1 | /* |
2 | * Copyright 2016 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkPath.h" |
9 | #include "include/core/SkRegion.h" |
10 | #include "include/private/SkTemplates.h" |
11 | #include "include/private/SkTo.h" |
12 | #include "src/core/SkAnalyticEdge.h" |
13 | #include "src/core/SkAntiRun.h" |
14 | #include "src/core/SkAutoMalloc.h" |
15 | #include "src/core/SkBlitter.h" |
16 | #include "src/core/SkEdge.h" |
17 | #include "src/core/SkEdgeBuilder.h" |
18 | #include "src/core/SkGeometry.h" |
19 | #include "src/core/SkQuadClipper.h" |
20 | #include "src/core/SkRasterClip.h" |
21 | #include "src/core/SkScan.h" |
22 | #include "src/core/SkScanPriv.h" |
23 | #include "src/core/SkTSort.h" |
24 | |
25 | #include <utility> |
26 | |
27 | #if defined(SK_DISABLE_AAA) |
28 | void SkScan::AAAFillPath(const SkPath&, SkBlitter*, const SkIRect&, const SkIRect&, bool) { |
29 | SkDEBUGFAIL("AAA Disabled" ); |
30 | return; |
31 | } |
32 | #else |
33 | |
34 | /* |
35 | |
36 | The following is a high-level overview of our analytic anti-aliasing |
37 | algorithm. We consider a path as a collection of line segments, as |
38 | quadratic/cubic curves are converted to small line segments. Without loss of |
39 | generality, let's assume that the draw region is [0, W] x [0, H]. |
40 | |
41 | Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
42 | sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
43 | scan lines, while the previous method always uses equal-spaced scan lines, |
44 | such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
45 | and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
46 | 16-supersampling AA algorithm. |
47 | |
48 | Our algorithm contains scan lines y = c_i for c_i that is either: |
49 | |
50 | 1. an integer between [0, H] |
51 | |
52 | 2. the y value of a line segment endpoint |
53 | |
54 | 3. the y value of an intersection of two line segments |
55 | |
56 | For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
57 | the coverage of this horizontal strip of our path on each pixel. This can be |
58 | done very efficiently because the strip of our path now only consists of |
59 | trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
60 | rectangles and triangles as special cases). |
61 | |
62 | We now describe how the coverage of single pixel is computed against such a |
63 | trapezoid. That coverage is essentially the intersection area of a rectangle |
64 | (e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
65 | could be complicated, as shown in the example region A below: |
66 | |
67 | +-----------\----+ |
68 | | \ C| |
69 | | \ | |
70 | \ \ | |
71 | |\ A \| |
72 | | \ \ |
73 | | \ | |
74 | | B \ | |
75 | +----\-----------+ |
76 | |
77 | However, we don't have to compute the area of A directly. Instead, we can |
78 | compute the excluded area, which are B and C, quite easily, because they're |
79 | just triangles. In fact, we can prove that an excluded region (take B as an |
80 | example) is either itself a simple trapezoid (including rectangles, triangles, |
81 | and empty regions), or its opposite (the opposite of B is A + C) is a simple |
82 | trapezoid. In any case, we can compute its area efficiently. |
83 | |
84 | In summary, our algorithm has a higher quality because it generates ground- |
85 | truth coverages analytically. It is also faster because it has much fewer |
86 | unnessasary horizontal scan lines. For example, given a triangle path, the |
87 | number of scan lines in our algorithm is only about 3 + H while the |
88 | 16-supersampling algorithm has about 4H scan lines. |
89 | |
90 | */ |
91 | |
92 | static void add_alpha(SkAlpha* alpha, SkAlpha delta) { |
93 | SkASSERT(*alpha + delta <= 256); |
94 | *alpha = SkAlphaRuns::CatchOverflow(*alpha + delta); |
95 | } |
96 | |
97 | static void safely_add_alpha(SkAlpha* alpha, SkAlpha delta) { |
98 | *alpha = std::min(0xFF, *alpha + delta); |
99 | } |
100 | |
101 | class AdditiveBlitter : public SkBlitter { |
102 | public: |
103 | ~AdditiveBlitter() override {} |
104 | |
105 | virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
106 | |
107 | virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0; |
108 | virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
109 | virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
110 | |
111 | void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { |
112 | SkDEBUGFAIL("Please call real blitter's blitAntiH instead." ); |
113 | } |
114 | |
115 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
116 | SkDEBUGFAIL("Please call real blitter's blitV instead." ); |
117 | } |
118 | |
119 | void blitH(int x, int y, int width) override { |
120 | SkDEBUGFAIL("Please call real blitter's blitH instead." ); |
121 | } |
122 | |
123 | void blitRect(int x, int y, int width, int height) override { |
124 | SkDEBUGFAIL("Please call real blitter's blitRect instead." ); |
125 | } |
126 | |
127 | void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
128 | override { |
129 | SkDEBUGFAIL("Please call real blitter's blitAntiRect instead." ); |
130 | } |
131 | |
132 | virtual int getWidth() = 0; |
133 | |
134 | // Flush the additive alpha cache if floor(y) and floor(nextY) is different |
135 | // (i.e., we'll start working on a new pixel row). |
136 | virtual void flush_if_y_changed(SkFixed y, SkFixed nextY) = 0; |
137 | }; |
138 | |
139 | // We need this mask blitter because it significantly accelerates small path filling. |
140 | class MaskAdditiveBlitter : public AdditiveBlitter { |
141 | public: |
142 | MaskAdditiveBlitter(SkBlitter* realBlitter, |
143 | const SkIRect& ir, |
144 | const SkIRect& clipBounds, |
145 | bool isInverse); |
146 | ~MaskAdditiveBlitter() override { fRealBlitter->blitMask(fMask, fClipRect); } |
147 | |
148 | // Most of the time, we still consider this mask blitter as the real blitter |
149 | // so we can accelerate blitRect and others. But sometimes we want to return |
150 | // the absolute real blitter (e.g., when we fall back to the old code path). |
151 | SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
152 | return forceRealBlitter ? fRealBlitter : this; |
153 | } |
154 | |
155 | // Virtual function is slow. So don't use this. Directly add alpha to the mask instead. |
156 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
157 | |
158 | // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges |
159 | // Since there aren't many rectangles, we can still bear the slow speed of virtual functions. |
160 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
161 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
162 | void blitV(int x, int y, int height, SkAlpha alpha) override; |
163 | void blitRect(int x, int y, int width, int height) override; |
164 | void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
165 | override; |
166 | |
167 | // The flush is only needed for RLE (RunBasedAdditiveBlitter) |
168 | void flush_if_y_changed(SkFixed y, SkFixed nextY) override {} |
169 | |
170 | int getWidth() override { return fClipRect.width(); } |
171 | |
172 | static bool CanHandleRect(const SkIRect& bounds) { |
173 | int width = bounds.width(); |
174 | if (width > MaskAdditiveBlitter::kMAX_WIDTH) { |
175 | return false; |
176 | } |
177 | int64_t rb = SkAlign4(width); |
178 | // use 64bits to detect overflow |
179 | int64_t storage = rb * bounds.height(); |
180 | |
181 | return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
182 | (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
183 | } |
184 | |
185 | // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
186 | uint8_t* getRow(int y) { |
187 | if (y != fY) { |
188 | fY = y; |
189 | fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft; |
190 | } |
191 | return fRow; |
192 | } |
193 | |
194 | private: |
195 | // so we don't try to do very wide things, where the RLE blitter would be faster |
196 | static const int kMAX_WIDTH = 32; |
197 | static const int kMAX_STORAGE = 1024; |
198 | |
199 | SkBlitter* fRealBlitter; |
200 | SkMask fMask; |
201 | SkIRect fClipRect; |
202 | // we add 2 because we can write 1 extra byte at either end due to precision error |
203 | uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
204 | |
205 | uint8_t* fRow; |
206 | int fY; |
207 | }; |
208 | |
209 | MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, |
210 | const SkIRect& ir, |
211 | const SkIRect& clipBounds, |
212 | bool isInverse) { |
213 | SkASSERT(CanHandleRect(ir)); |
214 | SkASSERT(!isInverse); |
215 | |
216 | fRealBlitter = realBlitter; |
217 | |
218 | fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage |
219 | fMask.fBounds = ir; |
220 | fMask.fRowBytes = ir.width(); |
221 | fMask.fFormat = SkMask::kA8_Format; |
222 | |
223 | fY = ir.fTop - 1; |
224 | fRow = nullptr; |
225 | |
226 | fClipRect = ir; |
227 | if (!fClipRect.intersect(clipBounds)) { |
228 | SkASSERT(0); |
229 | fClipRect.setEmpty(); |
230 | } |
231 | |
232 | memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
233 | } |
234 | |
235 | void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
236 | SK_ABORT("Don't use this; directly add alphas to the mask." ); |
237 | } |
238 | |
239 | void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
240 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
241 | add_alpha(&this->getRow(y)[x], alpha); |
242 | } |
243 | |
244 | void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
245 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
246 | uint8_t* row = this->getRow(y); |
247 | for (int i = 0; i < width; ++i) { |
248 | add_alpha(&row[x + i], alpha); |
249 | } |
250 | } |
251 | |
252 | void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
253 | if (alpha == 0) { |
254 | return; |
255 | } |
256 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
257 | // This must be called as if this is a real blitter. |
258 | // So we directly set alpha rather than adding it. |
259 | uint8_t* row = this->getRow(y); |
260 | for (int i = 0; i < height; ++i) { |
261 | row[x] = alpha; |
262 | row += fMask.fRowBytes; |
263 | } |
264 | } |
265 | |
266 | void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
267 | SkASSERT(x >= fMask.fBounds.fLeft - 1); |
268 | // This must be called as if this is a real blitter. |
269 | // So we directly set alpha rather than adding it. |
270 | uint8_t* row = this->getRow(y); |
271 | for (int i = 0; i < height; ++i) { |
272 | memset(row + x, 0xFF, width); |
273 | row += fMask.fRowBytes; |
274 | } |
275 | } |
276 | |
277 | void MaskAdditiveBlitter::blitAntiRect(int x, |
278 | int y, |
279 | int width, |
280 | int height, |
281 | SkAlpha leftAlpha, |
282 | SkAlpha rightAlpha) { |
283 | blitV(x, y, height, leftAlpha); |
284 | blitV(x + 1 + width, y, height, rightAlpha); |
285 | blitRect(x + 1, y, width, height); |
286 | } |
287 | |
288 | class RunBasedAdditiveBlitter : public AdditiveBlitter { |
289 | public: |
290 | RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
291 | const SkIRect& ir, |
292 | const SkIRect& clipBounds, |
293 | bool isInverse); |
294 | |
295 | ~RunBasedAdditiveBlitter() override { this->flush(); } |
296 | |
297 | SkBlitter* getRealBlitter(bool forceRealBlitter) override { return fRealBlitter; } |
298 | |
299 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
300 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
301 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
302 | |
303 | int getWidth() override { return fWidth; } |
304 | |
305 | void flush_if_y_changed(SkFixed y, SkFixed nextY) override { |
306 | if (SkFixedFloorToInt(y) != SkFixedFloorToInt(nextY)) { |
307 | this->flush(); |
308 | } |
309 | } |
310 | |
311 | protected: |
312 | SkBlitter* fRealBlitter; |
313 | |
314 | int fCurrY; // Current y coordinate. |
315 | int fWidth; // Widest row of region to be blitted |
316 | int fLeft; // Leftmost x coordinate in any row |
317 | int fTop; // Initial y coordinate (top of bounds) |
318 | |
319 | // The next three variables are used to track a circular buffer that |
320 | // contains the values used in SkAlphaRuns. These variables should only |
321 | // ever be updated in advanceRuns(), and fRuns should always point to |
322 | // a valid SkAlphaRuns... |
323 | int fRunsToBuffer; |
324 | void* fRunsBuffer; |
325 | int fCurrentRun; |
326 | SkAlphaRuns fRuns; |
327 | |
328 | int fOffsetX; |
329 | |
330 | bool check(int x, int width) const { return x >= 0 && x + width <= fWidth; } |
331 | |
332 | // extra one to store the zero at the end |
333 | int getRunsSz() const { return (fWidth + 1 + (fWidth + 2) / 2) * sizeof(int16_t); } |
334 | |
335 | // This function updates the fRuns variable to point to the next buffer space |
336 | // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
337 | // and resets fRuns to point to an empty scanline. |
338 | void advanceRuns() { |
339 | const size_t kRunsSz = this->getRunsSz(); |
340 | fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
341 | fRuns.fRuns = reinterpret_cast<int16_t*>(reinterpret_cast<uint8_t*>(fRunsBuffer) + |
342 | fCurrentRun * kRunsSz); |
343 | fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
344 | fRuns.reset(fWidth); |
345 | } |
346 | |
347 | // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
348 | SkAlpha snapAlpha(SkAlpha alpha) { return alpha > 247 ? 0xFF : alpha < 8 ? 0x00 : alpha; } |
349 | |
350 | void flush() { |
351 | if (fCurrY >= fTop) { |
352 | SkASSERT(fCurrentRun < fRunsToBuffer); |
353 | for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
354 | // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
355 | fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
356 | } |
357 | if (!fRuns.empty()) { |
358 | // SkDEBUGCODE(fRuns.dump();) |
359 | fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
360 | this->advanceRuns(); |
361 | fOffsetX = 0; |
362 | } |
363 | fCurrY = fTop - 1; |
364 | } |
365 | } |
366 | |
367 | void checkY(int y) { |
368 | if (y != fCurrY) { |
369 | this->flush(); |
370 | fCurrY = y; |
371 | } |
372 | } |
373 | }; |
374 | |
375 | RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
376 | const SkIRect& ir, |
377 | const SkIRect& clipBounds, |
378 | bool isInverse) { |
379 | fRealBlitter = realBlitter; |
380 | |
381 | SkIRect sectBounds; |
382 | if (isInverse) { |
383 | // We use the clip bounds instead of the ir, since we may be asked to |
384 | // draw outside of the rect when we're a inverse filltype |
385 | sectBounds = clipBounds; |
386 | } else { |
387 | if (!sectBounds.intersect(ir, clipBounds)) { |
388 | sectBounds.setEmpty(); |
389 | } |
390 | } |
391 | |
392 | const int left = sectBounds.left(); |
393 | const int right = sectBounds.right(); |
394 | |
395 | fLeft = left; |
396 | fWidth = right - left; |
397 | fTop = sectBounds.top(); |
398 | fCurrY = fTop - 1; |
399 | |
400 | fRunsToBuffer = realBlitter->requestRowsPreserved(); |
401 | fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
402 | fCurrentRun = -1; |
403 | |
404 | this->advanceRuns(); |
405 | |
406 | fOffsetX = 0; |
407 | } |
408 | |
409 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
410 | checkY(y); |
411 | x -= fLeft; |
412 | |
413 | if (x < 0) { |
414 | len += x; |
415 | antialias -= x; |
416 | x = 0; |
417 | } |
418 | len = std::min(len, fWidth - x); |
419 | SkASSERT(check(x, len)); |
420 | |
421 | if (x < fOffsetX) { |
422 | fOffsetX = 0; |
423 | } |
424 | |
425 | fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
426 | for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
427 | for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
428 | fRuns.fRuns[x + i + j] = 1; |
429 | fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
430 | } |
431 | fRuns.fRuns[x + i] = 1; |
432 | } |
433 | for (int i = 0; i < len; ++i) { |
434 | add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
435 | } |
436 | } |
437 | |
438 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
439 | checkY(y); |
440 | x -= fLeft; |
441 | |
442 | if (x < fOffsetX) { |
443 | fOffsetX = 0; |
444 | } |
445 | |
446 | if (this->check(x, 1)) { |
447 | fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
448 | } |
449 | } |
450 | |
451 | void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
452 | checkY(y); |
453 | x -= fLeft; |
454 | |
455 | if (x < fOffsetX) { |
456 | fOffsetX = 0; |
457 | } |
458 | |
459 | if (this->check(x, width)) { |
460 | fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
461 | } |
462 | } |
463 | |
464 | // This exists specifically for concave path filling. |
465 | // In those cases, we can easily accumulate alpha greater than 0xFF. |
466 | class SafeRLEAdditiveBlitter : public RunBasedAdditiveBlitter { |
467 | public: |
468 | SafeRLEAdditiveBlitter(SkBlitter* realBlitter, |
469 | const SkIRect& ir, |
470 | const SkIRect& clipBounds, |
471 | bool isInverse) |
472 | : RunBasedAdditiveBlitter(realBlitter, ir, clipBounds, isInverse) {} |
473 | |
474 | void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
475 | void blitAntiH(int x, int y, const SkAlpha alpha) override; |
476 | void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
477 | }; |
478 | |
479 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
480 | checkY(y); |
481 | x -= fLeft; |
482 | |
483 | if (x < 0) { |
484 | len += x; |
485 | antialias -= x; |
486 | x = 0; |
487 | } |
488 | len = std::min(len, fWidth - x); |
489 | SkASSERT(check(x, len)); |
490 | |
491 | if (x < fOffsetX) { |
492 | fOffsetX = 0; |
493 | } |
494 | |
495 | fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
496 | for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
497 | for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
498 | fRuns.fRuns[x + i + j] = 1; |
499 | fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
500 | } |
501 | fRuns.fRuns[x + i] = 1; |
502 | } |
503 | for (int i = 0; i < len; ++i) { |
504 | safely_add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
505 | } |
506 | } |
507 | |
508 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
509 | checkY(y); |
510 | x -= fLeft; |
511 | |
512 | if (x < fOffsetX) { |
513 | fOffsetX = 0; |
514 | } |
515 | |
516 | if (check(x, 1)) { |
517 | // Break the run |
518 | fOffsetX = fRuns.add(x, 0, 1, 0, 0, fOffsetX); |
519 | safely_add_alpha(&fRuns.fAlpha[x], alpha); |
520 | } |
521 | } |
522 | |
523 | void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
524 | checkY(y); |
525 | x -= fLeft; |
526 | |
527 | if (x < fOffsetX) { |
528 | fOffsetX = 0; |
529 | } |
530 | |
531 | if (check(x, width)) { |
532 | // Break the run |
533 | fOffsetX = fRuns.add(x, 0, width, 0, 0, fOffsetX); |
534 | for (int i = x; i < x + width; i += fRuns.fRuns[i]) { |
535 | safely_add_alpha(&fRuns.fAlpha[i], alpha); |
536 | } |
537 | } |
538 | } |
539 | |
540 | // Return the alpha of a trapezoid whose height is 1 |
541 | static SkAlpha trapezoid_to_alpha(SkFixed l1, SkFixed l2) { |
542 | SkASSERT(l1 >= 0 && l2 >= 0); |
543 | SkFixed area = (l1 + l2) / 2; |
544 | return SkTo<SkAlpha>(area >> 8); |
545 | } |
546 | |
547 | // The alpha of right-triangle (a, a*b) |
548 | static SkAlpha partial_triangle_to_alpha(SkFixed a, SkFixed b) { |
549 | SkASSERT(a <= SK_Fixed1); |
550 | #if 0 |
551 | // TODO(mtklein): skia:8877 |
552 | SkASSERT(b <= SK_Fixed1); |
553 | #endif |
554 | |
555 | // Approximating... |
556 | // SkFixed area = SkFixedMul(a, SkFixedMul(a,b)) / 2; |
557 | SkFixed area = (a >> 11) * (a >> 11) * (b >> 11); |
558 | |
559 | #if 0 |
560 | // TODO(mtklein): skia:8877 |
561 | return SkTo<SkAlpha>(area >> 8); |
562 | #else |
563 | return SkTo<SkAlpha>((area >> 8) & 0xFF); |
564 | #endif |
565 | } |
566 | |
567 | static SkAlpha get_partial_alpha(SkAlpha alpha, SkFixed partialHeight) { |
568 | return SkToU8(SkFixedRoundToInt(alpha * partialHeight)); |
569 | } |
570 | |
571 | static SkAlpha get_partial_alpha(SkAlpha alpha, SkAlpha fullAlpha) { |
572 | return (alpha * fullAlpha) >> 8; |
573 | } |
574 | |
575 | // For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right. |
576 | // For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255. |
577 | // This is rarely the problem so we'll only use this for blitting rectangles. |
578 | static SkAlpha fixed_to_alpha(SkFixed f) { |
579 | SkASSERT(f <= SK_Fixed1); |
580 | return get_partial_alpha(0xFF, f); |
581 | } |
582 | |
583 | // Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
584 | // approximate (very coarsely) the x coordinate of the intersection. |
585 | static SkFixed approximate_intersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
586 | if (l1 > r1) { |
587 | std::swap(l1, r1); |
588 | } |
589 | if (l2 > r2) { |
590 | std::swap(l2, r2); |
591 | } |
592 | return (std::max(l1, l2) + std::min(r1, r2)) / 2; |
593 | } |
594 | |
595 | // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
596 | static void compute_alpha_above_line(SkAlpha* alphas, |
597 | SkFixed l, |
598 | SkFixed r, |
599 | SkFixed dY, |
600 | SkAlpha fullAlpha) { |
601 | SkASSERT(l <= r); |
602 | SkASSERT(l >> 16 == 0); |
603 | int R = SkFixedCeilToInt(r); |
604 | if (R == 0) { |
605 | return; |
606 | } else if (R == 1) { |
607 | alphas[0] = get_partial_alpha(((R << 17) - l - r) >> 9, fullAlpha); |
608 | } else { |
609 | SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
610 | SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
611 | SkFixed firstH = SkFixedMul(first, dY); // vertical edge of the left-most triangle |
612 | alphas[0] = SkFixedMul(first, firstH) >> 9; // triangle alpha |
613 | SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
614 | for (int i = 1; i < R - 1; ++i) { |
615 | alphas[i] = alpha16 >> 8; |
616 | alpha16 += dY; |
617 | } |
618 | alphas[R - 1] = fullAlpha - partial_triangle_to_alpha(last, dY); |
619 | } |
620 | } |
621 | |
622 | // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
623 | static void compute_alpha_below_line(SkAlpha* alphas, |
624 | SkFixed l, |
625 | SkFixed r, |
626 | SkFixed dY, |
627 | SkAlpha fullAlpha) { |
628 | SkASSERT(l <= r); |
629 | SkASSERT(l >> 16 == 0); |
630 | int R = SkFixedCeilToInt(r); |
631 | if (R == 0) { |
632 | return; |
633 | } else if (R == 1) { |
634 | alphas[0] = get_partial_alpha(trapezoid_to_alpha(l, r), fullAlpha); |
635 | } else { |
636 | SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
637 | SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
638 | SkFixed lastH = SkFixedMul(last, dY); // vertical edge of the right-most triangle |
639 | alphas[R - 1] = SkFixedMul(last, lastH) >> 9; // triangle alpha |
640 | SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
641 | for (int i = R - 2; i > 0; i--) { |
642 | alphas[i] = (alpha16 >> 8) & 0xFF; |
643 | alpha16 += dY; |
644 | } |
645 | alphas[0] = fullAlpha - partial_triangle_to_alpha(first, dY); |
646 | } |
647 | } |
648 | |
649 | // Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
650 | static SK_ALWAYS_INLINE void blit_single_alpha(AdditiveBlitter* blitter, |
651 | int y, |
652 | int x, |
653 | SkAlpha alpha, |
654 | SkAlpha fullAlpha, |
655 | SkAlpha* maskRow, |
656 | bool isUsingMask, |
657 | bool noRealBlitter, |
658 | bool needSafeCheck) { |
659 | if (isUsingMask) { |
660 | if (fullAlpha == 0xFF && !noRealBlitter) { // noRealBlitter is needed for concave paths |
661 | maskRow[x] = alpha; |
662 | } else if (needSafeCheck) { |
663 | safely_add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
664 | } else { |
665 | add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
666 | } |
667 | } else { |
668 | if (fullAlpha == 0xFF && !noRealBlitter) { |
669 | blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
670 | } else { |
671 | blitter->blitAntiH(x, y, get_partial_alpha(alpha, fullAlpha)); |
672 | } |
673 | } |
674 | } |
675 | |
676 | static SK_ALWAYS_INLINE void blit_two_alphas(AdditiveBlitter* blitter, |
677 | int y, |
678 | int x, |
679 | SkAlpha a1, |
680 | SkAlpha a2, |
681 | SkAlpha fullAlpha, |
682 | SkAlpha* maskRow, |
683 | bool isUsingMask, |
684 | bool noRealBlitter, |
685 | bool needSafeCheck) { |
686 | if (isUsingMask) { |
687 | if (needSafeCheck) { |
688 | safely_add_alpha(&maskRow[x], a1); |
689 | safely_add_alpha(&maskRow[x + 1], a2); |
690 | } else { |
691 | add_alpha(&maskRow[x], a1); |
692 | add_alpha(&maskRow[x + 1], a2); |
693 | } |
694 | } else { |
695 | if (fullAlpha == 0xFF && !noRealBlitter) { |
696 | blitter->getRealBlitter()->blitAntiH2(x, y, a1, a2); |
697 | } else { |
698 | blitter->blitAntiH(x, y, a1); |
699 | blitter->blitAntiH(x + 1, y, a2); |
700 | } |
701 | } |
702 | } |
703 | |
704 | static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, |
705 | int y, |
706 | int x, |
707 | int len, |
708 | SkAlpha fullAlpha, |
709 | SkAlpha* maskRow, |
710 | bool isUsingMask, |
711 | bool noRealBlitter, |
712 | bool needSafeCheck) { |
713 | if (isUsingMask) { |
714 | for (int i = 0; i < len; ++i) { |
715 | if (needSafeCheck) { |
716 | safely_add_alpha(&maskRow[x + i], fullAlpha); |
717 | } else { |
718 | add_alpha(&maskRow[x + i], fullAlpha); |
719 | } |
720 | } |
721 | } else { |
722 | if (fullAlpha == 0xFF && !noRealBlitter) { |
723 | blitter->getRealBlitter()->blitH(x, y, len); |
724 | } else { |
725 | blitter->blitAntiH(x, y, len, fullAlpha); |
726 | } |
727 | } |
728 | } |
729 | |
730 | static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, |
731 | int y, |
732 | SkFixed ul, |
733 | SkFixed ur, |
734 | SkFixed ll, |
735 | SkFixed lr, |
736 | SkFixed lDY, |
737 | SkFixed rDY, |
738 | SkAlpha fullAlpha, |
739 | SkAlpha* maskRow, |
740 | bool isUsingMask, |
741 | bool noRealBlitter, |
742 | bool needSafeCheck) { |
743 | int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
744 | int len = R - L; |
745 | |
746 | if (len == 1) { |
747 | SkAlpha alpha = trapezoid_to_alpha(ur - ul, lr - ll); |
748 | blit_single_alpha(blitter, |
749 | y, |
750 | L, |
751 | alpha, |
752 | fullAlpha, |
753 | maskRow, |
754 | isUsingMask, |
755 | noRealBlitter, |
756 | needSafeCheck); |
757 | return; |
758 | } |
759 | |
760 | const int kQuickLen = 31; |
761 | char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
762 | SkAlpha* alphas; |
763 | |
764 | if (len <= kQuickLen) { |
765 | alphas = (SkAlpha*)quickMemory; |
766 | } else { |
767 | alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))]; |
768 | } |
769 | |
770 | SkAlpha* tempAlphas = alphas + len + 1; |
771 | int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
772 | |
773 | for (int i = 0; i < len; ++i) { |
774 | runs[i] = 1; |
775 | alphas[i] = fullAlpha; |
776 | } |
777 | runs[len] = 0; |
778 | |
779 | int uL = SkFixedFloorToInt(ul); |
780 | int lL = SkFixedCeilToInt(ll); |
781 | if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case |
782 | SkFixed first = SkIntToFixed(uL) + SK_Fixed1 - ul; |
783 | SkFixed second = ll - ul - first; |
784 | SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, lDY); |
785 | SkAlpha a2 = partial_triangle_to_alpha(second, lDY); |
786 | alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
787 | alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
788 | } else { |
789 | compute_alpha_below_line( |
790 | tempAlphas + uL - L, ul - SkIntToFixed(uL), ll - SkIntToFixed(uL), lDY, fullAlpha); |
791 | for (int i = uL; i < lL; ++i) { |
792 | if (alphas[i - L] > tempAlphas[i - L]) { |
793 | alphas[i - L] -= tempAlphas[i - L]; |
794 | } else { |
795 | alphas[i - L] = 0; |
796 | } |
797 | } |
798 | } |
799 | |
800 | int uR = SkFixedFloorToInt(ur); |
801 | int lR = SkFixedCeilToInt(lr); |
802 | if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case |
803 | SkFixed first = SkIntToFixed(uR) + SK_Fixed1 - ur; |
804 | SkFixed second = lr - ur - first; |
805 | SkAlpha a1 = partial_triangle_to_alpha(first, rDY); |
806 | SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, rDY); |
807 | alphas[len - 2] = alphas[len - 2] > a1 ? alphas[len - 2] - a1 : 0; |
808 | alphas[len - 1] = alphas[len - 1] > a2 ? alphas[len - 1] - a2 : 0; |
809 | } else { |
810 | compute_alpha_above_line( |
811 | tempAlphas + uR - L, ur - SkIntToFixed(uR), lr - SkIntToFixed(uR), rDY, fullAlpha); |
812 | for (int i = uR; i < lR; ++i) { |
813 | if (alphas[i - L] > tempAlphas[i - L]) { |
814 | alphas[i - L] -= tempAlphas[i - L]; |
815 | } else { |
816 | alphas[i - L] = 0; |
817 | } |
818 | } |
819 | } |
820 | |
821 | if (isUsingMask) { |
822 | for (int i = 0; i < len; ++i) { |
823 | if (needSafeCheck) { |
824 | safely_add_alpha(&maskRow[L + i], alphas[i]); |
825 | } else { |
826 | add_alpha(&maskRow[L + i], alphas[i]); |
827 | } |
828 | } |
829 | } else { |
830 | if (fullAlpha == 0xFF && !noRealBlitter) { |
831 | // Real blitter is faster than RunBasedAdditiveBlitter |
832 | blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
833 | } else { |
834 | blitter->blitAntiH(L, y, alphas, len); |
835 | } |
836 | } |
837 | |
838 | if (len > kQuickLen) { |
839 | delete[] alphas; |
840 | } |
841 | } |
842 | |
843 | static SK_ALWAYS_INLINE void blit_trapezoid_row(AdditiveBlitter* blitter, |
844 | int y, |
845 | SkFixed ul, |
846 | SkFixed ur, |
847 | SkFixed ll, |
848 | SkFixed lr, |
849 | SkFixed lDY, |
850 | SkFixed rDY, |
851 | SkAlpha fullAlpha, |
852 | SkAlpha* maskRow, |
853 | bool isUsingMask, |
854 | bool noRealBlitter = false, |
855 | bool needSafeCheck = false) { |
856 | SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
857 | |
858 | if (ul > ur) { |
859 | return; |
860 | } |
861 | |
862 | // Edge crosses. Approximate it. This should only happend due to precision limit, |
863 | // so the approximation could be very coarse. |
864 | if (ll > lr) { |
865 | ll = lr = approximate_intersection(ul, ll, ur, lr); |
866 | } |
867 | |
868 | if (ul == ur && ll == lr) { |
869 | return; // empty trapzoid |
870 | } |
871 | |
872 | // We're going to use the left line ul-ll and the rite line ur-lr |
873 | // to exclude the area that's not covered by the path. |
874 | // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
875 | // so we'll do that for simplicity. |
876 | if (ul > ll) { |
877 | std::swap(ul, ll); |
878 | } |
879 | if (ur > lr) { |
880 | std::swap(ur, lr); |
881 | } |
882 | |
883 | SkFixed joinLeft = SkFixedCeilToFixed(ll); |
884 | SkFixed joinRite = SkFixedFloorToFixed(ur); |
885 | if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit |
886 | if (ul < joinLeft) { |
887 | int len = SkFixedCeilToInt(joinLeft - ul); |
888 | if (len == 1) { |
889 | SkAlpha alpha = trapezoid_to_alpha(joinLeft - ul, joinLeft - ll); |
890 | blit_single_alpha(blitter, |
891 | y, |
892 | ul >> 16, |
893 | alpha, |
894 | fullAlpha, |
895 | maskRow, |
896 | isUsingMask, |
897 | noRealBlitter, |
898 | needSafeCheck); |
899 | } else if (len == 2) { |
900 | SkFixed first = joinLeft - SK_Fixed1 - ul; |
901 | SkFixed second = ll - ul - first; |
902 | SkAlpha a1 = partial_triangle_to_alpha(first, lDY); |
903 | SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, lDY); |
904 | blit_two_alphas(blitter, |
905 | y, |
906 | ul >> 16, |
907 | a1, |
908 | a2, |
909 | fullAlpha, |
910 | maskRow, |
911 | isUsingMask, |
912 | noRealBlitter, |
913 | needSafeCheck); |
914 | } else { |
915 | blit_aaa_trapezoid_row(blitter, |
916 | y, |
917 | ul, |
918 | joinLeft, |
919 | ll, |
920 | joinLeft, |
921 | lDY, |
922 | SK_MaxS32, |
923 | fullAlpha, |
924 | maskRow, |
925 | isUsingMask, |
926 | noRealBlitter, |
927 | needSafeCheck); |
928 | } |
929 | } |
930 | // SkAAClip requires that we blit from left to right. |
931 | // Hence we must blit [ul, joinLeft] before blitting [joinLeft, joinRite] |
932 | if (joinLeft < joinRite) { |
933 | blit_full_alpha(blitter, |
934 | y, |
935 | SkFixedFloorToInt(joinLeft), |
936 | SkFixedFloorToInt(joinRite - joinLeft), |
937 | fullAlpha, |
938 | maskRow, |
939 | isUsingMask, |
940 | noRealBlitter, |
941 | needSafeCheck); |
942 | } |
943 | if (lr > joinRite) { |
944 | int len = SkFixedCeilToInt(lr - joinRite); |
945 | if (len == 1) { |
946 | SkAlpha alpha = trapezoid_to_alpha(ur - joinRite, lr - joinRite); |
947 | blit_single_alpha(blitter, |
948 | y, |
949 | joinRite >> 16, |
950 | alpha, |
951 | fullAlpha, |
952 | maskRow, |
953 | isUsingMask, |
954 | noRealBlitter, |
955 | needSafeCheck); |
956 | } else if (len == 2) { |
957 | SkFixed first = joinRite + SK_Fixed1 - ur; |
958 | SkFixed second = lr - ur - first; |
959 | SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, rDY); |
960 | SkAlpha a2 = partial_triangle_to_alpha(second, rDY); |
961 | blit_two_alphas(blitter, |
962 | y, |
963 | joinRite >> 16, |
964 | a1, |
965 | a2, |
966 | fullAlpha, |
967 | maskRow, |
968 | isUsingMask, |
969 | noRealBlitter, |
970 | needSafeCheck); |
971 | } else { |
972 | blit_aaa_trapezoid_row(blitter, |
973 | y, |
974 | joinRite, |
975 | ur, |
976 | joinRite, |
977 | lr, |
978 | SK_MaxS32, |
979 | rDY, |
980 | fullAlpha, |
981 | maskRow, |
982 | isUsingMask, |
983 | noRealBlitter, |
984 | needSafeCheck); |
985 | } |
986 | } |
987 | } else { |
988 | blit_aaa_trapezoid_row(blitter, |
989 | y, |
990 | ul, |
991 | ur, |
992 | ll, |
993 | lr, |
994 | lDY, |
995 | rDY, |
996 | fullAlpha, |
997 | maskRow, |
998 | isUsingMask, |
999 | noRealBlitter, |
1000 | needSafeCheck); |
1001 | } |
1002 | } |
1003 | |
1004 | static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
1005 | int valuea = a.fUpperY; |
1006 | int valueb = b.fUpperY; |
1007 | |
1008 | if (valuea == valueb) { |
1009 | valuea = a.fX; |
1010 | valueb = b.fX; |
1011 | } |
1012 | |
1013 | if (valuea == valueb) { |
1014 | valuea = a.fDX; |
1015 | valueb = b.fDX; |
1016 | } |
1017 | |
1018 | return valuea < valueb; |
1019 | } |
1020 | |
1021 | static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
1022 | SkTQSort(list, list + count - 1); |
1023 | |
1024 | // now make the edges linked in sorted order |
1025 | for (int i = 1; i < count; ++i) { |
1026 | list[i - 1]->fNext = list[i]; |
1027 | list[i]->fPrev = list[i - 1]; |
1028 | } |
1029 | |
1030 | *last = list[count - 1]; |
1031 | return list[0]; |
1032 | } |
1033 | |
1034 | static void validate_sort(const SkAnalyticEdge* edge) { |
1035 | #ifdef SK_DEBUG |
1036 | SkFixed y = SkIntToFixed(-32768); |
1037 | |
1038 | while (edge->fUpperY != SK_MaxS32) { |
1039 | edge->validate(); |
1040 | SkASSERT(y <= edge->fUpperY); |
1041 | |
1042 | y = edge->fUpperY; |
1043 | edge = (SkAnalyticEdge*)edge->fNext; |
1044 | } |
1045 | #endif |
1046 | } |
1047 | |
1048 | // For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough |
1049 | // For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are |
1050 | // relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
1051 | static bool is_smooth_enough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) { |
1052 | if (thisEdge->fCurveCount < 0) { |
1053 | const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge; |
1054 | int ddshift = cEdge.fCurveShift; |
1055 | return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
1056 | SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
1057 | // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
1058 | (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1; |
1059 | } else if (thisEdge->fCurveCount > 0) { |
1060 | const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge; |
1061 | return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
1062 | SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
1063 | // current Dy is (fQDy - fQDDy) >> shift |
1064 | (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift >= SK_Fixed1; |
1065 | } |
1066 | return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small |
1067 | nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large |
1068 | } |
1069 | |
1070 | // Check if the leftE and riteE are changing smoothly in terms of fDX. |
1071 | // If yes, we can later skip the fractional y and directly jump to integer y. |
1072 | static bool is_smooth_enough(SkAnalyticEdge* leftE, |
1073 | SkAnalyticEdge* riteE, |
1074 | SkAnalyticEdge* currE, |
1075 | int stop_y) { |
1076 | if (currE->fUpperY >= SkLeftShift(stop_y, 16)) { |
1077 | return false; // We're at the end so we won't skip anything |
1078 | } |
1079 | if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
1080 | return is_smooth_enough(leftE, currE, stop_y); // Only leftE is changing |
1081 | } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
1082 | return is_smooth_enough(riteE, currE, stop_y); // Only riteE is changing |
1083 | } |
1084 | |
1085 | // Now both edges are changing, find the second next edge |
1086 | SkAnalyticEdge* nextCurrE = currE->fNext; |
1087 | if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
1088 | return false; |
1089 | } |
1090 | // Ensure that currE is the next left edge and nextCurrE is the next right edge. Swap if not. |
1091 | if (nextCurrE->fUpperX < currE->fUpperX) { |
1092 | std::swap(currE, nextCurrE); |
1093 | } |
1094 | return is_smooth_enough(leftE, currE, stop_y) && is_smooth_enough(riteE, nextCurrE, stop_y); |
1095 | } |
1096 | |
1097 | static void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, |
1098 | AdditiveBlitter* blitter, |
1099 | int start_y, |
1100 | int stop_y, |
1101 | SkFixed leftBound, |
1102 | SkFixed riteBound, |
1103 | bool isUsingMask) { |
1104 | validate_sort((SkAnalyticEdge*)prevHead->fNext); |
1105 | |
1106 | SkAnalyticEdge* leftE = (SkAnalyticEdge*)prevHead->fNext; |
1107 | SkAnalyticEdge* riteE = (SkAnalyticEdge*)leftE->fNext; |
1108 | SkAnalyticEdge* currE = (SkAnalyticEdge*)riteE->fNext; |
1109 | |
1110 | SkFixed y = std::max(leftE->fUpperY, riteE->fUpperY); |
1111 | |
1112 | for (;;) { |
1113 | // We have to check fLowerY first because some edges might be alone (e.g., there's only |
1114 | // a left edge but no right edge in a given y scan line) due to precision limit. |
1115 | while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
1116 | if (!leftE->update(y)) { |
1117 | if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
1118 | goto END_WALK; |
1119 | } |
1120 | leftE = currE; |
1121 | currE = (SkAnalyticEdge*)currE->fNext; |
1122 | } |
1123 | } |
1124 | while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
1125 | if (!riteE->update(y)) { |
1126 | if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
1127 | goto END_WALK; |
1128 | } |
1129 | riteE = currE; |
1130 | currE = (SkAnalyticEdge*)currE->fNext; |
1131 | } |
1132 | } |
1133 | |
1134 | SkASSERT(leftE); |
1135 | SkASSERT(riteE); |
1136 | |
1137 | // check our bottom clip |
1138 | if (SkFixedFloorToInt(y) >= stop_y) { |
1139 | break; |
1140 | } |
1141 | |
1142 | SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
1143 | SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
1144 | |
1145 | leftE->goY(y); |
1146 | riteE->goY(y); |
1147 | |
1148 | if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && leftE->fDX > riteE->fDX)) { |
1149 | std::swap(leftE, riteE); |
1150 | } |
1151 | |
1152 | SkFixed local_bot_fixed = std::min(leftE->fLowerY, riteE->fLowerY); |
1153 | if (is_smooth_enough(leftE, riteE, currE, stop_y)) { |
1154 | local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
1155 | } |
1156 | local_bot_fixed = std::min(local_bot_fixed, SkIntToFixed(stop_y)); |
1157 | |
1158 | SkFixed left = std::max(leftBound, leftE->fX); |
1159 | SkFixed dLeft = leftE->fDX; |
1160 | SkFixed rite = std::min(riteBound, riteE->fX); |
1161 | SkFixed dRite = riteE->fDX; |
1162 | if (0 == (dLeft | dRite)) { |
1163 | int fullLeft = SkFixedCeilToInt(left); |
1164 | int fullRite = SkFixedFloorToInt(rite); |
1165 | SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
1166 | SkFixed partialRite = rite - SkIntToFixed(fullRite); |
1167 | int fullTop = SkFixedCeilToInt(y); |
1168 | int fullBot = SkFixedFloorToInt(local_bot_fixed); |
1169 | SkFixed partialTop = SkIntToFixed(fullTop) - y; |
1170 | SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
1171 | if (fullTop > fullBot) { // The rectangle is within one pixel height... |
1172 | partialTop -= (SK_Fixed1 - partialBot); |
1173 | partialBot = 0; |
1174 | } |
1175 | |
1176 | if (fullRite >= fullLeft) { |
1177 | if (partialTop > 0) { // blit first partial row |
1178 | if (partialLeft > 0) { |
1179 | blitter->blitAntiH(fullLeft - 1, |
1180 | fullTop - 1, |
1181 | fixed_to_alpha(SkFixedMul(partialTop, partialLeft))); |
1182 | } |
1183 | blitter->blitAntiH( |
1184 | fullLeft, fullTop - 1, fullRite - fullLeft, fixed_to_alpha(partialTop)); |
1185 | if (partialRite > 0) { |
1186 | blitter->blitAntiH(fullRite, |
1187 | fullTop - 1, |
1188 | fixed_to_alpha(SkFixedMul(partialTop, partialRite))); |
1189 | } |
1190 | blitter->flush_if_y_changed(y, y + partialTop); |
1191 | } |
1192 | |
1193 | // Blit all full-height rows from fullTop to fullBot |
1194 | if (fullBot > fullTop && |
1195 | // SkAAClip cannot handle the empty rect so check the non-emptiness here |
1196 | // (bug chromium:662800) |
1197 | (fullRite > fullLeft || fixed_to_alpha(partialLeft) > 0 || |
1198 | fixed_to_alpha(partialRite) > 0)) { |
1199 | blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, |
1200 | fullTop, |
1201 | fullRite - fullLeft, |
1202 | fullBot - fullTop, |
1203 | fixed_to_alpha(partialLeft), |
1204 | fixed_to_alpha(partialRite)); |
1205 | } |
1206 | |
1207 | if (partialBot > 0) { // blit last partial row |
1208 | if (partialLeft > 0) { |
1209 | blitter->blitAntiH(fullLeft - 1, |
1210 | fullBot, |
1211 | fixed_to_alpha(SkFixedMul(partialBot, partialLeft))); |
1212 | } |
1213 | blitter->blitAntiH( |
1214 | fullLeft, fullBot, fullRite - fullLeft, fixed_to_alpha(partialBot)); |
1215 | if (partialRite > 0) { |
1216 | blitter->blitAntiH(fullRite, |
1217 | fullBot, |
1218 | fixed_to_alpha(SkFixedMul(partialBot, partialRite))); |
1219 | } |
1220 | } |
1221 | } else { // left and rite are within the same pixel |
1222 | if (partialTop > 0) { |
1223 | blitter->blitAntiH(fullLeft - 1, |
1224 | fullTop - 1, |
1225 | 1, |
1226 | fixed_to_alpha(SkFixedMul(partialTop, rite - left))); |
1227 | blitter->flush_if_y_changed(y, y + partialTop); |
1228 | } |
1229 | if (fullBot > fullTop) { |
1230 | blitter->getRealBlitter()->blitV( |
1231 | fullLeft - 1, fullTop, fullBot - fullTop, fixed_to_alpha(rite - left)); |
1232 | } |
1233 | if (partialBot > 0) { |
1234 | blitter->blitAntiH(fullLeft - 1, |
1235 | fullBot, |
1236 | 1, |
1237 | fixed_to_alpha(SkFixedMul(partialBot, rite - left))); |
1238 | } |
1239 | } |
1240 | |
1241 | y = local_bot_fixed; |
1242 | } else { |
1243 | // The following constant are used to snap X |
1244 | // We snap X mainly for speedup (no tiny triangle) and |
1245 | // avoiding edge cases caused by precision errors |
1246 | const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
1247 | const SkFixed kSnapHalf = kSnapDigit >> 1; |
1248 | const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
1249 | left += kSnapHalf; |
1250 | rite += kSnapHalf; // For fast rounding |
1251 | |
1252 | // Number of blit_trapezoid_row calls we'll have |
1253 | int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y); |
1254 | |
1255 | // If we're using mask blitter, we advance the mask row in this function |
1256 | // to save some "if" condition checks. |
1257 | SkAlpha* maskRow = nullptr; |
1258 | if (isUsingMask) { |
1259 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
1260 | } |
1261 | |
1262 | // Instead of writing one loop that handles both partial-row blit_trapezoid_row |
1263 | // and full-row trapezoid_row together, we use the following 3-stage flow to |
1264 | // handle partial-row blit and full-row blit separately. It will save us much time |
1265 | // on changing y, left, and rite. |
1266 | if (count > 1) { |
1267 | if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top |
1268 | count--; |
1269 | SkFixed nextY = SkFixedCeilToFixed(y + 1); |
1270 | SkFixed dY = nextY - y; |
1271 | SkFixed nextLeft = left + SkFixedMul(dLeft, dY); |
1272 | SkFixed nextRite = rite + SkFixedMul(dRite, dY); |
1273 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
1274 | (nextLeft & kSnapMask) >= leftBound && |
1275 | (nextRite & kSnapMask) <= riteBound); |
1276 | blit_trapezoid_row(blitter, |
1277 | y >> 16, |
1278 | left & kSnapMask, |
1279 | rite & kSnapMask, |
1280 | nextLeft & kSnapMask, |
1281 | nextRite & kSnapMask, |
1282 | leftE->fDY, |
1283 | riteE->fDY, |
1284 | get_partial_alpha(0xFF, dY), |
1285 | maskRow, |
1286 | isUsingMask); |
1287 | blitter->flush_if_y_changed(y, nextY); |
1288 | left = nextLeft; |
1289 | rite = nextRite; |
1290 | y = nextY; |
1291 | } |
1292 | |
1293 | while (count > 1) { // Full rows in the middle |
1294 | count--; |
1295 | if (isUsingMask) { |
1296 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
1297 | } |
1298 | SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite; |
1299 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
1300 | (nextLeft & kSnapMask) >= leftBound && |
1301 | (nextRite & kSnapMask) <= riteBound); |
1302 | blit_trapezoid_row(blitter, |
1303 | y >> 16, |
1304 | left & kSnapMask, |
1305 | rite & kSnapMask, |
1306 | nextLeft & kSnapMask, |
1307 | nextRite & kSnapMask, |
1308 | leftE->fDY, |
1309 | riteE->fDY, |
1310 | 0xFF, |
1311 | maskRow, |
1312 | isUsingMask); |
1313 | blitter->flush_if_y_changed(y, nextY); |
1314 | left = nextLeft; |
1315 | rite = nextRite; |
1316 | y = nextY; |
1317 | } |
1318 | } |
1319 | |
1320 | if (isUsingMask) { |
1321 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
1322 | } |
1323 | |
1324 | SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
1325 | SkASSERT(dY <= SK_Fixed1); |
1326 | // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound. |
1327 | // Take them back into the bound here. |
1328 | // Note that we substract kSnapHalf later so we have to add them to leftBound/riteBound |
1329 | SkFixed nextLeft = std::max(left + SkFixedMul(dLeft, dY), leftBound + kSnapHalf); |
1330 | SkFixed nextRite = std::min(rite + SkFixedMul(dRite, dY), riteBound + kSnapHalf); |
1331 | SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
1332 | (nextLeft & kSnapMask) >= leftBound && (nextRite & kSnapMask) <= riteBound); |
1333 | blit_trapezoid_row(blitter, |
1334 | y >> 16, |
1335 | left & kSnapMask, |
1336 | rite & kSnapMask, |
1337 | nextLeft & kSnapMask, |
1338 | nextRite & kSnapMask, |
1339 | leftE->fDY, |
1340 | riteE->fDY, |
1341 | get_partial_alpha(0xFF, dY), |
1342 | maskRow, |
1343 | isUsingMask); |
1344 | blitter->flush_if_y_changed(y, local_bot_fixed); |
1345 | left = nextLeft; |
1346 | rite = nextRite; |
1347 | y = local_bot_fixed; |
1348 | left -= kSnapHalf; |
1349 | rite -= kSnapHalf; |
1350 | } |
1351 | |
1352 | leftE->fX = left; |
1353 | riteE->fX = rite; |
1354 | leftE->fY = riteE->fY = y; |
1355 | } |
1356 | |
1357 | END_WALK:; |
1358 | } |
1359 | |
1360 | static void update_next_next_y(SkFixed y, SkFixed nextY, SkFixed* nextNextY) { |
1361 | *nextNextY = y > nextY && y < *nextNextY ? y : *nextNextY; |
1362 | } |
1363 | |
1364 | static void check_intersection(const SkAnalyticEdge* edge, SkFixed nextY, SkFixed* nextNextY) { |
1365 | if (edge->fPrev->fPrev && edge->fPrev->fX + edge->fPrev->fDX > edge->fX + edge->fDX) { |
1366 | *nextNextY = nextY + (SK_Fixed1 >> SkAnalyticEdge::kDefaultAccuracy); |
1367 | } |
1368 | } |
1369 | |
1370 | static void insert_new_edges(SkAnalyticEdge* newEdge, SkFixed y, SkFixed* nextNextY) { |
1371 | if (newEdge->fUpperY > y) { |
1372 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
1373 | return; |
1374 | } |
1375 | SkAnalyticEdge* prev = newEdge->fPrev; |
1376 | if (prev->fX <= newEdge->fX) { |
1377 | while (newEdge->fUpperY <= y) { |
1378 | check_intersection(newEdge, y, nextNextY); |
1379 | update_next_next_y(newEdge->fLowerY, y, nextNextY); |
1380 | newEdge = newEdge->fNext; |
1381 | } |
1382 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
1383 | return; |
1384 | } |
1385 | // find first x pos to insert |
1386 | SkAnalyticEdge* start = backward_insert_start(prev, newEdge->fX); |
1387 | // insert the lot, fixing up the links as we go |
1388 | do { |
1389 | SkAnalyticEdge* next = newEdge->fNext; |
1390 | do { |
1391 | if (start->fNext == newEdge) { |
1392 | goto nextEdge; |
1393 | } |
1394 | SkAnalyticEdge* after = start->fNext; |
1395 | if (after->fX >= newEdge->fX) { |
1396 | break; |
1397 | } |
1398 | SkASSERT(start != after); |
1399 | start = after; |
1400 | } while (true); |
1401 | remove_edge(newEdge); |
1402 | insert_edge_after(newEdge, start); |
1403 | nextEdge: |
1404 | check_intersection(newEdge, y, nextNextY); |
1405 | update_next_next_y(newEdge->fLowerY, y, nextNextY); |
1406 | start = newEdge; |
1407 | newEdge = next; |
1408 | } while (newEdge->fUpperY <= y); |
1409 | update_next_next_y(newEdge->fUpperY, y, nextNextY); |
1410 | } |
1411 | |
1412 | static void validate_edges_for_y(const SkAnalyticEdge* edge, SkFixed y) { |
1413 | #ifdef SK_DEBUG |
1414 | while (edge->fUpperY <= y) { |
1415 | SkASSERT(edge->fPrev && edge->fNext); |
1416 | SkASSERT(edge->fPrev->fNext == edge); |
1417 | SkASSERT(edge->fNext->fPrev == edge); |
1418 | SkASSERT(edge->fUpperY <= edge->fLowerY); |
1419 | SkASSERT(edge->fPrev->fPrev == nullptr || edge->fPrev->fX <= edge->fX); |
1420 | edge = edge->fNext; |
1421 | } |
1422 | #endif |
1423 | } |
1424 | |
1425 | // Return true if prev->fX, next->fX are too close in the current pixel row. |
1426 | static bool edges_too_close(SkAnalyticEdge* prev, SkAnalyticEdge* next, SkFixed lowerY) { |
1427 | // When next->fDX == 0, prev->fX >= next->fX - SkAbs32(next->fDX) would be false |
1428 | // even if prev->fX and next->fX are close and within one pixel (e.g., prev->fX == 0.1, |
1429 | // next->fX == 0.9). Adding SLACK = 1 to the formula would guarantee it to be true if two |
1430 | // edges prev and next are within one pixel. |
1431 | constexpr SkFixed SLACK = SK_Fixed1; |
1432 | |
1433 | // Note that even if the following test failed, the edges might still be very close to each |
1434 | // other at some point within the current pixel row because of prev->fDX and next->fDX. |
1435 | // However, to handle that case, we have to sacrafice more performance. |
1436 | // I think the current quality is good enough (mainly by looking at Nebraska-StateSeal.svg) |
1437 | // so I'll ignore fDX for performance tradeoff. |
1438 | return next && prev && next->fUpperY < lowerY && |
1439 | prev->fX + SLACK >= next->fX - SkAbs32(next->fDX); |
1440 | // The following is more accurate but also slower. |
1441 | // return (prev && prev->fPrev && next && next->fNext != nullptr && next->fUpperY < lowerY && |
1442 | // prev->fX + SkAbs32(prev->fDX) + SLACK >= next->fX - SkAbs32(next->fDX)); |
1443 | } |
1444 | |
1445 | // This function exists for the case where the previous rite edge is removed because |
1446 | // its fLowerY <= nextY |
1447 | static bool edges_too_close(int prevRite, SkFixed ul, SkFixed ll) { |
1448 | return prevRite > SkFixedFloorToInt(ul) || prevRite > SkFixedFloorToInt(ll); |
1449 | } |
1450 | |
1451 | static void blit_saved_trapezoid(SkAnalyticEdge* leftE, |
1452 | SkFixed lowerY, |
1453 | SkFixed lowerLeft, |
1454 | SkFixed lowerRite, |
1455 | AdditiveBlitter* blitter, |
1456 | SkAlpha* maskRow, |
1457 | bool isUsingMask, |
1458 | bool noRealBlitter, |
1459 | SkFixed leftClip, |
1460 | SkFixed rightClip) { |
1461 | SkAnalyticEdge* riteE = leftE->fRiteE; |
1462 | SkASSERT(riteE); |
1463 | SkASSERT(riteE->fNext == nullptr || leftE->fSavedY == riteE->fSavedY); |
1464 | SkASSERT(SkFixedFloorToInt(lowerY - 1) == SkFixedFloorToInt(leftE->fSavedY)); |
1465 | int y = SkFixedFloorToInt(leftE->fSavedY); |
1466 | // Instead of using fixed_to_alpha(lowerY - leftE->fSavedY), we use the following fullAlpha |
1467 | // to elimiate cumulative error: if there are many fractional y scan lines within the |
1468 | // same row, the former may accumulate the rounding error while the later won't. |
1469 | SkAlpha fullAlpha = fixed_to_alpha(lowerY - SkIntToFixed(y)) - |
1470 | fixed_to_alpha(leftE->fSavedY - SkIntToFixed(y)); |
1471 | // We need fSavedDY because the (quad or cubic) edge might be updated |
1472 | blit_trapezoid_row( |
1473 | blitter, |
1474 | y, |
1475 | std::max(leftE->fSavedX, leftClip), |
1476 | std::min(riteE->fSavedX, rightClip), |
1477 | std::max(lowerLeft, leftClip), |
1478 | std::min(lowerRite, rightClip), |
1479 | leftE->fSavedDY, |
1480 | riteE->fSavedDY, |
1481 | fullAlpha, |
1482 | maskRow, |
1483 | isUsingMask, |
1484 | noRealBlitter || (fullAlpha == 0xFF && (edges_too_close(leftE->fPrev, leftE, lowerY) || |
1485 | edges_too_close(riteE, riteE->fNext, lowerY))), |
1486 | true); |
1487 | leftE->fRiteE = nullptr; |
1488 | } |
1489 | |
1490 | static void deferred_blit(SkAnalyticEdge* leftE, |
1491 | SkAnalyticEdge* riteE, |
1492 | SkFixed left, |
1493 | SkFixed leftDY, // don't save leftE->fX/fDY as they may have been updated |
1494 | SkFixed y, |
1495 | SkFixed nextY, |
1496 | bool isIntegralNextY, |
1497 | bool leftEnds, |
1498 | bool riteEnds, |
1499 | AdditiveBlitter* blitter, |
1500 | SkAlpha* maskRow, |
1501 | bool isUsingMask, |
1502 | bool noRealBlitter, |
1503 | SkFixed leftClip, |
1504 | SkFixed rightClip, |
1505 | int yShift) { |
1506 | if (leftE->fRiteE && leftE->fRiteE != riteE) { |
1507 | // leftE's right edge changed. Blit the saved trapezoid. |
1508 | SkASSERT(leftE->fRiteE->fNext == nullptr || leftE->fRiteE->fY == y); |
1509 | blit_saved_trapezoid(leftE, |
1510 | y, |
1511 | left, |
1512 | leftE->fRiteE->fX, |
1513 | blitter, |
1514 | maskRow, |
1515 | isUsingMask, |
1516 | noRealBlitter, |
1517 | leftClip, |
1518 | rightClip); |
1519 | } |
1520 | if (!leftE->fRiteE) { |
1521 | // Save and defer blitting the trapezoid |
1522 | SkASSERT(riteE->fRiteE == nullptr); |
1523 | SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
1524 | SkASSERT(riteE->fNext == nullptr || riteE->fY == y); |
1525 | leftE->saveXY(left, y, leftDY); |
1526 | riteE->saveXY(riteE->fX, y, riteE->fDY); |
1527 | leftE->fRiteE = riteE; |
1528 | } |
1529 | SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
1530 | riteE->goY(nextY, yShift); |
1531 | // Always blit when edges end or nextY is integral |
1532 | if (isIntegralNextY || leftEnds || riteEnds) { |
1533 | blit_saved_trapezoid(leftE, |
1534 | nextY, |
1535 | leftE->fX, |
1536 | riteE->fX, |
1537 | blitter, |
1538 | maskRow, |
1539 | isUsingMask, |
1540 | noRealBlitter, |
1541 | leftClip, |
1542 | rightClip); |
1543 | } |
1544 | } |
1545 | |
1546 | static void aaa_walk_edges(SkAnalyticEdge* prevHead, |
1547 | SkAnalyticEdge* nextTail, |
1548 | SkPathFillType fillType, |
1549 | AdditiveBlitter* blitter, |
1550 | int start_y, |
1551 | int stop_y, |
1552 | SkFixed leftClip, |
1553 | SkFixed rightClip, |
1554 | bool isUsingMask, |
1555 | bool forceRLE, |
1556 | bool useDeferred, |
1557 | bool skipIntersect) { |
1558 | prevHead->fX = prevHead->fUpperX = leftClip; |
1559 | nextTail->fX = nextTail->fUpperX = rightClip; |
1560 | SkFixed y = std::max(prevHead->fNext->fUpperY, SkIntToFixed(start_y)); |
1561 | SkFixed nextNextY = SK_MaxS32; |
1562 | |
1563 | { |
1564 | SkAnalyticEdge* edge; |
1565 | for (edge = prevHead->fNext; edge->fUpperY <= y; edge = edge->fNext) { |
1566 | edge->goY(y); |
1567 | update_next_next_y(edge->fLowerY, y, &nextNextY); |
1568 | } |
1569 | update_next_next_y(edge->fUpperY, y, &nextNextY); |
1570 | } |
1571 | |
1572 | int windingMask = SkPathFillType_IsEvenOdd(fillType) ? 1 : -1; |
1573 | bool isInverse = SkPathFillType_IsInverse(fillType); |
1574 | |
1575 | if (isInverse && SkIntToFixed(start_y) != y) { |
1576 | int width = SkFixedFloorToInt(rightClip - leftClip); |
1577 | if (SkFixedFloorToInt(y) != start_y) { |
1578 | blitter->getRealBlitter()->blitRect( |
1579 | SkFixedFloorToInt(leftClip), start_y, width, SkFixedFloorToInt(y) - start_y); |
1580 | start_y = SkFixedFloorToInt(y); |
1581 | } |
1582 | SkAlpha* maskRow = |
1583 | isUsingMask ? static_cast<MaskAdditiveBlitter*>(blitter)->getRow(start_y) : nullptr; |
1584 | blit_full_alpha(blitter, |
1585 | start_y, |
1586 | SkFixedFloorToInt(leftClip), |
1587 | width, |
1588 | fixed_to_alpha(y - SkIntToFixed(start_y)), |
1589 | maskRow, |
1590 | isUsingMask, |
1591 | false, |
1592 | false); |
1593 | } |
1594 | |
1595 | while (true) { |
1596 | int w = 0; |
1597 | bool in_interval = isInverse; |
1598 | SkFixed prevX = prevHead->fX; |
1599 | SkFixed nextY = std::min(nextNextY, SkFixedCeilToFixed(y + 1)); |
1600 | bool isIntegralNextY = (nextY & (SK_Fixed1 - 1)) == 0; |
1601 | SkAnalyticEdge* currE = prevHead->fNext; |
1602 | SkAnalyticEdge* leftE = prevHead; |
1603 | SkFixed left = leftClip; |
1604 | SkFixed leftDY = 0; |
1605 | bool leftEnds = false; |
1606 | int prevRite = SkFixedFloorToInt(leftClip); |
1607 | |
1608 | nextNextY = SK_MaxS32; |
1609 | |
1610 | SkASSERT((nextY & ((SK_Fixed1 >> 2) - 1)) == 0); |
1611 | int yShift = 0; |
1612 | if ((nextY - y) & (SK_Fixed1 >> 2)) { |
1613 | yShift = 2; |
1614 | nextY = y + (SK_Fixed1 >> 2); |
1615 | } else if ((nextY - y) & (SK_Fixed1 >> 1)) { |
1616 | yShift = 1; |
1617 | SkASSERT(nextY == y + (SK_Fixed1 >> 1)); |
1618 | } |
1619 | |
1620 | SkAlpha fullAlpha = fixed_to_alpha(nextY - y); |
1621 | |
1622 | // If we're using mask blitter, we advance the mask row in this function |
1623 | // to save some "if" condition checks. |
1624 | SkAlpha* maskRow = nullptr; |
1625 | if (isUsingMask) { |
1626 | maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(SkFixedFloorToInt(y)); |
1627 | } |
1628 | |
1629 | SkASSERT(currE->fPrev == prevHead); |
1630 | validate_edges_for_y(currE, y); |
1631 | |
1632 | // Even if next - y == SK_Fixed1, we can still break the left-to-right order requirement |
1633 | // of the SKAAClip: |\| (two trapezoids with overlapping middle wedges) |
1634 | bool noRealBlitter = forceRLE; // forceRLE && (nextY - y != SK_Fixed1); |
1635 | |
1636 | while (currE->fUpperY <= y) { |
1637 | SkASSERT(currE->fLowerY >= nextY); |
1638 | SkASSERT(currE->fY == y); |
1639 | |
1640 | w += currE->fWinding; |
1641 | bool prev_in_interval = in_interval; |
1642 | in_interval = !(w & windingMask) == isInverse; |
1643 | |
1644 | bool isLeft = in_interval && !prev_in_interval; |
1645 | bool isRite = !in_interval && prev_in_interval; |
1646 | bool currEnds = currE->fLowerY == nextY; |
1647 | |
1648 | if (useDeferred) { |
1649 | if (currE->fRiteE && !isLeft) { |
1650 | // currE is a left edge previously, but now it's not. |
1651 | // Blit the trapezoid between fSavedY and y. |
1652 | SkASSERT(currE->fRiteE->fY == y); |
1653 | blit_saved_trapezoid(currE, |
1654 | y, |
1655 | currE->fX, |
1656 | currE->fRiteE->fX, |
1657 | blitter, |
1658 | maskRow, |
1659 | isUsingMask, |
1660 | noRealBlitter, |
1661 | leftClip, |
1662 | rightClip); |
1663 | } |
1664 | if (leftE->fRiteE == currE && !isRite) { |
1665 | // currE is a right edge previously, but now it's not. |
1666 | // Moreover, its corresponding leftE doesn't change (otherwise we'll handle it |
1667 | // in the previous if clause). Hence we blit the trapezoid. |
1668 | blit_saved_trapezoid(leftE, |
1669 | y, |
1670 | left, |
1671 | currE->fX, |
1672 | blitter, |
1673 | maskRow, |
1674 | isUsingMask, |
1675 | noRealBlitter, |
1676 | leftClip, |
1677 | rightClip); |
1678 | } |
1679 | } |
1680 | |
1681 | if (isRite) { |
1682 | if (useDeferred) { |
1683 | deferred_blit(leftE, |
1684 | currE, |
1685 | left, |
1686 | leftDY, |
1687 | y, |
1688 | nextY, |
1689 | isIntegralNextY, |
1690 | leftEnds, |
1691 | currEnds, |
1692 | blitter, |
1693 | maskRow, |
1694 | isUsingMask, |
1695 | noRealBlitter, |
1696 | leftClip, |
1697 | rightClip, |
1698 | yShift); |
1699 | } else { |
1700 | SkFixed rite = currE->fX; |
1701 | currE->goY(nextY, yShift); |
1702 | SkFixed nextLeft = std::max(leftClip, leftE->fX); |
1703 | rite = std::min(rightClip, rite); |
1704 | SkFixed nextRite = std::min(rightClip, currE->fX); |
1705 | blit_trapezoid_row( |
1706 | blitter, |
1707 | y >> 16, |
1708 | left, |
1709 | rite, |
1710 | nextLeft, |
1711 | nextRite, |
1712 | leftDY, |
1713 | currE->fDY, |
1714 | fullAlpha, |
1715 | maskRow, |
1716 | isUsingMask, |
1717 | noRealBlitter || (fullAlpha == 0xFF && |
1718 | (edges_too_close(prevRite, left, leftE->fX) || |
1719 | edges_too_close(currE, currE->fNext, nextY))), |
1720 | true); |
1721 | prevRite = SkFixedCeilToInt(std::max(rite, currE->fX)); |
1722 | } |
1723 | } else { |
1724 | if (isLeft) { |
1725 | left = std::max(currE->fX, leftClip); |
1726 | leftDY = currE->fDY; |
1727 | leftE = currE; |
1728 | leftEnds = leftE->fLowerY == nextY; |
1729 | } |
1730 | currE->goY(nextY, yShift); |
1731 | } |
1732 | |
1733 | SkAnalyticEdge* next = currE->fNext; |
1734 | SkFixed newX; |
1735 | |
1736 | while (currE->fLowerY <= nextY) { |
1737 | if (currE->fCurveCount < 0) { |
1738 | SkAnalyticCubicEdge* cubicEdge = (SkAnalyticCubicEdge*)currE; |
1739 | cubicEdge->keepContinuous(); |
1740 | if (!cubicEdge->updateCubic()) { |
1741 | break; |
1742 | } |
1743 | } else if (currE->fCurveCount > 0) { |
1744 | SkAnalyticQuadraticEdge* quadEdge = (SkAnalyticQuadraticEdge*)currE; |
1745 | quadEdge->keepContinuous(); |
1746 | if (!quadEdge->updateQuadratic()) { |
1747 | break; |
1748 | } |
1749 | } else { |
1750 | break; |
1751 | } |
1752 | } |
1753 | SkASSERT(currE->fY == nextY); |
1754 | |
1755 | if (currE->fLowerY <= nextY) { |
1756 | remove_edge(currE); |
1757 | } else { |
1758 | update_next_next_y(currE->fLowerY, nextY, &nextNextY); |
1759 | newX = currE->fX; |
1760 | SkASSERT(currE->fLowerY > nextY); |
1761 | if (newX < prevX) { // ripple currE backwards until it is x-sorted |
1762 | // If the crossing edge is a right edge, blit the saved trapezoid. |
1763 | if (leftE->fRiteE == currE && useDeferred) { |
1764 | SkASSERT(leftE->fY == nextY && currE->fY == nextY); |
1765 | blit_saved_trapezoid(leftE, |
1766 | nextY, |
1767 | leftE->fX, |
1768 | currE->fX, |
1769 | blitter, |
1770 | maskRow, |
1771 | isUsingMask, |
1772 | noRealBlitter, |
1773 | leftClip, |
1774 | rightClip); |
1775 | } |
1776 | backward_insert_edge_based_on_x(currE); |
1777 | } else { |
1778 | prevX = newX; |
1779 | } |
1780 | if (!skipIntersect) { |
1781 | check_intersection(currE, nextY, &nextNextY); |
1782 | } |
1783 | } |
1784 | |
1785 | currE = next; |
1786 | SkASSERT(currE); |
1787 | } |
1788 | |
1789 | // was our right-edge culled away? |
1790 | if (in_interval) { |
1791 | if (useDeferred) { |
1792 | deferred_blit(leftE, |
1793 | nextTail, |
1794 | left, |
1795 | leftDY, |
1796 | y, |
1797 | nextY, |
1798 | isIntegralNextY, |
1799 | leftEnds, |
1800 | false, |
1801 | blitter, |
1802 | maskRow, |
1803 | isUsingMask, |
1804 | noRealBlitter, |
1805 | leftClip, |
1806 | rightClip, |
1807 | yShift); |
1808 | } else { |
1809 | blit_trapezoid_row(blitter, |
1810 | y >> 16, |
1811 | left, |
1812 | rightClip, |
1813 | std::max(leftClip, leftE->fX), |
1814 | rightClip, |
1815 | leftDY, |
1816 | 0, |
1817 | fullAlpha, |
1818 | maskRow, |
1819 | isUsingMask, |
1820 | noRealBlitter || (fullAlpha == 0xFF && |
1821 | edges_too_close(leftE->fPrev, leftE, nextY)), |
1822 | true); |
1823 | } |
1824 | } |
1825 | |
1826 | if (forceRLE) { |
1827 | ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY); |
1828 | } |
1829 | |
1830 | y = nextY; |
1831 | if (y >= SkIntToFixed(stop_y)) { |
1832 | break; |
1833 | } |
1834 | |
1835 | // now currE points to the first edge with a fUpperY larger than the previous y |
1836 | insert_new_edges(currE, y, &nextNextY); |
1837 | } |
1838 | } |
1839 | |
1840 | static SK_ALWAYS_INLINE void aaa_fill_path( |
1841 | const SkPath& path, |
1842 | const SkIRect& clipRect, |
1843 | AdditiveBlitter* blitter, |
1844 | int start_y, |
1845 | int stop_y, |
1846 | bool pathContainedInClip, |
1847 | bool isUsingMask, |
1848 | bool forceRLE) { // forceRLE implies that SkAAClip is calling us |
1849 | SkASSERT(blitter); |
1850 | |
1851 | SkAnalyticEdgeBuilder builder; |
1852 | int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &clipRect); |
1853 | SkAnalyticEdge** list = builder.analyticEdgeList(); |
1854 | |
1855 | SkIRect rect = clipRect; |
1856 | if (0 == count) { |
1857 | if (path.isInverseFillType()) { |
1858 | /* |
1859 | * Since we are in inverse-fill, our caller has already drawn above |
1860 | * our top (start_y) and will draw below our bottom (stop_y). Thus |
1861 | * we need to restrict our drawing to the intersection of the clip |
1862 | * and those two limits. |
1863 | */ |
1864 | if (rect.fTop < start_y) { |
1865 | rect.fTop = start_y; |
1866 | } |
1867 | if (rect.fBottom > stop_y) { |
1868 | rect.fBottom = stop_y; |
1869 | } |
1870 | if (!rect.isEmpty()) { |
1871 | blitter->getRealBlitter()->blitRect( |
1872 | rect.fLeft, rect.fTop, rect.width(), rect.height()); |
1873 | } |
1874 | } |
1875 | return; |
1876 | } |
1877 | |
1878 | SkAnalyticEdge headEdge, tailEdge, *last; |
1879 | // this returns the first and last edge after they're sorted into a dlink list |
1880 | SkAnalyticEdge* edge = sort_edges(list, count, &last); |
1881 | |
1882 | headEdge.fRiteE = nullptr; |
1883 | headEdge.fPrev = nullptr; |
1884 | headEdge.fNext = edge; |
1885 | headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
1886 | headEdge.fX = SK_MinS32; |
1887 | headEdge.fDX = 0; |
1888 | headEdge.fDY = SK_MaxS32; |
1889 | headEdge.fUpperX = SK_MinS32; |
1890 | edge->fPrev = &headEdge; |
1891 | |
1892 | tailEdge.fRiteE = nullptr; |
1893 | tailEdge.fPrev = last; |
1894 | tailEdge.fNext = nullptr; |
1895 | tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
1896 | tailEdge.fX = SK_MaxS32; |
1897 | tailEdge.fDX = 0; |
1898 | tailEdge.fDY = SK_MaxS32; |
1899 | tailEdge.fUpperX = SK_MaxS32; |
1900 | last->fNext = &tailEdge; |
1901 | |
1902 | // now edge is the head of the sorted linklist |
1903 | |
1904 | if (!pathContainedInClip && start_y < clipRect.fTop) { |
1905 | start_y = clipRect.fTop; |
1906 | } |
1907 | if (!pathContainedInClip && stop_y > clipRect.fBottom) { |
1908 | stop_y = clipRect.fBottom; |
1909 | } |
1910 | |
1911 | SkFixed leftBound = SkIntToFixed(rect.fLeft); |
1912 | SkFixed rightBound = SkIntToFixed(rect.fRight); |
1913 | if (isUsingMask) { |
1914 | // If we're using mask, then we have to limit the bound within the path bounds. |
1915 | // Otherwise, the edge drift may access an invalid address inside the mask. |
1916 | SkIRect ir; |
1917 | path.getBounds().roundOut(&ir); |
1918 | leftBound = std::max(leftBound, SkIntToFixed(ir.fLeft)); |
1919 | rightBound = std::min(rightBound, SkIntToFixed(ir.fRight)); |
1920 | } |
1921 | |
1922 | if (!path.isInverseFillType() && path.isConvex() && count >= 2) { |
1923 | aaa_walk_convex_edges( |
1924 | &headEdge, blitter, start_y, stop_y, leftBound, rightBound, isUsingMask); |
1925 | } else { |
1926 | // Only use deferred blitting if there are many edges. |
1927 | bool useDeferred = |
1928 | count > |
1929 | (SkFixedFloorToInt(tailEdge.fPrev->fLowerY - headEdge.fNext->fUpperY) + 1) * 4; |
1930 | |
1931 | // We skip intersection computation if there are many points which probably already |
1932 | // give us enough fractional scan lines. |
1933 | bool skipIntersect = path.countPoints() > (stop_y - start_y) * 2; |
1934 | |
1935 | aaa_walk_edges(&headEdge, |
1936 | &tailEdge, |
1937 | path.getFillType(), |
1938 | blitter, |
1939 | start_y, |
1940 | stop_y, |
1941 | leftBound, |
1942 | rightBound, |
1943 | isUsingMask, |
1944 | forceRLE, |
1945 | useDeferred, |
1946 | skipIntersect); |
1947 | } |
1948 | } |
1949 | |
1950 | void SkScan::AAAFillPath(const SkPath& path, |
1951 | SkBlitter* blitter, |
1952 | const SkIRect& ir, |
1953 | const SkIRect& clipBounds, |
1954 | bool forceRLE) { |
1955 | bool containedInClip = clipBounds.contains(ir); |
1956 | bool isInverse = path.isInverseFillType(); |
1957 | |
1958 | // The mask blitter (where we store intermediate alpha values directly in a mask, and then call |
1959 | // the real blitter once in the end to blit the whole mask) is faster than the RLE blitter when |
1960 | // the blit region is small enough (i.e., CanHandleRect(ir)). When isInverse is true, the blit |
1961 | // region is no longer the rectangle ir so we won't use the mask blitter. The caller may also |
1962 | // use the forceRLE flag to force not using the mask blitter. Also, when the path is a simple |
1963 | // rect, preparing a mask and blitting it might have too much overhead. Hence we'll use |
1964 | // blitFatAntiRect to avoid the mask and its overhead. |
1965 | if (MaskAdditiveBlitter::CanHandleRect(ir) && !isInverse && !forceRLE) { |
1966 | // blitFatAntiRect is slower than the normal AAA flow without MaskAdditiveBlitter. |
1967 | // Hence only tryBlitFatAntiRect when MaskAdditiveBlitter would have been used. |
1968 | if (!TryBlitFatAntiRect(blitter, path, clipBounds)) { |
1969 | MaskAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
1970 | aaa_fill_path(path, |
1971 | clipBounds, |
1972 | &additiveBlitter, |
1973 | ir.fTop, |
1974 | ir.fBottom, |
1975 | containedInClip, |
1976 | true, |
1977 | forceRLE); |
1978 | } |
1979 | } else if (!isInverse && path.isConvex()) { |
1980 | // If the filling area is convex (i.e., path.isConvex && !isInverse), our simpler |
1981 | // aaa_walk_convex_edges won't generate alphas above 255. Hence we don't need |
1982 | // SafeRLEAdditiveBlitter (which is slow due to clamping). The basic RLE blitter |
1983 | // RunBasedAdditiveBlitter would suffice. |
1984 | RunBasedAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
1985 | aaa_fill_path(path, |
1986 | clipBounds, |
1987 | &additiveBlitter, |
1988 | ir.fTop, |
1989 | ir.fBottom, |
1990 | containedInClip, |
1991 | false, |
1992 | forceRLE); |
1993 | } else { |
1994 | // If the filling area might not be convex, the more involved aaa_walk_edges would |
1995 | // be called and we have to clamp the alpha downto 255. The SafeRLEAdditiveBlitter |
1996 | // does that at a cost of performance. |
1997 | SafeRLEAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
1998 | aaa_fill_path(path, |
1999 | clipBounds, |
2000 | &additiveBlitter, |
2001 | ir.fTop, |
2002 | ir.fBottom, |
2003 | containedInClip, |
2004 | false, |
2005 | forceRLE); |
2006 | } |
2007 | } |
2008 | #endif // defined(SK_DISABLE_AAA) |
2009 | |