[i] = { | 
|---|
| 1085 | fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2], | 
|---|
| 1086 | fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5], | 
|---|
| 1087 | fMat[6] * src[i].fX + fMat[7] * src[i].fY + fMat[8], | 
|---|
| 1088 | }; | 
|---|
| 1089 | } | 
|---|
| 1090 | } else {    // affine | 
|---|
| 1091 | for (int i = 0; i < count; ++i) { | 
|---|
| 1092 | dst[i] = { | 
|---|
| 1093 | fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2], | 
|---|
| 1094 | fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5], | 
|---|
| 1095 | 1, | 
|---|
| 1096 | }; | 
|---|
| 1097 | } | 
|---|
| 1098 | } | 
|---|
| 1099 | } | 
|---|
| 1100 |  | 
|---|
| 1101 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1102 |  | 
|---|
| 1103 | void SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const { | 
|---|
| 1104 | if (this->hasPerspective()) { | 
|---|
| 1105 | SkPoint origin; | 
|---|
| 1106 |  | 
|---|
| 1107 | MapXYProc proc = this->getMapXYProc(); | 
|---|
| 1108 | proc(*this, 0, 0, &origin); | 
|---|
| 1109 |  | 
|---|
| 1110 | for (int i = count - 1; i >= 0; --i) { | 
|---|
| 1111 | SkPoint tmp; | 
|---|
| 1112 |  | 
|---|
| 1113 | proc(*this, src[i].fX, src[i].fY, &tmp); | 
|---|
| 1114 | dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY); | 
|---|
| 1115 | } | 
|---|
| 1116 | } else { | 
|---|
| 1117 | SkMatrix tmp = *this; | 
|---|
| 1118 |  | 
|---|
| 1119 | tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0; | 
|---|
| 1120 | tmp.clearTypeMask(kTranslate_Mask); | 
|---|
| 1121 | tmp.mapPoints(dst, src, count); | 
|---|
| 1122 | } | 
|---|
| 1123 | } | 
|---|
| 1124 |  | 
|---|
| 1125 | static Sk4f sort_as_rect(const Sk4f& ltrb) { | 
|---|
| 1126 | Sk4f rblt(ltrb[2], ltrb[3], ltrb[0], ltrb[1]); | 
|---|
| 1127 | Sk4f min = Sk4f::Min(ltrb, rblt); | 
|---|
| 1128 | Sk4f max = Sk4f::Max(ltrb, rblt); | 
|---|
| 1129 | // We can extract either pair [0,1] or [2,3] from min and max and be correct, but on | 
|---|
| 1130 | // ARM this sequence generates the fastest (a single instruction). | 
|---|
| 1131 | return Sk4f(min[2], min[3], max[0], max[1]); | 
|---|
| 1132 | } | 
|---|
| 1133 |  | 
|---|
| 1134 | void SkMatrix::mapRectScaleTranslate(SkRect* dst, const SkRect& src) const { | 
|---|
| 1135 | SkASSERT(dst); | 
|---|
| 1136 | SkASSERT(this->isScaleTranslate()); | 
|---|
| 1137 |  | 
|---|
| 1138 | SkScalar sx = fMat[kMScaleX]; | 
|---|
| 1139 | SkScalar sy = fMat[kMScaleY]; | 
|---|
| 1140 | SkScalar tx = fMat[kMTransX]; | 
|---|
| 1141 | SkScalar ty = fMat[kMTransY]; | 
|---|
| 1142 | Sk4f scale(sx, sy, sx, sy); | 
|---|
| 1143 | Sk4f trans(tx, ty, tx, ty); | 
|---|
| 1144 | sort_as_rect(Sk4f::Load(&src.fLeft) * scale + trans).store(&dst->fLeft); | 
|---|
| 1145 | } | 
|---|
| 1146 |  | 
|---|
| 1147 | bool SkMatrix::mapRect(SkRect* dst, const SkRect& src, SkApplyPerspectiveClip pc) const { | 
|---|
| 1148 | SkASSERT(dst); | 
|---|
| 1149 |  | 
|---|
| 1150 | if (this->getType() <= kTranslate_Mask) { | 
|---|
| 1151 | SkScalar tx = fMat[kMTransX]; | 
|---|
| 1152 | SkScalar ty = fMat[kMTransY]; | 
|---|
| 1153 | Sk4f trans(tx, ty, tx, ty); | 
|---|
| 1154 | sort_as_rect(Sk4f::Load(&src.fLeft) + trans).store(&dst->fLeft); | 
|---|
| 1155 | return true; | 
|---|
| 1156 | } | 
|---|
| 1157 | if (this->isScaleTranslate()) { | 
|---|
| 1158 | this->mapRectScaleTranslate(dst, src); | 
|---|
| 1159 | return true; | 
|---|
| 1160 | } else if (pc == SkApplyPerspectiveClip::kYes && this->hasPerspective()) { | 
|---|
| 1161 | SkPath path; | 
|---|
| 1162 | path.addRect(src); | 
|---|
| 1163 | path.transform(*this); | 
|---|
| 1164 | *dst = path.getBounds(); | 
|---|
| 1165 | return false; | 
|---|
| 1166 | } else { | 
|---|
| 1167 | SkPoint quad[4]; | 
|---|
| 1168 |  | 
|---|
| 1169 | src.toQuad(quad); | 
|---|
| 1170 | this->mapPoints(quad, quad, 4); | 
|---|
| 1171 | dst->setBoundsNoCheck(quad, 4); | 
|---|
| 1172 | return this->rectStaysRect();   // might still return true if rotated by 90, etc. | 
|---|
| 1173 | } | 
|---|
| 1174 | } | 
|---|
| 1175 |  | 
|---|
| 1176 | SkScalar SkMatrix::mapRadius(SkScalar radius) const { | 
|---|
| 1177 | SkVector    vec[2]; | 
|---|
| 1178 |  | 
|---|
| 1179 | vec[0].set(radius, 0); | 
|---|
| 1180 | vec[1].set(0, radius); | 
|---|
| 1181 | this->mapVectors(vec, 2); | 
|---|
| 1182 |  | 
|---|
| 1183 | SkScalar d0 = vec[0].length(); | 
|---|
| 1184 | SkScalar d1 = vec[1].length(); | 
|---|
| 1185 |  | 
|---|
| 1186 | // return geometric mean | 
|---|
| 1187 | return SkScalarSqrt(d0 * d1); | 
|---|
| 1188 | } | 
|---|
| 1189 |  | 
|---|
| 1190 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1191 |  | 
|---|
| 1192 | void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1193 | SkPoint* pt) { | 
|---|
| 1194 | SkASSERT(m.hasPerspective()); | 
|---|
| 1195 |  | 
|---|
| 1196 | SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX]; | 
|---|
| 1197 | SkScalar y = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; | 
|---|
| 1198 | SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2]; | 
|---|
| 1199 | if (z) { | 
|---|
| 1200 | z = 1 / z; | 
|---|
| 1201 | } | 
|---|
| 1202 | pt->fX = x * z; | 
|---|
| 1203 | pt->fY = y * z; | 
|---|
| 1204 | } | 
|---|
| 1205 |  | 
|---|
| 1206 | void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1207 | SkPoint* pt) { | 
|---|
| 1208 | SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask); | 
|---|
| 1209 |  | 
|---|
| 1210 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER | 
|---|
| 1211 | pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX]  +  m.fMat[kMTransX]); | 
|---|
| 1212 | pt->fY = sx * m.fMat[kMSkewY]  + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); | 
|---|
| 1213 | #else | 
|---|
| 1214 | pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX]; | 
|---|
| 1215 | pt->fY = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; | 
|---|
| 1216 | #endif | 
|---|
| 1217 | } | 
|---|
| 1218 |  | 
|---|
| 1219 | void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1220 | SkPoint* pt) { | 
|---|
| 1221 | SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask); | 
|---|
| 1222 | SkASSERT(0 == m.fMat[kMTransX]); | 
|---|
| 1223 | SkASSERT(0 == m.fMat[kMTransY]); | 
|---|
| 1224 |  | 
|---|
| 1225 | #ifdef SK_LEGACY_MATRIX_MATH_ORDER | 
|---|
| 1226 | pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX]  + m.fMat[kMTransX]); | 
|---|
| 1227 | pt->fY = sx * m.fMat[kMSkewY]  + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]); | 
|---|
| 1228 | #else | 
|---|
| 1229 | pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX]; | 
|---|
| 1230 | pt->fY = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY]; | 
|---|
| 1231 | #endif | 
|---|
| 1232 | } | 
|---|
| 1233 |  | 
|---|
| 1234 | void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1235 | SkPoint* pt) { | 
|---|
| 1236 | SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) | 
|---|
| 1237 | == kScale_Mask); | 
|---|
| 1238 |  | 
|---|
| 1239 | pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX]; | 
|---|
| 1240 | pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY]; | 
|---|
| 1241 | } | 
|---|
| 1242 |  | 
|---|
| 1243 | void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1244 | SkPoint* pt) { | 
|---|
| 1245 | SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask)) | 
|---|
| 1246 | == kScale_Mask); | 
|---|
| 1247 | SkASSERT(0 == m.fMat[kMTransX]); | 
|---|
| 1248 | SkASSERT(0 == m.fMat[kMTransY]); | 
|---|
| 1249 |  | 
|---|
| 1250 | pt->fX = sx * m.fMat[kMScaleX]; | 
|---|
| 1251 | pt->fY = sy * m.fMat[kMScaleY]; | 
|---|
| 1252 | } | 
|---|
| 1253 |  | 
|---|
| 1254 | void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1255 | SkPoint* pt) { | 
|---|
| 1256 | SkASSERT(m.getType() == kTranslate_Mask); | 
|---|
| 1257 |  | 
|---|
| 1258 | pt->fX = sx + m.fMat[kMTransX]; | 
|---|
| 1259 | pt->fY = sy + m.fMat[kMTransY]; | 
|---|
| 1260 | } | 
|---|
| 1261 |  | 
|---|
| 1262 | void SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy, | 
|---|
| 1263 | SkPoint* pt) { | 
|---|
| 1264 | SkASSERT(0 == m.getType()); | 
|---|
| 1265 |  | 
|---|
| 1266 | pt->fX = sx; | 
|---|
| 1267 | pt->fY = sy; | 
|---|
| 1268 | } | 
|---|
| 1269 |  | 
|---|
| 1270 | const SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = { | 
|---|
| 1271 | SkMatrix::Identity_xy, SkMatrix::Trans_xy, | 
|---|
| 1272 | SkMatrix::Scale_xy,    SkMatrix::ScaleTrans_xy, | 
|---|
| 1273 | SkMatrix::Rot_xy,      SkMatrix::RotTrans_xy, | 
|---|
| 1274 | SkMatrix::Rot_xy,      SkMatrix::RotTrans_xy, | 
|---|
| 1275 | // repeat the persp proc 8 times | 
|---|
| 1276 | SkMatrix::Persp_xy,    SkMatrix::Persp_xy, | 
|---|
| 1277 | SkMatrix::Persp_xy,    SkMatrix::Persp_xy, | 
|---|
| 1278 | SkMatrix::Persp_xy,    SkMatrix::Persp_xy, | 
|---|
| 1279 | SkMatrix::Persp_xy,    SkMatrix::Persp_xy | 
|---|
| 1280 | }; | 
|---|
| 1281 |  | 
|---|
| 1282 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1283 | #if 0 | 
|---|
| 1284 | // if its nearly zero (just made up 26, perhaps it should be bigger or smaller) | 
|---|
| 1285 | #define PerspNearlyZero(x)  SkScalarNearlyZero(x, (1.0f / (1 << 26))) | 
|---|
| 1286 |  | 
|---|
| 1287 | bool SkMatrix::isFixedStepInX() const { | 
|---|
| 1288 | return PerspNearlyZero(fMat[kMPersp0]); | 
|---|
| 1289 | } | 
|---|
| 1290 |  | 
|---|
| 1291 | SkVector SkMatrix::fixedStepInX(SkScalar y) const { | 
|---|
| 1292 | SkASSERT(PerspNearlyZero(fMat[kMPersp0])); | 
|---|
| 1293 | if (PerspNearlyZero(fMat[kMPersp1]) && | 
|---|
| 1294 | PerspNearlyZero(fMat[kMPersp2] - 1)) { | 
|---|
| 1295 | return SkVector::Make(fMat[kMScaleX], fMat[kMSkewY]); | 
|---|
| 1296 | } else { | 
|---|
| 1297 | SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2]; | 
|---|
| 1298 | return SkVector::Make(fMat[kMScaleX] / z, fMat[kMSkewY] / z); | 
|---|
| 1299 | } | 
|---|
| 1300 | } | 
|---|
| 1301 | #endif | 
|---|
| 1302 |  | 
|---|
| 1303 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1304 |  | 
|---|
| 1305 | static inline bool checkForZero(float x) { | 
|---|
| 1306 | return x*x == 0; | 
|---|
| 1307 | } | 
|---|
| 1308 |  | 
|---|
| 1309 | bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst) { | 
|---|
| 1310 | dst->fMat[kMScaleX] = srcPt[1].fY - srcPt[0].fY; | 
|---|
| 1311 | dst->fMat[kMSkewY]  = srcPt[0].fX - srcPt[1].fX; | 
|---|
| 1312 | dst->fMat[kMPersp0] = 0; | 
|---|
| 1313 |  | 
|---|
| 1314 | dst->fMat[kMSkewX]  = srcPt[1].fX - srcPt[0].fX; | 
|---|
| 1315 | dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY; | 
|---|
| 1316 | dst->fMat[kMPersp1] = 0; | 
|---|
| 1317 |  | 
|---|
| 1318 | dst->fMat[kMTransX] = srcPt[0].fX; | 
|---|
| 1319 | dst->fMat[kMTransY] = srcPt[0].fY; | 
|---|
| 1320 | dst->fMat[kMPersp2] = 1; | 
|---|
| 1321 | dst->setTypeMask(kUnknown_Mask); | 
|---|
| 1322 | return true; | 
|---|
| 1323 | } | 
|---|
| 1324 |  | 
|---|
| 1325 | bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst) { | 
|---|
| 1326 | dst->fMat[kMScaleX] = srcPt[2].fX - srcPt[0].fX; | 
|---|
| 1327 | dst->fMat[kMSkewY]  = srcPt[2].fY - srcPt[0].fY; | 
|---|
| 1328 | dst->fMat[kMPersp0] = 0; | 
|---|
| 1329 |  | 
|---|
| 1330 | dst->fMat[kMSkewX]  = srcPt[1].fX - srcPt[0].fX; | 
|---|
| 1331 | dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY; | 
|---|
| 1332 | dst->fMat[kMPersp1] = 0; | 
|---|
| 1333 |  | 
|---|
| 1334 | dst->fMat[kMTransX] = srcPt[0].fX; | 
|---|
| 1335 | dst->fMat[kMTransY] = srcPt[0].fY; | 
|---|
| 1336 | dst->fMat[kMPersp2] = 1; | 
|---|
| 1337 | dst->setTypeMask(kUnknown_Mask); | 
|---|
| 1338 | return true; | 
|---|
| 1339 | } | 
|---|
| 1340 |  | 
|---|
| 1341 | bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst) { | 
|---|
| 1342 | float   a1, a2; | 
|---|
| 1343 | float   x0, y0, x1, y1, x2, y2; | 
|---|
| 1344 |  | 
|---|
| 1345 | x0 = srcPt[2].fX - srcPt[0].fX; | 
|---|
| 1346 | y0 = srcPt[2].fY - srcPt[0].fY; | 
|---|
| 1347 | x1 = srcPt[2].fX - srcPt[1].fX; | 
|---|
| 1348 | y1 = srcPt[2].fY - srcPt[1].fY; | 
|---|
| 1349 | x2 = srcPt[2].fX - srcPt[3].fX; | 
|---|
| 1350 | y2 = srcPt[2].fY - srcPt[3].fY; | 
|---|
| 1351 |  | 
|---|
| 1352 | /* check if abs(x2) > abs(y2) */ | 
|---|
| 1353 | if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) { | 
|---|
| 1354 | float denom = sk_ieee_float_divide(x1 * y2, x2) - y1; | 
|---|
| 1355 | if (checkForZero(denom)) { | 
|---|
| 1356 | return false; | 
|---|
| 1357 | } | 
|---|
| 1358 | a1 = (((x0 - x1) * y2 / x2) - y0 + y1) / denom; | 
|---|
| 1359 | } else { | 
|---|
| 1360 | float denom = x1 - sk_ieee_float_divide(y1 * x2, y2); | 
|---|
| 1361 | if (checkForZero(denom)) { | 
|---|
| 1362 | return false; | 
|---|
| 1363 | } | 
|---|
| 1364 | a1 = (x0 - x1 - sk_ieee_float_divide((y0 - y1) * x2, y2)) / denom; | 
|---|
| 1365 | } | 
|---|
| 1366 |  | 
|---|
| 1367 | /* check if abs(x1) > abs(y1) */ | 
|---|
| 1368 | if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) { | 
|---|
| 1369 | float denom = y2 - sk_ieee_float_divide(x2 * y1, x1); | 
|---|
| 1370 | if (checkForZero(denom)) { | 
|---|
| 1371 | return false; | 
|---|
| 1372 | } | 
|---|
| 1373 | a2 = (y0 - y2 - sk_ieee_float_divide((x0 - x2) * y1, x1)) / denom; | 
|---|
| 1374 | } else { | 
|---|
| 1375 | float denom = sk_ieee_float_divide(y2 * x1, y1) - x2; | 
|---|
| 1376 | if (checkForZero(denom)) { | 
|---|
| 1377 | return false; | 
|---|
| 1378 | } | 
|---|
| 1379 | a2 = (sk_ieee_float_divide((y0 - y2) * x1, y1) - x0 + x2) / denom; | 
|---|
| 1380 | } | 
|---|
| 1381 |  | 
|---|
| 1382 | dst->fMat[kMScaleX] = a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX; | 
|---|
| 1383 | dst->fMat[kMSkewY]  = a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY; | 
|---|
| 1384 | dst->fMat[kMPersp0] = a2; | 
|---|
| 1385 |  | 
|---|
| 1386 | dst->fMat[kMSkewX]  = a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX; | 
|---|
| 1387 | dst->fMat[kMScaleY] = a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY; | 
|---|
| 1388 | dst->fMat[kMPersp1] = a1; | 
|---|
| 1389 |  | 
|---|
| 1390 | dst->fMat[kMTransX] = srcPt[0].fX; | 
|---|
| 1391 | dst->fMat[kMTransY] = srcPt[0].fY; | 
|---|
| 1392 | dst->fMat[kMPersp2] = 1; | 
|---|
| 1393 | dst->setTypeMask(kUnknown_Mask); | 
|---|
| 1394 | return true; | 
|---|
| 1395 | } | 
|---|
| 1396 |  | 
|---|
| 1397 | typedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*); | 
|---|
| 1398 |  | 
|---|
| 1399 | /*  Adapted from Rob Johnson's original sample code in QuickDraw GX | 
|---|
| 1400 | */ | 
|---|
| 1401 | bool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count) { | 
|---|
| 1402 | if ((unsigned)count > 4) { | 
|---|
| 1403 | SkDebugf( "--- SkMatrix::setPolyToPoly count out of range %d\n", count); | 
|---|
| 1404 | return false; | 
|---|
| 1405 | } | 
|---|
| 1406 |  | 
|---|
| 1407 | if (0 == count) { | 
|---|
| 1408 | this->reset(); | 
|---|
| 1409 | return true; | 
|---|
| 1410 | } | 
|---|
| 1411 | if (1 == count) { | 
|---|
| 1412 | this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY); | 
|---|
| 1413 | return true; | 
|---|
| 1414 | } | 
|---|
| 1415 |  | 
|---|
| 1416 | const PolyMapProc gPolyMapProcs[] = { | 
|---|
| 1417 | SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc | 
|---|
| 1418 | }; | 
|---|
| 1419 | PolyMapProc proc = gPolyMapProcs[count - 2]; | 
|---|
| 1420 |  | 
|---|
| 1421 | SkMatrix tempMap, result; | 
|---|
| 1422 |  | 
|---|
| 1423 | if (!proc(src, &tempMap)) { | 
|---|
| 1424 | return false; | 
|---|
| 1425 | } | 
|---|
| 1426 | if (!tempMap.invert(&result)) { | 
|---|
| 1427 | return false; | 
|---|
| 1428 | } | 
|---|
| 1429 | if (!proc(dst, &tempMap)) { | 
|---|
| 1430 | return false; | 
|---|
| 1431 | } | 
|---|
| 1432 | this->setConcat(tempMap, result); | 
|---|
| 1433 | return true; | 
|---|
| 1434 | } | 
|---|
| 1435 |  | 
|---|
| 1436 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1437 |  | 
|---|
| 1438 | enum MinMaxOrBoth { | 
|---|
| 1439 | kMin_MinMaxOrBoth, | 
|---|
| 1440 | kMax_MinMaxOrBoth, | 
|---|
| 1441 | kBoth_MinMaxOrBoth | 
|---|
| 1442 | }; | 
|---|
| 1443 |  | 
|---|
| 1444 | template <MinMaxOrBoth MIN_MAX_OR_BOTH> bool get_scale_factor(SkMatrix::TypeMask typeMask, | 
|---|
| 1445 | const SkScalar m[9], | 
|---|
| 1446 | SkScalar results[/*1 or 2*/]) { | 
|---|
| 1447 | if (typeMask & SkMatrix::kPerspective_Mask) { | 
|---|
| 1448 | return false; | 
|---|
| 1449 | } | 
|---|
| 1450 | if (SkMatrix::kIdentity_Mask == typeMask) { | 
|---|
| 1451 | results[0] = SK_Scalar1; | 
|---|
| 1452 | if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1453 | results[1] = SK_Scalar1; | 
|---|
| 1454 | } | 
|---|
| 1455 | return true; | 
|---|
| 1456 | } | 
|---|
| 1457 | if (!(typeMask & SkMatrix::kAffine_Mask)) { | 
|---|
| 1458 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1459 | results[0] = std::min(SkScalarAbs(m[SkMatrix::kMScaleX]), | 
|---|
| 1460 | SkScalarAbs(m[SkMatrix::kMScaleY])); | 
|---|
| 1461 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1462 | results[0] = std::max(SkScalarAbs(m[SkMatrix::kMScaleX]), | 
|---|
| 1463 | SkScalarAbs(m[SkMatrix::kMScaleY])); | 
|---|
| 1464 | } else { | 
|---|
| 1465 | results[0] = SkScalarAbs(m[SkMatrix::kMScaleX]); | 
|---|
| 1466 | results[1] = SkScalarAbs(m[SkMatrix::kMScaleY]); | 
|---|
| 1467 | if (results[0] > results[1]) { | 
|---|
| 1468 | using std::swap; | 
|---|
| 1469 | swap(results[0], results[1]); | 
|---|
| 1470 | } | 
|---|
| 1471 | } | 
|---|
| 1472 | return true; | 
|---|
| 1473 | } | 
|---|
| 1474 | // ignore the translation part of the matrix, just look at 2x2 portion. | 
|---|
| 1475 | // compute singular values, take largest or smallest abs value. | 
|---|
| 1476 | // [a b; b c] = A^T*A | 
|---|
| 1477 | SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX], | 
|---|
| 1478 | m[SkMatrix::kMSkewY],  m[SkMatrix::kMSkewY]); | 
|---|
| 1479 | SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX], | 
|---|
| 1480 | m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]); | 
|---|
| 1481 | SkScalar c = sdot(m[SkMatrix::kMSkewX],  m[SkMatrix::kMSkewX], | 
|---|
| 1482 | m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]); | 
|---|
| 1483 | // eigenvalues of A^T*A are the squared singular values of A. | 
|---|
| 1484 | // characteristic equation is det((A^T*A) - l*I) = 0 | 
|---|
| 1485 | // l^2 - (a + c)l + (ac-b^2) | 
|---|
| 1486 | // solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff | 
|---|
| 1487 | // and roots are guaranteed to be pos and real). | 
|---|
| 1488 | SkScalar bSqd = b * b; | 
|---|
| 1489 | // if upper left 2x2 is orthogonal save some math | 
|---|
| 1490 | if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { | 
|---|
| 1491 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1492 | results[0] = std::min(a, c); | 
|---|
| 1493 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1494 | results[0] = std::max(a, c); | 
|---|
| 1495 | } else { | 
|---|
| 1496 | results[0] = a; | 
|---|
| 1497 | results[1] = c; | 
|---|
| 1498 | if (results[0] > results[1]) { | 
|---|
| 1499 | using std::swap; | 
|---|
| 1500 | swap(results[0], results[1]); | 
|---|
| 1501 | } | 
|---|
| 1502 | } | 
|---|
| 1503 | } else { | 
|---|
| 1504 | SkScalar aminusc = a - c; | 
|---|
| 1505 | SkScalar apluscdiv2 = SkScalarHalf(a + c); | 
|---|
| 1506 | SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd)); | 
|---|
| 1507 | if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1508 | results[0] = apluscdiv2 - x; | 
|---|
| 1509 | } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1510 | results[0] = apluscdiv2 + x; | 
|---|
| 1511 | } else { | 
|---|
| 1512 | results[0] = apluscdiv2 - x; | 
|---|
| 1513 | results[1] = apluscdiv2 + x; | 
|---|
| 1514 | } | 
|---|
| 1515 | } | 
|---|
| 1516 | if (!SkScalarIsFinite(results[0])) { | 
|---|
| 1517 | return false; | 
|---|
| 1518 | } | 
|---|
| 1519 | // Due to the floating point inaccuracy, there might be an error in a, b, c | 
|---|
| 1520 | // calculated by sdot, further deepened by subsequent arithmetic operations | 
|---|
| 1521 | // on them. Therefore, we allow and cap the nearly-zero negative values. | 
|---|
| 1522 | SkASSERT(results[0] >= -SK_ScalarNearlyZero); | 
|---|
| 1523 | if (results[0] < 0) { | 
|---|
| 1524 | results[0] = 0; | 
|---|
| 1525 | } | 
|---|
| 1526 | results[0] = SkScalarSqrt(results[0]); | 
|---|
| 1527 | if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) { | 
|---|
| 1528 | if (!SkScalarIsFinite(results[1])) { | 
|---|
| 1529 | return false; | 
|---|
| 1530 | } | 
|---|
| 1531 | SkASSERT(results[1] >= -SK_ScalarNearlyZero); | 
|---|
| 1532 | if (results[1] < 0) { | 
|---|
| 1533 | results[1] = 0; | 
|---|
| 1534 | } | 
|---|
| 1535 | results[1] = SkScalarSqrt(results[1]); | 
|---|
| 1536 | } | 
|---|
| 1537 | return true; | 
|---|
| 1538 | } | 
|---|
| 1539 |  | 
|---|
| 1540 | SkScalar SkMatrix::getMinScale() const { | 
|---|
| 1541 | SkScalar factor; | 
|---|
| 1542 | if (get_scale_factor<kMin_MinMaxOrBoth>(this->getType(), fMat, &factor)) { | 
|---|
| 1543 | return factor; | 
|---|
| 1544 | } else { | 
|---|
| 1545 | return -1; | 
|---|
| 1546 | } | 
|---|
| 1547 | } | 
|---|
| 1548 |  | 
|---|
| 1549 | SkScalar SkMatrix::getMaxScale() const { | 
|---|
| 1550 | SkScalar factor; | 
|---|
| 1551 | if (get_scale_factor<kMax_MinMaxOrBoth>(this->getType(), fMat, &factor)) { | 
|---|
| 1552 | return factor; | 
|---|
| 1553 | } else { | 
|---|
| 1554 | return -1; | 
|---|
| 1555 | } | 
|---|
| 1556 | } | 
|---|
| 1557 |  | 
|---|
| 1558 | bool SkMatrix::getMinMaxScales(SkScalar scaleFactors[2]) const { | 
|---|
| 1559 | return get_scale_factor<kBoth_MinMaxOrBoth>(this->getType(), fMat, scaleFactors); | 
|---|
| 1560 | } | 
|---|
| 1561 |  | 
|---|
| 1562 | const SkMatrix& SkMatrix::I() { | 
|---|
| 1563 | static constexpr SkMatrix identity; | 
|---|
| 1564 | SkASSERT(identity.isIdentity()); | 
|---|
| 1565 | return identity; | 
|---|
| 1566 | } | 
|---|
| 1567 |  | 
|---|
| 1568 | const SkMatrix& SkMatrix::InvalidMatrix() { | 
|---|
| 1569 | static constexpr SkMatrix invalid(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, | 
|---|
| 1570 | SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, | 
|---|
| 1571 | SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, | 
|---|
| 1572 | kTranslate_Mask | kScale_Mask | | 
|---|
| 1573 | kAffine_Mask | kPerspective_Mask); | 
|---|
| 1574 | return invalid; | 
|---|
| 1575 | } | 
|---|
| 1576 |  | 
|---|
| 1577 | bool SkMatrix::decomposeScale(SkSize* scale, SkMatrix* remaining) const { | 
|---|
| 1578 | if (this->hasPerspective()) { | 
|---|
| 1579 | return false; | 
|---|
| 1580 | } | 
|---|
| 1581 |  | 
|---|
| 1582 | const SkScalar sx = SkVector::Length(this->getScaleX(), this->getSkewY()); | 
|---|
| 1583 | const SkScalar sy = SkVector::Length(this->getSkewX(), this->getScaleY()); | 
|---|
| 1584 | if (!SkScalarIsFinite(sx) || !SkScalarIsFinite(sy) || | 
|---|
| 1585 | SkScalarNearlyZero(sx) || SkScalarNearlyZero(sy)) { | 
|---|
| 1586 | return false; | 
|---|
| 1587 | } | 
|---|
| 1588 |  | 
|---|
| 1589 | if (scale) { | 
|---|
| 1590 | scale->set(sx, sy); | 
|---|
| 1591 | } | 
|---|
| 1592 | if (remaining) { | 
|---|
| 1593 | *remaining = *this; | 
|---|
| 1594 | remaining->preScale(SkScalarInvert(sx), SkScalarInvert(sy)); | 
|---|
| 1595 | } | 
|---|
| 1596 | return true; | 
|---|
| 1597 | } | 
|---|
| 1598 |  | 
|---|
| 1599 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1600 |  | 
|---|
| 1601 | size_t SkMatrix::writeToMemory(void* buffer) const { | 
|---|
| 1602 | // TODO write less for simple matrices | 
|---|
| 1603 | static const size_t sizeInMemory = 9 * sizeof(SkScalar); | 
|---|
| 1604 | if (buffer) { | 
|---|
| 1605 | memcpy(buffer, fMat, sizeInMemory); | 
|---|
| 1606 | } | 
|---|
| 1607 | return sizeInMemory; | 
|---|
| 1608 | } | 
|---|
| 1609 |  | 
|---|
| 1610 | size_t SkMatrix::readFromMemory(const void* buffer, size_t length) { | 
|---|
| 1611 | static const size_t sizeInMemory = 9 * sizeof(SkScalar); | 
|---|
| 1612 | if (length < sizeInMemory) { | 
|---|
| 1613 | return 0; | 
|---|
| 1614 | } | 
|---|
| 1615 | memcpy(fMat, buffer, sizeInMemory); | 
|---|
| 1616 | this->setTypeMask(kUnknown_Mask); | 
|---|
| 1617 | return sizeInMemory; | 
|---|
| 1618 | } | 
|---|
| 1619 |  | 
|---|
| 1620 | void SkMatrix::dump() const { | 
|---|
| 1621 | SkString str; | 
|---|
| 1622 | str.appendf( "[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]", | 
|---|
| 1623 | fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5], | 
|---|
| 1624 | fMat[6], fMat[7], fMat[8]); | 
|---|
| 1625 | SkDebugf( "%s\n", str.c_str()); | 
|---|
| 1626 | } | 
|---|
| 1627 |  | 
|---|
| 1628 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1629 |  | 
|---|
| 1630 | #include "src/core/SkMatrixUtils.h" | 
|---|
| 1631 |  | 
|---|
| 1632 | bool SkTreatAsSprite(const SkMatrix& mat, const SkISize& size, const SkPaint& paint) { | 
|---|
| 1633 | // Our path aa is 2-bits, and our rect aa is 8, so we could use 8, | 
|---|
| 1634 | // but in practice 4 seems enough (still looks smooth) and allows | 
|---|
| 1635 | // more slightly fractional cases to fall into the fast (sprite) case. | 
|---|
| 1636 | static const unsigned kAntiAliasSubpixelBits = 4; | 
|---|
| 1637 |  | 
|---|
| 1638 | const unsigned subpixelBits = paint.isAntiAlias() ? kAntiAliasSubpixelBits : 0; | 
|---|
| 1639 |  | 
|---|
| 1640 | // quick reject on affine or perspective | 
|---|
| 1641 | if (mat.getType() & ~(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) { | 
|---|
| 1642 | return false; | 
|---|
| 1643 | } | 
|---|
| 1644 |  | 
|---|
| 1645 | // quick success check | 
|---|
| 1646 | if (!subpixelBits && !(mat.getType() & ~SkMatrix::kTranslate_Mask)) { | 
|---|
| 1647 | return true; | 
|---|
| 1648 | } | 
|---|
| 1649 |  | 
|---|
| 1650 | // mapRect supports negative scales, so we eliminate those first | 
|---|
| 1651 | if (mat.getScaleX() < 0 || mat.getScaleY() < 0) { | 
|---|
| 1652 | return false; | 
|---|
| 1653 | } | 
|---|
| 1654 |  | 
|---|
| 1655 | SkRect dst; | 
|---|
| 1656 | SkIRect isrc = SkIRect::MakeSize(size); | 
|---|
| 1657 |  | 
|---|
| 1658 | { | 
|---|
| 1659 | SkRect src; | 
|---|
| 1660 | src.set(isrc); | 
|---|
| 1661 | mat.mapRect(&dst, src); | 
|---|
| 1662 | } | 
|---|
| 1663 |  | 
|---|
| 1664 | // just apply the translate to isrc | 
|---|
| 1665 | isrc.offset(SkScalarRoundToInt(mat.getTranslateX()), | 
|---|
| 1666 | SkScalarRoundToInt(mat.getTranslateY())); | 
|---|
| 1667 |  | 
|---|
| 1668 | if (subpixelBits) { | 
|---|
| 1669 | isrc.fLeft = SkLeftShift(isrc.fLeft, subpixelBits); | 
|---|
| 1670 | isrc.fTop = SkLeftShift(isrc.fTop, subpixelBits); | 
|---|
| 1671 | isrc.fRight = SkLeftShift(isrc.fRight, subpixelBits); | 
|---|
| 1672 | isrc.fBottom = SkLeftShift(isrc.fBottom, subpixelBits); | 
|---|
| 1673 |  | 
|---|
| 1674 | const float scale = 1 << subpixelBits; | 
|---|
| 1675 | dst.fLeft *= scale; | 
|---|
| 1676 | dst.fTop *= scale; | 
|---|
| 1677 | dst.fRight *= scale; | 
|---|
| 1678 | dst.fBottom *= scale; | 
|---|
| 1679 | } | 
|---|
| 1680 |  | 
|---|
| 1681 | SkIRect idst; | 
|---|
| 1682 | dst.round(&idst); | 
|---|
| 1683 | return isrc == idst; | 
|---|
| 1684 | } | 
|---|
| 1685 |  | 
|---|
| 1686 | // A square matrix M can be decomposed (via polar decomposition) into two matrices -- | 
|---|
| 1687 | // an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T, | 
|---|
| 1688 | // where U is another orthogonal matrix and W is a scale matrix. These can be recombined | 
|---|
| 1689 | // to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix. | 
|---|
| 1690 | // | 
|---|
| 1691 | // The one wrinkle is that traditionally Q may contain a reflection -- the | 
|---|
| 1692 | // calculation has been rejiggered to put that reflection into W. | 
|---|
| 1693 | bool SkDecomposeUpper2x2(const SkMatrix& matrix, | 
|---|
| 1694 | SkPoint* rotation1, | 
|---|
| 1695 | SkPoint* scale, | 
|---|
| 1696 | SkPoint* rotation2) { | 
|---|
| 1697 |  | 
|---|
| 1698 | SkScalar A = matrix[SkMatrix::kMScaleX]; | 
|---|
| 1699 | SkScalar B = matrix[SkMatrix::kMSkewX]; | 
|---|
| 1700 | SkScalar C = matrix[SkMatrix::kMSkewY]; | 
|---|
| 1701 | SkScalar D = matrix[SkMatrix::kMScaleY]; | 
|---|
| 1702 |  | 
|---|
| 1703 | if (is_degenerate_2x2(A, B, C, D)) { | 
|---|
| 1704 | return false; | 
|---|
| 1705 | } | 
|---|
| 1706 |  | 
|---|
| 1707 | double w1, w2; | 
|---|
| 1708 | SkScalar cos1, sin1; | 
|---|
| 1709 | SkScalar cos2, sin2; | 
|---|
| 1710 |  | 
|---|
| 1711 | // do polar decomposition (M = Q*S) | 
|---|
| 1712 | SkScalar cosQ, sinQ; | 
|---|
| 1713 | double Sa, Sb, Sd; | 
|---|
| 1714 | // if M is already symmetric (i.e., M = I*S) | 
|---|
| 1715 | if (SkScalarNearlyEqual(B, C)) { | 
|---|
| 1716 | cosQ = 1; | 
|---|
| 1717 | sinQ = 0; | 
|---|
| 1718 |  | 
|---|
| 1719 | Sa = A; | 
|---|
| 1720 | Sb = B; | 
|---|
| 1721 | Sd = D; | 
|---|
| 1722 | } else { | 
|---|
| 1723 | cosQ = A + D; | 
|---|
| 1724 | sinQ = C - B; | 
|---|
| 1725 | SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ)); | 
|---|
| 1726 | cosQ *= reciplen; | 
|---|
| 1727 | sinQ *= reciplen; | 
|---|
| 1728 |  | 
|---|
| 1729 | // S = Q^-1*M | 
|---|
| 1730 | // we don't calc Sc since it's symmetric | 
|---|
| 1731 | Sa = A*cosQ + C*sinQ; | 
|---|
| 1732 | Sb = B*cosQ + D*sinQ; | 
|---|
| 1733 | Sd = -B*sinQ + D*cosQ; | 
|---|
| 1734 | } | 
|---|
| 1735 |  | 
|---|
| 1736 | // Now we need to compute eigenvalues of S (our scale factors) | 
|---|
| 1737 | // and eigenvectors (bases for our rotation) | 
|---|
| 1738 | // From this, should be able to reconstruct S as U*W*U^T | 
|---|
| 1739 | if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) { | 
|---|
| 1740 | // already diagonalized | 
|---|
| 1741 | cos1 = 1; | 
|---|
| 1742 | sin1 = 0; | 
|---|
| 1743 | w1 = Sa; | 
|---|
| 1744 | w2 = Sd; | 
|---|
| 1745 | cos2 = cosQ; | 
|---|
| 1746 | sin2 = sinQ; | 
|---|
| 1747 | } else { | 
|---|
| 1748 | double diff = Sa - Sd; | 
|---|
| 1749 | double discriminant = sqrt(diff*diff + 4.0*Sb*Sb); | 
|---|
| 1750 | double trace = Sa + Sd; | 
|---|
| 1751 | if (diff > 0) { | 
|---|
| 1752 | w1 = 0.5*(trace + discriminant); | 
|---|
| 1753 | w2 = 0.5*(trace - discriminant); | 
|---|
| 1754 | } else { | 
|---|
| 1755 | w1 = 0.5*(trace - discriminant); | 
|---|
| 1756 | w2 = 0.5*(trace + discriminant); | 
|---|
| 1757 | } | 
|---|
| 1758 |  | 
|---|
| 1759 | cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa); | 
|---|
| 1760 | SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1)); | 
|---|
| 1761 | cos1 *= reciplen; | 
|---|
| 1762 | sin1 *= reciplen; | 
|---|
| 1763 |  | 
|---|
| 1764 | // rotation 2 is composition of Q and U | 
|---|
| 1765 | cos2 = cos1*cosQ - sin1*sinQ; | 
|---|
| 1766 | sin2 = sin1*cosQ + cos1*sinQ; | 
|---|
| 1767 |  | 
|---|
| 1768 | // rotation 1 is U^T | 
|---|
| 1769 | sin1 = -sin1; | 
|---|
| 1770 | } | 
|---|
| 1771 |  | 
|---|
| 1772 | if (scale) { | 
|---|
| 1773 | scale->fX = SkDoubleToScalar(w1); | 
|---|
| 1774 | scale->fY = SkDoubleToScalar(w2); | 
|---|
| 1775 | } | 
|---|
| 1776 | if (rotation1) { | 
|---|
| 1777 | rotation1->fX = cos1; | 
|---|
| 1778 | rotation1->fY = sin1; | 
|---|
| 1779 | } | 
|---|
| 1780 | if (rotation2) { | 
|---|
| 1781 | rotation2->fX = cos2; | 
|---|
| 1782 | rotation2->fY = sin2; | 
|---|
| 1783 | } | 
|---|
| 1784 |  | 
|---|
| 1785 | return true; | 
|---|
| 1786 | } | 
|---|
| 1787 |  | 
|---|
| 1788 | ////////////////////////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1789 |  | 
|---|
| 1790 | void SkRSXform::toQuad(SkScalar width, SkScalar height, SkPoint quad[4]) const { | 
|---|
| 1791 | #if 0 | 
|---|
| 1792 | // This is the slow way, but it documents what we're doing | 
|---|
| 1793 | quad[0].set(0, 0); | 
|---|
| 1794 | quad[1].set(width, 0); | 
|---|
| 1795 | quad[2].set(width, height); | 
|---|
| 1796 | quad[3].set(0, height); | 
|---|
| 1797 | SkMatrix m; | 
|---|
| 1798 | m.setRSXform(*this).mapPoints(quad, quad, 4); | 
|---|
| 1799 | #else | 
|---|
| 1800 | const SkScalar m00 = fSCos; | 
|---|
| 1801 | const SkScalar m01 = -fSSin; | 
|---|
| 1802 | const SkScalar m02 = fTx; | 
|---|
| 1803 | const SkScalar m10 = -m01; | 
|---|
| 1804 | const SkScalar m11 = m00; | 
|---|
| 1805 | const SkScalar m12 = fTy; | 
|---|
| 1806 |  | 
|---|
| 1807 | quad[0].set(m02, m12); | 
|---|
| 1808 | quad[1].set(m00 * width + m02, m10 * width + m12); | 
|---|
| 1809 | quad[2].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12); | 
|---|
| 1810 | quad[3].set(m01 * height + m02, m11 * height + m12); | 
|---|
| 1811 | #endif | 
|---|
| 1812 | } | 
|---|
| 1813 |  | 
|---|
| 1814 | void SkRSXform::toTriStrip(SkScalar width, SkScalar height, SkPoint strip[4]) const { | 
|---|
| 1815 | const SkScalar m00 = fSCos; | 
|---|
| 1816 | const SkScalar m01 = -fSSin; | 
|---|
| 1817 | const SkScalar m02 = fTx; | 
|---|
| 1818 | const SkScalar m10 = -m01; | 
|---|
| 1819 | const SkScalar m11 = m00; | 
|---|
| 1820 | const SkScalar m12 = fTy; | 
|---|
| 1821 |  | 
|---|
| 1822 | strip[0].set(m02, m12); | 
|---|
| 1823 | strip[1].set(m01 * height + m02, m11 * height + m12); | 
|---|
| 1824 | strip[2].set(m00 * width + m02, m10 * width + m12); | 
|---|
| 1825 | strip[3].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12); | 
|---|
| 1826 | } | 
|---|
| 1827 |  | 
|---|
| 1828 | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|---|
| 1829 |  | 
|---|
| 1830 | SkFilterQuality SkMatrixPriv::AdjustHighQualityFilterLevel(const SkMatrix& matrix, | 
|---|
| 1831 | bool matrixIsInverse) { | 
|---|
| 1832 | if (matrix.isIdentity()) { | 
|---|
| 1833 | return kNone_SkFilterQuality; | 
|---|
| 1834 | } | 
|---|
| 1835 |  | 
|---|
| 1836 | auto is_minimizing = [&](SkScalar scale) { | 
|---|
| 1837 | return matrixIsInverse ? scale > 1 : scale < 1; | 
|---|
| 1838 | }; | 
|---|
| 1839 |  | 
|---|
| 1840 | SkScalar scales[2]; | 
|---|
| 1841 | if (!matrix.getMinMaxScales(scales) || is_minimizing(scales[0])) { | 
|---|
| 1842 | // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped | 
|---|
| 1843 | // entirely, | 
|---|
| 1844 | return kMedium_SkFilterQuality; | 
|---|
| 1845 | } | 
|---|
| 1846 |  | 
|---|
| 1847 | // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling. | 
|---|
| 1848 | if (scales[1] == SK_Scalar1) { | 
|---|
| 1849 | if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) && | 
|---|
| 1850 | SkScalarIsInt(matrix.getTranslateY())) { | 
|---|
| 1851 | return kNone_SkFilterQuality; | 
|---|
| 1852 | } else { | 
|---|
| 1853 | // Use bilerp to handle rotation or fractional translation. | 
|---|
| 1854 | return kLow_SkFilterQuality; | 
|---|
| 1855 | } | 
|---|
| 1856 | } | 
|---|
| 1857 |  | 
|---|
| 1858 | return kHigh_SkFilterQuality; | 
|---|
| 1859 | } | 
|---|
| 1860 |  | 
|---|