| 1 | /* |
| 2 | * Copyright 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkPath.h" |
| 9 | #include "include/core/SkRegion.h" |
| 10 | #include "include/private/SkTemplates.h" |
| 11 | #include "include/private/SkTo.h" |
| 12 | #include "src/core/SkAnalyticEdge.h" |
| 13 | #include "src/core/SkAntiRun.h" |
| 14 | #include "src/core/SkAutoMalloc.h" |
| 15 | #include "src/core/SkBlitter.h" |
| 16 | #include "src/core/SkEdge.h" |
| 17 | #include "src/core/SkEdgeBuilder.h" |
| 18 | #include "src/core/SkGeometry.h" |
| 19 | #include "src/core/SkQuadClipper.h" |
| 20 | #include "src/core/SkRasterClip.h" |
| 21 | #include "src/core/SkScan.h" |
| 22 | #include "src/core/SkScanPriv.h" |
| 23 | #include "src/core/SkTSort.h" |
| 24 | |
| 25 | #include <utility> |
| 26 | |
| 27 | #if defined(SK_DISABLE_AAA) |
| 28 | void SkScan::AAAFillPath(const SkPath&, SkBlitter*, const SkIRect&, const SkIRect&, bool) { |
| 29 | SkDEBUGFAIL("AAA Disabled" ); |
| 30 | return; |
| 31 | } |
| 32 | #else |
| 33 | |
| 34 | /* |
| 35 | |
| 36 | The following is a high-level overview of our analytic anti-aliasing |
| 37 | algorithm. We consider a path as a collection of line segments, as |
| 38 | quadratic/cubic curves are converted to small line segments. Without loss of |
| 39 | generality, let's assume that the draw region is [0, W] x [0, H]. |
| 40 | |
| 41 | Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
| 42 | sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
| 43 | scan lines, while the previous method always uses equal-spaced scan lines, |
| 44 | such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
| 45 | and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
| 46 | 16-supersampling AA algorithm. |
| 47 | |
| 48 | Our algorithm contains scan lines y = c_i for c_i that is either: |
| 49 | |
| 50 | 1. an integer between [0, H] |
| 51 | |
| 52 | 2. the y value of a line segment endpoint |
| 53 | |
| 54 | 3. the y value of an intersection of two line segments |
| 55 | |
| 56 | For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
| 57 | the coverage of this horizontal strip of our path on each pixel. This can be |
| 58 | done very efficiently because the strip of our path now only consists of |
| 59 | trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
| 60 | rectangles and triangles as special cases). |
| 61 | |
| 62 | We now describe how the coverage of single pixel is computed against such a |
| 63 | trapezoid. That coverage is essentially the intersection area of a rectangle |
| 64 | (e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
| 65 | could be complicated, as shown in the example region A below: |
| 66 | |
| 67 | +-----------\----+ |
| 68 | | \ C| |
| 69 | | \ | |
| 70 | \ \ | |
| 71 | |\ A \| |
| 72 | | \ \ |
| 73 | | \ | |
| 74 | | B \ | |
| 75 | +----\-----------+ |
| 76 | |
| 77 | However, we don't have to compute the area of A directly. Instead, we can |
| 78 | compute the excluded area, which are B and C, quite easily, because they're |
| 79 | just triangles. In fact, we can prove that an excluded region (take B as an |
| 80 | example) is either itself a simple trapezoid (including rectangles, triangles, |
| 81 | and empty regions), or its opposite (the opposite of B is A + C) is a simple |
| 82 | trapezoid. In any case, we can compute its area efficiently. |
| 83 | |
| 84 | In summary, our algorithm has a higher quality because it generates ground- |
| 85 | truth coverages analytically. It is also faster because it has much fewer |
| 86 | unnessasary horizontal scan lines. For example, given a triangle path, the |
| 87 | number of scan lines in our algorithm is only about 3 + H while the |
| 88 | 16-supersampling algorithm has about 4H scan lines. |
| 89 | |
| 90 | */ |
| 91 | |
| 92 | static void add_alpha(SkAlpha* alpha, SkAlpha delta) { |
| 93 | SkASSERT(*alpha + delta <= 256); |
| 94 | *alpha = SkAlphaRuns::CatchOverflow(*alpha + delta); |
| 95 | } |
| 96 | |
| 97 | static void safely_add_alpha(SkAlpha* alpha, SkAlpha delta) { |
| 98 | *alpha = std::min(0xFF, *alpha + delta); |
| 99 | } |
| 100 | |
| 101 | class AdditiveBlitter : public SkBlitter { |
| 102 | public: |
| 103 | ~AdditiveBlitter() override {} |
| 104 | |
| 105 | virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
| 106 | |
| 107 | virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0; |
| 108 | virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
| 109 | virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
| 110 | |
| 111 | void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { |
| 112 | SkDEBUGFAIL("Please call real blitter's blitAntiH instead." ); |
| 113 | } |
| 114 | |
| 115 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
| 116 | SkDEBUGFAIL("Please call real blitter's blitV instead." ); |
| 117 | } |
| 118 | |
| 119 | void blitH(int x, int y, int width) override { |
| 120 | SkDEBUGFAIL("Please call real blitter's blitH instead." ); |
| 121 | } |
| 122 | |
| 123 | void blitRect(int x, int y, int width, int height) override { |
| 124 | SkDEBUGFAIL("Please call real blitter's blitRect instead." ); |
| 125 | } |
| 126 | |
| 127 | void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
| 128 | override { |
| 129 | SkDEBUGFAIL("Please call real blitter's blitAntiRect instead." ); |
| 130 | } |
| 131 | |
| 132 | virtual int getWidth() = 0; |
| 133 | |
| 134 | // Flush the additive alpha cache if floor(y) and floor(nextY) is different |
| 135 | // (i.e., we'll start working on a new pixel row). |
| 136 | virtual void flush_if_y_changed(SkFixed y, SkFixed nextY) = 0; |
| 137 | }; |
| 138 | |
| 139 | // We need this mask blitter because it significantly accelerates small path filling. |
| 140 | class MaskAdditiveBlitter : public AdditiveBlitter { |
| 141 | public: |
| 142 | MaskAdditiveBlitter(SkBlitter* realBlitter, |
| 143 | const SkIRect& ir, |
| 144 | const SkIRect& clipBounds, |
| 145 | bool isInverse); |
| 146 | ~MaskAdditiveBlitter() override { fRealBlitter->blitMask(fMask, fClipRect); } |
| 147 | |
| 148 | // Most of the time, we still consider this mask blitter as the real blitter |
| 149 | // so we can accelerate blitRect and others. But sometimes we want to return |
| 150 | // the absolute real blitter (e.g., when we fall back to the old code path). |
| 151 | SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
| 152 | return forceRealBlitter ? fRealBlitter : this; |
| 153 | } |
| 154 | |
| 155 | // Virtual function is slow. So don't use this. Directly add alpha to the mask instead. |
| 156 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 157 | |
| 158 | // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges |
| 159 | // Since there aren't many rectangles, we can still bear the slow speed of virtual functions. |
| 160 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 161 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 162 | void blitV(int x, int y, int height, SkAlpha alpha) override; |
| 163 | void blitRect(int x, int y, int width, int height) override; |
| 164 | void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
| 165 | override; |
| 166 | |
| 167 | // The flush is only needed for RLE (RunBasedAdditiveBlitter) |
| 168 | void flush_if_y_changed(SkFixed y, SkFixed nextY) override {} |
| 169 | |
| 170 | int getWidth() override { return fClipRect.width(); } |
| 171 | |
| 172 | static bool CanHandleRect(const SkIRect& bounds) { |
| 173 | int width = bounds.width(); |
| 174 | if (width > MaskAdditiveBlitter::kMAX_WIDTH) { |
| 175 | return false; |
| 176 | } |
| 177 | int64_t rb = SkAlign4(width); |
| 178 | // use 64bits to detect overflow |
| 179 | int64_t storage = rb * bounds.height(); |
| 180 | |
| 181 | return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
| 182 | (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
| 183 | } |
| 184 | |
| 185 | // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
| 186 | uint8_t* getRow(int y) { |
| 187 | if (y != fY) { |
| 188 | fY = y; |
| 189 | fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft; |
| 190 | } |
| 191 | return fRow; |
| 192 | } |
| 193 | |
| 194 | private: |
| 195 | // so we don't try to do very wide things, where the RLE blitter would be faster |
| 196 | static const int kMAX_WIDTH = 32; |
| 197 | static const int kMAX_STORAGE = 1024; |
| 198 | |
| 199 | SkBlitter* fRealBlitter; |
| 200 | SkMask fMask; |
| 201 | SkIRect fClipRect; |
| 202 | // we add 2 because we can write 1 extra byte at either end due to precision error |
| 203 | uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
| 204 | |
| 205 | uint8_t* fRow; |
| 206 | int fY; |
| 207 | }; |
| 208 | |
| 209 | MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, |
| 210 | const SkIRect& ir, |
| 211 | const SkIRect& clipBounds, |
| 212 | bool isInverse) { |
| 213 | SkASSERT(CanHandleRect(ir)); |
| 214 | SkASSERT(!isInverse); |
| 215 | |
| 216 | fRealBlitter = realBlitter; |
| 217 | |
| 218 | fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage |
| 219 | fMask.fBounds = ir; |
| 220 | fMask.fRowBytes = ir.width(); |
| 221 | fMask.fFormat = SkMask::kA8_Format; |
| 222 | |
| 223 | fY = ir.fTop - 1; |
| 224 | fRow = nullptr; |
| 225 | |
| 226 | fClipRect = ir; |
| 227 | if (!fClipRect.intersect(clipBounds)) { |
| 228 | SkASSERT(0); |
| 229 | fClipRect.setEmpty(); |
| 230 | } |
| 231 | |
| 232 | memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
| 233 | } |
| 234 | |
| 235 | void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| 236 | SK_ABORT("Don't use this; directly add alphas to the mask." ); |
| 237 | } |
| 238 | |
| 239 | void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 240 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| 241 | add_alpha(&this->getRow(y)[x], alpha); |
| 242 | } |
| 243 | |
| 244 | void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| 245 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| 246 | uint8_t* row = this->getRow(y); |
| 247 | for (int i = 0; i < width; ++i) { |
| 248 | add_alpha(&row[x + i], alpha); |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 253 | if (alpha == 0) { |
| 254 | return; |
| 255 | } |
| 256 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| 257 | // This must be called as if this is a real blitter. |
| 258 | // So we directly set alpha rather than adding it. |
| 259 | uint8_t* row = this->getRow(y); |
| 260 | for (int i = 0; i < height; ++i) { |
| 261 | row[x] = alpha; |
| 262 | row += fMask.fRowBytes; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
| 267 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| 268 | // This must be called as if this is a real blitter. |
| 269 | // So we directly set alpha rather than adding it. |
| 270 | uint8_t* row = this->getRow(y); |
| 271 | for (int i = 0; i < height; ++i) { |
| 272 | memset(row + x, 0xFF, width); |
| 273 | row += fMask.fRowBytes; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | void MaskAdditiveBlitter::blitAntiRect(int x, |
| 278 | int y, |
| 279 | int width, |
| 280 | int height, |
| 281 | SkAlpha leftAlpha, |
| 282 | SkAlpha rightAlpha) { |
| 283 | blitV(x, y, height, leftAlpha); |
| 284 | blitV(x + 1 + width, y, height, rightAlpha); |
| 285 | blitRect(x + 1, y, width, height); |
| 286 | } |
| 287 | |
| 288 | class RunBasedAdditiveBlitter : public AdditiveBlitter { |
| 289 | public: |
| 290 | RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
| 291 | const SkIRect& ir, |
| 292 | const SkIRect& clipBounds, |
| 293 | bool isInverse); |
| 294 | |
| 295 | ~RunBasedAdditiveBlitter() override { this->flush(); } |
| 296 | |
| 297 | SkBlitter* getRealBlitter(bool forceRealBlitter) override { return fRealBlitter; } |
| 298 | |
| 299 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 300 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 301 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 302 | |
| 303 | int getWidth() override { return fWidth; } |
| 304 | |
| 305 | void flush_if_y_changed(SkFixed y, SkFixed nextY) override { |
| 306 | if (SkFixedFloorToInt(y) != SkFixedFloorToInt(nextY)) { |
| 307 | this->flush(); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | protected: |
| 312 | SkBlitter* fRealBlitter; |
| 313 | |
| 314 | int fCurrY; // Current y coordinate. |
| 315 | int fWidth; // Widest row of region to be blitted |
| 316 | int fLeft; // Leftmost x coordinate in any row |
| 317 | int fTop; // Initial y coordinate (top of bounds) |
| 318 | |
| 319 | // The next three variables are used to track a circular buffer that |
| 320 | // contains the values used in SkAlphaRuns. These variables should only |
| 321 | // ever be updated in advanceRuns(), and fRuns should always point to |
| 322 | // a valid SkAlphaRuns... |
| 323 | int fRunsToBuffer; |
| 324 | void* fRunsBuffer; |
| 325 | int fCurrentRun; |
| 326 | SkAlphaRuns fRuns; |
| 327 | |
| 328 | int fOffsetX; |
| 329 | |
| 330 | bool check(int x, int width) const { return x >= 0 && x + width <= fWidth; } |
| 331 | |
| 332 | // extra one to store the zero at the end |
| 333 | int getRunsSz() const { return (fWidth + 1 + (fWidth + 2) / 2) * sizeof(int16_t); } |
| 334 | |
| 335 | // This function updates the fRuns variable to point to the next buffer space |
| 336 | // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
| 337 | // and resets fRuns to point to an empty scanline. |
| 338 | void advanceRuns() { |
| 339 | const size_t kRunsSz = this->getRunsSz(); |
| 340 | fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
| 341 | fRuns.fRuns = reinterpret_cast<int16_t*>(reinterpret_cast<uint8_t*>(fRunsBuffer) + |
| 342 | fCurrentRun * kRunsSz); |
| 343 | fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
| 344 | fRuns.reset(fWidth); |
| 345 | } |
| 346 | |
| 347 | // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
| 348 | SkAlpha snapAlpha(SkAlpha alpha) { return alpha > 247 ? 0xFF : alpha < 8 ? 0x00 : alpha; } |
| 349 | |
| 350 | void flush() { |
| 351 | if (fCurrY >= fTop) { |
| 352 | SkASSERT(fCurrentRun < fRunsToBuffer); |
| 353 | for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
| 354 | // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
| 355 | fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
| 356 | } |
| 357 | if (!fRuns.empty()) { |
| 358 | // SkDEBUGCODE(fRuns.dump();) |
| 359 | fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
| 360 | this->advanceRuns(); |
| 361 | fOffsetX = 0; |
| 362 | } |
| 363 | fCurrY = fTop - 1; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | void checkY(int y) { |
| 368 | if (y != fCurrY) { |
| 369 | this->flush(); |
| 370 | fCurrY = y; |
| 371 | } |
| 372 | } |
| 373 | }; |
| 374 | |
| 375 | RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
| 376 | const SkIRect& ir, |
| 377 | const SkIRect& clipBounds, |
| 378 | bool isInverse) { |
| 379 | fRealBlitter = realBlitter; |
| 380 | |
| 381 | SkIRect sectBounds; |
| 382 | if (isInverse) { |
| 383 | // We use the clip bounds instead of the ir, since we may be asked to |
| 384 | // draw outside of the rect when we're a inverse filltype |
| 385 | sectBounds = clipBounds; |
| 386 | } else { |
| 387 | if (!sectBounds.intersect(ir, clipBounds)) { |
| 388 | sectBounds.setEmpty(); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | const int left = sectBounds.left(); |
| 393 | const int right = sectBounds.right(); |
| 394 | |
| 395 | fLeft = left; |
| 396 | fWidth = right - left; |
| 397 | fTop = sectBounds.top(); |
| 398 | fCurrY = fTop - 1; |
| 399 | |
| 400 | fRunsToBuffer = realBlitter->requestRowsPreserved(); |
| 401 | fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
| 402 | fCurrentRun = -1; |
| 403 | |
| 404 | this->advanceRuns(); |
| 405 | |
| 406 | fOffsetX = 0; |
| 407 | } |
| 408 | |
| 409 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| 410 | checkY(y); |
| 411 | x -= fLeft; |
| 412 | |
| 413 | if (x < 0) { |
| 414 | len += x; |
| 415 | antialias -= x; |
| 416 | x = 0; |
| 417 | } |
| 418 | len = std::min(len, fWidth - x); |
| 419 | SkASSERT(check(x, len)); |
| 420 | |
| 421 | if (x < fOffsetX) { |
| 422 | fOffsetX = 0; |
| 423 | } |
| 424 | |
| 425 | fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| 426 | for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| 427 | for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| 428 | fRuns.fRuns[x + i + j] = 1; |
| 429 | fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| 430 | } |
| 431 | fRuns.fRuns[x + i] = 1; |
| 432 | } |
| 433 | for (int i = 0; i < len; ++i) { |
| 434 | add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 439 | checkY(y); |
| 440 | x -= fLeft; |
| 441 | |
| 442 | if (x < fOffsetX) { |
| 443 | fOffsetX = 0; |
| 444 | } |
| 445 | |
| 446 | if (this->check(x, 1)) { |
| 447 | fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| 452 | checkY(y); |
| 453 | x -= fLeft; |
| 454 | |
| 455 | if (x < fOffsetX) { |
| 456 | fOffsetX = 0; |
| 457 | } |
| 458 | |
| 459 | if (this->check(x, width)) { |
| 460 | fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | // This exists specifically for concave path filling. |
| 465 | // In those cases, we can easily accumulate alpha greater than 0xFF. |
| 466 | class SafeRLEAdditiveBlitter : public RunBasedAdditiveBlitter { |
| 467 | public: |
| 468 | SafeRLEAdditiveBlitter(SkBlitter* realBlitter, |
| 469 | const SkIRect& ir, |
| 470 | const SkIRect& clipBounds, |
| 471 | bool isInverse) |
| 472 | : RunBasedAdditiveBlitter(realBlitter, ir, clipBounds, isInverse) {} |
| 473 | |
| 474 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 475 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 476 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 477 | }; |
| 478 | |
| 479 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| 480 | checkY(y); |
| 481 | x -= fLeft; |
| 482 | |
| 483 | if (x < 0) { |
| 484 | len += x; |
| 485 | antialias -= x; |
| 486 | x = 0; |
| 487 | } |
| 488 | len = std::min(len, fWidth - x); |
| 489 | SkASSERT(check(x, len)); |
| 490 | |
| 491 | if (x < fOffsetX) { |
| 492 | fOffsetX = 0; |
| 493 | } |
| 494 | |
| 495 | fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| 496 | for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| 497 | for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| 498 | fRuns.fRuns[x + i + j] = 1; |
| 499 | fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| 500 | } |
| 501 | fRuns.fRuns[x + i] = 1; |
| 502 | } |
| 503 | for (int i = 0; i < len; ++i) { |
| 504 | safely_add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 509 | checkY(y); |
| 510 | x -= fLeft; |
| 511 | |
| 512 | if (x < fOffsetX) { |
| 513 | fOffsetX = 0; |
| 514 | } |
| 515 | |
| 516 | if (check(x, 1)) { |
| 517 | // Break the run |
| 518 | fOffsetX = fRuns.add(x, 0, 1, 0, 0, fOffsetX); |
| 519 | safely_add_alpha(&fRuns.fAlpha[x], alpha); |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| 524 | checkY(y); |
| 525 | x -= fLeft; |
| 526 | |
| 527 | if (x < fOffsetX) { |
| 528 | fOffsetX = 0; |
| 529 | } |
| 530 | |
| 531 | if (check(x, width)) { |
| 532 | // Break the run |
| 533 | fOffsetX = fRuns.add(x, 0, width, 0, 0, fOffsetX); |
| 534 | for (int i = x; i < x + width; i += fRuns.fRuns[i]) { |
| 535 | safely_add_alpha(&fRuns.fAlpha[i], alpha); |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | // Return the alpha of a trapezoid whose height is 1 |
| 541 | static SkAlpha trapezoid_to_alpha(SkFixed l1, SkFixed l2) { |
| 542 | SkASSERT(l1 >= 0 && l2 >= 0); |
| 543 | SkFixed area = (l1 + l2) / 2; |
| 544 | return SkTo<SkAlpha>(area >> 8); |
| 545 | } |
| 546 | |
| 547 | // The alpha of right-triangle (a, a*b) |
| 548 | static SkAlpha partial_triangle_to_alpha(SkFixed a, SkFixed b) { |
| 549 | SkASSERT(a <= SK_Fixed1); |
| 550 | #if 0 |
| 551 | // TODO(mtklein): skia:8877 |
| 552 | SkASSERT(b <= SK_Fixed1); |
| 553 | #endif |
| 554 | |
| 555 | // Approximating... |
| 556 | // SkFixed area = SkFixedMul(a, SkFixedMul(a,b)) / 2; |
| 557 | SkFixed area = (a >> 11) * (a >> 11) * (b >> 11); |
| 558 | |
| 559 | #if 0 |
| 560 | // TODO(mtklein): skia:8877 |
| 561 | return SkTo<SkAlpha>(area >> 8); |
| 562 | #else |
| 563 | return SkTo<SkAlpha>((area >> 8) & 0xFF); |
| 564 | #endif |
| 565 | } |
| 566 | |
| 567 | static SkAlpha get_partial_alpha(SkAlpha alpha, SkFixed partialHeight) { |
| 568 | return SkToU8(SkFixedRoundToInt(alpha * partialHeight)); |
| 569 | } |
| 570 | |
| 571 | static SkAlpha get_partial_alpha(SkAlpha alpha, SkAlpha fullAlpha) { |
| 572 | return (alpha * fullAlpha) >> 8; |
| 573 | } |
| 574 | |
| 575 | // For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right. |
| 576 | // For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255. |
| 577 | // This is rarely the problem so we'll only use this for blitting rectangles. |
| 578 | static SkAlpha fixed_to_alpha(SkFixed f) { |
| 579 | SkASSERT(f <= SK_Fixed1); |
| 580 | return get_partial_alpha(0xFF, f); |
| 581 | } |
| 582 | |
| 583 | // Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
| 584 | // approximate (very coarsely) the x coordinate of the intersection. |
| 585 | static SkFixed approximate_intersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
| 586 | if (l1 > r1) { |
| 587 | std::swap(l1, r1); |
| 588 | } |
| 589 | if (l2 > r2) { |
| 590 | std::swap(l2, r2); |
| 591 | } |
| 592 | return (std::max(l1, l2) + std::min(r1, r2)) / 2; |
| 593 | } |
| 594 | |
| 595 | // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
| 596 | static void compute_alpha_above_line(SkAlpha* alphas, |
| 597 | SkFixed l, |
| 598 | SkFixed r, |
| 599 | SkFixed dY, |
| 600 | SkAlpha fullAlpha) { |
| 601 | SkASSERT(l <= r); |
| 602 | SkASSERT(l >> 16 == 0); |
| 603 | int R = SkFixedCeilToInt(r); |
| 604 | if (R == 0) { |
| 605 | return; |
| 606 | } else if (R == 1) { |
| 607 | alphas[0] = get_partial_alpha(((R << 17) - l - r) >> 9, fullAlpha); |
| 608 | } else { |
| 609 | SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
| 610 | SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
| 611 | SkFixed firstH = SkFixedMul(first, dY); // vertical edge of the left-most triangle |
| 612 | alphas[0] = SkFixedMul(first, firstH) >> 9; // triangle alpha |
| 613 | SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
| 614 | for (int i = 1; i < R - 1; ++i) { |
| 615 | alphas[i] = alpha16 >> 8; |
| 616 | alpha16 += dY; |
| 617 | } |
| 618 | alphas[R - 1] = fullAlpha - partial_triangle_to_alpha(last, dY); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
| 623 | static void compute_alpha_below_line(SkAlpha* alphas, |
| 624 | SkFixed l, |
| 625 | SkFixed r, |
| 626 | SkFixed dY, |
| 627 | SkAlpha fullAlpha) { |
| 628 | SkASSERT(l <= r); |
| 629 | SkASSERT(l >> 16 == 0); |
| 630 | int R = SkFixedCeilToInt(r); |
| 631 | if (R == 0) { |
| 632 | return; |
| 633 | } else if (R == 1) { |
| 634 | alphas[0] = get_partial_alpha(trapezoid_to_alpha(l, r), fullAlpha); |
| 635 | } else { |
| 636 | SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
| 637 | SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
| 638 | SkFixed lastH = SkFixedMul(last, dY); // vertical edge of the right-most triangle |
| 639 | alphas[R - 1] = SkFixedMul(last, lastH) >> 9; // triangle alpha |
| 640 | SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
| 641 | for (int i = R - 2; i > 0; i--) { |
| 642 | alphas[i] = (alpha16 >> 8) & 0xFF; |
| 643 | alpha16 += dY; |
| 644 | } |
| 645 | alphas[0] = fullAlpha - partial_triangle_to_alpha(first, dY); |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | // Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
| 650 | static SK_ALWAYS_INLINE void blit_single_alpha(AdditiveBlitter* blitter, |
| 651 | int y, |
| 652 | int x, |
| 653 | SkAlpha alpha, |
| 654 | SkAlpha fullAlpha, |
| 655 | SkAlpha* maskRow, |
| 656 | bool isUsingMask, |
| 657 | bool noRealBlitter, |
| 658 | bool needSafeCheck) { |
| 659 | if (isUsingMask) { |
| 660 | if (fullAlpha == 0xFF && !noRealBlitter) { // noRealBlitter is needed for concave paths |
| 661 | maskRow[x] = alpha; |
| 662 | } else if (needSafeCheck) { |
| 663 | safely_add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
| 664 | } else { |
| 665 | add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
| 666 | } |
| 667 | } else { |
| 668 | if (fullAlpha == 0xFF && !noRealBlitter) { |
| 669 | blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
| 670 | } else { |
| 671 | blitter->blitAntiH(x, y, get_partial_alpha(alpha, fullAlpha)); |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | static SK_ALWAYS_INLINE void blit_two_alphas(AdditiveBlitter* blitter, |
| 677 | int y, |
| 678 | int x, |
| 679 | SkAlpha a1, |
| 680 | SkAlpha a2, |
| 681 | SkAlpha fullAlpha, |
| 682 | SkAlpha* maskRow, |
| 683 | bool isUsingMask, |
| 684 | bool noRealBlitter, |
| 685 | bool needSafeCheck) { |
| 686 | if (isUsingMask) { |
| 687 | if (needSafeCheck) { |
| 688 | safely_add_alpha(&maskRow[x], a1); |
| 689 | safely_add_alpha(&maskRow[x + 1], a2); |
| 690 | } else { |
| 691 | add_alpha(&maskRow[x], a1); |
| 692 | add_alpha(&maskRow[x + 1], a2); |
| 693 | } |
| 694 | } else { |
| 695 | if (fullAlpha == 0xFF && !noRealBlitter) { |
| 696 | blitter->getRealBlitter()->blitAntiH2(x, y, a1, a2); |
| 697 | } else { |
| 698 | blitter->blitAntiH(x, y, a1); |
| 699 | blitter->blitAntiH(x + 1, y, a2); |
| 700 | } |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, |
| 705 | int y, |
| 706 | int x, |
| 707 | int len, |
| 708 | SkAlpha fullAlpha, |
| 709 | SkAlpha* maskRow, |
| 710 | bool isUsingMask, |
| 711 | bool noRealBlitter, |
| 712 | bool needSafeCheck) { |
| 713 | if (isUsingMask) { |
| 714 | for (int i = 0; i < len; ++i) { |
| 715 | if (needSafeCheck) { |
| 716 | safely_add_alpha(&maskRow[x + i], fullAlpha); |
| 717 | } else { |
| 718 | add_alpha(&maskRow[x + i], fullAlpha); |
| 719 | } |
| 720 | } |
| 721 | } else { |
| 722 | if (fullAlpha == 0xFF && !noRealBlitter) { |
| 723 | blitter->getRealBlitter()->blitH(x, y, len); |
| 724 | } else { |
| 725 | blitter->blitAntiH(x, y, len, fullAlpha); |
| 726 | } |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, |
| 731 | int y, |
| 732 | SkFixed ul, |
| 733 | SkFixed ur, |
| 734 | SkFixed ll, |
| 735 | SkFixed lr, |
| 736 | SkFixed lDY, |
| 737 | SkFixed rDY, |
| 738 | SkAlpha fullAlpha, |
| 739 | SkAlpha* maskRow, |
| 740 | bool isUsingMask, |
| 741 | bool noRealBlitter, |
| 742 | bool needSafeCheck) { |
| 743 | int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
| 744 | int len = R - L; |
| 745 | |
| 746 | if (len == 1) { |
| 747 | SkAlpha alpha = trapezoid_to_alpha(ur - ul, lr - ll); |
| 748 | blit_single_alpha(blitter, |
| 749 | y, |
| 750 | L, |
| 751 | alpha, |
| 752 | fullAlpha, |
| 753 | maskRow, |
| 754 | isUsingMask, |
| 755 | noRealBlitter, |
| 756 | needSafeCheck); |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | const int kQuickLen = 31; |
| 761 | char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
| 762 | SkAlpha* alphas; |
| 763 | |
| 764 | if (len <= kQuickLen) { |
| 765 | alphas = (SkAlpha*)quickMemory; |
| 766 | } else { |
| 767 | alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))]; |
| 768 | } |
| 769 | |
| 770 | SkAlpha* tempAlphas = alphas + len + 1; |
| 771 | int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
| 772 | |
| 773 | for (int i = 0; i < len; ++i) { |
| 774 | runs[i] = 1; |
| 775 | alphas[i] = fullAlpha; |
| 776 | } |
| 777 | runs[len] = 0; |
| 778 | |
| 779 | int uL = SkFixedFloorToInt(ul); |
| 780 | int lL = SkFixedCeilToInt(ll); |
| 781 | if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case |
| 782 | SkFixed first = SkIntToFixed(uL) + SK_Fixed1 - ul; |
| 783 | SkFixed second = ll - ul - first; |
| 784 | SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, lDY); |
| 785 | SkAlpha a2 = partial_triangle_to_alpha(second, lDY); |
| 786 | alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
| 787 | alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
| 788 | } else { |
| 789 | compute_alpha_below_line( |
| 790 | tempAlphas + uL - L, ul - SkIntToFixed(uL), ll - SkIntToFixed(uL), lDY, fullAlpha); |
| 791 | for (int i = uL; i < lL; ++i) { |
| 792 | if (alphas[i - L] > tempAlphas[i - L]) { |
| 793 | alphas[i - L] -= tempAlphas[i - L]; |
| 794 | } else { |
| 795 | alphas[i - L] = 0; |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | int uR = SkFixedFloorToInt(ur); |
| 801 | int lR = SkFixedCeilToInt(lr); |
| 802 | if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case |
| 803 | SkFixed first = SkIntToFixed(uR) + SK_Fixed1 - ur; |
| 804 | SkFixed second = lr - ur - first; |
| 805 | SkAlpha a1 = partial_triangle_to_alpha(first, rDY); |
| 806 | SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, rDY); |
| 807 | alphas[len - 2] = alphas[len - 2] > a1 ? alphas[len - 2] - a1 : 0; |
| 808 | alphas[len - 1] = alphas[len - 1] > a2 ? alphas[len - 1] - a2 : 0; |
| 809 | } else { |
| 810 | compute_alpha_above_line( |
| 811 | tempAlphas + uR - L, ur - SkIntToFixed(uR), lr - SkIntToFixed(uR), rDY, fullAlpha); |
| 812 | for (int i = uR; i < lR; ++i) { |
| 813 | if (alphas[i - L] > tempAlphas[i - L]) { |
| 814 | alphas[i - L] -= tempAlphas[i - L]; |
| 815 | } else { |
| 816 | alphas[i - L] = 0; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | if (isUsingMask) { |
| 822 | for (int i = 0; i < len; ++i) { |
| 823 | if (needSafeCheck) { |
| 824 | safely_add_alpha(&maskRow[L + i], alphas[i]); |
| 825 | } else { |
| 826 | add_alpha(&maskRow[L + i], alphas[i]); |
| 827 | } |
| 828 | } |
| 829 | } else { |
| 830 | if (fullAlpha == 0xFF && !noRealBlitter) { |
| 831 | // Real blitter is faster than RunBasedAdditiveBlitter |
| 832 | blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
| 833 | } else { |
| 834 | blitter->blitAntiH(L, y, alphas, len); |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | if (len > kQuickLen) { |
| 839 | delete[] alphas; |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | static SK_ALWAYS_INLINE void blit_trapezoid_row(AdditiveBlitter* blitter, |
| 844 | int y, |
| 845 | SkFixed ul, |
| 846 | SkFixed ur, |
| 847 | SkFixed ll, |
| 848 | SkFixed lr, |
| 849 | SkFixed lDY, |
| 850 | SkFixed rDY, |
| 851 | SkAlpha fullAlpha, |
| 852 | SkAlpha* maskRow, |
| 853 | bool isUsingMask, |
| 854 | bool noRealBlitter = false, |
| 855 | bool needSafeCheck = false) { |
| 856 | SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
| 857 | |
| 858 | if (ul > ur) { |
| 859 | return; |
| 860 | } |
| 861 | |
| 862 | // Edge crosses. Approximate it. This should only happend due to precision limit, |
| 863 | // so the approximation could be very coarse. |
| 864 | if (ll > lr) { |
| 865 | ll = lr = approximate_intersection(ul, ll, ur, lr); |
| 866 | } |
| 867 | |
| 868 | if (ul == ur && ll == lr) { |
| 869 | return; // empty trapzoid |
| 870 | } |
| 871 | |
| 872 | // We're going to use the left line ul-ll and the rite line ur-lr |
| 873 | // to exclude the area that's not covered by the path. |
| 874 | // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
| 875 | // so we'll do that for simplicity. |
| 876 | if (ul > ll) { |
| 877 | std::swap(ul, ll); |
| 878 | } |
| 879 | if (ur > lr) { |
| 880 | std::swap(ur, lr); |
| 881 | } |
| 882 | |
| 883 | SkFixed joinLeft = SkFixedCeilToFixed(ll); |
| 884 | SkFixed joinRite = SkFixedFloorToFixed(ur); |
| 885 | if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit |
| 886 | if (ul < joinLeft) { |
| 887 | int len = SkFixedCeilToInt(joinLeft - ul); |
| 888 | if (len == 1) { |
| 889 | SkAlpha alpha = trapezoid_to_alpha(joinLeft - ul, joinLeft - ll); |
| 890 | blit_single_alpha(blitter, |
| 891 | y, |
| 892 | ul >> 16, |
| 893 | alpha, |
| 894 | fullAlpha, |
| 895 | maskRow, |
| 896 | isUsingMask, |
| 897 | noRealBlitter, |
| 898 | needSafeCheck); |
| 899 | } else if (len == 2) { |
| 900 | SkFixed first = joinLeft - SK_Fixed1 - ul; |
| 901 | SkFixed second = ll - ul - first; |
| 902 | SkAlpha a1 = partial_triangle_to_alpha(first, lDY); |
| 903 | SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, lDY); |
| 904 | blit_two_alphas(blitter, |
| 905 | y, |
| 906 | ul >> 16, |
| 907 | a1, |
| 908 | a2, |
| 909 | fullAlpha, |
| 910 | maskRow, |
| 911 | isUsingMask, |
| 912 | noRealBlitter, |
| 913 | needSafeCheck); |
| 914 | } else { |
| 915 | blit_aaa_trapezoid_row(blitter, |
| 916 | y, |
| 917 | ul, |
| 918 | joinLeft, |
| 919 | ll, |
| 920 | joinLeft, |
| 921 | lDY, |
| 922 | SK_MaxS32, |
| 923 | fullAlpha, |
| 924 | maskRow, |
| 925 | isUsingMask, |
| 926 | noRealBlitter, |
| 927 | needSafeCheck); |
| 928 | } |
| 929 | } |
| 930 | // SkAAClip requires that we blit from left to right. |
| 931 | // Hence we must blit [ul, joinLeft] before blitting [joinLeft, joinRite] |
| 932 | if (joinLeft < joinRite) { |
| 933 | blit_full_alpha(blitter, |
| 934 | y, |
| 935 | SkFixedFloorToInt(joinLeft), |
| 936 | SkFixedFloorToInt(joinRite - joinLeft), |
| 937 | fullAlpha, |
| 938 | maskRow, |
| 939 | isUsingMask, |
| 940 | noRealBlitter, |
| 941 | needSafeCheck); |
| 942 | } |
| 943 | if (lr > joinRite) { |
| 944 | int len = SkFixedCeilToInt(lr - joinRite); |
| 945 | if (len == 1) { |
| 946 | SkAlpha alpha = trapezoid_to_alpha(ur - joinRite, lr - joinRite); |
| 947 | blit_single_alpha(blitter, |
| 948 | y, |
| 949 | joinRite >> 16, |
| 950 | alpha, |
| 951 | fullAlpha, |
| 952 | maskRow, |
| 953 | isUsingMask, |
| 954 | noRealBlitter, |
| 955 | needSafeCheck); |
| 956 | } else if (len == 2) { |
| 957 | SkFixed first = joinRite + SK_Fixed1 - ur; |
| 958 | SkFixed second = lr - ur - first; |
| 959 | SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, rDY); |
| 960 | SkAlpha a2 = partial_triangle_to_alpha(second, rDY); |
| 961 | blit_two_alphas(blitter, |
| 962 | y, |
| 963 | joinRite >> 16, |
| 964 | a1, |
| 965 | a2, |
| 966 | fullAlpha, |
| 967 | maskRow, |
| 968 | isUsingMask, |
| 969 | noRealBlitter, |
| 970 | needSafeCheck); |
| 971 | } else { |
| 972 | blit_aaa_trapezoid_row(blitter, |
| 973 | y, |
| 974 | joinRite, |
| 975 | ur, |
| 976 | joinRite, |
| 977 | lr, |
| 978 | SK_MaxS32, |
| 979 | rDY, |
| 980 | fullAlpha, |
| 981 | maskRow, |
| 982 | isUsingMask, |
| 983 | noRealBlitter, |
| 984 | needSafeCheck); |
| 985 | } |
| 986 | } |
| 987 | } else { |
| 988 | blit_aaa_trapezoid_row(blitter, |
| 989 | y, |
| 990 | ul, |
| 991 | ur, |
| 992 | ll, |
| 993 | lr, |
| 994 | lDY, |
| 995 | rDY, |
| 996 | fullAlpha, |
| 997 | maskRow, |
| 998 | isUsingMask, |
| 999 | noRealBlitter, |
| 1000 | needSafeCheck); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
| 1005 | int valuea = a.fUpperY; |
| 1006 | int valueb = b.fUpperY; |
| 1007 | |
| 1008 | if (valuea == valueb) { |
| 1009 | valuea = a.fX; |
| 1010 | valueb = b.fX; |
| 1011 | } |
| 1012 | |
| 1013 | if (valuea == valueb) { |
| 1014 | valuea = a.fDX; |
| 1015 | valueb = b.fDX; |
| 1016 | } |
| 1017 | |
| 1018 | return valuea < valueb; |
| 1019 | } |
| 1020 | |
| 1021 | static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
| 1022 | SkTQSort(list, list + count - 1); |
| 1023 | |
| 1024 | // now make the edges linked in sorted order |
| 1025 | for (int i = 1; i < count; ++i) { |
| 1026 | list[i - 1]->fNext = list[i]; |
| 1027 | list[i]->fPrev = list[i - 1]; |
| 1028 | } |
| 1029 | |
| 1030 | *last = list[count - 1]; |
| 1031 | return list[0]; |
| 1032 | } |
| 1033 | |
| 1034 | static void validate_sort(const SkAnalyticEdge* edge) { |
| 1035 | #ifdef SK_DEBUG |
| 1036 | SkFixed y = SkIntToFixed(-32768); |
| 1037 | |
| 1038 | while (edge->fUpperY != SK_MaxS32) { |
| 1039 | edge->validate(); |
| 1040 | SkASSERT(y <= edge->fUpperY); |
| 1041 | |
| 1042 | y = edge->fUpperY; |
| 1043 | edge = (SkAnalyticEdge*)edge->fNext; |
| 1044 | } |
| 1045 | #endif |
| 1046 | } |
| 1047 | |
| 1048 | // For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough |
| 1049 | // For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are |
| 1050 | // relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
| 1051 | static bool is_smooth_enough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) { |
| 1052 | if (thisEdge->fCurveCount < 0) { |
| 1053 | const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge; |
| 1054 | int ddshift = cEdge.fCurveShift; |
| 1055 | return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
| 1056 | SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
| 1057 | // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
| 1058 | (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1; |
| 1059 | } else if (thisEdge->fCurveCount > 0) { |
| 1060 | const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge; |
| 1061 | return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
| 1062 | SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
| 1063 | // current Dy is (fQDy - fQDDy) >> shift |
| 1064 | (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift >= SK_Fixed1; |
| 1065 | } |
| 1066 | return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small |
| 1067 | nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large |
| 1068 | } |
| 1069 | |
| 1070 | // Check if the leftE and riteE are changing smoothly in terms of fDX. |
| 1071 | // If yes, we can later skip the fractional y and directly jump to integer y. |
| 1072 | static bool is_smooth_enough(SkAnalyticEdge* leftE, |
| 1073 | SkAnalyticEdge* riteE, |
| 1074 | SkAnalyticEdge* currE, |
| 1075 | int stop_y) { |
| 1076 | if (currE->fUpperY >= SkLeftShift(stop_y, 16)) { |
| 1077 | return false; // We're at the end so we won't skip anything |
| 1078 | } |
| 1079 | if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
| 1080 | return is_smooth_enough(leftE, currE, stop_y); // Only leftE is changing |
| 1081 | } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
| 1082 | return is_smooth_enough(riteE, currE, stop_y); // Only riteE is changing |
| 1083 | } |
| 1084 | |
| 1085 | // Now both edges are changing, find the second next edge |
| 1086 | SkAnalyticEdge* nextCurrE = currE->fNext; |
| 1087 | if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
| 1088 | return false; |
| 1089 | } |
| 1090 | // Ensure that currE is the next left edge and nextCurrE is the next right edge. Swap if not. |
| 1091 | if (nextCurrE->fUpperX < currE->fUpperX) { |
| 1092 | std::swap(currE, nextCurrE); |
| 1093 | } |
| 1094 | return is_smooth_enough(leftE, currE, stop_y) && is_smooth_enough(riteE, nextCurrE, stop_y); |
| 1095 | } |
| 1096 | |
| 1097 | static void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, |
| 1098 | AdditiveBlitter* blitter, |
| 1099 | int start_y, |
| 1100 | int stop_y, |
| 1101 | SkFixed leftBound, |
| 1102 | SkFixed riteBound, |
| 1103 | bool isUsingMask) { |
| 1104 | validate_sort((SkAnalyticEdge*)prevHead->fNext); |
| 1105 | |
| 1106 | SkAnalyticEdge* leftE = (SkAnalyticEdge*)prevHead->fNext; |
| 1107 | SkAnalyticEdge* riteE = (SkAnalyticEdge*)leftE->fNext; |
| 1108 | SkAnalyticEdge* currE = (SkAnalyticEdge*)riteE->fNext; |
| 1109 | |
| 1110 | SkFixed y = std::max(leftE->fUpperY, riteE->fUpperY); |
| 1111 | |
| 1112 | for (;;) { |
| 1113 | // We have to check fLowerY first because some edges might be alone (e.g., there's only |
| 1114 | // a left edge but no right edge in a given y scan line) due to precision limit. |
| 1115 | while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
| 1116 | if (!leftE->update(y)) { |
| 1117 | if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 1118 | goto END_WALK; |
| 1119 | } |
| 1120 | leftE = currE; |
| 1121 | currE = (SkAnalyticEdge*)currE->fNext; |
| 1122 | } |
| 1123 | } |
| 1124 | while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
| 1125 | if (!riteE->update(y)) { |
| 1126 | if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 1127 | goto END_WALK; |
| 1128 | } |
| 1129 | riteE = currE; |
| 1130 | currE = (SkAnalyticEdge*)currE->fNext; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | SkASSERT(leftE); |
| 1135 | SkASSERT(riteE); |
| 1136 | |
| 1137 | // check our bottom clip |
| 1138 | if (SkFixedFloorToInt(y) >= stop_y) { |
| 1139 | break; |
| 1140 | } |
| 1141 | |
| 1142 | SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
| 1143 | SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
| 1144 | |
| 1145 | leftE->goY(y); |
| 1146 | riteE->goY(y); |
| 1147 | |
| 1148 | if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && leftE->fDX > riteE->fDX)) { |
| 1149 | std::swap(leftE, riteE); |
| 1150 | } |
| 1151 | |
| 1152 | SkFixed local_bot_fixed = std::min(leftE->fLowerY, riteE->fLowerY); |
| 1153 | if (is_smooth_enough(leftE, riteE, currE, stop_y)) { |
| 1154 | local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
| 1155 | } |
| 1156 | local_bot_fixed = std::min(local_bot_fixed, SkIntToFixed(stop_y)); |
| 1157 | |
| 1158 | SkFixed left = std::max(leftBound, leftE->fX); |
| 1159 | SkFixed dLeft = leftE->fDX; |
| 1160 | SkFixed rite = std::min(riteBound, riteE->fX); |
| 1161 | SkFixed dRite = riteE->fDX; |
| 1162 | if (0 == (dLeft | dRite)) { |
| 1163 | int fullLeft = SkFixedCeilToInt(left); |
| 1164 | int fullRite = SkFixedFloorToInt(rite); |
| 1165 | SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
| 1166 | SkFixed partialRite = rite - SkIntToFixed(fullRite); |
| 1167 | int fullTop = SkFixedCeilToInt(y); |
| 1168 | int fullBot = SkFixedFloorToInt(local_bot_fixed); |
| 1169 | SkFixed partialTop = SkIntToFixed(fullTop) - y; |
| 1170 | SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
| 1171 | if (fullTop > fullBot) { // The rectangle is within one pixel height... |
| 1172 | partialTop -= (SK_Fixed1 - partialBot); |
| 1173 | partialBot = 0; |
| 1174 | } |
| 1175 | |
| 1176 | if (fullRite >= fullLeft) { |
| 1177 | if (partialTop > 0) { // blit first partial row |
| 1178 | if (partialLeft > 0) { |
| 1179 | blitter->blitAntiH(fullLeft - 1, |
| 1180 | fullTop - 1, |
| 1181 | fixed_to_alpha(SkFixedMul(partialTop, partialLeft))); |
| 1182 | } |
| 1183 | blitter->blitAntiH( |
| 1184 | fullLeft, fullTop - 1, fullRite - fullLeft, fixed_to_alpha(partialTop)); |
| 1185 | if (partialRite > 0) { |
| 1186 | blitter->blitAntiH(fullRite, |
| 1187 | fullTop - 1, |
| 1188 | fixed_to_alpha(SkFixedMul(partialTop, partialRite))); |
| 1189 | } |
| 1190 | blitter->flush_if_y_changed(y, y + partialTop); |
| 1191 | } |
| 1192 | |
| 1193 | // Blit all full-height rows from fullTop to fullBot |
| 1194 | if (fullBot > fullTop && |
| 1195 | // SkAAClip cannot handle the empty rect so check the non-emptiness here |
| 1196 | // (bug chromium:662800) |
| 1197 | (fullRite > fullLeft || fixed_to_alpha(partialLeft) > 0 || |
| 1198 | fixed_to_alpha(partialRite) > 0)) { |
| 1199 | blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, |
| 1200 | fullTop, |
| 1201 | fullRite - fullLeft, |
| 1202 | fullBot - fullTop, |
| 1203 | fixed_to_alpha(partialLeft), |
| 1204 | fixed_to_alpha(partialRite)); |
| 1205 | } |
| 1206 | |
| 1207 | if (partialBot > 0) { // blit last partial row |
| 1208 | if (partialLeft > 0) { |
| 1209 | blitter->blitAntiH(fullLeft - 1, |
| 1210 | fullBot, |
| 1211 | fixed_to_alpha(SkFixedMul(partialBot, partialLeft))); |
| 1212 | } |
| 1213 | blitter->blitAntiH( |
| 1214 | fullLeft, fullBot, fullRite - fullLeft, fixed_to_alpha(partialBot)); |
| 1215 | if (partialRite > 0) { |
| 1216 | blitter->blitAntiH(fullRite, |
| 1217 | fullBot, |
| 1218 | fixed_to_alpha(SkFixedMul(partialBot, partialRite))); |
| 1219 | } |
| 1220 | } |
| 1221 | } else { // left and rite are within the same pixel |
| 1222 | if (partialTop > 0) { |
| 1223 | blitter->blitAntiH(fullLeft - 1, |
| 1224 | fullTop - 1, |
| 1225 | 1, |
| 1226 | fixed_to_alpha(SkFixedMul(partialTop, rite - left))); |
| 1227 | blitter->flush_if_y_changed(y, y + partialTop); |
| 1228 | } |
| 1229 | if (fullBot > fullTop) { |
| 1230 | blitter->getRealBlitter()->blitV( |
| 1231 | fullLeft - 1, fullTop, fullBot - fullTop, fixed_to_alpha(rite - left)); |
| 1232 | } |
| 1233 | if (partialBot > 0) { |
| 1234 | blitter->blitAntiH(fullLeft - 1, |
| 1235 | fullBot, |
| 1236 | 1, |
| 1237 | fixed_to_alpha(SkFixedMul(partialBot, rite - left))); |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | y = local_bot_fixed; |
| 1242 | } else { |
| 1243 | // The following constant are used to snap X |
| 1244 | // We snap X mainly for speedup (no tiny triangle) and |
| 1245 | // avoiding edge cases caused by precision errors |
| 1246 | const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
| 1247 | const SkFixed kSnapHalf = kSnapDigit >> 1; |
| 1248 | const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
| 1249 | left += kSnapHalf; |
| 1250 | rite += kSnapHalf; // For fast rounding |
| 1251 | |
| 1252 | // Number of blit_trapezoid_row calls we'll have |
| 1253 | int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y); |
| 1254 | |
| 1255 | // If we're using mask blitter, we advance the mask row in this function |
| 1256 | // to save some "if" condition checks. |
| 1257 | SkAlpha* maskRow = nullptr; |
| 1258 | if (isUsingMask) { |
| 1259 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| 1260 | } |
| 1261 | |
| 1262 | // Instead of writing one loop that handles both partial-row blit_trapezoid_row |
| 1263 | // and full-row trapezoid_row together, we use the following 3-stage flow to |
| 1264 | // handle partial-row blit and full-row blit separately. It will save us much time |
| 1265 | // on changing y, left, and rite. |
| 1266 | if (count > 1) { |
| 1267 | if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top |
| 1268 | count--; |
| 1269 | SkFixed nextY = SkFixedCeilToFixed(y + 1); |
| 1270 | SkFixed dY = nextY - y; |
| 1271 | SkFixed nextLeft = left + SkFixedMul(dLeft, dY); |
| 1272 | SkFixed nextRite = rite + SkFixedMul(dRite, dY); |
| 1273 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| 1274 | (nextLeft & kSnapMask) >= leftBound && |
| 1275 | (nextRite & kSnapMask) <= riteBound); |
| 1276 | blit_trapezoid_row(blitter, |
| 1277 | y >> 16, |
| 1278 | left & kSnapMask, |
| 1279 | rite & kSnapMask, |
| 1280 | nextLeft & kSnapMask, |
| 1281 | nextRite & kSnapMask, |
| 1282 | leftE->fDY, |
| 1283 | riteE->fDY, |
| 1284 | get_partial_alpha(0xFF, dY), |
| 1285 | maskRow, |
| 1286 | isUsingMask); |
| 1287 | blitter->flush_if_y_changed(y, nextY); |
| 1288 | left = nextLeft; |
| 1289 | rite = nextRite; |
| 1290 | y = nextY; |
| 1291 | } |
| 1292 | |
| 1293 | while (count > 1) { // Full rows in the middle |
| 1294 | count--; |
| 1295 | if (isUsingMask) { |
| 1296 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| 1297 | } |
| 1298 | SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite; |
| 1299 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| 1300 | (nextLeft & kSnapMask) >= leftBound && |
| 1301 | (nextRite & kSnapMask) <= riteBound); |
| 1302 | blit_trapezoid_row(blitter, |
| 1303 | y >> 16, |
| 1304 | left & kSnapMask, |
| 1305 | rite & kSnapMask, |
| 1306 | nextLeft & kSnapMask, |
| 1307 | nextRite & kSnapMask, |
| 1308 | leftE->fDY, |
| 1309 | riteE->fDY, |
| 1310 | 0xFF, |
| 1311 | maskRow, |
| 1312 | isUsingMask); |
| 1313 | blitter->flush_if_y_changed(y, nextY); |
| 1314 | left = nextLeft; |
| 1315 | rite = nextRite; |
| 1316 | y = nextY; |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | if (isUsingMask) { |
| 1321 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| 1322 | } |
| 1323 | |
| 1324 | SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
| 1325 | SkASSERT(dY <= SK_Fixed1); |
| 1326 | // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound. |
| 1327 | // Take them back into the bound here. |
| 1328 | // Note that we substract kSnapHalf later so we have to add them to leftBound/riteBound |
| 1329 | SkFixed nextLeft = std::max(left + SkFixedMul(dLeft, dY), leftBound + kSnapHalf); |
| 1330 | SkFixed nextRite = std::min(rite + SkFixedMul(dRite, dY), riteBound + kSnapHalf); |
| 1331 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| 1332 | (nextLeft & kSnapMask) >= leftBound && (nextRite & kSnapMask) <= riteBound); |
| 1333 | blit_trapezoid_row(blitter, |
| 1334 | y >> 16, |
| 1335 | left & kSnapMask, |
| 1336 | rite & kSnapMask, |
| 1337 | nextLeft & kSnapMask, |
| 1338 | nextRite & kSnapMask, |
| 1339 | leftE->fDY, |
| 1340 | riteE->fDY, |
| 1341 | get_partial_alpha(0xFF, dY), |
| 1342 | maskRow, |
| 1343 | isUsingMask); |
| 1344 | blitter->flush_if_y_changed(y, local_bot_fixed); |
| 1345 | left = nextLeft; |
| 1346 | rite = nextRite; |
| 1347 | y = local_bot_fixed; |
| 1348 | left -= kSnapHalf; |
| 1349 | rite -= kSnapHalf; |
| 1350 | } |
| 1351 | |
| 1352 | leftE->fX = left; |
| 1353 | riteE->fX = rite; |
| 1354 | leftE->fY = riteE->fY = y; |
| 1355 | } |
| 1356 | |
| 1357 | END_WALK:; |
| 1358 | } |
| 1359 | |
| 1360 | static void update_next_next_y(SkFixed y, SkFixed nextY, SkFixed* nextNextY) { |
| 1361 | *nextNextY = y > nextY && y < *nextNextY ? y : *nextNextY; |
| 1362 | } |
| 1363 | |
| 1364 | static void check_intersection(const SkAnalyticEdge* edge, SkFixed nextY, SkFixed* nextNextY) { |
| 1365 | if (edge->fPrev->fPrev && edge->fPrev->fX + edge->fPrev->fDX > edge->fX + edge->fDX) { |
| 1366 | *nextNextY = nextY + (SK_Fixed1 >> SkAnalyticEdge::kDefaultAccuracy); |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | static void insert_new_edges(SkAnalyticEdge* newEdge, SkFixed y, SkFixed* nextNextY) { |
| 1371 | if (newEdge->fUpperY > y) { |
| 1372 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| 1373 | return; |
| 1374 | } |
| 1375 | SkAnalyticEdge* prev = newEdge->fPrev; |
| 1376 | if (prev->fX <= newEdge->fX) { |
| 1377 | while (newEdge->fUpperY <= y) { |
| 1378 | check_intersection(newEdge, y, nextNextY); |
| 1379 | update_next_next_y(newEdge->fLowerY, y, nextNextY); |
| 1380 | newEdge = newEdge->fNext; |
| 1381 | } |
| 1382 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| 1383 | return; |
| 1384 | } |
| 1385 | // find first x pos to insert |
| 1386 | SkAnalyticEdge* start = backward_insert_start(prev, newEdge->fX); |
| 1387 | // insert the lot, fixing up the links as we go |
| 1388 | do { |
| 1389 | SkAnalyticEdge* next = newEdge->fNext; |
| 1390 | do { |
| 1391 | if (start->fNext == newEdge) { |
| 1392 | goto nextEdge; |
| 1393 | } |
| 1394 | SkAnalyticEdge* after = start->fNext; |
| 1395 | if (after->fX >= newEdge->fX) { |
| 1396 | break; |
| 1397 | } |
| 1398 | SkASSERT(start != after); |
| 1399 | start = after; |
| 1400 | } while (true); |
| 1401 | remove_edge(newEdge); |
| 1402 | insert_edge_after(newEdge, start); |
| 1403 | nextEdge: |
| 1404 | check_intersection(newEdge, y, nextNextY); |
| 1405 | update_next_next_y(newEdge->fLowerY, y, nextNextY); |
| 1406 | start = newEdge; |
| 1407 | newEdge = next; |
| 1408 | } while (newEdge->fUpperY <= y); |
| 1409 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| 1410 | } |
| 1411 | |
| 1412 | static void validate_edges_for_y(const SkAnalyticEdge* edge, SkFixed y) { |
| 1413 | #ifdef SK_DEBUG |
| 1414 | while (edge->fUpperY <= y) { |
| 1415 | SkASSERT(edge->fPrev && edge->fNext); |
| 1416 | SkASSERT(edge->fPrev->fNext == edge); |
| 1417 | SkASSERT(edge->fNext->fPrev == edge); |
| 1418 | SkASSERT(edge->fUpperY <= edge->fLowerY); |
| 1419 | SkASSERT(edge->fPrev->fPrev == nullptr || edge->fPrev->fX <= edge->fX); |
| 1420 | edge = edge->fNext; |
| 1421 | } |
| 1422 | #endif |
| 1423 | } |
| 1424 | |
| 1425 | // Return true if prev->fX, next->fX are too close in the current pixel row. |
| 1426 | static bool edges_too_close(SkAnalyticEdge* prev, SkAnalyticEdge* next, SkFixed lowerY) { |
| 1427 | // When next->fDX == 0, prev->fX >= next->fX - SkAbs32(next->fDX) would be false |
| 1428 | // even if prev->fX and next->fX are close and within one pixel (e.g., prev->fX == 0.1, |
| 1429 | // next->fX == 0.9). Adding SLACK = 1 to the formula would guarantee it to be true if two |
| 1430 | // edges prev and next are within one pixel. |
| 1431 | constexpr SkFixed SLACK = SK_Fixed1; |
| 1432 | |
| 1433 | // Note that even if the following test failed, the edges might still be very close to each |
| 1434 | // other at some point within the current pixel row because of prev->fDX and next->fDX. |
| 1435 | // However, to handle that case, we have to sacrafice more performance. |
| 1436 | // I think the current quality is good enough (mainly by looking at Nebraska-StateSeal.svg) |
| 1437 | // so I'll ignore fDX for performance tradeoff. |
| 1438 | return next && prev && next->fUpperY < lowerY && |
| 1439 | prev->fX + SLACK >= next->fX - SkAbs32(next->fDX); |
| 1440 | // The following is more accurate but also slower. |
| 1441 | // return (prev && prev->fPrev && next && next->fNext != nullptr && next->fUpperY < lowerY && |
| 1442 | // prev->fX + SkAbs32(prev->fDX) + SLACK >= next->fX - SkAbs32(next->fDX)); |
| 1443 | } |
| 1444 | |
| 1445 | // This function exists for the case where the previous rite edge is removed because |
| 1446 | // its fLowerY <= nextY |
| 1447 | static bool edges_too_close(int prevRite, SkFixed ul, SkFixed ll) { |
| 1448 | return prevRite > SkFixedFloorToInt(ul) || prevRite > SkFixedFloorToInt(ll); |
| 1449 | } |
| 1450 | |
| 1451 | static void blit_saved_trapezoid(SkAnalyticEdge* leftE, |
| 1452 | SkFixed lowerY, |
| 1453 | SkFixed lowerLeft, |
| 1454 | SkFixed lowerRite, |
| 1455 | AdditiveBlitter* blitter, |
| 1456 | SkAlpha* maskRow, |
| 1457 | bool isUsingMask, |
| 1458 | bool noRealBlitter, |
| 1459 | SkFixed leftClip, |
| 1460 | SkFixed rightClip) { |
| 1461 | SkAnalyticEdge* riteE = leftE->fRiteE; |
| 1462 | SkASSERT(riteE); |
| 1463 | SkASSERT(riteE->fNext == nullptr || leftE->fSavedY == riteE->fSavedY); |
| 1464 | SkASSERT(SkFixedFloorToInt(lowerY - 1) == SkFixedFloorToInt(leftE->fSavedY)); |
| 1465 | int y = SkFixedFloorToInt(leftE->fSavedY); |
| 1466 | // Instead of using fixed_to_alpha(lowerY - leftE->fSavedY), we use the following fullAlpha |
| 1467 | // to elimiate cumulative error: if there are many fractional y scan lines within the |
| 1468 | // same row, the former may accumulate the rounding error while the later won't. |
| 1469 | SkAlpha fullAlpha = fixed_to_alpha(lowerY - SkIntToFixed(y)) - |
| 1470 | fixed_to_alpha(leftE->fSavedY - SkIntToFixed(y)); |
| 1471 | // We need fSavedDY because the (quad or cubic) edge might be updated |
| 1472 | blit_trapezoid_row( |
| 1473 | blitter, |
| 1474 | y, |
| 1475 | std::max(leftE->fSavedX, leftClip), |
| 1476 | std::min(riteE->fSavedX, rightClip), |
| 1477 | std::max(lowerLeft, leftClip), |
| 1478 | std::min(lowerRite, rightClip), |
| 1479 | leftE->fSavedDY, |
| 1480 | riteE->fSavedDY, |
| 1481 | fullAlpha, |
| 1482 | maskRow, |
| 1483 | isUsingMask, |
| 1484 | noRealBlitter || (fullAlpha == 0xFF && (edges_too_close(leftE->fPrev, leftE, lowerY) || |
| 1485 | edges_too_close(riteE, riteE->fNext, lowerY))), |
| 1486 | true); |
| 1487 | leftE->fRiteE = nullptr; |
| 1488 | } |
| 1489 | |
| 1490 | static void deferred_blit(SkAnalyticEdge* leftE, |
| 1491 | SkAnalyticEdge* riteE, |
| 1492 | SkFixed left, |
| 1493 | SkFixed leftDY, // don't save leftE->fX/fDY as they may have been updated |
| 1494 | SkFixed y, |
| 1495 | SkFixed nextY, |
| 1496 | bool isIntegralNextY, |
| 1497 | bool leftEnds, |
| 1498 | bool riteEnds, |
| 1499 | AdditiveBlitter* blitter, |
| 1500 | SkAlpha* maskRow, |
| 1501 | bool isUsingMask, |
| 1502 | bool noRealBlitter, |
| 1503 | SkFixed leftClip, |
| 1504 | SkFixed rightClip, |
| 1505 | int yShift) { |
| 1506 | if (leftE->fRiteE && leftE->fRiteE != riteE) { |
| 1507 | // leftE's right edge changed. Blit the saved trapezoid. |
| 1508 | SkASSERT(leftE->fRiteE->fNext == nullptr || leftE->fRiteE->fY == y); |
| 1509 | blit_saved_trapezoid(leftE, |
| 1510 | y, |
| 1511 | left, |
| 1512 | leftE->fRiteE->fX, |
| 1513 | blitter, |
| 1514 | maskRow, |
| 1515 | isUsingMask, |
| 1516 | noRealBlitter, |
| 1517 | leftClip, |
| 1518 | rightClip); |
| 1519 | } |
| 1520 | if (!leftE->fRiteE) { |
| 1521 | // Save and defer blitting the trapezoid |
| 1522 | SkASSERT(riteE->fRiteE == nullptr); |
| 1523 | SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
| 1524 | SkASSERT(riteE->fNext == nullptr || riteE->fY == y); |
| 1525 | leftE->saveXY(left, y, leftDY); |
| 1526 | riteE->saveXY(riteE->fX, y, riteE->fDY); |
| 1527 | leftE->fRiteE = riteE; |
| 1528 | } |
| 1529 | SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
| 1530 | riteE->goY(nextY, yShift); |
| 1531 | // Always blit when edges end or nextY is integral |
| 1532 | if (isIntegralNextY || leftEnds || riteEnds) { |
| 1533 | blit_saved_trapezoid(leftE, |
| 1534 | nextY, |
| 1535 | leftE->fX, |
| 1536 | riteE->fX, |
| 1537 | blitter, |
| 1538 | maskRow, |
| 1539 | isUsingMask, |
| 1540 | noRealBlitter, |
| 1541 | leftClip, |
| 1542 | rightClip); |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | static void aaa_walk_edges(SkAnalyticEdge* prevHead, |
| 1547 | SkAnalyticEdge* nextTail, |
| 1548 | SkPathFillType fillType, |
| 1549 | AdditiveBlitter* blitter, |
| 1550 | int start_y, |
| 1551 | int stop_y, |
| 1552 | SkFixed leftClip, |
| 1553 | SkFixed rightClip, |
| 1554 | bool isUsingMask, |
| 1555 | bool forceRLE, |
| 1556 | bool useDeferred, |
| 1557 | bool skipIntersect) { |
| 1558 | prevHead->fX = prevHead->fUpperX = leftClip; |
| 1559 | nextTail->fX = nextTail->fUpperX = rightClip; |
| 1560 | SkFixed y = std::max(prevHead->fNext->fUpperY, SkIntToFixed(start_y)); |
| 1561 | SkFixed nextNextY = SK_MaxS32; |
| 1562 | |
| 1563 | { |
| 1564 | SkAnalyticEdge* edge; |
| 1565 | for (edge = prevHead->fNext; edge->fUpperY <= y; edge = edge->fNext) { |
| 1566 | edge->goY(y); |
| 1567 | update_next_next_y(edge->fLowerY, y, &nextNextY); |
| 1568 | } |
| 1569 | update_next_next_y(edge->fUpperY, y, &nextNextY); |
| 1570 | } |
| 1571 | |
| 1572 | int windingMask = SkPathFillType_IsEvenOdd(fillType) ? 1 : -1; |
| 1573 | bool isInverse = SkPathFillType_IsInverse(fillType); |
| 1574 | |
| 1575 | if (isInverse && SkIntToFixed(start_y) != y) { |
| 1576 | int width = SkFixedFloorToInt(rightClip - leftClip); |
| 1577 | if (SkFixedFloorToInt(y) != start_y) { |
| 1578 | blitter->getRealBlitter()->blitRect( |
| 1579 | SkFixedFloorToInt(leftClip), start_y, width, SkFixedFloorToInt(y) - start_y); |
| 1580 | start_y = SkFixedFloorToInt(y); |
| 1581 | } |
| 1582 | SkAlpha* maskRow = |
| 1583 | isUsingMask ? static_cast<MaskAdditiveBlitter*>(blitter)->getRow(start_y) : nullptr; |
| 1584 | blit_full_alpha(blitter, |
| 1585 | start_y, |
| 1586 | SkFixedFloorToInt(leftClip), |
| 1587 | width, |
| 1588 | fixed_to_alpha(y - SkIntToFixed(start_y)), |
| 1589 | maskRow, |
| 1590 | isUsingMask, |
| 1591 | false, |
| 1592 | false); |
| 1593 | } |
| 1594 | |
| 1595 | while (true) { |
| 1596 | int w = 0; |
| 1597 | bool in_interval = isInverse; |
| 1598 | SkFixed prevX = prevHead->fX; |
| 1599 | SkFixed nextY = std::min(nextNextY, SkFixedCeilToFixed(y + 1)); |
| 1600 | bool isIntegralNextY = (nextY & (SK_Fixed1 - 1)) == 0; |
| 1601 | SkAnalyticEdge* currE = prevHead->fNext; |
| 1602 | SkAnalyticEdge* leftE = prevHead; |
| 1603 | SkFixed left = leftClip; |
| 1604 | SkFixed leftDY = 0; |
| 1605 | bool leftEnds = false; |
| 1606 | int prevRite = SkFixedFloorToInt(leftClip); |
| 1607 | |
| 1608 | nextNextY = SK_MaxS32; |
| 1609 | |
| 1610 | SkASSERT((nextY & ((SK_Fixed1 >> 2) - 1)) == 0); |
| 1611 | int yShift = 0; |
| 1612 | if ((nextY - y) & (SK_Fixed1 >> 2)) { |
| 1613 | yShift = 2; |
| 1614 | nextY = y + (SK_Fixed1 >> 2); |
| 1615 | } else if ((nextY - y) & (SK_Fixed1 >> 1)) { |
| 1616 | yShift = 1; |
| 1617 | SkASSERT(nextY == y + (SK_Fixed1 >> 1)); |
| 1618 | } |
| 1619 | |
| 1620 | SkAlpha fullAlpha = fixed_to_alpha(nextY - y); |
| 1621 | |
| 1622 | // If we're using mask blitter, we advance the mask row in this function |
| 1623 | // to save some "if" condition checks. |
| 1624 | SkAlpha* maskRow = nullptr; |
| 1625 | if (isUsingMask) { |
| 1626 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(SkFixedFloorToInt(y)); |
| 1627 | } |
| 1628 | |
| 1629 | SkASSERT(currE->fPrev == prevHead); |
| 1630 | validate_edges_for_y(currE, y); |
| 1631 | |
| 1632 | // Even if next - y == SK_Fixed1, we can still break the left-to-right order requirement |
| 1633 | // of the SKAAClip: |\| (two trapezoids with overlapping middle wedges) |
| 1634 | bool noRealBlitter = forceRLE; // forceRLE && (nextY - y != SK_Fixed1); |
| 1635 | |
| 1636 | while (currE->fUpperY <= y) { |
| 1637 | SkASSERT(currE->fLowerY >= nextY); |
| 1638 | SkASSERT(currE->fY == y); |
| 1639 | |
| 1640 | w += currE->fWinding; |
| 1641 | bool prev_in_interval = in_interval; |
| 1642 | in_interval = !(w & windingMask) == isInverse; |
| 1643 | |
| 1644 | bool isLeft = in_interval && !prev_in_interval; |
| 1645 | bool isRite = !in_interval && prev_in_interval; |
| 1646 | bool currEnds = currE->fLowerY == nextY; |
| 1647 | |
| 1648 | if (useDeferred) { |
| 1649 | if (currE->fRiteE && !isLeft) { |
| 1650 | // currE is a left edge previously, but now it's not. |
| 1651 | // Blit the trapezoid between fSavedY and y. |
| 1652 | SkASSERT(currE->fRiteE->fY == y); |
| 1653 | blit_saved_trapezoid(currE, |
| 1654 | y, |
| 1655 | currE->fX, |
| 1656 | currE->fRiteE->fX, |
| 1657 | blitter, |
| 1658 | maskRow, |
| 1659 | isUsingMask, |
| 1660 | noRealBlitter, |
| 1661 | leftClip, |
| 1662 | rightClip); |
| 1663 | } |
| 1664 | if (leftE->fRiteE == currE && !isRite) { |
| 1665 | // currE is a right edge previously, but now it's not. |
| 1666 | // Moreover, its corresponding leftE doesn't change (otherwise we'll handle it |
| 1667 | // in the previous if clause). Hence we blit the trapezoid. |
| 1668 | blit_saved_trapezoid(leftE, |
| 1669 | y, |
| 1670 | left, |
| 1671 | currE->fX, |
| 1672 | blitter, |
| 1673 | maskRow, |
| 1674 | isUsingMask, |
| 1675 | noRealBlitter, |
| 1676 | leftClip, |
| 1677 | rightClip); |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | if (isRite) { |
| 1682 | if (useDeferred) { |
| 1683 | deferred_blit(leftE, |
| 1684 | currE, |
| 1685 | left, |
| 1686 | leftDY, |
| 1687 | y, |
| 1688 | nextY, |
| 1689 | isIntegralNextY, |
| 1690 | leftEnds, |
| 1691 | currEnds, |
| 1692 | blitter, |
| 1693 | maskRow, |
| 1694 | isUsingMask, |
| 1695 | noRealBlitter, |
| 1696 | leftClip, |
| 1697 | rightClip, |
| 1698 | yShift); |
| 1699 | } else { |
| 1700 | SkFixed rite = currE->fX; |
| 1701 | currE->goY(nextY, yShift); |
| 1702 | SkFixed nextLeft = std::max(leftClip, leftE->fX); |
| 1703 | rite = std::min(rightClip, rite); |
| 1704 | SkFixed nextRite = std::min(rightClip, currE->fX); |
| 1705 | blit_trapezoid_row( |
| 1706 | blitter, |
| 1707 | y >> 16, |
| 1708 | left, |
| 1709 | rite, |
| 1710 | nextLeft, |
| 1711 | nextRite, |
| 1712 | leftDY, |
| 1713 | currE->fDY, |
| 1714 | fullAlpha, |
| 1715 | maskRow, |
| 1716 | isUsingMask, |
| 1717 | noRealBlitter || (fullAlpha == 0xFF && |
| 1718 | (edges_too_close(prevRite, left, leftE->fX) || |
| 1719 | edges_too_close(currE, currE->fNext, nextY))), |
| 1720 | true); |
| 1721 | prevRite = SkFixedCeilToInt(std::max(rite, currE->fX)); |
| 1722 | } |
| 1723 | } else { |
| 1724 | if (isLeft) { |
| 1725 | left = std::max(currE->fX, leftClip); |
| 1726 | leftDY = currE->fDY; |
| 1727 | leftE = currE; |
| 1728 | leftEnds = leftE->fLowerY == nextY; |
| 1729 | } |
| 1730 | currE->goY(nextY, yShift); |
| 1731 | } |
| 1732 | |
| 1733 | SkAnalyticEdge* next = currE->fNext; |
| 1734 | SkFixed newX; |
| 1735 | |
| 1736 | while (currE->fLowerY <= nextY) { |
| 1737 | if (currE->fCurveCount < 0) { |
| 1738 | SkAnalyticCubicEdge* cubicEdge = (SkAnalyticCubicEdge*)currE; |
| 1739 | cubicEdge->keepContinuous(); |
| 1740 | if (!cubicEdge->updateCubic()) { |
| 1741 | break; |
| 1742 | } |
| 1743 | } else if (currE->fCurveCount > 0) { |
| 1744 | SkAnalyticQuadraticEdge* quadEdge = (SkAnalyticQuadraticEdge*)currE; |
| 1745 | quadEdge->keepContinuous(); |
| 1746 | if (!quadEdge->updateQuadratic()) { |
| 1747 | break; |
| 1748 | } |
| 1749 | } else { |
| 1750 | break; |
| 1751 | } |
| 1752 | } |
| 1753 | SkASSERT(currE->fY == nextY); |
| 1754 | |
| 1755 | if (currE->fLowerY <= nextY) { |
| 1756 | remove_edge(currE); |
| 1757 | } else { |
| 1758 | update_next_next_y(currE->fLowerY, nextY, &nextNextY); |
| 1759 | newX = currE->fX; |
| 1760 | SkASSERT(currE->fLowerY > nextY); |
| 1761 | if (newX < prevX) { // ripple currE backwards until it is x-sorted |
| 1762 | // If the crossing edge is a right edge, blit the saved trapezoid. |
| 1763 | if (leftE->fRiteE == currE && useDeferred) { |
| 1764 | SkASSERT(leftE->fY == nextY && currE->fY == nextY); |
| 1765 | blit_saved_trapezoid(leftE, |
| 1766 | nextY, |
| 1767 | leftE->fX, |
| 1768 | currE->fX, |
| 1769 | blitter, |
| 1770 | maskRow, |
| 1771 | isUsingMask, |
| 1772 | noRealBlitter, |
| 1773 | leftClip, |
| 1774 | rightClip); |
| 1775 | } |
| 1776 | backward_insert_edge_based_on_x(currE); |
| 1777 | } else { |
| 1778 | prevX = newX; |
| 1779 | } |
| 1780 | if (!skipIntersect) { |
| 1781 | check_intersection(currE, nextY, &nextNextY); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | currE = next; |
| 1786 | SkASSERT(currE); |
| 1787 | } |
| 1788 | |
| 1789 | // was our right-edge culled away? |
| 1790 | if (in_interval) { |
| 1791 | if (useDeferred) { |
| 1792 | deferred_blit(leftE, |
| 1793 | nextTail, |
| 1794 | left, |
| 1795 | leftDY, |
| 1796 | y, |
| 1797 | nextY, |
| 1798 | isIntegralNextY, |
| 1799 | leftEnds, |
| 1800 | false, |
| 1801 | blitter, |
| 1802 | maskRow, |
| 1803 | isUsingMask, |
| 1804 | noRealBlitter, |
| 1805 | leftClip, |
| 1806 | rightClip, |
| 1807 | yShift); |
| 1808 | } else { |
| 1809 | blit_trapezoid_row(blitter, |
| 1810 | y >> 16, |
| 1811 | left, |
| 1812 | rightClip, |
| 1813 | std::max(leftClip, leftE->fX), |
| 1814 | rightClip, |
| 1815 | leftDY, |
| 1816 | 0, |
| 1817 | fullAlpha, |
| 1818 | maskRow, |
| 1819 | isUsingMask, |
| 1820 | noRealBlitter || (fullAlpha == 0xFF && |
| 1821 | edges_too_close(leftE->fPrev, leftE, nextY)), |
| 1822 | true); |
| 1823 | } |
| 1824 | } |
| 1825 | |
| 1826 | if (forceRLE) { |
| 1827 | ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY); |
| 1828 | } |
| 1829 | |
| 1830 | y = nextY; |
| 1831 | if (y >= SkIntToFixed(stop_y)) { |
| 1832 | break; |
| 1833 | } |
| 1834 | |
| 1835 | // now currE points to the first edge with a fUpperY larger than the previous y |
| 1836 | insert_new_edges(currE, y, &nextNextY); |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | static SK_ALWAYS_INLINE void aaa_fill_path( |
| 1841 | const SkPath& path, |
| 1842 | const SkIRect& clipRect, |
| 1843 | AdditiveBlitter* blitter, |
| 1844 | int start_y, |
| 1845 | int stop_y, |
| 1846 | bool pathContainedInClip, |
| 1847 | bool isUsingMask, |
| 1848 | bool forceRLE) { // forceRLE implies that SkAAClip is calling us |
| 1849 | SkASSERT(blitter); |
| 1850 | |
| 1851 | SkAnalyticEdgeBuilder builder; |
| 1852 | int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &clipRect); |
| 1853 | SkAnalyticEdge** list = builder.analyticEdgeList(); |
| 1854 | |
| 1855 | SkIRect rect = clipRect; |
| 1856 | if (0 == count) { |
| 1857 | if (path.isInverseFillType()) { |
| 1858 | /* |
| 1859 | * Since we are in inverse-fill, our caller has already drawn above |
| 1860 | * our top (start_y) and will draw below our bottom (stop_y). Thus |
| 1861 | * we need to restrict our drawing to the intersection of the clip |
| 1862 | * and those two limits. |
| 1863 | */ |
| 1864 | if (rect.fTop < start_y) { |
| 1865 | rect.fTop = start_y; |
| 1866 | } |
| 1867 | if (rect.fBottom > stop_y) { |
| 1868 | rect.fBottom = stop_y; |
| 1869 | } |
| 1870 | if (!rect.isEmpty()) { |
| 1871 | blitter->getRealBlitter()->blitRect( |
| 1872 | rect.fLeft, rect.fTop, rect.width(), rect.height()); |
| 1873 | } |
| 1874 | } |
| 1875 | return; |
| 1876 | } |
| 1877 | |
| 1878 | SkAnalyticEdge headEdge, tailEdge, *last; |
| 1879 | // this returns the first and last edge after they're sorted into a dlink list |
| 1880 | SkAnalyticEdge* edge = sort_edges(list, count, &last); |
| 1881 | |
| 1882 | headEdge.fRiteE = nullptr; |
| 1883 | headEdge.fPrev = nullptr; |
| 1884 | headEdge.fNext = edge; |
| 1885 | headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
| 1886 | headEdge.fX = SK_MinS32; |
| 1887 | headEdge.fDX = 0; |
| 1888 | headEdge.fDY = SK_MaxS32; |
| 1889 | headEdge.fUpperX = SK_MinS32; |
| 1890 | edge->fPrev = &headEdge; |
| 1891 | |
| 1892 | tailEdge.fRiteE = nullptr; |
| 1893 | tailEdge.fPrev = last; |
| 1894 | tailEdge.fNext = nullptr; |
| 1895 | tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
| 1896 | tailEdge.fX = SK_MaxS32; |
| 1897 | tailEdge.fDX = 0; |
| 1898 | tailEdge.fDY = SK_MaxS32; |
| 1899 | tailEdge.fUpperX = SK_MaxS32; |
| 1900 | last->fNext = &tailEdge; |
| 1901 | |
| 1902 | // now edge is the head of the sorted linklist |
| 1903 | |
| 1904 | if (!pathContainedInClip && start_y < clipRect.fTop) { |
| 1905 | start_y = clipRect.fTop; |
| 1906 | } |
| 1907 | if (!pathContainedInClip && stop_y > clipRect.fBottom) { |
| 1908 | stop_y = clipRect.fBottom; |
| 1909 | } |
| 1910 | |
| 1911 | SkFixed leftBound = SkIntToFixed(rect.fLeft); |
| 1912 | SkFixed rightBound = SkIntToFixed(rect.fRight); |
| 1913 | if (isUsingMask) { |
| 1914 | // If we're using mask, then we have to limit the bound within the path bounds. |
| 1915 | // Otherwise, the edge drift may access an invalid address inside the mask. |
| 1916 | SkIRect ir; |
| 1917 | path.getBounds().roundOut(&ir); |
| 1918 | leftBound = std::max(leftBound, SkIntToFixed(ir.fLeft)); |
| 1919 | rightBound = std::min(rightBound, SkIntToFixed(ir.fRight)); |
| 1920 | } |
| 1921 | |
| 1922 | if (!path.isInverseFillType() && path.isConvex() && count >= 2) { |
| 1923 | aaa_walk_convex_edges( |
| 1924 | &headEdge, blitter, start_y, stop_y, leftBound, rightBound, isUsingMask); |
| 1925 | } else { |
| 1926 | // Only use deferred blitting if there are many edges. |
| 1927 | bool useDeferred = |
| 1928 | count > |
| 1929 | (SkFixedFloorToInt(tailEdge.fPrev->fLowerY - headEdge.fNext->fUpperY) + 1) * 4; |
| 1930 | |
| 1931 | // We skip intersection computation if there are many points which probably already |
| 1932 | // give us enough fractional scan lines. |
| 1933 | bool skipIntersect = path.countPoints() > (stop_y - start_y) * 2; |
| 1934 | |
| 1935 | aaa_walk_edges(&headEdge, |
| 1936 | &tailEdge, |
| 1937 | path.getFillType(), |
| 1938 | blitter, |
| 1939 | start_y, |
| 1940 | stop_y, |
| 1941 | leftBound, |
| 1942 | rightBound, |
| 1943 | isUsingMask, |
| 1944 | forceRLE, |
| 1945 | useDeferred, |
| 1946 | skipIntersect); |
| 1947 | } |
| 1948 | } |
| 1949 | |
| 1950 | void SkScan::AAAFillPath(const SkPath& path, |
| 1951 | SkBlitter* blitter, |
| 1952 | const SkIRect& ir, |
| 1953 | const SkIRect& clipBounds, |
| 1954 | bool forceRLE) { |
| 1955 | bool containedInClip = clipBounds.contains(ir); |
| 1956 | bool isInverse = path.isInverseFillType(); |
| 1957 | |
| 1958 | // The mask blitter (where we store intermediate alpha values directly in a mask, and then call |
| 1959 | // the real blitter once in the end to blit the whole mask) is faster than the RLE blitter when |
| 1960 | // the blit region is small enough (i.e., CanHandleRect(ir)). When isInverse is true, the blit |
| 1961 | // region is no longer the rectangle ir so we won't use the mask blitter. The caller may also |
| 1962 | // use the forceRLE flag to force not using the mask blitter. Also, when the path is a simple |
| 1963 | // rect, preparing a mask and blitting it might have too much overhead. Hence we'll use |
| 1964 | // blitFatAntiRect to avoid the mask and its overhead. |
| 1965 | if (MaskAdditiveBlitter::CanHandleRect(ir) && !isInverse && !forceRLE) { |
| 1966 | // blitFatAntiRect is slower than the normal AAA flow without MaskAdditiveBlitter. |
| 1967 | // Hence only tryBlitFatAntiRect when MaskAdditiveBlitter would have been used. |
| 1968 | if (!TryBlitFatAntiRect(blitter, path, clipBounds)) { |
| 1969 | MaskAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| 1970 | aaa_fill_path(path, |
| 1971 | clipBounds, |
| 1972 | &additiveBlitter, |
| 1973 | ir.fTop, |
| 1974 | ir.fBottom, |
| 1975 | containedInClip, |
| 1976 | true, |
| 1977 | forceRLE); |
| 1978 | } |
| 1979 | } else if (!isInverse && path.isConvex()) { |
| 1980 | // If the filling area is convex (i.e., path.isConvex && !isInverse), our simpler |
| 1981 | // aaa_walk_convex_edges won't generate alphas above 255. Hence we don't need |
| 1982 | // SafeRLEAdditiveBlitter (which is slow due to clamping). The basic RLE blitter |
| 1983 | // RunBasedAdditiveBlitter would suffice. |
| 1984 | RunBasedAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| 1985 | aaa_fill_path(path, |
| 1986 | clipBounds, |
| 1987 | &additiveBlitter, |
| 1988 | ir.fTop, |
| 1989 | ir.fBottom, |
| 1990 | containedInClip, |
| 1991 | false, |
| 1992 | forceRLE); |
| 1993 | } else { |
| 1994 | // If the filling area might not be convex, the more involved aaa_walk_edges would |
| 1995 | // be called and we have to clamp the alpha downto 255. The SafeRLEAdditiveBlitter |
| 1996 | // does that at a cost of performance. |
| 1997 | SafeRLEAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| 1998 | aaa_fill_path(path, |
| 1999 | clipBounds, |
| 2000 | &additiveBlitter, |
| 2001 | ir.fTop, |
| 2002 | ir.fBottom, |
| 2003 | containedInClip, |
| 2004 | false, |
| 2005 | forceRLE); |
| 2006 | } |
| 2007 | } |
| 2008 | #endif // defined(SK_DISABLE_AAA) |
| 2009 | |